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Summary

The majority of injuries and casualties during earthquakes occur as a result of partial or com-

plete collapse of buildings. The assessment of possible seismic ground motions for the purposes

of earthquake-resistant design can be performed by following the deterministic or probabilistic

methodology.

Chapter 1 presents an overview of the current practice in seismic hazard analysis with em-

phasis on PSHA. At present, the Cornell-McGuire method prevails in PSHA studies. Despite sig-

nificant development and modifications, this method has several controversial aspects. Absence of

an upper bound of the seismic hazard curve is one of the most disputable aspects of the method,

as it leads to unrealistic ground motion estimates for very low probabilities of exceedance. This

problem stems from using the unbounded log-normal distribution in the modelling of the ground

motion variability.

The main objective of the study was to investigate this variability and suggest a more realistic

probability distribution which would allow accounting for the finiteness of the ground motion

induced by earthquake. Chapter 2 introduces the procedure that is suitable for studying the ground

motion variability. Given the data sample, this procedure allows selecting the most plausible

probability distribution from a set of candidate models. Chapter 3 demonstrates the application

of this procedure to PGA data recorded in Japan. This analysis demonstrated the superiority of

the GEVD in the vast majority of considered examples. Estimates of the shape parameter of

the GEVD were negative in every considered example, indicating the presence of a finite upper

bound of PGA. Therefore, the GEVD provides a model that is more realistic for the scatter of the

logarithm of PGA, and the application of this model leads to a bounded seismic hazard curve.

In connection with a revival of interest in seismic intensity as an analogue for physical ground

motion parameters, the problem of accounting for anisotropy in the attenuation of MMI is con-

sidered in Chapter 4. A set of four equations that could account for this anisotropy was proposed

and the applicability of these equations was demonstrated by modelling the isoseismal maps of

two well-recorded seismic events that have occurred in South Africa. The results demonstrated

that, in general, the new equations were superior to the isotropic attenuation equation, especially

as regards to the pronounced anisotropy.

As several different PSHA methods exist, it is important to know how the results of appli-

cation of these methods corresponded to each other. Chapter 5 presents the comparative study

of three major PSHA methods, namely, the Cornell-McGuire method, the Parametric-Historic

method, and the method based on Monte Carlo simulations. Two regions in Russia were selected

for comparison, and the PGA estimates were compared for return periods of 475 and 2475 years.

The results indicated that the choice of a particular method for conducting PSHA has relatively lit-

tle effect on the hazard estimates when the same seismic source model was used in the calculations.

The considered PSHA methods would provide closely related results for areas of moderate seis-

mic activity; however, the difference among the results would apparently increase with increasing

seismic activity.
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Chapter 1

Introduction

1.1 Introduction and background

Earthquakes count among the most deadly and destructive natural disasters, with the strongest

tremors causing untold loss of life and ruinous damage to infrastructure. Such havoc was wrought

on 7 December 1988 near Spitak, Armenia, by the largest earthquake (M 7.0) in the region since

historical times. The earthquake caused the death of 25000 people, with 50000 injured, and half

a million people left homeless (Hadjian, 1993). The scale of the damage was unprecedented,

with 90% of the city of Spitak destroyed, whereas 50% of neighbouring Leninakan and 20% of

Kirovakan were destroyed (Cisternas et al., 1989). The reconstruction costs amounted to 15 billion

roubles (approximately 26 billion US dollars, according to the exchange rate at that time).

Such catastrophic events stimulate attempts to improve the understanding of the mechanism

of earthquakes and to develop protective measures to reduce their negative effects. After the

destructive earthquake that occurred on 17 January 1995 in Kobe, Japan, the government spon-

sored the establishment of dense networks of strong-motion stations, and, since 1997, the K-NET

and KiK-net networks have been operating continuously. The earthquake data are transmitted to

the seismological centre at Tsukuba, and the information is freely available through the website

(www.kyoshin.bosai.go.jp).

During the operational period of these networks, a unique volume of strong-motion data has

been accumulated. This material has facilitated significant progress in understanding the processes

of the radiation and propagation of seismic waves and in assessing the local effects of earthquakes.

Along with the development of engineering seismology, infrastructure design practices have

evolved. Earthquake-resistant design is intended to produce structures that can withstand a certain

level of shaking without sustaining severe damage. Structures are typically classified by their

degree of importance, i.e. infrastructure is considered critical if its failure could potentially amplify

the damage and the negative effects of earthquake. Critical structures include, for example, nuclear

power plants, nuclear waste repositories, dams, and chemical plants. Some degree of repairable

damage would be tolerated for housing units and other non-critical structures; however, the design

of critically important structures has to ensure their safe operation after an earthquake.

The input level of shaking for earthquake-resistant design is described by the design ground

motion, and seismic hazard analysis aims to quantify the ground motion expected to occur at a

particular site. This analysis can be performed by following either of two general approaches
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(Reiter, 1990), namely, PSHA and DSHA.

PSHA and DSHA require equal amounts of seismological and geological information, in-

cluding the history of the seismicity in the region, regional characteristics of the attenuation of

seismic waves, information on active seismic faults near the site of interest, and the geological

and soil conditions at the site. The fundamental difference, however, is in the process of esti-

mating the seismic hazard. In PSHA, seismic hazard is calculated by taking into account the

contributions from all the earthquakes expected to occur in the area surrounding the site during a

specified period. DSHA aims to estimate the worst-case scenario ground motion by considering a

set of earthquake scenarios and by selecting the one that would accumulate the highest amplitude

ground motion at the site. DSHA does not consider the frequency of occurrence of such an event.

Both approaches have strengths and weaknesses, proponents and opponents, and, in practice,

both PSHA and DSHA combine deterministic and probabilistic elements at varying degrees (Bom-

mer, 2002). The choice of one approach or the other should be based on the specific goals and

objectives of the particular project, and the quality of the available data should be taken into ac-

count. The positive features of both approaches are sometimes combined in practical applications.

Accordingly, Orozova and Suhadolc (1999) have formulated a hybrid deterministic-probabilistic

approach by combining the probabilistic model of earthquake recurrence with the deterministic

method of generating synthetic accelerograms. Leyendecker et al. (2000) have applied an innova-

tive and somewhat controversial approach by considering two seismic hazard maps, one of which

was obtained by using PSHA for a probability of exceedance of 2% in 50 years, whereas the other

was obtained by using DSHA. The hazard estimates from the two maps were combined in such

a way that the deterministic estimates were used instead of the probabilistic wherever the proba-

bilistic estimates were higher than the deterministic estimates were. The probabilistic values were

used wherever the deterministic estimates turned out to be higher. Therefore, the results of DSHA

were used as the upper bound estimates for ground motions.

McGuire (2001) proposed the use of both approaches simultaneously and presented a scheme

that described the relative contribution of DSHA and PSHA according to the application. A de-

tailed discussion on this topic, as well as a set of performance criteria for selecting the method of

analysis can be found in Klügel (2008).

1.2 Deterministic Seismic Hazard Analysis

Currently, there is no standard for employing DSHA and this analysis can therefore vary in differ-

ent parts of the world (Gupta, 2002). According to the definition by Kramer (1996), the DSHA

incorporates the following steps:

• Identification and characterisation of all earthquake sources capable of producing significant

ground motion at the site of interest.

• Estimation of the magnitude of the strongest possible earthquake, also referred to as the

MCE, for each seismic source and the selection of a source-to-site distance parameter for

each source zone. In most DSHA analyses, the shortest distance between the source zone

and the site of interest is selected.
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• Estimation of the ground motion at the site for each of the earthquake scenarios.

• Determination of hazard at the site (i.e. the maximum ground motion amplitude of all

considered earthquake scenarios).

Several modifications to this procedure have been proposed by Klügel et al. (2006). Recent de-

velopments in DSHA include the neo-deterministic approach (NDSHA), a rapidly developing de-

terministic method that involves waveform modelling techniques and allows for time-dependent

earthquake scenarios (Peresan et al., 2011; Zuccolo et al., 2011; Nekrasova et al., 2014).

Traditional DSHA, as defined by Kramer (1996), is usually criticised for being overly con-

servative. In addition, the complexity and uncertainty associated with the selection of earthquake

scenarios for this procedure are also regarded as negative features (Kijko, 2011). Baker (2008)

indicated that ground motion variability was an additional problem related to DSHA. Abraham-

son (2000) argued that the MCE was not the earthquake scenario that would induce the worst-case

ground motion.

1.3 Probabilistic Seismic Hazard Analysis

Similar to DSHA, PSHA is not a single method but a variety of methods that have several similar-

ities and common concepts. In this regard, various techniques were introduced nearly simultane-

ously, with the milestone in the development of such techniques being the work by Cornell (1968),

which was partially based on the ideas suggested by Esteva (McGuire, 2008). Nearly at the same

time, Milne and Davenport (1969) developed an alternative technique based purely on seismic

event catalogues and historical observations of earthquakes. A significantly more complex, but, at

the same time, extremely powerful technique was developed by Molchan et al. (1970). However,

despite the significant advantages of this technique, it has remained virtually unknown, probably

because of the description in English, which was presented in a single brief paper.

Later, Veneziano et al. (1984) introduced a non-parametric method based solely on the in-

formation obtained from a seismic event catalogue. Kijko and Graham (1998; 1999) considered

the advantages of parametric and historic methods and derived an alternative parametric-historic

method. Another approach to PSHA is represented by the procedures based on the Monte Carlo

simulations of long-term seismic catalogues (e.g. Ebel and Kafka, 1999; Musson, 2000; Shumilina

et al., 2000; Assatourians and Atkinson, 2013).

The Cornell procedure is straightforward, easy to understand, and easy to implement; such

features, together with the computer programs developed by McGuire (1976; 1978) have made the

Cornell approach popular. To date, this procedure is the most common PSHA method.

1.4 The Cornell-McGuire method

Budnitz et al. (1997) described the modern Cornell-McGuire method comprehensively, providing

detailed recommendations on performing the analysis in relation to the degree of importance of

the study object. The Cornell-McGuire method encompasses the following steps:

• Delineation of the seismic zones, that have the potential to produce destructive ground shak-

ing at the site of interest.
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• Definition of the spatial, temporal, and magnitude distributions of the seismicity of each

seismic source.

• Estimation of the ground motion at the site of interest for all considered earthquake scenar-

ios.

• Calculation of the total hazard curve for the site by combining the contributions from all

relevant seismic sources.

1.4.1 Seismic source characterisation

The initial step of the analysis is the detection of every seismic source capable of producing de-

structive ground shaking at the site of interest. If individual faults cannot be identified because of

the short duration of the instrumental records, or because of the low seismic activity of the region,

the locations of possible earthquakes are described by area sources.

As regards area sources, usually it is assumed that the earthquake locations are uniformly

distributed over the area. Such non-informative probability distribution reflects a lack of knowl-

edge of the characterisation of diffuse seismicity. However, the uniform distribution of epicentres

within a source area can be a poor approximation of the actual spatial distribution (e.g. Molina et

al., 2001; Kijko, 2011; Spada et al., 2011). Furthermore, the process of delineating the seismic

source zones can be difficult and subjective, especially in regions of low seismic activity. The

results of the delineation of seismic sources performed by different groups of experts can vary

significantly (e.g. McGuire, 1993; Frankel, 1995), with a pronounced influence on the results of

seismic hazard assessment.

The difficulties and uncertainties associated with the delineation of source zones have led

to the development of alternative techniques. The methods of Milne and Davenport (1969) and

Veneziano et al. (1984) are free from subjective decisions on the delineation of seismic sources,

as these methods are based directly on earthquake catalogues. However, one significant drawback

of these methods is the inability to take into account the stochastic variability of earthquake loca-

tions. This drawback can be overcome by introducing various smoothing techniques, as have been

proposed, for example, by Frankel (1995), who used a Gaussian function to smooth the estimated

activity rates, and by Woo (1996), who used a magnitude-dependent kernel function.

1.4.2 Seismic regime

1.4.2.1 Distribution of earthquake magnitude. The recurrence of earthquakes of different mag-

nitudes is an important characteristic of an active fault or a source zone. The relation between

the frequency of occurrence and the magnitude is specified by the FMD. The FMD discovered by

Ishimoto and Iida (1939) and Gutenberg and Richter (1944) is the most widely used in seismic

hazard studies, although it is not the only one (e.g. Merz and Cornell, 1973; Lomnitz-Adler and

Lomnitz, 1979; Taylor et al., 1990; Molchan et al., 1997).

log10[N(M)] = a−bM (1.1)
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where N(M) is a number of earthquakes with magnitude equal to or greater than M, a is the level

of seismic activity and b describes the ratio between the number of small and large earthquakes

(for natural seismicity usually b≈ 1).

This equation is usually referred to as the GR recurrence law. In its original formulation,

the GR law has no upper bound and predicts unlimited earthquake magnitudes. Since magnitude

serves as a measure of the elastic energy released during an earthquake, it has become clear that

the GR law should not continue indefinitely to higher magnitudes. The physical requirements of

finite energy release (Knopoff and Kagan, 1977), or, equivalently, a finite rate of seismic moment

release (Anderson, 1979; Molnar, 1979), impose restrictions on the FMD. Therefore, the range of

magnitudes for which the linear relation (1.1) holds, is bounded from both sides. If the magnitudes

of earthquakes are assumed independent and identically distributed random variables, the bounded

GR law is equivalent to assuming an exponential distribution, truncated from the top and shifted

to the right. Its CDF is given by:

FM(m) =
1− e−β (m−Mc)

1− e−β (Mmax−Mc)
, Mc ≤ m≤Mmax (1.2)

where β = b ln(10), and Mc and Mmax are the bounds of the range.

The PDF of this distribution has the following form:

fM(m) =
β e−β (m−Mc)

1− e−β (Mmax−Mc)
, Mc ≤ m≤Mmax (1.3)

Particular attention has been devoted to modelling the recurrence of large earthquakes, as

these events dominate the seismic hazard at large return periods. It was observed that relevant to

some large faults, the GR law applies to small and moderate magnitudes, but underestimates the

frequency of occurrence of the large earthquakes. These earthquakes are known as characteristic

earthquakes, and are described by the characteristic earthquake model (Schwartz and Copper-

smith, 1984; Wesnousky, 1994), usually derived from paleoseismic observations.

Although the GR law can be applied to various tectonic regimes and large space volumes,

and can describe natural seismicity reasonably well, the GR law cannot be applied in all instances.

Bimodal FMDs can be encountered, usually when populations of events with different proper-

ties are combined in the same sample (Main, 2000; Wiemer and Wyss, 2000). Instances that are

more complicated can be observed in mining areas, where the FMD can be significantly nonlin-

ear (Gibowicz and Kijko, 1994). In addition, nonlinear FMDs have been proposed by various

authors to capture possible deviations from linearity. Merz and Cornell (1973) used a function

with a quadratic magnitude term for seismic risk calculations, Lomnitz-Adler and Lomnitz (1979)

modified the GR law to capture the curvature at the higher magnitude end, and Taylor et al. (1990)

proposed a nonlinear model to describe the seismicity observed at Hokkaido Island, Japan. Fig. 1.1

shows the different shapes of the FMDs.

1.4.2.2 Model for earthquake occurrence in time. The homogeneous Poisson process is the

basis for modelling earthquake sequence in the majority of PSHA methods, including the Cornell-

McGuire method (Cornell, 1968; Cornell and Winterstein, 1988). The homogeneous Poisson
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process is a memoryless stochastic process, which means that the occurrence of an event in any

time interval is independent of the occurrence of any previous events.

It is worth noting that declustering of the earthquake catalogue is required to obtain a se-

quence of major events that could be modelled by the Poisson process. Sometimes, the removal of

dependent seismic events results in the removal of up to two thirds of the catalogue (Gardner and

Knopoff, 1974).

The seismic source becomes less hazardous after the occurrence of a large earthquake com-

pared with sources that have been quiet recently. A long period will be required to accumulate

enough strain energy to rupture again; therefore, the time-dependent models accounting for strain

accumulation periods could produce more realistic hazard assessments. Various alternatives to the

homogeneous Poisson process have been considered.

For instance, Patwardhan et al. (1980) suggested using a semi-Markov model, where the

earthquake occurrence depends only on the previous earthquake. Shimazaki and Nakata (1980)
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Figure 1.1: Comparison of FMDs. (a) Typical GR FMD. (b) FMD with characteristic earthquake. (c)
Bimodal FMD. (d) Nonlinear FMD
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suggested two time-dependent models, in which the time-predictable recurrence assumed that an

earthquake would occur on a feature when a certain level of stress had accumulated. This regu-

larity allows the prediction of the time of the next event. On the other hand, the slip-predictable

recurrence assumes that independently of the accumulated level, the stress drops after each earth-

quake to some constant level; therefore, the longer the elapsed time since the last earthquake the

larger would be the next earthquake.

The self-exciting model (Musmeci and Vere-Jones, 1992) assumes that each event that occurs

in a restricted space-time volume increases the conditional occurrence rate within that volume. The

self-correcting model (Ogata and Vere-Jones, 1984) assumes that the conditional occurrence rate

depends on the current strain at point x2 and time t2. As the occurrence of an earthquake at a

nearby point x1 at earlier time t1 decreases the strain at point x2, it would generally decrease the

conditional occurrence rate at point x2 and time t2.

Other time-dependent models focus on the statistical modelling of the inter-occurrence times.

Various distributions have been used to fit the observed earthquake inter-occurrence times, among

which are the gamma distribution (Udias and Rice, 1975), log-normal distribution (Nishenko and

Buland, 1987; Goes, 1996), Weibull distribution (Parvez and Ram, 1997; Yakovlev et al., 2006;

Zöller and Hainzl, 2007), the Brownian passage time distribution (Matthews et al., 2002), and the

Bayesian combination of the latter three models (Fitzenz and Nyst, 2015).

Comparative studies aiming to measure the differences between the hazard assessments ob-

tained by using the homogeneous Poisson process model and various time-dependent models (Cor-

nell and Winterstein, 1988; Cramer et al., 2000) concluded that with rare exceptions, these differ-

ences were not significant enough to provide a basis for discarding the standard approach. On the

other hand, recent studies by Boyd (2012) and Iervolino et al. (2014), allowing the inclusion of

dependent events into PSHA, have reported an increase of up to 10% and 30%, respectively, of the

ground motions at exceedance probability levels of engineering interest, caused by such inclusion

of dependent events.

1.4.3 Ground motion at the site of interest

Estimates of ground motion at specific locations are fundamental inputs to seismic hazard analysis.

The ground motion is characterised by a particular parameter, usually a horizontal PGA or PGV,

spectral acceleration, or seismic intensity on one of the modern scales (MMI, MSK, EMS).

According to modern engineering seismology, the ground motion at the surface is controlled

by three groups of factors, namely, the effects of the source (faulting mechanism, magnitude,

radiation pattern, and spectral characteristic), the effects of the propagation path (source dis-

tance, geometrical spreading, and frequency-dependent inelastic absorption of seismic waves in

the medium), and local effects at the site (the influence of surface topography and soil conditions).

There are two general approaches to estimating the ground motions. The first approach is

more complex and involves seismogram simulations based on previously determined character-

istics of the radiation and propagation of seismic waves (e.g. Costa et al., 1993; Boore, 2003).

The second approach is more typical for PSHA and is based on empirical GMPEs, derived by

using regression analysis (Boore and Joyner, 1982; Abrahamson and Youngs, 1992; Joyner and
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Boore, 1993) of recorded strong ground motions.

The GMPEs should account for factors that contribute to surface ground motion and, at the

same time, preserve a reasonable degree of simplicity to remain a useful tool in practical applica-

tions. The selection of the most appropriate GMPEs is vital for the proper assessment of seismic

hazard. Because of the large number of published GMPEs (Douglas, 2011), it could be difficult

to select appropriate models for a particular area. Various approaches have been developed to

facilitate this selection, such as the data-driven procedures proposed by Scherbaum et al. (2004;

2009). On the other hand, in many regions of the world, there is a lack of strong-motion data and,

therefore, no GMPEs specific to the region exist. In such situations, it is common to adopt the

GMPEs developed for a region with similar tectonic properties. The applicability of the adopted

GMPEs should be carefully checked by using the available data, as was discussed, for example,

by Stafford et al. (2008) and Delavaud et al. (2009).

1.4.4 Hazard estimation

Seismic hazard is quantified by the probability P(y ≥ a0, T ) that the ground motion parameter y

will exceed the value a0 at a given site at least once during a specified period T . This probability

is found from the mean rate λ (a0) of events that induce ground motions at the site, such that y

exceeds a0:

P(y≥ a0, T ) = 1− e−λ (a0)T (1.4)

This equation is based on the assumptions that the rate λ (a0) is constant in time and that the

earthquake occurrences are modelled by the Poisson distribution. For a stationary seismic process,

λ (a0) could be estimated simply by counting the number of events NT that induced y ≥ a0 at the

site during time interval T :

λ (a0) =
NT

T

The longer the time period T the more accurate would be an estimate obtained from this

equation. If the available catalogue of regional seismicity is complete above the lower magnitude

of engineering interest, and is supplied with the estimates of ground motion occurring at the site

because of each earthquake in the catalogue, and ak corresponds to the ground motion generated

by the k-th event, then the rate of exceedance at the site can be estimated as follows:

λ (a0) =
1
T0

∑
k

H(ak−a0) (1.5)

where H is the Heaviside step function and T0 is the duration of the catalogue.

This estimate would be unbiased only if the available catalogue were representative of all

possible earthquakes that could affect the site. This could be achieved if the available catalogue

covered an extremely long timespan, ranging from several thousand to hundreds of thousands

of years, depending on the seismic activity of the region. Unfortunately, the available earthquake

catalogues are generally too short to provide an unbiased estimation of the long-term activity rates.
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Moreover, the ground motions are only available for instrumentally recorded earthquakes and only

at the sites where seismic stations are deployed. The ground motion estimates are usually obtained

by using GMPEs, which allow estimating the median ground motion at the site, and the associated

uncertainty as functions of magnitude, source-to-site distance, and other parameters:

ln(y) = f (m,r,θ)+ εσ (1.6)

where y is the ground motion parameter of interest, f is the regression function, m is a magnitude,

r is a distance measure, θ is a vector of additional explanatory parameters, the term εσ represents

the observed variability of ground motions for the specific earthquake scenario, σ is the standard

deviation of the regression model, and ε is usually assumed to be a standard normal random

variable.

Using the estimates y and σ , and information regarding the distribution of ε , it is possible to

obtain the conditional probability P(y≥ a0|m,r) that a ground motion level a0 will be exceeded at

a distance r from the source of an earthquake with magnitude m.

Veneziano et al. (1984) proposed a method based on the historical seismicity information, in

which the rate λ (a0) is estimated by summation over all the events in a catalogue:

λ (a0) =
1
T0

∑
k

QmP(y≥ a0|mk,rk) (1.7)

where Qm is a correction factor accounting for the underrepresentation of magnitude m events in

the catalogue, and mk and rk correspond to the k-th event in the catalogue.

Frankel (1995) described a method in which the regular grid is superimposed over the area

of study, and the number of events with magnitudes above a threshold m0 is counted from the

seismic catalogue for each cell of the grid. This number of events in a cell is converted from a

cumulative value (number of events with m≥m0) to an incremental value (number of events with

m ∈ (m0,m0 +∆m), where ∆m is a small magnitude increment). The total incremental number of

all cells within a certain distance increment rk from the cite is denoted by Nk, and the annual rate

λ (a0) is calculated as follows:

λ (a0) = ∑
k

∑
l

Nk

T0
10−b(ml−m0)P(y≥ a0|ml,rk) (1.8)

where l is the index for magnitude bin, the b-value is taken to be uniform throughout most of the

area, and summation over magnitude is carried out to some maximum value.

It is interesting to note that in the original formulation by Cornell (1968), the uncertainty

term εσ of Eq. (1.6) was neglected and that this shortcoming was corrected by Esteva (1969). The

importance of this term was recognised and it was considered in later publications (Cornell, 1971;

McGuire, 1976). In the modern Cornell-McGuire method, λ (a0) is obtained by using the follow-

ing equation based on the total probability theorem:

λ (a0) = ∑
i

Λi

∫
M

∫
R

P(y≥ a0|m,r) fMi(m) fRi(r)dr dm (1.9)
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where Λi is the activity rate of the i-th seismic source, fMi(m) and fRi(r) are the PDFs of magnitude

and distance of the i-th source, and summation is performed over all the seismic sources near the

site.

By repeating these calculations and using Eq. (1.4), the seismic hazard curve can be con-

structed for any specific time interval. Seismic hazard at a given site is characterised by the ground

motion level that has a specified probability of being exceeded during time interval T . The seismic

hazard map can be constructed by applying this procedure to a grid of points. Fig. 1.2 illustrates

the elements of the Cornell-McGuire method.

A common goal of seismic hazard analysis is to construct the design response spectrum,

which is required for the purposes of structural analysis. In PSHA, this goal is achieved by con-

structing hazard curves for spectral accelerations at a range of periods, and selecting from each

curve an acceleration that has a target probability of exceedance. The obtained spectral amplitudes

are plotted versus corresponding periods and the result is termed the uniform hazard spectrum.
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Figure 1.2: Elements of the Cornell-McGuire method
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Since the contributions from all the relevant seismic sources are combined into a single haz-

ard curve, the natural question, namely, which earthquake scenario makes the largest pronounced

contribution to the result, has no clear answer. This issue is addressed by performing a disaggrega-

tion of seismic hazard (e.g. Chapman, 1995; McGuire, 1995; Bazzurro and Cornell, 1999; Romeo

and Prestininzi, 2000).

1.4.5 Handling uncertainties

One of the benefits of PSHA is the possibility of taking into account any quantifiable uncertainties.

These uncertainties are usually subdivided into two categories that need to be handled differently,

namely, epistemic and aleatory uncertainties (Budnitz et al., 1997).

The terms uncertainty and randomness have also been used for epistemic and aleatory uncer-

tainties, respectively. However, these terms are commonly used interchangeably in many seismic

hazard studies, and, as a result, they were often confused. The terms epistemic and aleatory uncer-

tainties were introduced to provide unambiguous terminology (Bommer, 2003). Fig. 1.3 illustrates

the difference between the two types of uncertainties associated with ground motions.

Epistemic uncertainties are those that arise from a lack of knowledge and the imperfection

of the present scientific models. These uncertainties could be reduced through further research

and the gathering of more data. Epistemic uncertainties are associated with the use of particular

models and are taken into account by using the logic tree formalism, which was introduced to

PSHA by Kulkarni et al. (1984), and has become a standard element of PSHA (Reiter, 1990).
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Figure 1.3: Uncertainties associated with ground motions

The logic tree must contain the best estimates of what is known and the potential range of

alternatives used to characterise the uncertainty and to reflect the limitations of current knowledge

(Bommer, 2012). Each branch of the tree is associated with a normalised weight, which reflects
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expert opinion regarding the degree of feasibility of a particular hypothesis (Abrahamson and

Bommer, 2005). The hazard calculations are performed for all the possible branches of the logic

tree, resulting in a distribution of hazard curves, from which the mean, the median or other fractile

can be obtained.

The process of constructing the logic tree and assigning weights to the branches is not a

trivial matter, and, if done incorrectly, leads to underestimation of the seismic hazard (Abraham-

son, 2000). Bommer et al. (2005) provided detailed analysis of the issues related to this process

by using a logic tree for capturing epistemic uncertainty related to the selection of appropriate

GMPEs. Fig. 1.4 demonstrates a simple example of a logic tree.

Aleatory uncertainties are those associated with inherent stochastic randomness of natural

processes. According to a definition given by Budnitz et al. (1997), these uncertainties are irre-

ducible and cannot be known in detail, although they are susceptible to analysis.

One of the most important aleatory uncertainties in seismic hazard studies is the ground

motion variability associated with GMPEs (e.g. Strasser et al., 2008a; 2009). This variability is

reflected in the range of possible values of the ground motion parameter for specific earthquake

scenarios and is handled by integrating over the distribution of ground motion amplitudes. As

indicated by Bommer and Abrahamson (2006), in earlier PSHA studies either the ground motion

variability was often completely neglected or its effect was artificially reduced, which resulted in

substantial underestimation of the seismic hazard.
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Figure 1.4: An example of a logic tree
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1.5 Parameters of seismic regime

In the classic Cornell-McGuire method, each seismic source is characterised by four parameters:

• magnitude of completeness Mc

• annual rate of seismic events with magnitudes above Mc, Λ

• parameter b of the GR recurrence relation

• magnitude of the largest possible earthquake Mmax.

The estimation of these parameters is associated with various difficulties, which are discussed in

the following sections.

1.5.1 Magnitude of completeness Mc

The magnitude of completeness of seismic data Mc is defined as the lowest magnitude at which a

seismic network is able to detect earthquakes reliably and completely. A fraction of seismic events

with magnitudes below Mc is absent from the catalogue.

This parameter identifies the lower end of the linear segment in the FMD, and, therefore,

accurate knowledge of Mc is essential for reliable estimation of the b-value and the activity rate Λ .

Overestimating Mc reduces the amount of data, whereas, underestimating it could potentially lead

to incorrect results of further analyses.

It is well known that Mc changes with time in most catalogues, usually decreasing because

the number of seismic stations increases, in the process, improving the detection capabilities of

the local networks. The spatial differences of Mc, which can be observed in catalogues collected

from areas with different densities of seismic networks, should also be taken into account in large-

scale seismic hazard studies. Typical observations of the seismicity of a source zone are shown in

Fig. 1.5.
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The majority of existing methods for assessing Mc could be subdivided into two categories:

• Methods based on the information from seismic catalogues.

• Methods that investigate the detection capabilities by studying the signal-to-noise ratios at

each station of the network (e.g. Ringdal, 1975; Gomberg, 1991; Kværna et al., 2002).

The methods of the first category prevail in seismic hazard studies; therefore, the present material

will focus on these methods, as applied to instrumental catalogues. The completeness analysis of

historical data is discussed, for example, by Albarello et al. (2001) and Stucci et al. (2004).

One of the first methods for estimating Mc was proposed by Stepp (1972), based on the

assumption that the sequence of earthquakes follows a stationary Poisson process. In this instance,

the mean rate of earthquake occurrence Λ is stable for the complete part of the catalogue, and its

standard deviation is inversely proportional to the time interval σΛ =
√

Λ/T . A plot of σΛ (T )

for each specific magnitude allows detecting points where the graphs start to depart from 1/
√

T

behaviour, indicating the end of the period of complete reporting.

Rydelek and Sacks (1989) developed a method to estimate Mc based on the assumptions

that earthquakes follow a Poisson distribution and that detection capabilities increase at night

relative to daytime (because of lower cultural activity and wind noise). The significant bias in

the day-to-night detection of events in the given magnitude interval can be tested by using the

Poisson assumption, and the catalogue is classified incomplete at and below this interval if the

bias confirmed.

Wiemer and Wyss (2000) proposed two methods based on the assumption of self-similarity.

The first method requires the detection of the point of maximum curvature of the frequency-

magnitude curve. The second method is based on a comparison between the observed and the

synthetic FMDs by using the goodness-of-fit statistic, calculated from the absolute difference be-

tween the numbers of events in the same magnitude bins of the two FMDs.

Cao and Gao (2002) proposed that Mc be estimated by using the stabilisation of the b-value

as a function of the lower cut-off magnitude Mco. Assuming that the b-value increases for Mco <

Mc and Mco � Mc, and remains almost constant for Mco ≥ Mc, the Mc can be estimated as the

magnitude for which the increment between two successive values of b is sufficiently small (e.g.

smaller than 0.03).

Kagan (2003) derived a method for estimating Mc based on fitting the Pareto distribution to

the observed seismic moment data and using the KS test. Marsan (2003) proposed estimating Mc

by assessing the likelihood of completeness, which is defined as the probability that the GR law,

fitted to the data above the lower cut-off magnitude, would match the number of events in the

magnitude bin that precedes the cut-off value. The Mc is selected so that two conditions must be

met, namely, drop of the b-value for smaller magnitudes and drop of the likelihood of completeness

at Mc.

Woessner and Wiemer (2005) developed a method based on the modelling of the entire mag-

nitude range, in which the data below Mc is modelled by the normal distribution and the data above

Mc is modelled by the GR law. The parameters of the model are estimated by the ML method and

Mc is defined as the magnitude that maximises the log-likelihood function.

Amorèse (2007) employed the change-point test to detect the points in the incremental FMD,
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where the significant and stable changes of the slope occur. Several change points can be found

by this procedure, and the Wilcoxon-Mann-Whitney non-parametric test is applied to each such

change point to test the null hypothesis that there is no change in the sequence at this point, and

Mc is selected as the point for which the probability of making an error when rejecting the null

hypothesis is the smallest.

Several techniques have been developed for mapping the spatially varying Mc, including the

non-parametric method of Schorlemmer and Woesner (2008), the Bayesian method of Mignan et

al. (2011), and the multiscale technique of Vorobieva et al. (2013).

The problem of estimating Mc has attracted much attention, as knowledge of this value is

essential for many studies that involve statistical analysis of seismic catalogues. A comprehensive

review and analysis of existing estimation methods for Mc can be found in Mignan and Woess-

ner (2012). Despite the considerable progress that has been achieved, there is still no agreement

on the applicability of the assumption of self-similarity in a range of small magnitudes (Rydelek

and Sacks, 2003; Wiemer and Wyss, 2003).

1.5.2 Annual rate of seismic activity Λ and the b-value

In some earthquake sequences, temporal declines of the b-value have been observed before the

main event (e.g. Gibowicz, 1973; Smith, 1981; Nuannin et al., 2005), which is in agreement with

the hypothesis that the b-value is inversely related to the level of stress in the crust (Scholz, 1968;

Amitrano, 2003; Schorlemmer et al., 2005). In addition, the temporal declines of seismic activity

have been recognised as possible precursors of large earthquakes (Wyss and Habermann, 1988;

Wyss et al., 1999; Zöller et al., 2002). Therefore, these parameters not only have practical impor-

tance for seismic hazard studies but also they can be useful for earthquake prediction.

The annual activity rate Λ is not usually discussed, as its ML estimator is simply the number

of events per year:

Λ̂ = N/T (1.10)

where T is a time span of the seismic catalogue.

The main concern, therefore, is the reliable estimation of the b-value. The initial studies on

this topic were based on the unbounded GR law, and considered the probability distribution of

unlimited earthquake magnitudes, for which the PDF has the following form:

fM(m) = βe−β (m−Mc), m≥Mc (1.11)

Utsu (1965) derived an estimator for b by applying the method of moments, whereas Aki (1965)

obtained the same result by applying the ML method:

b̂ =
log10 e
M̄−Mc

(1.12)

where M̄ is the mean magnitude of the sample.

In addition, Aki (1965) provided a close analytical form for the standard deviation associated
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with this estimator:

σb̂ =
b̂√
N

(1.13)

Shi and Bolt (1982) derived a new formula for the uncertainty of the b-value:

σb̂ =
b̂2

log10(e)

√
∑

N
i=1(Mi− M̄)2

N(N−1)
(1.14)

Unfortunately, the estimator in Eq. (1.12) was derived without taking into account the pres-

ence of the finite upper bound magnitude Mmax. In addition, to be applicable, this formula requires

a seismic catalogue that is complete above the threshold Mc. A typical seismic catalogue can be

subdivided into two parts, namely, the pre-instrumental part that contains only the largest seis-

mic events, and a relatively short instrumental part, which can be subdivided into a number of

sub-catalogues, each with its own level of completeness Mc.

Subsequently, various generalisations and modifications of (1.12) have been proposed, aimed

at solving the aforementioned issues, as well as other problems. Page (1968) considered a mag-

nitude range with the upper bound Mmax assumed as known, and obtained a recursive relation for

estimating the b-value, which tends to (1.12) as the magnitude range (Mc,Mmax) increases.

Weichert (1980) generalised the ML estimators of the b-value and the activity rate Λ to allow

utilising unequal observational periods and to account for the magnitude being a discrete and not

a continuous variable, known with some accuracy, usually up to one decimal place. In addition,

Bender (1983) discussed the influence of grouping magnitudes into classes and stressed the impor-

tance of the correction for bias, which is especially significant if magnitudes were recovered from

historic intensity data, for which the grouping interval can be quite large. The corrected estimator

can be expressed as:

b̂ =
log10 e

M̄− (Mc−∆M/2)
(1.15)

where ∆M is the grouping interval of the catalogue.

The uncertainty of reported magnitudes is another factor that has significant influence on

the estimation of seismic parameters. Tinti and Mulargia (1985) introduced the terms apparent

magnitude M̃ and true magnitude M. According to this terminology, the reported apparent M̃ is

the true magnitude, perturbed by a random error ε:

M̃ = M+ ε

Considering the normally distributed ε , Tinti and Mulargia (1985) concluded that the pres-

ence of magnitude uncertainty generally led to an overestimation of Λ , whereas the b-value re-

mained unaffected. Various researchers suggested the b-value estimation technique, based on the

least-squares fitting of a straight line to the frequency-magnitude plot (e.g. Guttorp, 1987; Nuannin

et al., 2005).

In most parts of the world, instrumental seismic catalogues are relatively short; therefore,
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employing the pre-instrumental catalogues would significantly expand the volume of available

information. Kijko and Sellevoll (1989) expanded the ML estimators of seismicity parameters in

the instance of mixed data, composed of pre-instrumental macroseismic observations and recent

complete instrumental catalogues. In a subsequent study, Kijko and Sellevoll (1992) considered

the effect of magnitude uncertainties on the results of estimation for instances of uniformly and

normally distributed uncertainties.

A review of the most common estimation methods for the assessment of the b-value was pro-

vided by Marzocchi and Sandri (2003). These authors pointed out that the problem of the experi-

mental estimation of b still had no universally recognised solution in the seismological community

and therefore remained unsolved.

Castellaro et al. (2006) discussed in detail the influence of magnitude conversions on the es-

timates of seismic parameters. Converting magnitudes from one scale to another is a conventional

step of pre-processing the data in seismic hazard studies, since a homogenised earthquake cata-

logue is required. In their study, Castellaro et al. (2006) have highlighted the superiority of the

generalised orthogonal regression in deriving the relations for converting magnitudes. While ap-

plication of the standard linear regression for this purpose leads to significantly biased assessment

of Λ and b, the unbiased estimates can be obtained by converting the magnitudes by employing

the generalised orthogonal regression.

Among the most recent developments, is the simple and general ML procedure introduced

by Kijko and Smit (2012) for estimating b and Λ from multiple catalogues with different levels

of completeness. A comprehensive study on the performance of the most frequently used b-

value estimators has been conducted by Bengoubou-Valérius and Gibert(2013). These authors

performed a series of statistical tests based on the Monte Carlo simulations and bootstrap analysis,

and provided a number of recommendations regarding the b-value assessment. Summarising these

recommendations, it can be concluded that the least-squares estimator should be discarded and, in

general, the ML estimator should be preferred.

1.5.3 Magnitude of the largest possible earthquake Mmax

In PSHA, Mmax usually refers to the magnitude of the largest earthquake a seismic source is capa-

ble of producing. Alternatively, some authors suggest a formal smoothing of the FMD truncated

in the range of large magnitudes (Main and Burton, 1984; Kagan, 1991), preserving the possibility

of larger magnitudes. However, Pisarenko et al. (2010) put forward the definition of Mmax as the

maximum for a given future time interval. The following material is restricted to the definition

traditionally used in PSHA. The estimation of Mmax is crucial for seismic hazard analysis because

large earthquakes produce the most severe ground motions and dominate the hazard at large re-

turn periods. The available methods for estimating Mmax are classified as either deterministic or

probabilistic.

Deterministic methods. The most frequently used methods of this category are those based on

empirical relationships between the magnitude and the physical dimensions of the ruptured area

(Kanamori and Anderson, 1975). Fault rupture length has been extensively used for estimating

the earthquake magnitude, and numerous studies aimed at investigating the correlation between
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magnitude and fault rupture length (e.g. Tocher, 1958; Mark, 1977; Bonilla et al., 1984; Wells and

Coppersmith, 1994) have demonstrated the general nature of these relationships. As seismic mo-

ment is proportional to fault rupture area, it appears that magnitude would be more fundamentally

related to fault rupture area than fault rupture length. The relationships in terms of fault rupture

area (e.g. Geller, 1976; Wyss, 1979; Singh et al., 1980; Wells and Coppersmith, 1994) demonstrate

smaller variations compared with the relations of fault rupture length. However, any attempt to

specify the rupture scenario for a future earthquake is associated with considerable uncertainties

that inevitably propagate to Mmax estimates.

Alternatively, Mmax can be inferred from the fault slip rate (e.g. Anderson and Luco, 1983;

Youngs and Coppersmith, 1985) or from the seismic moment release rate (Smith, 1976). There-

fore, assuming the applicability of the GR law with an upper bound Mmax, Smith (1976) derived

the following formula:

M̂max =
log10[d(d−b)−1T Ṁ0]− c

d
(1.16)

where c and d are constants of empirical relationship log10(M0) = dMw + c between seismic mo-

ment M0 and moment magnitude Mw, b is the slope of the GR law, Ṁ0 is a moment release rate,

and T is the time interval.

In addition, Frohlich (1998), assuming that the GR law holds, proposed a simple estimator:

M̂max = Mc +
1
b

log10 N (1.17)

where N denotes the number of events in the catalogue with magnitudes above Mc.

Ward (1997) developed a technique for simulating the rupture processes on fault segments

and estimating Mmax resulting from interactions occurring between those segments.

Additionally, Mmax is commonly estimated by extrapolating the FMD derived from the avail-

able seismic data to some large recurrence interval, for example, 500 or 1000 years. When the

available data are insufficient to establish the FMD, Mmax is sometimes obtained by adding an

increment to the maximum observed magnitude Mobs
max:

M̂max = Mobs
max +δ (1.18)

where δ varies from 0.0, which corresponds to the lower bound estimate of Mmax, and up to 1.0

(e.g. McGuire, 1993; Wheeler, 2009).

It has to be taken into account that the results of the deterministic estimation of Mmax are gen-

erally associated with significant uncertainties that could be as high as one unit on the magnitude

scale (Kijko, 2004).

Probabilistic methods. Various probabilistic methods have been developed over the years. Among

the first, were those based on the extreme value theory. A study by Epstein and Lomnitz (1966),

proved that the type I extreme value distribution for the largest magnitudes could be derived di-

rectly from the assumptions usually made in PSHA that the sequence of main seismic events is a
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Poisson process and that the GR law is satisfied. Subsequently, various researchers have sought an

estimation of Mmax and corresponding recurrence intervals by fitting an extreme value distribution

to a subset of maxima of observed magnitudes, usually annual maxima.

For instance, Kárnı́k and Schenková (1974) and Schenková and Schenk (1975) applied the

type I extreme value distribution to fit the maxima of magnitudes, while Yegulalp and Kuo (1974)

and Schenková and Kárnı́k (1978) applied the type III distribution, which assumes a finite upper

bound of a variable. The latter obtained a better fit to the data compared with that of the type I

extreme value distribution.

Subsequently, Kijko and Sellevoll (1981), using the modified GR law proposed by Lomnitz-

Adler and Lomnitz (1979), derived a triple exponential distribution for the maxima of earthquake

magnitudes. A statistical test based on the χ2 statistic demonstrated that the triple exponential

distribution approximations of the observations were superior to both the type I and the type III

extreme value distributions.

Although the methods based on fitting a distribution to the maxima of earthquake magnitudes

have the advantage of no small magnitude data being required, the main drawback of these meth-

ods is that the available data are generally incomplete, even for the maxima of magnitudes, in the

pre-instrumental period and even in the recent periods of instrumental recordings. In general, a

catalogue subdivided into a number of equal time intervals will demonstrate gaps in seismicity.

To address this issue, Kijko and Dessokey (1987) proposed an improved technique that allows the

use of maxima extracted from unequal time intervals.

In addition, the methods developed for estimating the endpoints of distribution functions were

applied in the field of seismology. In general, the largest observation Mobs
max is a crucial parameter

for these methods. An estimator of Mmax can be written in a generic form:

M̂max = Mobs
max +∆ (1.19)

where ∆ is a positive correction factor.

Let M1 ≤M2 ≤ ... ≤Mn be a sample of n earthquake magnitudes sorted in ascending order,

Mn = Mobs
max and Mn−1 is the second largest observation. Then the estimator derived by Robson and

Whitlock (1964) takes the form:

M̂max = Mobs
max +(Mobs

max−Mn−1) (1.20)

Considering the above estimator, Cooke (1979) proposed that if the value of parameter ν

(which determines the decay of the right tail of distribution) were known, an improved estimator,

with a smaller mean squared error than (1.20), could be achieved:

M̂max = Mobs
max +(2ν)−1(Mobs

max−Mn−1) (1.21)

where ν is an exponent of Gnedenko’s (1943) condition:

lim
M→0−

1−FM(cM+Mmax)

1−FM(M+Mmax)
= c1/ν
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with c constant.

Another estimator proposed by Cooke (1980) can be applied when an extremely limited

amount of information is available. This requires only a few largest observations and, with the

modification discussed by Kijko and Singh (2011), can be written as:

M̂max = Mobs
max +

1
k

(
Mobs

max−
1

k−1

k

∑
i=2

Mn−i+1

)
(1.22)

where k is the number of largest observations.

Furthermore, the methods based on generic equations for endpoints of distribution functions

are widely applied. When the available information is sufficient for establishing the distribution

of magnitude, Mmax can be estimated by using the equation proposed by Tate (1959). Assuming

that the expected value of Mmax were equal to the largest observed value E(Mmax) = Mobs
max, this

equation could be written as:

M̂max = Mobs
max +

1
n fM(Mobs

max)
(1.23)

Pisarenko et al. (1996) derived unbiased and Bayesian estimators based on this equation.

Another extensively used generic equation was derived by Cooke (1979):

M̂max = Mobs
max +

∫ Mmax

Mc

[FM(m)]ndm (1.24)

Using Eq. (1.24), Kijko and Sellevoll (1989) derived an approximate equation that is valid

for large samples and can be solved by an iterative scheme. Kijko and Graham (1998) considered

its Bayesian analogue that accounts for moderate deviations from the assumed GR law, whereas

Kijko and Singh (2011) achieved an exact solution for Eq. (1.24).

When no specific parametric function FM(m) is assumed, Eq. (1.24) can be applied in com-

bination with some non-parametric technique for approximating the magnitude distribution; for

example, with the kernel smoothing method, as demonstrated by Kijko et al. (2001), or with ap-

proximation based on order statistics, as discussed by Kijko and Singh (2011). This approach is

especially useful where the empirical magnitude distribution is nonlinear, multi-modal, or if the

characteristic event is observed.

An extremely powerful estimation procedure, which allows incorporating all the available in-

formation from various sources into the analysis, is the Bayesian estimation technique formulated

by Cornell (1994) and improved by Kijko (2012).

Finally, Mmax can be estimated by fitting a specified distribution FM(m) to the observed FMD,

with the use of the standard least-squares regression, by minimising the absolute value of the

misfit, or by using the adaptive regression procedure described by Kijko (1994).

Each of the described methods has advantages and limitations, which are discussed in detail

by Wheeler (2009) and Kijko and Singh (2011). The choice of the most appropriate procedure

should be based on the assumptions regarding the analysed seismicity and should take into account

the quality and quantity of the available information.
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1.6 Controversies of the Cornell-McGuire method

Despite significant development in the Cornell-McGuire method, a degree of controversy remains,

that requires attention and further research. Several aspects of the Cornell-McGuire method are

subject to criticism, among which are the treatment of uncertainties (e.g. Klügel, 2008; 2011), and

the use of logic tree formalism (e.g. Krinitzsky, 1995; 2003; Castaños and Lomnitz, 2002). In

addition, some authors have raised question on the correctness of the mathematical foundations of

the method (e.g. Wang and Zhou, 2007; Wang, 2009).

The upper bound of a hazard curve has been indicated as an absent piece of PSHA (Bom-

mer, 2002), and such absence has led to extremely inconsistent hazard assessments for very low

probabilities of exceedance (Stepp et al., 2001; Corradini, 2003; Stamatakos, 2004; Klügel, 2005).

The main factor contributing to seismic hazard assessments at low probabilities is ground motion

variability. The log-normal distribution commonly used to model ground motion variability is

unbounded, and, as a result, unrealistic high values of ground motion parameters are encountered

when very low probabilities are considered in the analysis.

Recently, a number of devastating earthquakes have occurred in unexpected locations (Ells-

worth, 2012), in particular the 2011 Tohoku earthquake. Such events have stimulated debate on

how adequate the available seismic hazard maps and the methods applied for their preparation

were (e.g. Stein et al., 2011; 2012; Hanks et al., 2012; Stirling, 2012), emphasising the necessity

of testing the seismic hazard assessments with observations.

The results of the GSHAP (1992-1999) have been subjected to systematic tests. Kossobokov

and Nekrasova (2012) compared the shaking predicted by the GSHAP map (Giardini et al., 1999)

with the shaking observed during strong earthquakes that occurred in 2002-2009. Wyss et al. (2012)

have performed a similar comparison for the number of casualties. The authors of these studies

concluded that both tested quantities have been severely underestimated by the GSHAP, and that

the methods applied by this program therefore require reassessment and modifications.
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Chapter 2

Effect of alternative distributions of ground motion variability on re-
sults of probabilistic seismic hazard analysis

(Published in Natural Hazards, September 2015)

2.1 Abstract

PSHA is a regularly applied practice that precedes the construction of important engineering struc-

tures. The Cornell-McGuire procedure is the most frequently applied method of PSHA. This paper

examines the fundamental assumption of the Cornell-McGuire procedure for PSHA, namely, the

log-normal distribution of the residuals of the ground motion parameters. Although the assump-

tion of log-normality is standard, it has not been rigorously tested. Moreover, the application of

the unbounded log-normal distribution for the calculation of the hazard curves results in non-zero

probabilities of the exceedance of physically unrealistic amplitudes of ground motion parameters.

In this study, the distribution of the residuals of the logarithm of PGA is investigated, using the

database of the Strong-motion Seismograph Networks of Japan and the GMPE of Zhao and co-

authors. The distribution of residuals is modelled by a number of probability distributions, and the

one parametric law that approximates the distribution most precisely is chosen by the statistical

criteria. The results of the analysis show that the most accurate approximation is achieved with

the GEVD for a central part of a distribution and the GPD for its upper tail. The effect of replacing

a log-normal distribution in the main equation of the Cornell-McGuire method is demonstrated

by the calculation of hazard curves for a simple hypothetical example. These hazard curves differ

significantly from one another, especially at low annual exceedance probabilities.

2.2 Introduction

PSHA is a complicated and crucial problem of modern seismology as it is related to the effects

of strong earthquakes and their consequences for the inhabitants. PSHA is applied to estimate the

possible amplitudes of destructive seismic ground motion and to provide the design loads for the

construction of critical structures such as dams and power plants. The main goal of such analysis

is to minimise the negative effect of future strong earthquakes. Although there are several methods

of PSHA (Cornell, 1968; Shumilina et al., 2000; Kijko, 2008), the most frequently used method is

the Cornell-McGuire procedure (Cornell, 1968). The theoretical foundations, formulated by C.A.

Cornell and L.Esteva (McGuire, 2008), were supplemented by the computer programs developed
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by R.K. McGuire (1976; 1978), which led to a method of PSHA known as the Cornell-McGuire

procedure.

Ground motion variability is an important component of this method (Bender, 1984; Bom-

mer and Abrahamson, 2006). This component was introduced in the Cornell-McGuire procedure

to account for the effect of the scatter of the amplitude of seismic ground motion at a site (Cor-

nell, 1971) and is included in the main equation of this procedure. The common assumption is

that the ground motion variability can be modelled by a random variable with a log-normal distri-

bution (Joyner and Boore, 1981). This implies that the residuals of ground motion parameters are

log-normally distributed about the predicted value or, equivalently, that the residuals of the loga-

rithms of these parameters are normally distributed. However, this hypothesis has not been reliably

tested. Moreover, the assumption of log-normally distributed residuals has become a standard, and

as a result usually is not tested but is accepted as a given.

The evidence for a log-normal distribution was confirmed by the KS test at the 90 per cent

confidence limit (Campbell, 1981). Nevertheless, although the hypothesis was not rejected by the

KS test, it does not imply that the hypothesis is true. The KS test does perform well in a central

part of a distribution, however, it is widely known that the test demonstrates poor sensitivity to

deviations from the hypothesised distribution that occur in the tails.

The log-normal assumption is criticised in (Raschke, 2013), where author notes that the natu-

ral distribution for residuals of maxima, such as PGA, is the GEVD. The theory of extreme values

is widely applied in the analysis of natural disasters in general and in the analysis of seismic hazard

in particular. Pisarenko and Rodkin (2010) provides the results of the application of the extreme

value theory for various aspects of the analysis of natural disasters.

In general, a PSHA is applied to estimate ground motions with an APE down to 10−4, a

typical annual exceedance probability value designated for nuclear power plant design. However,

in a PSHA performed for the Yucca Mountain nuclear waste repository, probabilistic hazard curves

were extrapolated to an annual exceedance probability of 10−8. The peak characteristics of ground

motion corresponding to an annual exceedance probability of 10−7 were as high as 20 g for PGA

and up to 1800 cm/s for PGV (Corradini, 2003; Stamatakos, 2004). This instance revealed a

controversy in a fundamental assumption of the modern Cornell-McGuire method. As pointed

out, for example, in Abrahamson (2000), at these low annual probabilities, the hazard estimates

are controlled by the tail of the distribution of the ground motion residuals. Since log-normal

distribution is unbounded, extrapolation of a hazard curve leads to the unlimited increase of the

amplitudes of expected ground motions, with the decreasing of the APE.

On the other hand, some recent studies of the results of the GSHAP (Giardini et al., 1999)

revealed discrepancies between the observed seismicity and that predicted by the resulting maps

of this program (e.g. Kossobokov and Nekrasova, 2011; 2012; Wyss et al., 2012). The authors of

these studies concluded that the common methods of PSHA are inadequate and need to be revised

and probably modified.

One probable source of the revealed inadequacy is the assumption of the log-normal distribu-

tion of residuals of the ground motion parameter (e.g. PGA). An upper tail of the distribution of

the ground motion residuals controls the behaviour of hazard curves at long return periods. There-
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fore, an accurate modelling of this distribution, especially at an upper tail region, is a significant

problem.

The current study is methodological in nature and its main purpose is to introduce a suitable

method of studying the ground motion variability. In this study, an analysis of the distribution of

the residuals of the logarithm of PGA is performed in order to select a parametric law that describes

this distribution most accurately. Data obtained from the Japanese Strong-motion Seismograph

Networks were used in the study. The Japanese database was chosen mainly because of a dense

net of strong-motion stations that allows obtaining enough observations. A GMPE of Zhao et

al. (2006) was used for the calculation of the forecast values of PGA. Statistical criteria show that

the best approximation for the distribution of residuals of the logarithm of PGA is achieved with

the GEVD. The GPD is used to capture the behaviour of an upper tail more accurately.

2.3 Methods

The method for studying the distribution of residuals is based on the sequential application of the

KS test and the AIC, and a quantile-quantile plot. The distribution of the residuals of the natural

logarithm of PGA is modelled by a number of parametric distributions. The residual is defined as

ε = ln(PGAobserved)− ln(PGApredicted) (2.1)

where PGAobserved is the observed value and PGApredicted is the value calculated by using an ap-

propriate GMPE.

The typical GMPEs allow the calculation of median values of the ground motion parameters

by using their dependence on the magnitude, source to site distance, local soil conditions at a site,

source mechanism, and others. Such equations often have an empirical nature and are developed

based on vast databases of observed values of ground motion parameters (Boore and Joyner, 1982).

The selection of the most appropriate GMPE is not a trivial task and some guidance and criteria

for choosing the most appropriate GMPE for the application in a PSHA for a particular site can

be found in Scherbaum et al. (2009) and Arroyo et al. (2014). A comprehensive list of GMPEs

developed during the period 1964-2010 is presented in Douglas (2011).

In this study, data recorded by the Japanese Strong-motion Seismograph Networks were used.

The GMPE of Zhao et al. (2006) was used for the calculation of the forecast values of PGA. This

GMPE was developed for the calculation of the ground motion parameters of subduction zone

earthquakes, it allows calculating a geometrical mean of the horizontal components of PGA, or

5% damped acceleration response spectrum.

In this study, the logistic distribution, the Student’s t-distribution and the GEVD were consid-

ered as alternatives to the normal distribution. Following a standard notation, where µ is a location

parameter and σ is a scale parameter, PDFs of these distributions can be written as follows:

The PDF of Student’s t-distribution is defined as

fµ,σ ,n(x) =
Γ
(n+1

2

)
Γ
(n

2

)√
πnσ

(
1+

1
n
(x−µ)2

σ2

)− n+1
2

, x ∈ (−∞;+∞)
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where Γ is an Euler’s gamma function, n is a number of degrees of freedom.

The PDF of logistic distribution is defined as

fµ,σ (x) =
exp
(
− x−µ

σ

)
σ

(
1+ exp

(
− x−µ

σ

))2 , x ∈ (−∞;+∞)

The PDF of the GEVD is defined as

fµ,σ ,ξ (x) =
1
σ


(

1+ξ
(x−µ)

σ

)− 1
ξ
−1

exp
{
−
(

1+ξ
(x−µ)

σ

)− 1
ξ

}
, 1+ξ

(x−µ)
σ
≥ 0,ξ 6= 0

exp
{
− exp

(
− x−µ

σ

)
− x−µ

σ

}
, x ∈ (−∞;+∞),ξ = 0

where ξ is a shape parameter.

Statistical analysis was performed in the following order:

• Estimation of the distribution parameters by the ML method.

• Testing the hypothesis that a sample belongs to the current distribution by the KS test at

0.05 significance level.

• Calculation of the AIC for hypotheses that were accepted by the KS test.

The application of the KS test (Massey, 1951) for one sample allows rejecting the distributions

that do not fit the empirical data. The test statistic of this test with the Bol’shev’s amendment

(Bol’shev and Smirnov, 1965) is calculated by using the formula

Sk =
6nDn +1

6
√

n
(2.2)

where Dn = max(D+
n ,D

−
n ), D+

n = max
{ i

n −F(xi,θ)
}

, D−n = max
{

F(xi,θ)− i−1
n

}
; n is a sample

size, x1, . . . ,xn - elements of a sample, sorted in ascending order, F(x,θ) is a CDF of a parametric

model that undergoes the test.

An attractive feature of this test is that the distribution of its test statistic itself does not

depend on the underlying CDF being tested. However, in composite hypotheses testing, when the

parameters of the probability distribution are estimated on the analysed sample, the KS test loses

this feature. In such instances the conditional distribution of a test statistic depends on a number of

factors (such as form of F(x,θ), number of estimated parameters, method of parameter estimation

etc). Lemeshko and Lemeshko (2009) presents the updated results (tables of percentage points

and models of the distributions of statistics) for nonparametric goodness of fit tests in testing

composite hypotheses in case of using ML estimations. The KS test rejects hypotheses for which

the maximum deviation of the theoretical CDF from the empirical CDF exceeds a critical value at

a given significance level.

However, the KS test alone does not allow unambiguous conclusion about which parametric

model approximates the empirical distribution most accurately. Such a conclusion can be made

based on the calculation of the AIC (Akaike, 1974) for hypotheses that were accepted by the KS
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test. The criterion is defined as

AIC =−2ln(L)+2k (2.3)

where L is a maximised likelihood function, k is a number of parameters of the probability distri-

bution model. The parametric distribution for which the value of criterion is minimal is considered

the best approximation among the considered alternatives for the empirical distribution.

The quantile-quantile plot allows comparing the quantiles of empirical and theoretical distri-

butions. The conception of such a plot has emerged from the observation that for important classes

of distributions, the quantiles are linearly related to the corresponding quantiles of a standard ex-

ample from this class (Beirlant et al., 2004). Linearity in a graph can be easily checked by the eye

and can further be quantified by means of a correlation coefficient.

2.4 Results and discussion

The results of the statistical analysis show that the best approximation of the distribution of resid-

uals is achieved with the GEVD. It is important to note that a similar conclusion was reached in

Dupuis and Flemming (2006) from theoretical considerations. In Dupuis and Flemming (2006) the

regression analysis was performed using both the GEVD and the normal distribution as a model

for the distribution of residuals, it was demonstrated that a better fit to the data and in turn more

accurate acceleration estimates are obtained with the use of the GEVD. A similar conclusion in

regards of the distribution of the ground motion residuals was also reached in Raschke (2013).

Figure 2.1 demonstrates the histogram of residuals together with the fitted PDFs. Corre-

sponding values of the AIC are presented in Table 2.1.

The CDF of the GEVD is defined as

Hξ ,µ,σ (x) =

 exp
{
−
(

1+ξ
(x−µ)

σ

)−1/ξ
}
, ξ 6= 0

exp
{
−exp

(
− x−µ

σ

)}
, ξ = 0

This is generalised form, also known as the Jenkinson-von Mises representation, which combines

three types of extreme value distributions. When ξ = 0 it is equivalent to the Gumbel distribution

(type I), when ξ > 0 it is equivalent to the Fréchet distribution (type II) and when ξ < 0 it is

equivalent to the Weibull distribution (type III) (Embrechts et al., 1997).

Model AIC
GEVD 531.098
Normal 532.056
Student’s t 534.054
Logistic 537.948

Table 2.1: Values of the AIC for considered distributions

Figure 2.2 demonstrates the quantile-quantile plot for the quantiles of the GEVD. It can be

seen from the plot, that an upper tail of the distribution of the residuals slightly deviates from the
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Figure 2.1: Histogram of residuals and the fitted PDFs

GEVD. Accurate modelling of that tail is an important problem because it defines the hazard curve

at long return periods.

Therefore, the “peaks over threshold” method was applied to fit an upper tail of the distribu-

tion of residuals more precisely. This method is based on fitting the GPD to values that exceed

a reasonably large threshold (Embrechts et al., 1997). The GPD arises as a limiting distribution

of the excesses for a sufficiently large threshold value and is often used for modelling the tails of

empirical distributions. The CDF of the GPD is defined by the following function

Gξ ,ν ,β (x) =

 1−
(

1+ξ
(x−ν)

β

)−1/ξ

, ξ 6= 0

1− exp
(
− x−ν

β

)
, ξ = 0

Similar to the GEVD, the GPD is also characterised by three parameters, namely location

ν , scale β and the shape parameter ξ . When the GPD is used as a model for a tail of some

other distribution its parameter ν defines the threshold from which a tail region of that distribution

begins. When ξ = 0 the GPD is equivalent to the exponential distribution, when ξ > 0 the GPD

has a heavy tail, when ξ < 0 the GPD has a finite upper bound defined as xF = ν − β

ξ
. Three

possible types of tail of the PDF of the GPD, with different values of the shape parameter are

shown in Fig. 2.3.

There are several methods for the estimation of the shape parameter. Well-known methods,

such as the Hill estimator (1975) and the Pickands estimator (1975) are both based on the asymp-

totic properties and require a significant number of observations. Applicability of these methods

to the real observations is doubtful (Pictet et al., 1998). In this study, therefore, a shape parameter

was estimated by using the ML method.
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Figure 2.2: Quantile-quantile plot of sample data vs quantiles of the GEVD

The robust estimation of the shape parameter ξ̂ requires an optimal choice of the threshold

value ν̂ . If too high a value of ν̂ is chosen, too few exceedances and, consequently, high variance

estimators will be the result. When ν̂ is too small, the estimators become biased. The procedure

for the optimal determination of the threshold value is proposed in Embrechts et al. (1997). This

procedure utilises the linearity of the mean excess function for the GPD, which is defined as

e(ν̂) = E(X− ν̂ |X > ν̂) =
β̂ + ξ̂ ν̂

1− ξ̂
(2.4)

This procedure suggests selecting the threshold value ν̂ as a starting point of a linear segment

of the mean excess graph. Such a graph for sample data is presented in Fig. 2.4.

By varying the threshold value and observing changes in the estimates of the rest of the

parameters of the GPD, the optimal threshold value can be determined. Evidence of such a choice

is the stabilization of the estimates of the scale and shape parameters. Once again, a quantile-

quantile plot is used as a tool for comparing the data and the model. An estimator of the quantile

of the GPD can be written as

x̂p = ν̂ +
β̂

ξ̂

[( n
Nν̂

(1− p)
)−ξ̂

−1
]

(2.5)

where n and Nν̂ are sample size and number of exceedances, respectively, and ν̂ , β̂ and ξ̂ are

estimates of the GPD parameters.

Quantile-quantile plots of a tail of residual data versus quantiles of the GPD, with the values

of the shape parameter estimated by the ML method for the GEVD and the GPD are shown in

Figs. 2.5 and 2.6. The estimates of a shape parameter differ for the instances where the GEVD is
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Figure 2.3: Tails of PDF of the GPD with different values of parameter ξ

used as a model for a full range of residuals and where the GPD is used additionally to fit an upper

tail more accurately. The estimates are ξ̂ = −0.245 for the first instance and ξ̂ = −0.359 for the

second.

Therefore, the distribution of residuals is represented by a hybrid distribution model that

consists of the GEVD in a central region and the GPD in a region of an upper tail.

A similar analysis was performed during this study by using the GMPEs of Atkinson and

Boore (2003) and Kanno et al. (2006) to check how generally applicable these results are. The

results obtained with these GMPEs are very close to those presented in this study.

2.5 Implication for Probabilistic Seismic Hazard Analysis

For a demonstration of the effect of replacing a normal distribution, hazard curves were calculated

in the following manner:

1. Using an unbounded normal distribution.

2. Using a normal distribution, truncated at a specified level of ground motion.

3. Using the GEVD.

4. Using a hybrid distribution model that consists of the GEVD for a central region and the

GPD for an upper tail.

A brief review of the Cornell-McGuire PSHA procedure could be helpful for understanding the

following material.

To begin with, recap of a PDF of log-normal distribution could be useful. If the distribution

of a random variable is log-normal, its PDF has the following form
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Figure 2.4: Mean excess graph of sample data

fµ,σ (x) =
1

xσ
√

2π
e−

(lnx−µ)2

2σ2 , x > 0

The transformation Y = lnX leads to a normally distributed random variable with a location

µ and a scale σ parameters. The values of these parameters are estimated by using an appropriate

GMPE. Given an earthquake with magnitude m, the probability can be calculated that ground

motion at distance r from the source will exceed a particular level a0 by the following equation

P(y≥ ln(a0)|m,r) =
1√

2πσ

∫
∞

a0

e−
(y−µ)2

2σ2 dy (2.6)

This equation can be conveniently expressed in terms of the standard normal distribution

P(y≥ ln(a0)|m,r) = 1−Φ(z) (2.7)

where z = ln(a0)−µ

σ
is a standardised normal random variable and Φ(z) is the standard normal CDF.

Next, consider a site surrounded by N seismic sources. Each seismic source is characterised

by magnitude Mi, distance to site Ri and annual activity rate νi. The parameters of future seismic

events are yet unknown, therefore Mi and Ri are random variables with corresponding PDFs fMi(m)

and fRi(r). The total annual rate of exceedance of a particular level of ground motion a0 can be

calculated as follows

λ (y≥ ln(a0)) =
N

∑
i=1

νi

∫∫
P(y≥ ln(a0)|m,r) fMi(m) fRi(r)drdm (2.8)
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Figure 2.5: Quantile-quantile plot of the tail fraction of residuals, ξ is
estimated for the GEVD

From an assumption that the sequence of major seismic events can be modelled by the Poisson

distribution it follows that the probability for a particular level of ground motion a0 to be exceeded

at least once during the time interval T can be calculated (Anderson and Brune, 1999) as follows

P(y≥ ln(a0),T ) = 1− exp(−λ (y≥ ln(a0))×T ) (2.9)

The equation 2.9 with T = 1 year defines the seismic hazard curve, the main result of the

PSHA. For small values of the annual rate of exceedance (λ (y ≥ ln(a0))� 1), equation 2.9 can

be approximated as

P(y≥ ln(a0),T = 1) = 1− exp(−λ (y≥ ln(a0)))∼= λ (y≥ ln(a0)) (2.10)

As emphasised in Wang (2011), T = 1 year is neglected on the right side of 2.10, thus both

sides of this equation contain a dimensionless quantity, i.e. the APE.

As can be seen from equation 2.8, the ground motion variability is explicitly incorporated

in the calculation of the seismic hazard. It is, namely used in a calculation of the conditional

exceedance probability of a ground motion of a particular level a0. The normal distribution is

unbounded, therefore the further a hazard curve extrapolated, the higher the level of ground motion

is expected to be exceeded.

The necessity of an upper bound of the ground motion, as well as the difficulties related to

its determination are summarised in Bommer et al. (2004). Strasser et al. (2004) proposed the

truncation of the distribution of residuals at a level of three standard deviations above the median

as a measure to prevent the effect of unbounded normal distribution. Given a normal distribution,
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Figure 2.6: Quantile-quantile plot of the tail fraction of residuals, ξ is
estimated for the GPD

truncated at a value aT , the PDF has to be renormalised to satisfy the fundamental properties of

PDF. Then, the probability that an earthquake with magnitude m will produce ground motion at

distance r from the source that exceeds a particular level a0 can be expressed as

P(y≥ ln(a0)|m,r) =

{
1− Φ(z)

Φ(zT )
, y≤ aT

0, y > aT
(2.11)

where zT = ln(aT )−µ

σ
.

After the replacement of a normal distribution by the GEVD, the same probability can be

expressed as

P(y≥ ln(a0)|m,r) = 1−Hξ (z) (2.12)

where Hξ is a standardised CDF of the GEVD.

And after the replacement of a normal distribution by a hybrid model, this probability can be

written as

P(y≥ ln(a0)|m,r) =

{
1− (1− p)

Hξ (z)
Hξ (zν )

, y≤ µ +ν

p(1−Gξ (z)), y > µ +ν

(2.13)

where zν = ln(aν )−µ

σ
, aν = exp(µ +ν), Gξ (z) is a standardised CDF of the GPD, p is a fraction of

the residual values that fall in a tail region.

For the purpose of demonstration, a simple hypothetical example was considered. This ex-

ample is similar to an example used in Baker (2008) and assumes there are two seismic sources
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that may affect the site. Both sources are subduction slab sources. The first source is capable of

producing an earthquake of magnitude m1 = 5.5 every 100 years (ν1 = 0.01) and is located at a

depth of d1 = 30 km and a distance of r1 = 140 km from the site. The second source is capable of

producing an earthquake of magnitude m2 = 6.5 every 500 years (ν2 = 0.002) and is located at a

depth of d2 = 30 km and a distance of r2 = 200 km from the site. The soil conditions at a site are

characterised as medium soil (VS30 = 250 m
s ). For the given combinations of parameters, a GMPE

of Zhao et al. (2006) gives ln(PGA) values of µ1 = 1.8404 cm
s2 , µ2 = 2.0233 cm

s2 and a standard

deviation σ = 0.6840, which is a constant in this GMPE for seismic events generated by sources

of identical type. With the defined earthquake scenarios, equation 2.8 simplifies to the following

λ (y≥ ln(a0)) = ν1×P(y≥ ln(a0)|m1,r1)+ν2×P(y≥ ln(a0)|m2,r2) (2.14)

By repeating these calculations for a range of values of PGA, a total hazard curve can be

constructed. Hazard curves calculated by using the above-mentioned distributions are represented

in Fig. 2.7. As can be seen, the hazard curve calculated by using the GEVD displays the high-

est ground motion estimates, almost down to an annual exceedance probability of 10−6 where it

crosses with the hazard curve calculated by using an unbounded normal distribution.

The hazard curve calculated by using a hybrid distribution model is very close to the curve

calculated by using a truncated normal distribution, down to an annual exceedance probability of

10−5, after which it estimates higher ground motions and the difference gradually increases.
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Figure 2.7: Hazard curves calculated by using different parametric distributions
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As can be seen from Fig. 2.7, the hazard curves calculated by using the GEVD and a hybrid

distribution model depend strongly on the shape parameter ξ . Although the method applied for

statistical analysis in this study is satisfactory, the estimations of the shape parameter can only be

called preliminary. These estimations were obtained based on the strong ground motion records

from a particular region and, therefore, are valid only for this particular region, which, in this

instance is Japan. Such analysis should be performed for a multiple number of datasets of the

recordings of seismic ground motions that were induced by earthquakes of various types and

magnitudes, and were recorded worldwide, for a possible generalisation of these results.

2.6 Conclusion

In this study, the distribution of the residuals of ln(PGA) was modelled by a number of probability

distribution laws, using the database of the Strong-motion Seismograph Networks of Japan and

a GMPE of Zhao et al. (2006). The results of the analysis indicate that the best approximation

for the distribution of residuals was obtained with the GEVD. This result is consistent with the

conclusions of Dupuis and Flemming (2006) and Raschke (2013). The ”peaks over threshold”

method was applied in an attempt to model an upper tail of the distribution of residuals more

precisely. Thus, the resulting distribution of residuals is a hybrid model that consists of the GEVD

in a central region and the GPD in a region of an upper tail. Similar analysis was performed

during this study by using GMPEs of Atkinson and Boore (2003) and Kanno et al. (2006), which

demonstrated analogous regularities.

The estimations of the shape parameter of the GEVD and the GPD resulted in negative values,

indicating that the distribution of residuals has a finite upper bound. Consequently, a maximum

value of PGA can be associated with an earthquake scenario involved in the PSHA. This approach

is preferred to the truncation procedures proposed in Strasser et al. (2004), because a maximum

value of PGA, unlike the truncation of a distribution, has a clear physical meaning.

Hazard curves were calculated for a simple hypothetical example to demonstrate the effect

of the replacement of the normal distribution. Hazard curves were calculated by using the GEVD

and a hybrid distribution model, which differ from each other and from the curves calculated by

using the normal distribution. This difference is particularly evident at low annual exceedance

probabilities.
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Chapter 3

Estimation of the upper bound of seismic hazard curve by using the
generalized extreme value distribution

3.1 Abstract

The problem considered in this study is that of unrealistic ground motion estimates, which arise in the
Cornell-McGuire method when the seismic hazard curve is calculated for extremely low APEs. This prob-
lem stems from using the normal distribution in the modelling of the variability of the logarithm of ground
motion parameters. In this study, the database of the strong-motion seismograph networks of Japan was
used to examine the distribution of the logarithm of PGA. The normal distribution and the GEVD models
were considered in the analysis, with the preferred model being selected based on the statistical criteria.
The results of the analysis demonstrated the superiority of the GEVD in the vast majority of considered
examples. The estimates of the shape parameter of the GEVD were negative in every considered example,
indicating the presence of a finite upper bound of PGA. Therefore, the GEVD provides a model that is
more realistic for the scatter of the logarithm of PGA, and the application of this model leads to a bounded
seismic hazard curve.

3.2 Introduction

PSHA is an important field of modern seismology, related to the effects of strong earthquakes and their
consequences. The main purpose of PSHA is to estimate the design ground motion that can be utilised in
earthquake structural engineering to produce a structure that can withstand a certain level of shaking with-
out severe damage, and thus reduce the negative effects of strong earthquakes, i.e. casualties and damage
to infrastructure. Several PSHA methods exist (Cornell, 1968; Milne and Davenport, 1969; Molchan et
al., 1970; Veneziano et al., 1984; Frankel, 1995; Kijko and Graham, 1998; 1999; Ebel and Kafka, 1999;
Shumilina et al., 2000); however, the most widely applied method is the Cornell-McGuire procedure (Cor-
nell, 1968; 1971; McGuire, 1976; 1978). This method was formulated by C.A.Cornell and L.Esteva (Bom-
mer and Abrahamson, 2006; McGuire, 2008) and was supplemented with computer programs developed by
R.K.McGuire.

Although extensive further development has taken place since the Cornell-McGuire method was orig-
inally published, some controversial aspects remain in its mathematical formulation. One of these is the
limitlessness of the seismic hazard curves at very low APE. Pertinent examples of such a flaw in modern
PSHA include seismic hazard studies that were performed for the Yucca Mountain nuclear waste repository
in the USA (Stepp et al., 2001) and the PEGASOS project in Switzerland (Abrahamson et al., 2002). Both
studies considered the extremely low APE (down to 10−8 and 10−7, respectively) and provided unrealis-
tically high values of ground motion parameters (Stepp et al., 2001; Corradini, 2003; Stamatakos, 2004;
Klügel, 2005).

35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



For very low APE, the hazard estimates are controlled by the tail of the distribution of the ground
motion residuals (Anderson and Brune, 1999; Abrahamson, 2000; Wang, 2011). In current practice, the
distribution of the residuals of the ground motion parameters is assumed to correspond to a log-normal
distribution and, therefore, the distribution of logarithmic residuals is modelled by a normal (Gaussian)
distribution. Since normal distribution is unlimited, the estimations of the ground motion parameters at
very low APE are unlimited as well.

The determination of the possible upper bounds of seismic ground motions has been discussed in engi-
neering seismology for a long time. The history of the development of this subject is discussed in Bommer
et al. (2004) and Strasser and Bommer (2009). The values that were suggested as possible limits of ground
motion parameters, such as PGA and PGV, have been gradually increasing because of the accumulation of
strong motion records and the consequent increase of the observed maximum values of these parameters.

The Bayesian procedure for estimating the maximum value of a parameter of ground motion that
would occur at a given site within the specified time interval was proposed by Pisarenko and Lyubushin (1997;
1999) and was applied by Lyubushin et al. (2002). This procedure utilises the catalogue of seismic events
and the GMPE; it is applicable for any ground motion parameter that may be estimated by using the GMPE
(e.g., PGA, components of acceleration response spectra, seismic intensity).

Kijko and Graham (1999) have proposed two approaches for estimating the maximum value of PGA
at a site of interest. The first approach suggests the straightforward estimation of PGA by using the appro-
priate GMPE, under assumption that the strongest possible earthquake (i.e., an earthquake with magnitude
M̂max, where M̂max is estimated by using one of the methods such as developed by Pisarenko et al., 1996;
Kijko, 2004; Kijko and Singh, 2011) occurred very close to the site (e.g., at a distance of 10 km). The sec-
ond approach utilises the distribution of logarithm of PGA at a site, derived by Kijko and Graham (1999).
The derived distribution of logarithm of PGA at a site is of the same type as the distribution of earthquake
magnitude, obtained under the assumption of applicability of the GR (Gutenberg and Richter, 1944) recur-
rence law. The similarity of two distributions allows estimation of the maximum possible PGA at a site by
modifying the techniques developed for assessing the upper limit of earthquake magnitude.

Some studies (e.g., Strasser et al., 2008b) have sought a solution to the problem by truncation of
the distribution of ground motion residuals. However, such a procedure has no clear physical meaning;
moreover, to a certain extent it is arbitrary.

An example of such a study is that of Romeo and Prestininzi (2000), who proposed a truncation at
two standard deviations above the median of the distribution. On the other hand, Strasser et al. (2004)
indicated that the truncation should be performed at least at a level three standard deviations above the
median. Conversely, McGuire (1976) suggested that the distribution of residuals should be truncated at a
level six standard deviations above the median value, or truncation should be performed in such a way that
the ground motion amplitude at a site could not be greater than that value at the epicenter (McGuire, 1977).

Bommer and Abrahamson (2006) have indicated that truncation at a level above three standard de-
viations has little effect on the hazard curves in the range of the return periods that are generally used in
engineering design. If the seismic activity of the region is not very high, this effect would remain small,
even for a return period of 104 years.

An interesting discussion on the influence of truncating the distribution of ground motion residuals on
the results of PSHA can be found in Wu et al. (2011). These authors (Wu et al., 2011) concluded that the
number of standard deviations depends on the range of APE under consideration and it should gradually
increase with the decrease of the APE.

Hypothetical hazard curves, calculated by using the unbounded normal distribution, as well as the
normal distribution, truncated at levels of three, four, and five standard deviations above the median value,
are presented in Fig. 3.1
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Figure 3.1: Effect of truncation of the distribution of residuals on the haz-
ard estimates

However, truncation of the distribution of the ground motion residuals potentially leads to an exclusion
of certain strong motions that have low probability of occurrence from the scope of analysis. Moreover, it is
exactly those particular strong motions that define the behavior of the seismic hazard curve at a long return
period. Therefore, from this perspective, the truncation of ground motion variability seems doubtful.

On the other hand, some studies have focused on investigating the distribution of ground motion vari-
ability. Accordingly, Lavallée and Archuleta (2005) have investigated the distribution of the absolute values
of PGA obtained from the strong motion records of the 1999 Chi-Chi earthquake and have suggested to
model it by the Lévy distribution. Dupuis and Flemming (2006) have indicated that the distribution of
residuals of PGA should theoretically correspond to the GEVD. Dupuis and Flemming (2006) have per-
formed regression analysis under assumption of the log-normal distribution of residuals, as well as under
assumption of the residuals being distributed according to the GEVD. The results demonstrated that a supe-
rior fit to the data and, in turn, more accurate acceleration estimates are obtained under the latter assumption.
Similar considerations were expressed by Raschke (2013), who criticised the log-normal assumption and
noted that the GEVD is the natural distribution for residuals of maxima such as PGA.

Huyse et al. (2010) applied the peaks over threshold method to analyse both the raw PGA data and the
logarithmic residuals of PGA, and concluded that the GPD, with the negative shape parameter, provided a
model that was more accurate for the tail fractions of both the studied datasets. Similar results were obtained
by Pavlenko (2015), who found that the GEVD was a more appropriate model for logarithmic residuals of
PGA.

In the present study, the analysis of the statistical properties of ln(PGA) is continued. The analysis
is based on the data of the strong-motion seismograph networks of Japan (K-NET, KiK-net). Statistical
criteria are used to compare the performance of the normal distribution and the GEVD models. The results
indicate the superior performance of the GEVD in the vast majority of considered examples.
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3.3 The Cornell-McGuire procedure

In PSHA, the seismic hazard is characterised by the probability P(y ≥ a0,T ) = P(a0,T ) that the ground
motion parameter y will exceed the value a0 at a given site at least once during a specified period of time
T . It is usually assumed in PSHA studies that the sequence of major seismic events can be modelled by the
Poisson process (e.g. Anderson and Brune, 1999). This assumption allows the calculation of P(a0,T ):

P(a0,T ) = 1− e−λ (a0)T (3.1)

where λ (a0) = λ (y≥ a0) is the mean annual rate of exceedance of ground motions level a0 at the site.

For T = 1 year and for (λ (a0)� 1), eq. (3.1) can be approximated as:

P(a0,T = 1) = 1− e−λ (a0) ∼= λ (a0) (3.2)

Equation (3.2) is an approximation of the APE and T = 1 year is neglected on the right hand side
of (3.2); therefore, both sides of this equation contain a dimensionless quantity (Wang, 2011). For a single
seismic source, λ (a0) can be calculated as:

λ (a0) = νP(y≥ a0) (3.3)

where ν is the annual rate of occurrence of earthquakes with magnitude greater than or equal to m0, which
is the lower threshold of magnitude of earthquakes capable of producing ground motions with y ≥ a0 at a
site. The probability of exceedance P(y≥ a0), given the occurrence of an earthquake, can be calculated by
using the total probability theorem:

P(y≥ a0) =
∫∫

P(y≥ a0|m,r) fM(m) fR(r)dmdr (3.4)

where fM(m) and fR(r) denote the PDFs of magnitude and source to site distance, respectively, and P(y≥
a0|m,r) is the conditional probability that an earthquake of magnitude m would cause ground motion y≥ a0

at distance r from the source.

The generalisation of Eq. (3.3) for an instance of N seismic sources is straightforward, as the total
annual rate of exceedance is the sum of the rates of individual seismic sources:

λ (a0) =
N

∑
i=1

λi(a0) =
N

∑
i=1

νiP(y≥ a0) (3.5)

where subscript i indicates the i-th seismic source.

The substitution of Eq. (3.4) into Eq. (3.5) yields:

λ (a0) =
N

∑
i=1

νi

∫∫
P(y≥ a0|m,r) fMi(m) fRi(r)dmdr (3.6)

The variability of the ground motion was recognised as an important element of seismic hazard cal-
culations (Bender, 1984), and integration over the distribution of possible values of y was included in the
calculations (Cornell, 1971; McGuire, 1976).

For a given combination of m and r, the GMPE allows estimation of the mean value of ln(y) and its
standard deviation. The scatter of observed values of ln(y) around the mean is taken into account by consid-
ering the conditional probability distribution of ln(y) (Fig. 3.2). The standard assumption in current practice
is that for the given m and r, y has a log-normal distribution (e.g. Abrahamson, 1988), or, equivalently, that
ln(y) is normally distributed. Consequently, the conditional probability of exceedance P(y ≥ a0|m,r) is
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calculated by using the normal distribution:

P(y≥ a0|m,r) =
1√

2πσ

∞∫
a0

e−
(ln(u)−µ)2

2σ2 du = 1−Φ(z) (3.7)

where z = [ln(a0)−µ]/σ is the standardised normal random variable and Φ(z) is the standard normal CDF.
As the normal distribution has unbounded support, any value of ln(y) receives a non-zero probability

of being exceeded. Clearly, this is not appropriate, as the amount of energy released during an earthquake
is finite, and, therefore, the ground motion should be bounded. As a result, truncating the distribution at
some level above the median has become the standard practice. However, this practice has shortcomings,
as was discussed above. A model that is more appropriate for the distribution of ln(y) would account for
the finiteness of the ground motion induced by an earthquake of magnitude m at distance r.

3.4 Generalised extreme value distribution

The extreme value theory is devoted to the statistical analysis of rare events, and is used widely in various
fields of knowledge, such as hydrology, meteorology, structural engineering, and earth sciences. This theory
has a broad range of applications in the analyses of natural disasters (Pisarenko and Rodkin, 2010; 2014),
and it is used in analysing the largest possible earthquakes (e.g. Epstein and Lomnitz, 1966; Kijko and
Sellevoll, 1981).

The general result in the extreme value theory, the Fisher-Tippett-Gnedenko theorem (Fisher and Tip-
pett, 1928; Gnedenko, 1943), postulates that a properly normalised maximum from a sample {Xn, n ≥ 1}
of independent identically distributed random variables, with distribution function F, can only converge
in distribution to one of the three possible limiting distributions. Specifically, assume a sequence of con-
stants an > 0, and bn ∈ R (n ≥ 1), such that a normalised sample maximum has a non-degenerate limiting
distribution:

lim
n→∞

Fn(anx+bn) = G(x) (3.8)
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Then, G must be one of the following three extreme value distributions:

Gumbel (type I): Λ(x) = exp(−e−x), x ∈ R
Fréchet (type II): Φα(x) = exp(−x−α), x > 0, α > 0
Weibull (type III): Ψα(x) = exp(−(−x)α), x≤ 0, α > 0

Three extreme value distributions can be combined into a single generalised form by introducing the shape
parameter ξ so, that:

ξ =


0 corresponds to Λ(x)
α−1 > 0 corresponds to Φα(x)
−α−1 < 0 corresponds to Ψα(x)

The following form is the GEVD, also called the Jenkinson-von Mises representation:

Gξ (z) =

{
exp(−(1+ξ z)−1/ξ ), 1+ξ z > 0, ξ 6= 0
exp(−e−z) , z ∈ R, ξ = 0

(3.9)

where z = (x−µ)/σ , and µ , σ and ξ are the location, scale, and shape parameters, respectively.
The distribution function F belongs to the domain of attraction of Gξ if (3.8) holds with G = Gξ . The

Gumbel domain of attraction D(G0) includes a large variety of distributions, of which the tails can be differ
significantly; ranging from moderately heavy, such as the log-normal distribution to very light, such as the
normal distribution. The Fréchet domain of attraction D(Gξ+) consists of the heavy-tailed distributions, of
which the right tail behaves like a power law. Such distributions include the Pareto, Cauchy, Student’s-t,
and the Fréchet distributions. The Weibull domain of attraction D(Gξ−) includes distributions with finite
right endpoints (Fig. 3.3), for example, the uniform and the beta distributions.

Suppose a is the horizontal acceleration induced by an earthquake with magnitude m at distance r
from the source. Let amax denote the upper limit of a, then the possible values of ln(a) would be bounded
by (−∞, ln(amax)], and the distribution of ln(a) would belong to the Weibull domain of attraction. As PGA
is a maximum of a, it would be reasonable to expect that the distribution of ln(PGA) would converge to the
Weibull extreme value distribution.
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Figure 3.3: PDF of a distribution with the support bounded on the right
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3.5 Applied procedure and data

The same procedure applied in Pavlenko (2015) was used in this study to examine the probability distribu-
tion of ln(PGA), with the normal distribution and the GEVD being considered as potential models in the
current analysis. The data of the strong-motion seismograph networks of Japan (www.kyoshin.bosai.go.jp)
were used in the study. The stations located on very dense soil (National Earthquake Hazards Reduction
Program [NEHRP] class C) were selected, and the records of events with focal depths from 10 to 20 km and
hypocentral distances from 46 to 54 km were used in the analysis. Some extension of the distance range is
inevitable to gain enough data for statistical analysis. It is believed that the data obtained are representative
of the random scatter in ln(PGA) for the given m and r. The data were grouped into bins according to mag-
nitude, and the empirical distributions of ln(PGA) were modelled for the magnitude bins that contained the
bulk of the data.

Various parameters have been used in ground motion studies to describe the level of horizontal ac-
celeration, such as the square root of the sum of squares of two horizontal components (e.g. Kanno et
al., 2006), and the geometric mean of the two components (e.g. Zhao et al., 2006). In this study, these
two parameters are used for horizontal PGA, the first one is denoted PGASR (square root) and the second is
denoted PGAGM (geometric mean).

The PDFs of the normal distribution and the GEVD are given by:

φ(z) =
1√

2πσ
exp(−z2/2), z ∈ R (3.10)

g(z) =

{
exp
(
−(1+ξ z)−1/ξ

)
(1+ξ z)−1/ξ−1 , 1+ξ z > 0, ξ 6= 0

exp(−e−z− z) , z ∈ R, ξ = 0
(3.11)

The parameters of the normal distribution were estimated by the ML method. The basic principle
of this method is that the parameter values that maximise the likelihood of obtaining the given sample in
a series of experiments should be taken as the most plausible estimates. In practice, this is achieved by
maximisation of the likelihood function L, or its natural logarithm `, called the log-likelihood function:

`= ln(L) =
n

∑
i=1

ln[ f (xi|θ)] (3.12)

The details of the method for normal distribution are well known and therefore require no explana-
tion. The estimators for parameters µ and σ are the sample mean and the sample standard deviation. The
estimation of the parameters of the GEVD has its nuances; the support of Gξ depends on the unknown
values of the parameters. Furthermore, the applicability of the estimation methods depends on the value of
ξ . Various methods exist for estimating ξ , which could be applied in different circumstances. For instance,
the well-known Hill estimator (1975) is applicable only for positive values of ξ ; the ML estimator is valid
for ξ >−0.5; the probability-weighted moment estimator (Hosking et al., 1985) is valid for ξ < 1; and the
Pickands estimator (1975) and the moment estimator proposed by Dekkers et al. (1989) can be applied in
the general instance (ξ ∈ R). Detailed reviews of these estimation techniques can be found in Embrechts
et al. (1997), Beirlant et al. (2004), and de Haan and Ferreira (2006).

In the present study, the condition ξ >−0.5 was fulfilled for the analysed data and therefore the ML
method could be applied. The log-likelihood function of the sample {Xn, n≥ 1} of GEVD random variables
for the instance ξ 6= 0 is given by:

`=−n ln(σ)−
(

1
ξ
+1
) n

∑
i=1

ln(1+ξ zi)−
n

∑
i=1

(1+ξ zi)
−1/ξ (3.13)
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where zi = (Xi−µ)/σ .
Differentiating (3.13) with respect to µ , σ , and ξ , yields the following likelihood equations:

∑
n
i=1 ai bi = 0

∑
n
i=1 zi ai bi−n = 0

∑
n
i=1 zi ai bi +

1
ξ

∑
n
i=1 ln(ai)(bi−ξ ) = 0

(3.14)

where ai = (1+ξ zi)
−1, bi = 1+ξ − (1+ξ zi)

−1/ξ .
These equations have no explicit solution and therefore should be solved numerically. Iterative nu-

merical procedures were proposed for this purpose by among others Prescott and Walden (1980) and Hosk-
ing (1985). In the instance ξ > −0.5, the ML method provides consistent, efficient, and asymptotically
normal estimators. The covariance matrix of vector θ̂ = (µ̂, σ̂ , ξ̂ ) can be obtained from the inverse of the
Fisher information matrix:

Ii j = −
(

∂ 2`

∂θi ∂θ j

)∣∣∣∣
θ=θ̂

(3.15)

The KS test (Kolmogorov, 1933) was used to test for significant deviations between the theoretical
and the empirical distributions. The goodness of the fit of the models was compared by using the AIC
(Akaike, 1974):

AIC =−2ln(L)+2k (3.16)

where L is the maximum value of the likelihood function, and k is a number of parameters of probability
distribution. The AIC allows estimating the information loss as a result of using the particular model. When
a set of candidate models is considered, with AICi denoting the AIC value of the i-th model, and AICmin

denoting the minimum of those values, then, for the i-th model, the relative likelihood can be calculated as
follows:

L̃ = exp[(AICmin−AICi)/2] (3.17)

This quantity measures the relative probability of the i-th model to minimise the information loss.

3.6 Results and discussion

The histograms of ln(PGASR) and ln(PGAGM), with fitted normal distribution, and the GEVD are shown
in Figs. 3.4 and 3.5, and the relative likelihoods are listed in Table 3.1. The majority of histograms have a
similar shape, with a slightly elongated right tail. There is good agreement between the results obtained for
ln(PGASR) and ln(PGAGM), and, relevant to both parameters, the normal distribution performed better than
the GEVD only in one instance out of twelve. Although there is no obvious trend, all the estimates of ξ

were negative, which confirms the convergence of data to the bounded Weibull extreme value distribution.
Similar results were obtained by Huyse et al. (2010) and Pavlenko (2015).

The applicability of the GEVD for peak ground motion parameters is supported by the extreme value
theory. The GEVD is a flexible distribution that can assume a variety of shapes and its shape parameter ξ

governs the decay of the tail of distribution. In instance ξ < 0, the support of the GEVD is bounded on the
right. The inverse distribution function of the GEVD is:

Q(p) =

{
µ +σ{[− ln(p)]−ξ −1}/ξ ξ 6= 0
µ−σ{ln[− ln(p)]} ξ = 0

(3.18)
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In instance ξ < 0, the right endpoint of the support is given by:

xF = Q(1) = µ− σ

ξ
(3.19)

The estimate of xF can be obtained by substituting the estimates of the parameters into Eq. (3.19).
Thereby, the GEVD allows accounting for the finiteness of the seismic ground motion, and provides a
rational way of estimating the maximum value of PGA for a specified earthquake scenario. This is a viable
alternative to the common practice of using the truncated normal distribution (e.g. Strasser et al.,2008b) for
modelling the scatter of the logarithm of peak ground motion parameters.

PGASR PGAGM
M L̃(Gξ ) L̃(Φ) L̃(Gξ ) L̃(Φ)

3.4 1.0 0.497 1.0 0.313
3.5 1.0 0.133 1.0 0.092
3.6 1.0 0.344 1.0 0.113
3.7 1.0 0.032 1.0 0.013
3.8 1.0 0.173 1.0 0.084
3.9 1.0 0.479 1.0 0.394
4.0 0.016 1.0 0.028 1.0
4.1 1.0 0.312 1.0 0.321
4.2 1.0 0.847 1.0 0.872
4.3 1.0 0.029 1.0 0.034
4.4 1.0 0.402 1.0 0.414
4.5 1.0 0.758 1.0 0.699

Table 3.1: Relative likelihoods of the GEVD (Gξ ) and the normal distribution (Φ)
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Figure 3.4: Sample histograms of ln(PGASR). The PDFs of the normal distribution and the GEVD are
shown by the broken and the solid lines, respectively. Magnitude (M), sample size (N) and estimated value
of ξ are shown for each histogram
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Figure 3.5: The same as in Fig. 3.4 for ln(PGAGM)
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3.7 Conclusion

In this study, the distribution of ln(PGA) was investigated by using the data of the strong-motion seismo-
graph networks of Japan. The normal distribution and the GEVD were used for modelling the empirical
distribution of ln(PGA). Two definitions of horizontal PGA were used, namely, the square root of the sum
of squares of two horizontal components and the geometric mean of the two horizontal components. Simi-
lar results were obtained for both definitions, the GEVD provided a better fit than the normal distribution in
eleven out of twelve instances. The estimated values of the shape parameter of the GEVD were negative in
every instance, indicating that the support of the distribution is bounded on the right. Therefore, the GEVD
provides a more realistic model for the scatter of the ln(PGA), which allows accounting for the finiteness
of the ground motion induced by a specified earthquake scenario. The maximum value of PGA can be
estimated directly from the parameters of the GEVD. Correct modelling of the ground motion parameters
is important for realistic seismic hazard assessment and the studies on the statistical properties of these
parameters should therefore be continued.
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able suggestions that helped to improve its quality. I am grateful to the K-NET and KiK-net strong-motion
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Chapter 4

On Anisotropic Attenuation Law of Modified Mercalli Intensity

4.1 Abstract

Seismic intensity is frequently used to describe the effects of earthquakes. In many instances, isoseismal
maps demonstrate an elongated elliptical shape, indicating the influence of anisotropy in the attenuation
of the seismic intensity. In this purely methodological study, a set of equations that could account for
this anisotropy is proposed. These equations were validated by modelling the isoseismal maps of two
well-recorded seismic events that occurred in South Africa. The ability of the new equations to model the
observed data is compared with that of the classic isotropic attenuation law. The results of the analysis
indicate that, in general, the new equations provide a superior fit to the observed data, especially as regards
pronounced anisotropy.

4.2 Introduction

An intensity scale is defined as the distance-dependent value that describes the effects of a seismic event
on humans, structures, and on the surface of the Earth at a particular site. The observed effects become
less noticeable as the distance from the hypocentre of the seismic event increases. PGA, the maximum
measured (or expected) acceleration amplitude of an earthquake, is an alternative measure often used to
describe seismic effects.

Despite the concept of seismic intensity measurements being at least 80 years old, it remains a subject
of extensive research worldwide. The MM intensity scale and the MM IPEs are the focus of continuous
research in USA (Dengler and Dewey, 1998; Bakun, 2000; Dewey et al., 2000; Kaka and Atkinson, 2004;
Bakun, 2006), Canada (Jalpa and Atkinson, 2012), and Central Asia (Bindi et al., 2014).

The IPEs form integral part of the ShakeMap code (Atkinson and Kaka, 2007), and are used, e.g., in
Chile (Barrientos et al., 2004) and Japan (Bakun, 2005), and are considered the standard in Europe (EMS-
98, 1998; Bakun and Scotti, 2006). In addition, these equations are used widely to determine the location
and magnitude of historical earthquakes (Bakun and Wentworth, 1997; Bakun, 2005, 2006; Bakun and
Scotti, 2006; Park and Hong, 2016).

The introduction of the Prompt Assessment of Global Earthquakes for Response (PAGER) system
(Wald et al., 2008; Earle et al., 2009) has contributed significantly to the application and improved under-
standing of the MM intensity scale by the public, the media, and disaster management authorities. Worden
et al. (2010) and Allen et al. (2012) have provided excellent reviews on the application of the intensity scale
in ShakeMaps in active crustal regions.

Using the MM intensity-based prediction equations posses several significant advantages compared
with using the GMPEs based on the PGA. One of these advantages is related to the effect of local conditions
on the amplitude of the surface ground motion. Accounting for the site effect could be a difficult task with
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respect to the PGA (e.g., Chiou et al., 2008); however, this effect is taken into account automatically in
regional IPEs.

Another advantage of using MM IPE is observed in the application of the vulnerability curves, often
expressed in terms of MM intensities, especially in the insurance industry. Employing MM intensity-based
damage curves allows for the calculation of seismic risk, without the additional conversion of the PGA to
the MM intensity or vice versa. If such conversions are required in a risk assessment procedure, various
conversion equations could be used. These include the equations by Neumann (1954), Gutenberg and
Richter (1956), Ambraseys (1974), Trifunac and Brady (1975), Murphy and O’Brien (1977), Saragoni et
al. (1982), Wald et al. (1999), and Worden et al. (2012).

However, similar to the GMPE problem, no systematic database of damage to infrastructure exists
and, therefore, no region-characteristic vulnerability curves relevant to seismicity in South Africa exist.
Moreover, it would not be possible to construct such curves in the near future. Since the required calibration
data for South African conditions are non-existent, the above conversion equations cannot be applied with
any level of accuracy. Consequently, the ATC-13 (1985) damage curves, or similar, are used for South
African seismic risk assessment. Alternative vulnerability curves, e.g., Risk-UE (Mouroux et al., 2004)
were excluded because of significant uncertainties relevant to the predicted damages (G. Trendafiloski,
personal communication 2011).

Currently, IPEs are often applied that do not account for anisotropy of the attenuation of seismic in-
tensity. However, in many instances, the anisotropic representation of the medium facilitates significantly
superior agreement with the results of the observations than the isotropic representation does. Therefore,
there is a clear need to develop appropriate attenuation equations. The current study is purely methodologi-
cal and its main purpose is to suggest a suitable method to account for the anisotropy in IPEs. Accordingly,
a suitable set of equations is proposed, which is validated by modelling the isoseismal maps of two well-
recorded seismic events.

4.3 Applied models

The dependence of amplitude A of an elastic wave on distance r from the emitter can be expressed as:

A(r)∼ A0 e−αrr−β (4.1)

where A0 is the amplitude at the emitter, α is the frequency-dependent coefficient of the attenuation, r−β is
the geometrical spreading factor, and β is a distance-dependent coefficient (Boore, 2003).

It can be shown that this type of dependence leads to an attenuation equation of seismic intensity of
the following form (Peruzza, 1996):

I0− I =−a1−a2 ln(r)−a3r (4.2)

where I0 is the maximum (focal) MM intensity at the epicentre, I is the MM intensity at the site of interest,
a1,a2, and a3 are parameters, and r is the epicentral/hypocentral distance (km).

The numerical values of parameters a1,a2, and a3 vary depending on the region of investigation and
they are usually estimated from MM intensity distribution maps by using the standard least squares regres-
sion (Carnahan et al., 1969).

The empirical relation between earthquake magnitude m and the MM intensity at the epicentre I0, is
given by (Richter, 1958):

I0 =
3
2

m−1 (4.3)
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The IPE (4.2) does not take into account that the ground-motion amplitude variation is a function
of the direction of the rupture propagation, focal mechanism, and medium anisotropy. All these factors
contribute to the ground-motion amplitude variation as a function of azimuth and, in contrast with intensity,
their effect on ground motion acceleration is well understood (e.g. Yamazaki and Türker, 1992; Somerville
et al., 1997; Miyake et al., 2001; Spudich and Chiou, 2008).

Seismic anisotropy is a characteristic of the medium that reflects the horizontal component of the
dependence of the velocity of propagation and the attenuation of the seismic waves on the azimuth. The
effect of anisotropy can be introduced into IPE in several ways.

Accordingly, Papazachos (1992), in examining the principal parameters of the attenuation of the upper
crust in Greece, suggested an anisotropic model for the radiation of seismic intensity at the source. The new
model appeared to be significantly more reliable compared with the previously proposed isotropic models.

An approach proposed by Teramo et al. (1995) is based on the suitable mechanical modelling of
the macroseismic fields and allows for the quantitative characterisation of their anisotropy. The resulting
attenuation model was compared with previously developed models by analysing the macroseismic data
from a set of earthquakes that occurred in two regions of Italy. The comparison demonstrated the greater
adaptability of the new model to the observed data.

Termini et al. (2005) applied the same modelling technique and obtained an anisotropic attenuation
law with the same structure as that of Teramo et al. (1995). The reliability of the proposed attenuation law
was confirmed by analysing local and regional macroseismic data.

Zonno et al. (2009) utilised the Bayesian method to estimate the probability distribution of macroseis-
mic intensity at a particular site and obtained two probabilistic models for forecasting the intensity levels
in Italy. The applicability of the models was demonstrated by forecasting the scenario produced by the
Colfiorito earthquake of 1997.

Sørensen et al. (2010) derived new IPEs, based on a previously developed model (Sørensen et al., 2009),
by introducing a regional correction factor that accounts for the anisotropic intensity distribution character-
istic for the Vrancea region of Romania.

The IPEs suggested in this study are modifications of the IPE (4.2) to account for anisotropy of the
attenuation of seismic intensity. It is anticipated that in the horizontal plane variation of characteristics
of the medium with an azimuth has a period of 180°, that is, in opposite directions these characteristics
would be similar. Moreover, there is a point where the differences between the characteristics on the two
orthogonal directions reach maximum values. In view of these considerations, the following set of equations
is proposed, suitable for accounting for the effect of anisotropy:

I0− I =−a1−a2 ln(r)−a3 r|cos(Φ)| (4.4)

I0− I =−a1−a2 ln{r[a3 +a4|cos(Φ)|]}− r[a3 +a4|cos(Φ)|] (4.5)

I0− I =−a1−a2 ln(r)−a3 r cos(2Φ) (4.6)

I0− I =−a1−a2 ln{r[a3 +a4 cos(2Φ)]}− r[a3 +a4 cos(2Φ)] (4.7)

where a1, . . . ,ak are the parameters to be determined, r is the epicentral distance to the apparent epicentre,
I is the MM intensity at distance r, I0 is the maximum MM intensity at the epicentre, Φ = (Az−φ), Az is
the azimuth from the apparent epicentre to a point, and φ is the angle between the dominant axis of the MM
intensity distribution and the northern direction.

The apparent epicentre is defined as the centre point of the MM intensity distribution, whereas the
epicentre refers to the point on the surface of the Earth directly above the hypocentre. Various factors lead
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to the epicentre and the apparent epicentre not always coinciding as, e.g., in the instance of the August 5,
2014 Orkney (South Africa) seismic event. Likewise, Sørensen et al. (2010) have indicated a systematic
shift between the epicentre and location of the maximum intensities of the earthquakes of the Vrancea
region in Romania.

Equations (4.4) and (4.6) are linear with respect to parameters a1,a2, and a3; therefore the standard
linear least square procedure could be applied. The solution to the system of three equations can be written
in matrix form, as follows:

(A−1A)a = A−1y (4.8)

where A is the following (n×3) matrix:

A =


−1 − ln(r1) −r1F1

...
...

...
−1 − ln(rn) −rnFn

 (4.9)

with

Fi =

{
cos[2(Azi−φ)]

|cos(Azi−φ)|
(4.10)

Vectors y and a are column vectors defined as y = (I0− I1, . . . , I0− In)
T , and a = (a1, . . . ,ak)

T . Sub-
script i (= 1,2, . . . ,n) represents the individual intensity data points, with a total of n such data points
available. The epicentral distance ri is defined as the distance between the apparent epicentre and point i.
The MM intensity observed at point i is denoted by Ii and Azi is the azimuth from the apparent epicentre to
point i. The matrix operator T denotes the transpose of the respective matrix or vector.

Equations (4.5) and (4.7) are not linear with respect to parameters a1,a2,a3, and a4; therefore, es-
timating these values represents a more sophisticated problem. For these equations, the parameters were
estimated by minimising the sum of the squared residuals, with the application of the derivative-free Nelder-
Mead simplex procedure (Nelder and Mead, 1965). The starting point for the simplex algorithm was ob-
tained as the solution of a linearised system similar to (4.8), with matrix AL given by:

AL =


−1 − ln(r1) −r1 −r1F1

...
...

...
...

−1 − ln(rn) −rn −rnFn

 (4.11)

The variance-covariance matrix for the vector of the unknown parameters a, for each of the four
defined models (4.4) to (4.7), is given by:

D(â) = s2 (AT A
)−1

(4.12)

where

s2 =
(ŷ− y)T (ŷ− y)

n− k
(4.13)

As regards equations (4.4) and (4.6), A is the (n× 3) matrix defined by equation (4.9). As regards
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equations (4.5) and (4.7), A is the (n×4) matrix of partial derivatives evaluated at the solution point â:

A =


−1 − ln[r1(a3 +a4F1)]

−a2
a3+a4F1

− r1

(
−a2

a3+a4F1
− r1

)
F1

...
...

...
...

−1 − ln[rn(a3 +a4Fn)]
−a2

a3+a4Fn
− rn

(
−a2

a3+a4Fn
− rn

)
Fn


∣∣∣∣∣∣∣∣∣
(a=â)

(4.14)

Vector ŷ denotes the estimated values of I0− Ii. By definition, the sample standard deviation (standard
error) of each unknown parameter is therefore given by σa j ≡

√
D j j for j = 1, . . . ,k and D j j is the diagonal

element of matrix D.
The results of applying models (4.2),(4.4),(4.5),(4.6), and (4.7) were compared based on the AIC

(Akaike, 1971), defined as:

AIC =−2ln(L)+2k (4.15)

where L is a maximised likelihood function, and k is the number of parameters to be estimated.
The calculated values of the AIC were normalised. Consequently, AIC = 1 corresponds to the model

providing the worst approximation for the observed data, whereas the model for which AIC was minimal,
provided the best approximation among the considered alternatives.

4.4 Case studies

Two well-recorded seismic events in South Africa were considered to demonstrate the performance of the
proposed set of models. The first event is an earthquake of ML 5.5 that occurred in the Orkney area of the
North West Province of South Africa on August 5, 2014. The earthquake shaking was felt widely in southern
Africa and as far from the epicentre as Cape Town, Maputo (Mozambique), and Gaborone (Botswana).
One person was killed and more than 600 houses were damaged. The coordinates of the epicentre were
estimated as 26.942°S, 26.818°E, and the focal depth was estimated as 4.7 km. The communities located
in the epicentral area experienced a maximum MM intensity of VII (Midzi et al., 2015).

The second event is an earthquake of ML 6.3 that occurred on September 29, 1969 in the Ceres-
Tulbagh region of the Cape Province of South Africa. This event caused several casualties and considerable
damage to properties in and around the towns of Ceres, Tulbagh, and Wolseley, with reports of significant
damage covering an area of approximately 2000 km2. The strong shock caused panic in Cape Town, located
100 km from the source region, while reliable reports were received from locations as far as Johannesburg
(1150 km away). The epicentral coordinates were estimated as 32.9°S, 19.7°E (Green and Bloch, 1971).
The reported estimates of the focal depth vary from 4 to 33 km; however, a recent estimate of 15 km was
given by Scherbaum and Krüger (2014). This seismic event remains the most destructive earthquake ever
experienced in South Africa.

Figs. 4.1 and 4.2 demonstrate the actual and modelled isoseismal maps of the Orkney and Ceres-
Tulbagh earthquakes, respectively. The estimated parameters of the IPEs, corresponding standard errors,
and the normalised values of the AIC are listed in Tables 4.1 and 4.2. IPE (4.5) provides the best approxi-
mation for the isoseismal map of the Orkney seismic event (Table 4.1), whereas that of the Ceres-Tulbagh
seismic event is provided by IPE (4.6) (Table 4.2).
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(a) Actual isoseismal map
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(b) Result of IPE (4.2)
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(c) Result of IPE (4.4)

 

 

KhumaKlerksdorp

Orkney

Stilfontein

Vierfontein

26.2 26.4 26.6 26.8 27 27.2

−27.2

−27

−26.8

−26.6

1

2

3

4

5

6

7

(d) Result of IPE (4.5)
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(e) Result of IPE (4.6)
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(f) Result of IPE (4.7)

Figure 4.1: Actual and modelled isoseismal maps of the Orkney earthquake of August 5, 2014

a1±σa1 a2±σa2 a3±σa3 a4±σa4 AIC
IPE (4.2) 2.0116±0.2841 −1.0767±0.0691 0.0011±0.0005 - 0.980
IPE (4.4) 1.9280±0.2457 −1.0538±0.0552 0.0018±0.0006 - 0.966
IPE (4.5) −5.2010±0.1942 −1.1402±0.0719 0.0012±0.0004 0.0006±0.0003 0.953
IPE (4.6) 1.5801±0.2250 −0.9498±0.0448 0.0002±0.0002 - 1.000
IPE (4.7) −5.2418±0.2285 −1.1101±0.0717 0.0014±0.0005 0.0002±0.0001 0.977

Table 4.1: Parameters, standard errors, and the normalised values of the AIC estimated from the
macroseismic data of the Orkney earthquake of August 5, 2014
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(a) Actual isoseismal map
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(b) Result of IPE (4.2)
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(c) Result of IPE (4.4)
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(d) Result of IPE (4.5)
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(e) Result of IPE (4.6)
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(f) Result of IPE (4.7)

Figure 4.2: Actual and modelled isoseismal maps of the Ceres-Tulbagh earthquake of September 29, 1969

a1±σa1 a2±σa2 a3±σa3 a4±σa4 AIC
IPE (4.2) 4.6170±0.7929 −1.6038±0.1793 0.0005±0.0006 - 1.000
IPE (4.4) 5.6311±0.5710 −1.8512±0.1242 0.0023±0.0006 - 0.888
IPE (4.5) −7.6241±1.2954 −1.5226±0.1579 0.0003±0.0003 0.0003±0.0003 0.896
IPE (4.6) 4.2693±0.3729 −1.5231±0.0690 0.0016±0.0003 - 0.871
IPE (4.7) −7.5821±1.2190 −1.5396±0.1564 0.0005±0.0005 0.0001±0.0002 0.879

Table 4.2: Parameters, standard errors, and the normalised values of the AIC estimated from the
macroseismic data of the Ceres-Tulbagh earthquake of September 29, 1969
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4.5 Conclusion

In this methodological study, a set of models was proposed that is suitable for describing the anisotropy in
the attenuation of seismic intensity. The applicability of the proposed models was demonstrated by mod-
elling the isoseismal maps of two well-recorded seismic events that occurred in South Africa on September
29, 1969 and August 5, 2014. By calculating the AIC, the results of the application of the proposed models
were compared with the results obtained by using the isotropic model.

A surprising finding was that the performance of the isotropic IPE (4.2) was superior to that of the
IPE (4.6) when the isoseismal map of the Orkney seismic event was modelled (Table 4.1). This result could
probably be attributed to the relatively weak anisotropy of the observed macroseismic fields. However,
relevant to the more pronounced anisotropy observed for the Ceres-Tulbagh seismic event, a new set of
IPEs facilitated a considerable improvement compared with the results of the isotropic IPE (4.2) (Table
4.2). In general, the proposed set of IPEs provided a superior fit to the observations. This result agrees with
the conclusions reached by Papazachos (1992) and Teramo et al. (1995).

The findings of this study indicate that the best approximations for the two considered seismic events
were obtained by different models. This could be interpreted as evidence that no single universal aniso-
tropic IPE would be applicable equally to every seismic event.

Acknowledgements We are grateful to the editor of the Journal of Seismology, Dr. Mariano Garcı́a
Fernández, for help and suggestions regarding available literature on anisotropy of attenuation of seismic
intensity. We appreciate helpful comments and suggestions by Dr. Päivi Mäntyniemi from the Institute of
Seismology, University of Helsinki.
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Chapter 5

Comparative study of three probabilistic methods for seismic hazard
analysis: Case studies of Sochi and Kamchatka

5.1 Abstract

This study examines the effect of the procedures used in three different PSHA methods for estimating the
rates of exceedance of ground motion. To evaluate the effect of these procedures, the Cornell-McGuire
and Parametric-Historic methods, and the method based on Monte Carlo simulations are employed, and the
seismic source model, based on spatially smoothed seismicity, is used in the calculations. Two regions in
Russia were selected for comparison, and seismic hazard maps were prepared for return periods of 475 and
2475 years. The results indicate that the choice of a particular method for conducting PSHA has relatively
little effect on the hazard estimates. The Cornell-McGuire method yielded the highest estimates, with the
two other methods producing slightly lower estimates. The variation among the results based on the three
methods appeared to be virtually independent of the return period. The variation in the results for the Sochi
region was within 6%, and that for the Kamchatka region was within 10%. Accordingly, the considered
PSHA methods would provide closely related results for areas of moderate seismic activity; however, the
difference among the results would apparently increase with increasing seismic activity.

5.2 Introduction

The PSHA methodology allows estimation of the probability that various ground motion levels would be
exceeded at a particular site during a specified time interval. Such analysis should precede the construction
of infrastructure facilities in seismically active regions. At present, the Cornell-McGuire method (Cor-
nell, 1968; McGuire, 1976; 1978) is applied most frequently for PSHA. This method incorporates informa-
tion on seismic source zones (in the form of active faults or areal sources), FMDs (e.g. the GR relation),
and GMPEs to estimate seismic hazard at a particular site. In this method, considerable attention is paid to
the problem of accounting for various uncertainties (Budnitz et al., 1997), by using probability distributions
(aleatory variability) and logic trees (epistemic uncertainties).

The initial step of the Cornell-McGuire method requires delineating the seismic sources, which are
characterised by uniform spatial distribution of seismicity and homogeneous seismic parameters. Over
time, it has become clear that the uniform distribution in many instances does not reflect the actual spatial
distribution of epicentres (e.g. Wiemer et al., 2009; Spada et al., 2011). Moreover, the process of defining
the source zones can be difficult and subjective, potentially leading to significant differences in the resulting
source geometries prepared by different groups of experts (e.g. McGuire, 1993; Frankel, 1995; Budnitz et
al., 1997). In addition, the estimation of the seismic parameters in areas of relatively low seismicity presents
a substantial problem.

Such difficulties have stimulated the development of alternative methods that do not require the defini-

55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



tion of the seismic source zones. These methods include, e.g. the techniques of Milne and Davenport (1969)
and Veneziano et al. (1984) that are based entirely on the information from the seismic event catalogues,
the methods of Frankel (1995) and Woo (1996) that use the spatial smoothing of seismicity, and the method
of Kijko and Graham (1998; 1999) that combines the strong features of the previous techniques. In ad-
dition, there are PSHA procedures based on the Monte Carlo simulations (e.g. Ebel and Kafka, 1999;
Musson, 2000; Shumilina et al., 2000; Assatourians and Atkinson, 2013).

In view of these different PSHA methods, the question is how the hazard estimates resulting from these
different methods corresponded. In large countries, such as Russia, where seismogenic provinces differ
significantly, different groups of experts often use different methods to analyse the seismic hazard in their
regions. In such instances, it is important to know in what way the results of these analyses corresponded
to each other.

Several studies have been devoted to this question, such as those by Molina et al. (2001), Beauval et
al. (2006), Hong et al. (2006), and Goda et al. (2013). These studies were primarily focused on investigating
the influences of different seismicity models on the estimated seismic hazard.

Molina et al. (2001) and Beauval et al. (2006) have compared the hazard estimates obtained with the
conventional zoning approach - the basis of the Cornell-McGuire method - with those obtained by using
the Kernel Smoothing method of Woo (1996). Using synthetic earthquake catalogues, Hong et al. (2006)
conducted a comparison of seismic hazard estimates based on the Cornell-McGuire method, the Davenport-
Milne method, and the Epicentral Cell method (an extension of the latter). Goda et al. (2013) used syn-
thetic earthquake data to evaluate the effects of different smoothing approaches by employing the Cornell-
McGuire, the Kernel Smoothing, and the Epicentral Cell methods.

The findings of these studies have demonstrated, among other things, that the assumption of a homo-
geneous activity rate within a seismic source zone is a poor representation of the true activity rate (Molina
et al., 2001). In addition, it was shown that the hazard estimates based on the Cornell-McGuire method are
generally higher than are those based on other methods.

In addition to the differences of the applied seismic source models, the existing PSHA methods use
different procedures to estimate the rates of exceedance of ground motion. In contrast with previous compar-
ative studies, the current work is focused on investigating the effect of the procedures used in the different
PSHA methods to estimate the exceedance rates. Based on the same seismic source model, three major
PSHA methodologies are compared, namely, the conventional Cornell-McGuire method, the Parametric-
Historic method, and the method based on Monte Carlo simulations.

5.3 Materials and Methods

5.3.1 Earthquake catalogue

The main earthquake catalogue used in this study represents the entire territory of Eurasia, and the timespan
is from ancient times to the end of 2011. These data were generously provided by Dr Nina Medvedeva
from the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences (http://ifz.ru). All
dependent seismic events were removed during the preparation of the catalogue. The catalogue lists the
date, epicentral coordinates, focal depth, and the surface-wave magnitude Ms of each event, and, for some
events, the focal intensity and the azimuth of rupture propagation are available.

Two areas in Russia have been selected for investigation in this study, namely, the city of Sochi on the
Black Sea coast and surrounding area, and the Kamchatka Peninsula in far eastern Russia. Both these areas
are characterised by high seismic activity, with the seismicity of Sochi and surroundings being characterised
by crustal earthquakes and that of Kamchatka by subduction earthquakes. Moreover, the characteristics of
the radiation and propagation of seismic waves in these two areas differ substantially (Pavlenko, 2011).
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More recent (2012-2016) seismic data for the selected areas were obtained from the United States Ge-
ological Survey (USGS) website (http://earthquake.usgs.gov/earthquakes/search/). The USGS data mostly
provide the body-wave magnitude mb. The space-time windowing algorithm of Gardner and Knopoff (1974)
was applied to these data to remove clusters and dependent seismic events. To obtain a homogeneous cata-
logue, magnitudes were converted to the moment magnitude scale Mw. Conversions were performed, based
on the regional relations, if available; otherwise, global relations were applied. Therefore, small values
of mb in the regional catalogue for the Sochi area were converted by using the relation of Gasperini et
al. (2013), which is based on the European-Mediterranean dataset. Conversions of both mb and Ms for the
Kamchatka Peninsula were performed by using the regional relations obtained by Gusev (1991). These re-
lations were presented as a discrete set of points, therefore simple polynomial interpolation was applied to
obtain continuous relations. Outside of the applicability ranges of regional relations, global relations were
used. The adopted conversion scheme is shown in Table 5.1.

The resulting catalogue for the Sochi area contains 3958 earthquakes, with Mw from 3.0 to 8.1;
whereas, that for the Kamchatka Peninsula contains 10389 earthquakes, with Mw from 3.6 to 9.0. The
epicentres of these earthquakes are shown in Figs. 5.1 and 5.2. By using the cumulative plots of the num-
ber of seismic events as a function of time, the regional catalogues have been divided into sections, i.e.
those containing pre-instrumental historical records and those containing complete instrumental earthquake
data. For each instrumental sub-catalogue, the magnitude of completeness Mc was estimated based on the
procedure proposed by Amorèse (2007).

Sochi
mb < 5.0 : Mw = exp(1.19+0.16mb)−2.26 (Gasperini et al., 2013)

mb ≥ 5.0, H ≥ 70km : Mw = 0.165m2
b−0.372mb +2.816 (Tsampas et al., 2016)

H < 70km : Mw = 1.64mb−3.18 (Das et al., 2011)
H < 70km, Ms ∈ [3.0 , 6.1] : Mw = 0.67Ms +2.12 (Das et al., 2011)

Ms ∈ [6.2 , 8.4] : Mw = 1.06Ms−0.38 (Das et al., 2011)
H ≥ 70km, Ms ∈ [3.3 , 4.3] : Mw = 0.67Ms +2.33 (Das et al., 2011)

Ms ∈ [4.4 , 7.7] : Mw =−0.006M2
s +0.850Ms +1.540 (Tsampas et al., 2016)

Kamchatka
mb < 4.5 : Mw = exp(−0.60+0.34mb)+2.15 (Gasperini et al., 2013)

mb ∈ [4.5 , 6.3] : Interpolation (Gusev, 1991)
Ms < 3.9, H ≥ 70km : Mw = 0.67Ms +2.33 (Das et al., 2011)

H < 70km : Mw = 0.67Ms +2.12 (Das et al., 2011)
Ms ≥ 3.9 : Interpolation (Gusev, 1991)

Table 5.1: Applied magnitude conversions

5.3.2 Seismic source model

The seismic source model used in this study resembles the approach proposed by Frankel (1995) for map-
ping seismic hazard in the United States (e.g. Frankel et al., 2002; Petersen et al., 2014). The area of study
is covered by a regular grid of points forming a square of cells. Each cell is treated as a point seismic source
and earthquakes are assumed to occur as a stationary Poisson process with constant rate Λ .

The FMD describes the relation between the frequency of occurrence and the magnitude of earth-
quakes. The most common FMD in seismic hazard studies is the GR relation (Gutenberg and Richter, 1944):

log10 N(M) = a−bM (5.1)

where N(M) is the number of seismic events with magnitude equal to or greater than M, a is a measure of the
level of seismic activity, and b is the slope of the recurrence curve. If the magnitudes of the seismic events
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Figure 5.1: Location of epicentres in area surrounding Sochi

are assumed to be independent identically distributed random variables, and the magnitude range is bounded
from the top, then, the distribution of magnitude has the form of a truncated exponential distribution, with
the following CDF:

FM(m) =
1− exp [−β (m−Mc)]

1− exp [−β (Mmax−Mc)]
, Mc ≤ m≤Mmax (5.2)

where β = b ln(10), and Mmax is a magnitude of the strongest possible earthquake in the area. The uncer-
tainty of parameter β can be handled by applying the compound (Bayesian) distribution (DeGroot, 1970;
Hamada et al., 2008; Klugman et al., 2008). In general, if the random variable M has a CDF FM(m,θ),
with vector of parameters θ , and fθ (θ) denotes the PDF of θ , the compound CDF would be calculated as
follows:

FM(m) =
∫

Ωθ

FM(m,θ) fθ (θ)dθ (5.3)

Assuming that the variation of β can be modelled by a gamma distribution, the following compound
CDF can be obtained (Campbell, 1982; Kijko and Graham, 1998; Kijko et al., 2016):

FM(m) =Cβ

[
1−
(

p
p+m−Mc

)q]
, Mc ≤ m≤Mmax (5.4)

where p= β̄

σ2
β

, q=
(

β̄

σβ

)2
, β̄ is the mean value of β and σβ is its standard deviation, and Cβ is a normalising
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constant given by:

Cβ =

[
1−
(

p
p+Mmax−Mc

)q]−1

(5.5)

The corresponding compound PDF is expressed as:

fM(m) = β̄Cβ

(
p

p+m−Mc

)q+1

, Mc ≤ m≤Mmax (5.6)

Thereby, the set of required parameters for each seismic source consists of Λ , β , and Mmax. These param-
eters were estimated in the following manner. First, Mmax was estimated based on a few largest observed
magnitudes (Kijko and Singh, 2011):

M̂max = Mobs
max +

1
n0

(
Mobs

max−
1

n0−1

n0

∑
i=2

Mn−i+1

)
(5.7)

where Mobs
max is the largest observed earthquake magnitude, n0 = 10, and Mn−i+1 is the (n− i)-th largest

observation.
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Figure 5.2: Location of epicentres at the Kamchatka Peninsula
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Second, Λ and β were estimated by maximising the joint likelihood function, as described by Kijko
and Sellevoll (1989; 1992). This procedure allows using the information from the whole seismic catalogue
(i.e. pre-instrumental data and complete data), and accounting for uncertainties associated with the FMD
and magnitude determination.

5.3.3 Hazard calculations

The seismic hazard at a particular site is characterised by the ground motion that has a specified probability
to be exceeded at least once during the specified period of time. The assumption that the occurrence of
earthquakes conforms to a stationary Poisson process allows the calculation of the probability that ground
motion parameter y would exceed the value a0 at the site at least once during time interval T :

P[y≥ a0,T ] = 1− e−λ (a0)T (5.8)

where λ (a0) is the annual rate of exceedance of ground motion level a0 at the site.

The estimation procedure for the exceedance rate λ (a0) depends on the applied PSHA methodology.
For the Cornell-McGuire method, this value is estimated by using the following equation, based on the total
probability theorem:

λ (a0) =
N

∑
i

Λi

∫
R

∫
M

P[y≥ a0|m,r] fMi(m) fRi(r)dr dm (5.9)

where the summation is taken over all seismic sources capable of inducing significant ground motion at
the site, fRi(r) is the PDF of distance R, fMi(m) is the PDF of magnitude M given in eq. (5.6), Mmin is
the smallest magnitude considered in the analysis (in this study, Mmin = 4.0), the conditional probability of
exceedance P[y ≥ a0|m,r] reflects the inherent variability of ground motion y for given magnitude m and
distance r, usually calculated by using the normal (Gaussian) distribution.

In this study, as the seismic sources are modelled as a regular grid of point sources, eq. (5.9) reduces
to the following:

λ (a0) =
N

∑
i

Λi

Mi
max∫

Mmin

P[y≥ a0|m,r] fMi(m)dm (5.10)

By increasing the value a0 and repeating these calculations, the seismic hazard curve is constructed.

The Parametric-Historic method is oriented more empirically. Only the sources that induce ground
motions y in excess of a fixed lower threshold amin are taken into account. The magnitude range is sub-
divided into small intervals ∆m and for each source the cumulative rate of exceedance is calculated by
summing the incremental rates. The total annual rate of exceedance λ (a0) is calculated by summation over
all contributing sources:

λ (a0) = P[y≥ a0]
Ns

∑
i

Nm

∑
j

Λi(a≥ amin)

m j+∆m/2∫
m j−∆m/2

fMi(m)dm (5.11)

where Ns is the number of seismic sources that induce ground motions y in excess of the fixed lower
threshold amin, Nm is the number of intervals ∆m between Mmin and Mi

max, and P[y≥ a0] is the probability
of exceedance, estimated from the empirical distribution of y at a site of interest.

The third considered PSHA procedure is based on a synthetic catalogue of seismic events. The syn-
thetic catalogue is generated by the Monte Carlo simulation technique, based on the estimated seismic
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parameters Λ , β , and Mmax. The duration of the synthetic catalogue Tc should be sufficient to allow for
reliable hazard estimation. In this study, two probability levels are considered, namely, 10% and 2% proba-
bilities of exceedance in 50 years, which correspond to return periods of approximately 475 and 2475 years,
respectively. In this study, the duration of the synthetic catalogues was equal to a hundred times the return
period.

The estimation of the annual rate of exceedance λ (a0) from the synthetic catalogue is straightforward.
The ground motion parameter y is calculated for each event of the synthetic catalogue and a cumulative
histogram of y is calculated. Subsequently, the cumulative histogram is normalised by the timespan of the
synthetic catalogue Tc, and the required annual rate of exceedance λ (a0) is obtained from the normalised
histogram.

5.3.4 Selection of the GMPEs

Estimates of the expected ground motion at the site of interest are fundamental factors in seismic hazard
analysis. The ground motion is characterised by a particular parameter, usually a horizontal PGA, PGV,
or spectral acceleration. GMPEs are employed to estimate ground motion parameters for use in both the
deterministic and the probabilistic seismic hazard analyses. These equations allow estimation of the me-
dian values of the ground motion parameters, based on the earthquake magnitude, source to site distance,
local soil conditions, fault mechanism, and other parameters. The GMPEs are usually empirical equations
obtained by means of regression analysis (e.g. Joyner and Boore, 1993). A large variety of GMPEs for
different parts of the world have been developed over the years (Douglas, 2011).

As regards the regions selected for this study, the main characteristics of the radiation and propa-
gation of seismic waves at the North Caucasus region and in the vicinity of Sochi have been studied by
Pavlenko (2008; 2009; 2016) and Pavlenko and Pavlenko (2016), but a regional GMPE has not been devel-
oped yet. Despite continuous studies on strong ground motions at Kamchatka (Gusev et al., 1997; Petukhin
et al., 1999; Chubarova et al., 2010), a reliable GMPE for this region has not been established yet. In such
instances, a common practice is to adopt the GMPEs developed for other regions with similar tectonic prop-
erties (e.g. Stafford et al., 2008; Delavaud et al., 2009). Since the purpose of the current study is to compare
the different methods of PSHA rather than to assess the seismic hazard itself, the adoption of particular
GMPEs should not affect the results radically. Therefore, in this study, a set of GMPEs recommended by
the Global Earthquake Model (GEM, http://www.globalquakemodel.org) project is used. These GMPEs are
listed in Table 5.2.

Reference Scaling parameters Sochi Kamchatka Weight
Akkar and Bommer (2007) Mw, RJB X X 0.2
Boore and Atkinson (2008) Mw, RJB X X 0.2
Campbell and Bozorgnia (2008) Mw, Rrup X X 0.2
Cauzzi and Faccioli (2008) Mw, Rhyp X X 0.2
Chiou and Youngs (2008) Mw, Rrup X X 0.2
Youngs et al. (1997) Mw, Rrup − X 0.34
Atkinson and Boore (2003) Mw, Rrup − X 0.33
Kanno et al. (2006) Mw, Rrup − X 0.33

Table 5.2: The GMPEs recommended by the GEM

The GMPEs of Akkar and Bommer (2007) and Cauzzi and Faccioli (2008) have been developed for
implementation in the European region. Akkar and Bommer (2007) used strong motion data from Europe
and the Middle East for their study, while Cauzzi and Faccioli (2008) compiled the database by including
the strong motion records from Japan, Iran, California, Turkey, Iceland, and Italy. The GMPEs of Boore
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and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008) have been developed
as contributions to the Next Generation Attenuation project of the Pacific Earthquake Engineering Research
Center (peer.berkeley.edu), and are considered globally applicable to shallow crustal earthquakes in active
tectonic regions.

Youngs et al. (1997) and Atkinson and Boore (2003) have developed globally applicable GMPEs for
subduction zone earthquakes, based on the global strong motion databases, whereas, the GMPE of Kanno
et al. (2006) has been developed by using the data from Japan, California, and Turkey. Youngs et al. (1997)
and Atkinson and Boore (2003) categorised earthquakes as interface events (shallow-angle thrust events that
occur on the interface between the subducting and the overriding plates, usually not deeper than 50 km) and
intraslab events (events that occur within the subducting oceanic plate and which are typically high-angle
normal faulting events). Kanno et al. (2006) distinguished between shallow and deep earthquakes.

The seismic hazard in Sochi and the surrounding region is partially attributable to the proximity of the
area to the Caucasus Mountains, a part of the Iran-Caucasus-Anatolia seismic region, characterised by high
seismic activity. Furthermore, numerous strong and moderate earthquakes have been reported in the Sochi
area and in other parts of the Black Sea coastal area, as well as in the Black Sea itself.

In comparison with the seismicity of the Sochi region, that of the Kamchatka Peninsula represents a
greater challenge. The seismicity of the Kamchatka Peninsula is characterised by subduction earthquakes
on the south eastern coast, where seismicity is dominated by the events occurring at the Kuril-Kamchatka
Trench. At the north end of the peninsula, seismicity is characterised by less frequent crustal earthquakes.
To the west of the peninsula, in the Sea of Okhotsk, several large deep-focus earthquakes have occurred in
recent times, including the great Mw 8.3 earthquake of May 24, 2013 (Chebrova et al., 2015).

Along the south eastern coast, in area that extends deep into the peninsula, the ground motions could
be caused by either the subduction earthquakes occurring on the dipping Pacific Plate beneath the peninsula,
or by the crustal earthquakes. This area was modelled as a transition zone of mixed seismicity, where both
types of earthquakes contribute to strong ground motions. The structure of the Kamchatka subduction zone
was explored in detail by Gorbatov et al. (1997). The ground motions in the transition zone were estimated
as the weighted average of the outputs of two GMPEs, one developed for crustal seismicity, and the second
developed for subduction earthquakes:  y = pc yc + ps ys

σ =
√

p2
c σ2

c + p2
s σ2

s

(5.12)

where p represent normalised weights that reflect the relative probability for ground motion to be induced
by a subduction or crustal event, y is the median ground motion value, and σ is the corresponding standard
deviation, subscripts c and s mean crustal and subduction.

Epistemic uncertainty was handled by using the logic tree formalism (e.g. Bommer et al., 2005), and
a set of alternative hazard curves was calculated by using the GMPEs, from which the mean hazard curve
was selected to characterise seismic hazard. The weights of the set of GMPEs are listed in Table 5.2.

5.4 Results and discussion

Figures 5.3 and 5.4 show the seismic hazard maps for PGA for the two considered areas. In these figures,
the hazard maps for exceedance probability of 10% in 50 years (return period of 475 years) are shown in
the upper row; whereas, in the lower row, the maps are shown for exceedance probability of 2% in 50 years
(return period of 2475 years). In the computation of seismic hazard, the grid size was set to 0.1°for the
Sochi area and to 0.2°for the Kamchatka area.
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Figure 5.3: Comparison of seismic hazard maps for Sochi and surrounding area. Left to right: the Cornell-
McGuire method, the Parametric-Historic method, and the method based on the Monte Carlo technique.
Upper row: TR = 475 years, lower row: TR = 2475 years. White circle shows location of Sochi. Profile 1 is
shown by grey crosses in Fig. 5.3(a)

The shape of the hazard contours reflects the observed regional seismicity, with the higher hazard
being concentrated near the epicentres of the major seismic events. When the return period is increased
from 475 years to 2475 years, the seismic hazard estimates increase by a factor of nearly 1.9, while the
shape of the contours remains unchanged.

It could be interesting to subject these maps to a test to indicate which of the methods provides the most
realistic result. Objective testing of the PSHA results is a significant problem, which has been discussed by
several authors (e.g. McGuire, 1979; Ward, 1995; Ordaz and Reyes, 1999; Beauval et al., 2008; Stirling and
Gerstenberger, 2010; Stein et al., 2011; Kossobokov and Nekrasova, 2012; Stirling, 2012; Wyss et al., 2012;
Stein et al., 2012; Mezcua et al., 2013; Stein et al., 2015), with various approaches being proposed.

There are two main categories of tests, of which the first relates to testing the modelled rate of ex-
ceedance against the observed number of ground motion exceedances (e.g. Ordaz and Reyes, 1999; Stirling
and Gerstenberger, 2010; Mezcua et al., 2013). The second category of tests relies on comparison between
the modelled and the observed levels of ground motion (e.g. Ward, 1995; Miyazawa and Mori, 2009;
Kossobokov and Nekrasova, 2012).

However, the question of the adequacy of the PSHA methods is beyond the scope of the current study.
Moreover, the testing of seismic hazard estimates is a relatively new and debatable aspect of PSHA (e.g.
Stein et al., 2011; Hanks et al., 2012; Stirling, 2012), and no consensus has been reached on how such
testing should be performed. Consequently, the current analysis is restricted to a quantitative comparison
of the obtained PSHA maps.

The hazard estimates were compared at the sites along two profiles, passing through the highest,
moderate, and the lowest hazard areas of the maps, as shown in Figs. 5.3(a) and 5.4(a). Figures 5.5 and 5.6
and show the levels of PGA along these profiles.
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Figure 5.4: Comparison of seismic hazard maps for Kamchatka. Left to right: the Cornell-McGuire
method, the Parametric-Historic method, and the method based on the Monte Carlo technique. Upper row:
TR = 475 years, lower row: TR = 2475 years. White circle shows location of Petropavlovsk-Kamchatskiy.
Profile 2 is shown by grey crosses in Fig. 5.4(a)

The trends observed along both profiles are similar, namely, the Cornell-McGuire method yields the
highest hazard estimates; whereas, those obtained with the Parametric-Historic method and the method
based on the Monte Carlo technique are slightly lower. The ratios of the PGA estimates along the two
profiles were calculated for more explicit comparison (Table 5.3).

The relative difference between the PGA estimates along profile 1 slightly increases with the increas-
ing return period. On average, the relative difference between the PGA estimates based on the Parametric-
Historic and the Cornell-McGuire methods is about 5% for both return periods; whereas, that of the method
based on the Monte Carlo technique on average 6% below the estimates of the Cornell-McGuire method for
both return periods. Along profile 2, the relative difference between the PGA estimates decreases slightly as
the hazard level decreases (Table 5.3), and the ratios are similar for both return periods. The PGA estimates
of the Parametric-Historic method are on average 8% below the estimates of the Cornell-McGuire method;
whereas, those of the method based on the Monte Carlo technique are on average 10% below the estimates
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of the Cornell-McGuire method. Judging by the averaged values of the ratios, the variation among the
results based on the three methods is relatively low, but has a systematic nature.
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Figure 5.5: Hazard levels along profile 1
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Figure 5.6: Hazard levels along profile 2
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Profile 1 Profile 2
TR = 475 years Amax(g) Rmax < R > Rmin Amax(g) Rmax < R > Rmin
Cornell-McGuire 0.188 0.472
Parametric-Historic 0.180 0.955 0.952 0.935 0.423 0.896 0.919 0.940
Monte Carlo 0.178 0.944 0.943 0.935 0.411 0.871 0.900 0.919
TR = 2475 years
Cornell-McGuire 0.352 0.894
Parametric-Historic 0.329 0.934 0.948 0.921 0.797 0.891 0.919 0.943
Monte Carlo 0.320 0.910 0.937 0.920 0.780 0.872 0.902 0.924

Amax - maximum PGA estimate, Rmax = (Amax/ACM
max), < R >=< (A/ACM)>, Rmin = (Amin/ACM

min)

ACM - estimates of the Cornell-McGuire method, A - estimates of the two other methods

Table 5.3: Comparison of seismic hazard estimates along two profiles

5.5 Conclusion

In this study, seismic hazard estimates obtained by using three different PSHA methods were compared.
For comparison, the seismic hazard maps were prepared for two regions of Russia, and the PGA estimates
were compared for return periods of 475 and 2475 years. The results indicated that the choice of a par-
ticular method for conducting PSHA has relatively little effect on the hazard estimates when the same
seismic source model was used in the calculations. The comparison indicated that the Cornell-McGuire
method systematically yielded the highest estimates of PGA, whereas the Parametric-Historic method and
the method based on the Monte Carlo technique produced similar results, which were slightly below that
of the Cornell-McGuire method. The analysis for the two regions considered indicated that the relative
difference between the results of the three methods was systematic, remaining virtually unchanged when
the return period increased from 475 to 2475 years. For the Sochi region, characterised by high seismic
activity, this difference was within 6%; whereas, for the Kamchatka region, where seismic activity is very
high, the difference was up to 10%. These results suggest that for regions of moderate seismic activity,
all three methods would provide closely related seismic hazard estimates. However, difference among the
results would apparently become more pronounced for regions characterised by high seismic activity.

Acknowledgements We are grateful to Dr. Nina Medvedeva from the Schmidt Institute of Physics of the
Earth of the Russian Academy of Sciences for provided earthquake catalogue, and to the USGS for their
data.
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Chapter 6

Concluding remarks

In this thesis several important methodological problems of the modern PSHA were considered.
In Chapter 1, an overview of the current practice in seismic hazard analysis was presented, and several

disputable aspects of the most widely applied PSHA method were identified.
In Chapter 2, the distribution of the residuals of the logarithm of PGA was considered and the proce-

dure that is suitable for studying this distribution was proposed. The proposed procedure does not require
a priori assumptions and allows selecting the most plausible probability distribution based on the available
data. It was shown that the hazard curves calculated by using different probability distributions can differ
significantly from one another, especially at very low annual probabilities of exceedance. In addition, the
results of the analysis indicated that the best approximation for the distribution of residuals was obtained
with the GEVD.

In Chapter 3, a similar analysis was performed by using a large dataset of PGA recorded in Japan.
This analysis demonstrated that the variability of the logarithm of PGA is more precisely modelled by the
GEVD with negative shape parameter. This distribution assumes a finite upper bound of a variable and,
therefore, allows to account for finiteness of the ground motion induced by specific earthquake scenario.
Therefore, the approach based on using the GEVD eliminates the need for truncating the ground motion
variability. It provides a rational way of estimating the maximum value of PGA induced by a specific
earthquake scenario. This approach is preferred to the truncation of a distribution, because a maximum
value of PGA, unlike the truncation of a distribution, has a clear physical meaning.

In Chapter 4, a set of equations was proposed that allows accounting for anisotropy in the attenuation
of seismic intensity. The results of the application of the proposed equations were compared with the results
obtained by using the isotropic attenuation law. The results of this study demonstrated that anisotropic
attenuation equations allow improving agreement with the results of the observations, especially when
modelling significantly anisotropic isoseismal maps.

In Chapter 5, seismic hazard estimates obtained by using three different PSHA methods were com-
pared. Seismic hazard maps were prepared for two regions of Russia and PGA estimates were compared
for return periods of 475 and 2475 years. The analysis for the two regions considered indicated that the
relative difference between the results of the three methods was systematic, remaining virtually unchanged
when the return period increased from 475 to 2475 years. The results suggested that for regions of mod-
erate seismic activity, all three methods would provide closely related seismic hazard estimates. However,
difference among the results would apparently become more pronounced for regions characterised by high
seismic activity.

The results of this thesis contribute to obtaining more realistic models for PSHA.
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