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Abstract 

The Mzimvubu River is the largest river in South Africa without a dam. The 

Department of Water and Sanitation has identified the Tsitsa River Catchment 

on the Mzimvubu River as a potential site for a water resource development. 

The soils in the Tsitsa Catchment are prone to extreme soil erosion, in 

particular gullying. The sediment generated from these gullies and other forms 

of erosion will have a detrimental effect on any water resource development.  

Changing climate and land use will also affect soil erosion dynamics and thus 

need to be considered before any development is planned in the catchment. 

Previous studies have mapped the gully systems in the catchment as well as 

used hydrological models to determine erosion from sheet and rill processes. 

However, these studies did not account for the effects of change in land use or 

climate. The mapping of the gullies was also done manually, which is extremely 

time-consuming and is susceptible to human error. 

This study aims to determine the sediment yield in the catchment under 

current and future climate and land use scenarios as well as develop a 

methodology to identify and map the gullies automatically in order to 

determine the rate of gully growth from a time series of images. The study had 

two main components, the first was to study gully erosion in the catchment. In 

the second section the sheet and rill aspects of erosion under various climate 

and land use changes were modelled. Using object-based image analysis 

(OBIA) on SPOT 5 images a methodology was created to automate the task of 

gully mapping. This was applied to two SPOT 5 data sets one from 2007 and 

the other from 2012 in order to determine the rate of gully growth over the five-

year period. Various accuracy assessments were also conducted to assess the 

accuracy of the methodology. It was determined that the methodology had an 

overall accuracy of 98% for the 2012 image and 99% for the 2007 image. There 

was an overall increase in gully erosion in the catchment by 28% in the five-

year period. The estimated sediment yield generated from the gullies ranged 

between 7 and 14 t/ha/yr. It was concluded that OBIA resulted in faster 

processing times and more objective classification results.  

The second part of the study used the Soil and Water Assessment Tool (SWAT) 

to determine the sediment yield from sheet and rill erosion. SWAT only 

considers sheet and rill aspects of erosion and disregards gully erosion thus 
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both methods needs to be incorporated into the study in order to understand 

the complete dynamics of soil erosion in the catchment. SWAT was used to 

model the current land use and climate scenario using land cover data and 

observed weather data for the 2007-2012 period. On average 0.18 t/ha/yr of 

sediment is generated in the catchment from sheet and rill erosion.  

Using climate data from 1969 and projected to 2100, future sediment yield from 

sheet and rill erosion was estimated. The effects of possible land use change on 

sheet and rill erosion was also estimated by changing the land use component 

in SWAT into various crops that may be cultivated in the catchment over the 

next century. The results of the land use change showed that the current land 

use is optimal for minimal sheet and rill erosion and converting to maize crops 

will have the greatest impact on sediment yield  

This study aimed to understand the dynamics of soil erosion under current and 

changing land use and climate scenarios. It was concluded that the majority of 

the sediment is derived from gully erosion, which accounts for up to 70 times 

more sediment yield annually than sheet and rill erosion. Gully formation and 

propagation in the catchment is of critical concern to any land or water 

developments proposed for the Tsitsa Catchment. 
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1. Introduction 

1.1 Introduction to the study 

Soil erosion is one of the largest environmental problems facing Sub-Saharan 

Africa (Symeonakis & Drake, 2010).  The problems related to soil erosion such 

as decreasing water quality and soil productivity as well as land degradation, 

are a major concern to both rural and urban communities (Sidorchuk et al., 

2003). In water-scarce countries such as South Africa water bodies are 

increasingly threatened by pollution and sedimentation due to high 

concentrations of suspended sediment in streams, which adversely affects 

water use and ecosystem health (Le Roux et al., 2013). Growing population 

sizes, densities and changes in global climate are worsening the problem of soil 

erosion (Flugel et al., 2003). A recent study conducted by the Council for 

Scientific and Industrial Research (CSIR) created a climate model of South 

Africa at an 8 km resolution Engelbrecht et al. (2011). The model predicted an 

increase in rainfall through high-intensity rainfall events over the eastern 

parts of South Africa while the western parts of the country will experience 

drier conditions (Engelbrecht & van Garderen, 2013). These predicted changes 

to the climate of South Africa will influence sediment generation and runoff as 

well as water distribution over the country. An increased population growth 

along with growing industry and urban population puts further demands on 

South Africa’s limited water resources (Abalu & Hassan, 1998). 

It is imperative to devise the means through which soil erosion and its 

associated problems can be controlled such as reservoir sedimentation. 

Prevention and remediation measures rely largely on the understanding of 

factors controlling the sediment dynamics in a catchment, including sediment 

generation, transport and deposition (Le Roux et al., 2013). Thus it is 

important to model sediment yield in a catchment under various scenarios in 

order to determine how changing climate and land use will affect, for example, 

the water quality and dam lifespan.  

The Mzimvubu catchment is the only major river catchment in South Africa 

without a dam (Le Roux & van den Berg, 2014). The river sources in the 

Drakensberg range and flows from the escarpment through the Eastern Cape 

and into the Indian Ocean at Port St Johns. The catchment area of the 
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Mzimvubu River is roughly 19 000 km2 and spans across both KwaZulu-Natal 

and the Eastern Cape. One of the tributary rivers to the Mzimvubu is the 

Tsitsa river which sources in the Drakensberg and has a catchment area of 4 

924 km2. It flows into the Mzimvubu River after a length of approximately 200 

km from northwest to southeast (see Figure 3.1).  The area surrounding the 

river is used for larger commercial farms and plantations as well as rural 

farming and housing and once formed part of the Transkei. The people living 

in the area are still facing financial and social difficulty due to the legacy of the 

homeland policy set in the 1970’s. Overgrazing, over cultivation and social and 

political issues, have all led to the degradation of the land in the area.   

Geology in the area is dominated by mudstones, shales and sandstone of the 

Karoo Supergroup (Le Roux et al., 2015). This geology gives rise to highly 

erodible soils that are prone to gullying and sheet and rill erosion (Le Roux & 

Sumner, 2012) and the area is also considered one of the highest sediment yield 

areas in the country (Msadala et al., 2010). Gully erosion in the area is 

widespread and common with over 18 000 gullies been mapped in a study 

conducted by Mararakanye and Le Roux (2012).    

The Department of Water and Sanitation are considering the Mzimvubu River 

for a potential water resource development project (Le Roux et al., 2015). Five 

possible sites have been identified throughout the catchment, with the Tsitsa 

River at Ntabalenga the most promising site for a dam project (Le Roux et al., 

2015). The upper Tsitsa catchment falls in one of the poorest and least 

developed areas of South Africa. Thus it is hoped that the dam will spark 

economic activity through agricultural irrigation and tourism (Department of 

Water and Sanitation, 2014). Another important role of the dam will be to help 

secure water resources to alleviate vulnerability to droughts such as the ones 

experienced in 1992 and more recently 2015. The Department of Water and 

Sanitation stated that 98% of South Africa’s water resources have already been 

allocated and water availability is crucial to industrial and economic activity. 

Water storage is the most important way of securing water resources 

(Mokonyane, 2015). The construction of a dam can help this region cope better 

with droughts in the future. 

Studies on the dam site and catchment area need to be conducted in order to 

determine sediment transport and delivery. This will help to establish the 
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predicted lifespan of the dam and other dam management measures (Le Roux 

et al., 2015). Measurement of sediment production is necessary in order to 

determine areas which are most susceptible to erosion or acting as sediment 

conduits. Hydrological models such as the soil and water assessment tool 

(SWAT) are able to use various factors such as land use, vegetation, climate 

and soils to predict soil loss, sediment production and deposition to model 

catchment processes (Nietsch et al., 2005).  

The SWAT model is a physically based, basin‐scale, continuous‐time model 

that functions on a daily time step and aims to predict the impact of 

management on water, sediment and agricultural chemical yields in ungauged 

watersheds (Gassman et al., 2007). SWAT allows for multiple scenario 

analyses of a catchment at different scales using different variables, sources, 

and sinks for erosion (Le Roux et al., 2013). Such an approach helps predict the 

sediment generated in a catchment and can be used to determine potential dam 

sites, dam construction designs and dam management strategies. SWAT has 

gained international acceptance as a robust watershed modelling tool 

(Gassman et al., 2007) and has been applied to support various large catchment 

modelling studies across the world with minimal or no calibration effort (Le 

Roux et al., 2013). The foundational strength of SWAT is that it considers most 

connectivity aspects into one simulation process, including factors controlling 

upland sediment generation, channel transport and deposition into sinks. 

SWAT can also be run in a GIS, which gives it flexibility in the representation 

and organization of spatial data. (Le Roux et al., 2013) 

Over the last decades, most research dealing with soil erosion by water has 

concentrated on sheet and rill erosion processes operating at the plot scale. 

Relatively few studies have been conducted on gully erosion operating at larger 

spatial scales (Mararakanye & Le Roux, 2012). A major disadvantage of not 

only the SWAT model but other hydrological models is that they lack the ability 

to model gully erosion processes (Sidorchuk et al., 2003). The absence of gully 

erosion in models is due to two main reasons. First, the development of erosion 

models has focused on areas of intense agriculture, which are common in 

developed countries. The second reason is due to the spatial and temporal 

heterogeneity of gully erosion processes, which make the modelling of gully 

erosion difficult (Sidorchuk et al., 2003). Field-based evidence suggests that 

modelling only sheet and rill erosion will not provide realistic representations 
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of the total catchment erosion especially as many models also do not account 

for redistribution of eroded soil within a field. Gully erosion acts as a conduit 

channelling a large amount of eroded soil within a catchment and delivering it 

to the water channels (Poesen et al., 2003). Thus gully erosion is an important 

factor controlling the connectivity in a catchment (Poesen et al., 2003). It is 

very important to consider gully erosion processes in erosion studies 

(Sidorchuk et al., 2003) conducted in many areas of South Africa, especially in 

the former homelands such as Transkei in the Eastern Cape Province 

(Kakembo & Rowntree, 2003). This can be achieved through accurate gully 

location mapping (Mararakanye & Le Roux, 2012). 

Numerous mapping approaches have been carried out which emphasize the 

continuously growing need and the importance of mapping gullies. Mapping 

gully systems and quantifying their changes over time are essential for 

catchment rehabilitation and implementing soil conservation measures 

(Shruthi et al., 2015).  Perspectives on sediment yield contribution from gully 

erosion have typically been obtained from field scale (<10-1 km2) and are 

confined to local conditions (Grellier et al., 2012; Manjoro et al., 2012; Slimane 

et al., 2015). Few studies model the sediment yield contribution from gully 

erosion at a regional scale. 

In the past, field-based methods were used until aerial photos and later 

satellite imagery became more readily available. Early assessment of gully 

erosion was based on the manual interpretation of aerial photographs 

(d’Oleire-Oltmanns et al., 2014). Manual interpretation, however, is laborious, 

time-consuming and has the potential for human error and bias. As computer 

software improved, automated methods such as pixel-based and object-based 

image analysis (OBIA) became the preferred methods of image classification 

as they are faster and more objective.  

Object-based image analysis is the most practical approach for mapping gully 

features over large areas, due to the variation in gully size, shape and 

occurrence (Knight et al., 2007; Shruthi et al., 2012). OBIA, which takes into 

account auxiliary information, such as geometric properties and the spatial 

relationship with surrounding features, allows for an approach similar to the 

cognitive approach of the human operator. Through OBIA, it is possible to 

analyse erosion features as spatial objects so they can be categorised based on 
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their geometric properties as well as their spatial relationship with 

neighbouring features. Recent work has shown OBIA to be superior to pixel-

based methods for the identification and classification of gullies due to their 

spectral heterogeneity (Shruthi et al., 2015). OBIA is better able to replicate 

human interpretation than pixel based or manual methods and thus reduces 

the subjectivity of digitising and makes the results more repeatable (Dezso et 

al., 2012). However, the potential of OBIA to identify and map gully erosion 

features from high spatial resolution satellite imagery has only been tested in 

a number of studies (Shruthi et al., 2012). Although manual digitising produces 

more accurate results, the process remains time-consuming and may contain 

bias or simple errors in gully interpretations. Monitoring large catchments or 

countrywide gully development through manual interpretation will be 

expensive and difficult to replicate. It is, therefore, necessary to develop new 

OBIA based methodologies which will be less expensive and easier to repeat 

(Mararakanye & Nethengwe, 2012).  

Building a dam is a large financial investment and the communities which 

benefit from dam projects can be greatly uplifted. Thus it is important that the 

planned dam remains functional for a long period of time. The Welbedacht dam 

in the Free State lost up to 80% of its capacity in the first 50 years of use (Le 

Roux et al., 2015). This was due to extreme siltation which reduced the water 

holding capacity of the dam from 115 million m3 to 16 million m3 within the 

first 20 years after completion (Department of Water and Sanitation, 

2015). The Welbedacht Dam example shows how important it is to assess the 

sediment yield in a catchment prior to dam construction. Results from erosion 

studies on a proposed catchment can aid dam location selection, dam design 

and management strategies. Considering the effects of changing climate and 

land use can further aid managers of the dam project to identify negative 

consequences which may be brought about in the future. It is thus imperative 

that sediment yield studies are conducted on dam catchments in order to 

optimise the dam lifespan.  

Due to the increasing risk associated with climate change, it is important not 

only to understand current climate/sediment models but also how projected 

climate change will alter the sediment yield in a catchment as dams are built 

with expected lifespans of 70-100 years. The Department of Water and 
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Sanitation have commissioned a project to create framework strategies that 

will allow for better management of South Africa’s dams currently and going 

into the future. An advantage of the SWAT model is that it can assist in 

modelling sediment yield in a catchment based on projected climate change. 

Engelbrecht et al. (2011) created six 50 km resolution climate change 

prediction models for South Africa. The study relied on the detailed projections 

of a regional climate model, which were obtained through the dynamic 

downscaling of six different Coupled Global Climate Models (CGCM) 

projections of future climate change to high resolution over southern Africa 

(Engelbrecht et al., 2011). The regional model used is the Conformal-Cubic 

Atmospheric Model (CCAM) which is a variable resolution global atmospheric 

model of the Commonwealth Scientific and Industrial Research Organization 

(CSIRO) in Australia. This model was applied in stretched-grid mode over 

southern and tropical Africa to obtain simulations at a resolution of 

approximately 0.5° in longitude and latitude (Engelbrecht et al. 2011). A 

detailed description of the downscaling procedure is provided by Engelbrecht 

et al. (2011). All the CGCM simulations used were for the A2 Special Report on 

Emissions Scenarios (SRES) scenario and were downscaled for the period 1961-

2100. The CGCMs downscaled by Engelbrecht et al. (2011) are listed as follows: 

o GFDL-CM2.0 from the National Oceanic and Atmospheric 

Administration (NOAA) 

o GFDL-CM2.1 of NOAA 

o ECHAM5/MPI-Ocean Model from Germany 

o UKMO-HadCM3 from the United Kingdom 

o MIROC3.2-medres from the Japanese Agency for Marine-Earth 

Science and Technology (JAMSTEC) 

o CSIRO Mark3.5 from Australia 

 

1.1.1. Problem statement 

Recent soil erosion mapping and modelling studies indicate that large parts of 

the Tsitsa River Catchment consist of highly erodible soils and widespread soil 

erosion (Le Roux et al., 2007; Mararakanye & Le Roux, 2012; Le Roux & 

Sumner, 2012; van Tol et al., 2014; Le Roux et al., 2015). The gully location 
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map created by Mararakanye and Le Roux (2012) provides only location and 

the spatial extent of the gullies. Furthermore, the Universal Soil Loss Equation 

(USLE) assessment models used by Le Roux et al. (2007) only considers sheet 

and rill erosion and disregards erosion contribution by gullies.  

More recently, a study by Le Roux et al. (2015) in the larger Mzimvubu 

Catchment determined the sediment contribution from both sheet and rill 

erosion as well as gully erosion, however, this study did not focus on the upper 

Tsitsa catchment in specific detail. All these studies lacked temporal 

variability in the catchment and gave no indication of varying sediment 

production under projected land use and climate change. A methodology to 

produce a detailed gully location map of the upper Tsitsa River Catchment 

needs to be created, which will allow for faster mapping and results that are 

more objective. It is also important to model sediment yield under projected 

climate and land use change to understand how soil erosion will change 

temporally throughout the dam lifespan. Through the study of Le Roux et al. 

(2015) certain research needs were identified such as the use of automated 

gully identification techniques and the need for more scenario analysis. The 

results of this study will refine and fill in the gaps which were out of the scope 

of the report produced by Le Roux et al. (2015).  

 

1.1.2. General aims and objectives 

The main aim of the study is to determine the sediment yield at the proposed 

dam site at Ntabalenga under various climate and land use scenarios. 

The aim of the study is met through the following objectives: 

 To create a model of the sediment yield from sheet and rill erosion for 

the upper Tsitsa Catchment using SWAT. 

 To use eCognition software and object-based classification to identify 

and map gullies in the catchment for two separate years: 2007 and 2012. 

 To use the resultant gully location maps from 2007 and 2012 to estimate 

the sediment yield contribution from gullies over the 5-year period.  

 To determine the impacts of projected climate change on sediment yield 

in the catchment. 
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 To determine the impacts of proposed land use change under till and no 

till scenarios on sediment yield in the catchment.  

 

The use of SWAT and OBIA are very different in terms of their theoretical 

basis. The SWAT model has a GIS basis whereas OBIA is a tool used for the 

automatic classification of remote sensing imagery. The SWAT model is based 

on a pre-defined, programmed model where the user can alter the inputs in 

order to obtain results for their specific case study. In contrast, when using 

OBIA software the users have to create their own methodology to allow for the 

identification of soil erosion in the images. Although the two techniques are 

very different, in this study the applications of both these approaches are 

identical: which is to estimate soil erosion and the resulting sediment yield. 

Combining these two techniques gives the project a stronger relevance in the 

field as integrating both techniques in a single study allows for the complete 

analysis of soil erosion in the catchment and the results will, therefore, be a 

more accurate representation of reality. SWAT’s strength lies in modelling 

sheet and rill erosion yet it does not account for gully erosion. With the use of 

OBIA, gully erosion can be mapped and the sediment yield from the gullies can 

then be estimated. Thus through the combination of both techniques, a more 

detailed and accurate estimation of sediment yield from both gully and sheet 

and rill erosion for the catchment can be calculated.  

 

1.2. Rationale 

1.2.1. Modelling sheet and rill erosion 

The SWAT model was selected because it is a spatially semi-distributed model, 

which has gained international acceptance and it has been applied to many 

large catchments across the world with minimal calibration needed. SWAT is 

also easily downloaded free of charge and has an ArcMap extension, ArcSWAT, 

which allows it to be run in the ArcMap interface. This gives the user flexibility 

in the representation and organisation of spatial data. SWAT also considers 

many aspects of connectivity such as upland sediment generation, channel 

transport and sink deposition (Le Roux et al., 2013). Another strength of SWAT 

is that it allows for scenario analysis with minimal effort in changing the input 
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data. Since this study was based on the effects of various scenarios on sediment 

output in the catchment, it was important to run a model in which the input 

data can be changed easily. SWAT was tested in a previous study in the 

Mkabela catchment and it was shown to accurately, although slightly 

overestimate, most of the peak flow events during the simulation period (Le 

Roux et al., 2013). Le Roux (2009) assessed various catchment models of 

international standing and concluded the SWAT model was the most suitable 

for large-scale catchment modelling in South Africa.  

 

1.2.2. Modelling gully erosion 

The SWAT model only accounts for sheet and rill erosion and disregards 

sediment produced from gully erosion (Le Roux et al., 2015). Methods are  thus 

needed to predict the extent and patterns of gully erosion across large areas as 

well as determine their contribution to the overall sediment yield in the 

catchment (Hughes & Prosser, 2012).  

In a catchment such as the upper Tsitsa, where the soils are prone to gullying 

and there is widespread gully erosion it is important to determine the sediment 

produced from the gullies (van Tol et al., 2014; Le Roux et al., 2015). The most 

widely used method to access gully erosion is to manually digitise gullies from 

aerial or satellite imagery. However, this process is time-consuming and 

contains human error and bias thus it is preferable to automate the task of 

gully detection.  

Object-based image analysis software has developed into a powerful tool as it 

allows the user to develop custom rulesets for automatic classification, without 

the need for human digitising. For this study, the software package, 

eCognition, was used to conduct image analysis of SPOT 5 images to extract 

the gully objects for further analysis. eCognition Developer is distributed by 

Trimble Navigation Limited and is a powerful development tool for OBIA. 

eCognition has been widely used in earth sciences to develop rule sets for the 

automatic analysis and classification of remote sensing data. eCognition 

Developer can be used for feature extraction, change detection and object 

recognition. The object-based approach can facilitate analysis of a variety of 

data sources, such as medium to high-resolution satellite data, high to very 
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high-resolution aerial photography, light detection and ranging (LiDAR), radar 

and even hyperspectral data (Trimble Navigation Limited, 2014). 

The methodology developed and tested in this study along with the derived 

gully location maps will be a valuable tool for the improved assessment of gully-

derived sediment yield and gully mapping. The results will be particularly 

useful in modelling gully derived sediment yield under changing climate 

scenarios. If the gully location or gully expansion maps are not accurate and 

objective, the sediment yield results derived therefrom will also not be 

accurate. 

 

1.2.3. Catchment selection 

The study area chosen was the upper Tsitsa River Catchment upstream of the 

Ntabalenga village in the Eastern Cape Province, South Africa. The area falls 

in the former Transkei homeland and is one of the poorest and least developed 

areas in South Africa. The primary reason for this area been chosen was 

because it is a site for a potential dam construction. The Tsitsa River feeds the 

larger Mzimvubu River, which is on record the only large river in South Africa 

without a dam (Le Roux et al., 2015). The construction of a dam in the upper 

Tsitsa Catchment is envisioned to spark economic and agricultural activity in 

the poor rural area surrounding it (Duncan et al., 2015).  

The Tsitsa catchment is also an area of agricultural concern and there are 

discussions by the Department of Agriculture, Forestry and Fisheries (DAFF) 

about potential commercial farming in the catchment. Parts of the Eastern 

Cape are predicted to become suitable for avocado, sugarcane, maize and 

pasture cultivation with predicted climate change (Weepener et al., 2015).  

Third, the Tsitsa catchment has been an area of interest for many years and 

there is a considerable amount of literature available produced through 

numerous soil and hydrological studies (Esprey, 1997; van Huyssteen et al., 

2005; Freese et al., 2010; van Tol et al., 2010; Le Roux et al., 2015). DAFF 

selected the Tsitsa Catchment as one of three priority tertiary catchments in 

South Africa. The other two are in KwaZulu-Natal and Limpopo (Lindemann 

& Pretorius, 2005).  There is also a substantial amount of data such as soil, 
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land use, climate, geology, vegetation and topography available for the study 

area.  

Finally, a R450 million project initiative has been funded by the government 

to prevent and rehabilitate soil erosion in the catchment over a period of 10 

years. The project’s main aim is to restore eroded land and therefore reduce 

the sediment generated in the catchment, which will be achieved through the 

restoration of wetlands and cultivated agricultural land (Duncan et al., 2015). 

The benefits of such an initiative are many, ranging from returning the land to 

productive agriculture to improving water quality and preventing dam 

siltation (Duncan et al., 2015). It is hoped that this study can shed some light 

on the effects of soil erosion on the dam as well as the effects of potential land 

use and climate change on sediment generation in the catchment.  

Through this study the gullies in the catchment will be identified and mapped. 

Gully growth rates will also be determined through time series analysis. This 

can help identify gullies which are more active and where resources can be 

distributed in order to gain the most out of the rehabilitation project (Shruthi 

et al., 2015).  

 

1.3. Specific objectives 

1.3.1. Modelling sheet and rill erosion under current conditions 

SWAT will be used to model sheet and rill erosion in the upper Tsitsa 

Catchment under the current land use and climate conditions. Measured 

rainfall and temperature data from a weather station located in the Tsitsa 

Catchment for the period 2007-2012 (Agro meteorology Staff, 1984-2008) along 

with soil and land use data provided by the land types map (Land Type Survey 

Staff, 1972-2006) and the national land cover map (Le Roux et al., 2015)) will 

be used to set up the model.  

 

1.3.2. Modelling gully erosion  

Gully erosion in the catchment will be modelled using SPOT 5 images and 

eCognition software. eCognition software facilitates OBIA and allows for a 

user-defined ruleset to be created. A ruleset which will be applicable to other 
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SPOT 5 images, will be created and run on both the 2007 and 2012 SPOT 5 

images. The lateral growth of the gullies will be calculated by subtracting the 

2007 results from the 2012 results. This will give an indication of gully activity 

over the 5-year period. Using the U and V shape gully model (Poesen et al., 

2003) along with a constant sediment delivery ratio the sediment yield 

contribution from the gullies in the catchment will be estimated and presented 

as a range.  

 

1.3.3. Modelling effects of climate change on erosion 

Climate data acquired from six CGCM simulations from the A2 Special Report 

on Emissions Scenarios (SRES) for the period 1961-2100 (listed below) will be 

used. 

o GFDL-CM2.0  

o GFDL-CM2.1  

o ECHAM5/MPI 

o UKMO 

o MIROC3.2 

o CSIRO  

 

It is important to use multiple GCMs in a study involving the effects of climate 

change (Crosbie et al., 2011). The use of multiple models helps account for the 

large potential uncertainties in future estimates of soil erosion and sediment 

yield. By choosing only the best performing GCMs the range of projections may 

be narrowed. Similarly, by choosing the extremes of the GCMs for rainfall may 

not produce the extremes of the sediment yield as different parametres within 

the model may outweigh the effects of rainfall. Thus it is best to use as many 

as possible, which has the added benefit of providing a range sediment yield 

forecasts (Crosbie et al., 2011). 

Temperature and rainfall data will be calibrated for SWAT using the WGN 

Maker, Macro, which formats the climate data and calculates the statistics 

needed for SWAT to run. The new data will be put into the SWAT model and 

the sediment yield from sheet and rill erosion will be calculated for three 
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separate 19-year periods 2015-2034, 2046-2065 and 2081-2100 to derive short, 

medium and long-term estimates. 

 

1.3.4. Modelling effects of land use change 

There is potential for commercial crop agriculture.in the Tsitsa River 

Catchment. Some of the crops considered for cultivation in the catchment 

include sweet potato, sugarcane, cabbage, avocado orchards and corn. These 

crop types will be simulated into the SWAT model and run under till and no-

till scenarios in order to determine how they will affect the sheet and rill 

aspects of erosion.  

Tillage operations redistribute plant residue, nutrients, pesticides and bacteria 

through the soil profile. Tillage operations were first introduced to remove the 

plant residue from the soil so that there would be no food sources for pests, 

thus reducing the number of pests and the negative effects associated with 

them (Nietsch et al., 2005). However, it was noticed that tillage operations 

made the soils more prone to erosion due to the destruction of the soil structure 

and the removal of organic matter, which helps consolidate the soil and give it 

structure. The removal of mechanical pest control, unfortunately, forced 

farmers to use more chemical pest control methods, which lead to 

environmental contamination (Nietsch et al., 2005).  

No-till agriculture limits the amount of soil disturbance to only necessary 

activities such as the application of nutrients, the conditioning of crop residue 

and planting crops. By not tilling the fields there is an improvement in soil 

organic matter content, which contributes to enhanced soil structure and 

resilience to erosion. It also reduces the CO2 and particulate losses in the soil. 

No-till activities have proven to reduce sheet and rill erosion from water as well 

as wind erosion (Waidler et al., 2011). 

Various studies have shown the benefits of conservation tillage and no-till 

agricultural practices on water and material fluxes at the local field scale. It is 

important, however, to determine the effects of these practices at the 

watershed scale in order to guide management practices (Ullrich & Volk, 2009). 

The Eastern Cape province is one of the areas in South Africa where a lot of 
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investment is being made into conservation agriculture, which makes studying 

the effects of tillage on soil erosion in this area important. 

 

1.4. Project outline 

The primary aim of the project is to determine the sediment yield in the upper 

Tsitsa River Catchment. The first step of the project is to write a ruleset in 

eCognition to identify gullies over the gullies in 2012 and 2007. The rate of 

gully growth will be calculated and the gully activity will be established. The 

second phase of the study is to setup the SWAT model for the catchment using 

current land use and climate data to calculate the sediment yield from sheet 

and rill erosion. This will be used as a baseline. Once the current soil erosion 

phenomena have been mapped and modelled, the models will be extended to 

predict soil erosion under future scenarios. The land use input will be changed 

to account for large-scale agriculture. This will be done by converting all 

agricultural land in the catchment to the various crops simulated overall six 

different land type scenarios will be run and compared.  

The next phase will be to model sediment generated in the catchment under 

projected climate change data. The results from the six simulated GCM will be 

put into SWAT and run under current land use scenarios using the generic 

agriculture simulation in SWAT. Using the gully activity and growth rate the 

sediment generated from gully erosion in the catchment will be calculated for 

the period 2015-2100. This will be combined with the results of the climate 

change model and the land use model to get the overall sediment production in 

the catchment. The study hopes to clarify the effects of land use change and 

climate change on an economically important catchment in South Africa in 

order to aid dam management practices. 
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2.  Literature Review 

2.1. Erosion phenomena 

Soil erosion is defined as the loosening of the land surface by physical processes 

such as rain, flowing water, wind, ice, temperature change, gravity or other 

natural or anthropogenic agents that abrade, detach and remove soil or 

geological material from one point on the earth's surface to be deposited 

elsewhere (Jones & Thompson, 2007). In a catchment, there are numerous rills 

and channels which can channel erosion and particles. During a rainstorm 

event, rain droplets can detach unprotected soil particles and transport them 

to the rills and channels. From here the sediment is transported to larger rills 

and ephemeral channels and finally into the main channel. The deposition of 

sediment can happen throughout the catchment so not all the sediment 

generated in the catchment will reach the catchment outlet (Nietsch et al., 

2011).   

 

2.1.1. Sheet erosion 

Sheet erosion also known as rain splash or sheet wash is defined as the uniform 

detachment of soil particles by rain splash and the subsequent removal of the 

soil particles downslope by overland flow as a sheet rather than in a defined 

channel such as with gully erosion or rill erosion. Sheet erosion results in the 

loss of fertile top soil and occurs most commonly in ploughed fields or areas 

with sparse vegetation (Nearing et al., 1994). 

 

2.1.2. Rill erosion 

Rill erosion is one of the most common forms of erosion and is defined as the 

detachment of soil particles and the subsequent concentrated removal of 

particles along streamlets, or head cuts. Rill erosion is not often deep being less 

than 30 cm and can be removed by tillage (USDA-ARS National Soil Erosion 

Research Laboratory, 2015).  
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2.1.3. Gully erosion 

Gullies are three-dimensional erosion forms that may appear in various 

shapes, sizes and complexities. They range from simple longitudinal linear 

incisions to deeply incised dendritic networks with V-shaped, U-shaped and 

even overhanging cross-profiles. Their length may vary from a few meters to 

hundreds of meters and their width and depths from several decimetres to tens 

of meters (d’Oleire-Oltmanns et al., 2014). Gullies occur when runoff water is 

channelled into grooves and deepen over time forming a distinct head with 

steep sides that may collapse by water seepage or undermined by water flow 

within the gully (Mararakanye & Nethengwe, 2012). Gullies mainly occur in 

drainage ways at lower slope positions and are the most obvious erosion 

features in the landscape ranging from 30 cm to 30 m deep (Poesen et al., 2003; 

Mararakanye & Nethengwe, 2012). Gullies may be classified as continuous or 

discrete, with the former having many branches whilst the latter are 

independent with no distinct connection with the main gully or stream channel 

(Mararakanye & Nethengwe, 2012). 

 

2.2. Monitoring of erosion 

2.2.1. Field-based methods 

Traditional field-based methods of monitoring soil erosion are conducted in the 

field and make use of plots, pins or points (Gillan et al., 2016). These methods 

are often labour intensive and limited in spatial and temporal extent (Gillan et 

al., 2016) they are also vulnerable to theft and vandalism (Hudson, 1993). 

Today, many erosion studies rely on aerial or satellite images and hydrological 

models to determine soil erosion rates. Although these methods are less labour 

intensive and remove the potential for human disturbance and vandalism, 

many still require field observations and ground truth data for validation and 

calibration (Nearing, 2000).  
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2.2.1.1. Plot-based methods 

Traditionally soil erosion has been measured by collecting data from small 

plots called runoff plots. The gathered data are then extrapolated to the larger 

catchment (Evans, 2002). The plots are available in various sizes and types 

depending on the geomorphology of the landscape and the processes involved 

in erosion (Boix-Fayos et al., 2006). There are numerous disadvantages and 

limitations to plot based methods. One of the biggest drawbacks is that the 

simulated runoff is either caught by directing the flow of water over the lower 

edge of the plot which causes an abrupt drop in height into the containers, or 

it is discarded. With such a rapid increase in gradient, a potent ‘driver’ of 

erosion is created which would not usually have been there in the field (Evans, 

2002). Field assessments of soil erosion are based on two main assumptions. 

First, the effects of rain splash and sheet wash are insignificant, in the short 

term, in the redistribution of soil within a field other than over distances of a 

few metres. Second, rills and gullies are the main channels of soil 

redistribution in a catchment (Evans, 2002).  

Another limitation to plot-based models is the lack of a temporal scale. Most 

research projects using plot based methods are limited to a few years therefore, 

they are not indicative of long-term erosion processes and variations (Boix-

Fayos et al., 2006). In closed plots, a common problem when conducting 

temporal experiments is the depletion of material. Numerous studies have 

shown that the erosion rates of closed plots were reduced over a 6-year period. 

This was caused by the system changing from a transport-limited to a 

detachment-limited environment. One explanation for this observation could 

be due to the formation of a harder surface layer which can inhibit detachment. 

Another problem with closed plot experiments is the lack of input material 

from outside the plot. There is, however, an advantage to the use of closed plots 

in that they allow for the comparison of different responses at the same spatial 

scale with the same size drainage area (Boix-Fayos et al., 2006). 

Plot based erosion-measuring methods also lack a spatial component. 

Hydrological and geomorphological processes which regulate the delivery, 

transport and storage of sediment in the catchment are highly scale dependent. 

Processes which dominate at the hillslope scale may be overridden at the 

catchment scale. Plot based methods are unable to account for the change in 
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processes when extrapolating to the larger catchment (Boix-Fayos et al., 2006). 

Errors in the experimental design can lead to the creation of artificial 

boundaries and human disturbance of the natural processes (Boix-Fayos et al., 

2006). 

Finally, plot-scale measurements are unable to account for the natural 

heterogeneity in the catchment as well as the complexities of connectivity, 

continuity and the system interactions. Due to the short temporal scale of plot 

measurements they often do not include extreme rainfall events where most of 

the detachment and downslope movement of particles occur (Hudson, 1993).  

 

2.2.1.2. Point-based methods 

There are various field-based measurements which are measured by changes 

at a single point. If these methods are simple enough and inexpensive a large 

number of points can be sampled, which can give a good estimation of soil loss 

over an area (Hudson, 1993). Examples of point measurements include: 

o Erosion pins which are a widely used method whereby a pin is placed 

carefully in the ground where the top of the pin gives the date that pin 

was placed. Pins can be placed at random points across the study area. 

The pins usually form a ‘T’ shape at the top and the soil loss can be 

measured by measuring the distance from the top of the pin to the 

ground surface after a certain period of time (Hudson, 1993; 

Stroosnijder, 2005). 

o Paint collars involve painting a line at ground height on suitable, 

longstanding features such as boulders or trees. The soil loss can then 

be determined after a period of time by measuring the distance from the 

painted line and the new ground height (Hudson, 1993). 

o The bottle cap or pedestal method uses a bottle cap or other protective 

surface placed into the ground. This will shield the area from rain and 

create a pedestal. The height of the pedestal can then be measured to 

determine the amount of soil loss (Hudson, 1993; Shakesby et al., 2006).   
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Point-based methods can be extremely time-consuming especially when 

working over a large area. Another problem with point-based methods is the 

disturbance of the placements by animals or people. They are also susceptible 

to theft and vandalism (Hudson, 1993).  

 

2.2.1.3. Radiometric dating techniques 

The Ceasium-137 isotope and radiometric dating technique is another field-

based method. Using Cs-137 for erosion studies has proven reliable and been 

successfully used in a variety of environments for the last 30 years (Soto & 

Navas, 2008). This technique is able to give longer-term estimations than plot 

measurements, up to 35 years. It is also able to give estimations over large 

areas on a single site visit. Thus Cs-137 dating has become an important tool 

for measuring soil erosion and can be used in a wide range of environments 

(Walling & Quine, 1992).  

It is based on the fact that Cs-137 was released into the environment as a result 

of thermonuclear bomb tests during the 1950’s-1970s. The isotope went into 

the stratosphere and was then distributed globally. The method derived from 

this phenomenon is based on the assumption that a consistent relationship can 

be established between the degree of increase and depletion of the Cs-137 

inventory in the soil and the total depth of soil loss or accretion. (Walling & 

Quine, 1992). 

 

2.2.2. Computer-based methods 

2.2.2.1. Geographic information systems 

Geographic Information Systems (GIS) have proven to be useful in mapping 

and modelling soil erosion at various spatial and temporal scales in complex 

watersheds (Huang et al., 2003). With the advancement of computers and 

software GIS, many of the more recent studies on soil erosion have been 

conducted using GIS. GIS mainly uses models to simulate catchment processes 

and model soil losses. The simplest and widely used model is the universal soil 

loss equation (USLE) model (Zivotic et al., 2012). Many other models are based 

on the USLE and its derivatives such as the modified universal soil loss 
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equation (MUSLE) and the revised universal soil loss equation (RUSLE). The 

main advantage of using GIS to calculate soil erosion is the ease at which data 

can be interpreted. 

Many models use various inputs such as soil properties, climate data, digital 

elevation models (DEM) and land use, which are widely available especially in 

developed nations such as the United States of America where it was created. 

Using a grid approach, along with the spatial data sets mentioned above GIS 

models are able to capture the complexity and heterogeneity of catchments 

(Jain et al., 2005). GIS models are also able to run over various temporal scales 

from a few months to decades as well as model sediment yield at various spatial 

scales which plot measurements fail to achieve. These models have also evolved 

over time and many are now able to simulate surface and subsurface processes 

(Jain et al., 2005). This can all be done at the desktop and various scenarios 

can be simulated with slight changes to the inputs. GIS models are also more 

reliable and produce more reproducible results than field data.  

Many GIS models are able to simulate complexity and heterogeneity in the 

environment more successfully than plot-extrapolated data. The use of 

Hydrological Response units (HRU) in GIS allows the models to group areas 

with similar properties. This gives more heterogeneity to the model and the 

simulations are closer to reality. Models run in GIS are also not susceptible to 

disturbance by animals or people. This makes GIS a more attractive method to 

determine soil losses than other traditional methods. It is important to note 

that GIS models have numerous drawbacks. Most important for this study is 

that they fail to model gully erosion. Further disadvantages of hydrological 

models include lack of user friendliness, large data requirements, absence of 

clear statements of their limitations and over-simplification of catchment 

processes (Devia et al., 2015).  
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2.2.2.2. Soil loss equations (USLE, MUSLE, RUSLE) 

2.2.2.2.1. USLE 

The universal soil loss equation (USLE) (Equation 2.1) was developed by 

Wischmeier and Smith (1978) and has become the most widely used and 

supported soil conservation tool (Tombus et al., 2012). It takes into account 

rainfall erosivity, soil erodibility, slope, vegetation and land management 

practices to predict long-term average annual soil loss on uniformly cultivated 

fields (Cardei, 2010). The equation is empirical and is based on measurements 

rather than theoretical principles. The model is constructed on the theory that 

erosion is a multiplier of rainfall erosivity which also multiplies the resistance 

of the environment (i.e. topography, land cover and land management) 

(Bruland, 2015). 

 

Equation 2.1.    𝐴 = 𝑅 ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶 ∗ 𝑃  

 

Where   A = Annual soil loss (in tonnes per acre per year or 

tonnes per hectare per year) 

R = rainfall erosivity 

K = soil erodibility 

SL = slope length and gradient 

C = crop management factor (cover) 

  P = crop management factor (support factor) 

 

The main limitation to the USLE model is that it only models sheet and rill 

erosion and disregards sediment produced from gully erosion. However, there 

are also a number of other limitations such as it never applies to linear or mass 

erosion, as the source of energy in the equation is rainfall. Another limitation 

is that the rainfall simulation energy only applies to the Great Plains of the 

United States of America (USA). The model has also only been verified in 

countryside environments with slopes of 1-20% and so it excludes mountainous 
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areas with slopes greater than 40%. Another major limitation of the model is 

that neglects certain interactions between the factors. Finally, the model 

applies to long-term data and it cannot be used to model the effects of a single 

storm (Cardei, 2010). 

USLE was first used on catchments in South Africa by Crosby et al., (1983) 

and  McPhee & Smithen (1984), however, the USLE was never widely 

implemented in South Africa (Smith, 1999).  

 

2.2.2.2.2. MUSLE  

The modified universal soil loss equation (MUSLE) replaced the rainfall 

erosivity factor in USLE with a runoff factor, which is effectively the product 

of rainfall amount and runoff amount (Equation 2.2). This improves the 

prediction capabilities of the model as the runoff factor becomes a precursor of 

moisture as well as rainfall energy and it eliminates the need for delivery ratios 

(Zhang et al., 2009). The main advantage of the MUSLE is that it is able to 

predict sediment losses for a single storm event (Zhang et al., 2009).  

The MUSLE applies to the points in the watershed where overland flow enters 

the streams. All the points are then summed to give the total sediment entering 

the stream from the watershed (Zhang et al., 2009). 

 

Equation 2.2.  𝑆 = 95(𝑄𝑝𝑝)0.56 ∗ 𝐾 ∗ 𝐿 ∗ 𝑆 ∗ 𝐶 ∗ 𝑃 

 

Where      S = sediment yield for a single event (in tonnes) 

   Q = total event runoff  

The rest of the factors are the same as for the USLE 

equation described earlier. 

 

The MUSLE model, however, was shown to overestimate soil erosion in a 

catchment in the Drakensberg by over 1000% (Laker, 2004). It is believed that 

the USLE model and its derivatives are designed for slopes in America where 
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slope is the dominant factor whereas in South Africa soil erodibility is a more 

dominant factor controlling soil erosion (Laker, 2004). This is especially true 

in catchments is the Eastern Cape where the soils are known to be highly 

erosive and dispersive (Le Roux et al., 2015).  

 

2.2.2.2.3. RUSLE 

The revised universal soil loss equation (RUSLE) is based on USLE but the 

factors for slope length and angle as well as the conservation and land 

management practices have been modified. However, this modification has 

shown to have little effect on the efficiency of the model (Tiwari et al., 2000). 

The RUSLE model does not account for the complex processes of deposition in 

the catchment and simply assumes that all sediment will end up in the river. 

Newer developments of the model are trying to simulate the catchment 

processes to more accurately model sediment yield (Tiwari et al., 2000).  

 

RULSE has been more widely used in catchment studies in South Africa than 

USLE. Smith et al. (2000) applied RUSLE to catchments within the Lesotho 

Highlands Water Project to determine soil losses and depict the distribution 

and extent of soil erosion in the catchments. The study also used the model to 

screen different land use practices in order to determine the ones causing the 

highest erosion rates. Le Roux et al. (2008) applied RULSE to determine actual 

and potential erosion risk areas at a national scale in South Africa. Mhangara 

et al. (2012) used RUSLE within the Sediment Assessment Tool for Effective 

Erosion Control model to assess the soil erosion risk in the Keiskamma 

catchment. 

 

2.2.2.3. SWAT 

The soil and water assessment tool (SWAT) is a physically based, catchment‐

scale, continuous‐time model developed by the United States Department of 

Agriculture (USDA). It functions on a daily time step and aims to predict the 

impact of management on water, sediment, and agricultural chemical yields in 

ungauged watersheds (Gassman et al., 2007).  The SWAT model allows for 

multiple scenario analyses of the catchment area at various scales. Thus the 
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effect of certain variables such as source and sink zones on erosion and 

deposition can be tested (Le Roux et al., 2013). The use of the SWAT model can 

help predict the sediment generated in the catchment and can thus provide 

useful information for the selection process of potential dam sites, dam 

construction designs and dam management strategies by testing various 

scenarios and their effects.  Due to the continuous design of the SWAT model, 

it cannot be used as a field-scale, event-based model. The emphasis is on 

annual average results on sediment migration as represented by the SWAT 

model’s spatial elements including sub-catchments and catchments (Le Roux 

et al., 2013).  

SWAT is based mainly on the Simulator for Water Resources in Rural Basins 

Model (SWERB). Nevertheless, other models such as CREAMS, GLEAMS and 

EPIC have also been incorporated into the SWAT modelling equations (Nietsch 

et al., 2011).  The land management inputs can be in high resolution due to the 

models structure and its basis on the EPIC (Erosion Productivity Impact 

Calculator) model (Ullrich & Volk, 2009). SWAT has been extensively used for 

soil erosion monitoring in various catchments in North America (Kannan et al., 

2007), Europe (Ullrich & Volk, 2009), Asia (Zhou et al., 2013) and Africa (Asres 

& Awulachew, 2010) . There are numerous benefits of using the SWAT model, 

which are listed below (Nietsch et al., 2011):  

o SWAT is able to model watersheds without monitoring data. 

o The relative impact of varying practices such as land use management 

on the catchment can be quantified. 

o SWAT uses commonly available input data. 

o Running SWAT is computationally efficient; the simulation of large or 

complex watersheds does not take long to run. 

o The SWAT model also enables the study of long-term impacts on a 

catchment by allowing for decades of data to be used as an input. 

 

The most important equation in the SWAT model is the water balance equation 

(Equation 2.3). In SWAT, the simulation of the hydrologic cycle happens in two 

divisions. The first division is the land phase of the cycle this controls the 

water, sediment, nutrients and pesticide loadings washing into the main basin. 

The second phase is the water routing division, this phase controls the 
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movement of water, sediment and nutrients through the channel network to 

the outlet (Nietsch et al., 2011). 

SWAT uses the MUSLE equation (Equation 2.4) to calculate sediment yield. 

The MUSLE equation is based on the USLE equation but it uses the runoff to 

simulate erosion rather than using rainfall as an indicator of erosive energy. 

This brings a number of benefits to the model (Nietsch et al., 2011): 

o It increases the prediction accuracy of the model. 

o Eliminates the need for a delivery ratio. 

o It allows for single storm estimates of erosion to be calculated. 

 

 

Equation 2.3        SWt = SW + S(Rday-Qi-Ea-Pi-QRi) 

 

Where      SW = soil water content 

t = time 

Rday = precipitation 

Qi = surface runoff 

Ea = evapotranspiration 

Pi = percolation 

QRi = return flow 
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Equation 2.4   Sediment Yield = 11.8 (QSURF * qPEAK * Area)0.56K*C*P*LS*CFRG 

 

Where Sediment yield = daily sediment yield 

 QSURF = daily runoff volume 

 qPEAK = 30 min peak runoff rate 

 Area = sub-catchment area 

 K = soil erodibility factor 

 C = crop management factor (cover) 

 P = crop management factor (support practice) 

 LS = topographic factor 

 CFRG = Coarse fragment factor 

 

SWAT has an inbuilt climate change modelling simulation where the user can 

adjust factors such as precipitation, solar radiation, temperature and carbon 

dioxide levels. It is also able to simulate climate change by using weather 

information generated by other models as the climate inputs. This study will 

make use of climate data generated by Engelbrecht et al. (2011) to model 

sediment yield under various climate scenarios. SWAT uses a number of 

variables and factors in its simulation equations and these are described below. 

 

2.2.2.3.1.  Soil erodibility factor 

The soil erodibility factor is based on the susceptibility of a soil to erode. This 

is determined by the properties of the soil itself (Nietsch et al., 2011). It was 

noted by Wischmeier and Smith (1978) that soils become less erodible with a 

decrease in the silt content even if there is a subsequent increase in the sand 

or clay fractions of the soil. Other factors which influence soil erodibility are 

organic matter content, particle size, soil structure and soil permeability 

(Wischmeier & Smith, 1978). The soil erodibility factor is defined as the soil 

loss rate per erosion index unit for a specified soil as measured on a unit plot 

(Nietsch et al., 2011).  
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2.2.2.3.2.  Land cover and management factor 

The land use and management in the catchment has a profound effect on the 

soil properties. Crop management such as tilling and type of crop planted 

affects the soils ability to withstand erosion. The crop management factor is 

defined as the ratio of soil loss from land cropped under specific conditions to 

the corresponding loss from cleaned tilled, continuous fallow (Wischmeier & 

Smith, 1978). Plant cover helps negate the effects of rain splash erosion as it 

reduces the speed at which the rain droplets hit the soil and thus their 

potential to dislodge soil particles. Plants also reduce runoff by reducing its 

transport capacity and velocity (Nietsch et al., 2011).  

 

2.2.2.3.3.  Support practice factor 

Support practices are crop management operations such as contour tillage, 

strip cropping on the contour and terracing. The support practice factor is 

defined as the ratio of soil loss with a specific support practice to the 

corresponding loss with up and down slope culture (Wischmeier & Smith, 

1978). Contour tillage works best on slopes of 3-8% and provides good 

protection of the soil from erosion during low to moderate storms, however, 

they provide no protection during severe storm events (Nietsch et al., 2011).   

 

2.2.2.3.4.  Topographic factor  

The topography plays an important role in soil loss in the catchment. Steep 

slopes are more prone to erosion whereas valley bottoms and depressions can 

act as sinks for sediment. The topographic factor is defined as the expected 

ratio of soil loss per unit area from a field slope to that from a unit length of 

uniform 9% slope under identical conditions (Wischmeier & Smith, 1978). 

Slope, gradient and angle are all considered in the topographic factor 

(Wischmeier & Smith, 1978). 
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2.2.2.3.5.  The coarse fragment factor 

The coarse fragment factor is defined as the percentage by mass of rock 

fragments in the first soil layer.  

 

2.2.2.3.6. The use of SWAT for erosion studies 

There have been numerous studies conducted on the use of SWAT for sediment 

yield modelling both in Africa and abroad. Chen and Mackay (2004) studied 

how the structure of the SWAT model and the input data affected the results 

produced by SWAT by looking specifically at how the two factors influenced 

sediment production in a catchment. Focussing on the use of the MUSLE 

equation in SWAT and the delineation of hydrologic response units (HRU) the 

study showed that HRUs did not conserve sediment loads across the different 

levels of the portioned watershed in fact, the HRUs introduced roughly half of 

the variability in sediment generation. Previously this variability had been 

attributed completely to the aggregation of the input data. The reason for the 

observations were explained by the use of the MUSLE equation which defines 

a non-linear relationship between sediment generation, and the area of a 

specific HRU. However, there is a linear relationship in sediment load from the 

HRU level to the sub-watershed level. The second reason the study found was 

that HRUs aggregate surface land areas without regard to connectivity 

aspects, these are implicit in the MUSLE equation. This causes conflict 

between the two components of the SWAT model and makes it difficult to use 

the model for determining land use change effects on soil erosion (Chen & 

Mackay, 2004). 

De Vente et al. (2008) studied and compared three different soil erosion models. 

The main reason for testing three separate models was that some erosion 

models, such as SWAT, do not account for gully erosion or channel erosion and 

transport methods through the catchment. By testing three models, a 

comparison of the significance of gully erosion on the sediment yield results 

can be made. WATEM-SEDEM model, which is based on the RUSLE equation, 

the Pan-European Soil Erosion Risk Assessment model (PESERA) based on 

the sediment transport equation and the Pan-European Soil Erosion Risk 

Assessment model (PESERA) were compared. After testing the three models 
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on 61 catchments in Spain, it was concluded that SPADS and WATEM-SEDEM 

provided best results. PESERA was suggested as a good alternative model for 

catchment scale studies in diverse environments, yet he warns that the 

PESERA model calculates soil erosion rates and not sediment yield in the 

catchment. 

De Vente et al. (2013) further analysed 14 soil erosion models, of which SWAT 

was one. All the models tested only accounted for sheet and rill aspects of 

erosion and disregarded gully erosion. After analysing the 14 models it was 

found that they only provide reliable results where the considered processes of 

the model are indeed dominant in reality. The study concluded that of the 14 

models, the most accurate predictions using the least data requirements were 

provided by SPADS and WATEM–SEDEM. Furthermore, they noted that no 

single model fulfils all modelling objectives and additional integration of field 

observations for validation and calibration as well as different model concepts 

are needed to obtain better predictions of current and future of soil erosion. 

Yang et al. (2009) used SWAT to determine the efficiency of flow diversion 

terraces in counter-acting soil erosion and maintaining the quality of surface 

water in a catchment in Canada. They used three years for model calibration. 

The results showed that SWAT was effectively able to model the seasonal water 

yield. Asres and Awulachew (2010) also used SWAT to model areas which are 

prone to erosion in Ethiopian Highlands at the catchment scale. In the study, 

they also looked at how the use of vegetation strips can further prevent soil 

erosion. The study ran for 5 years and using 3 years for validation. Results 

showed that SWAT performed well at determining soil erosion and sediment 

yield at the catchment scale and that vegetation strips significantly reduced 

soil erosion. It was recommended by the authors that more models need to be 

run in the area using more accurate data sets. (Asres & Awulachew, 2010). 

Qiu et al. (2012) studied the use of the SWAT and the calibration techniques 

to model sediment yield in hilly catchments in China. The study showed that 

SWAT underestimated sediment production during high flow events such as 

thunderstorms. SWAT also underestimated the sediment yield during both the 

calibration and validation periods. It was suggested that the main reason for 

SWAT’s under-estimation was due to the limitations presented by the SCS- 

curve number and the MUSLE equation which SWAT is based on. The main 
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limits presented by the SCS-CN are that it does not account for time and was 

developed for the estimation of single storms. The SCS-CN works best for 

agricultural land and its accuracy diminishes when applied to rangelands and 

grasslands. Finally, the SCS-CN is an average value of flow. However, despite 

this, the authors concluded that the results from the SWAT model were 

acceptable.  SWAT has also been used to as a scenario analysis tool to model 

connectivity aspects in soil erosion at the catchment scale by Le Roux et al. 

(2013).  

Dechmi et al. (2012) determined that the various versions of SWAT did not all 

model the water flow appropriately and they developed a method to modify 

SWAT 2005 to correctly simulate the main hydrological processes. Bossa et al. 

(2012) studied the effects of soil data resolution on the results of the SWAT 

model and showed that with coarser data SWAT underestimated water yield 

in the catchment. The study also showed that the combined effects of the 

coarser data mapping in contrast with less coarse data had a measurable 

influence on lateral flow and sediment yield within the study area.  Baker and 

Miller (2013) studied the use of SWAT to model the impacts of land use on a 

watershed in Kenya, East Africa.  For their model, they used land use data 

from a 17-year period and the SWAT model to determine the effect of land use 

on the recharge rates of both surface and ground water. Results showed that 

over the 17-year period the rate of recharge was lower for both surface and 

ground water. They concluded that SWAT was able to assess adequately the 

effects of land use on catchments in Africa but also admitted that finer detail 

data sets would have resulted in results that are more accurate.   

Yesuf et al. (2015) used SWAT in the north-eastern highlands of Ethiopia in 

order to identify soil erosion processes and estimate sediment runoff. Using the 

results to advise best management practices and monitor and evaluate 

different management scenarios. After model evaluation using multi-objective 

function statistics such as P and R factors, root mean square error and the 

coefficient of determination it was found that SWAT underestimated peak 

sediment loads. However, they stated that according to the model evaluation 

guidelines and performance, the derived sediment yield could be rated as 

satisfactory. Data related difficulties and limitations in the study resulted from 

inadequate and inconsistent measured sediment yields for some of time 

periods. 
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2.2.2.3.7.  Description of SWAT inputs 

The SWAT model developed by Arnold et al. (1998) for the USDA was 

implemented in the GIS environment as an extension of ArcMap called 

ArcSWAT and it is currently distributed by Spatial Science Laboratories. 

ArcSWAT is a graphical user interface for SWAT and was used for this study. 

A digital elevation model, land use, land management, soil characteristics, 

daily rainfall and temperature are all required as input data for the SWAT 

model (de Vente et al., 2013). Most of the required input parameters (up to 25) 

are estimated through calibration. In SWAT, all relevant eco-hydrological 

processes such as water flow, nutrient transport, vegetation growth, land use 

and water management are integrated at the sub-basin scale and regression 

equations are used to determine the relationship between the input and output 

data (Ullrich & Volk, 2009). SWAT divides the catchment into multiple sub-

catchments based on the number of tributaries. The size and number of the 

sub-basins can vary and depends on the stream network and size of the 

watershed (Ullrich & Volk, 2009). These sub-basins can be further divided into 

hydrological response units (HRUs) consisting of homogeneous soil and land 

use characteristics (Le Roux, 2009; Ullrich & Volk, 2009; Le Roux et al., 2013). 

HRU are the spatial unit where the vertical flows of water and nutrients are 

calculated through a water balance equation, which is represented by four 

storages: snow, soil, shallow and deep aquifers (Ullrich & Volk, 2009). The 

HRU’s in SWAT are spatially intrinsic, their exact position in the landscape is 

unknown, and it might be that the same HRU covers different locations in a 

sub-basin (Ullrich & Volk, 2009). 

 

2.2.2.3.8.  The SCS- curve number 

The hydrologic component of sediment transfer is based on the water balance 

equation, which integrates various processes. Surface runoff volume is 

calculated using the USDA Soil Conservation Service curve number (SCS-CN) 

method (Le Roux, 2009; Le Roux et al., 2013). The SCS-CN method was 

developed by the United States Department of Agriculture- Natural Resources 

Conservation Service to predict runoff in agricultural fields (Nietsch et al., 

2011). The curve number (CN) is a lumped factor used for the estimation of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



32 
 

flood volumes and peak discharge, it accounts for the effects of land use and 

surface conditions, along with other characteristics such as the effects of the 

soil hydraulic properties and ground cover (Mottes et al., 2014). Equation 2.4 

is used to calculate SCS-CN (Nietsch et al., 2011). 

 

Equation 2.4     𝑄(𝑠𝑢𝑟𝑓) =  
(𝑅(𝑑𝑎𝑦)−𝐼(𝑎))2

(𝑅(𝑑𝑎𝑦)−𝐼(𝑎)+𝑆
 

 

Where  Q (surf) = accumulated runoff 

 R (day) = Rainfall depth for the day 

 I (a) = initial abstractions 

 S = retention parameter 

 

The CN represents a combination of land use types and the specific 

hydrological soil group based on the soil's potential to generate runoff. The 

values are given as A, B, C or D or a combination (Schulze, 2012). The SCS- 

CN has been widely adopted in models because the equations are simple, the 

inputs are related to physical properties of the catchment such as soils and 

land cover, the method provides uniform answers and finally the SCS-CN also 

uses daily rainfall amounts (Schulze, 2012). Although the SCS-CN 

incorporates the effects of canopy storage on surface runoff it cannot directly 

model infiltration rates (Nietsch et al., 2011).  

Soil hydrologic groups were developed by the United States Natural Resource 

Conservation Service, which classified soils into classes based on their 

infiltration characteristics (Nietsch et al., 2011). The soils are grouped 

according to their runoff potential under certain storm conditions. This is 

determined by certain properties of the soil, which include depth to water table, 

saturated hydrologic conductivity, depth to slowly permeable layer. There are 

four soil hydrologic groups namely A, B, C, D and dual classes such as A/D, 

B/D, C/D. The description for each are given in Table 1.1 (Schulze, 2012).  
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Table 1.1:  The hydrologic groups and their descriptions used by the SWAT 

model (Schulze, 2012). 

Hydrologic 

Group 

Description 

A Low stormflow potential. Infiltration is high and 

permeability is rapid in this group. Overall drainage is 

excessive to well-drained (Final infiltration rate ~ 25 mm/h. 

Permeability rate > 7.6 mm/h). 

B Moderately low stormflow potential. The soils of this group 

are characterized by moderate infiltration rates, effective 

depth and drainage. Permeability is slightly restricted (Final 

infiltration rate ~ 13 mm/h. Permeability rate 3.8 to 7.6 

mm/h). 

C Moderately high stormflow potential. The rate of infiltration 

is slow or deteriorates rapidly in this group. Permeability is 

restricted. Soil depth tends to be shallow (Final infiltration 

rate ~ 6 mm/h. Permeability rate 1.3 to 3.8 mm/h). 

D High stormflow potential. Soils in this group are 

characterized by very low infiltration rates and severely 

restricted permeability. Very shallow soils and those of high 

shrink-swell potential are included in this group (Final 

infiltration rate ~ 3 mm/h. Permeability rate < 1.3 mm/h). 

 

The most detailed and easily available map covering South Africa to which SCS 

soil groups can be linked is the Land Type map, produced by the Agricultural 

Research Council’s Institute for Soil, Climate and Water (ARC-ISCW) (Land 

Type Survey Staff, 1972 – 2006). 

 

2.2.2.3.9.   Model theoretical foundations 

Sediment yield caused by rainfall and runoff is calculated using the MUSLE, 

which incorporates surface runoff and peak flow rate along with the variables 

used in the USLE equation: soil erodibility, slope length and steepness, crop 

cover management and erosion control practice (Le Roux et al., 2013). 

Evaporation, surface runoff, infiltration, plant uptake, lateral flow and 

percolation to lower layers are the soil water processes which are incorporated 

into SWAT (Ullrich & Volk, 2009). After SWAT has calculated the loadings of 

water and sediment, they are summed at the sub-catchment level which is then 

channelled through the stream network where it may encounter ponds, 
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wetlands, depression zones, or reservoirs. SWAT uses a mass balance equation 

to model the sediment transported in and out of the water bodies. Settling is 

calculated as a function of concentration and transportation out of a farm dam. 

Water flow is then channelled through the stream network using variations of 

the kinematic wave model. Sediment is routed by means of a simplified stream 

power theory where the maximum amount of sediment that can be transported, 

deposited or re-entrained from a channel segment is a function of the peak 

channel velocity (Le Roux et al., 2013). One of the main limitations of SWAT is 

that the model often underestimates the role of the soil as a prime regulator in 

absorbing, retaining and releasing water after a rainfall event (Schulze, 2012).   

SWAT uses the EPIC model to simulate crop growth and land management 

practices in the catchment. The EPIC model is a comprehensive, field-scale 

agricultural management model able to simulate non-point source loadings. It 

was originally developed to model the impact of soil erosion on crop 

productivity. EPIC incorporates management practices by taking into account 

the specific management operations such as the beginning and end of growing 

season, timing of tilling and fertilizer, pesticide, and irrigation applications for 

each HRU (Ullrich & Volk, 2009). 

 

2.2.2.4. WEPP 

The water erosion prediction project (WEPP) commissioned by the USDA is a 

computer based, continuous, process driven model designed for soil and water 

conservation planning. WEPP takes into account the natural processes in 

hydrology, soil sciences, botany and erosion to simulate the interactions 

between them. WEPP also accounts for both the spatial and temporal 

variability in topography, soil properties and land cover across a catchment. As 

sediment detachment and deposition is taken into account, WEPP is an 

improvement on USLE based models (Tiwari et al., 2000). The model is based 

on the steady state continuous equation, the Green–Ampt Mein Larson 

equation (GAML) (Shen et al., 2009). GAML considers rainfall duration as a 

time-step when solving the infiltration equation, when the infiltration rate is 

greater than the rainfall intensity no excess rainfall is calculated (Shen et al., 

2009). In the WEPP model, the catchment is divided into areas of homogenous 

soil, topography and land management properties known as overland flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



35 
 

elements (OFE) (Shen et al., 2009). Runoff, detachment and sediment 

deposition are calculated for each hillslope for the entire simulation period. 

These are then added for all the hillslopes in the catchment and then the runoff 

and sediment is routed through all the channels and impoundments (Shen et 

al., 2009). WEPP has been successfully used in a range of environments 

including agricultural fields, rangelands, forests and construction sites 

(Flanagan et al., 2001). There are a number of advantages of using WEPP over 

other sediment prediction models: (1) it can predict spatial and temporal 

variability of soil losses at the hillslope scale for any period of time. (2) It has a 

wide range of applicability and it considers various interactions between the 

input factors (Tiwari et al., 2000). (3) It can also model the sediment yield from 

ephemeral gullies and channels (Laflen et al., 1997).  The biggest limitation of 

the WEPP model is that it was designed for small watersheds of less than 2.6 

km2 (Shen et al., 2009). Another limitation of the model is that it less efficient 

to run than the USLE model (Tiwari et al., 2000). WEPP also, like other erosion 

models, tends to underestimate high erosion losses and overestimate low 

erosion losses (Tiwari et al., 2000).  

van Zyl & Lorentz (2003) applied the WEPP model to three catchments in 

South Africa, two in Kwa Zulu-Natal and one in the Eastern Cape, in order to 

determine the impact of farming on sediment yield after integrated catchment 

management strategies had been implemented. The study found that the 

WEPP model was able to accurately measure soil water content yet was unable 

to accurately predict the frequency of saturated or near saturated soil 

conditions for the hydromorphic soil profiles. 

 

2.2.2.5. ACRU  

The agricultural catchments and research unit (ACRU) model was created at 

the university of KwaZulu-Natal as an agro-hydrological model. The aim of the 

model was to simulate the effects of stream flow; evaporation and land cover 

management on water resources in catchments (Jewitt & Schulze, 1999). 

ACRU is a multi-layer and multi-purpose integrated, physical conceptual 

model that operates at a daily time step interval (Jewitt & Schulze, 1999). It 

can operate on either a lumped or a distributed basis and works on a multi-

layer soil/water budget. Runoff is dependent on the magnitude of daily rainfall 
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in relation to the daily soil/water budget. The ACRU model is able to simulate 

many aspects of the catchment such as irrigation, sediment and crop yield and 

water supply (Jewitt & Schulze, 1999). It is also a dynamic model so it can 

simulate changes in climate or land use. In the model, the catchment is divided 

into relatively homogeneous areas or sub-catchments with unique hydrological 

responses. Ideally, the model should not be used to model catchment hydrology 

on areas less than 1-2 km2 because of the type of stormflow and base flow 

equations used and it should also not be used on spatial units exceeding 50 

km2. 

The flow routing in the ACRU model is designed on the Muskingum method, 

which is based on the storage routing equation (Equation 2.5) (Smithers et al., 

1997). Two main parameters K and x are used in the equation along with the 

storage characteristics of the reach, which can be derived from historical flood 

data. K, the first parameter, is a storage constant also known as the lag or 

travel time through the reach. This value is assumed to remain constant at all 

flows and expresses the ratio between storage and discharge, usually expressed 

in hours. The second parameter, x, expresses the relative importance of inflow 

and outflow to the storage in the reach (National Oceanic and Atmospheric 

Administration, 2004). 

 

Equation 2.5    𝑆 = 𝐾[𝑥𝐼 + (1 − 𝑥)𝑂] 

 

Where   S = Storage 

   I = Inflow rate  

   O = Outflow rate  

   K = Storage Constant 

x = represents relative importance of inflow and outflow 

to storage. 
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The ACRU model is unlike SWAT in that the parameters do not need to be 

calibrated in order to produce a good fit but rather the model estimates the 

input values based on the physical characteristics of the catchment using 

available information. Thus to verify the models outputs a field study needs to 

be conducted (Warburton et al., 2010). 

ACRU was used in the study by van Zyl & Lorentz (2003) in the Weatherly 

Catchment, Eastern Cape. It was found that ACRU was able to model run off 

well yet slightly under-estimated daily flows.  

 

2.2.2.6. SLEMSA 

The original Soil Loss Estimation Method for Southern Africa (SLEMSA) is a 

field scale mathematical modelling approach designed for annual soil erosion 

estimations in agricultural land in southern Africa (Rademacher, 1991). It was 

developed as an alternative to the USLE model for more tropical regions such 

as Southern Africa (Igue, 2002). When compared with the USLE model 

SLEMSA produces lower erosion values (Igue, 2002). The SLEMSA model only 

considers soil loss from sheet erosion and can only be applied at scales 1: 50 000 

or less (Rademacher, 1991). There are five main variables which are considered 

in the SLEMSA model, these are seasonal rainfall energy, amounted of rainfall 

intercepted by the crop, soil erodibility, slope length and slope percentage. In 

the SLEMSA model, these variables make up three sub-models. These sub-

models account for soil loss from bare soil, cropping practices and topography 

(Rademacher, 1991). These sub-models calculate erosion using the formula in 

equation 2.6 below. 
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Equation 2.6    𝑍 = 𝐾 ∗ 𝑋 ∗ 𝐶 

 

Where     Z = estimated annual soil loss in t/h/yr. 

K = average annual soil loss (in t/ha/yr) from a standard 

plot under conventional tillage (30 m x 10 m at a 4,5% 

slope) for a soil with a known erodibility factor of F, under 

a weed-free bare fallow. 

X = the ratio of soil loss from a field with a slope length of 

L in metres and a slope percent of S to the loss from the 

standard plot. 

C = the ratio of soil loss from a cropped plot to that of a 

fallow plot. 

 

Stocking et al. (1988) created an improved SLEMSA model where it predicts 

soil loss over large catchment areas and not just at the field scale. Stocking et 

al.’s (1988) model makes use of a factorial scoring approach and the 

parameters: annual rainfall and rainfall energy, crop cover, average slope and 

the soil erodibility factor to estimate soil erosion (Manyatsi & Ntshangase, 

2008). The results of the enhanced SLEMSA model is not in t/ha/yr as SWAT 

but rather in Erosion Hazard Units (Rademacher, 1991).  

There are limitations to the SLEMSA model (1) the model can only accurately 

predict soil loss on slopes less than 20%. Above the 20% slope gradient, a small 

increase in gradient results in a disproportionally large increase in erosion. (2) 

All slope lengths in SLEMSA are assumed to have a maximum length of 100 

m and the model’s erosion predictions have not yet been verified on slope 

lengths which exceed 100 m.  

SLEMSA was first applied to South African catchments in studies by Schulze 

(1979) and Hudson (1987) who found that the model over-estimates of soil 

losses in mountainous regions. More recently, SLEMSA has been applied to a 

catchment in Kwa Zulu Natal, South Africa by Breetzke et al., (2013). The 

study aimed to estimate soil loss rates per land use type in a quaternary 

catchment. It was found that SLEMSA is sensitive to variations in slope 
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steepness and over-estimates soil loss in mountainous catchments. Gilau & 

James (2015) used SLEMSA on the Boksburg Lake in the Ekurhuleni 

Metropolitan Municipality in order to quantify what impact soil erosion, 

resulting from changes in land-use, had on the urban impoundment. It was 

concluded that SLEMSA can be applied to urban catchments in South Africa 

with high levels of accuracy. 

 

2.2.3. Remote sensing  

2.2.3.1. Remote sensing  

Optical remote sensing is defined as the study of the earth surface using images 

collected by either drones, aeroplanes or satellites. It measures the spectral 

properties of the landscape but cannot directly measure the type, severity or 

extent of soil erosion. This needs to be done either using GIS or image analysis 

techniques. Optical remote sensing has been used quite extensively in studies 

on soil erosion (Manyatsi & Ntshangase, 2008). These sensors sense 

wavelengths in the visible and near infrared spectrum (0.4 - 1.3 μm) and the 

short wave infrared spectrum (1.3 – 3 μm) and in the thermal infrared 

spectrum (3 – 15 μm). One of the most widely used satellites for mapping soil 

erosion is the Landsat satellite this is due to its long-time of service and 

consequently, the data has been used since the 1970’s (Vrieling, 2005). Landsat 

data are also freely available which, makes it easily accessible to researchers. 

The benefits of using optical remote sensing techniques to study catchments 

include the ability to see what is happening in difficult to reach areas or areas, 

which are possibly unsafe to visit. Remote sensing also allows for good temporal 

analysis of areas as many of the satellites have been in orbit and functional for 

number of years or decades (Vrieling, 2005). The data are also in the same 

format for each specific satellite mission, which makes it easy to compare 

various years or seasons.  
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2.2.3.1. Pixel based techniques 

Pixel-based image classification is based on the spectral properties of the 

individual pixels and each pixel can only belong to one class (Yan, 2003). Pixel 

based classification can be divided into two main method types, supervised and 

unsupervised classification (Yan, 2003) 

 

2.2.3.1.1. Unsupervised classification 

Unsupervised classification is based on the principle that spectral values of a 

certain land cover type will be similar and their values will be comparatively 

very different to other classes (Yan, 2003). Unsupervised classification does not 

use training pixels instead, it analyses the unknown pixels in an image and 

clusters them into various classes based on the natural groupings in the image 

values. Essentially creating spectrally homogenous groupings or clusters 

(Duda & Canty, 2002). This method is generally used when there is little 

external information about the land cover types in the image. The image can 

then be divided into spectral classes which the analyst can associate a certain 

land cover to (Yan, 2003).  

There are various algorithms which can be used in unsupervised classification. 

One of the most popular algorithms is the ‘k-means’ (Duda & Canty, 2002). The 

analyst will assign a number of classes to which the image is divided. The 

algorithm then randomly allocates that number of cluster centres across the 

image and the surrounding pixels are then assigned to the cluster whose centre 

is closest to it. Once all the pixels have been assigned to a cluster, the revised 

mean vector for each cluster is computed and these are then used as the basis 

to reclassify the image. This procedure will be repeated iteratively until there 

are no significant changes to the classification. The analyst will then determine 

the land cover class for each spectral cluster (Yan, 2003).   

Another unsupervised classification algorithm is the agglomerative hierarchal 

clustering. This method assigns each pixel to a certain class or cluster. The 

clusters are then analysed for similarities and sizes and similar classes are 

combined to form larger ones. Smaller classes are also absorbed into larger 

classes with similar spectral properties. This method runs iteratively until the 
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desired number of classes has been reached or a single class has been formed 

(Duda & Canty, 2002).  

 

2.2.3.1.2.   Supervised classification 

In supervised classification, the analyst supervises the classification process 

by selecting a number of training pixels. The training pixels are a set of pixels 

that describe the spectral properties of certain land cover types found in the 

image and they facilitate the classification process (Yan, 2003). The selection 

of suitable training pixels has a significant influence on the results of the 

classification and it is important to choose the best training pixels in order to 

get an accurate classification (Duda & Canty, 2002). The training pixels need 

to be representative of all the pixels in that class. During the training stage of 

supervised classification, the analyst chooses a number of suitable training 

pixels to train the classifier. The location, size, shape and orientation of the 

point clouds for each land cover type are determined through a set of statistics 

which describe the response pattern for each specific land cover (Yan, 2003). 

The more pixels selected during the training phase the more accurate the 

classification will likely be (Chen & Stow, 2002).  

The next phase of supervised classification is the classification stage; here the 

classification is performed based on the selected training pixels and a specified 

algorithm (Yan, 2003). There are many algorithms used in supervised 

classification and they assign each pixel a value of either 0 (not belonging to 

the class) or 1 (belonging to the class) depending on whether that pixel belongs 

to a certain class or not. These types of classifiers, where a pixel either belongs 

to a class or not, are known are hard classifiers. Soft classifiers allow pixels to 

be assigned to one or more classes based on their similarity to that class. Fuzzy 

classifiers, on the other hand, allow pixels to belong to different classes based 

on various levels of similarity (Yan, 2003). 

One of the most common and powerful algorithms used in supervised 

classification is the maximum likelihood classifier. This algorithm assumes 

that the distribution of point clouds forming the training pixel categories is 

normally distributed (Lu et al., 2012). The algorithm is then based on the 

Gaussian estimate of the probability density function of each class. This 
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classifier evaluates both the variance and co-variance of the category’s spectral 

response patterns when classifying an unknown pixel (Yan, 2003). The 

distribution of a category can be entirely described by the mean vector and the 

covariance matrix and with this, the statistical probability that a pixel belongs 

to a particular class can be computed (Yan, 2003). Once this has been done for 

all pixels for all classes, the pixel is assigned to the class which it has the 

highest probability of belonging to. The major drawback to the maximum 

likelihood classifier is it requires a large amount of computational power, which 

can be time-consuming when working with large images (Yan, 2003). 

Kernel based methods such as Support Vector Machines (SVM) is a complex 

method of supervised classification (Ivanciuc, 2005). In SVM classification, 

different classes are separated by the construction of hyperplanes in a multi-

dimensional space (Statsoft Incorporated, 2015). SVM is based on the 

statistical learning theory and the concept of decision planes which support 

decision boundaries (Ivanciuc, 2005). Decision planes separate areas of 

different classes and is produced through an iterative process which finds the 

minimum amount of error (Statsoft Incorporated, 2015). 

The minimum distance to mean classifier requires that the mean spectral value 

for each spectral band in each training pixel cluster be calculated (Yan, 2003). 

This comprises the mean vector for each class. The unknown pixels are then 

classified based on the distance between the value of the unknown pixel and 

each of the class means. The analyst sets a maximum distance threshold for 

the pixels, in order to be classified into a certain class (Yan, 2003). This method 

is simple and does not require intense computational power to run. However, 

it is insensitive to varying variance in the spectral response signals and so the 

method cannot be used in data sets where the spectral response data are close 

together and have high variance (Yan, 2003).  

Parallelepiped Classifier or multi-level slicing takes into account the variance 

of the spectral response data by considering the range of spectral values in each 

training pixel category (Japanese Association of Remote Sensing, 2012). This 

range is defined as the highest and lowest digital number value in each band. 

Unknown pixels are classified according to the category range or decision 

region in which they lie. It is important in the parallelepiped method to select 

accurate training pixels which cover the entire spectral range of each 
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representative class (Japanese Association of Remote Sensing, 2012). Multi-

level slicing is computationally efficient yet it encounters errors when the 

category ranges overlap and pixels fall within that overlap. The overlap is 

caused when there is high covariance in the category distributions which the 

rectangular decision region is not able to adequate, describe (Yan, 2003). 

Once all the pixels have been assigned a class the final phase of supervised 

classification, which is an accuracy assessment, needs to be conducted. An 

accuracy assessment compares the closeness of results between the 

classification and reality measured through ground control points (GCP’s) 

(Yale's Centre for Earth Observation, 2003). This is done to evaluate the 

quality of the maps produced through image classification. Accuracy 

assessments use statistically sound sampling designs to compare the reference 

data to the results of the classification (Stehman, 1996). One method of 

conducting an accuracy assessment is to select unbiased random samples 

throughout the image and put them in an error matrix along with the GCP 

results. From the error matrix, a number of equations can be drawn that 

determine the user’s, producer’s and overall accuracies (Yale's Centre for Earth 

Observation, 2003).  

A second method of carrying out an accuracy assessment is by conducting 

Kappa statistics. Kappa statistics are a discrete, multivariate technique which 

determines if one error matrix is statistically significantly different to another 

(Yan, 2003). The kappa coefficient returns the difference between the actual 

agreement and the agreement expected by chance (Yan, 2003). Data used in 

the error matrix or kappa statistics should not be from the training data as this 

will only show how well the training data performed and not how well the 

classification worked over the entire image (Yan, 2003).  

 

2.2.3.2. Object-based image analysis  

In recent years, OBIA has become a successful new methodology that goes 

beyond the pixel-based classification approach. With OBIA, an image is 

classified based on image objects or segments rather than the individual pixels 

(Yan, 2003). OBIA still uses individual pixel information, but through the 

clustering of pixels to form segments, additional properties can be utilised such 
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as homogeneity of a region, within-region variation or relationships to 

neighbouring objects (Dezso et al., 2012; d’Oleire-Oltmanns et al., 2014).  OBIA 

has been built on older concepts of image segmentation, edge detection and 

feature extraction that have been in use for decades (Blaschke, 2010). However, 

it was the advent of high-resolution imagery and off the shelf specialised 

software that has made OBIA so popular in recent years (Blaschke, 2010). The 

OBIA classifiers are not hard classifiers like pixel-based analysis but instead 

they allow for fuzzy logic classification, also known as soft classification (Yan, 

2003). This type of classifier has the advantage over hard classifiers as it allows 

for the possibility of uncertainties about the class descriptions (Yan, 2003).   

OBIA relies on segmentation of the image into homogeneous objects and this 

is the first step when conducting OBIA and provides the building blocks for the 

rest of the analysis (Blaschke, 2010). There are four main types of 

segmentation namely point-based, edge-based, region-based or a combination 

of two or more (Blaschke, 2010). The regions created during the segmentation 

process are based on one or more criteria of homogeneity in one or more 

dimensions. In addition, and sometimes of an even greater advantage than the 

diversification of spectral value descriptions of objects, is the supplementary 

spatial information for objects such as spatial topology, geometric descriptions, 

etc. (d’Oleire-Oltmanns et al., 2014). 

 

2.2.3.2.1. Use of eCognition and OBIA for erosion studies 

Gully and erosion mapping techniques have remained largely unchanged since 

the 1940’s (Shruthi et al., 2011). These techniques used visual interpretation 

of aerial photographs to identify and manually map gullies and erosion 

features usually for small areas. However, after the introduction of pixel-based 

classification methods, it was highlighted that the use of surface reflectance 

values and various other pixel-based classification methods could be applied in 

the identification of erosion features in aerial imagery (Lilliesand et al., 2004). 

Metternicht and Zinck (1998) have conducted such a study where Landsat TM 

and JERS-1-SAR data were used to create an erosion map of the Sacaba Valley 

in Bolivia.  
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Casanovas and Zaragova (1996) applied supervised classification on Landsat 5 

TM images to determine areas of high gully activity in the Anioa-Penedes 

Region, north-east Spain. NDVI created from the satellite image was used to 

estimate the percentage of vegetation cover on gully sidewalls and 

consequently the activity of the gullies. 

Flanders et al. (2003) conducted a study which looked at eCognition software 

for feature extraction. They concluded that object-based analysis using 

eCognition software allowed for greater accuracy than manual or pixel-based 

classification techniques and that these techniques can be used for an array of 

projects. Although the same results can be obtained through series of masks 

and rules within a per-pixel classification software, eCognition was found to be 

easier to use and more versatile. Knight et al. (2007) used eCognition to 

segment ASTER images and then created an object-based approach to map 

gully erosion in Australia’s tropical regions.  

Vrieling et al. (2007) also used ASTER imagery in the Brazilian Cerrados to 

create a supervised, automatic classification of gullies based on the maximum 

likelihood approach. However, the conventional supervised and unsupervised 

classification techniques such as Maximum Likelihood Classification have 

been proven less effective than that of object-based gully extraction techniques 

due to their spectral similarities with other non-erosion features. Martha et al. 

(2010) showed that OBIA can be used with multi-type auxiliary information in 

the detection of landslide features in the Indian Himalayas. The study was able 

to quantify large-scale topographic changes caused by landslides and found 

that higher resolution imagery such as SPOT 5 can detect smaller scale 

features.  

Anders et al. (2011) created a method to semi-automatically map alpine 

geomorphology in Austria. A stratified OBIA approach was used as they argued 

that if segmentation parameters are optimized for each geomorphological 

feature it will allow for each feature to be extracted separately. The accuracy 

of their method varied between 47% and 88% depending on the land type 

classified. In all, eroded bedrock produced the best accuracy while ablation 

until produced the lowest accuracy. d’Oleire-Oltmanns et al. (2014) highlighted 

the advantages of using object-oriented classification over conventional 

methods as it uses both spectral and spatial patterns when classifying the 
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image. The study was able to extract gullies using eCognition and QuickBird 

imagery with an overall classification accuracy of 62%. Wang et al. (2014) used 

OBIA to delineate the boundaries of gullies from high spatial resolution aerial 

photographs in the Beiyanzikou catchment of Qixia, China. The results showed 

good accuracy in delineating gully boundaries.  

Other forms of remote sensing data such as LiDAR has been proposed to 

facilitate accurate mapping of gullies, as LiDAR accounts for changes in depth. 

Eustace et al. (2009) developed a semi-automated method to map the extent 

and locations of gullies with high-resolution LiDAR data in the Fitzroy 

Catchment, Australia. The study concluded that through applying OBIA on 

LiDAR data, it is possible to delineate gullies with good accuracy.  Chen et al. 

(2009) compared a hierarchal classification system using LiDAR and 

QuickBird Imagery to improve the results of a traditional pixel-based 

classification approach. It was concluded that a hierarchal method improved 

the results by 20%. Johansen et al. (2010) used LiDAR to detect riparian 

features in Australia, the study highlighted the accuracy of LiDAR in 

distinguishing various geomorphological features. Johansen et al. (2012) used 

LiDAR to determine the extent and volume of gully erosion in Northern 

Australia, the results had an overall accuracy of 92%.  Höfle et al. (2013) 

applied terrestrial LiDAR along with GIS techniques to detect gullies in a 

Peruvian peatland. The study provided a 93% accuracy when compared with 

manually digitised gullies for the same area. 

The application of OBIA to identify gullies in Africa has been limited to studies 

in Morocco and South Africa. Shruthi et al. (2011) conducted a study on the use 

of eCognition for gully identification in Morocco. The study employed a method 

based on very high resolution (VHR) satellite data from IKONOS and 

GEOEYE-1. Using this data, they were able to derive a digital surface model 

(DSM) that was developed for the extraction of gully features. The results 

showed that object-based analysis was quicker and more objective than manual 

interpretation and that it was more accurate at finer scale analysis. Jetten et 

al. (2011) applied object-based analysis in eCognition software to delineate 

gullies in Morocco, using slope, catchment area and NDVI. The accuracy 

assessment indicated negligible overestimation and an overall good accuracy 

of eCognition to extract gullies was concluded. Shruthi et al. (2015) extended 

the study in 2015 and used OBIA to analyse changes to gully systems in Sehoul 
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region of Morocco over an eight-year period. They used the panchromatic and 

multispectral blue, green, red and near-infrared (Multispectral Scanner) bands 

from Ikonos-2 and GeoEye-1 along with a 1 m digital surface model and a DEM. 

From this, they were able to use texture and slope to identify gullies in three 

sub-watersheds.  

An extensive study conducted by Taruvinga (2008) reviewed the use of satellite 

imagery for gully identification in Kwa- Zulu Natal, South Africa. The study 

looked at various techniques using either Landsat or SPOT 5 images; it was 

found that both data sets had strengths and weaknesses. The limited band 

combinations of SPOT 5 images restricted the use of indices such as the bare 

soil index. While the low resolution of Landsat data (30 m) was unable to 

distinguish gullies less than the pixel size. The study concluded that of all the 

algorithms tested that the SVM technique produced the most accurate results. 

The use of eCognition to identify gullies was later tested by Mararakanye and 

Le Roux (2012) in the T35 catchment in Eastern Cape Province. However, they 

discontinued the study due to the large amount of pre-processing needed 

especially when applied at a provincial scale. GIS and Remote Sensing 

technologies have been frequently used to assess soil erosion features in the 

Americas, Europe and Australia. However, in SA, there has been a lack of 

information regarding the spatial extent of gullies at a national scale. 

Mararakanye and Le Roux (2012) created a 1:10 000 gully location map of 

South Africa using remote sensing and GIS techniques on SPOT 5 images. This 

was the first study of its kind conducted in South Africa. The study highlighted 

the need for automatic, accurate gully mapping techniques based on high-

resolution satellite imagery with global coverage which are applicable over 

large areas in order to reduce the time spent by researchers in manually 

digitising gullies (Mararakanye & Le Roux, 2012).  

As with sheet and rill erosion, methods are needed to predict the extent and 

patterns of gully erosion across large catchments (eg. Hughes & Prosser, 2012). 

Identifying gullies from aerial and satellite imagery is the first step to creating 

a methodology to accurately calculate sediment yield from gully erosion in a 

catchment. Not all sediment produced from gullies end up in the river or dam 

at the catchment outlet as some of the sediment is deposited in sinks (Ndomba 

et al., 2009; Le Roux et al., 2015). Furthermore, not all gullies have equal 

potential to deliver sediment to the catchment outlet. Factors such as 
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vegetation cover inside the gully, connectivity and continuity (see Appendix 1) 

all determine the amount of sediment a gully will produce and channel through 

the catchment (Le Roux et al., 2015). Various studies have tested numerous 

methods to estimate sediment yield from gullies. These studies used either 

indices, rule-based models/decision trees, and/or gully densities to estimate the 

overall eroded material followed by an estimated average gully delivery ratio 

in order to approximate the sediment yield contribution from gully erosion.  

Le Roux et al. (2015) modelled the sediment yield derived from sheet, rill and 

gully erosion in the Mzimvubu Catchment in South Africa. The study used 

SPOT 5 images to map the changes in gully size between 2007 and 2012.  They 

then applied a delivery ratio which ranged from 0% for disconnected gullies to 

40% for potentially connected gullies and 60% for partially connected gullies, 

up to 100% for fully connected gullies. The potentially and partially connected 

gullies had unique delivery ratios based on connectivity rules in a GIS (Le Roux 

et al., 2015).  

Hughes and Prosser (2012) predicted patterns of gully density a catchment in 

Australia. They used aerial photographs to map the gullies across part of the 

Basin and then applied a multivariate statistical model for a range of 

environmental factors. They managed to predict gully density across the 

catchment, using a 10 km grid resolution. Although the gully density varied 

across the catchment they found that the average gully density across the 

catchment was 0.08 km/ km2 and the resulting sediment yield contributions 

from gullies was about 27,106 t/yr. They concluded that the model was 

reasonably successful at predicting the variations in mapped gully density 

when compared with similar attempts to predict erosion processes a similar 

scale (Hughes & Prosser, 2012). 

Ndomba et al. (2009) used a delivery ratio of 50% to estimate sediment yield 

from gully erosion in a catchment in north-east Tanzania. The study used 

aerial photos from selected years to estimate gully size and morphology 

changes over time. A delivery ratio was then applied to estimate the sediment 

yield rate. Sediment yield contribution from gully erosion was estimated as a 

ratio between gully erosion sediment yield and total sediment yield at the 

catchment outlet. Gully density in the catchment was found to be 0.016 km/ 
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km2. The final results produced, estimated sediment yield from gully erosion 

to be 140 000 – 280 000 t/yr (Ndomba et al., 2009).  

 

2.3.  Effects of changing climate and land use on soil erosion 

Climate change is predicted to have various direct and indirect effects on soil 

erosion (Mullan et al., 2012). Climate change will impact the hydrological cycle 

through changes in rainfall events as well as lead to increased global 

temperatures and carbon dioxide concentrations in the atmosphere. It will 

result in changes to the amount, erosive power and temporal pattern of rain 

storm events (Mullan et al., 2012). Soil erosion has a non-linear response to 

hydrological changes and so even a small increase in rainfall amount or 

intensity can result in widespread soil loss. This scenario is aggravated if the 

soil is unprotected or with bad land use practices (Simonneaux et al., 2015). 

Climate change could lead to an increase or decrease in biomass along with a 

change in growing patterns of plants. This coupled with a temporal shift in 

rainfall or change in rainfall intensity could aggravate soil losses but it could 

also protect soil if the vegetation cover increases before the rainy season. Thus 

different catchments will have different responses to climate change and some 

may have a decrease in total soil loss (Bates et al., 2008).  

The indirect effects of climate change include changes in land use and 

management practices as well as the effect of increased atmospheric carbon 

dioxide (CO2) on crop growth. More carbon dioxide in the atmosphere will have 

a complex effect on crop growth, some plant types may benefit from increased 

CO2 and display faster growth rates (Franks et al., 2013). Increased CO2 needs 

to be supported by increase in water as well as other nutrients in order for 

plants to grow. Furthermore, increased CO2 concentrations in the atmosphere 

will lead to complex changes in plant biomass. This can lead to faster residue 

decomposition from increased microbial activity and thus decreased soil 

erosion rates through an increase in soil surface canopy cover and biological 

ground cover (Routschek et al., 2014). 

Changes in rainfall of temperature could shift the growing season of many 

crops and so land management practices will have to shift with this in order to 

continue harvesting sufficient produce. In addition, climate change may cause 
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some areas under cultivation to be no longer conducive and may lead to land 

abandonment, which has shown to negatively affect soil erosion. Some 

cultivated areas may need to change the type of crop that is cultivated and 

some crops result in more soil loss than other crops. On a positive note, climate 

change may allow some areas not currently conducive to large scale agriculture 

to be cultivated.  

Climate change will influence a variety of physical and chemical properties of 

the soil, which will affect infiltration rates and thus soil erosion processes. Soil 

moisture regime, organic carbon content and canopy cover are the most 

climate-sensitive properties of the soil (Chmielewski et al., 2004). The most 

dramatic increases in erosion, however, are likely to result from a change in 

land use to more erosion-prone crops and less protective vegetation (Routschek 

et al., 2014). 

An increase in the atmospheric temperature is predicted to lead to an increase 

in atmospheric water-holding capacity at a rate of 7% per 1-degree change. This 

will lead to an increase in the water vapour content of the atmosphere and 

ultimately a more vigorous and volatile hydrological cycle with more intense 

rainfall events (Mullan et al., 2012).  

General circulation models (GCM) are a key basis for predicting future climate 

change and the effects on various parts of the environment. GCM’s are 

numerical models representing the physical processes in the atmosphere, 

ocean, cryosphere and land surface and they are at present the most suitable 

models for projecting future climate change scenarios (Mullan et al., 2012). 

GCM’s, however, have a coarse spatial resolution so when needed for models 

which use fine scale resolution such as soil erosion, methods are needed for 

generating higher resolution climate change projections in order to more 

robustly model future erosion rates for individual catchments. Thus 

downscaling techniques have been developed in order to bridge the spatial and 

temporal resolution gap between the information that is provided by GCMs 

and the requirements of soil erosion models (Mullan et al., 2012).  

There have been a number of modelling studies which have investigated the 

impact of future climate change on soil erosion. These studies have identified 

three fundamental limitations to modelling climate and soil erosion. (1) The 

spatial scale at which climatic changes are represented; (2) the temporal scale 
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at which climatic changes are represented; and (3) the representation of 

changes in land use and management (Mullan et al., 2012).  

This study aims to focus on the relative change in sediment yield with projected 

climate change. Although this is not a perfect representation of the future 

scenario in the upper Tsitsa catchment there are numerous benefits to 

calculating relative change rather than exact change. By calculating the 

relative rates of soil erosion the change in erosion from present day rates owing 

to future climate change can be examined and it can even be more useful than 

calculating absolute rates. Even if SWAT fails to precisely simulate the 

absolute soil loss rates from projected climate change, it should better simulate 

relative changes. Most importantly since the results from calculating relative 

changes are influenced only by the altered parameters, in this case the weather 

inputs, they are better able to isolate the impacts and contribution of climate 

change to the future erosion problem (Mullan et al., 2012). It should be noted 

that findings from the IPCC Technical Report VI showed that climate change 

would lead to greater rates of soil erosion and soil loss (Bates et al., 2008).  

 

2.4. Soil erosion in South Africa  

Soil erosion is a major problem facing land resources in South Africa. Previous 

studies have found that over 70% of South Africa’s land is affected by various 

degrees and forms of soil erosion (Le Roux et al., 2007). Soil erosion not only 

poses a threat to land resources but also South Africa’s water resources as 

much of the soil removed by erosion ends up in streams and rivers (Msadala et 

al., 2010). Sediment loading in watercourses results in loss of water quality, 

affects the biodiversity and leads to dam siltation. It is predicted that soil 

erosion in southern Africa will likely worsen due to population increase (Flugel 

et al., 2003). It is estimated that 360 million tons of soil are lost in South Africa 

annually (Beckedahl et al., 1988).  Poor farming methods along with the 

erodible nature of South African soils are cited as the main reasons for the 

extreme amounts of soil erosion in the country (Le Roux et al., 2007). 

Soil erosion in South Africa is subject to extensive spatial and temporal 

variation. This is due to the variation in topography, climate, soil and land use/ 

management practices across the country (Beckedahl et al., 1988). The most 
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notable areas of soil erosion in South Africa are Kwa-Zulu Natal, Limpopo and 

the Eastern Cape Provinces (Beckedahl et al., 1988; Le Roux et al., 2007).  

South Africa has been a focus point for soil erosion research in the sub-

continent for the past fifty years and has thus a rich knowledge base 

accumulated on the topic (Msadala et al., 2010). Numerous studies on soil 

erosion in South Africa have carried out observations of soil erosion yet, the 

derived statistical relationships from individual erosion measurements are 

limited to local conditions. These do not provide an adequately extensive range 

of input data for regional soil loss monitoring (Le Roux et al., 2007). 

Since 1991, the Department of Agriculture and the Water Research 

Commission have funded a number of studies on soil erosion in South Africa. 

The Global Assessment of Soil Degradation (GLASOD) was one of the first 

regional scale soil erosion studies of its kind. Funded by the United Nations 

Environmental Programme (Sonneveld & Dent, 2009), GLASOD was composed 

of several studies conducted by recognized experts in 50 countries around the 

world, including South Africa. GLASOD divided soil erosion areas into uniform 

units based on the most important erosion processes (Le Roux et al., 2007).  The 

study produced a relative ranking of human-induced soil erosion per area as 

well as a soil erosion risk map at the continental scale (Le Roux et al., 2007). 

GLASOD has subsequently been the most influential global appraisal of land 

quality in terms of environmental policy (Sonneveld & Dent, 2009). 

As of 1993, remote sensing and computational models have been used to 

identify areas of erosion or land degradation. USLE, RUSLE and SLEMSA 

were the most widely applied models in South Africa. The Erosion 

Susceptibility Map (ESM) was the first attempt to integrate the main soil 

erosion risk factors at a national scale in a GIS framework.  A second attempt 

came about in 1998 where the Predicted Water Erosion Map (PWEM) was 

created. This improved on the ESM as it included long-term rainfall erosivity 

data. The PWEM highlighted that 60% and 56% Limpopo and the Eastern 

Cape Provinces were under extreme threat of erosion. ESM and PWEM were 

criticized as been an oversimplification of the USLE model because they 

combined the soil and slope factors with sediment yield data.  Since then 

improvements have been made on the ESM and PWEM such as specific 
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attention to the soil erodibility and topography input factors (Le Roux et al., 

2007).  

The mapping and monitoring of natural resources in Mpumalanga and 

Gauteng was completed in 2001 and later in 2004 for the northern Eastern 

Cape province and KwaZulu-Natal. The South African National Biodiversity 

Institute compiled a national soil degradation review using information 

obtained from 34 workshops throughout South Africa, held during 1997 and 

1998 (Le Roux et al., 2007).  

Mararakanye and Le Roux (2012) produced a national gully location map, 

where all gullies in South Africa were manually identified and mapped in a 

GIS. This study was the first of its kind in South Africa and highlighted the 

importance of creating an automated gully identification algorithm in order to 

streamline the task. More recently, Le Roux et al. (2015) conducted a study in 

the Mzimvubu Catchment in the Eastern Cape Province. The study showed 

that the province was prone to extreme soil erosion in particular gully erosion. 

The reasons for which were explained as insufficient land management and 

poor soils. 

 

2.5. Sediment yield mitigation strategies 

Various strategies have been developed and tested which mitigate the effects 

of soil erosion and sediment yield on water courses and reservoirs, the most 

influential been preventing upstream soil erosion. Preventing upstream soil 

erosion has a substantial benefit on the lifespan of a dam increasing it by up to 

25 years (Plamieri et al., 2001). Soil erosion prevention techniques can include 

conservation agriculture or no-till practices. Prosdocimi et al. (2016) found that 

annual soil erosion rates were approximately 20% lower when soil conservation 

techniques were applied. Another study by Vogel et al. (2016) showed that 

conservation farming techniques had the highest erosion reduction potential 

and was promising in terms of reducing both on-site and off-site damage. Other 

practices can include field margins or the use of vegetation for mixed and inter-

cropping (Vogel et al., 2016).  There are also mechanical techniques such as 

terracing and parcelling which can be used to limit soil erosion (Hudson, 1993).  
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Other methods to prevent the negative effects of soil erosion can be built into 

the reservoir such as the construction of sediment traps. According to Ferreira 

and Waygood (2009) who looked at sediment traps for mines in South Africa 

sediment traps or basins can be used to trap sediment. Another option 

suggested by to Ferreira & Waygood (2009) is to construct a settling facility 

with enough capacity such that the deposition of the residue is allowed for over 

the lifespan of the dam so that regular cleaning out is not required. In order to 

avoid the silting up of the dam, attenuation and settlement time are still 

important design considerations to ensure a high efficiency for the facility. 

Ferreira and Waygood (2009) also stated that an important input in the design 

process is a careful assessment of the silt loading that is expected over the 

design life. An underestimation will result in costs being occurred at a later 

stage; either to build a new dam or to clear the silt from the existing dam. On 

the other hand, an overestimation will result in a greater initial capital cost up 

front on an already expensive solution (Ferreira & Waygood, 2009). Plamieri 

et al., (2001) suggested the construction of underwater dike or massive tunnels, 

which allow for annual sluicing. These measures, however, are expensive and 

their benefits should be weighed against the cost of implementing them 

(Plamieri et al., 2001). Wang and Hu (2009), found the method of storing clear 

water and releasing turbid water to be the best management practice to 

increase the dam lifespan, which can be up to 36%. This method allows for the 

hydropower benefits and ecological stability to be maintained.  

A final design strategy is the use of containment systems. The Government of 

Alberta (2011) launched a study to help prevent the siltation of dams. They 

focussed on the use of containment systems which trap sediment. The study 

noted that a 100% reduction of all incoming suspended particles is not feasible 

due to practical limits of storage space and available settling time. Therefore, 

the efficiency of a containment system is based on the efficiency of 

sedimentation of a target soil grain size. The sediment containment system 

should be designed so that the outflow rate during the design rainfall event is 

equal to or smaller than the inflow rate of sediment-laden runoff (Government 

of Alberta, 2011). 
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3. Introduction to the Study Area 

3.1. Location 

The study area is the upper Tsitsa River Catchment, upstream of the 

Ntabalenga village in the Eastern Cape Province, South Africa (Figure 3.1). It 

drains a catchment area of approximately 200 km2. Catchment boundaries fall 

between 27.981 and 31.078 E and 28.721 and 31.009 W and between 28.134 

and 30.786 N and 28.061, -31.151 S (Figure 3.1). The Tsitsa River, along with 

the Tina, Mzintlava, Kinera and Mzimvubu rivers, is a tributary to the greater 

Mzimvubu River. The source of the Mzimvubu River is in the Drakensberg 

range approximately 3000 m above sea level, it then flows down the 

Drakensberg escarpment to its outlet to the Indian Ocean at Port St Johns. 

The Tsitsa River joins up with the Mzimvubu River after a flow length of about 

150 km.  

 

Figure 3.1: The Mzimvubu River Catchment in the Eastern Cape Province with 

the five major tributary rivers and the upper Tsitsa Catchment shown in light blue, 

along with the main towns near the upper Tsitsa Catchment. 
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Land use in the upper Tsitsa catchment is dominated by rural subsistence 

farming, larger commercial farms and plantations, with smaller urban centres 

scattered around the catchment the largest being the town of Maclear. 

Although there are some commercial farms and plantations, the Tsitsa 

Catchment is one of the poorest and least developed regions of South Africa. 

During the Apartheid era, a large part of the catchment fell within the 

Transkei homeland. Although the homeland policy was abolished in 1994 the 

area remains poor with a shortage of infrastructure and employment 

opportunities thus the majority of the population rely on rural subsistence 

farming for their livelihood.  

 

3.2. Geology 

The upper Tsitsa Catchment has a varied geology. Mafic and felsic sedimentary 

rocks are dominant throughout the catchment along with scattered intrusions 

of igneous dykes and sills. Upper reaches of the catchment are underlain by 

extrusive igneous rock of the Drakensberg formation (Figure 3.2). This basaltic 

layer is made up of tholeiitic (sub-alkaline) basaltic lava flows, subvolcanic 

plexus of intrusive dolerite dykes and sills estimated to be between 1300 m and 

1800 m thick (Botha & Singh, 2012). It was formed during the Jurassic age 

approximately 180 million years ago through the break-up of Gondwanaland 

(McCarthey & Rubidge, 2005). A mantle plume under the continent caused a 

massive up-doming. This up-doming created a tensional tectonic regime, 

resulting in the break-up and emplacement of large volumes of magma into 

higher levels of the crust by convective upwelling. A massive amount of flood 

basalts flowed over the surface forming the Drakensberg basaltic layer (Botha 

& Singh, 2012). 
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Figure 3.2: The geology of the upper Tsitsa Catchment in the Eastern Cape 

Province, South Africa. Adapted from vector data supplied by the Council for 

Geoscience (2008). 

 

Numerous dolerite dykes and sills intruded the Drakensberg formation 

exploiting the pre-existing weaknesses. These acted as conduits for magma, 

into the higher-level fissures from which younger lava flows accreted on the 

surface (Botha & Singh, 2012). Dolerite dykes are composed mainly of 

plagioclase, feldspar and pyroxenes (Duncan et al., 2015). They are 

homogeneous and have a similar geochemical composition to the basaltic lava 

except that they are coarser grained due to slower crystallisation rates at 

hypabyssal depths below the surface (Botha & Singh, 2012).  

The Drakensberg Formation overlays a series of sedimentary rocks from the 

Clarens, Elliot, Molteno and Beaufort Formations. The uppermost layer of 

sedimentary rocks are red- yellowish sandstones of the Clarens Formation laid 

down during the late Triassic era (McCarthey & Rubidge, 2005). These rocks 

are composed of fine to medium-grained quartz-rich sandstones, which were 

deposited as Aeolian sediments in the arid environment of the Late Triassic 

and Jurassic (Bordy et al., 2005). The rocks also indicate wadi and playa lake 
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systems. This geology has a variable thickness due to local paleo-topography 

and erosion forces (Bordy et al., 2005). It is also known as cave sandstones due 

to its weathering patterns.  

The Elliot Formation is found below the Clarens Formation and is composed of 

felsic mudstones and sandstones approximately 350 m thick thinning 

noticeably towards the north. Deposition of these rocks took place in a 

markedly drier period from the late Triassic to the early Jurassic era. 

Distinctive red and purple colours, caused by the high oxidising nature of the 

environment, characterises the Elliot Formation (Botha & Singh, 2012). three 

distinct environments of increasing aridity are indicated in the Elliot 

formation. The lower Elliot Formation shows a perennial, meandering fluvial 

system, associated with marshy floodplains, deposited in semi-arid climatic 

conditions, which became increasingly drier through time (Bordy et al., 2005). 

Ephemeral streams and semi-arid floodplains are indicated in the middle era 

of the Elliot formation. While the upper Elliot formation shows greater 

acidification characterised by playa lakes and Aeolian dunes (Botha & Singh, 

2012).  

Below the Elliot formation lies the Molteno formation, which is composed of 

felsic sandstone with interlayers of mudstones and shales. Deposition of these 

rocks took place during the mid-Triassic Era in a perennially braided river 

system associated with braid plain areas. In this era, the climate was 

seasonally warm and humid. This layer indicates a transitional era into the 

desert climate of the later Elliot and Clarens formations (Bordy et al., 2005). 

The Molteno Formation is approximately 200 m thick thinning noticeably 

towards the north and is characterised by coarse-grained mauve coloured 

sandstones and greenish grey inter-layered mudstones, with unique sparkling 

sandstones caused by the minute quartz crystals, which bind the rock (Botha 

& Singh, 2012).  

The oldest layer is the Beaufort Group and in particular the Tarkastad 

Formation. These rocks are characterised by sandstones and mudstones 

deposited during the late Triassic era. The Tarkastad Formation is 

approximately 250 m thick and consists of three to five layers of sandstone, up 

to 10 m thick each, interlayered with finer mudstones (Botha & Singh, 2012). 

The rocks were deposited as fluvio-lacustrine sediments on gently subsiding 
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alluvial plains. Riparian vegetation along the river meanders sustained a 

variety of reptiles in particular “mammal-like reptiles” in a semi-arid climate 

with highly seasonal rainfall (Botha & Singh, 2012).  

 

3.3. Topography 

The larger Mzimvubu catchment begins in the high Drakensberg and flows 

down the great escarpment through the coastal plains and into the Indian 

Ocean at Port St Johns. The upper Tsitsa Catchment falls in the upper region 

of the Mzimvubu catchment and does not reach the coast (Figure 3.3). Basalts 

of the Drakensberg formation form the great escarpment and this area is 

characterised by steep slopes and narrow floodplains (Bäse et al., 2006). The 

mountain range has a steep initial drop-off of approximately 1500 m until it 

levels out into the rolling hills of the “little berg”.  These steep slopes result in 

slope instability, mass movements and floods in the gradient streams (Botha 

& Singh, 2012). From here, the gradient of descent is more gradual until it 

reaches the flat plains of the coast.   

 

Figure 3.3: The topography ranging from 900 m asl to over 2700 m asl of the 

upper Tsitsa River Catchment in the Eastern Cape Province, South Africa. 
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The upper Tsitsa catchment ranges from 3000 m asl to 900 m asl at the dam 

outlet at Ntabalenga (Figure 3.3). It comprises the steep Drakensberg slopes 

and rolling hills of the ‘Little berg”. Numerous dykes and sills cut through the 

Drakensberg formation. Structural control of these dykes on tributary stream 

valleys have left a distinctive aspect of deeply incised river valleys in the 

catchment (Botha & Singh, 2012). The underlying Molteno Formation results 

in a ‘terraced’ hillslope topography with outcrops of large, flat slabs of coarse-

grained sandstone scattered on the lower slopes (Botha & Singh, 2012). 

 

3.4. Climate 

The upper Tsitsa Catchment falls in a summer rainfall region with the climate 

been described as temperate, sub-humid or sub-tropical (Le Roux et al., 2015). 

Average summer temperature is 25 degrees Celsius with January been the 

hottest month. Winters in the catchment are cold with July been the coldest 

month. Average winter temperatures are 14 degrees Celsius; snow is common 

on the higher mountains in winter (Agrometeorology Staff, 1984-2008). 

Summer has an average of 130 mm of rain in its peak month, January, mostly 

in the form of thunderstorms. Average annual rainfall is 850 mm 

(Agrometeorology Staff, 1984-2008). The average maximum hourly rainfall 

rate in mm/ hour is 13 mm with the maximum occurring in September at 17 

mm/hour (Agrometeorology Staff, 1984-2008). These are described as high-

intensity rainfall events and result in higher erosion rates in the catchment 

(Fraser et al., 1999). Spatio-temporal variability in the rainfall is due to the 

varied topography across the catchment (Bäse et al., 2006). Higher reaches in 

the Drakensberg receive more rain than the lower lying areas at the catchment 

outlet (Agrometeorology Staff, 1984-2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



61 
 

3.5. Land use/land cover 

Vegetation in the catchment is classified as sub-escarpment grassland and sub-

escarpment savanna bioregions. Four main bioregions are found in the 

catchment namely Drakensberg grasslands, sub-escarpment grassland, 

freshwater wetlands and zonal/intra-zonal forests (Figure 3.4).  

 

 

Figure 3.4: The various bioregions found across the upper Tsitsa River 

Catchment in the Eastern Cape Province, South Africa at a scale 1: 1000 000 

(Mucina & Rutherford, 2009). 

 

The bioregions can be further divided into several vegetation types namely: 

Drakensberg foothill Moist Grasslands, East Griqualand Grassland, Eastern 

Temperate Freshwater Wetlands, Lesotho Highland Basalt Grassland, 

Southern Drakensberg Highland Grassland and Southern Mist belt Forest 

along the drainage lines (Figure 3.5) (Le Roux & van den Berg, 2014; Duncan 

et al., 2015). At the valley floor, East Griqualand Grassland and Drakensberg 

Foothill Moist Grassland are the most prominent vegetation types where 

acacias and euphorbias dominate (Le Roux & van den Berg, 2014). Higher up 

on the slopes Southern Drakensberg Foothill Moist Grassland and Lesotho 
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Highland Basalt are the most common vegetation types with patches of 

southern mist belt forest found as well (Duncan et al., 2015).  

 

 

Figure 3.5: The various vegetation types occurring across the upper Tsitsa 

Catchment in the Eastern Cape Province, South Africa at a scale 1: 1000 000 

(Mucina & Rutherford, 2009). 

 

A land cover map created by Le Roux et al., (2015) was used in the study 

(Figure 3.6). Natural vegetation makes up 72% of the land cover in the 

catchment, this is composed of grassland (90%), thicket (6.9%), forest (3%) and 

shrubland (0.1%). Commercial and subsistence agriculture and livestock 

grazing are the predominant anthropogenic land use in the catchment making 

up 15% of the land cover. Plantations, towns, forests and waterbodies make up 

the remaing 13% of land use in the catchment. Commercial farms in the region 

are mainly cattle for dairy and meat. Plantations are also a valuable land use 

higher up in the catchment above Maclear and around the towns of Elliot and 

Ugie. The lower section of the upper Tsitsa Catchment falls in the former 

Transkei Homeland and although the homeland policy was abolished in 1994, 

it remains one of the poorest and least developed regions of South Africa with 
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the majority of the population relying on subsistence farming and social grants 

for their livelihood (Figure 3.7).  

 

 

Figure 3.6: The land cover map showing the various land cover classes in the 

upper Tsitsa Catchment in the Eastern Cape Province, South Africa (Le Roux et 

al., 2015). 

 

 

Figure 3.7: The rural housing and communal farming found in the upper Tsitsa 

Catchment in the Eastern Cape Province, South Africa. 
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3.6. Pedology  

Characteristics and properties of the soils in the upper Tsitsa River Catchment 

vary considerably across the catchment and are derived from the diverse 

geology as well as the varied rainfall and temperature in the catchment (Figure 

3.8). The majority of the soils are highly acidic due to the siliceous nature of 

the lithology from which they are derived along with the high rainfall the 

region receives in the higher reaches (van Huyssteen et al., 2005).  Average pH 

of the soils dips lower than 5.5, with soils of pH between 5.5 and 6 found mainly 

near the catchment outlet. Soils also characterised as having a low cation 

exchange capacity (CEC) and thus a low base status. Many of the soils show 

signs of periodic wetting and drying such as mottling (van Huyssteen et al., 

2005).  

 

 

Figure 3.8: The soil association classes of the upper Tsitsa Catchment in the 

Eastern Cape Province, South Africa developed by van den Berg and Weepener 

(2009). 
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Although the soils are very varied across the catchment the most common soils 

are shallow (<30 cm) to medium depth (50 cm) loams. Less common but still of 

significance are moderately (50 cm – 70 cm) deep to deep (70 cm – 115 cm) 

sandy loams which make up the Hutton soils (Le Roux et al., 2015). Soils 

derived from the Tarkastad, Molteno and Elliot Formations commonly form 

duplex soils. Duplex soils are described as having a sharp distinction between 

the topsoil and sub-soil layers due to the higher clay content found in the 

subsoil caused by leaching (Duncan et al., 2015).  

The soils in the catchment vary with the majority being of clayey or loamy or a 

clayey loam structure with some sandy loam and sandy clay structures. 

Texture of the topsoil is described as sandy loam gradually transferring to 

sandy clay loam in the subsoils with reference to the weakly structured soil 

forms such as Clovelly, Avalon, Pinedene, Magwa, Hutton, Bainsvvlei, Inanda, 

Griffin, Kranskop, Constantia, Longlands, Oakleaf, Tukulu and Vilafontes. 

Soils in the catchment, which have the duplex character, include the 

Kroonstad, Sterkspruit, Escourt, Swartland and Valsrivier forms. Soils with 

little development of a sub-horizon are common and include the forms such as 

Mispah, Glenrosa, Cartref, Mayo and to a lesser extent, the Nomanci soil-form 

(Esprey, 1997).  

Soil depths range from 10 cm to 200 cm with the shallow soils (<30 cm) 

occurring on the rocky and steeply sloped areas. Deeper soils (>50 cm) are 

mainly located on flatter terrain covering the lower foot slopes and valley 

bottoms. Most of the catchment has a leaching status of mesotrophic with 

eutrophic soils found near the catchment outlet. Van den Berg and Weepener 

(2009) developed a semi-detailed soil map for three catchments in South Africa 

including the upper Tsitsa Catchment. The map produced from the study 

categorised the soils in the upper Tsitsa Catchment into six main classes which 

were: yellow apedal soils, red apedal soils, litho soils, hydromorphic soils, 

duplex soils and structured soils (Figure 3.8) (van den Berg & Weepener, 2009).  
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3.7. Soil erosion in the upper Tsitsa Catchment. 

There is a high degree of soil erosion in the catchment, especially in the inter-

fluvial regions adjacent to the stream channels. Majority of gully erosion occurs 

on the deep soils described as yellow apedal soils and litho/yellow apedal co-

dominant soils by van den Berg and Weepener (2009). A fair amount of gully 

erosion also occurs on the hydromorphic soils; as hydromorphic soils occur 

along drainage lines where runoff is concentrated.  

High rainfall intensities, steep slopes, erodible nature of the soils and land use 

practices are cited as the main causes for soil erosion (van Tol et al., 2014; Le 

Roux et al., 2015). Over-grazing and over-cultivation on steep terraced slopes 

also cause a loss of vegetation cover and root stability, which aggravates sheet 

and rill erosion (Duncan et al., 2015). Gully erosion is the most prominent and 

concerning erosion phenomena in the catchment. Gullies in the catchment vary 

in shape from U to V-shaped and range from 0.5 – 30 m deep and 0.5 – 300 m 

wide, stretching for up to 5 km in length in certain areas (Figure 3.9) (Le Roux 

& van den Berg, 2014).  

 

 

Figure 3.9: Examples of extensive soil erosion and gullying found in the upper 
Tsitsa Catchment in the Eastern Cape Province, South Africa. 

 

The ability of a soil to resist erosion is largely determined by its resistance to 

disaggregation and/or dispersion, which is controlled by the physical and 

chemical properties of the soil. Two most important positive factors in soil 

stability are soil organic matter and the presence of iron and aluminum oxides, 

while the presence of sodium causes soil dispersion (Laker, 2004).  It has been 
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widely established that sodium is by far the most dispersive major cation in 

soils and since dispersion predisposes a soil to erosion, it is considered one of 

the most important ions which enhance soil erosion (Laker, 2004). In soils 

derived from the Beaufort group, such as those found in the Tsitsa catchment, 

the presence of organic matter is the principle factor in retaining the soil 

structure and thus removing organic matter through overgrazing and bad 

agricultural practices will cause increased soil erosion. Another cause for the 

high dispersion rates of soils in the catchment was explained by Laker (2004); 

the clay fractions of soils derived from Beaufort mudstones and shales contain 

significant amounts of clay-sized quartz, which are directly inherited from the 

underlying geology. The findings indicate that the most inert members of the 

clay fraction are most actively involved in the process of disaggregation. It was 

also shown by Buhmann et al. (1996) that the dominant soil constituents of 

silty soils, such as chemically inert quartz and feldspars increase their 

susceptibility to erosion and dispersion. It is thus clear that other factors may 

strongly override the effects of sodium on dispersion and erosion. Soils derived 

from igneous rocks such as Drakensberg basalts and dolerite have much higher 

iron content and thus do not rely so heavily on organic matter to promote the 

aggregation of soil particles creating the soil structure (Laker, 2004). This 

explains the lack of gullies higher up in the catchment where soils derived from 

the Drakensberg Basalt are dominant. 

The upper Tsitsa River Catchment also has an abundance of duplex soils, 

which are cited as a primary reason for the extensive gully erosion by van Tol 

et al. (2014) and Le Roux et al. (2015). Duplex soils are defined as soils with an 

abrupt change in texture between the horizons in the soil profile. Texture 

varies significantly from a lightly textured topsoil (coarse sandy loam) to a 

heavier, fine textured lower soil (clay). Duplex soils are prone to tunnelling and 

gully erosion due to the lateral subsurface flow between the horizons, which is 

aggravated in highly dispersive soils (van Zijl, 2010). Van Zijl (2010) found that 

in Lesotho, the most the wide, deep and active gullies were found on duplex 

soils. It is hypothesised that the cause of gullying in duplex soils is due to the 

formation of a capillary fringe at the contact zone between the top horizon and 

the sub-horizon. This enhances the dispersive chemical reactions, which create 

free clay particles. These particles clog the pores of the lower finer textured 

horizon and prevent the downward movement of water into the sub-soil. 
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Removal of dispersive clay is caused by the movement of excessive water which 

is then pushed into the cracks of the upper, soil horizon, this leads to the 

initiation and widening of cracks in this layer. These cracks widen until they 

join up forming an underground pipe (van Zijl, 2010). Sometimes the topsoil 

above these pipes collapses, initiating a gully (Le Roux & Sumner, 2012).  
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4. Methods 

4.1. Overview 

This study aimed to model the major soil erosion processes and determine the 

sediment yield in the upper Tsitsa catchment which was achieved through two 

approaches.  (1) Model the sediment yield contribution from sheet-rill erosion 

using ArcSWAT, a graphical user interface for SWAT and ArcMap® software 

along with climate, land use, soil and topography data. (2) Determine the 

sediment yield contribution from gully erosion using the remote sensing 

technique, OBIA, along with GIS. Finally, projected land use and climate 

change data were used to determine the effects of such change on the sediment 

yield. Each approach will be dealt with separately in the Methodology chapter. 

 

4.3. SWAT methodology 

SWAT (Figure 4.1) was used to model the current sediment yield from sheet 

and rill erosion in the upper Tsitsa Catchment for the five-year period 2007-

2012. An updated land use, soil and DEM along with measured weather 

records were used as input data. 

 

Figure 4.1. The SWAT graphical User Interface as a toolbar in ArcMap. 

 

4.2.1.  Model set up  

SWAT requires specific information about soil, weather, land use and 

topography in order to properly model the watershed (Nietsch et al., 2011; 

Winchell et al., 2013). ArcSWAT requires a DEM as the first input to create 

the model. For the model set up in this study the hydrologically improved 

STRM DEM created by Weepener et al. (2012) was used. In the second phase 

of setting up the model, SWAT requires land use and soil data to determine the 

area and the hydrologic parameters of each land-soil category simulated within 

each sub-watershed. The land cover input used for this study was the land 

cover map produced by Le Roux et al., (2015) see (chapter 3). A national Land 
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Type map created by the ARC-ISCW see (chapter 3) was used as the soil input. 

In order to link the input map and the SWAT database, the categories specified 

in the land cover map need to be reclassified into SWAT land cover and plant 

types. The user has three options for reclassifying the categories (Winchell et 

al., 2013). For this study, the land cover types were reclassified by typing in 

the 4-letter SWAT land cover/plant type code for each category (Table 4.1). It 

should be noted that in the upper Tsitsa Catchment the land use is largely 

communal and communal grazing along with subsistence crop farming is 

practiced interchangeably without formal boundaries. This makes identifying 

and modelling such land use difficult and thus these areas were modelled 

collectively in the SWAT model as rangelands. 

 

Table 4.1: The various SWAT land cover classes used in the study with a 

description and the percentage of land the catchment each class occupies. 

SWAT Class Description Land cover Percentage 

WATR Water 0.092 

WETN Wetlands (non-forested) 0.543 

FRSD Deciduous forest 3.775 

RNGE Rangeland-Grass 71.764 

AGRC Agriculture 15.792 

FRSD Evergreen forest 6.329 

BARR Barren 1.526 

URMD Urban (medium density) 0.086 

URML Urban (low density) 0.094 

 

The reclassification process needs to be repeated for the soil input which needs 

to be linked to the User Soils database. The User Soils database is a custom 

soil database designed to hold data for soils which are not included in the U.S. 

soil database. Four options are available to link the map to the user soil 

database. In this study, the MUID (Multiple Unit Identity) number was used. 

Finally, climate data are needed to complete the basic SWAT model. Climate 
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data are used in SWAT to simulate the moisture and energy inputs that control 

the water balance. SWAT needs data for precipitation, temperature, solar 

radiation, wind speed and relative humidity as input climate variables. 

Weather data used as the inputs were measured data from ARC weather 

stations in the catchment (Agrometeorology Staff, 1984-2008). Once the basic 

model has been set up the user can change land management and other 

operations.  

In USLE-based models such as SWAT, land cover and land management are 

the most important factors controlling soil erosion (Wischmeier & Smith, 

1978). The SWAT model considers plant cover as a more dominant factor in soil 

erosion than the effects of rainfall, slope and the soil profile (Le Roux, 2009). 

Therefore, site-specific vegetation parameters must be accurately derived to 

ensure successful model performance. This can be done by the user once the 

model has been set up by simply editing the land cover database. These 

changes are then transferred to the SWAT database from which it reads the 

information. 

 

4.2.2. Model calibration 

Model simulation was conducted over a five-year period from 2007-2012. Flow 

measurements from seven stations from the Department of Water and 

Sanitation were used to validate and calibrate the model for the whole 

Mzimvubu catchment by Le Roux et al. (2015). Unfortunately, a major 

limitation to the use of continuous time models such as ArcSWAT in developing 

countries is the lack of recorded flow and sediment data for calibration and 

validation (van Zyl, 2007). Due to the absence of data on sediment loads, model 

calibration concentrated on the hydrological part of the model. This was done 

by adjusting sensitive model parameters similar to other studies by Tibebe and 

Bewket (2011).  Calibration of the hydrological component was done by 

modifying the curve number and base-flow coefficients, whereas the erosion 

component was calibrated by adjusting the USLE soil erodibility and support 

management factors (Le Roux et al., 2015). These model calibrations were then 

used for the smaller study area on the upper Tsitsa River. 
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4.3. OBIA methodology 

4.3.1.  Overview 

A major limitation to the SWAT model is that it does not account for gully 

erosion. This can cause a severe underestimation of sediment yield in 

catchments such as the upper Tsitsa, where gully erosion is prominent. Thus 

in order to properly assess sediment yield in the catchment, it is important to 

map the gullies and determine gully growth over the five-year period 2007-

2012. This was done using SPOT 5 images from 2007 and 2012 and eCognition 

software to conduct OBIA.  

 

4.3.2. Description of inputs used 

SPOT 5 images from April 2012 and February 2007 were used due to their 

generally good spatial resolution as well as the ability to sense wavelengths in 

a range of bands (Table 4.2). This was useful in calculating the normalised 

difference vegetation index (NDVI) and the normalised difference water index 

(NDWI) or the modified normalised difference water index (MNDWI). 

eCognition developer was used for image analysis and ArcMap was used for 

post processing of the image objects. eCognition Developer is distributed by 

Trimble and is a powerful development tool for OBIA. Furthermore, eCognition 

has been widely used in earth sciences to develop rule sets for the automatic 

analysis and classification of remote sensing data. Feature extraction, change 

detection and object recognition can all be computed in eCognition. The object-

based approach can facilitate analysis of a variety of data sources, such as 

medium to high-resolution satellite data, high to very high-resolution aerial 

photography, LiDAR, radar and even hyperspectral data (Trimble Navigation 

Limited, 2014).  
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Table 4.2: The different SPOT 5 spectral bands with their respective 

resolution and wavelengths. Adapted from (Weepener et al., 2014). 

Spectral bands Pixel size Spectral resolution 

Panchromatic 2.5 m 0.48 - 0.71 µm 

Green 10 m 0.50 - 0.59 µm 

Red 10 m 0.61 - 0.68 µm 

Near infrared 10 m 0.78 - 0.89 µm 

Shortwave infrared 

(SWIR) 

20 m 1.58 - 1.75 µm 

 

By developing a classification approach on widely available satellite imagery 

as the input, it is envisioned that the ruleset created will be applicable to other 

SPOT 5 images and can be used for other catchments. This can be beneficial 

for comparing different areas, upscaling the ruleset to the larger catchment or 

used for multi-temporal analysis, as the classification approach is not location 

dependent (d’Oleire-Oltmanns et al., 2014). It is important to note here, the 

influence of scale; all satellite data are limited by its respective pixel resolution. 

In this case, 2.5 m for pan-sharpened SPOT 5 images. The minimum spatial 

extent of the object which needs to be identified, in this case, gullies, has to 

match the resolution of the satellite image (d’Oleire-Oltmanns et al., 2014). 

SPOT 5 is considered one of the higher spatial resolution satellite imagery 

available, with a pan-sharpened image of 2.5 m x 2.5 m resolution. Image 

analysis will not be able to detect gullies less than 2.5 m because they will 

become embedded within the pixels (Mararakanye & Nethengwe, 2012). While 

pan-sharpening a SPOT 5 image may result in some loss of spectral 

information, it is still considered a good representation and compromise 

between the spectral information and spatial resolution that is required for 

gully detection.  
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4.3.3. Support data  

Manually digitised gully location maps were used to conduct an accuracy 

assessment of the eCognition generated gully objects prepared in this study. 

Gullies were captured through manual digitising from 2007 Spot 5 images by  

Mararakanye and Le Roux (2012) and updated with SPOT 5 images of 2012 by 

Le Roux et al. (2015). Manual digitising of new gullies was done by delineating 

the outer boundary of the gully from the background using SPOT 5 imagery at 

a scale of 1: 10 000, gully growth was also captured by delineating the newly 

formed gully boundaries. The gullies were visually identified according to 

drainage pattern, shape, size, colour and tone (Mararakanye & Nethengwe, 

2012).  

 

4.3.4. Developing the ruleset 

The ruleset in eCognition was based on a “top-down” approach where the 

smallest level is pixel-based and the largest level is the “entire scene”, creating 

three levels of differing segment sizes from large too small.  

In eCognition, the SPOT 5 image was segmented using a region-based 

approach in order to create objects for further classification. The segmentation 

process divides the image into smaller objects each with their own unique 

spectral and spatial properties.  A region-based approach to the segmentation 

was taken, which partitions the image into regions or polygons that are similar 

according to a set of user-defined conditions. Region-based segmentation looks 

for homogeneity within a sub-region, based on properties such as intensity, 

colour, or texture (Shruthi et al., 2012). Segmentation was aimed at the 

extraction of gullies as target objects, rather than a complete classification of 

the satellite image. Initial segmentation settings were adjusted to be optimal 

for gullies; the values for shape and compactness were set to 0.3 and 0.8, 

respectively. In order to give colour, or rather spectral properties, a strong 

influence on the objects a low value of 0.3 for shape was set. Setting the value 

for compactness to 0.8 aimed at delineating more compact objects such as 

plantations, croplands and large areas of bare soil. Due to their heterogeneous 

nature, gully-affected areas contain a low degree of compactness and were over-
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segmented. This allowed for differentiation against the homogeneous areas 

surrounding the gullies (d’Oleire-Oltmanns et al., 2014). 

Using eCognition’s customised algorithm function the NDVI (Equation 4.1.) 

was calculated using the red and near infrared bands of the SPOT 5 image, at 

the image object level i.e. for each image object rather than per pixel. Figure 

4.2, shows the reflectance’s of vegetation, water and soil for the various 

wavelengths and the bands of SPOT 5 image, green (1), red (2), NIR (3) and 

SWIR (4) in grey. The spatial variation of NDVI values across the upper Tsitsa 

Catchment for 2007 and 2012 are shown in in the maps in Figure 4.3 and 

Figure 4.4 respectively.  

 

Equation 4.1.    𝑁𝐷𝑉𝐼 =  

∑ (
(𝑁𝐼𝑅𝑝−𝑅𝑝)

𝑁𝐼𝑅𝑝+𝑅𝑝
)

𝑛

𝑖=1

𝑛
 

 

Where    n = number of pixels in the object 

    NIRp = Near Infrared value of given pixel 

    Rp = Red value of given pixel  

 

 

Figure 4.2. The reflectance’s of vegetation, water and soil for the various SPOT 5 

bands. Adapted from (Weepener et al., 2014). 
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Figure 4.3. The spatial variation of NDVI values derived from the 2012 SPOT 5 

dataset in the upper Tsitsa Catchment, Eastern Cape, South Africa. 

 

 

Figure 4.4. The spatial variation of NDVI values derived from the 2007 SPOT 5 

dataset in the upper Tsitsa Catchment, Eastern Cape, South Africa. 
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Due to chlorophyll’s absorption of light in the blue and red part of the spectrum, 

vegetation displays a low reflectance of these two wavelengths. However, 

vegetation strongly reflects light in the near-infrared part of the spectrum 

(Govaerts & Verhulst, 2010). By using the red and NIR bands of the SPOT 5 

image it is possible to create an index which gives positive values to vegetation 

cover. NDVI is sensitive to vegetation and areas of denser vegetation appear 

as increasingly positive values in the resulting NDVI layer (Gao, 1996). 

A separate calculation was used to calculate the MNDWI (Equation 4.2), using 

the green and short wave infrared bands of the image for each image object 

similar to the methodology used by (Xu, 2006; Ji et al., 2009). Water reflects 

the strongest in the green band of the SPOT 5 image while absorbing more in 

the NIR and SWIR bands (Figure 4.1). It was proven by Xu (2006) that using 

SWIR bands instead, of the NIR band as Mcfeeters (1996) used in the 

normalized difference water index (NDWI), allowed for the distinction between 

water and buildings and gave a more accurate classification. The MNDWI is a 

normalized index similar to NDVI but the resulting layer has positive values 

for water bodies.  These two indices were used to remove water and vegetation 

cover in the first step of the classification process. This allowed for a large 

portion of the image to be removed from the rest of the classification process, 

helping to streamline the results.  

 

Equation 4.2.    𝑀𝑁𝐷𝑊𝐼 =  

∑ (
(𝐺𝑝−𝑆𝑊𝐼𝑅𝑝)

𝐺𝑝+𝑆𝑊𝐼𝑅𝑝
)

𝑛

𝑖=1

𝑛
 

 

Where    n = number of pixels in the object 

    Gp = Green value of given pixel 

    SWIRp = Shortwave Infra-red value of given pixel  

 

The threshold for NDVI was set to 0 in the first step, this was not a significantly 

high NDVI threshold as objects containing both areas of vegetation and bare 

soil may have an average NDVI value lower than 0. However, it has been noted 

that many gullies in the upper Tsitsa catchment contain patches of vegetation 
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on the side walls and channel base. If the NDVI threshold was set too sensitive 

these areas would have been removed in the first step removing many gullies 

from the classification process. Similarly, MNDWI was used to remove the 

rivers and farm dams from the classification process. A threshold of 0.25 was 

set for MNDWI as many gullies form along smaller river channels. Setting a 

very sensitive threshold would have removed these gullies from the 

classification process. The water in the gullied channels is generally shallow 

and contain large amounts of sediment that allows the water in these channels 

to be distinguished from the main river channels.  

Through the segmentation process, the gullied areas were separated into areas 

of light soil and areas of dark soil or shadows. Once the vegetation had been 

classified, a series of rules were written based on soil brightness to establish 

areas of bare soil, sparsely vegetated soil, light shadows and very dark 

shadows. All these spectral properties can be found in a gully, which makes a 

single classification algorithm difficult. Thus a series of rules based on size and 

brightness were written in order to merge areas of bare soil and shadow to 

create the gully outline. This method also classified tilled croplands in gully 

classes and in order to remove these errors, the texture of the gullies was taken 

into account. Gullies contain areas of light and dark patches in random arrays 

depending on the angle of the sun or objects creating shadows. In contrast, 

tilled land creates shadows of continuous straight lines along the areas of 

tillage. Thus the texture after Haralick algorithm was used to distinguish 

between the two land types (Haralick et al., 1973).  

A grey level co-ordinance matrix (GLCM) of contrast at all angles across band 

one was calculated to derive the texture values. A threshold of 1.2 was found 

to best distinguish between gullies and tilled land after a series of trials were 

run. This was all done in eCognition using the inbuilt texture algorithm 

function. A series of rules were then written to merge the areas classified as 

soils and shadows in order to create unified gully objects. Houses were also 

classified as gullies using the earlier rules and the separation of gullies from 

houses was achieved in this step. Houses are generally small, square objects 

less than 150 pixels in size, thus areas classified as gullies smaller than 150 

pixels were reclassified as houses. A relational border algorithm was then used 

to incorporate small gullied areas misclassified in the previous step; all objects 
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that shared a border of more than two pixels with gullies were then changed to 

gullies.  

The final challenge was to separate rock outcrops from the gullied areas. The 

texture algorithm after Haralick was used because of challenges encountered 

with the similarities between the brightness values of the rock outcrops and 

gullied areas. Rock outcrops tended to have a higher vegetation to rock ratio 

than the gullies and their homogeneity texture was thus different.  A GLCM of 

homogeneity at all angles across band one was calculated to get the texture 

values. A threshold of 0.08 was found to best to distinguish rocks from gullies 

after a series of trials were run. The results were then exported as a shapefile 

to ArcMap for further processing. The ruleset can be found in Appendix 2. 

Another error in the classification was road lines that were incorrectly 

classified as gullies.  Majority of the roads in the catchment are unpaved and 

thus have a similar spectral signature to that of the gullies. In ArcMap, 

digitised road lines at a scale of 1:50 000 provided by the National Geospatial 

Information were used to create a buffer of roughly 40 m, as the error threshold 

of the data set is 40 m. The buffer was then used to erase the exported polygons 

falling along these lines. 

 

4.3.5. Description of variables used 

4.3.5.1. Texture after Haralick 

Texture can be defined as fine, coarse, smooth, rippled, irregular or lineated 

(Haralick et al., 1973). Using a GLCM 22 separate formulas can be derived, 

however, usually only five of these are considered as parameters of importance 

namely contrast, homogeneity, dissimilarity, energy and entropy (Gebejes & 

Huertas, 2013). A GLCM contains information on the distribution of co-

occurring pixel values or the frequency of occurrence of two neighbouring pixel 

combinations across an image. GLCMs are created from greyscale images, by 

calculating how often the grey scale intensity value of a pixel occurs 

horizontally, vertically or diagonally adjacent to that pixel (Gebejes & Huertas, 

2013). A GLCM is based on the assumption that the texture information in an 

image is contained in the overall spatial relationship which grey levels of 
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neighbouring pixels have to one another (Gebejes & Huertas, 2013). In this 

study, only two GLCMs were used namely contrast and homogeneity. 

Contrast is based on Equation 4.3, where i and j represent the horizontal and 

vertical cell coordinates and p is the grey intensity value for that pixel. 

Contrast is simply the measure of intensity contrast of a pixel and its 

neighbour and is based on the local grey level variation in the GLCM. Thus a 

continuous object will have a contrast of 0. The grey level variations show the 

variation of the texture itself. If neighbouring pixels have very similar grey 

intensity values, the contrast in the object will be very low, which is the case 

for smooth soft textures; heavy textures will produce high intensity values 

(Gebejes & Huertas, 2013).  

 

Equation 4.3.      𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  
∑ |𝑖−𝑗|2𝑝(𝑖,𝑗)𝑖,𝑗

𝑛
 

 

Where   n = number of pixels in the object 

   p = grey level intensity pixel value 

   i = horizontal cell coordinates 

   j = vertical cell coordinates 

 

Homogeneity measures the similarity of the distribution of elements in the 

GLCM to the diagonal of the GCLM. The homogeneity calculation, shown in 

Equation 4.4., uses the inverse of the contrast weight to give weights to each 

pixel value, then sums these weights and finds the average homogeneity for 

each image object. The GLCM homogeneity of any texture is high if GLCM 

concentrates along the diagonal, meaning that there are many pixels with the 

same or very similar grey level value. The larger the changes in grey values, 

the lower the GLCM homogeneity making higher the GLCM contrast.  

Homogeneity ranges between [0, 1]. If there is little variation across the object, 

then the homogeneity will be high where there is no variation the homogeneity 

is 1. Therefore, high homogeneity refers to textures that contain ideal 

repetitive structures, while low homogeneity refers to big variation in both, 
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texture elements and their spatial arrangements. An “inhomogeneous texture” 

refers to an object that has almost no repetition of texture elements and spatial 

similarity in it is absent (Gebejes & Huertas, 2013).  

 

Equation 4.4.   𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑

∑ 1 𝑝(𝑖,𝑗)𝑖,𝑗

1−(𝑖−𝑗)2

𝑛
 

 

Where   n = number of pixels in the object 

   p = grey level intensity pixel value 

   i = horizontal cell coordinates 

   j = vertical cell coordinates 

 

4.3.6. Accuracy assessments 

An accuracy assessment reflects the difference between the classified image 

and the reference data. Assessing the accuracy of the classification 

quantitatively requires the comparison of two maps namely the classification 

derived map (OBIA map) and the reference map (manually digitised map) 

(Lillesand et al., 2008). It is important that the reference data are accurate and 

reliable as this might cause the accuracy assessment of the classified data to 

reflect a poor classification workflow, whereas, in reality, the classification 

might be very good (Yale's Centre for Earth Observation, 2003). 

 According to d’Oleire-Oltmanns et al. (2014) the delineation and accuracy 

assessment of geomorphological features, for example, gullies is not as simple 

as for other features such as crops or water. Borders of erosional features are 

often not clearly defined and may vary due to natural influences; this creates 

a problem when trying to define an object’s boundaries. This problem is further 

compounded by the definition of gully erosion and the lack of three-dimensional 

data as gullies are often defined by depth, which distinguishes them from other 

forms of erosion (Poesen et al., 2003).  

Four separate accuracy assessments were conducted and their results 

compared. This allowed for the testing of various accuracy assessment 
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techniques against each other. Drăguţ and Eisank (2012) highlighted the value 

of applying more than one method to determine the accuracy of the 

classification as no one technique can assess all the possible errors a 

classification can produce. User’s and producer’s accuracy, as well as the 

overall accuracy, was calculated using Equations 4.5, 4.6 and 4.7. Table 4.3 

shows a confusion matrix, which the user (x) and producer’s accuracies (y) are 

based on. The values of the user’s, producer’s and overall accuracy are usually 

not the same. Overall accuracy determines the number of correctly classified 

pixels in the image from the total number of pixels in the image. User’s 

accuracy also referred to as the commission error is defined as the reliability of 

the map, in other words, how well the pixels on the map represent the feature 

in reality. Producer’s accuracy or omission error refers to how well a certain 

feature can be classified (Yale's Centre for Earth Observation, 2003).   

 

Equation 4.5.   𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠
 

 

Equation 4.6.    𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠
 

 

Equation 4.7.    𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
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Table 4.3: A confusion matrix used to conduct accuracy assessments. Where 

the ‘actual’ refers to the reference data and ‘predicted’ refers to the classified 

data. Adapted from Fielding and Bell (1997). 

 

 

4.3.6.1. Random point sampling method 

This method was based on one conducted by Mararakanye and Nethengwe 

(2012) who assessed the accuracy of classified gullies by comparing them with 

a manually digitised gully location map using random points. A sample of 144 

random points, generated through ArcMap’s random point generator function, 

were placed in the exported OBIA gully map and the accuracy was calculated 

by determining whether the points which fell inside the gullies were also 

represented by gullies in the reference dataset. Thus, this method only tested 

the OBIA identified gullies and if OBIA missed gullies it would not show up in 

the accuracy assessment. Thus, a further 144 random points across the entire 

catchment, not specific to gullies, were then assessed in the same manner. 

Wang et al. (2014) used 144 random sample points for a catchment in China. 

Mararakanye and Nethengwe (2012) chose 150 points for the gullies and 150 

points for the catchment in a study area approximately three times bigger than 

the catchment area of this study thus 144 points were assumed to be adequate. 

 

4.3.6.2. Total area of overlap 

The principle behind the total area of overlap method was to determine the 

total area of gullies which overlapped between the digitised data set and the 

data extracted through OBIA. This was achieved by conducting a simple raster 

calculation between the digitised gullies and the gullies extracted through 
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OBIA. In ArcMap, both data sets were converted to raster files as follows: no 

data values (i.e. areas where no gullies were found) were given a value of one, 

while areas where gullies had been identified, were given a value of two for the 

OBIA extracted data set and 10 and 20 for the digitised data set. Ten 

represented an area of no gullies while 20 represented a gullied area. The two 

data sets were then added, which gave four classes namely 11, 12, 21 and 22. 

These classes represented the various combinations of gullies and no gullies 

between the two data sets, as shown in Table 4.4. This was done for both the 

2012 and 2007 data sets. Results of the error matrix were interpreted using 

the producer’s accuracy, user’s accuracy, overall classification accuracy 

equations stated above.  

 

Table 4.4:  The four classes of the basic accuracy assessment. 

Value Description 

11 Neither data set found gullies 

12 The digitised gullies showed no gullies yet the ruleset found 

gullies 

21 The digitised data set found gullies where the ruleset found no 

gullies 

22 Both data sets identified gullies 

 

4.3.6.3. Boundaries of leniency  

Boundaries of leniency considered the distance of the error or the distance that 

the closest true positive (reference data) fell from a false positive (error in OBIA 

data set). Euclidean Distance, in ArcMap, was used to carry out this 

assessment in order to determine the accuracy of the classified gullies within 

a given radius of the manually digitised gullies. According to Fielding and Bell 

(1997), there is good reason in calculating errors based on the spatial locations 

of the two data sets. As it can be assumed that false positives which fall in close 
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proximity to true positives may create less serious errors than those which are 

found far from true positives (Fielding & Bell, 1997). 

A common problem with a conventional confusion matrix accuracy assessment 

observed by Wang et al. (2014) is that it fails to provide the spatial distribution 

of the classification error. There are two common and easy methods (shown by 

Equations 4.8. and 4.9.) to determine the accuracy of false positive errors by 

weighing their relative proximity to actual positive cases of the reference data. 

In the first technique, the distance weight is calculated as the number of 

adjacent true positives based on Equation 4.8.  Equation 4.9. represents a 

second technique where errors are weighted by their distance from the nearest 

positive case. Using these weights, an adjusted confusion matrix may be 

constructed from which adjusted error measures are calculated. If the ratio of 

adjusted errors to actual errors is calculated, it will provide information about 

the spatial characteristics of the prediction errors (Fielding & Bell, 1997).  

 

Equation 4.8.  𝑊𝑒𝑖𝑔ℎ𝑡 = 1 −
𝑃𝑜𝑠𝑡𝑖𝑣𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 

9
 

 

Equation 4.9.   𝑊𝑒𝑖𝑔ℎ𝑡 = 1 −
1 

2(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑣𝑒 𝑣𝑎𝑙𝑢𝑒)
 

 

4.3.6.4. Object comparison  

Object comparison was conducted by considering each gully as a single object 

rather than a grouping of pixels. Intersection of the manually digitised gullies 

and the gullies extracted through OBIA was calculated by converting both 

vector sets to raster and giving the one data set a value of 1 for gullies and 0 

for no gullies.  In the other data set, a unique value was given to each gully 

object. The two data sets were then multiplied using the raster calculator. 

Objects were considered accurate when they intersected the reference data set. 
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4.4. Gully Erosion  

4.4.1. Calculation of gully growth 

In order to determine whether the gully systems were active and if so at what 

rate the gullies in the catchment were expanding, two SPOT 5 images five 

years apart were compared. Any gully was considered active if it had increased 

in size laterally between 2007 and 2012. The OBIA ruleset was used to extract 

gullies in the SPOT 2007 and SPOT 2012 images in eCognition. The two vector 

data sets were then overlaid in ArcMap and the surface area difference was 

calculated using a simple raster calculation. This calculation only accounted 

for lateral growth and did not account for an increase in gully depth. However, 

it is assumed that gullies will incise downwards until reaching the bedrock 

below from then on they will only expand laterally so all gullies which have 

expanded laterally would have already reached the bedrock below and would 

have no further increase in depth (Le Roux et al., 2015) (Equation 4.10).  

 

Equation 4.10. Surface area growth = gully surface area(2012) – gully surface area (2007). 

 

The results were then divided by the five years in order to determine how fast 

the gullies were expanding annually. Using this method active gullies could be 

identified. 

 

4.4.2. Calculation of gully volume 

As gullies can either be classified as “V” or “U” shaped depending on the type 

of erosion (Das & Saikia, 2013) (Figure 4.5). The volume of sediment produced 

from the gullies was calculated as a range.  Assuming all gullies in the 

catchment had the “V” shape would produce the minimum sediment 

contribution scenario, whereas assuming all the gullies in the catchment had 

the “U” shape would produce the maximum sediment contribution scenario. 

Bulk density was assumed to be 1.6 over the catchment and that gullies erode 

down to bedrock before expanding laterally (Le Roux et al., 2015). Thus the 

land types data with soil depth for the catchment were used to calculate the 
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size of each gully in the catchment under the “V” and “U” scenarios. The volume 

of a square and triangle was used to calculate the volumes for the two “V” and 

“U” shaped scenarios respectively.  

 

 

Figure 4.5: Cross section of a U (right) and V (left) shaped gully system. 

 

For a U-shaped gully the equation to calculate the volume of a rectangle was 

used shown in Equation 4.11 below. 

 

Equation 4.11.   𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑊𝑖𝑑𝑡ℎ ∗ 𝑙𝑒𝑛𝑔𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡 

 

Where   Width = width between the gully walls 

            Length = length of gully  

        Height = depth to base 
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For a V-shaped gully the volume of a triangle was calculated shown in 

Equation 4.12 below. 

 

Equation 4.12  𝑉𝑜𝑙𝑢𝑚𝑒 = 0.5 𝑏𝑎𝑠𝑒 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ 

 

Width, length and height are the same as in Equation 4.11. 

 

4.4.3. Calculation of sediment yield from gully erosion  

As with sheet and rill erosion, methods are needed to predict the extent and 

patterns of gully erosion across large catchments (Hughes & Prosser, 2012). 

Identifying gullies from aerial and satellite imagery is the first step to creating 

a methodology to accurately calculate sediment yield from gully erosion in a 

catchment. However, not all sediment produced from gullies end up in the river 

or dam at the catchment outlet as some of the sediment will be deposited in 

sinks (Ndomba et al., 2009; Le Roux et al., 2015). Furthermore, not all gullies 

have equal potential to deliver sediment to the catchment outlet. Factors such 

as vegetation cover inside the gully, connectivity and continuity (see Appendix 

1) all determine the amount of sediment a gully will produce and channel 

through the catchment (Le Roux et al., 2015). 

During the field trip in June 2014, various properties of 24 gullies in the 

catchment were visually assessed and noted in Appendix 1. It was found of the 

gullies assessed in the field that half were connected and all were active. 

Connected gullies are defined as been able to channel coarse sediment during 

‘normal’ flood events, 12 were identified in the field. Partially connected gullies 

defined as been able to transfer sediment only in extreme flood events and 

potentially connected gullies having competence to transport sediment but lack 

of supply were grouped and seven gullies fell in this class. Finally, five gullies 

were identified as disconnected gullies in which transfer is obstructed.  (Hooke, 

2003; Le Roux et al., 2015). It was also found that 14 of the gullies were 

continuous.  
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A constant sediment delivery ratio (SDR) of 50% was applied to all the gullies 

in the catchment. Although Walling (1983) found that linking on-site rates of 

erosion in a catchment to the sediment yield at the catchment outlet using a 

sediment delivery ratio created uncertainties, various SDRs have been used 

and suggested in literature. As assuming all sediment produced by gully 

erosion in a catchment will end up at the outlet is too simplistic (Ndomba et 

al., 2009) and numerous studies have indicated that not all eroded sediments 

that leave the gully end up in the river (Ndoma et al., 2009; Hughes & Prosser, 

2012; Le Roux et al., 2015). Martinez-Casasnovas et al. (2003) found in their 

study in Spain, a SDR of 68.1% in a catchment of 0.688 km2 . As the catchments 

increase in size so the SDR decreases (Walling, 1983; Ferro & Minacapilli, 

1995). This inverse relationship has been used in many studies to estimate 

SDR and has been explained that there is decreasing slope and channel 

gradients and increasing opportunities for deposition associated with 

increasing basin size (Walling, 1983). Thus the upper Tsitsa Catchment will 

likely have a lower SDR than that found by Martinez-Casasnovas et al. (2003).  

In a study conducted by Ndomba et al. (2009) a SDR of 50% was used for gully 

sediment yield predictions in a basin in Tanzania. After estimating the gully 

erosion rates (13 600 t/yr), Ndomba et al. (2009) then applied a constant 

delivery ratio of 50% in order to obtain 6 800 t/yr as the sediment yield 

contribution from gully erosion. In this study a delivery ratio of 50% was used 

following the study of Ndoma et al. (2009) and field observations that 50% of 

gullies were connected and 58% were continuous. With a delivery ratio of 50%, 

it was estimated that gully erosion contributes between 70 000- 140 000 t/yr to 

the sediment yield in the upper Tsitsa Catchment.   

 

4.5. Modelling various climate scenarios 

4.5.1. Overview 

Due to the potential of climate change to increase soil erosion and lead to 

associated adverse impacts such as dam siltation, it is crucial to model future 

rates of erosion in order to access it as a potential future environmental 

problem and implement strategies to mitigate its effects. Climate and erosion 

prediction models have become vital tools used to assess soil erosion under 
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various scenarios. They are also the most practical means of assessing the 

effect of climate change on soil erosion (Mullan et al., 2012). SWAT was used 

to incorporate the rainfall and temperature projections from Engelbrecht et al., 

(2011) in order to gain insight into how sediment yield from sheet and rill 

erosion in the upper Tsitsa Catchment will be affected by climate change.  

 

4.5.2. Incorporating climate projections in the SWAT model 

For this study, maximum and minimum temperature and rainfall data were 

used from the study conducted by Engelbrecht et al. (2011) who downscaled 

the six GCM models for South Africa: 

o GFDL-CM2.0  

o GFDL-CM2.1 

o ECHAM5/MPI 

o UKMO 

o MIROC3.2 

o CSIRO 

 

It is important to use multiple GCMs in a study involving the effects of climate 

change (Crosbie et al., 2011). The use of multiple models helps account for the 

large potential uncertainties in future estimates of soil erosion and sediment 

yield. By choosing only the best performing GCMs the range of projections may 

be narrowed. Similarly, by choosing the extremes of the GCMs for rainfall may 

not produce the extremes of the sediment yield as different parametres within 

the model may outweigh the effects of rainfall. Thus it is best to use as many 

as possible, which has the added benefit of providing a range sediment yield 

forecasts (Crosbie et al., 2011). 

All the models are from the ‘business as usual’, A2, based on the 

Intergovernmental Panel on Climate Change (IPCC) Special Report on 

Emissions Scenarios (SRES) (Engelbrecht et al., 2011). The A2 scenario 

represents a differentiated world. It is characterized by lower technological 

change, slow capital stock turnover and lower trade flows. Countries are more 
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independent with less international cooperation and there is a slow transfer of 

technology and ideas. A2 represents more self-reliance in terms of resources 

with less emphasis on economic, social, and cultural interactions between the 

different regions. Economic growth is uneven and the income gap between now-

industrialized and developing parts of the world does not narrow. In the A2 

scenario, the income per capita is largely maintained or increased in absolute 

terms. The A2 scenario places emphasis on family and community life and 

fertility rates decline relatively slowly, which makes the A2 population the 

largest among the various scenarios reaching 15 billion by 2100 

(Intergovernmental Panel on Climate Change, 2000). 

Data for each model were prepared for SWAT by combing them in separate text 

files, which were then run in the SWAT macro to calculate the weather 

statistics needed for the SWAT weather generator. From here the various 

climate scenarios were run in the SWAT model using the same land use and 

soil data on a generic agricultural land use scenario.   

 

4.5. Modelling various agricultural scenarios 

4.5.1. Overview 

DAFF is considering the Eastern Cape including in the Tsitsa River Catchment 

for potential commercial farming of certain crops. If the dam is to be built it is 

important to predict sediment yield from sheet and rill erosion in the 

catchment under future land use conditions in order to adequately manage the 

dam and prevent siltation. 

 

4.5.2. Running various crop types in SWAT 

Once the SWAT model is set up and run under current land use and climate 

conditions, it is easy to change the land use inputs for various other scenarios. 

The land use input was changed for 12 different land use scenarios. It was run 

for agricultural land, cabbage, corn, sweet potato, sugar and avocado orchids 

under both a till and no-till system except for sugar and avocado which was 
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run only on a no-till scenario. Results were saved and the total sediment output 

for each scenario was analyzed.  

 

4.5.3. SWAT tillage operations 

SWAT considers mixing depth and mixing efficiency when it models tillage 

operations. SWAT requires the timing of the tillage operation as well as the 

type of tillage operation in order to model the effects of tillage on the soil 

(Nietsch et al., 2005). In SWAT the user can manually change the SCS-CN for 

the HRU’s according to the unique tillage operations of their catchment. These 

CNs represent the moisture value of the soil and SWAT can adjust the 

manually entered value for daily modelling to reflect changes in soil water 

content (Nietsch et al., 2005). Mixing coefficient in SWAT defines the fraction 

a residue/nutrient/pesticide/bacteria pool in each unique soil layer that is then 

redistributed through the depth of the soil that is mixed by the tilling 

equipment (Nietsch et al., 2005). In order to calculate the redistribution of 

nutrients/chemicals or residue during tillage, SWAT divides the depth of the 

soil layer by the tilling mixing depth which is then multiplied by the amount 

of mixed nutrient/chemical or residue. To calculate the final concentrations, 

the redistributed nutrients/residue or chemicals are added to the unmixed 

concentrations for that layer. The only difference for bacterial concentration 

calculations is that bacteria mixed into the layers below the surface layer are 

assumed to die (Nietsch et al., 2005). 

During tillage nutrients, pesticides and residue are redistributed in the soil 

profile. By disturbing the residue of the soil and destroying the structure 

increases the soil's vulnerability to erosion (Rust & Williams, n.d.). A study 

conducted by Wuest et al. (2009) conducted in a semi-arid environment in the 

USA showed that agriculture under no-till systems had considerably less 

erosion and surface runoff than agriculture under a system of tilling. As the 

upper Tsitsa catchment comprises many independent farms with various crop, 

soil and slope types there are numerous systems applied for tilling. As it was 

beyond the scope of the study to identify the various tillage systems each 

farmer used, for simplicity the tillage system modelled in SWAT was the 4-bed 

roller technique.   
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4.6. Field surveys 

Le Roux et al. (2015) collected four grab samples during a field survey in 

October 2013, three at Tsitsa Bridge near the future dam site and two at the 

Tsitsa-Tina River confluence, Figure 4.3. A further four grab samples were 

taken in a field survey for this study in June 2014 (e.g. Figure 4.6.) These were 

taken at the Tsitsa Bridge near the future dam and the Tsitsa-Tina River 

confluence. One more grab sample was taken in January 2015 at the Tsitsa 

Bridge. All grab samples were sent to the analytical laboratories at the ARC-

ISCW to be analysed for total dissolved solids.  During the field surveys, 

observations of the gullies were also recorded this included gully position, 

depth, size, activity, continuity, vegetation cover (both internally and 

externally) as well as the manning’s roughness (both internally and externally) 

and finally the connectivity. A sample of the observation form is shown in 

appendix A. the position of the gullies was mapped using a GPS camera. The 

limited road network in the catchment, as well as the quality of the roads, made 

accessing many of the gullies difficult.  

 

Figure 4.6. (A) Collecting grab samples at the Tsitsa-Tina confluence in June 

2014. (B) Gully observations in January 2015 in the upper Tsitsa Catchment 

Eastern Cape Province, South Africa. 

 

Bulk density samples were also taken on a field trip in January, due to the 

diversity of soils and the limited time in the field, it was not possible to sample 

all the soils according to the land types data used in the SWAT model 

(approximately 100). It was manageable to sample the bulk density of all the 

soils according to the soil association map created by van den Berg and 
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Weepener (2009), however, due to the large discrepancy between the two data 

sets it was impossible to link the bulk density of the soil association and the 

land type map used in the SWAT model. The average bulk density was found 

to be 1.4. A table of the sampled bulk densities can be found in Appendix 3.  
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5. Results 

Results from the current scenario presented here (2007-2012) from both the 

SWAT analysis and the OBIA are presented first in the results section. SWAT 

was used to determine the sediment yield from sheet and rill erosion and OBIA 

was used to determine the sediment yield from gully erosion. Results from both 

analyses needed to be combined as the SWAT model does not account for gully 

erosion. The future climate and land use change scenarios are presented after 

the current scenario. Future land use is based on potential changing 

agriculture and a number of crops were identified as potential crops for the 

upper Tsitsa Catchment namely: corn, cabbage, sweet potatoes, sugarcane and 

avocado. Climate change data from six downscaled GCM’s were also tested for 

the period 2015-2100.  

 

5.1. SWAT Results 

SWAT was used to model sediment yield from sheet and rill erosion under 

various land use and climate scenarios. First, the current land use and climate 

scenario was to modelled by using measured climate data from weather 

stations in the catchment for the period 2007 -2012 along with the National 

Land Cover map. These results gave the basis to which the results of the other 

scenarios could be compared. 

The second scenario involved testing the impact of tillage operations on 

sediment yield from sheet and rill erosion this too was done using measured 

climate data and the National Land Cover map but the management 

operations in SWAT were changed to incorporate tillage. A third land use 

scenario was tested and this was based on proposals for large-scale agriculture 

of certain crops namely corn, cabbage, avocado, sweet potato and sugarcane. 

Both till and no-till operations using measured climate data were tested.  

Finally, the effect of projected climate change on sediment yield from sheet and 

rill erosion was modelled. This was done by using rainfall and temperature 

data from the six GCM models CSIRO, GFDL, GFDL 2, MIROC, MPI and 

UKMO for the period 2015-2100. The period 2015-2100 was divided into three 
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19-year time period: short-term 2015-2034, medium-term 2045-2064 and long-

term 2081-2100.  

 

5.1.1. Current land use and weather (2007-2012) 

Sediment yield from sheet and rill erosion in the upper Tsitsa Catchment for 

the 2007-2012 period was approximately 0.91 t/ha (Figure 5.1). Average annual 

sediment yield is thus 0.18 t/ha/yr. The sediment yield in the catchment 

increases dramatically by over five times after 2008 with two noticeable spikes 

in sediment yield in 2009 and 2011.  

 

Figure 5.1: The average sediment yield from sheet and rill erosion in the upper 

Tsitsa Catchment, Eastern Cape, South Africa, for each year for the period 2007-

2012 modelled in SWAT. 

 

Average annual measured rainfall for the 2007-2012 period is shown in Figure 

5.2.  Rainfall is lowest in 2007, rising steadily to 2011 and then decreasing 

again in 2012. The trend supports the observations in Figure 5.1 for the low 

sediment yield modelled in 2007 and 2008 and high sediment yield in 2011 

with a decrease again in 2012.  
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Figure 5.2: The average annual measured rainfall for each year during the period 

2007-2012 in the upper Tsitsa Catchment, Eastern Cape, South Africa. 

 

Figure 5.3 shows the number of 5 mm, 10 mm and 15 mm rainfall events over 

the 2007-2012 period. All the events increase in the years 2010-2011 and then 

show a decrease to 2012. This supports the increased sediment yield and 

rainfall in 2011 and decrease in 2012 shown in Figure 5.1 and Figure 5.2.  

 

 

Figure 5.3: The number of 5 mm (blue), 10 mm (orange) and 15 mm (grey) 

rainfall events during each year for the 2007-2012 period in the upper Tsitsa 

Catchment, Eastern Cape, South Africa. 
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Average sediment yield from sheet and rill erosion per month shows that the 

majority of the sediment yield occurs between January and February 

decreasing towards June and August and then slowly rising towards December 

(Figure 5.4).  A similar trend is observed in the monthly rainfall graph (Figure 

5.2). In both Figures 5.4 and 5.5, there is a spike between June and August. 

The raw data shows that May 2011 was a wetter than average month with 

approximately 50 mm more rainfall than the other years. The result of this 

rainfall caused the spike observed in Figures 5.4 and 5.5.  

 

 

Figure 5.4: The average sediment yield from sheet and rill erosion in the upper 

Tsitsa Catchment, Eastern Cape, South Africa, for each month averaged over the 

2007-2012 period. 
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Figure 5.5: The average monthly rainfall averaged out over the period 2007-2012 

in the upper Tsitsa Catchment, Eastern Cape, South Africa. 

 

In order to account for the extreme rainfall in 2011 the Fournier’s equation was 

used to graph the average monthly rainfall and sediment yield from sheet and 

rill erosion for the period 2007-2012 (Figure 5.6). Results show the same trend 

as Figure 5.4 and Figure 5.5 without the large spike caused by the 2011 outlier. 

 

 

Figure 5.6: The rainfall erosivity calculated using Fournier’s equation for the 

period 2007-2012 in the upper Tsitsa Catchment, Eastern Cape, South Africa. 
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5.2. OBIA results 

eCognition was used to facilitate OBIA on two SPOT 5 images taken in 2007 

and 2012 respectively. The objective of using OBIA was to identify and map 

the gullies in the upper Tsitsa Catchment on both images and then compare 

the gully sizes in order to determine the gully growth rate.  

Once OBIA had been conducted it was important to determine the accuracy of 

the ruleset and thus the derived gully location maps. Since determining the 

accuracy of a gully location map is subject to bias, four separate accuracy 

assessments were conducted. The two derived gully location maps were 

overlaid and the increase in gully size was calculated. This was done using a 

basic model of gully development. It was found that sediment yield from gully 

erosion produced between 140 000-280 000 tons of eroded material in the five-

year monitoring period. The rate of soil erosion from was calculated to be 

between 7 t/ha/yr and 14 t/ha/yr for the 200 km2 catchment.  

It was found that the gullies expanded in both area and length. Statistics for 

each were calculated in ArcMap. The gully erosion increased by 4e6 m2 over the 

catchment.  The maximum area of gully expansion was 240 000 m2 and 

minimum 0.000375 m2 and on average the gullies expanded by 42000 m2. 

 

5.2.1. Gully location maps of the catchment  

Figures 5.7 and 5.8 show the extent of gully erosion over the catchment for the 

years 2007 and 2012 respectively. The 2012 map has more gully erosion 

particularly in the northern part of the catchment. It was also found that the 

2012 algorithm misclassified a large portion of rock outcrops (circled in red). 

On both images, the majority of the gullies appear in the lower areas of the 

catchment with only one or two gullies identified in the higher reaches of the 

Drakensberg.  
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Figure 5.7: The extent of gully erosion in 2007 from the OBIA classification in the 

upper Tsitsa Catchment, Eastern Cape, South Africa. 

 

 

Figure 5.8: The extent of gully erosion in 2012 from the OBIA classification in the 

upper Tsitsa Catchment, Eastern Cape, South Africa, with the miss-classified 

rock outcrops circled in red. 
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5.2.2. Individual gully assessment  

Visual assessment of the individual classified gullies shows satisfactory 

accuracy. The accuracy of the classification is qualified further in Section 5.2.3 

through four separate accuracy assessments. It also highlights some benefits 

over the manually digitised gullies. Classified gullies formed more accurate 

boundaries around the gullies, “hugging” the edges more closely than that of 

the manually digitised gully boundaries. They were also able to distinguish 

between the inter-gully and the gully area more accurately than the manual 

interpretation. Figure 5.9 shows an area where there is a high similarity 

between the manually digitised gully (red) and the classified gully (pink). With 

the manually digitised gullies, the interpreter drew boundaries around the 

whole gully system, where the classified gullies distinguished areas in the gully 

system which were vegetated and not part of the gully shown. Finally, it was 

noted that OBIA ruleset was able to better identify larger gully systems than 

smaller disconnected gullies. 

 

 

Figure 5.9: Segments of the SPOT 5 images of gully systems identified through 
OBIA classification (pink) and manual interpretation (red) in the upper Tsitsa 

Catchment, Eastern Cape, South Africa. 
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From visual interpretation, it was also noted that errors were made by both 

the manual interpreter and OBIA ruleset. Major errors for each are shown in 

Figure 5.10 and 5.11. Figure 5.10 shows the common errors made by the 

manual interpreter namely classifying rock outcrops and densely vegetated 

gullies. The latter may not be considered a too serious error, however, 

Casanovas and Zaragova (1996), as well as Le Roux et al. (2015), determined 

that highly vegetated gullies do not contribute significantly to the sediment 

load in the catchment. This is due to a number of reasons; first, during a rain 

storm the leaf canopy intercepts the drops and dissipates their kinetic energy, 

which prevents the droplets from causing physical disaggregation of the soil by 

hitting the soil at a high speed. Second, the dense basal cover provided by the 

vegetation reduces the runoff and the velocity of the runoff as it slows down 

the water flow. Finally, vegetation cover contributes to the organic matter that 

stabilizes the soil structure (Laker, 2004). Thus digitising densely vegetated 

gullies and calculating the sediment load generated from these gullies through 

the same method as that for non-vegetated gullies will give an overestimation 

of sediment yield.  

Figure 5.11 shows the various types of classification errors made through 

OBIA. OBIA erroneously identified certain rock outcrops, sedimented parts of 

the river and roads as gullies even after a thorough ruleset had been created. 

OBIA also under classified some gully systems and discontinuous gullies. OBIA 

was better able to identify larger, connected gully systems than smaller 

disconnected gullies. The various types of errors made by the OBIA 

classification will be quantified and explained further in Section 5.2.3.2.  
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Figure 5.10: The errors made by the manual interpreter in red on the spot 5 
image of the upper Tsitsa Catchment, Eastern Cape, South Africa. (A), (B) 
showing the delineation of rock outcrops as gullies. (C), (D) showing the 

delineation of densely vegetated gullies. 
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Figure 5.11: The errors made through OBIA on segments of the SPOT 5 image 
of the upper Tsitsa Catchment, Eastern Cape, South Africa. (A) showing the 

delineation of rock outcrops. (B) showing an under classified gully system. (C) 
showing the error made by classifying the roads. (D) showing the incorrect 

classification of the river. 
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5.2.3. Results of the accuracy assessments 

5.2.3.1. Random point sampling 

Results of the random point sampling accuracy assessment for the 2012 data 

set whereby 144 random points inside the gullies were assessed against the 

SPOT 5 image, gave an overall accuracy of 59.7%. This method also allowed for 

the types of errors to be categorized. It was found that of the classification 

errors made through the OBIA 79.3% was falsely classifying rock outcrops, 

10.3% was falsely classifying sheet erosion and the rest was made up of errors 

in footpaths and sediment in the rivers and grass patches. When the 144 

random points were extended to the entire catchment it gave an overall 

accuracy of 97.2%. Mis-represented gullies made up 2.1% and gullies which 

were not represented accounted for 0.6% of the error.  

 

5.2.3.2. Total area of overlap 

Results of the total area of overlap accuracy assessment gave an overall 

accuracy of 98% for the 2012 data set and 99% for the 2007 data set. The user’s 

and producer’s accuracy was less correct. For the 2012 data set, the user’s 

accuracy was 23% and the producer’s accuracy was 28%. The 2007 data set had 

an overall accuracy of 99% with the user’s and producer’s accuracy 25% and 

61% respectively. Table 5.1 shows the types of errors encountered through the 

OBIA classification for each data set. Both the 2007 and 2012 data sets agreed 

99% and 98% respectively with the manual interpretation in finding no gullies. 

OBIA error in the 2007 and 2012 data sets composed of respectively 0.21% and 

0.34% in classifying objects which the manual interpreter did not find to be 

gullies. In most cases, OBIA identified rock outcrops, sedimented parts of the 

river and tilled land as gullies, there were a few cases where OBIA found 

gullies which the manual interpreter missed. OBIA failed to identify 0.49% and 

0.67% of the gullies that the manual interpreter found in the 2007 and 2012 

images respectively. In some of these cases the manual interpreter falsely 

classified rock outcrops or classified highly vegetated gullies which OBIA could 

not identify.  
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Table 5.1:  The percentage of gullies extracted through OBIA falling in each 

of the four classes of the basic accuracy assessment for the 2007 and 2012 

data set. 

Value Description Percentage 

(2007) 

Percentage 

(2012) 

10 Neither data set found gullies 99,1 98,7 

11 The digitised gullies showed no 

gullies yet the ruleset found gullies 

0.21 0,34 

20 The digitised data set found gullies 

where the ruleset found no gullies 

0.49 0,67 

21 Both data sets identified gullies 0.24 0,3 

 

 

5.2.3.3. Boundaries of leniency 

The boundaries of leniency accuracy assessment showed that 30% of the gullies 

extracted through OBIA corresponded exactly with the manually digitised 

gullies. It was decided that an error range of 40 m was acceptable as this was 

the standard of the National Geospatial Information for all their digitised files. 

It was calculated that 52% of the gullies extracted through OBIA fell within a 

40 m range of the manually digitised gullies. Table 5.2 shows the percentage 

of gullies falling in each range between 0 and 40 m. 

 

Table 5.2:  The percentage of gullies extracted through OBIA falling within a 

specified range of the manually digitised gullies. 

Range (m) Percentage 

0-10 44,3 

    11-20 3,8 

21-30 2,6 

31-40 2,1 
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5.2.3.4. Objected comparison approach  

The object comparison accuracy assessment showed a 48% overlap of the 

extracted gullies to the manually digitised gullies. When the formula was 

converted and the manually digitised gullies were compared to the extracted 

gullies the overlap accuracy was 16%.  

 

5.2.4.  Sediment yield from gully erosion 

Using the area of the gully erosion extracted through OBIA between 2007 and 

2012 it was determined that the gully erosion increased by 4 km2 over the 

catchment. The manually digitised data set showed an increase of 5.6 km2, 

which is a 28% difference between the two data sets. 

Using lateral gully expansion and soil depth for both U-shaped and V-shaped 

gully profiles it was calculated that gully erosion produced between 7 t/ha/yr 

and 14 t/ha/yr, which results in between 140 000 t/yr and 280 000 t/yr been 

produced in the catchment. When using a delivery ratio of 50% for gully erosion 

the estimated sediment yield resulted in between 70 000 and 140 000 t/yr.  

 

5.2.5. Total sediment yield for the catchment. 

Sediment yield results from the sheet and rill erosion calculated in SWAT 

showed that sheet and rill erosion contributed 3600 t/yr of sediment. This was 

then added to the sediment yield contribution from gully erosion calculated 

using OBIA in eCognition which was found to be between 140 000 and 280 000 

t/yr. When using a delivery ratio of 50% for gully erosion, it was found that 

between 73 600 t/yr and 143 600 t/yr of sediment was generated in the upper 

Tsitsa Catchment.  
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5.3. Results of the field surveys 

Nine grab samples were collected on various field trips four by Le Roux et al. 

(2015) and five for this study. These were analyzed at the ARC-ISCW 

analytical laboratory. Results are shown in Table 5.3. Samples 1-4 were taken 

in November (Le Roux et al., 2015), samples 5-8 were taken in June and sample 

9 was taken in January. The grab samples confirmed that the suspended 

sediment load is much higher in summer than in winter which indicates that 

it is related to increased event discharge. Two grab samples taken in winter 

showed no suspended sediment. It should be noted that the results of the grab-

samples could not be used to validate the model directly due to the limited 

number of samples and because the samples were taken after 2012 which falls 

outside the timeframe of this study.  

 

Table 5.3: Total suspended solids (mg/L) of grab samples taken during the 

field trips. 

Grab sample 

number 

Location Total suspended solids 

(mg/L) 

1 Mzimvubu River Mouth 574.2 

2 Mzimvubu River Mouth 689.4 

3 Tsitsa-Tina River Confluence 

(Tsitsa side) 

3131.6 

4 Tsitsa-Tina River Confluence 

(Tina side) 

688.0 

5 Tsitsa Bridge near dam site 0.0 

6 Tsitsa Bridge near dam site 0.6 

7 Tsitsa-Tina River Confluence 

(Tsitsa side) 

0.0 

8 Tsitsa-Tina River Confluence 

(Tina side) 

0.4 

9 Tsitsa Bridge near dam site 259.2 
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Ground truthing of the gullies was done during two field trips in June 2014 

and January 2015. Due to the remoteness of the catchment ground truthing 

was limited to areas accessible by road. Roads in the catchment are also 

unpaved, which makes travelling to remote areas difficult. Thus the ground 

truth points taken were limited to gullies that intersected with the roads. 

Figure 5.12 shows the photos taken in the catchment with a GPS camera and 

the gullies that were identified for ground control points are shown in green. 

Results of the gully observation field work can be found in Appendix 1. 

 

  

Figure 5.12: The locations in the upper Tsitsa Catchment, Eastern Cape South 

Africa, where ground truthing was done in June 2014 and January 2015. 
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5.4. Future scenario modelling results  

5.4.1. Land use change results 

Results showed that tillage operations increased the sediment yield from sheet 

and rill erosion for all the land uses tested by an average of 7% from the current 

no-till, land use scenario (Figure 5.13). Corn and generic agriculture showed 

the largest increase in sediment yield with tillage 0.19 t/ha/yr and 0.18 t/ha/yr 

respectively. Under no-till management cabbage will produce the most amount 

of sediment yield with 0.17 t/h/yr. Avocado orchards and sugarcane will cause 

the least amount of sediment yield with 0.14 t/ha/yr.  

The largest increase in sediment yield was with the generic agricultural land 

use and the corn land use, which increased by 13% and 15% respectively with 

tillage operations. Tillage had the smallest effect on sediment yield with sweet 

potato crops causing a 1% increase. A comparison of all crop types under no-till 

showed that sugarcane and avocado orchards resulted in a 5% decrease in 

sediment yield from the current land use scenario. While the other crop types 

showed an average of 5% increase in sediment yield from the current land use 

scenario. 

 

 

Figure 5.13: The average annual sediment yield from sheet and rill erosion in the 

upper Tsitsa Catchment, Eastern Cape, South Africa for the various land types 

tested in SWAT under till and no-till management (AGRC= Generic Agriculture, 

CABG= Cabbage, CORN= Corn, ORCH= Avocado, SPOT= Sweet Potato, 

SUGC= Sugarcane, CURR= Current land use). 
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5.4.2. Climate change results (2015-2100) 

Sediment yield from sheet and rill erosion increases substantially towards 

2100 for most models, with the main exception being the UKMO model (Figure 

5.14). UKMO shows considerably more sediment yield in the first two periods 

(2015-2034 and 2045-2064) and then decreases noticeably between 2045 and 

2100. Future sediment yield for the century can range between 0.3 t/ha/yr and 

0.02 t/ha/yr. 

 

 

Figure 5.14: The sediment yield from sheet and rill erosion in the upper Tsitsa 

Catchment, Eastern Cape, South Africa, modelled in SWAT by each of the 

General Cirulation Models (GCM) for the period 2015-2100. 

 

Average annual rainfall of the six GCMs for the three periods show an increase 

throughout the century (Figure 5.15). The largest rainfall is expected in the 

2045-2064 period which increases by 8% from the previous period. Rainfall 

then decreases in the 2081-2100 period by 2% yet is still 6% higher than in the 

2015-2034 period. 
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Figure 5.15: The average rainfall of the six GCM models in the upper Tsitsa 

Catchment, Eastern Cape, South Africa for each period. 

 

Average sediment yield predicted by the six models for each of the periods is 

shown in Figure 5.16. There is a 42% decrease in sediment yield from sheet 

and rill erosion from the period 2015-2034 to the period 2045-2064. Sediment 

yield then increases by 49% from the period 2045-2064 to the period 2081-2100. 

The trend line also shows an increase in sediment yield throughout the period 

2015-2100.  

 

 

Figure 5.16: The average sediment yield from sheet and rill erosion in the upper 

Tsitsa Catchment, Eastern Cape, South Africa, for the three periods along with 

the current scenario modelled in SWAT. 
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Figure 5.17 shows the average erosivity calculated using the six models for 

each of the three modelled periods. Erosivity decreases from the first to the 

second period by 1% and then increases by 4% in the final period. The overall 

trend shows an increasing erosivity throughout the period 2015-2100, in line 

with the results shown in Figures 5.15 and 5.16.  

 

 

Figure 5.17: The average rainfall erosivity in the upper Tsitsa Catchment, Eastern 

Cape, South Africa for each period, calculated using Fournier’s index for the six 

GCM models. 

 

Figure 5.18 shows the sediment yield from sheet and rill erosion for each model 

for each of the three modelled periods 2015-2035, 2040-2065 and 2081-2100. 

For the 2015-2035 period, the UKMO model predicts much greater sediment 

yield than the other models. MIROC predicts the least sediment yield from 

sheet and rill erosion. Average sediment yield predicted by the models for the 

period was 0.084 t/ha/yr. There is a similar trend in the 2040-2065 period with 

UKMO predicting the greatest sediment yield from sheet and rill erosion and 

MIROC the least. Average sediment yield predicted by the models for the 

period was 0.05 t/ha/yr. CSIRO predicts the most sediment yield from sheet 

and rill erosion while the MIROC model still predicts the least sediment yield 

for the period 2081-2100. The average sediment yield for the period is 0.097 

t/ha/yr. 
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Figure 5.18: The average annual sediment yield from sheet and rill erosion in the 

upper Tsitsa Catchment, Eastern Cape, South Africa, modelled for each GCM in 

SWAT for the period 2015-2100. 

 

Average of the six climate models monthly rainfall for each of the three time 

periods in shown in Figure 5.19. In January and December, the rainfall peaks 

with the minimum rainfall occurring in the winter months April –August. The 

graph shows a noticeable shift in rainfall with rainfall lessening from April in 

2065-2100. 

 

 

Figure 5.19: The average of the six GCM models’ monthly rainfall in the upper 

Tsitsa Catchment, Eastern Cape, South Africa, for the periods 2015-2035 (blue) 

2045-2064 (orange) 2081-2100 (grey). 
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Average sediment yield from sheet and rill erosion for each month for each of 

the three modelled periods is shown in Figure 5.20. The three periods depicted 

in the graph show similar trends with the majority of sediment yield generated 

in January-February with the least in the winter months May-August. 

Sediment yield from sheet and rill erosion in November-December decreases 

between the first two periods by approximately 50% but then increases in the 

final period 2081-2100. 

 

 

Figure 5.20: The average monthly sediment yield in the upper Tsitsa Catchment, 

Eastern Cape, South Africa, modelled in SWAT from the average of the six GCM 

models for the periods 2015-2035 (blue) 2045-2064 (orange) 2081-2100 (grey). 

 

In the short term 2015-2034, the months with the most erosive rainfall are 

September to April. However, from the mid to long term this shifts earlier by 

a month so that the months with the most erosive rainfall becomes August to 

March (Figure 5.21). Erosivity also increases, in the short term peak erosivity 

is approximately 180, while from the medium to long term the erosivity 

increases to 250.  
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Figure 5.21: The average rainfall erosivity in the upper Tsitsa Catchment, Eastern 

Cape, South Africa, calculated using Fournier’s Equation from the average of six 

GCM models for each month for the periods 2015-2035 (blue) 2045-2064 

(orange) 2081-2100 (grey). 

 

Figure 5.22 shows the average annual erosivity for each of the six climate 

models for each period. There is no distinct variation or outlier in any model 

for the period. There does appear to be an increase in erosivity towards 2100.  

 

 

Figure 5.22: The average annual rainfall erosivity in the upper Tsitsa Catchment, 

Eastern Cape, South Africa, for each of the six GCM models for the periods 

2015-2035, 2045-2064, 2081-2100. 
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5.4.2.1. Extreme Event Results  

Figures 5.23- 5.26 show how the average number of extreme events are 

predicted to change over the period 2015-2100. Most noticeable change is the 

increase in the number of extreme events towards 2100 for the 10 mm and 15 

mm events. The models also deviate considerably for 10 mm and 15 mm 

predictions.  

Three of the six models show an increase of extreme events above 15 mm except 

for the CSIRO GFDL and UKMO models. For 10 mm events, five of the six 

models predict an increase in extreme events. UKMO is the only model which 

shows a slight decrease. Finally, for 5 mm events, all the models show a slight 

increase but so slight that it can almost be considered negligible changes.  

 

 

Figure 5.23: The number of projected rainfall events in the upper Tsitsa 

Catchment, Eastern Cape, South Africa, over 5 mm for each of the GCM models 

for the period 2015-2100. 
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Figure 5.24: The number of 5 mm rainfall events in the upper Tsitsa Catchment, 

Eastern Cape, South Africa, for the periods 2015-2035, 2045-2064, 2081-2100 

for the six GCM models. 

 

 

Figure 5.25: The number of 10 mm rainfall events in the upper Tsitsa Catchment, 

Eastern Cape, South Africa, for the periods 2015-2035, 2045-2064, 2081-2100 

for the six GCM models. 
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Figure 5.26: The number of 15 mm rainfall events in the upper Tsitsa Catchment, 

Eastern Cape, South Africa, for the periods 2015-2035, 2045-2064, 2081-2100, 

for the six GCM models. 

 

5.4.2.2. Rainfall Results 

Three of the graphs show an increase in average annual rainfall throughout 

the period CSIRO, GFDL, MPI whereas, GFDL2, MIROC, UKMO graphs show 

a decrease in the rainfall throughout the period. CSIRO predicts the highest 

rainfall over the period, whereas the MIROC model predicts the least rainfall 

over the period. The main observation in Figure 5.27 is that the average annual 

rainfall increases slightly between 2065 and 2100.  
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Figure 5.27: The average annual rainfall projections for the upper Tsitsa 

Catchment, Eastern Cape, South Africa, for the six GCM models from 2015-

2100. 

 

As the models show large variations in projected rainfall and associated 

variables. The range of average annual rainfall predicted by the six GCMs was 

calculated in order to determine best and worst case annual rainfall scenarios. 

It was found that maximum average annual rainfall may exceed 1000 mm 

while minimum annual rainfall could be below 400 mm (Figure 5.28).  
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Figure 5.28: The range of average annual rainfall in the upper Tsitsa Catchment, 

Eastern Cape, South Africa, for the six GCM models over the period 2015-2100. 

The maximum amount is over 1000 mm while the minimum amount is less than 

400 mm. 

 

In order to determine which GCM model most closely represents reality, 

rainfall projections for the six GCMs for the current period, 2007-2012, along 

with the observed rainfall data were compared (Figure 5.29). No model 

predicted closely the current conditions, yet CSIRO, MPI and UKMO were the 

most similar to the observed data showing an increase in rainfall from 2007-

2011. GLFD, GLFD 2 and MIROC did not resemble the observed data very well 

with GLFD showing the least resemblance to the observed data.   
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Figure 5.29: The average annual rainfall in the upper Tsitsa Catchment, Eastern 

Cape, South Africa, predicted by the six GCM models along with the observed 

measurements for the period 2007-2012. 

 

5.5. Summary of results 

Results showed that sediment yield from sheet and rill erosion in the upper 

Tsitsa Catchment between 2007 and 2012 was 0.91 t/ha with an average 

annual sediment yield is being 0.18 t/ha/yr or 3600 t/yr. Gully erosion resulted 

in between 7 t/ha/yr and 14 t/ha/yr of sediment in the same time period. This 

equates to between 140 000 t/yr and 280 000 t/yr of sediment been produced in 

the catchment. When using a delivery ratio of 50% for gully erosion the 

estimated sediment yield resulted in between 70 000 and 140 000 t/yr. Adding 

the sediment derived from sheet, rill and gully erosion results in between 

73 600 t/yr and 143 600 t/yr of sediment been generated in the upper Tsitsa 

Catchment in the 5-year monitoring period.  
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Tillage operations increased the sediment yield from sheet and rill erosion for 

all the land uses tested by an average of 7% from the current no-till, land use 

scenario. Corn and generic agriculture showed the largest increase in sediment 

yield with tillage 0.19 t/ha/yr and 0.18 t/ha/yr respectively. Under no-till 

management cabbage will produce the most amount of sediment yield with 0.17 

t/h/yr. Avocado orchards and sugarcane will cause the least amount of 

sediment yield with 0.14 t/ha/yr.  

Projected climate change shows an 15% increase in sediment yield from 2015-

2100. The increase is not uniform and there is a decrease in sediment yield and 

erosivity from the short term to medium term. Rainfall showed an increase in 

this period. From the medium term scenario to the long term scenario there is 

an increase in sediment yield and erosivity while rainfall decreased. Average 

number of 5 mm, 10 mm and 15 mm events are all projected to increase 

throughout the century.  

The following chapter will discuss the results in more detail.  
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6. Discussion 

6.1. Current scenario results 

6.1.1. Results of SWAT  

Results of the sediment yield from sheet and rill erosion for the period 2007-

2012 show an average annual sediment yield of 0.18 t/ha/yr, which equates to 

3600 t/yr generated in the upper Tsitsa catchment. Le Roux et al. (2015) 

calculated a total yield of 80 000 t/yr for the entire Mzimvubu catchment. These 

results correspond to that of Le Roux et al. (2015) who found an average of 0.1- 

0.18 t/ha/yr for the upper Tsitsa Catchment when modelling it as part of the 

larger Mzimvubu Catchment.  Yesuf et al. (2015) found similar erosion rates of 

between 0.2 to 3.5 t/ha/yr from sheet and rill in their study of a 113 hecatre 

catchment in north-east Ethiopia. The study is similar as both catchments had 

a variety of land use mixed between agriculture and rangeland with rangeland 

been the dominant land use. Both catchments also had a mix of slope terrains.  

It is noticeable that the current land use scenario for sheet and rill erosion, 

2007 and 2008 had low sediment runoff while 2009 and 2011 had a very high 

sediment runoff. When considering the average annual rainfall for this period 

2007 and 2008 had lower rainfall but not by a considerable amount when 

compared to 2009. There was a 20% higher average annual rainfall in 2011 

than the other years in the study period, which is reflected in the sediment 

yield from sheet and rill erosion. It is possible to understand these trends when 

the number of extreme rainfall events is considered. 2011 saw a spike in 

extreme events especially in the number of 5 mm rainfall events whereas the 

number of 5 mm events dropped in the 2007/2008 period. The number of 10 

mm events remained consistent during the first part of the period yet from 

2009 onwards, increased quite noticeably. The number of 20 mm events 

remained even throughout the period 2007-2012 with a slight increase in the 

last few years from 2009.  

When factors other than rainfall are held constant, soil losses due to water 

erosion are directly proportional to the level of rainfall erosivity (Yu & 

Rosewell, 1996). The strong relationship between rainfall events and erosivity 

is due to two main reasons. First, impact of raindrops on the soil surface during 

high-intensity storms events cause an increase in soil particle detachment. 
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Second, higher rainfall intensity events result in higher infiltration rates, 

excess runoff and a greater ability to transport suspended sediment load 

(Mohamadi & Kavian 2015). There is a long standing debate in geomorphology 

about whether extreme intensity yet low frequency rainfall events cause 

greater erosivity and sedimentation than frequent, moderate or low intensity 

rainfall events. Various studies have shown that sediment production in high-

intensive, low frequency events is significantly greater than sediment yield 

produced from moderate–intensive yet more frequent events (Arnaez et al., 

2007; Mohamadi & Kavian 2015). In South Africa, Russow & Garland (2000) 

found that a single flood event in 1987 caused the siltation rates of the 

Hazelmere Dam to more than double the normal rate. Although low frequency, 

extreme events results in greater erosivity, the effects of moderate to low 

intensity frequent rainfall events cannot be overlooked as they do lead to large 

rates of soil erosion (Arnaez et al., 2007). Mohamadi & Kavian, (2015) 

conducted a detailed study of storm characteristics on erosivity and found that 

the relationship between soil loss and rainfall intensities can be characterized 

by two types of functions: (1) in low rainfall intensity, high frequency events a 

linear function is fitted to soil loss-rainfall intensity, and (2) in high rainfall 

intensities, low frequency events non-linear functions are fitted to soil loss-

rainfall intensity (Mohamadi & Kavian 2015). During the 2007-2012 period for 

this study no extreme, low frequency rainfall event was recorded. Thus, the 

term extreme event in used in this thesis relates to the events during which 

greater than average rainfall totals were recorded. These were defined in three 

grades of severity as 5mm, 10 mm and 15 mm events.  Numerous low to 

moderate intensity (5 mm, 10 mm and 15 mm) and frequent rainfall events 

were recorded throughout the study period (405 of 1052 total rainfall events). 

As Mohamadi & Kavian (2015) found these events result in a linear response 

of soil erosion to rainfall intensity. Thus, these 405 recorded events would have 

resulted in greater soil loss in the catchment than the other events. Trends 

between Figure 5.1, 5.2, 5.3 agree with these studies and show that increased 

annual rainfall and increased number of extreme events in 2011 resulted in 

greater sediment yield rates than the other years of the study. When 

considering the results together the cause of sediment yield can be attributed 

to the extreme events and not just average annual rainfall.  
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These results correlate with the observations on the SPOT 5 images where the 

2007 image looked drier with more bare soil exposed and the 2012 image 

showed more vegetation. The 2007 SPOT image was taken in February, which 

is during the summer rainfall season. However, it was a drier than average 

year and thus vegetation cover would have been less than average. The 2012 

SPOT image was acquired in April, which is heading into the dry season, 

however, it was an El Nino year and March 2012 was a wetter than average 

month and the vegetation cover could have been good in April. This is further 

discussed in Section 6.1.2 with the use of NDVI. 

It is clear that the majority of the sediment is generated in January and 

February with less in May and June slowly increasing then into October and 

December. This trend is reflected in the average monthly rainfall for the period 

with the exception of October and December. The increase in rainfall between 

October and December is not as pronounced in the sediment yield results, 

which shows that sediment yield has a slower response to rainfall initially.  

 

6.1.2. Results of OBIA  

Results of the basic accuracy assessment show a good overall accuracy, 

however, a poor user and producer’s accuracy, which can be attributed to a 

number of reasons. As mentioned by Yale's Centre for Earth Observation 

(2003), the accuracy assessment relies on the accuracy of the reference data 

which in this case was the manually digitised gullies. Human error and bias 

are inherent in all tasks such as manually digitising, and as shown in Figure 

5.10 of the results section, the data set used in this study had some errors. 

Another cause for the low user’s and producer’s accuracy can be due to the 

eCognition gullies having a more distinct border around the gullies whereas 

the manually digitised gullies were rougher and included vegetated areas. 

Figure 5.9 of the results section highlights this. eCognition itself did make 

errors (see Figure 5.11) and falsely classified some rock outcrops, sedimented 

areas of the river and tilled land, which was most likely the largest contribution 

to the low user and producer accuracies. The study aimed to create a ruleset 

which was transferable to the entire catchment and with some adjustments 

would be transferable to other images in order to conduct a time series analysis 

and even other catchments. It was, thus important that the ruleset was not 
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location dependent. It was difficult to separate rock outcrops from the gully 

classes as they have similar spectral properties. A similar problem was 

encountered with the tilled land. An up to date land cover map can help correct 

these errors. Rivers in the catchment of this study were badly silted during 

most parts of the year. Some parts of the river, especially around the river 

bends, contain so much sediment the MNDWI index was unable to identify 

these areas as water. As the speed of the water slows down along the inside of 

a bend it will not have enough energy to carry the suspended sediment load, 

which would then settle out creating areas of the river with high sediment 

deposition (Skinner et al., 2004). eCognition falsely classified these areas as 

gullies. eCognition also classified some smaller channels with severe bank 

erosion as gullies. This highlights how it is difficult to distinguish between 

river channels and gullies particularly when the river channel has severe bank 

erosion. Sediment from these channels will, however, ultimately contribute to 

the sediment generated in the catchment and so it is not of great concern.  

 Large differences in the producer’s accuracy between the two years can be 

explained when looking at the SPOT images and the dates they were acquired 

(Figure 6.1). In 2012 it appeared there was more vegetation cover than in 2007 

which had more visible bare soil. This was most likely due to the changes in 

the weather between the two years. The 2007 SPOT image was taken in 

February, which is during the summer rainfall season. However, it was a drier 

than average year and thus vegetation cover would have been less than 

average. The 2012 SPOT 5 image was acquired in April, which is heading into 

the dry season, however, it was an El Nino year and March 2012 was a wetter 

than average month and the vegetation cover could have been more dense in 

April. In order to determine if the vegetation cover overall was less in 2012 

NDVI for both images were calculated. ArcMap automatically calculates the 

average pixel value for each image. For 2012 the average NDVI pixel value was 

0.16 while for 2007 it was 0.24. Higher NDVI values indicate greater vegetation 

cover, thus there was on average a greater vegetation cover in 2007 than 2012. 

This could result in more sheet erosion in 2012 or more vegetation on the gully 

sidewalls and base in 2007 leading to a lower accuracy in 2012. These factors 

most likely contributed to the large difference in the producer’s accuracy 

between 2007 and 2012. 
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Figure 6.1: A section of the pan-sharpened SPOT images of the upper Tsitsa 
Catchment, Eastern Cape, South Africa, for 2007(A) and 2012(B). There appears 

to be more bare soil in the 2007 image. 

 

Results of the Euclidean distance showed 52% of the gullies extracted in 

eCognition fell with a 40 m range of the gullies digitised manually. Although 

quite low, this is still a satisfactory accuracy as  Murtaza and Romshoo (2014) 

cited an accuracy of 48% as satisfactory for their study. The reason for the low 

accuracy is due to the boundaries of the OBIA gullies “hugging” the boundaries 

more closely, the differences in the weather for each image and the method 

used to pan-sharpen the images.  In both 2007 and 2012 eCognition 
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underestimated the number of gullies in the catchment when compared to the 

manually digitised gully map.  

Results of the basic accuracy assessment compared with the results of the 

study conducted by d’Oleire-Oltmanns et al. (2014) which obtained 38% and 

16% for the producer’s and user’s accuracy respectively. They concluded that 

the resolution of the image, as well as the diversity of the gullies over their 

study area, were the causes for the low user’s and producer’s accuracy overall 

yet they were satisfied with their results.  

The object comparison accuracy assessment showed a 48% agreement when 

the OBIA extracted gullies were compared with the manually digitised gullies 

and 16% agreement when the equation was reversed. This can be attributed to 

various reasons, the borders of the manually digitised gullies did not hug the 

boundaries of the gully as closely as those created through OBIA this added a 

greater area around the gullies which increases the area available for 

successful overlap. Another cause could be due to the mis-classification of rock 

outcrops and tilled land by OBIA. The large variation in the results show that 

this accuracy assessment method must be used as a two-fold process: 

comparing the resulted map with the reference map and vice versa in order to 

get a better understanding of the accuracy and where the errors lie.  

According to the results of the manually digitised gullies, erosion increased by 

5.6 km2 over the catchment in the 5-year period. OBIA found a 4 km2 increase 

in gully erosion over the catchment. This indicates that OBIA underestimated 

gully erosion by 28%. It was further calculated that sediment yield from gully 

erosion was between 7 t/ha/yr and 14 t/ha/yr for the OBIA gullies. Le Roux et 

al. (2015) calculated the sediment yield from gully erosion to be 22.4 t/ha/yr in 

the upper Tsitsa Catchment, which is roughly 30% more than OBIA but when 

accounting for the under-estimation of gully surface area these results are 

similar. Overall increase in gully erosion was expected as gully erosion 

intensifies unless remediation actions are taken.  

It is important to note that the actual erosion is greater than the sediment 

yield at the catchment outlet due to the deposition of sediment. Various SDRs 

have been used and suggested in literature as numerous studies have indicated 

that not all eroded sediments that leave the gully end up in the river (Ndoma 

et al., 2009; Hughes & Prosser, 2012; Le Roux et al., 2015). In a study 
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conducted by Ndomba et al. (2009) a SDR of 50% was used for sediment yield 

predictions from gully erosion in a basin in Tanzania. After estimating the 

gully erosion rates (13 600 t/yr), Ndomba et al. (2009) then applied a constant 

delivery ratio of 50% in order to obtain 6 800 t/yr as the sediment yield 

contribution from gully erosion at the catchment outlet. Le Roux et al. (2015) 

found the average SDR for the larger Mzimvubu River Catchment to be nearly 

70%. SDR in the study ranged from 0% for disconnected gullies, to 40% for 

potentially connected gullies to 60% for partially connected gullies, to 100% for 

fully connected gullies. Le Roux et al. (2015) estimated that an overall SDR of 

70% was most likely too high, however, the study modelled the sediment yield 

from gullies up until the sediment reaches a perennial river of which there are 

many in the catchment. From there not all sediment will settle in the dam as 

some may settle out along the channel bars, banks and islands. Therefore, Le 

Roux et al. (2015) theorised that the model gave more of a potential sediment 

yield estimate than an actual yield estimate.  

In this study a delivery ratio of 50% was used following the study of Ndoma et 

al. (2009) and field observations that 50% of gullies were connected and 58% 

were continuous. With a delivery ratio of 50%, it was estimated that gully 

erosion contributes between 70 000- 140 000 t/yr to the sediment yield in the 

upper Tsitsa Catchment. Using a constant SDR of 50% did simplify the results 

and future studies should consider the use of variable SDR rates for gully 

erosion to better model reality. The resulting OBIA map created in this study 

can be further be used to classify gully systems and assign SDRs to gully 

classes.   

Sediment yield from the sheet and rill erosion was calculated to be 3600 t/. This 

was added to the sediment yield contribution from gully erosion calculated 

using OBIA, which was found to be between 140 000 and 280 000 t/yr. After 

using a delivery ratio of 50% for gully erosion, it was found that between 73 600 

t/yr and 143 600 t/yr or 3.68 t/ha/yr – 7.18 t/ha/yr of sediment was generated 

in the upper Tsitsa Catchment. According to Garde (2006), low sediment yield 

catchments are in the order of 0.01 t/ha/yr whereas high yielding catchments 

can be up to 100 t/ha/yr, however, these are mainly in the very large river 

catchments of Asia.  
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Most of the gullies are concentrated in the lower regions of the catchment with 

fewer gullies occurring on higher and steeper slopes and none on the steep 

slopes of the Drakensberg basalt. These results reflect those found by Le Roux 

& Sumner (2012) who also conducted a study on gullies in the larger T35 

catchment, which the upper Tsitsa Catchment forms part of. Kakembo et al. 

(2009) also observed that gullies in the Eastern Cape Province occur 

predominantly on more gentle slopes. The study concluded that the critical 

drainage area on more gentle slopes is higher thus leading to gully initiation. 

Poesen et al. (2003) hypothesised that fewer gullies occur on steeper slopes 

because the critical drainage area needed for gully initiation decreases as the 

slope steepens. Tamene et al. (2006) in a study conducted in Ethiopia also found 

that gully erosion is less prevalent on steeper slopes. They hypothesised that 

the reason for the observation was due to steep areas being less accessible and 

thus less exposed to human and livestock influences. Furthermore, human 

disturbance was hypothesised to have led to gully formation in the Sneeuberg 

area of the Great Karoo (Boardman et al., 2003). Boardman et al. (2003) 

suggested that depth to bedrock and thus soil thickness played a major role in 

limiting gullies. As it was found that major gully systems frequently erode 

through the soil to the bedrock. In the case of the hillslopes the incision was 

limited to 1 to 2 m whereas in the case of valley-bottom gullies, the gully 

incision was limited to 8 m (Boardman et al., 2003). All the aforementioned 

hypotheses are plausible in the upper Tsitsa Catchment.  

It is important to note that perspectives on sediment yield contribution from 

gully erosion have typically been obtained from field scale (<10-1 km2) and are 

confined to local conditions (Grellier et al., 2012; Manjoro et al., 2012; Slimane 

et al., 2015). Few studies model the sediment yield contribution from gully 

erosion at a regional scale. 
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6.2. Limitations of the study  

6.2.1. SWAT Limitations 

The SWAT model was chosen for this study as it has been tested in many 

studies in South Africa and across the world in catchments of various sizes and 

land uses and found to be suitable at modelling sediment yield (Le Roux, 2009). 

SWAT is also easily available and can be used in a GIS interface. Furthermore, 

Le Roux et al. (2015) successfully used the SWAT model in the larger 

Mzimvubu Catchment.  

However, it has been noted that the SWAT model may overestimate soil losses 

particularly in a catchment in the Eastern Cape (Laker, 2004). SWAT is based 

on the MUSLE equation which may overestimate soil loss in some South 

African catchments (Jackson et al., 1986; Laker, 2004). Laker (2004) explains 

that this is due to the model using slope as the dominant factor, whereas in 

South Africa, other factors such as inherent erodibility of the soil and parent 

material may be more dominant. De Vente et al. (2013) also stated that the 

SWAT model only represents a portion of erosion and transport processes 

which occur in a catchment. Thus the model produces the most reliable results 

when the considered processes are in actual fact dominant factors. SWAT also 

fails to model the behavior of duplex soils correctly, where the unstable subsoil 

becomes a major factor, in soil erosion. In the upper Tsitsa Catchment, the 

underlying geology of the Elliot formation gives rise to unstable duplex soils, 

which SWAT could not model correctly and thus most likely underestimated 

erosion rates from these soils. 

It was shown by Haarhoff et al. (1994) that the RUSLE model which, like the 

MUSLE model, is based on the USLE model was able to adequately predict soil 

erosion in soils derived from Drakensberg basalts due to the slope factor been 

dominant (Laker, 2004). Finally, the SWAT model ‘breaks down’ in areas 

where gully erosion is prevalent as it only estimates sheet and rill erosion. 

RUSLE has proven to be more effective in modelling soil loss in South African 

catchments (Laker, 2004). However, the results from studies conducted in the 

Mkabela catchment, Kwa-Zulu Natal, showed that SWAT was able to predict 

with good accuracy most of the peak flow events that occurred during the study 

year, it did over-predict the peak flow rates and under-predicted low flow 
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periods. For the sediment prediction in the Mkabela catchment SWAT 

overestimated small measured values and underestimated large measured 

values (Le Roux et al., 2013). Soil erosion models tend to over-predict sediment 

delivery for small measured values, and under-predict sediment delivery for 

larger measured values. (Le Roux et al., 2013). RUSLE differs from the 

MUSLE model because the rainfall energy factor in the RUSLE was replaced 

with a runoff energy factor for the MUSLE equation. MUSLE also considers 

the runoff volume and peak run of rate (Jackson et al., 1986).  

SWAT is still considered one of the most appropriate models for predicting the 

long-term impacts of land use on sediment yield in large complex watersheds 

with varying soils, land use, and management conditions (Ullrich & Volk, 2009; 

Mottes et al., 2014). 

 

6.2.2. OBIA Limitations 

An interesting predicament arises through this study and other similar 

studies. Shruthi et al. (2012) and d’Oleire-Oltmanns et al. (2014) were able to 

extract gullies with good accuracy on a small scale which was not tested on the 

larger catchment. However, it always proves problematic to upscale the process 

to larger catchments. This is where the main errors arise. In larger catchments, 

there are more variables which could create noise such as housing, road lines, 

rock outcrops, deforested areas.  Slope angle and incident solar radiation also 

change throughout a catchment changing the brightness values or shadows of 

the gullies. Attempting to write a workflow which can identify gullies at such 

a large scale will not be a simple procedure. Yet, this is where the power of 

OBIA is truly beneficial. OBIA was designed in order to reduce the processing 

time of the human interpreter. Manually mapping of gullies over large areas 

is extremely time consuming and the intention of OBIA is to reduce this task 

by creating rulesets applicable to large catchments and even images from 

earlier time periods in order to conduct change detection analysis. The problem 

is where OBIA has greatest accuracy is on small catchment scales where the 

time needed to manually digitise the gullies will be minimal. Where OBIA is 

really needed, to process large areas, the accuracy is greatly reduced. This 

highlights the need for better classification techniques or data. Such can be 

higher resolution bands covering a wider range of wavelengths or the use of 
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technologies mapping 3D features such as LiDAR technology, which will help 

bring in more aspects or properties of the classification feature in order for 

them to be more accurately defined. Using of texture in classification greatly 

helped with OBIA as features with similar colour or shape could be 

distinguished based on texture, which in this study allowed for the separation 

of tilled land from gullies. 

A limitation of the ruleset developed in this study which needs to be considered 

is its failure to classify gullies. The ruleset was created in order to identify and 

map the gullies but it did not go as far as to classify whether the identified 

gullies were connected, disconnected, partially or potentially connected. This 

was outside the scope of the study and would have required more time and 

experimental work to incorporate into the ruleset. The study accounted for the 

lack of classification by applying a constant sediment delivery ratio. The 

ruleset also removed densely vegetated gullies in the first step by using NDVI 

to remove all vegetation. While this did streamline the classification process it 

may lead to inaccurate results as it has been noted that certain densely 

vegetated gullies may become active during extreme rainfall events.  

In some areas of the catchment, manual digitising produced similar errors to 

that of eCognition, for example where digitisers were unable to distinguish 

certain rock outcrops from gullies. It was also noted that the operators digitised 

gullies which were densely vegetated. eCognition was unable to distinguish 

these from normal grasslands. However, this is not necessarily a problem since 

highly vegetated gullies are considered inactive or contribute negligible 

sediment to the catchment outlet as vegetation cover inhibits the dislodging 

and movement of sediment through the catchment (Casanovas & Zaragova, 

1996).  

The availability of a manually digitised gully map allowed for an accuracy 

assessment using not only GCP’s but also the gully location map, which allowed 

for some degree of comparison between techniques.  Using various accuracy 

assessment methods including those taking into account the spatial 

correctness of the digitised gullies also allowed for a comparison of accuracy 

assessment methods, which could help in decision making on types of 

assessments to be done in further studies of this type. The Euclidean distance 

accuracy assessment accounted for errors of pan-sharpening and shift and 
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showed a 52% accuracy. It showed an increased accuracy from that of the basic 

accuracy assessment’s user’s and producer’s accuracy which averaged 32%. It 

also gave an indication of the spatial error in the data set as 52% of the OBIA 

gullies fell within a 40 m radius of a manually digitised gully. The other 

accuracy assessments do not give an indication of spatial accuracy. The total 

area of overlap assessment gave an indication of the types of errors 

encountered in the OBIA results. The main causes of error in the OBIA maps 

were the underestimation of gullies in the catchment. This was caused by 

errors in the manual interpretation to which the OBIA map was compared and 

the failure of OBIA to identify densely vegetated gullies.  

Casanovas and Zaragova (1996) concluded that vegetated gullies are inactive 

and thus do not contribute to the sediment yield in the catchment. eCognition 

did not identify vegetated gullies, due to their elimination using NDVI, 

however, the manual interpreter did identify them which may cause an over-

estimation in gully derived sediment yield. eCognition also struggled to 

identify smaller disconnected gullies and was better able to identify larger 

gully networks, which may not be such a serious problem if the gully class 

system used by Le Roux et al. (2015) is applied to the classified gullies. Le Roux 

et al. (2015) stated that small discontinuous gullies contribute negligible 

amounts of sediment to the catchment outlet because they are not directly 

connected to the river network system. Sediment produced from them will 

undergo more complex processes of deposition and entrapment before reaching 

the river. It was highlighted by Le Roux et al. (2015) that the most important 

gullies in terms of sediment output were active gullies connected to the 

perennial river system. Thus the results of the eCognition classification may 

be more accurate in terms of gully activity and which gullies are contributing 

to the overall sediment output. 
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6.3. Improvements  

6.3.1. Improvements to the SWAT model 

SWAT has proven to overestimate soil erosion from sheet and rill in South 

African catchments by up to 1000% (Laker, 2004). Thus using a different 

model, one which has been developed for South Africa such as SLEMSA or the 

ACRU model may give more accurate results.  

When modelling the tillage operations in the upper Tsitsa Catchment it was 

assumed that either all agricultural areas were under tillage or none were 

under tillage. In reality, various farmers use different methods and if tilling 

they use different operations on different farms or crops so by assuming a 

constant tillage operation across the catchment the exact influence of tillage 

on the sediment yield from sheet and rill erosion is exaggerated. However, the 

modelling that was used gives a relative idea of how tillage operations affect 

the sediment yield from sheet and rill erosion in the catchment and can 

facilitate decision makers as whether to allow tilling in the catchment once the 

dam has been built.  

When modelling the effects of climate change on the soil erosion the study did 

not account for how climate change will affect land use or management 

strategies. It simply calculated the relative change in sediment yield from sheet 

and rill erosion from purely climate scenarios. It has been proven that land use 

and management practices have the most drastic effect on soil erosion and 

sediment yield from sheet and rill erosion (Mullan et al., 2012). Future studies 

should model how land use and management may change and what the 

influences of these changes will be on the sediment generated in the catchment.  

The Satellite Radar Topography Mission (SRTM) DEM with a resolution of 30 

m was used as the topography input in SWAT. Stellenbosch University has 

developed a DEM specific for South Africa with a 5 m resolution (Stellenbosch 

University, 2013). This finer resolution DEM may allow for better portioning 

of the catchment in HRU’s and thus more accurate sediment yield models.   

The upper Tsitsa catchment is a rural catchment and although there have been 

other studies conducted in the catchment the data area still limited. Weather 

data, for example, are generated from one station. Weather in the catchment 

varies greatly from the high escarpment to the lower plains at the catchment 
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outlet (Agrometeorology Staff, 1984-2008). Thus more weather stations 

throughout the catchment can give a better model of the amount, intensity and 

frequency of rainfall and how it varies spatially as this is a dominating factor 

in soil erosion, erosivity and erosion spatial variability (Nel & Sumner, 2007).  

Soil data are also limited and there are no values on the bulk density of the 

soils in the catchment thus it was assumed that the soils had a uniform bulk 

density of 1.6. Limited field samples showed an average bulk density of 1.4 

which is slightly lower than that used in the model. This generalisation is a 

downfall of the SWAT model set up for this study as bulk density is an 

important factor when calculation the sediment yield.  SWAT is also very 

sensitive to the accuracy of soil and land use input data and better data will 

result in more accurate results (Romanowicz et al., 2005) Bulk density is also 

extremely variable not just across soil types but also land use and management 

types. SWAT uses bulk density to determine the mass of sediment that will be 

eroded (Nietsch et al., 2011), using a single bulk density value for the 

catchment will thus affect the results as it, is not a proper representation of 

reality (Alletto & Coquet, 2009).  

 

6.3.2. Improvements for OBIA 

SPOT 5 images have a medium spatial resolution, which allows for the 

classification of gullies down to 2.5 m which was extremely useful.  However, 

the SPOT 5 image is restricted to four bands. This limited the band 

combinations which could be made. Indices exist for the classification of 

features such as vegetation, water and bare soil. Although SPOT 5 has the 

bands required for water and vegetation indices it lacks a blue band which is 

required by the bare soil index (BI) (Equation 6.1). Another soil index called 

the Normalized Difference Soil Index (NDSI) created for Landsat is shown in 

Equation 6.2. QuickBird satellite imagery will ultimately be the best images to 

use to extract gullies using OBIA as QuickBird has a panchromatic resolution 

of 61 cm and a multispectral resolution of 2.4 m for the blue, green, red, NIR 

and SWIR bands (Satellite Imaging Corporation, 2014). Thus a bare soil index 

could be created from QuickBird images, which may facilitate the classification 

of gullies. It may help in distinguishing between rock outcrops and bare soil. 

The NDSI is, unfortunately, unique to Landsat Thematic Mapper 
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Equation 6.1.   𝐵𝐼 =  
(𝑆𝑊𝐼𝑅+𝑅𝐸𝐷)−(𝑁𝐼𝑅+𝐵𝐿𝑈𝐸)

(𝑆𝑊𝐼𝑅+𝑅𝐸𝐷)+(𝑁𝐼𝑅+𝐵𝐿𝑈𝐸)
 

 

Equation 6.2.    𝑁𝐷𝑆𝐼 =
𝐵𝑎𝑛𝑑 5 − 𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 5 + 𝐵𝑎𝑛𝑑 4
 

 

 

Landsat was not considered as feasible to extract gullies as the data has a 

resolution of 30 m, which is relatively poor when compared with that of SPOT 

5. It should be noted that there has been some success of identifying road 

networks using Landsat data. This is significant as roads are longer than 30 m 

but not usually wider than 30 m (Boggess, 1993), which means it may be 

possible to extract larger gully networks using Landsat data. NDVI and 

MNDWI indices gave immense value to the classification particularly NDVI. 

This allows for this method to be repeated on other satellite images such as 

Geo-eye, Ikonos or SPOT 6 and 7 with much higher resolution than SPOT 5, 

which may give results that are more accurate.  

LiDAR techniques have been used quite extensively and with good accuracy in 

numerous studies (Chen et al., 2009; Eustace et al., 2009; Johansen et al., 2010; 

Höfle et al., 2013). LiDAR uses light in the form of a pulsed laser to measure 

variable distances to the Earth. These light pulses, combined with other data 

recorded by the airborne system, generate precise, three-dimensional 

information about the shape of the Earth and its surface characteristics 

(National Ocean and Atmospheric Administration, 2015). LiDAR is able to 

measure gully depths and volumes this will be useful in a study such as this 

one when trying to determine sediment volume from gullies in a catchment. As 

gullies are usually defined by their depth, LiDAR data will greatly facilitate in 

the distinction between gullies and other forms of erosion such as sheet and 

rill. It may also help facilitate the separation of roads from gullies, as roads are 

a surface feature as well as rocks from gullies as rocks are more convex 

structures whiles gullies display concavity.  

The assumption that gullies will erode down to bedrock before expanding 

laterally was used to calculate gully volumes and the resultant sediment yield. 

It is noted that this assumption disregards other gully forming mechanisms 
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such as piping this is shortcoming of the sediment yield calculations. Possible 

methods to improve this assumption would be to use 3D data such as LiDAR 

to determine actual gully depths and volumes in the catchment.  

 

6.4. Results of the future scenario models 

6.4.1. Land use impacts on soil erosion  

DAFF has identified several crops which can be cultivated in the upper Tsitsa 

Catchment. Tillage operations may also be introduced in the future. When 

studying the effects of land use change or land use management change the 

effects of tillage operations are noticeable. Tillage resulted in more sediment 

yield from sheet and rill erosion for all land uses. Increases ranged from 3% 

per annum for sweet potato to 19% per annum for the generic agriculture land 

use. While the land use with the least effects on sediment yield from sheet and 

rill erosion is sugarcane and avocado orchards. Tilled corn and generic 

agriculture fields produced the highest sediment yields rates.  

Tillage operations redistribute plant residue, nutrients, pesticides and bacteria 

through the soil profile. They make the soils more prone to erosion due to the 

destruction of the soil structure and the removal of organic matter, which helps 

consolidate the soil and give it structure (Nietsch et al., 2005). No-till 

agriculture limits the amount of soil disturbance to only necessary activities 

such as the application of nutrients, the conditioning of crop residue and 

planting crops. By not tilling the fields there is an improvement in soil organic 

matter content, which contributes to enhanced soil structure and resilience to 

erosion. It also reduces the CO2 and particulate losses in the soil. No-till 

activities have proven to reduce sheet and rill erosion from water as well as 

wind erosion (Waidler et al., 2011). 

Le Roux (2005) also determined that soil erosion under sugarcane crops is less 

than under other vegetables such as cabbage. Reasons for the observation was 

that soils under sugarcane are not disturbed during harvest and the root 

system is left intact, which helps bind the soil making it less prone to 

disaggregation. Sugarcane crops are not tilled regularly this results in less 

erosion as the soil is undisturbed and plant residues are left intact, which also 
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helps in binding the soil. The second factor was that sugarcane grows faster 

and within two months of planting it provides a dense plant cover, which 

protects the soil from rain splash erosion (Le Roux, 2005).  

Cabbage has the worst effect on sediment generation from sheet and rill 

erosion in the catchment under current conditions of no-till. This is because 

cabbage plants are small and do not provide good canopy cover to protect the 

soil from soil erosion. Also when harvesting cabbages, the entire plant is 

removed for the next growing season, which does not allow for the root system 

to provide adequate support in the soil. Corn crops also lead to increased soil 

erosion compared to some other crops because the corn crop takes long once 

planted to grow to an adequate size to protect the soil from erosion (Mullan et 

al., 2012). Other causes of increased rates of soil erosion from corn crops can be 

attributed to dripping water from the tips of corn leaves, which often results in 

concentrated flow paths. Post-harvest over winter leaves the soil bare and 

exposed to the first rains of spring. Finally, corn crops provide less than 80% 

surface cover even at maturity, exposing the soil to rain splash (Cooke & 

Mancini, 2015). Corn cultivation in the upper Tsitsa Catchment can lead to 

adverse soil erosion rates and will thus need adequate planning and erosion 

control measures. 

Avocado orchards also showed less sediment runoff from sheet and rill erosion 

than other crops such as sweet potato and cabbage. This can be attributed to 

three factors. First, the good plant cover supplied by the tree leaves. Second, 

the good surface cover provided by plant residue. Finally, orchards do not need 

tilling and the plants remained undisturbed for many years which allows the 

soils to become stable. However, it is important to note that tree canopy cover 

does not always protect soils from erosion and there is a certain critical height 

(> 3 m) after which the rain droplets falling will have a higher velocity than 

non-intercepted rain droplets (Wieschmeier & Smith, 1978). SWAT does not 

account for this and assumes tree canopy will provide good soil protection. 

It was expected that tillage operations would negatively affect the sediment 

generation from sheet and rill erosion. For all the crops tested the sediment 

yield increased when tillage operations were implemented, this was similar to 

the results found by Ullrich and Volk (2009). Tillage operations disturb the soil 

and often break down the soil structure, which leaves it susceptible to erosion. 
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According to Ullrich and Volk (2009) the reduction of soil tillage intensity 

positively affects other soil properties, such as aggregate stability, macro-

porosity and saturated hydraulic conductivity; and consequently increases 

infiltration rates, which reduce surface runoff, nutrient loss and soil erosion. It 

is important to take till operations and their effects into consideration as some 

crops respond differently to tillage, for example, corn and generic agriculture 

showed a much larger increase in sediment runoff with the introduction of 

tillage whereas the effects of tillage on sweet potato and cabbage were less 

pronounced.  It is, however, clear that conventional tillage practices need to be 

replaced by less intensive tillage practices in order to minimize soil erosion and 

sediment yield (Ullrich & Volk, 2009).  

Possible land use change in the upper Tsitsa catchment with regards to the 

selected crops under no-till will not have a particularly negative effect on 

sediment yield from sheet and rill erosion. The most influential effect on 

sediment yield from sheet and rill erosion would be to convert the current land 

use to tilled generic agriculture or corn, which will result in an increased 

sediment yield of up to 26.7%. If no-till management practices are exercised, 

then the most significant increase in sediment yield will come from planting 

cabbage, which will cause a 6.7% increase annually. Converting the agriculture 

in the catchment to sugarcane or orchards will have a positive effect on 

sediment yield decreasing the annual amount by 6.7%.  

Alternative land management practices such as conservation or no-till, contour 

farming, terraces, and buffer strips are increasingly used to reduce nonpoint 

source and water pollution resulting from agricultural activities. Models are 

useful tools to investigate effects of such management practice alternatives on 

the watershed level. In Germany, the implementation of alternative tillage 

systems is increasingly supported by agro-environmental programs. In the 

German State of Saxony, for instance, conservation tillage and mulch seeding 

on arable land have increased from <1% to about 27% during 1994–2004 with 

support from the Saxonian Program for Environmental Agriculture (Ullrich & 

Volk, 2009). The ARC-ISCW is running numerous projects in the Tsitsa 

Catchment focusing on the use of conservation agriculture. 
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6.4.2. Climate impacts on soil erosion 

The average of the six climate models showed similar trends, with sediment 

yield and erosivity decreasing in the medium term and then increasing from 

the mid to long term. Rainfall showed an increase in the medium term with a 

decrease going into the long term. The number of 10 mm and 15 mm events 

predicted by the models were shown to increase throughout the century, the 

erosivity also increases. Higher sediment yield rates towards 2100 can be 

explained that although less rainfall is predicted, the intensity of the events 

will increase causing more runoff. This finding is supported by Engelbrecht et 

al. (2011) who found that rainfall intensities will increase with predicted 

climate change. Engelbrecht et al. (2012) found that closed-low weather 

systems which are responsible for much of South Africa’s rainfall are predicted 

to decrease with projected climate change. This will bring about a decline in 

average annual rainfall over much of South Africa. A decrease in closed-low 

systems can also bring about a reduction in extreme rainfall events. However, 

regardless of the general decrease in projected closed-low systems, the 

associated extreme events are in general projected to increase over large parts 

of southern Africa. An increase in intense convective rainfall events as well as 

more frequent formations of tropical-temperate cloud bands over southern 

Africa was cited as the main causes of increased extreme rainfall events going 

into 2100 (Engelbrecht et al., 2009; Engelbrecht et al., 2012).   

Not one scenario fits all, the various models showed different changes in 

sediment yield from sheet and rill erosion through the century. Most 

noteworthy is the prediction made by the UKMO model, which shows a large 

drop in sediment yield between the middle and end of the century. These 

results, however, are similar to the average annual rainfall for the UKMO 

model for that period.  When looking at the number of extreme events the 

UKMO model showed a marked decrease in 5 mm rainfall events during up 

until 2065 when it increases again slightly.  The decrease in rainfall events 

could be the main reason for the sudden decrease in sediment yield with a 

slight increase towards 2100. SWAT does not simulate single events so it is 

hard to incorporate these processes, particularly since the catchment is 

characterised by thunderstorms where a large amount rain falls in a short 

period of time.  
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Variations between the different GCMs was expected since climate models are 

not perfect and the theoretical understanding of climate processes are still 

incomplete (Reichler & Kim, 2008). The objective of this study was to determine 

the impacts of climate change on soil erosion in the upper Tsitsa Catchment 

and assessing the variations between the six GCMs was outside the scope of 

the study. Often when developing climate models assumptions are made and 

it is up to the institute constructing them to decide which climate parametres 

have greater weightings. The assumptions introduce biases into the 

simulations, which are often difficult to correct (Reichler & Kim, 2008). Causes 

of variation between models are due to three broad uncertainties namely model 

uncertainty, prediction uncertainty and scenario uncertainty. Model internal 

variability, which show a large range in this quantity, is another major cause 

of discrepancy between the various GCMs. Hawkins et al. (2009) found that 

internal variability and model uncertainty is the dominant contribution to 

variability for predictions of a few decades (not more than 40 years) such as in 

the case of the 2015-2035 projections used in this study. The internal 

variability becomes increasingly important at shorter time and spatial scales, 

however, for decadal time scales and regional spatial scales, model uncertainty 

becomes of greater importance than internal variability. For predictions of 

more than 40 years in advance, such as in the medium and long term 

projections of this study, model uncertainty is the dominant contribution and 

can account for up to 70% of the total variance. Finally, for predictions, of 90 

years and more ahead, scenario uncertainty becomes the dominant factor 

(Hawkins et al., 2009). 

Crosbie et al. (2011) stated that it is important to use multiple GCMs in a study 

involving the effects of climate change. The use of multiple models helps 

account for the large potential uncertainties in future estimates of soil erosion 

and sediment yield. This study used six GCMs which gave a major advantage 

over the use of a single GCM in terms of being able to quantify the uncertainty 

in soil erosion projections under a future climate. The six different models 

produced a range of estimates which can better facilitate policy and 

management strategies. Variations between the six GCMs highlight the 

importance of flexible management responses in order to account for the 

uncertainty in sediment yield forecasts (Crosbie et al., 2012).  
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Seasonal or monthly sediment yield from sheet and rill erosion did not change 

throughout the modelled period 2015-2100. Sediment yield in January -

February remained the highest with lowest falling in the winter months May-

August.  However, there was a shift in the timing of the erosive rainfall. 

Erosive rainfall shifts approximately one month earlier, from September to 

August, towards the end of the century; the rainfall also follows this shift. The 

intensity of erosive rainfall also increases throughout the contrary. This can be 

attributed to the increase in 10 mm and 15 mm events predicted from 2105-

2100. Engelbrecht et al. (2011) also found an increase in rainfall intensity 

throughout the century. Such a result is useful to land and dam managers as 

well as farmers as their practices may need to change to accommodate such 

shifts in rainfall and sediment yield. If the dam managers plan to apply 

techniques such as annual sluicing to control sediment yield in the potential 

dam, it is important for them to account for shifts in runoff in order to keep the 

sluicing methods effective as the climate changes.  

GFDL, MPI and CSIRO all show similar trends where sediment yield decreases 

until 2064 and then increases towards 2100. These models trends follow the 

trends of the average rainfall graph.  The trends are also reflected in the 

number of extreme events for the CSIRO and MPI models yet the trend is not 

so closely related in the GFDL model. GFDL 2 and MIROC models produced 

the most unexpected results. GFDL 2 shows a gradual decrease in sediment 

yield from sheet and rill erosion from 2015-2100 yet the average annual rainfall 

increases during this period. It also shows an increase in 5 mm, 10 mm and 15 

mm events. MIROC is similarly surprising, the sediment yield from sheet and 

rill erosion decreases slightly to 2065 and then increases slightly to 2100. 

Rainfall predicted by this model during this period shows a decrease in average 

annual rainfall.  

The main conclusion which can be drawn is that sediment yield from sheet and 

rill erosion will most likely increase from 2065 onwards. Five of the six models 

show an increase in sediment yield from 2065. It is only the GFDL 2 model 

which predicts a decrease in sediment yield. This increase can be most likely 

be attributed to an increase in extreme events. According to some models an 

increase in rainfall may also be the cause for increased sediment yield.  In the 

GFDL simulation, the sediment yield decreases while average annual rainfall 

increases this could be explained when looking at the effects of rainfall on 
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biomass. In the GFDL, as with the other scenarios, the increased rainfall and 

carbon dioxide concentrations in the atmosphere will result in better biomass 

cover and denser vegetation canopies; this will minimise or prevent the effects 

of increased rainfall on sediment yield (Mullan et al., 2012). Unlike the other 

scenarios, the GFDL 2 scenario may not have enough rainfall to counteract the 

beneficial effects of increased vegetation on soil erosion.  

One of the reasons for the decrease in sediment yield from sheet and rill erosion 

observed in some of the models could be due to the increased canopy cover. 

With higher carbon dioxide concentrations as well as more rainfall and higher 

temperatures the plants may have better growing conditions and for longer 

periods during the year. This will result in greater canopy cover and protect 

the soil.  

It is acknowledged that this study is a simplification of projected climate 

change. Land use, land cover change and land management patterns are 

shaped by the interaction of economic, environmental, social, political, and 

technological forces on both the local and global scale, with the most important 

driver of land use change been the policies (Mullan et al., 2012). However, this 

study aimed to determine the isolated impacts of climate on soil erosion and 

did not include land management changes in the model. Effects of changing 

climate and land use on gully erosion and sediment yield derived therefrom 

was also not calculated in this study. This was due to SWAT being unable to 

model gully erosion and the lack of available models able to model gully 

erosion. Developing a hydrological model which can model gully erosion was 

outside the scope of this thesis and is highly recommended for future research. 

Impacts of land use change, as well as climate change on sheet and rill erosion 

in the catchment, was highlighted in this study. Trends showed an increase in 

sheet and rill erosion between 2015 and 2100 for the upper Tsitsa Catchment 

which is concerning. It is thus recommended that further studies be conducted 

on other important water resource areas in South Africa in order to effectively 

plan for future climate change.  
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6.5. Soil erosion in the catchment 

The upper Tsitsa River catchment is highly susceptible to soil erosion. Studies 

conducted by van Tol et al. (2014) and Le Roux et al. (2015) have shown 

accelerated rates of soil erosion in the catchment, attributed to the soils and 

steep slopes higher up in the catchment. The primary contribution to sediment 

yield in the catchment is from gully erosion. Over 2200 gullies were mapped in 

the catchment, which cover a total surface area of 17 km2.  Gully erosion 

produced between 7 and 14 tons of sediment a year for the duration of this 

study. This is roughly 70 times more sediment than that produced through 

sheet and rill erosion. The study showed similar results to previous studies by 

van Tol et al. (2014) and Le Roux et al. (2015) with increased soil erosion rates, 

particularly from gully erosion. Current land use in the catchment was found 

to be one of the most optimal land uses to minimize soil erosion from sheet and 

rill erosion. However, the use of the majority of the land for unmanaged grazing 

accelerates gully erosion, which is the primary cause of sediment yield. Thus 

changing the land use to more commercial farming particularly sugarcane or 

avocado orchards may be the best land use in order to minimize future gully 

erosion and sediment yield. Changing the crop types to corn or cabbage will 

also increase sediment yield and negativity impact any dam or water resource 

development.  

Effects of climate change in the catchment are extremely variable with some 

models showing a steep increase in sediment yield and other models showing 

a decrease in sediment yield. The land management practices which will be 

implemented due to a changing climate will most likely affect sediment yield 

to a much larger extent than the effects of climate change itself (Mullan et al., 

2012). This is mainly because the Tsitsa Catchment falls within the coastal 

belt zone of South Africa, wedged between the coast and the Drakensberg, 

where the impacts of climate change are buffered so there are minimal changes 

in climate compared to other areas of South Africa (Engelbrecht et al., 2015). 

CEPF Ecosystem Profile showed that the Mzimvubu Corridor was an area with 

greater resilience to climate change than other regions in South Africa 

(Environmental and Rural Solutions, 2011). As average annual rainfall and 

temperatures are not predicted to increase by as large amounts as predicted in 

other regions of South Africa such as the Northern Cape and Limpopo (Figure 
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6.2 and Figure 6.3).  A study such as this one conducted in another catchment 

in the North or interior of South Africa would most likely show changes that 

are more significant for soil erosion.  

 

 

Figure 6.2: The average annual rainfall over South Africa as a median of the 

six GCM projections for 2015, 2030, 2060 and 2090 (reproduced with 

permission from Weepener et al., 2014). 

 

 

Figure 6.3: The average maximum temperature over South Africa as a median of 

the six GCM projections for 2015, 2030, 2060 and 2090 (reproduced with 

permission from Weepener et al., 2014). 
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In the upper Tsitsa catchment, the dominant type of soil erosion is that caused 

by water erosion and not wind erosion. However, sediment deposited by wind 

may still be a significant contributor to the overall sediment yield in the 

catchment. This study did not account for wind erosion and it may be a 

limitation to understanding the overall dynamics of soil erosion and sediment 

yield in the upper Tsitsa River Catchment. 
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7. Conclusion 

7.1. Conclusion 

Results of both the gully monitoring and sheet and rill erosion showed high 

sediment yield rates in the upper Tsitsa Catchment ranging between 140 000 

t/yr and 280 000 t/yr. The majority of the sediment is derived from gully 

erosion, with approximately 70 times more sediment been produced by gullies 

than sheet and rill erosion. Sheet and rill erosion produced 0.18 t/ha/yr of 

sediment while gully erosion resulted in 7 to 14 t/ha/yr. It was found that gully 

erosion increased by 4 km2 during the five-year modelling period. These results 

are similar to those found by Le Roux et al., (2015) who found a 5.6 km2  

increase in gully surface area. The main cause of gully erosion can be attributed 

to inadequate land management with free grazing of livestock, poor soils in the 

catchment and the presence of steep slopes in the higher reaches of the 

catchment creating a critical drainage area leading to gullying (Poesen et al., 

2003; van Tol et al., 2014). 

In order to map the gullies, a ruleset was developed in eCognition to facilitate 

OBIA. The ruleset was based on SPOT 5 images from 2007 and 2012 in order 

to determine lateral gully extent. Spectral, textural and geographical 

properties were used to distinguish gullies in the images. The accuracy of the 

ruleset was then calculated using several accuracy assessment techniques and 

a manually digitised gully location map. It was found that the accuracy ranged 

from 16% to 99%. Reasons for the variation in accuracies can be attributed to 

the technique used to test the accuracy, the boundaries drawn by each 

technique and false classification (Yale's Centre for Earth Observation, 2003; 

Lilliesand et al., 2004; d’Oleire-Oltmanns et al., 2014). It was found that OBIA 

falsely classified some rock outcrops, sediment in the river and tilled land as 

gullies. However, OBIA was able to distinguish and map gullies faster and 

more objectively than manual digitising.  

Results of the OBIA-created gully map and the methodology used in this study, 

will be beneficial for the improved assessment of gully-derived sediment yield. 

These maps will be especially useful for modelling gully derived sediment yield 

under changing climate change and land use scenarios. By creating a 

methodology through which an accurate and objective gully location or gully 
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expansion map can be created, sediment yield results derived therefrom can be 

estimated with acceptable accuracy and used for planning and monitoring of 

important catchments. 

The use of SWAT to conduct scenario analysis on the catchment proved to be 

very useful and effortless once the model had been set up. This allowed for 

multiple scenarios to be tested without much alteration in the model. The 

model was able to determine sediment yield using climate predictions from six 

climate models as well as predicted land use change. 

Results from the scenario analysis conducted in SWAT showed that the current 

land use scenario was one of the best scenarios along with sugarcane and 

avocado orchards for minimal sheet and rill erosion. Most other agricultural 

developments will cause increased soil erosion unless measures are taken to 

mitigate the causes. The most soil erosion will be caused from cultivating maize 

under either till or no-till management in the catchment. Mullan et al., (2012) 

found similar results as maize takes a while to grow big enough to provide 

adequate soil cover and protection. Cabbage also produced high amounts of 

sediment yield under no-till management. It is recommended that conservation 

agriculture techniques are used in the catchment as tillage will increase soil 

erosion and sediment yield. These results compare favourably with those found 

by Ullrich and Volk (2009).  

These results will facilitate both DAFF and DWS in decision making and 

catchment management particularly with regards to increasing agriculture in 

the upper Tsitsa Catchment. Results showed that if a dam is to be built the 

DWS will need to rehabilitate the exsisting gullies in the catchment which will 

increase the expenses of the construction budget. Furthermore, continuous 

monitoring of the catchment and the dam will need to be under taken by the 

DWS to ensure the dam is not silting up too rapidly. The results also showed 

that certain crops will have a greater impact on siltation which can help DAFF 

decide the best crops to be cultivated if they wish to reduce sediment yield as 

well as develop agriculture.  

The impact of climate change had variable effects on sediment yield from sheet 

and rill erosion, however, the majority of the models predicted an overall 

increase in sediment yield while one model showed a slight decrease from 2015-

2100. This was attributed to two main causes, first due to an increase in 
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rainfall and second, an increase in extreme rainfall events (Engelbrecht & van 

Garderen, 2013). Erosivity of rainfall events also increased during the period 

2015-2100. These results are important for any long term plans in the upper 

Tsitsa Catchment as plans should account for and mitigate against increased 

soil erosion. If sediment yield increases throughout the century the dam’s 

lifespan will be reduced unless mitigation measures are put in place.  

Future studies should determine the land use or land management changes 

which may be brought about by climate change and how this will affect 

sediment yield in the catchment. The study also brought up an interesting 

question of how predicted climate change will affect catchments in South Africa 

and this should be explored in more detail on other catchments which may be 

more susceptible to climate change impacts. Wind patterns are also predicted 

to change with changing climate although wind erosion currently accounts for 

minimal sediment yield this may not be the case going into 2100, thus future 

studies should determine the effects of wind on sediment yield and how it may 

affect future water resource developments or conservation efforts. The effect of 

changing climate and land use on gully erosion and sediment yield derived 

therefrom was also not calculated in this study. This was due SWAT been 

unable to model gully erosion and the lack of available models able to model 

gully erosion. Soil erosion under a changing climate is a large research gap, 

especially for gully erosion. In order to estimate the effects of climate and land 

use change on gully erosion, one will need a gully erosion model that is coupled 

with a hydrological component, applicable at a large catchment scale. Such a 

model does not exist. Thus modelling the effects of climate and land use change 

on gully erosion was outside the scope of this study and it is recommended for 

future research. 

Future studies should look at the potential use of the OBIA methodology 

developed in this study on other catchments in South Africa or to create a gully 

monitoring algorithm which can be used to determine how gullies are changing 

over the short term. Furthermore, the ruleset can be further developed to allow 

for the classification of gullies. It has been noted that some vegetated gullies 

may become active during extreme rainfall events and future research can aim 

to incorporate vegetated gully systems in an identification and classification 

ruleset. It will also be interesting to study the use of LiDAR technology to 

improve the results of OBIA as well as the use of other satellite data for a 
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greater spectral resolution. Another recommendation for future studies is the 

effects of conservation agriculture on sediment yield and its feasibility in the 

catchment as well as the better land management practices to determine 

grazing rotations and how to lower sediment yield.  

It is recommended that soil erosion prevention methods are put in place in the 

upper Tsitsa catchment. The methods most suitable to the catchment will be 

terracing along the hillslopes, intercropping or the use of vegetative strips 

along the river courses and grazing management practices. However, due to 

the extreme soil erosion in the catchment, it is also recommended that the 

potential dam has sediment traps or smaller dams upstream to collect and 

drain sediment in order to optimise the dam’s lifespan.  

This study highlighted the importance of incorporating sediment yield from 

gullies in erosion studies. In the upper Tsitsa Catchment gullies contribute 70 

times more sediment than sheet and rill. Thus using hydrological models which 

do not account for gully erosion can severely underestimate soil erosion. This 

study also highlighted the impacts of land use change as well as climate change 

on sheet and rill erosion in the catchment. 

 The primary aim of this study was to determine the sediment yield in the 

upper Tsitsa River Catchment, South Africa under current and future 

scenarios. There were two main themes throughout the thesis the one focusing 

on the identification and classification of gully erosion and the other focusing 

on sheet and rill aspects of erosion under the current conditions as well as 

changing climate and land use. The two themes coincided as both aimed to 

determine the sediment yield which would be generated in the catchment 

under current conditions. Conducting scenario analysis helped in 

understanding how land use and climate change may affect the sheet and rill 

aspects of erosion, which could be useful when planning future developments 

in the upper Tsitsa Catchment.  Perspectives on sediment yield contribution 

from gully erosion have typically been obtained from field scale (<10-1 km2) and 

are confined to local conditions. Few studies model the sediment yield 

contribution from gully erosion at a regional scale. Furthermore, the use of 

eCognition for gully classification had been rarely explored in the past and this 

study used the opportunity to determine whether OBIA was able to identify 

gullies at the catchment scale and the accuracy of its results.  
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The upper Tsitsa River Catchment is highly susceptible to soil erosion in 

particular gully erosion, which is worsening every year. It is imperative that 

better land management practices are adopted or soil erosion mediation 

measures are taken before any water resource project is pursued in the 

catchment. Extreme rates of sediment yield in the catchment will result in any 

dam project becoming economically unfeasible within a few years of operation 

under current land use conditions. 

 

7.2. Recommendations for dam management 

Results obtained in this study can assist dam designers and dam management 

projects. Due to the high rates of soil erosion in the catchment, it is imperative 

that the dam is able to withstand large amounts of sediment runoff while 

maintaining adequate storage capacity. Dam management strategies are also 

very important in order to minimise the effect of sediment runoff on the dam 

lifespan. Common dam management strategies allow dams to fill with 

sediment slowly, which means that the benefits of storage are only felt over a 

limited period of time (Plamieri et al., 2001). In the case of a dam in the upper 

Tsitsa catchment this type of management will be disastrous as the sediment 

yield generated in the catchment is extremely high. The limited period of time 

will be short lived and the economic benefits of the dam may not be felt before 

it has become unfeasible. 

Dam construction considerations include the building of sediment traps or 

settling facilities or the construction of an underwater dike or massive tunnels, 

which allow for annual sluicing. Sediment traps and settling facilities were 

tested in South Africa and recommended by Ferreira and Waygood (2009). 

These measures, however, are expensive and their benefits should be weighed 

against the cost of implementing them (Plamieri et al., 2001).  

Although the dam design can have a considerable effect on the lifespan of the 

dam, preventing upstream soil erosion has a substantial benefit on the lifespan 

of a dam (Plamieri et al., 2001; Prosdocimi et al., 2016; Vogel et al., 2016). Such 

practices can include field margins or the use of vegetation for mixed and inter-

cropping (Vogel et al., 2016).  There are also mechanical techniques such as 

terracing and parcelling which can be used to limit soil erosion (Hudson, 1993). 
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In the upper Tsitsa Catchment, the best method to increase the lifespan of a 

dam would be to prevent soil erosion upstream. Using of conservation farming 

techniques as well as field margins or inter-cropping with sugarcane will help 

reduce soil erosion. It is also important to introduce better land management 

practices such as rotational grazing or limiting stock sizes to the carrying 

capacity of the land.  
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Appendices 

 

Appendix 1.  

Field observation data captured in June 2014 for gully erosion classification 

and verification. 

 

# Photo
1 

Scale2 Active3 Contin- 

uity4 

Depth
5 

Veg-

cover
6 

Connectivity
7 

1 28 Hillslope Yes c d <30 / 

>60 

c 

2 31 Catchm. Yes c vd 30-60 

/ >60 

c 

3 

 

Catchm. Yes c vd <30 / 

>60 

c 

4 33 Hillslope Yes c vd <30 / 

>60 

p 

5 

 

Hillslope Yes d d >60 / 

>60 

c 

6 34 Hillslope Yes c vd/d <30 / 

>60 

p 

7 35 Hillslope Yes d vd 30-60 

/ >60 

p 

8 36 Hillslope Yes d vd <30 / 

>60 

p 

9 37 Hillslope Yes d d 30-60 

/ >60 

d 

10 38 Hillslope Yes c vd 30-60 

/ >60 

c 

11 43 Hillslope Yes d S <30 / 

>60 

d 

12 44 Hillslope Yes c d <30 / 

>60 

p 

13 45 Hillslope Yes c d 30-60 

/ >60 

c 
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14 46 Hillslope Yes c vd 30-60 

/ >60 

c 

15 48 Hillslope Yes c d 30-60 

/ >60 

p 

16 49 Catchm. Yes c vd <30 / 

>60 

c 

17 50 Hillslope Yes c d 30-60 

/ >60 

c 

18 51 Hillslope Yes d d <30 / 

>60 

d 

19 52 Catchm. Yes c d <30 / 

>60 

d 

20 53 Hillslope Yes d s <30 / 

>60 

d 

21 54 Hillslope Yes d s <30 / 

>60 

c 

22 55 Hillslope Yes d s 30-60 

/ >60 

c 

23 56 Hillslope Yes c d >60 / 

>60 

c 

24 57 Hillslope Yes d d 30-60 

/ >60 

p 

 

 

1. Photo numbers of photos that were taken (GPS camera; and second 

camera) in the field but not shown here. 

2. Hillslope scale typically extends from upslope/crest areas to a stream 

channel with varying topography, soil and land management (van Zyl, 

2007); whereas a catchment (catchm.) is a land surface which contributes 

water and sediment to any given stream network (Rowntree and Wadeson, 

1999), including smaller (sub)catchments (<10 km2) to a very large 

catchment (>10 km2). 

3. Active gullies contribute to or deliver sediments in a catchment, whereas 

non-active stable gullies have no none. 
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4. c = continuous gullies have a branching network that discharges into a 

stream/river at the base of a slope; and d = small discontinuous fade out 

into a depositional zone. 

5. s = shallow (< 1.5 m); d = deep (1.5 to 3 m); and vd = very deep (>3 m). 

6. Vegetation cover in percentage inside of gully and externally i.e. between 

gully and river. 

7. c = connected (coarse sediment transfer during ‘normal’ flood events); p = 

partially connected (transfer only in extreme flood events) or potentially 

connected (competence to transport but lack of supply); d = disconnected 

(transfer is obstructed) (Hooke, 2003). 
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Appendix 2  

The ruleset in eCognition was based on a “top-down” approach where the 

smallest level is pixel-based and the largest level is the “entire scene”, creating 

three levels of differing segment sizes from large to small. The first step was to 

segment the image at a coarse scale using multi-resolution segmentation. 

Creating level 1 with segments size 150 and shape 0.3 and compactness 0.8.  

On this first level classes were assigned to the largest features such as dense 

grass and rivers using the following rules: 

 Assign class, “vegetation”, at level 1, with Hue (R= layer 1, G= layer 2, 

B= layer 3) >= 0.6 and mean layer 5 > 0. Layer 5 is the NDVI index layer 

so using values less than 0 account for high vegetation areas. 

 Assign class, “river”, at level 1 with Hue (R= layer 1, G= layer 2, B= 

layer 3) <= 0.25 and Hue (R= layer 1, G= layer 2, B= layer 3)>=0.19 The 

hue of the river pixels all fall within this range. 

 Merge region, “river”, at level 1 with Hue (R= layer 1, G= layer 2, B= 

layer 3) <= 0.25 and Hue (R= layer 1, G= layer 2, B= layer 3)>=0.19 in 

order to create a long river network. 

The second step was to segment the image at a finer scale using multi-

resolution segmentation creating a second level with segments size 50 and 

shape and compactness 0.3 and 0.8 respectively. 

 Assign class at level 2, “shadow”, brightness <60 removing shadows 

limits the objects still needing classification. 

 Assign class, “dense vegetation” with Mean Layer 5 <= -0.16 using the 

NDVI layer to classify the areas of dense vegetation. 

 Finally, the image was segmented at a finer scale using multi-resolution 

segmentation creating level 3 with segments 10 and shape and compactness 

0.2 and 0.6 respectively. 

 Assign class, “gullies”, with Hue (R= layer 1, G= layer 2, B= layer 3)>= 

0.25 and Hue (R= layer 1, G= layer 2, B= layer 3) <= 0.32.  

 Assign class, “gullies”, with border to “gullies” > 5 this includes areas of 

shadow created by gully walls. 
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 Assign class, “houses”, to class “gullies”, with area<= 80 pixels this is to 

remove the houses which have been incorrectly classified as gullies. 

Assign class, “gullies” to the area enclosed by class “gullies” this also allows the 

classification of shadows created by gully walls. 

The final step used texture after Haralick to separate the rock outcrops and 

tilled land from the gully class.  
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Appendix 3  

 

Bulk Density samples collected in the upper Tsitsa Catchment in January 

2015. 

Sample 

Number 

GPS Position of Sample 

(Decimal Degrees) 

Weigh

t (g) 

Volume 

(cm3) 

Bulk 

Density 

(g/cm3) 

1 28.30  -31.05 347,21 293,11 1,18 

2 28.22  -30.99 448,06 293,11 1,53 

2 28.22  -30.99 503,66 293,11 1,72 

3 28.28  -31.04 420,26 293,11 1,43 

4 28.26  -30.98 383,16 293,11 1,31 

5 28.27  -30.98 444,71 293,11 1,52 

6 28.30  -31.05 301,21 293,11 1,03 

7 28.31  -31.06 356,51 293,11 1,22 

8 28.31  -31.06 369,66 293,11 1,26 

9 28.32  -31.06 417,46 293,11 1,42 

10 28.45  -31.09 464,61 293,11 1,59 

10 28.45  -31.09 386,61 293,11 1,32 

11 28.47  -31.10 488,91 293,11 1,67 

12 28.47  -31.10 436,91 293,11 1,49 

Average 

Bulk 

Density 

   

1,41 
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