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Summary
In this thesis, the Order Completion Method for nonlinear partial differential equation, in
the setting of convergence spaces, is interpreted in terms of the algebraic theory of gen-
eralised functions. In particular, certain spaces of generalised functions that are involved
in the construction of generalised solutions for nonlinear partial differential equations
through the Order Completion Method are identified with a differential chain of algebras
of generalise functions. By so doing, the generalised solutions for smooth nonlinear partial
differential equation obtained through Order Completion Method are interpreted as chain
generalised solutions. Moreover, the mentioned differential chain is shown to be related to
the Rosinger’s chain of nowhere dense algebras of generalised functions. This leads to an
interpretation of the existence result for the solution of smooth nonlinear partial differ-
ential equations obtained through the order completion method in the chain of nowhere
dense algebras.

Using techniques introduced by Verneave, we construct a chain of almost everywhere
algebras of generalised functions and show how the chain of algebras of generalised func-
tions associated with the order completion method is related to this chain of almost
everywhere algebras of generalised functions. We also discuss the embedding of the dis-
tributions into the chain of almost everywhere algebras of generalised functions. We
further show that the generalised solutions of nonlinear partial differential equations ob-
tained through the order completion method corresponds to a chain generalised solution
in the chain of nowhere dense algebras of generalized functions.

Finally, using the theory of chains of algebras of generalized functions, we construct
algebras of generalised functions that can handle certain types of singularities occurring
on sets of first Baire category, so called, space-time foam algebras.
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Preface

Ever since Newton and, independently, Leibnitz introduced the differential and integral
calculus, ordinary differential equations (ODEs) and partial differential (PDEs) have been
one of the central tools by which the laws o nature are given exact mathematical formula-
tion. While, initially, the equations used were mostly linear and of second order, general
nonlinear equations have become increasingly important with the emergence of sophisti-
cated scientific theorems of technologies, particularly in the second half of the twentieth
century.

For more than one hundred and fifty years from now there has been a general and
type independent existence result for solution of nonlinear PDEs, namely, the Cauchy -
Kovalevskaia Theorem [30, 50]. While the Cauchy - Kovalevskaia Theorem is completely
type independent it suffers from two major deficiencies. Firstly, it is restricted to the class
of analytic PDEs, with analytic initial data specified on a non characteristic analytic
hyperplane. Secondly, the solutions obtained through the theorem are local in nature.
That is, the solution may fail to exist on the entire domain of definition of the respective
PDE. Recall [1, 33, 71] that the initial value problem

ut + uux = 0
u(x, 0) = u0(x), x ∈ R

does not admit a classical solution in R × [0,+∞) whenever, u′0(x) < 0 at even a single
x ∈ R.

The local nature of classical solutions of PDEs, in general, has lead to the interest
in global nonclassical solutions of partial differential equations. Such solutions, usually
referred to as generalized solutions, are obtained as elements of suitable spaces of gen-
eralized functions, that is, objects which retain certain essential features of the usual
real or complex valued functions. Initial attempts at the exact formulation of the con-
cepts of generalized function and generalized solutions of PDEs, culminated in the work
of Schwartz [57], where the space D′(Ω) of distributions is introduced, we mention the
Ehrenpreis-Malgrange Theorem [21, 38] which states that any nonzero, constant coeffi-
cient differential operator

P (D) =
∑
|α|≤m

CαD
α

admits a solution of
P (D) = δ

in D′(Rn), where δ ∈ D′(Rn) is the dirac distribution. As a consequence of this result,
the equation

P (D) = f
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is solvable in D′(Rn) for any f ∈ D′(Rn). It is therefore clear that the theory of distribution
is highly clear in the context of linear constant coefficient PDEs.

In spite of the power of D′(Ω) - distributions in the context of linear, constant co-
efficient PDEs, the theory of distributions suffers from two major deficiencies. Firstly,
D′(Ω) does not admit solutions of linear variable coefficient PDEs, even in the case where
the coefficients are smooth, [26, 34]. Secondly, the pointwise multiplication of smooth
functions cannot be extended to D′(Ω) is a reasonable way so that D′(Ω) becomes and
algebra, [51]. Thus the concept of solution of a generalised, nonlinear PDE cannot be
formulated in terms of the D′ - distributions alone.

In view of the mentioned limitations of the linear distribution theory of distributions,
in particular from the point of view of nonlinear PDEs, alternative, nonlinear theories
of generalized functions have been introduced, see for instance [41, 48]. In this thesis,
two such theories are investigated, namely, theory of algebras of generalized functions
[48, 51, 53, 73], focussing on so-called nowhere dense algebras, and the Order Completion
Method (OCM) [41, 68, 72]. We show that the OCM can be interpreted in terms of the
algebraic theory of generalized functions. The relationship between spaces of generalized
functions on which the OCM is based with certain nowhere dense algebras is established.
We also investigate the extent to which the mentioned nowhere dense algebra are able
to deal with singularities occurring in closed nowhere dense sets, and construct algebras
able to handle more general types of singularities.

The thesis is divided into two parts. Part I contains a concise introduction to the
general theories mentioned in the receding paragraph. The results presented here are
from the literature. It is made up of two chapters.

• Chapter one, contains a discussion on the main ideas involve in the algebraic nonlin-
ear theory of generalized functions. In particular, the general method of constructing
an algebra of generalized functions containing the distribution as a linear subspace
is discussed. In addition, we discussed the general method for constructing a chain
of algebra of generalized functions that contained the distributions.

• Chapter two contains the main ideas involve in the Order Completion Methods
as well the enrichment through convergence spaces. The structure and regularity
results for generalized solutions of partial differential equations, obtained through
the order completion method, is discussed.

Part II contains the original contribution of this work. That is, the algebraic interpreta-
tions of the spaces involved in the order Completion Method. It contains four chapters.
We briefly highlight the contents of these chapters below.

• In Chapter three we discuss the algebraic and chain structure of the spaces gener-
alized functions involved in the Order Completion Method. In particular we show
how these spaces can be represented as algebras of generalized functions forming a
differential chain of algebra of generalised functions. The existence result for gen-
eralised solutions of C∞-smooth PDEs obtained through the OCM is interpreted in
the context of chains of algebras of generalised functions.

• Chapter four deals with the nowhere dense algebras of generalised functions. We
recall the construction of Rosinger’s nowhere dense chain, Vernaeve’s almost ev-
erywhere algebras, see [49, 51, 73, 74]. Based on Vernaeve’s construction [73], we

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



vii

construct a chain of almost everywhere algebras and study some of properties of
these chains. The relationship between the spaces involve in the OCM and the
nowhere dense and almost everywhere chains is established, leading to an existence
result for generalized solutions of C∞-smooth PDEs in these chains. Motivated by
the problem of constructing so-called space - time foam algebras [53, 65], we use
the nowhere dense and almost everywhere chains to construct algebras admitting
certain densely singular functions.

• Concluding remarks which sets out the main results of the research work as well as
suggestions for future research in this areas are contained in Chapter five.
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Part I

Introduction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



2

Chapter 1

Algebraic nonlinear theories of
generalised functions

1.1 Deficiencies of D′(Ω)
The linear theory of distributions, as well as certain generalization of it, has proven to
be very useful in the analysis of constant coefficient linear partial differential equations,
see for instance [26]. In this regard, we may recall [21, 38] that each linear, constant
coefficient partial differential operator

P (D)u(x) =
∑
|α|≤m

AαD
αu(x), x ∈ Rn

admits a fundamental solution. That is, there exists a distribution T ∈ D′(Rn) so that

P (D)T = δ,

where δ ∈ D′(Rn) is the Dirac delta distribution. From this it follows that for any
φ ∈ D(Ω), the equation

P (D)u(x) = φ(x), x ∈ Ω

has a solution in D(Ω).
Notwithstanding the usefulness of the D′-distribution in the analysis of linear constant

coefficient PDEs, the Schwartz distributions have some major deficiencies. One such
deficiency, referred to as the Lewy insufficiency, see [34], is the inability of the Schwartz
distribution to solve linear PDEs with nonconstant coefficient. Indeed, Hörmander [26]
showed that there exist C∞-smooth functions h for which the equation

ux + iuy − 2i(x+ iy)ut = h,

has no distributional solution in any neighborhood of any point in R3.
A second and well known deficiency of the Schwartz distributions concerns the def-

inition of nonlinear operations, such as multiplication, on D′(Ω). Each distribution
T ∈ D′(Ω) can be multiplied with any C∞-smooth function u, the product uT being
defined by

Tu : D(Ω) ∋ φ 7→ T (uφ) ∈ R. (1.1)
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Vector spaces of generalised functions 3

Clearly (1.1) extends the usual multiplication of smooth functions. Indeed, for v ∈ C∞(Ω),
the product of the distribution Tv associated with v through

Tv : D(Ω) ∋ φ 7→
∫
Ω

φvdx ∈ R

and a C∞-smooth function u, as given by (1.1), is given by

uTv(φ) = Tv(uφ) =

∫
Ω

φuvdx = Tuv(φ).

It is not possible to extend the multiplication (1.1) to all of D′(Ω) in such a way that
D′(Ω), together with the usual vector space operations, is an algebra, see [50, 51]. In this
regard, Schwartz [58], see also [51], proved a version of the following result.

Theorem 1.1. Let A be an associative algebra so that C(R) ⊂ A, and uv is the usual
product of functions for each u, v ∈ C(R). If D : A −→ A is a differential operator,
that is, D is linear and satisfies Leibnitz rule for derivatives of products of functions, so
that D restricted to C1(R) ⊂ A is the usual differentiation operation, then there is no
δ ∈ A, δ ̸= 0, such that xδ = 0.

Theorem 1.1 is often interpreted in the following way. If δ ∈ D′(R) is the Dirac delta
distribution, then in view of (1.1), for any u ∈ C∞(R) we have

(uδ)(φ) = δ(uφ) = u(0)φ, φ ∈ D(Ω).

Therefore, if x ∈ C∞(R) is the identity function on R, then

(xδ)φ = δ(xφ) = 0, φ ∈ D(Ω).

Hence, xδ is the additive identity in D′(R). Therefore, if D′(Ω) were an algebra with
multiplication extending the usual pointwise product of smooth functions, then it follows
from Theorem 1.1 that δ = 0, which is not the case. Therefore there cannot be reasonable
concept of multiplication on D′(Ω).

In view of the above mentioned Lewy insufficiency and Schwartz impossibility re-
sults, it is a common belief that there is no general and convenient nonlinear theory of
generalized function. In particular, it is widely believed that there is no general and
type independent theory for generalized solutions of nonlinear PDEs. As a result, var-
ious ad hoc methods and techniques have been developed which are applicable only to
the particular types of nonlinear PDEs they were developed to handle, see for instance
[10, 44, 59, 61]. However in the late 1960s an alternative approach to dealing with the
Schwartz impossibility problem was introduced. This approach, summarized in the slogan
’algebra first’, is to construct suitable algebras of generalized functions that contain the
D′(Ω)-distributions as a linear subspace. The main ideas involved in this approach is the
subject of the remainder of this chapter.

1.2 Vector spaces of generalised functions

Generalized solutions to linear PDEs are typically constructed as elements of the com-
pletion of a suitably chosen locally convex, often metrizable, topological vector space.
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Vector spaces of generalised functions 4

Indeed, the Sobolev space Wm,p(Ω) as well as the space D′(Ω) of distributions may be
constructed as the completion of C∞(Ω) with respect to a suitable locally convex topology.

In this section, as a motivation for the construction of algebras of generalised functions
presented in Section 1.3, we recall briefly the abstract construction of the completion of
a metrizable topological vector space.

Let X be a metrizable, locally convex topological vector space. Consider the set

X N =

{
u = (un)

∣∣∣∣ ∀ n ∈ N :
un ∈ X

}
(1.2)

of sequences in X. With the usual termwise operations on sequences of function, the set
X N is in a natural way vector space. Let S be the set of all Cauchy sequences in X and let
V be the set of all sequences converging to zero in X . Clearly S and V are linear subspaces
of X N, and V ⊂ S. The completion X ♯ of X may the constructed as the quotient vector
space

X ♯ = S/V , (1.3)

equipped with a suitable metrizable, locally convex topology. Furthermore, one has a
vector space embedding

X ⊂ X ♯ = S/I (1.4)

which is defined by the linear injective mapping

ιX : X ∋ u 7→ iX (u) = (u) + V ∈ X ♯, (1.5)

where (u) ∈ S is the constant sequence (u) = (un) = (u, · · · , u · · · ).
The existence of the linear injection (1.4) - (1.5) depends on the neutrix condition

UX ,N ⊆ S, V ∩ UX ,N = O, (1.6)

see [51]. Here

UX ,N(Ω) =

{
(un) ∈ X N ∃ v ∈ X :

un = v, n ∈ N

}
,

and

O = {(0)}

is the null vector subspace in X N. The condition (1.6) is satisfied since the topology on
X is Hausdorff.

The inclusion UX ,N ⊆ S gives rise to a linear surjection

∆ : X ∋ u 7→ (u) ∈ UX ,N,

while the condition V ∩ UX ,N = O implies that the canonical quotient map

qV : S ∋ u 7→ u+ V ∈ X ♯

is injective, when restricted to UX ,N. Therefore

ιX : X ∋ u 7→ qV ◦∆(u) ∈ X ♯

defines a linear injection.
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Differential algebras of generalised functions 5

1.3 Differential algebras of generalised functions

We now proceed to present the main points involved in the construction of algebras
of generalised functions, see for instance [49, 50, 51] for details. The construction is
essentially a variation of the construction of the completion of a metrizable topological
vector space outlined in Section 1.2.

Consider the Cartesian product

C∞(Ω)Λ =

{
u = (uλ)λ∈Λ

∣∣∣∣ ∀ λ ∈ Λ :
uλ ∈ C∞(Ω)

}
, (1.7)

where Λ is some infinite index set. Since the space C∞(Ω) of infinitely differentiable
functions on Ω is a unital and commutative algebra with respect to the usual point-
wise operations on functions, so is space C∞(Ω)Λ, when considered with componentwise
operations.

Let S be a subalgebra of C∞(Ω)Λ and I an ideal in S. The quotient algebra

A(Ω) = S/I (1.8)

can, to some extent, be interpreted as an algebra of generalized functions. The algebras
constructed in (1.8) are further particularised by introducing the following natural re-
quirements. Firstly, we require that the space C∞(Ω) is embedded as a subalgebra into
A(Ω). Furthermore, the partial differential operators Dp : C∞(Ω) −→ C∞(Ω), should be
extendable to A(Ω) in a canonical way.

Concerning the first of these requirements, we note that

∆∞
Λ : C∞(Ω) ∋ u 7→ ∆∞

Λ (u) ∈ C∞(Ω)Λ, (1.9)

where ∆∞
Λ (u)λ = u for each λ ∈ Λ, defines a natural injective algebra homomorphism.

Let

U∞
Λ =

u = (uλ)λ∈Λ

∣∣∣∣∣∣
∃ v ∈ C∞(Ω) :
∀ λ ∈ Λ :

uλ = v

 .

Then the mapping ∆∞
Λ maps C∞(Ω) bijectively onto U∞

Λ . It is clear that

E∞ : C∞(Ω) ∋ u 7→ ∆∞
Λ (u) + I ∈ A(Ω) (1.10)

defines an injective algebra homomorphism, provided only that the subalgebra S of
C∞(Ω)Λ and the ideal I in S satisfy the neutrix condition

U∞
Λ (Ω) ⊆ S, U∞

Λ (Ω) ∩ I = O, (1.11)

where O denotes null ideal in C∞(Ω)Λ. The neutrix condition (1.11) determines to a good
extent the structure of ideals I which play a crucial role in the stability, generality and
exactness properties of algebras of generalized functions, see [51, Chapters 1, 3 and 6].

Let us now consider the second requirement, namely, the extension of the partial
differential operators

Dp : C∞(Ω)→ C∞(Ω), p ∈ Nn (1.12)
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Differential algebras of generalised functions 6

to the algebras of generalised functions constructed in (1.8). In this regard, we note that
each such partial differential operator extends to a linear mapping

Dp : C∞(Ω)Λ ∋ (uλ) 7→ (Dpuλ) ∈ C∞(Ω)Λ, p ∈ Nn.

An algebra (1.8) is called a differential algebra of generalize functions on Ω provided that
the differential operators Dp, p ∈ Nn, on C∞(Ω) extend in a canonical way to linear
mappings

Dp : A(Ω) −→ A(Ω)

that satisfy the Leibnitz rule

Dp(uv) =
∑
q≤p

(
p
q

)
Dp−quDqv (1.13)

for all u, v ∈ A(Ω).
For an algebra A(Ω) given in (1.8), such an extension is possible whenever the subal-

gebra S and the ideal I satisfy

Dp(S) ⊆ S and Dp(I) ⊆ I, p ∈ Nn. (1.14)

In this case, we define the mappings Dp : A(Ω)→ A(Ω) as

Dp : A(Ω) ∋ (uλ) + I → (Dpuλ) + I ∈ A(Ω). (1.15)

If in addition to (1.14), the algebra S and ideal I also satisfy (1.11) then the mappings
(1.15) are extensions of the usual partial differential operators acting on C∞(Ω), in the
sense that the diagram

A(Ω) -Dp

A(Ω)
6 6

C∞(Ω) -
Dp

C∞(Ω)

(1.16)

commutes for all p ∈ Nn.
As mentioned, differential algebras of generalized functions may provide a setting for

the multiplication of distributions. In this context, multiplications of distributions is
realized through a linear injection

E : D′(Ω) ∋ T 7→ E(T ) ∈ A(Ω). (1.17)

Although the product ST of given distributions S and T may not be defined as a dis-
tribution, due to the Schwartz impossibility result, the product may be formed in any
differential algebra of generalized functions A(Ω) that admits an embedding (1.17). In
particular, the product ST of distributions S and T may be defined as the product of
E(S) and E(T ) in A(Ω).
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1.4 Embedding D′(Ω) into differential algebras

In this section we discuss briefly the details of the embedding (1.17) of distributions into
a differential algebra of generalized functions. Recall [49, 51, 63] that there exists a vector
space

V∞
Λ ⊆ C∞(Ω)Λ (1.18)

and a linear surjection

L : V∞
Λ ∋ s 7→ L(s) = T ∈ D′(Ω) (1.19)

such that

U∞
Λ ⊆ V∞

Λ (1.20)

with (1.19) an extension of the mapping

U∞
Λ ∋ (un)λ = (u) 7→ Tu ∈ D′(Ω) (1.21)

where the distribution Tu is defined as

Tu : D(Ω) ∋ ψ 7→
∫
Ω

u(x)ψ(x)dx ∈ R. (1.22)

If we denote by

W∞
Λ (1.23)

the kernel of the mapping (1.19),

qD′(Ω) : V∞
Λ /W∞

Λ ∋ u+W∞
Λ 7→ T ∈ D′(Ω) (1.24)

is a vector space isomorphism. In this case, the pair (V∞
Λ ,L) is a representation of the

vector space D′(Ω) of distributions on Ω.
If, in addition, the vector subspaces V∞

Λ and W∞
Λ are such that

Dp(V∞
N ) ⊆ V∞

N , Dp(W∞
N ) ⊆ W∞

N , p ∈ Nn (1.25)

and

Dp(L(u)) = L(Dp(u), u ∈ V∞
N , p ∈ Nn (1.26)

then the mappings

D′(Ω) ∋ u+W∞
Λ 7→ Dpu+W∞

Λ ∈ D′(Ω), p ∈ Nn (1.27)

coincide with the distributional partial derivatives.

Definition 1.2. The pair (V∞
Λ ,L) is called a C∞-smooth representation of distribution if

(1.20) - (1.21) are satisfied. (V∞
Λ ,L) is called a differentiable C∞-smooth representation

of distribution if, in addition, the condition (1.26) holds.
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The following theorem gives a sufficient condition for embedding of distribution into
an algebra of generalized functions.

Theorem 1.3. [51]Let S be a subalgebra in C∞(Ω)Λ and I an ideal in S such that the
neutrix condition (1.11) is satisfied. Suppose that (V∞

Λ ,L) is a C∞-smooth representation
of D′(Ω), and V ,W ⊆ C∞(Ω)Λ are vector subspaces such that the diagram

I -⊂
S C∞(Ω)Λ

-

-

W V

66

⊂

⊂

⊂

? ?

⊂

⊂

W∞
Λ

-⊂
V∞
Λ

(1.28)

commutes. If

I ∩ V =W =W∞
Λ ∩ V (1.29)

and

W∞
Λ + V = V∞

Λ , (1.30)

then

D′(Ω) ∋ s+W∞
Λ ← [ s+W ∈ V/W ∋ s+W 7→ s+ I ∈ A(Ω) (1.31)

is a linear injection. If U∞
Λ ⊆ V , then the mapping E is an embedding of differential

algebras, when restricted to C∞(Ω) ⊂ D′(Ω).

Remark 1.4. We note the following regarding Theorem 1.3.

1. In (1.31), the mapping V/W ∋ s +W 7→ s +W∞
Λ ∈ D′(Ω) is an isomorphism of

vector spaces, while V/W ∋ s+W 7→ s+ I ∈ A(Ω) is a linear injection. Therefore
(1.31) does indeed define a linear injection D′(Ω) ↪→ A(Ω).

2. It is important to note that the structure of the commutative diagram (1.28) is
not only sufficient for the existence of the embedding (1.17) but also necessary in
the following sense. Suppose A(Ω) = S/I is an algebra of generalized functions,
with S and I satisfying the neutrix condition (1.11), and (V∞

Λ ,L) is a C∞-smooth
representation of D′(Ω). Assume that D′(Ω) ⊂ A(Ω) in the sense that the diagram

V ∋ v - v +W∞
Λ ∈ D′(Ω)

?
v + I ∈ A(Ω)R

(1.32)
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Embedding D′(Ω) into differential algebras 9

commutes for some vector space

V ⊆ S ∩ V∞
Λ .

By setting W = I ∩ V , we obtain the commutative diagram (1.28).

In view of Theorem 1.3, and in particular the necessary and sufficient structure of
the commutative diagram (1.28), the following definitions are introduced, see for instance
[51].

Definition 1.5. Let (V∞
Λ ,L) be a C∞-smooth representation of the distributions. Then

(S, I,V,W) is called a regularisation of (V∞
Λ ,L) if the following conditions are satisfied.

1. S is a subalgebra of C∞(Ω)Λ and I is an ideal in S that satisfy the neutrix condition
(1.11).

2. W ⊂ V ⊆ C∞(Ω)Λ are vector spaces such thatW = I∩V =W∞
Λ ∩V andW∞

Λ +V =
V∞
Λ .

If, in addition, we have U∞
Λ ⊆ V , then (S, I,V ,W) is called C∞-smooth regular.

Definition 1.6. An ideal I in a subalgebra S of C∞(Ω)Λ is called regular if there exists a
C∞-smooth representation (V∞

Λ ,L) of D′(Ω) and vector spaces W ⊂ V ⊆ C∞(Ω)Λ so that
(S, I,V,W) is a regularisation of (V∞

Λ ,L). If, in addition (V∞
Λ ,L) is C∞-smooth regular,

then I is called C∞-smooth regular.

As mentioned, see also [51], the neutrix condition (1.11) determines, to a good extent,
the structure of ideals I related to the stability, generality and exactness properties of
algebras of generalized functions. In particular, (1.11) characterizes the regular ideals,
among all cofinal invariant ideals in I in C∞(Ω)N.

Definition 1.7. [49, page 81] An ideal I in C∞(Ω)N is cofinal invariant if, for all w ∈
C∞(Ω)N we have  ∃ w′ ∈ I, µ ∈ N

∀ ν ∈ N, ν ≥ µ :
wν = w′

ν

 =⇒ w ∈ I.

A characterization of C∞- regular ideals is given in the following

Theorem 1.8. A cofinal ideal I in C∞(Ω)N is C∞-regular if and only if I ∩ U∞
N = O

A large class of regular ideals is given by the so-called vanishing ideals, see for instance
[51, Section 6.1]

Definition 1.9. An ideal I in C∞(Ω)N is vanishing if

∀ u = (uλ) ∈ I, µ ∈ N :
∃ ν ∈ N, ν ≥ µ, x ∈ Ω :

uν(x) = 0.

Theorem 1.10. Every vanishing ideal in C∞(Ω)N is regular.
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Combining Theorems 1.8 and 1.10, we have the following.

Theorem 1.11. Every cofinal invariant, vanishing ideal in C∞(Ω)N is off-diagonal, hence
C∞-smooth regular.

According to [51, Proposition 2, p 238], an ideal in C∞(Ω)N is vanishing if and only
if it is a proper ideal. Therefore every proper ideal in C∞(Ω)N is C∞-smooth regular.
Consequently, there is a lot of freedom in terms of the way in which the distributions
can be embedded into differential algebras of generalised functions. However, it should
be noted that the linear embedding

E : D′(Ω)→ A(Ω)

of distribution into a differential algebra A(Ω) will in general not preserve the differential
structure of D′(Ω). That is, it may happen that for some T ∈ D′(Ω) the identity

Dp(E(T )) = E(Dp(T )), p ∈ Nn (1.33)

does not hold, where the derivative on the left of (1.33) is taken in the algebra A(Ω), while
that on the right of (1.33) is the distributional derivative. This is the case even if the
C∞-smooth representation (V∞

N ,L) is differentiable. Furthermore, different embeddings
of D′(Ω) into an algebra A(Ω) may not determine the same differential structure on D′(Ω).
A sufficient condition for the identity (1.33) to hold is given in the following, see [51, ].

Theorem 1.12. Let (S, I,V ,W) be a C∞-smooth regular regularisation of a differentiable
representation (V∞

Λ ,L) of the distributions. If S and I satisfy (1.14), and

Dp(V) ⊆ V , Dp(W) ⊆ W , p ∈ N,

then DpE(T ) = E(DpT ) for all T ∈ D′(Ω) and p ∈ N, where E : D′(Ω) → S/I is the
linear injection given by Theorem 1.3.

As mentioned, there is a lot of freedom in the way in which distributions may be
embedded into differential algebras of generalised functions. However, there is an essential
limitation on such embeddings. Indeed, an embedding of D′(Ω) into a differential algebra
cannot, at the same time, preserve both the algebraic structure of C(Ω) and the differential
structure of D′(Ω). This limitation is due to a basic conflict between the trio of insufficient
smoothness, multiplication and differentiability, see [51]. The basic result in this regard
is given in the following

Theorem 1.13. Let A(Ω) = S/I be a differential algebra, and

E : D′(Ω) −→ A(Ω)

a linear injection. Then one of the following holds
(a) ∃ T ∈ D′(Ω), p ∈ Nn

Dp(E(T )) ̸= E(DpT )

(b) ∃ u, v ∈ C(Ω)
E(uv) ̸= E(u)E(v)

One way in which this limitation can be overcome is through the use of chains of
algebras of generalised functions, see for instance [51, Chapter 6]. In the next section, we
recall briefly the main points regarding such chains.
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1.5 Chains of algebras of generalised functions

As mentioned in Section 1.4, in particular Theorem 1.3, it is possible to construct an
algebra of generalised functions A(Ω) = S/I such that the diagram

C∞(Ω) -⊂ D′(Ω)

?

E

R

E∞

A(Ω)

(1.34)

commutes, with E : D′(Ω) → A(Ω) a linear injection, and E∞ the canonical injective
algebra homomorphism (1.10). In particular, this is the case when the ideal I is C∞-
smooth regular. However, Theorem 1.13 shows that it is not possible to construct a
differential algebra A(Ω) admitting a linear embedding

E : D′(Ω) −→ A(Ω)

which is an algebra homomorphism when restricted to C0(Ω) ⊂ D′(Ω) and preserves
distributional derivatives.

More generally, as will be explained at the end of this section, it is not possible to
construct a differential algebra A(Ω) admitting a linear embedding

E : D′(Ω) −→ A(Ω)

and the algebra homomorphism

qm : Cm(Ω) −→ A(Ω)

so that the diagrams

A(Ω) -Dp

A(Ω)
6

E

6

D′(Ω) -

E

Dp

D′(Ω)

(1.35)

and

Cm(Ω) -⊂ D′(Ω)

?

E

R

qm

A(Ω)

(1.36)
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commute.
In order to overcome the mentioned limitation of the embedding of D′(Ω) into a

differential algebra A(Ω), the concept of a chain of algebras of generalized functions were
introduced, see [49, 50, 51].

Definition 1.14. For l ∈ N = N ∪ {∞}, let Al(Ω) be a commutative and unital algebra.
Assume that, for all k, l ∈ N such that k ≤ l, there exists an algebra homomorphism

γlk : Al(Ω)→ Ak(Ω).

Assume that for l > 0 and p ∈ Nn, with |p| ≤ l and |p| + k ≤ l, there exists a linear
differential operator

Dp : Al(Ω)→ Ak(Ω)

that satisfies the Leibnitz rule

Dp(uv) =
∑
q≤p

(
p
q

)
Dp−quDqv (1.37)

where Dp, Dq, Dp−q : Al(Ω) −→ Ak(Ω). If the diagram

Al(Ω) -γlh
Ah(Ω)

Ak(Ω)
R

�

γlk γkh

(1.38)

commutes for all h, k, l ∈ N such that h ≤ k ≤ l, then A = {(Al(Ω),Ak(Ω), γlk) : k, l ∈
N, k ≤ l} is called a chain of algebras of generalised functions. If, in addition, the
diagram

Ak(Ω) -Dp

Ak−|p|(Ω)
6

γ
l−|p|
k−|p|

6

Al(Ω) -

γlk

Dp

Al−|p|(Ω)

(1.39)

commutes for all l ≥ k > 0 and p ∈ Nn, |p| ≤ k, we call the chain A differential.
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In this section we outline how such chains of algebras of generalised functions may
be constructed. We give two possible ways in which such chains may be constructed, in
particular chains that contain the distributions.

1.5.1 First method for constructing chains of algebras of gener-
alised functions

The first is a simple extension of the construction of differential algebras of generalised
functions presented in Section 1.2.

Suppose given l ∈ N = N ∪ {∞}. Let Λ be an infinite index set, and let

Cl(Ω)Λ =

{
u = (uλ)λ∈Λ

∣∣∣∣ ∀ λ ∈ Λ :
uλ ∈ Cl(Ω).

}
(1.40)

Since the space Cl(Ω) of l-times continuously differentiable functions on Ω is a commuta-
tive algebra with unit element, with respect to the usual pointwise operations on functions,
the set Cl(Ω)Λ is also a commutative algebra with unit element, when considered with
the termwise operations on sequences of functions. For a subalgebra S l of Cl(Ω)Λ, and a
proper ideal I l in S l, the quotient algebra

Al(Ω) = S l/I l (1.41)

is a unital and commutative algebra. In view of the construction of differential algebras
of generalised functions discussed in Section 1.2, we call the algebra Al(Ω) an algebra of
generalized functions on Ω.

If for k ≤ l, the inclusions

S l ⊆ Sk, I l ⊆ Ik (1.42)

hold, then

γlk : Al(Ω) ∋ u+ I l 7→ u+ Ik ∈ Ak(Ω) (1.43)

defines an algebra homomorphism. Clearly, in this case the diagram (1.38) commutes for
h ≤ k ≤ l.

Suppose further that, for l > 0 and p ∈ Nn with |p| ≤ l and k ≤ |p| ≤ l we have

Dp(S l) ⊆ Sk, Dp(I l) ⊆ Ik. (1.44)

Then
Dp : Al(Ω) ∋ u+ I l 7→ Dp(u) + Ik ∈ Ak(Ω)

defines a linear differential operator that satisfies the Leibnitz rule (1.37). For k ≤ l and
p ∈ Nn such that |p| ≤ k, the diagram (1.39) commutes. Hence we have the following.

Theorem 1.15. For each l ∈ N, let S l be a subalgebra of Cl(Ω)Λ and I l an ideal in S l.
If (1.42) and (1.44) are satisfied, then A = {(Al(Ω),Ak(Ω), γlk) : k, l ∈ N, k ≤ l}, with
Al(Ω) = S l/I l and γlk defined by (1.43), is a differential chain of algebras of generalised
functions.
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Remark 1.16. A more general construction of a chain of algebras of generalised functions
is the following. Suppose given a subalgebra S l of Cl(Ω)Λ and an ideal I l in S l, for l ∈ N.
Assume that

αl
k : S l → Sk (1.45)

is an algebra homomorphism, for k ≤ l, such that

αl
k(I l) ⊆ Ik, (1.46)

then
γlk : Al(Ω) ∋ u+ I l 7→ αl

k(u) + Ik ∈ Ak(Ω)

defines an algebra homomorphism, where Al(Ω) = S l/I l. If, in addition to (1.46), we
have

αl
h = αk

h ◦ αl
k

whenever h ≤ k ≤ l, then
γlh = γkh ◦ γlk, h ≤ k ≤ l

so that the diagram (1.38) commutes. If the inclusions (1.44) holds, then

A = {(Al(Ω),Ak(Ω), γlk) : k, l ∈ N, k ≤ l}

is a chain of algebras of generalised functions. If, in addition, the diagram

Sk -Dp

Sk−|p|

6

α
l−|p|
k−|p|

6

S l -

αl
k

Dp

S l−|p|

commutes for all k, l ∈ N with k ≤ l and p ∈ Nn, |p| ≤ k, then the chain

A = {(Al(Ω),Ak(Ω), γlk) : k, l ∈ N, k ≤ l}

is differential.

Let us now consider the problem of embedding the distributions into differential chains
of algebras of generalised functions given by Theorem 1.15. We therefore assume that
Al(Ω) = S l/I l, with S l and I l satisfying (1.42) and (1.44) for each l ∈ N, so that
A = {(Al(Ω),Ak(Ω), γlk) : k, l ∈ N, k ≤ l} is a differential chain of algebras of generalised
functions. We proceed from the particular to the general, considering first the embedding
of C∞(Ω) into Al(Ω), for l ∈ N. For each l ∈ N, let

S l
∞ = S l ∩ C∞(Ω)Λ, I l∞ = I l ∩ C∞(Ω)Λ (1.47)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chains of algebras of generalised functions 15

so that S l
∞ is a subalgebra in C∞(Ω)Λ, and I l∞ is an ideal in S l

∞. Since I l∞ ⊆ I l and
S l
∞ ⊆ S l, it follows that

Al
∞(Ω) = S l

∞/I l∞ ∋ s+ I l∞ 7→ s+ I l ∈ Al(Ω) (1.48)

defines an algebra homomorphism. Furthermore, it follows from (1.47) that (1.48) is
injective. The following is therefore immediate.

Theorem 1.17. If S l
∞ and I l∞ satisfy the neutrix condition (1.11), then

C∞(Ω) ∋ u 7→ ∆(u) + I l∞ ∈ Al
∞(Ω) ∋ ∆(u) + I l∞ 7→ ∆(u) + I l ∈ Al(Ω)

defines an injective algebra homomorphism so that the diagram

Al(Ω) -γlk
Ak(Ω)

�I

C∞(Ω)

commutes for all k, l ∈ N, k ≤ l. If, in addition, S l
∞ and I l∞ satisfy (1.14) for all p ∈ Nn,

then the diagram

Al(Ω) -Dp

Al−|p|(Ω)
6 6

C∞(Ω) -Dp

C∞(Ω)

commutes for all l ∈ N and p ∈ Nn, |p| ≤ l.

We next consider the embedding of Cl(Ω) into Al(Ω), for l ∈ N. As can be expected,
the existence of an algebra embedding

Cl(Ω) ↪→ Al(Ω), l ∈ N

is determined by the neutrix condition

U l
Λ(Ω) ⊆ S l, U l

Λ(Ω) ∩ I l = {0} (1.49)
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where

U l
Λ(Ω) =

u = (uλ)λ∈Λ

∣∣∣∣∣∣
∃ v ∈ Cl(Ω) :
∀ λ ∈ Λ :

uλ = v

 .

Theorem 1.18. Suppose that (1.49) is satisfied for each l ∈ N. Then

Cl(Ω) ∋ u 7→ ∆(u) + I l ∈ Al(Ω) (1.50)

defines an injective algebra homomorphism for each l ∈ N. Furthermore, the diagrams

Al(Ω) -γlk Ak(Ω)

↪→ ↪→
6 6

Cl(Ω) -⊆ Ck(Ω)

and

Al(Ω) -Dp

Al−|p|(Ω)
6 6

Cl(Ω) -Dp

Cl−|p|(Ω)

commutes for all l, k ∈ N and p ∈ Nn, |p| ≤ l.

Remark 1.19. It should be noted that condition (1.49) implies that S l
∞ and I l∞ satisfy

(1.11). Moreover, in this case the diagram

Cl(Ω) -Al(Ω)

�I

C∞(Ω)

⊂

commutes for all l ∈ N.

Lastly, we consider the embedding of distributions into chains of algebras of generalised
functions. The main result in this regard is a simple extension of Theorem 1.3. First we
briefly recall the following main points concerning the embedding of D′(Ω) into an algebra
of generalised functions.

Given any l ∈ N, there exists, see [49, 51], a vector subspace

V l
Λ ⊆ Cl(Ω)Λ (1.51)
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and a linear surjection

Ll : V l
Λ ∋ u = (uλ) 7→ Ll(u) = T ∈ D′(Ω) (1.52)

such that U l
Λ ⊆ V l

Λ, with (1.52) an extension of the mapping

U l
Λ ∋ (uλ)λ∈Λ 7→ u ∈ Cl(Ω) ∋ u 7→ Tu ∈ D′(Ω)

where the distribution Tu is defined as

Tu : D(Ω) ∋ ψ 7→
∫
Ω

u(x)ψ(x)dx ∈ R.

LetW l
Λ denote the kernel of the mapping (1.52). Then we have a vector space isomorphism

qlD′(Ω) : V l
N/W l

N ∋ (u) +W l
N 7→ T ∈ D′(Ω).

Thus we have the representation of distribution

D′(Ω) = V l
N/W l

N. (1.53)

The pair (V l
N,Ll) will be called a C l-smooth representation of distribution if (1.51) - (1.53)

are satisfied.

Theorem 1.20. Let S l be a subalgebra in Cl(Ω)Λ and I l an ideal in S l such that the
neutrix condition (1.49) is satisfied, and let (V l

Λ,Ll) be a Cl-smooth representation of
D′(Ω). Suppose further that V l,W l ⊆ Cl(Ω)N are vector subspaces such that the diagram

I l -⊂
S l Cl(Ω)Λ

-

-

W l V l

66

⊂

⊂

⊂

? ?

⊂

⊂

W l
Λ

-⊂
V l
Λ

(1.54)

commutes. If, in addition, the identities

I l ∩ V l =W l =W l
Λ ∩ V l (1.55)

and

W l
Λ + V l = V l

Λ (1.56)

hold, then

D′(Ω) ∋ s+W l
Λ ← [ s+W l ∈ V l/W l ∋ s+W l 7→ s+ I l ∈ Al(Ω) (1.57)

defines a linear injection El : D′(Ω) → Al(Ω) . Moreover, if U l
Λ ⊆ V l, then the mapping

El is an algebra homomorphism, when restricted to Cl(Ω) ⊂ D′(Ω).
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The above theorem serves as motivation for the following definitions, see [51].

Definition 1.21. Let (V l
Λ,Ll) be a Cl-smooth representation of D′(Ω). The quadruple

(W l,V l, I l,S l) is called a regularization of (V l
Λ,Ll) if and only if the following hold.

(i) S l is a subalgebra of Cl(Ω)Λ and I l an ideal in S l so that the neutrix condition (1.49)
holds.

(ii) W l,V l are vector subspaces of Cl(Ω)Λ.

(iii) The diagram (1.54) commutes.

(iv) I l ∩ V l =W l =W l
Λ ∩ V l.

(v) W l
Λ + V l = V l

Λ.

If, in addition to (i) to (v), the inclusion U l
Λ ⊂ V l holds, then (W l,V l, I l,S l) is said to be

a Cl-smooth regularization of (V l
Λ,Ll).

Definition 1.22. An ideal I l in S l is regular if and only if there exist a Cl-smooth repre-
sentation (V l

Λ,Ll) of D′(Ω), vector subspaces W l, V l ⊂ Cl(Ω)Λ such that (W l,V l, I l,S l) is
a regularization. Furthermore, the ideal I l is Cl- smooth regular, if and only if (W l,V l, I l,S l)
is a Cl-smooth regularization of (V l

Λ,Ll).

Next we consider the issue of consistency of the embedding of distributions in algebras
of generalised functions within a differential chain of algebras.

Theorem 1.23. Suppose that A = {(Al(Ω),Ak(Ω), γlk) : k, l ∈ N, k ≤ l} is a differential
chain of algebras of generalised functions, as given by Theorem 1.15. Assume that, for
each l ∈ N, (V l

Λ,Ll) is a Cl-smooth representation of D′(Ω), and (W l,V l, I l,S l) is a
regularisation of (V l

Λ,Ll). If for each k ≤ l the inclusions

V l
Λ ⊆ Vk

Λ, W l
Λ ⊆ Wk

Λ, V l ⊆ Vk, W l ⊆ Wk

hold, then the diagram

Al(Ω) -γlk
Ak(Ω)

�I

D′(Ω)

El Ek

commutes, with El and Ek given by (1.57). If each of the ideals I l is Cl- smooth regular,
then El is an algebra homomorphism, when restricted to Cl(Ω) ⊂ D′(Ω). If the inclusions

Dp(W l
Λ) ⊆ W

l−|p|
Λ , Dp(V l

Λ) ⊆ V
l−|p|
Λ , Dp(W l) ⊆ W l−|p|, Dp(V l) ⊆ V l−|p|.
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Chains of algebras of generalised functions 19

are satisfied for all l ∈ N and p ∈ Nn with |p| ≤ l, then the diagram

Al(Ω) -Dp

Al−|p|(Ω)

El El−|p|

6 6

D′
(Ω) -Dp

D′(Ω)

commutes.

1.5.2 An alternative way to construct chains of algebra contain-
ing the distributions

In this section we discuss an alternative method for constructing chains of algebra of
generalized functions containing the distributions, see [49], [50], [51].

Definition 1.24. A subset H ⊂ C∞(Ω)Λ is said to be derivative invariant if Dp(H) ⊂ H
for all p ∈ N.

Clearly, H = C∞(Ω)Λ is derivative invariant.
Suppose given a derivative invariant subalgebra S of C∞(Ω)Λ, and a derivative invari-

ant, C∞-smooth regular ideal I in S. In this case, there exists a representation (V∞
Λ ,L)

of D′(Ω) and vector spaces V ,W of C∞(Ω)Λ so that (W ,V , I,S) is a C∞-smooth regular-
isation of D′(Ω) = V∞

Λ /W∞
Λ , where W∞

Λ is the kernel of L. For each l ∈ N, let

Wl =

{
w ∈ W

∣∣∣∣ ∀ p ∈ Nn, |p| ≤ l
Dpw ∈ W

}
, (1.58)

and let

Sl(W ,V) (1.59)

denote the derivative invariant subalgebra in S generated by W l + V . Furthermore, let

Il(W ,V) (1.60)

denote the ideal in Sl(W ,V) generated by Wl. Lastly, we let

Vl =Wl ⊕ V . (1.61)

That is,
Vl =Wl ⊕ V = {(w, v) : w ∈ Wl, v ∈ V}

with componentwise addition and scalar multiplication. With the above notations, we
have the following, see [51, Section 6.4].
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Chains of algebras of generalised functions 20

Theorem 1.25. If for each l ∈ N, we set Al(Ω) = Sl(W ,V)/Il(W ,V), then the following
hold.

(i) For k ≤ l
γlk : Al(Ω) ∋ u+ Il(W ,V) 7→ u+ Ik(W ,V) ∈ Ak(Ω)

defines an algebra homomorphism so that A = {(Al,Ak, γlk) : k, l ∈ N, k ≤ l} is
a differentiable chain of algebras of generalised functions.

(ii) For each l ∈ N there exists a linear injection

El : D′(Ω)→ Al(Ω).

When restricted to C∞(Ω) ⊂ D′(Ω), the map El is an algebra homomorphism.

(iii) For h, k, l ∈ N, with h ≤ k ≤ l, the diagram

Al(Ω) Ak(Ω) Ah(Ω)
?- -

γlk

γlh

γkh

El EhEk

6 6 6

- -id id
D′(Ω) D′(Ω) D′(Ω)

(1.62)

commutes.

(iv) The differential operators Dp : Al(Ω) → Ak(Ω), with k + |p| ≤ l, extend the usual
partial differential operators on C∞(Ω).

1.5.3 Limitations of Embedding D′(Ω) into chains of algebra of
generalized functions

Let
A = {(Al(Ω),Ak(Ω), γlk)|l, k ∈ N, k ≤ l}

be a differential chain of algebra of generalized functions. Based on [51, Theorem 9, pp.
68], we have the following

Theorem 1.26. Assume that for each l ∈ N there exists a linear injection

El : D′(Ω) −→ Al(Ω)

so that the diagram

Al(Ω) -γlk Ak(Ω)

�

Ek

I

D′(Ω)

El (1.63)
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Nonlinear Partial Differential Operators 21

commutes. If for some l ≥ 4, the mapping El : D′(Ω) −→ Al(Ω) is an algebra homomor-
phism when restricted to C l−1(Ω) ⊂ D′(Ω), then the diagram

Al(Ω) -Dp

Ak(Ω)
6

Ek

6

D′(Ω) -

El

Dp

D′(Ω)

(1.64)

does not commutes.

Let us now return to the issue of obtaining a differential algebraA(Ω), a linear injection
E : D′(Ω) −→ A(Ω) and an algebra homomorphism qm : Cm(Ω) −→ A(Ω) for some
m ∈ N, so that the diagrams (1.35) and (1.36) commute. Setting

Al(Ω) = A(Ω), El = E, γlk = id, l, k ∈ N, k ≤ l, (1.65)

we obtain a differential chain of algebra of generalized functions such that the diagrams
(1.63) (1.64) commutes, and for each l ∈ N, El restricted to Cm(Ω) ⊂ D′(Ω) is an
algebra homomorphism. According to Theorem 1.26 this is impossible. Hence we have
the following

Corollary 1.27. If A(Ω) is a differential algebra and E : D′(Ω) −→ A(Ω) is a linear
injection then one of the following holds

1. For some p ∈ Nn, T ∈ D′(Ω)

Dp(E(T )) ̸= E(Dp(T )).

2. For every m ∈ N, there exists u, v ∈ Cm(Ω) ⊂ D′(Ω) so that

E(uv) ̸= E(u)E(v).

1.6 Nonlinear Partial Differential Operators

We now recall the way in which nonlinear partial differential operators may be defined
on differential chains of algebras of generalised functions, see [51, Chapter 1, Sec. 13 &
Chapter 6, Sec. 5]. In this regard, let A = {(Al(Ω),Al(Ω), γlk) : k, l ∈ N, k ≤ l} be a
differential chain of algebras of generalised functions, given as in Theorem 1.15. That is,
Al(Ω) = S l/I l where S l is a subalgebra of Cl(Ω)Λ and I l is an ideal in S l so that (1.42)
and (1.44) are satisfied.

Consider a nonlinear PDE

Tu(x) = f(x), x ∈ Ω (1.66)

where f ∈ C∞(Ω), and the nonlinear differential operator T is given by

Tu(x) = F (x, ..., Dpu(x), ...), x ∈ Ω, |p| ≤ m. (1.67)
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Nonlinear Partial Differential Operators 22

Here F : Ω × RM → R, with M the cardinality of the set {p ∈ Nn : |p| ≤ m}, is
C∞-smooth. Clearly, the operator (1.67) defines mappings

T : Cl(Ω)→ Ck(Ω), l, k ∈ N, k +m ≤ l. (1.68)

Applying each of the mappings in (1.68) termwise to elements of Cl(Ω)Λ, we obtain ex-
tensions

T : Cl(Ω)Λ ∋ (uλ) 7→ (Tuλ) ∈ Ck(Ω)Λ, l, k ∈ N, k +m ≤ l. (1.69)

of (1.68). Provided that the mappings (1.69) satisfy

T (S l) ⊆ Sk, l, k ∈ N, k +m ≤ l

and
u, v ∈ S l, u− v ∈ I l ⇒ T (u)− T (v) ∈ Ik, l, k ∈ N, k +m ≤ l,

it follows that

T : Al(Ω) ∋ u+ I l 7→ T (u) + Ik ∈ Ak(Ω) (1.70)

is well defined. If, in addition, the neutrix condition (1.49) is satisfied, then (1.70) is an
extension of (1.68) in the sense that the diagram

Al(Ω) -T
Ak(Ω)

6 6

Cl(Ω) -T Ck(Ω)

commutes for all l, k ∈ N such that k +m ≤ l.

Definition 1.28. A generalised function u+I∞ ∈ A∞(Ω) is a chain generalised solution
of (1.66) in the chain A if

T (γ∞l (u+ I∞)) = γ∞k (f + I∞)

for all k, l ∈ N so that k +m ≤ l.

In [51, Chapter 7], chains of algebras of generalised functions, and chain generalised
solutions in such chains, are applied to the resolution of nowhere dense singularities of
weak solutions of certain polynomial nonlinear PDEs.
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Chapter 2

The order completion method

2.1 Solutions of continuous nonlinear PDEs through

order completion

In the 1994 monograph [41], Oberguggenberger and Rosinger introduced a general and
type-independent theory for the existence and basic regularity of solutions of large classes
of linear and nonlinear PDEs. Their method is based essentially on the order structure of
certain spaces of piecewise smooth functions, and the Dedekind order completion of these
spaces. This theory was subsequently dramatically enriched through the introduction
of convergence spaces, see [69, 70, 71, 72], resulting in a significant improvement of the
regularity of generalised solutions of nonlinear PDEs, as well as a clarification of the
structure of solutions obtained in [41].

In this section, we recall briefly the original results of Oberguggenberger and Rosinger
[41]. In this regard, consider a nonlinear PDE

T (x,D)u(x) = h(x), x ∈ Ω (2.1)

of order m, where Ω ⊆ Rn is an open set, h : Ω → R is continuous on Ω, and the
differential operator T (x,D) is defined through a jointly continuous function

F : Ω× RM → R

by the expression

T (x,D)u(x) = F (x, u(x), ..., Dpu(x), ...), |p| ≤ m, (2.2)

where M is the cardinality of the set {p ∈ Nn : |p| ≤ m}. We assume that the mapping
F and the right hand term h satisfy the simple condition

∀ x ∈ Ω :
h(x) ∈ int{F (x, ξ) : ξ = (ξp)|p|≤m ∈ RM}. (2.3)

Under this condition, the following fundamental approximation result holds, [41].

Theorem 2.1. Suppose that (2.3) holds. Then for all ε > 0 there exists Γε ⊂ Ω closed
and nowhere dense and uε ∈ Cm(Ω\Γε) such that

h(x)− ε < T (x,D)uε(x) ≤ h(x), x ∈ Ω\Γε.
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Solutions of continuous nonlinear PDEs through order completion 24

The Order Completion Method consists of using Theorem 2.1, interpreted in appropri-
ate function spaces, to construct generalised solutions of the PDE (2.1). This construction
is summarized below, see [6, 7, 41, 50], for a detailed exposition.

In this regard, we consider the space Cm
nd(Ω) which is defined as follows: For any

m ∈ N,

Cm
nd(Ω) =

{
u : Ω −→ R

∣∣∣∣ ∃ Γu ⊂ Ω closed, nowhere dense :
u ∈ Cm(Ω\Γu)

}
. (2.4)

Clearly, Cm(Ω) ⊆ Cm
nd(Ω), m ∈ N. Since the mapping F that defines T (x,D) through

(2.2) is continuous, it follows that if u ∈ Cm(Ω\Γu) with Γu ⊂ Ω closed nowhere dense,
then T (x,D)u ∈ C0(Ω\Γu). Hence the operator T (x,D) induces a mapping

T (x,D) : Cm
nd(Ω) −→ C0

nd(Ω). (2.5)

Define an equivalence relation on C0
nd(Ω) as follows: For any u, v ∈ C0

nd(Ω), we set

u ∼ v ⇐⇒


∃ Γ ⊂ Ω closed nowhere dense :

1) u, v ∈ C0(Ω\Γ)
2) u(x) = v(x), x ∈ Ω\Γ.

(2.6)

The quotient space C0
nd(Ω)/ ∼ is denoted byM0(Ω).

On the space Cm
nd(Ω) define an equivalence relation in the following way: For any

u, v ∈ Cm
nd(Ω), set

u ∼T v ⇐⇒ Tu ∼ Tv. (2.7)

The space Mm
T (Ω) is defined as the quotient space Cm

nd(Ω)/ ∼T . The mapping (2.5)
induces an injective mapping

T̂ :Mm
T (Ω) −→M0(Ω) (2.8)

in a canonical way, so that the diagram

Cm
nd(Ω) C0

nd(Ω)

Mm
T (Ω) M0(Ω)

-

-

T

T̂
q1 q2

? ?

(2.9)

commutes, with q1 and q2 canonical quotient mappings associated with the equivalence
relations (2.6) and (2.7), respectively. The mapping T̂ is defined as follows: If U ∈Mm

T (Ω)

is the ∼T equivalence class generated by u ∈ Cm
nd(Ω), then T̂ (U) is the ∼ equivalence class

generated by Tu ∈ C0
nd(Ω).

On the spaceM0(Ω), define a partial order as follows: For any H,G ∈M0(Ω),

H ≤ G⇐⇒


∃ h ∈ H, g ∈ G, Γ ⊂ Ω closed nowhere dense :

(1) h, g ∈ C0(Ω\Γ)
(2) h ≤ g on Ω\Γ.

(2.10)
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Solutions of continuous nonlinear PDEs through order completion 25

On the space Mm
T (Ω) define a partial order ≤T̂ through the mapping T̂ as follows:

For any U, V ∈Mm
T (Ω)

U ≤T̂ V ⇐⇒ T̂U ≤ T̂ V inM0(Ω). (2.11)

With respect to the partial orders (2.10) and (2.11) onM0(Ω) andMm
T (Ω), respectively,

the mapping T̂ is an order isomorphic embedding [41]. That is, T̂ is injective and

∀ U, V ∈Mm
T (Ω) :

U ≤T̂ V ⇐⇒ T̂U ≤ T̂ V.

According to the McNeille Completion Theorem [37], see also [41, page 396 ], there exists
unique Dedekind complete partially ordered sets (M0(Ω)♯,≤) and (Mm

T (Ω)
♯,≤T̂ ), and

order isomorphic embeddings

iMm
T (Ω) :Mm

T (Ω) −→Mm
T (Ω)

♯

and
iM0(Ω) :M0(Ω) −→M0(Ω)♯

so that the following universal property is satisfied: For every order isomorphic embedding

S :Mm
T (Ω) −→M0(Ω)

there exists a unique order isomorphic embedding S♯ : Mm
T (Ω) −→ M0(Ω) so that the

diagram

Mm
T (Ω)

Mm
T (Ω)

♯

M0(Ω)

M0(Ω)♯

-

-

S

S♯

iMm
T (Ω) iM0(Ω)

? ?

(2.12)

commutes. In particular, there exists a unique order isomorphic embedding

T̂ ♯ :Mm
T (Ω)

♯ −→M0(Ω)♯,

which is an extension of the mapping T̂ in the sense that the diagram

Mm
T (Ω)

Mm
T (Ω)

♯

M0(Ω)

M0(Ω)♯

-

-

T̂

T̂ ♯

iMm
T (Ω) iM0(Ω)

? ?

(2.13)
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commutes. In this way we arrive at an extension of the nonlinear PDE (2.1). Any solution
U ♯ ∈Mm

T (Ω)
♯ of the equation

T̂ ♯U ♯ = f

is interpreted as a generalized solution of (2.1).
The main existence and uniqueness result for solutions of the PDE (2.1) is stated

below, see [41, Theorem 5]

Theorem 2.2. If the PDE (2.1) satisfies the condition (2.3) then there exists a unique
solution U ♯ ∈Mm

T (Ω)
♯ of the equation

T̂ ♯U ♯ = f.

As shown in [2], this generalized solution to the PDE (2.1) may be assimilated with so
called Hausdorff continuous functions in Hnf (Ω). Indeed,Mm

T (Ω)
♯ is order isomorphic to

a subset of the space Hnf (Ω) [4], [6]. A major deficiency of the OCM, is that the spaces
of generalized functions containing solutions of a PDE may to a large extent depend on
the particular nonlinear operator T (x,D). Furthermore, there is no concept of general-
ized partial derivative for generalized functions. These issues were recently resolved by
introducing suitable uniform convergence spaces, see [69, 68, 70, 72].

2.2 Structure and regularity of generalized solutions

In order to formulate the results obtained in [69, 70, 72] on the structure and regularity of
generalised solution of nonlinear PDEs obtained through the OCM, we recall the necessary
concepts from the theories of convergence spaces, order convergence on Riesz spaces and
normal semi-continuous functions.

2.2.1 Convergence spaces

In this section we discuss some of the basic concepts related to convergence spaces, uniform
convergence spaces and convergence vector spaces. For more details we refer the reader
to [11], [13], [19], [23], [31], from where the concepts discussed here are taken.

Convergence spaces

A convergence space is a set together with a designated collection of filters. Recall that
a filter F on a set X is a nonempty collection of subsets of X such that

(i) the empty set does not belong to F ,

(ii) for all F ∈ F and for all G ⊆ X, if G ⊇ F, then G ∈ F ,

(iii) if F,G ∈ F , then F ∩G ∈ F .

A subset B of a filter F is a filter basis for F if each set in F contains a set in B. The filter
F is said to be generated by B. We then write F = [B]. If A ⊆ X, the filter generated A
is written as [A]. That is

[A] = {F ⊆ X : F ⊇ A} .
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In particular for x ∈ X, [x] is the filter generated by {x}. The filter [x] is called the
principal ultrafilter generated by x. Recall that a filter G on X is called an ultrafilter if
G ̸⊂ F for all filters F on X. The intersection of two filters F and G on X is defined as

F ∩ G = [{F ∪G : F ∈ F , G ∈ G}]

If F is a filter on X, and G is a filter on Y, then the product of the filters F and G is
a filter on X × Y which is defined as

F × G = [{F ×G : F ∈ F , G ∈ G}]

If filters F and G on X are such that G ⊆ F , then we say that F is finer than G, or
alternatively G is coarser than F . If F and G are filters on X, such that F ∩G ̸= ∅ for all
F ∈ F and all G ∈ G then

F ∨ G = [{F ∩G : F ∈ F , G ∈ G}]

is a filter on X. If (xn) is a sequence in X, then we define the Frechét filter associated
with (xn) as

⟨(xn)⟩ = [{{xn : n ≥ k} : k ∈ N}].

If f : X −→ Y is a mapping then we define the image of a filter F under f as

f(F) = [{f(F ) : F ∈ F}].

A convergence structure on a set X is defined as follows:

Definition 2.3. Let X be a nonempty set. A convergence structure on X is the mapping
λ from X to the power set of the set of all filters on X that satisfies the following for all
x ∈ X.

(i) [x] ∈ λ(x)

(ii) If F ,G ∈ λ(x), then F ∩ G ∈ λ(x).

(iii) If F ∈ λ(x), then G ∈ λ(x), for all filters G ⊇ F .

The pair (X,λ) is called a convergence space. Whenever F ∈ λ(x) we say F converges to
x and write “F −→ x”.

Definition 2.4. Let λ and µ be two convergence structures on the same set X. Then λ
is finer than µ (or µ is coarser than λ) if for every x ∈ X, λ(x) ⊆ µ(x).

Example 2.5. Let X be a topological space. For each x ∈ X, denote by Vx the set of
open neighbourhoods of x. Then

F ∈ λ(x)⇔ Vx ⊆ F , x ∈ X

defines a convergence structure on X.
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Example 2.6. Let M(R) denote the set of Lebesgue measurable functions f : R →
R, with the usual convention of identifying functions that are equal everywhere except
possibly on a set of measure 0. Then

F ∈ λ(f)⇔

 ∃ E ⊂ R :
1) E has measure 0
2) F(x) −→ f(x) in R, x ∈ R \ E

defines a convergence structure on M(R), see [11]. This convergence structure is not
induced by any topology onM(R) as in Example 2.5.

As Examples 2.5 and 2.6 show, the notion of a convergence space is a generalisation
of that of a topological space. Most topological notions can be extended to convergence
spaces. In particular, recall the following, see [11].

Definition 2.7. Let X be a convergence space, and Y a subset of X. A filter F on Y
converges to y ∈ Y in the subspace convergence structure on Y if

[F ]X =

{
G ⊆ X

∃ F ∈ F :
F ⊆ G

}
converges to y in X.

Definition 2.8. Let X be a convergence space. A subset Y of X is a dense subspace of
X if

a(Y ) =

{
x ∈ X

∣∣∣∣ ∃ F a filter on Y :
[F ]X −→ x

}
= X.

Definition 2.9. Let {Xi : i ∈ I} be a collection of convergence spaces. A filter F on∏
i∈I

Xi converges to x = (xi)i∈I with respect to the product convergence structure if for

each i ∈ I there exists a filter Fi −→ xi so that
∏
i∈I

Fi ⊆ F , where
∏
i∈I

Fi is the filter with

basis {∏
i∈I

Fi
(1) Fi ∈ Fi, i ∈ I
(2) {i ∈ I : Fi ̸= Xi} is finite

}
.

Definition 2.10. A convergence space X is Hausdorff if every filter on X converges to
at most one limit.

Definition 2.11. A convergence space X is first countable if for each F −→ x in X there
exists a coarser filter G on X with countable basis that converges to x

Definition 2.12. Let X and Y be convergence spaces. A function f : X −→ Y is
continuous if for each x ∈ X,

f(F) −→ f(x) in Y whenever F −→ x in X.

We call f an embedding if it is injective, and f−1 : f(X)→ X is continuous. The function
f is an isomorphism if it is a surjective embedding.
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Uniform Convergence Spaces

Recall [11] that a uniformity on a set X is a filter U on X × X such that the following
conditions are satisfied.

(i) ∆ ⊆ U for each U ∈ U .

(ii) If U ∈ U , then U−1 ∈ U .

(iii) For each U ∈ U there are some V ∈ U such that V ◦ V ⊆ U.

Here ∆ = {(x, x) : x ∈ X} denotes the diagonal in X × X. If U and V are subsets of
X ×X then

U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U},

and the composition of subsets U and V of X ×X is defined as

U ◦ V =

{
(x, y) ∈ X ×X

∣∣∣∣ ∃ z ∈ X :
(x, z) ∈ V and (z, y) ∈ U

}
.

A uniformity UX on X induces a topology on X in the following way: A set A ⊆ X is
open in X if

∀ x ∈ A :
∃ U ∈ UX :

U [x] ⊆ A

where U [x] = {y ∈ X|(x, y) ∈ U}. A filter F on X is a Cauchy filter if and only if

UX ⊆ F ×F .

The uniform spaceX = (X,U) is called complete if every Cauchy filter onX is convergent,
in the sense of Example 2.5.

A uniform convergence space generalises the notion of a uniform space to the broader
context of convergence spaces. In order to formulate the definition of a uniform conver-
gence space, we recall the following.

If U and V are filters on X ×X then U−1 is defined as

U−1 = [{U−1 : U ∈ U}].

If U ◦ V ̸= ∅ for all U ∈ U and V ∈ V then the filter U ◦ V exists and it is defined as

U ◦ V = [{U ◦ V : U ∈ U , V ∈ V}].

Definition 2.13. Let X be a set. A family JX of filters on X × X is called a uniform
convergence structure on X if the following hold:

(i) [x]× [x] ∈ JX for every x ∈ X

(ii) If U ∈ JX and U ⊆ V , then V ∈ JX

(iii) If U ,V ∈ JX , then U ∩ V ∈ JX .
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(iv) If U ∈ JX , then U−1 ∈ JX .

(v) If U ,V ∈ JX , then U ◦ V ∈ JX whenever U ◦ V exists.

The pair (X,JX) is called a uniform convergence space.

As mentioned, uniform convergence spaces generalize the concept of a uniform space
in the sense that every uniformity UX on X give rise to a uniform convergence structure
JUX

defined through
U ∈ JUX

=⇒ UX ⊆ U .

Every uniform convergence structure JX on X induces a convergence structure λJX

on X defined by

∀ x ∈ X :
∀ F a filter on X :
F ∈ λJX

(x)⇐⇒ F × [x] ∈ JX

The convergence structure λJX
is called the induced convergence structure.

Definition 2.14. A unform convergence space X is Hausdorff if the induced convergence
structure on X is Hausdorff.

Definition 2.15. Let X be a uniform convergence space with uniform convergence struc-
ture JX . A filter U on Y × Y belongs to the subspace uniform convergence structure on
Y if

[U ]X×X ∈ JX .

The concepts of uniform continuity, Cauchy filters, completeness and completion ex-
tend to uniform convergence spaces in a natural way. In this regard let X and Y be
uniform convergence spaces. A mapping f : X −→ Y is uniformly continuous if

∀ U ∈ JX

(f × f)(U) ∈ JY .

A uniformly continuous mapping f is called a uniformly continuous embedding if it is
injective and f−1 is uniformly continuous on the subspace f(X) of Y. A uniformly con-
tinuous embedding is a uniformly continuous isomorphism if it is also surjective.

A filter F on X is called a Cauchy filter if

F × F ∈ JX .

In particular, a sequence (xn) in X is a Cauchy sequence if ⟨xn⟩ is a Cauchy filter. A
uniform convergence space X is complete if every Cauchy filter on X is convergent with
respect to the induced convergence structure. Each Hausdorff uniform convergence space
can be completed, in the following sense, see [75].

Theorem 2.16. If X is a Hausdorff uniform convergence space, then there exists a com-
plete, Hausdorff uniform convergence space X♯ and a uniformly continuous embedding

iX : X −→ X♯
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such that iX(X) is dense in X♯. Moreover, the completion X♯ of X satisfies the universal
property: If Y is a complete Hausdorff uniform convergence space and f : X −→ Y is
uniformly continuous, then there exists a uniformly continuous mapping

f ♯ : X♯ −→ Y

such that the diagram

X

X♯

Y-

�

f

f ♯iX

?

(2.14)

commutes.

X♯ is called the Wyler completion of X. This completion is unique up to uniformly
continuous isomorphism.

Convergence vector spaces

Let V be a vector space over the scalar field K of real or complex numbers. A convergence
structure λV on V is called a vector space convergence structure if the vector space
operations

+ : (V, λV )× (V, λV ) −→ (V, λV )

and
· : K× (V, λV ) −→ (V, λV )

are continuous. In this case V is called a convergence vector space.

Example 2.17. We recall some important examples of convergence vector spaces.

1. Every topological vector space is a convergence vector space. Recall [43], [56] that
a vector space V over the scalar field K of real or complex numbers is called a
topological vector space if V is endowed with a topology τV such that addition

+ : (V, τV )× (V, τV ) −→ (V, τV )

and scalar multiplication

· : K× (V, τV ) −→ (V, τV )

are (jointly) continuous.

2. For convergence spaces X and Y , the continuous convergence structure on C(X, Y )
is defined as follows. A filter F on C(X, Y ) converges to f ∈ C(X, Y ) if for every
x ∈ X and every filter G on X that converges to x, the filter

F(G) = [{{f(y) : f ∈ F, y ∈ G} : F ∈ F , G ∈ G}]

converges to f(x). We denote by Cc(X, Y ) the set C(X, Y ) equipped with the con-
tinuous convergence structure.

If Y a convergence vector space, then Cc(X, Y ) is a convergence vector space. In
particular Cc(X) = Cc(X,R) is a convergence vector space.
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2

A convergence vector space is equipped with a natural uniform convergence structure,
called the induced uniform convergence structure, which is denoted as JV . In this regard,
let V be a convergence vector space with convergence structure λV , and let U be a filter
on V × V. Then

U ∈ JV ⇐⇒


∃ F a filter on V :

(1)F −→ 0
(2)∆(F) ⊆ U .

(2.15)

Here ∆(F) = [{∆(F ) : F ∈ F}] where for any set F ⊆ V

∆(F ) = {(x, y) ∈ V × V : x− y ∈ F}. (2.16)

The convergence structure induced by the uniform convergence structure JV agrees with
the vector space convergence structure λV , that is, λJV

= λV . If V andW are convergence
vector space and a linear mapping f : V −→ W is continuous then f is uniformly
continuous, see [11, Proposition 2.5.3].

In a convergence vector space Cauchy filters are characterized as follows.

Proposition 2.18. A filter F on a convergence vector space V is a Cauchy filter if and
only if F − F converges to 0.

In general, the Wyler completion V ♯ of a convergence vector space V is not a conver-
gence vector space. In particular, the convergence structure induced on V ♯ by the uniform
convergence structure is not a vector space convergence structure, see [11, Section 2.3].
However, a suitable completion may be constructed for a large class of convergence vector
spaces, see for instance [24].

Theorem 2.19. Let V be a Hausdorff convergence vector space. If every Cauchy filter F
in V is bounded, that is, there is some F ∈ F so that V(0)F −→ 0 where V(0) denotes the
neighbourhood filter at 0 in K, then there is a complete, Hausdorff convergence vector space
V ♯ and a linear embedding iV : V −→ V ♯ such that iV (V ) is dense in V ♯. Furthermore,
for every complete Hausdorff convergence vector space W and every continuous linear
mapping f : V −→W there exists a continuous linear mapping f ♯ : V ♯ −→W so that the
diagram

V

V ♯

W-

�

f

f ♯iV

?

(2.17)

commutes.

The Structure of Completions

Of particular interest to us in this work is the structure of the underlying set of the
completion of a convergence vector space. In this regard, let X = (X,JX) be a Hausdorff
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uniform convergence space, and let X♯ = (X♯,JX♯) denote its completion, in the sense
of Theorem 2.16, and ιX : X → X♯ the canonical uniformly continuous embedding. We
recall how the set X♯ and the mapping ιX may be constructed. Denote by C[X] the set
of all Cauchy filters on X. Then

F ∼C G ⇔ F ∩ G ∈ C[X] (2.18)

defines an equivalence relation on C[X], and

X♯ = C[X]/ ∼C . (2.19)

That is, X♯ is the set of ∼C-equivalence classes in C[X]. Furthermore, for each x ∈ X,
the set λX(x) ⊆ C[X] is a ∼C-equivalence class in C[X]. Indeed, if F ,G ∈ λX(x), then
F ∩ G ∈ λX(x) ⊆ C[X] so that F ∼C G. Moreover, if F ∈ λX(x) and F ∼C G for
some G ∈ C[X], then F ∩ G ∈ C[X]. Since F ∩ G ⊆ F and F ∈ λX(x), it follows [11,
Proposition 2.3.2] that F ∩ G ∈ λX(x), hence G ∈ λX(x). Therefore

ιX : X ∋ x 7→ λX(x) ∈ X♯

defines an injective mapping. According to Theorem 2.16, for each complete Hausdorff
uniform convergence space Y and every uniformly continuous map f : X −→ Y, there
exists a unique uniformly continuous map f ♯ : X♯ −→ Y such that f = f ♯ ◦ iX . This
extension f ♯ of f is defined in the following way: Since f is uniformly continuous, (f ×
f)(U) ∈ JY whenever U ∈ JX so that f(F) is Cauchy in Y whenever F is Cauchy in X.
As Y is complete and Hausdorff, there exist a unique y ∈ Y so that f(F) −→ y in Y. We
therefore have a map

f ′ : C[X] −→ Y.

If F ∼C G then F ∩ G ∈ C[X] so that

(f × f)(F ∩ G × F ∩ G) ∈ JY .

But

(f × f)(F ∩ G × F ∩ G) = f(F ∩ G)× f(F ∩ G) (2.20)

= f(F) ∩ f(G)× f(F) ∩ f(G) (2.21)

so that f(F)∩ f(G) is Cauchy in Y hence convergent. Since Y is complete and Hausdorff
, it follows that f ′(F) = f ′(G). Thus

f ♯ : X♯ = C[X]/ ∼C∋ [F ] 7→ f ′(F) ∈ Y

is well defined. It remains to verify that f ♯ is indeed an extension of f. That is,

f ♯ ◦ iX = f.

For x ∈ X, iX(x) = λ(x) ∈ X♯. Since f is continuous, f ′(F) = f(x) for all F ∈ iX(x) =
λ(x). Hence f ♯ ◦ iX(x) = f(x), as desired.

If X is a convergence vector space, and JX is the induced uniform convergence struc-
ture, then X♯ is, in a natural way, a vector space, and the mapping ιX is a linear injection.
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Indeed, it follows from Proposition 2.18 that if F ,G ∈ C[X], then F + G ∈ C[X] and
αF ∈ C[X] for all α ∈ K.

Furthermore, F ∼C G if and only if F − G −→ 0 in X. Indeed, if F ∼C G, then
F ∩ G ∈ C[X] so that F ∩ G − F ∩ G −→ 0 in X. But F ∩ G − F ∩ G ⊆ F − G, so that
F − G −→ 0 in X.

Conversely, if F − G −→ 0 in X for some F ,G ∈ C[X] then ∆(F − G) ∈ JX . But for
F ∈ F and G ∈ G, ∆(F − G) = {(u, v)|u − v ∈ F − G} ⊇ (F ∩ G) × (F ∩ G) so that
∆(F − G) ⊆ (F ∩ G) × (F ∩ G) Thus (F ∩ G) × (F ∩ G) ∈ JX so that F ∩ G ∈ C[X].
Hence F ∼C G. It therefore follows that

[F ] + [G] = [F + G] (2.22)

α[F ] = [αF ], α ∈ R (2.23)

are well defined in X♯ = C[X]/ ∼C . An elementary argument shows that X♯ is a vector
space over R with respect to the operations (2.22) and (2.23). The linearity of iX : X −→
X♯ follows from the continuity of addition and scalar multiplication on X.

2.2.2 Order convergence

Most of the important spaces encountered in analysis, and in particular functional analy-
sis, are equipped with partial order in a natural way. For example, the space C0(X) of all
real valued continuous functions defined on a topological space X is equipped with the
usual point-wise order

∀ u, v ∈ C0(X)

u ≤ v ⇐⇒
(
∀ x ∈ X

u(x) ≤ v(x).

)
Likewise, the space M(X) of all real valued measurable functions on a measure space
(X,Γ, µ) is equipped with the almost everywhere point-wise order

∀ u, v ∈M(X)

u ≤ v ⇐⇒
(
∃ E ⊂ X, µ(E) = 0

u(x) ≤ v(x), x ∈ X\E

)
Definition 2.20. A real ordered vector space L is a vector space equipped with a partial
order such that the following hold for all f, g, h ∈ L.

(i) If f ≤ g then f + h ≤ g + h.

(ii) If f ≥ 0 then αf ≥ 0 for all real numbers α ≥ 0.

Definition 2.21 (Riesz space). A Riesz space is an ordered vector space in which every
pair of elements (f, g) has a supremum sup(f, g) and an infimum inf(f, g) in L.

Definition 2.22. Let L be a Riesz space. For any element f ∈ L, set

f+ = sup(f, 0) f− = sup(−f, 0) = − inf(f, 0), |f | = f+ + f− = sup(f,−f).

Below are some examples of Riesz spaces.
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Example 2.23. (i) The space Rn, equipped with the partial ordering

x ≤ y =⇒ xk ≤ yk for x, y ∈ Rn, 1 ≤ k ≤ n,

is a Riesz space.

(ii) Let X be a topological space. The space C(X) of all continuous real valued function
on X is a Riesz space with respect to the point-wise partial ordering.

Riesz spaces were introduced, independently, by F. Riesz [45, 46], L. V. Kantorovitch
[28, 29], and H Freudenthal [22]. The theory has been extensively developed, see for
instance [25, 32, 77].

Definition 2.24 (Archimedean Riesz space). A Riesz space L, is called Archimedean if
for all u ∈ L, u ≥ 0, the decreasing sequence (n−1u : n = 1, 2, · · · ) has infimum 0.

Definition 2.25 (Distributive lattice). A lattice L is said to be distributive if

inf(u, sup(v, w)) = sup(inf(u, v), inf(u,w))

and
sup(u, inf(v, w)) = inf(sup(u, v), sup(u,w))

hold for all u, v, w ∈ L.

Definition 2.26 (σ-distributive lattice). A lattice L is σ-distributive, if

inf(u, supA) = sup{inf(u, a) : a ∈ A}

and
sup(u, inf B) = inf{sup(u, b) : b ∈ B}

hold for all u ∈ L and all countable sets A,B ⊆ L for which the supremum and infimum
exist.

Proposition 2.27. Any Riesz space L is a σ-distributive lattice, see [36].

On a partially ordered set L, and in particular on a Riesz L, one may define a notion of
convergence of sequences in terms of the partial order on the set X. Several such notions of
convergence of sequences on partially ordered sets have been introduced in the literature,
see for instance [12, 18, 35, 36, 40]. It often turns out that these notions of convergence
of sequences cannot be associated with any topology. One such notion of convergence
of sequences defined through a partial order that is, in general, not topological, is order
convergence of sequences, [64, 67] .

Definition 2.28. A sequence (un) in a partially ordered set X order converges to u ∈ X
whenever 

∃ (αn), (βn) ⊂ X :
(i) αn ≤ αn+1 ≤ un ≤ βn+1 ≤ βn, n ∈ N
(ii) sup{αn : n ∈ N} = u = inf{βn : n ∈ N}.

(2.24)
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For a Riesz space L, the condition (2.24) is equivalent to the following:

∃ (λn) ⊂ L :
(i) λn+1 ≤ λn, n ∈ N :
(ii) inf{λn : n ∈ N} = 0
(iii) |u− un| ≤ λn, n ∈ N.

where definition of | · | is given in Definition 2.22. In general, order convergence sequences
is not topological as shown in the following

Example 2.29. Consider the Archimedean Riesz space C(R), and the sequence (un) ⊂
C(R) given by

un(x) =


1− n|x− qn| if |x− qn| < 1

n

0 if |x− qn| ≥ 1
n

(2.25)

where {qn | n ∈ N} = [0, 1]∩Q. The sequence (un) does not order converge to 0. Indeed,the
complement of any finite subset of Q∩ [0, 1] is dense in [0, 1]. For any N0 ∈ N we therefore
have

sup{un : n ≥ N0} = 1.

This means that a sequence (βn) ⊆ C(R) such that un ≤ βn for all n ∈ N cannot decrease
to 0.

Thus if there is a topology τ on C0(R) that induces order convergence, then there is
some τ -neighborhood V of 0 and a subsequence (unk

) of (un) which is always outside of V.
Let (qnk

) denote the sequence of rational numbers associated with the subsequence (unk
)

according to (2.25). Since the sequence (qnk
) is bounded, there exist a subsequence (qnki

)
of (qnk

) that converges to some q ∈ [0, 1]. Let (unki
) be the sequence associated with the

sequence of rational numbers (qnki
). Then

∀ ε > 0 :
∃ Nε ∈ N :
unki

(x) = 0, whenever|x− q| > ε and nki ≥ Nε.

For each j ∈ N set εj =
1
j
and let the sequence (µnki

) ⊆ C0(R) be defined as

µnki
(x) =


0 if |x− q| ≥ 2εj
1 if |x− q| ≤ εj
|x−q|
εj

+ 2 ifεj < |x− q| < 2εj

(2.26)

whenever Nεj ≤ nki < Nεj+1
. The sequence (µnki

) decreases to 0, and 0 ≤ unki
≤

µnki
, for all i. This means that the sequence (unki

) order converges to 0. Therefore it
must eventually be in V, a contradiction. Thus the topology τ cannot exist.

In [8], see also [62], a convergence structure, called the order convergence structure,
was defined on a Riesz space L which induces the order convergence of sequences.
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Definition 2.30. Let L be a Riesz space. A filter F on L converges to u in L with respect
to the order convergence structure, denoted as λ0, if and only if

∃ (αn), (βn) ⊂ L :
(i) αn ≤ αn+1 ≤ βn+1 ≤ βn, n ∈ N
(ii) sup{αn : n ∈ N} = u = inf{βn : n ∈ N}
(iii) [{[αn, βn] : n ∈ N}] ⊆ F .

In [64], it was shown that any Riesz space equipped with the order convergence struc-
ture is a Hausdorff and first countable convergence space.

Theorem 2.31. [64] If L is a Riesz space, then the order convergence structure defines a
Hausdorff and first countable convergence structure on L. A sequence (un) on L converges
to u ∈ L if and only if it order converges to u ∈ L. Furthermore, If L is an Archimedean
Riesz space, then the order convergence structure is a vector space convergence structure.

In what follows, we consider the case when a Riesz space L is also an algebra, [27, 42,
64, 76].

Definition 2.32. A Riesz algebra is a Riesz space that is also an associative algebra such
that

L+ · L+ ⊆ L+, (2.27)

where L+ denote the positive cone of L, defined as L+ = {f ∈ L : f ≥ 0}. We note that
the inclusion in (2.27) is equivalent to

f ≤ g =⇒ fh ≤ gh

where f, g,∈ L and h ∈ L+.

Definition 2.33. The multiplication in a Riesz algebra is called σ-order continuous if

sup{ab : a ∈ A, b ∈ B} = a0b0 (2.28)

holds for all countable sets A,B ⊆ L+ such that a0 = supA and b0 = supB.

Note that in any Riesz algebra L, the identity

fg = f+g+ + f−g− − f+g− − f−g+

holds for all f, g ∈ L, where f+, f− denote positive part and negative part of f respectively,
given by f+ = sup{f, 0} and f− = sup{−f, 0}.

Theorem 2.34. Let L be an Archimedean Riesz algebra with σ-order continuous multi-
plication. Then the order convergence structure is an algebra convergence structure.
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2.2.3 Normal lower semi-continuous functions

In this section we discuss some of the properties of the spaces of nearly finite normal lower
semi-continuous functions. In this regard, let X be a topological space, and denote by
R∗ the extended real line R∗ = R ∪ {±∞}. Denote by A(X) the set of all extended real
valued function on X. That is

A(X) = {u : X −→ R∗}.

Definition 2.35. A function u : X −→ R∗ is called lower semi-continuous at x ∈ X if
u(x) = −∞ or

∀ M < u(x) :
∃ V ∈ Vx :

y ∈ V =⇒M < u(y).

Definition 2.36. A function u : X −→ R∗ is called upper semi-continuous at x ∈ X if
u(x) = +∞ or

∀ M > u(x) :
∃ V ∈ Vx :

y ∈ V =⇒M > u(y).

Definition 2.37. A function

u : X −→ R∗

is called lower(upper) semi-continuous on X if it is lower(upper) semi-continuous at every
point of X.

Example 2.38. (i) A real valued function is continuous if and only if it is both upper
and lower semi-continuous.

(ii) The characteristic function χA defined on a set A ⊆ X, that is,

χA(x) =

{
1 if x ∈ A
0 if x ̸∈ A

is lower semi-continuous if A is open and upper semi-continuous if A is closed.

(iii) Let the function f be defined by

f(x) =

{
−1 if x < 0
1 if x ≥ 0.

Then the function f is upper semi-continuous but not lower semi-continuous, at
x = 0.

We recall [71] that the point-wise supremum of any collection of lower semi-continuous
functions is a lower semi-continuous function. That is, if A is a set of lower semi-continuous
functions on X, then the function

u : X ∋ x 7→ sup{v(x) : v ∈ A} ∈ R∗
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is lower semi-continuous. Similarly, the infimum of any collection of upper semi-continuous
functions is an upper semi-continuous function. That is, if B is a set of upper semi-
continuous functions on X, then the function

w : X ∋ x 7→ inf{v(x) : v ∈ B} ∈ R∗

is upper semi-continuous. In particular,

∀ A ⊆ C(X) :
(1)u : X ∋ x 7→ sup{v(x) : v ∈ A} ∈ R∗ is lower semi− continuous,
(2)w : X ∋ x 7→ inf{v(x) : v ∈ A} ∈ R∗ is upper semi− continuous.

Conversely, if X is a metric space, then for each lower semi-continuous function u : X −→
R we have that

∃ A ⊆ C(X) :
u(x) = sup{v(x) : v ∈ A}, x ∈ X

while for every upper semi-continuous function w : X −→ R we have that

∃ A ⊆ C(X) :
w(x) = inf{v(x) : v ∈ A}, x ∈ X.

We remark that the pointwise infimum of a set of continuous functions need not be the
infimum of such a set with respect to the pointwise order on C(X). Indeed, consider the
sequence (un) in C(R) which is defined by

un(x) =


1− n|x| if |x| < 1

n

0 if |x| ≥ 1
n
.

The pointwise infimum of the set {un : n ∈ N} is the function

u(x) =

{
1 if x = 0
0 if x ̸= 0

while the infimum of the set {un : n ∈ N} in C(R) is the function u(x) = 0, x ∈ R. The
same is true of the pointwise supremum of a set of continuous functions.

The concept of normal lower semi-continuous function is formulated in terms of two
fundamental operators which are associated with semi-continuous functions, and extended
real valued functions in general, namely, the Baire operators. The Lower and Upper Baire
Operators, [3], [9], are mappings

I : A(X)→ A(X)

and

S : A(X)→ A(X)

defined by

I(u)(x) = sup{inf{u(y) : y ∈ V } : V ∈ Vx} (2.29)
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and

S(u)(x) = inf{sup{u(y) : y ∈ V } : V ∈ V(x)}, (2.30)

respectively. The Baire operators I and S, as well as their composition I ◦ S, are idem-
potent and monotone with respect to the usual pointwise order on A(X), given by

u ≤ v ⇐⇒
(
∀ x ∈ X :

u(x) ≤ v(x)

)
. (2.31)

That is, for all u, v ∈ A(X) we have

I(I(u)) = I(u), S(S(u)) = S(u), I(S(I(S(u)))) = I(S(u)) (2.32)

and

u ≤ v ⇒

 I(u) ≤ I(v)

S(u) ≤ S(v)

I(S(u)) ≤ I(S(v))

 (2.33)

Furthermore, the inequalities

I(u) ≤ u ≤ S(u) (2.34)

are satisfied.
An easy computation shows that a function u ∈ A(X) is lower semi-continuous if and

only if I(u) = u, while u is upper semi-continuous if and only if S(u) = u, see[5], [17].

Definition 2.39. A function u is normal lower semi-continuous whenever

I(S(u)) = u. (2.35)

A normal lower semi-continuous function is called nearly finite whenever the set

{x ∈ X : u(x) ∈ R} (2.36)

is dense in X. In fact, due to the lower semi-continuity of a normal lower semi-continuous
function, one may assume that the set (2.36) is open and dense. We denote by NL(X)
the set of all nearly finite normal lower semi-continuous functions on X. That is,

NL(X) =

{
u ∈ A(X)

∣∣∣∣ (1)(I ◦ S)u(x) = u(x), x ∈ X
(2) {x ∈ X : u(x) ∈ R} is open and dense in X.

}
Note that every continuous, real valued function is nearly finite normal lower semi-
continuous. Thus we have C(X) ⊆ NL(X). Conversely, every u ∈ NL(X) is nearly
continuous in a topologically large set in the following sense.

Theorem 2.40. For every u ∈ NL0(X) and ϵ > 0 the set

Dϵ = {x ∈ X : ω(u, x) < ϵ}

contains an open and dense subset of X, where

ω(u, x) = inf{sup{|u(x)− u(y)| : y ∈ V } : V ∈ V}

is the modulus of continuity of u at x ∈ X.
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Structure and regularity of generalized solutions 41

The following are useful properties of the set NL(X), see [69].

Proposition 2.41. (P1) For all u, v ∈ NL(X) and for all dense sets D ⊆ X, we have(
∀ x ∈ D

u(x) ≤ v(x)

)
=⇒ u ≤ v.

(P2) The set NL(X) is a Dedekind order complete lattice with respect to the pointwise
order. That is,

(i) every B ⊆ NL(X) satisfying

∃ u0 ∈ NL(X) :
∀ u ∈ B

u ≤ u0,

has a supremum, which is given by

supB = (I ◦ S)(ψ), where ψ(x) = sup{u(x) : u ∈ B}, x ∈ X (2.37)

(ii) every A ⊆ NL(X) satisfying

∃ u0 ∈ NL(X) :
∀ u ∈ A

u0 ≤ u,

has an infimum, which is given by

inf A = (I ◦ S)(φ), where φ(x) = inf{u(x) : u ∈ A}, x ∈ A (2.38)

(P3) The lattice NL(X) is fully distributive. That is

∀ v ∈ NL(X) :
∀ B ⊂ NL(X) :

u0 = supB =⇒ sup{inf{u, v} : u ∈ B} = inf{u0, v}.

Corollary 2.42. If X is Baire space, then a function u ∈ NL(X) is real valued and
continuous on a residual set, that is a set with complement of first Baire category

On the space NL(X) we introduce the algebraic operations ⊕, ⊙ and ⊗ as the usual
point-wise operations on real functions, with understanding that the result of any opera-
tion involving ±∞ is again ±∞, with the appropriate sign determined as usual [63]. Note
that, for u, v ∈ NL(X), the function u⊕ v may fail to be normal lower semi-continuous.
Indeed, if

u(x) =

{
1 ifx > 0
0 ifx ≤ 0

and

v(x) =

{
−1 ifx ≥ 0
0 ifx < 0
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Structure and regularity of generalized solutions 42

then

(u⊕ v)(x) =
{
−1 ifx = 0
0 ifx ̸= 0

so that u ⊕ v /∈ NL(R). We therefore define the algebraic oprations on NL(X) in the
following way. For u, v ∈ NL(X) and α ∈ R we set

u+ v = I(S(u⊕ v)), (2.39)

αu = I(S(α⊙ u)), (2.40)

uv = I(S(u⊗ v)) (2.41)

Theorem 2.43. Let space the NL(X) be equipped with the algebraic operations defined
in (2.39) - (2.41). Then the following statements are true.

(i) NL(X) is a unital Archimedean f -algebra and hence a commutative algebra.

(ii) The multiplication on NL(X) is σ-order continuous.

2.2.4 Structure and regularity results

In this section, we recall briefly the main ideas underlying the reformulation of the OCM
in terms of convergence spaces. For l ∈ N, consider the space

MLm(Ω) = {u ∈ NL(Ω) : u ∈ Cm
nd(Ω)}. (2.42)

The spaceMLm(Ω) is a sublattice and a subalgebra of NL(Ω). In particular, the space

ML0(Ω) = {u ∈ NL(Ω) : u ∈ C0
nd(Ω)}, (2.43)

is σ-order dense subalgebra of NL(Ω), see [69]. That is, for each u ∈ NL(Ω)

∃ (λn), (µn) ⊂ML0(Ω) :
(i) λn ≤ λn+1 ≤ u ≤ µn+1 ≤ µn n ∈ N,
(ii) sup{λn : n ∈ N} = u = inf{µn : n ∈ N}.

(2.44)

The partial derivatives

Dp : Cm(Ω) −→ C0(Ω), p ∈ Nn, |p| ≤ m

extends to the mappings

Dp :MLm(Ω) ∋ u 7→ (I ◦ S)(Dpu) ∈ML0(Ω), p ∈ Nn, |p| ≤ m.

The partial differential operator (2.2) induces a mapping

T :MLm(Ω) −→ML0(Ω) (2.45)

defined as follows

Tu = (I ◦ S)(F (·, u, · · · Dpu · · · )). (2.46)
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Structure and regularity of generalized solutions 43

Within the current content, this gives rise to a first generalization of the PDE (2.1),
namely,

Tu = f (2.47)

where the unknown function u is not restricted to belong to Cl(Ω), but may belong to the
larger spaceMLm(Ω). Proceeding in much the same way as in (2.7) - (2.9), we consider
the equivalence relation ∼T induced by T through

∀ u, v ∈MLm(Ω) :
u ∼T v ⇐⇒ Tu = Tv

(2.48)

Denote by MLm
T (Ω) the quotient space MLm(Ω)\ ∼T . With the mapping (2.45) one

may associate in a canonical way an injective mapping

T̂ :MLm
T (Ω) −→ML0(Ω) (2.49)

such that the diagram

MLm(Ω)

MLm
T (Ω)

ML0(Ω)

ML0(Ω)

-

-

T

T̂

qT id

? ?

(2.50)

commutes. Here, qT denotes the canonical quotient map associated with the equivalence
relation (2.48), and id is the identity map onML0(Ω). Note that U ∈MLm

T (Ω) satisfies
the equation

T̂U = f (2.51)

if and only if each u ∈ U satisfies (2.47). Hence a solution U ∈ MLm
T (Ω) of (2.51) is

the ∼T -equivalence class of solutions to (2.47). In order to obtain a further extension of
(2.1), the following is introduced onML0(Ω).

Definition 2.44. Let Λ consists of all nonempty order intervals in ML0(Ω). Let J0

denote the family of filters onML0(Ω)×ML0(Ω) defined as follows:

U ∈ J0 ⇐⇒



∃ k ∈ N :
∀ j = 1, · · · , k :
∃ Λj = {Ijn} ⊆ Λ :
∃ uj ∈ NL(Ω) :

(i) Ijn+1 ⊆ Ijn, n ∈ N
(ii) sup

n
{inf

j
{Ijn}} = uj = inf

n
{sup

j
{Ijn}}

(iii) ([Λ1]× [Λ1]) ∩ · · · ∩ ([Λk]× [Λk]) ⊆ U .

(2.52)

Since ML0(Ω) is an Archimedean Riesz algebra with σ-order continuous multiplica-
tion, we have the following as a consequence of Theorem 2.31 and 2.34, see [63].

Proposition 2.45. The convergence structure λJ0 is a first countable, Hausdorff algebra
convergence structure.
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Structure and regularity of generalized solutions 44

It was shown in [63] that the induced uniform convergence structure onML0(Ω) agrees
with the uniform convergence structure J0.

Proposition 2.46. The uniform convergence spaces (ML0(Ω),J0) and (ML0(Ω),Jλ0)
are uniformly isomorphic. In particular, a filter F onML0(Ω) is Cauchy with respect to
J0 if and only if F − F −→ 0 with respect to λ0.

Cauchy sequences onML0(Ω) are characterized in the following way, see [63]

Proposition 2.47. A sequence in ML0(Ω) is Cauchy with respect to J0 if and only if
there exists a set B ⊂ Ω of first Baire category such that (un(x)) is convergent in R for
all x ∈ Ω\B.

On the spaceMLm
T (Ω) we consider the initial uniform convergence structure JT with

respect to the mapping T̂ : For any filter U ∈ MLm
T (Ω)×MLm

T (Ω)

U ∈ JT ⇐⇒ (T̂ × T̂ )(U) ∈ J0 (2.53)

Since the mapping T̂ is injective, it follows that the space MLm
T (Ω) is uniformly iso-

morphic to the subspace T̂ (MLm
T (Ω)) of ML0(Ω), see [72]. Thus the mapping T̂ is a

uniformly continuous embedding.
The Wyler completion of the space (ML0(Ω),J0) is constructed as the space NL(Ω)

of nearly finite normal lower semi-continuous functions equipped with the uniform con-
vergence structure J ♯

0 defined as follows, see [72].

Definition 2.48. Let Λ consists of all nonempty order intervals in ML0(Ω). Let J ♯
0

denote the family of filters on NL(Ω)×NL(Ω) defined as follows

U ∈ J ♯
0 ⇐⇒



∃ k ∈ N :
∀ i = 1, · · · , k
∃ Λi = {I in : n ∈ N} ⊆ Λ :
∃ ui ∈ NL(Ω) :

(i) I in+1 ⊆ I in n ∈ N
(ii) sup

N
{inf

i
{I in}} = ui = inf

n
{sup

i
{I in}}

(iii)
k∩

i=1

(([Λi]× [Λi]) ∩ ([ui]× [ui])) ⊆ U .

(2.54)

The completion of the space MLm
T (Ω) is denoted by NLm

T (Ω), and is realized as

a subspace of NL0(Ω). In particular, the mapping T̂ extends uniquely to an injective
uniformly continuous mapping

T̂ ♯ : NLm
T (Ω) −→ NL0(Ω).

This is summarized in the following commutative diagram.

MLm
T (Ω)

NLm
T (Ω)

ML0(Ω)

NL0(Ω)

-

-

T̂

T̂ ♯
ϕ ψ

? ?

(2.55)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Structure and regularity of generalized solutions 45

Here ϕ and ψ are the canonical uniformly continuous embeddings associated with the com-
pletions NLm

T (Ω) and NL(Ω), of MLm
T (Ω) and ML0(Ω) respectively. A first existence

and uniqueness result for generalized solutions of the PDE (2.1) is given below.

Theorem 2.49. For every f ∈ C0(Ω) satisfying (2.3), there exists a unique U ♯ ∈
NLm

T (Ω) such that

T̂ ♯U ♯ = f.

Theorem 2.49 is essentially a reformulation of Theorem 2.2 in the context of uni-
form convergence spaces. Thus the mentioned deficiencies of the OCM also applies to
Theorem 2.49. However, by introducing a parallel construction of spaces of generalized
functions, which is independent of the particular nonlinear operator T, we may resolve
these difficulties. In this regard, consider the space Cm

nd(Ω) defined in (2.4).
Equip the space MLm(Ω) with the initial uniform convergence structure Jm with

respect to the mappings

Dp :MLm(Ω) −→ML0(Ω), |p| ≤ m (2.56)

Definition 2.50. A filter onMLm(Ω) belongs to Jm if and only if

∀ p ∈ Nn, |p| ≤ m :
(Dp ×Dp)(U) ∈ J0.

Proposition 2.51. A filter F on MLm(Ω) converges to u ∈ MLm(Ω) with respect to
the induced convergence structure λm if and only if Dp(F) converges to Dpu inML0(Ω)
for every p ∈ N, |p| ≤ m. In particular, a sequence (un) converges to u ∈MLm(Ω) if and
only if

∀ p ∈ Nn, |p| ≤ m :
Dp(un) order converges to Dp(u) ∈ML0(Ω).

It is clear from Definition 2.50 that each of the mappings in (2.56) is uniformly con-
tinuous with respect to the uniform convergence structure, Jm and J0 ofMLm(Ω) and
ML0(Ω), respectively. In fact, see [70, 72], the mapping

D :MLm(Ω) −→ML0(Ω)M

defined through
D(u) = (Dpu)|p|≤m.

is a uniformly continuous embedding. Therefore, see [72], the mappingD extends uniquely
to an injective, uniformly continuous mapping

D♯ : NLm(Ω) −→ NL0(Ω)M . (2.57)

where NLm(Ω) denotes the completion of MLm(Ω). This gives a first and basic reg-
ularity result: The generalized functions in NL0(Ω) may be represented, through their
generalized partial derivatives, as normal lower semi-continuous functions. Indeed, the
mapping (2.57) may be represented as

D♯(u) = (Dp♯u♯)|p|≤m
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Structure and regularity of generalized solutions 46

where, for |p| ≤ m, (Dp♯) denotes the unique uniformly continuous extension of Dp to
NLm(Ω).

In order to formulate the concept of a generalized solution of (2.1) in the space
NLm(Ω), the operator

T :MLm(Ω) −→ML0(Ω)

must be extended to NLm(Ω) in a meaningful way. In this regard, we have the following

Theorem 2.52. The mapping

T :MLm(Ω) −→ML0(Ω)

defined in (2.45) - (2.46) is uniformly continuous.

In view of Theorem 2.52, the mapping T extends uniquely to a uniformly continuous
mapping

T ♯ : NLm(Ω) −→ NL(Ω)

so that the diagram

MLm(Ω)

NLm(Ω)

ML0(Ω)

NL(Ω)

-

-

T

T ♯
φ ψ

? ?

(2.58)

commutes. Here φ and ψ are the uniformly continuous embeddings associated with the
completion NLm(Ω) and NL(Ω) of MLm(Ω) and ML0(Ω), respectively. The main
existence result for generalised solutions of (2.1) in NLm(Ω) is the following

Theorem 2.53. If for each x ∈ Ω there is some ζ ∈ RM and neighborhoods V and W of
x and ζ so that

F (x, ζ) = h(x)

and
F : V ×W :−→ R

is open, then there exists u♯ ∈ NLl(Ω) such that

T ♯u♯ = h.

Theorem 2.53 provides some insight into the meaning and structure of the unique
generalized solution of (2.1) obtained Theorem 2.49. In this regard, observe that the
diagram

MLm(Ω) -T
ML0(Ω)

�

T̂

R
MLm

T (Ω)

qT (2.59)
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Structure and regularity of generalized solutions 47

commutes. Since T is uniformly continuous and T̂ is a uniformly continuous embedding,
it follows that qT is uniformly continuous. Therefore there exists a unique uniformly
continuous extension

q♯T : NLm
T (Ω) −→ NL(Ω)

of qT . Since the diagram (2.59), the diagram

NLm(Ω) -T ♯

NL0(Ω)

�

T̂ ♯

R
NLm

T (Ω)

q♯T (2.60)

also commutes. Since T̂ ♯ is injective, it follows that for u♯, v♯ ∈ NLm(Ω),

q♯Tu
♯ = q♯Tv

♯ ⇐⇒ T ♯u♯ = T ♯v♯.

That is, q♯T is the canonical quotient map associated with the equivalence relation

u♯ ∼T ♯ v♯ ⇐⇒ T ♯u♯ = T ♯v♯

on NLl(Ω). Therefore, for a PDE (2.1) that satisfies the conditions of Theorem 2.53,
and hence also (2.3), we may interpret the generalized solution U ♯ ∈ NLm

T (Ω) as the
∼♯

T -equivalence class

{u♯ ∈ NLm(Ω)|T ♯u♯ = h}.

Existence of C∞-smooth generalized solutions

In the previous section we discussed the existence of generalised solution to nonlinear
PDEs of order at most m and obtained such solution in the space NLm(Ω) of generalized
functions which admits only generalized partial derivatives of arbitrary but fixed and
finite order m. In this section we discuss the existence of generalised solution in the space
NL∞(Ω) of generalised functions which admit generalised partial derivatives of all orders.
Details of the result discussed here are found in [66].

We consider the PDE,

T (x,D)u(x) = h(x), x ∈ Ω. (2.61)

The differential operator T (x,D) is defined by a C∞-smooth mapping

F : Ω× RM −→ R (2.62)

through

T (x,D)u(x) = F (x, u(x), · · · , Dpu(x), · · · ), x ∈ Ω, |p| ≤ m (2.63)
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for sufficiently smooth u : Ω −→ R. The right-hand term h is a C∞-smooth function.
Assume that the PDE (2.61) satisfies

∀ x ∈ Ω :
∃ ξ(x) ∈ RNn

:
∃ V ∈ Vx, W ∈ Vξ(x) :

1) F∞ : V ×W −→ RNn
open,

2) F∞(x, ξ(x)) = (Dβf(x))β∈Nn

(2.64)

where RNn
is equipped with the product topology τ, the mapping

F∞ : Ω× RNn −→ RNn

is defined by setting

F∞(x, (ξα)α∈Nn) = (F β(x, · · · , ξα, · · · , ))β∈Nn , (2.65)

where, for each β ∈ Nn, the mapping

F β : Ω× RNn −→ R

is defined by setting

Dβ(T (x,D)u(x)) = F β(x, · · · , Dαu(x), · · · ), |α| ≤ m+ |β| (2.66)

for all u ∈ C∞(Ω).
The nonlinear operator T (x,D), which is a mapping

T : C∞(Ω) −→ C∞(Ω) (2.67)

may be extended to the mapping

T :ML∞(Ω) −→ML∞(Ω)

defined by setting

Tu = (I ◦ S)(F (., u, · · · ,Dpu, · · · )), |p| ≤ l. (2.68)

Thus we have the first extension of the nonlinear PDE (2.61) given as

Tu = h (2.69)

where u is inML∞(Ω).

Theorem 2.54. The mapping T : ML∞(Ω) −→ ML∞(Ω) defined through (2.68) is
uniformly continuous.

As a consequence of Theorem 2.54, there exists a unique uniformly continuous exten-
sion

T ♯ : NL∞(Ω) −→ NL∞(Ω)

of T. This give rise to the concept of generalised solution of (2.61) as a solution u♯ ∈
NL∞(Ω) of the extended equation

T ♯u♯ = h. (2.70)

The main existence result for the C∞-smooth PDE (2.61) is the following, see [66].

Theorem 2.55. Consider the nonlinear PDE of the form (2.61). If the nonlinear operator
T satisfies (2.64), then there exists some u♯ ∈ NL∞(Ω) that satisfies (2.70).
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Part II

Differential algebraic interpretation
of the order completion method
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Chapter 3

The spaces NLl(Ω) as a chain of
algebras

In this chapter we show how the spaces of generalised functions introduced in [70, 72] may
be interpreted as a chain of algebras of generalised functions, as discussed in Section 1.5.
In this regard, it will be shown that NLl(Ω) is, for each l ∈ N, an algebra of generalised
functions admitting an embedding of Cl(Ω) as a subalgebra. We then proceed to study
the chain structure

NL∞(Ω)→ · · · → NLl(Ω)→ NLl−1(Ω)→ · · · → NL0(Ω).

The existence result for generalised solutions of C∞-smooth PDEs, Theorem 2.55, is in-
terpreted in the differential-algebraic frame work.

3.1 NLl(Ω) as an algebra of generalised functions

Recall that, for l ∈ N, NLl(Ω) is the completion ofMLl(Ω) with respect to the Hausdorff
uniform order convergence structure given in Definition 2.54. Therefore, applying the
abstract construction of the completion of a uniform convergence space outlined in Section
2.2.4, we may express the set NLl(Ω) as

NLl(Ω) = C[MLl(Ω)]/ ∼C .

The structure of the setNLl(Ω) is therefore determined, to a good extent, by the structure
of the Cauchy filters onMLl(Ω). We thus turn first to an investigation of the structure
of such filters.

Proposition 3.1. The spaceMLl(Ω) is a subalgebra of NL(Ω). Furthermore, the differ-
ential operators

Dp :MLl(Ω) −→ NL, |p| ≤ l

are linear and satisfy the Leibnitz rule

Dp(uv) =
∑
q≤p

(
p
q

)
Dp−quDqv
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Proof. For u, v ∈MLl(Ω) and α ∈ R, it follows from the definition ofMLl(Ω) and (2.39)
- (2.41) that there exists a closed, nowhere dense subset Γ of Ω so that

(u+ v)(x) = u(x) + v(x), (uv)(x) = u(x)v(x) and(αu)(x) = αu(x), x ∈ Ω\Γ

The set Γ may be chosen in such a way that u, v ∈ C l(Ω\Γ). Then u+v, uv, αu ∈ C l(Ω\Γ).
Hence u+ v, uv, αu ∈MLl(Ω).

Furthermore, for |p| ≤ l,

Dp(αu+ βv)(x) = αDpu(x) + βDpv(x)

= αDpu(x) + βDpv(x), x ∈ Ω\Γ

It follows from Proposition 2.41(P1) that Dp(αu + βv) = αDpu + βDpv, so that Dp is
linear. That Dp satisfies the Leibnitz rule follows in the same way.

Proposition 3.2. The induced convergence structure λl on MLl(Ω) is a Hausdorff and
first countable algebra convergence structure.

Proof. According to Proposition 2.51, a filter F on MLl(Ω) converges to u ∈ MLl(Ω)
if and only if Dp(F) converges to Dp(u) inML0(Ω) with respect to λ0 for every |p| ≤ l.
Assume that F −→ u and G −→ v inMLl(Ω). Then Dp(F) −→ Dp(u) and Dp(G) −→
Dp(v) inML0(Ω), |p| ≤ l. By Proposition 2.45,

Dp(F + G) = Dp(F) +Dp(G) −→ Dp(u) +Dp(u)

inML0(Ω), |p| ≤ l. Hence F + G −→ u+ v inMLl(Ω).
In the same way it follows that, for α ∈ R, (V + α)(F) −→ αu, with V denoting the

neighbourhood filter at 0 ∈ R. Lastly,

Dp(FG) ⊇=
∑
q≤p

(
p
q

)
Dp−quDqv, |p| ≤ l.

By Proposition 2.45,∑
q≤p

(
p
q

)
Dp−qFDqG −→

∑
q≤p

(
p
q

)
Dp−quDqv = Dp(uv) inML0(Ω).

Hence FG −→ uv inMLl(Ω).
To see that λl is Hausdorff, consider a filter F on MLl(Ω) so that F −→ u and

F −→ v. Then [F ]ML0(Ω) −→ u and [F ]ML0(Ω) −→ v inML0(Ω). Since λ0 is Hausdorff,
it follows that u = v so that λl is Hausdorff. It remains to show that λl is first countable.
Consider a filter F ∈ λl(0). Then for each |p| ≤ l there exists a sequence (µp

n) inML0(Ω)
that decreases to 0, and

Dp(F) ⊇ [{[−µp
n, µ

p
n]|n ∈ N}]

Let µn = sup{µp
n | |p| ≤ l}, n ∈ N. Then (µn) decreases to 0 inML0(Ω), and

Dp(F) ⊇ [{[−µn, µn] | n ∈ N}], |p| ≤ l.

For each n ∈ N let Gn = {u ∈ MLl(Ω) | Dpu ∈ [−µn, µn]}. Clearly, g = [{Gn | n ∈
N}] ⊆ F . Furthermore, Dp(gG) ⊇ [{[−µn, µn]|n ∈ N}], |p| ≤ l. So that Dp(g) −→ 0 in
ML(Ω), |p| ≤ l. Hence G −→ 0 in MLl(Ω). Since MLl(Ω) ∋ u 7→ u + v ∈ MLl(Ω) is
continuous for every v ∈MLl(Ω) it follows thatML(Ω) is first countable.
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Proposition 3.3. The uniform convergence structure Jl onMLl(Ω) is the uniform con-
vergence structure induced by the convergence structure λl.

Proof. According to Definition 2.50,

U ∈ Jl ⇐⇒ (Dp ×Dp)(U) ∈ J0, |p| ≤ l. (3.1)

It follows from (2.15) and Proposition 2.46that

U ∈ Jl ⇐⇒

 ∀ p ∈ Nn, |p| ≤ l :
∃ Fp ∈ λ0(0) :

∆(Fp) ⊆ (Dp ×Dp)(U).
(3.2)

In particular, upon setting

F =
∩
|p|≤l

Fp,

in (3.2), we find that

U ⇐⇒

 ∃ F ∈ λ0(0) :∀ p ∈ Nn, |p| ≤ l :
∆(F) ⊆ (Dp ×Dp)(U).

(3.3)

Let

G = [{{u− v |(u, v) ∈ U |U ∈ U }}].

It follows from the fact that U is a filter on MLl(Ω) ×MLl(Ω) that G is a filter on
MLl(Ω). Without loss of generality we may assume that F ⊆ [0]. Then

F = {{u− v|(u, v) ∈ ∆(F )} : F ∈ F}.

Hence it follows from (3.3) that

F ⊆ Dp(G), |p| ≤ l.

Thus G −→ 0 inMLl(Ω). But ∆(g) ⊆ U so that (3.3) implies that

U ∈ Jl ⇐⇒
(
∃ G ∈ λl(0) :

∆(G) ⊆ (U). (3.4)

This completes the proof.

Basd on the abstract construction of the completion of a uniform converence space,
as discussed in Section 2.2.1, we may represent the set NLl(Ω) as

NLl(Ω) = C[MLl(Ω)]/ ∼C , (3.5)

where, due to Proposition 3.3,

F ∼C G ⇔ F − G ∈ λl(0).
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The representation of NLl(Ω) can be further particularised. By Propostition 3.2, λl is
first countable. Hence for F ∈ C[MLl(Ω)] there exists G = [{Gn|n ∈ N}] −→ 0 in
MLl(Ω) so that G ⊆ F − F . Thus

∀ n ∈ N :
∃ Fn ∈ F :

Fn − Fn ⊆ Gn.
(3.6)

For each n ∈ N, select u ∈ F1 ∩ · · · ∩ Fn. Then ⟨un⟩ − ⟨un⟩ ⊇ G so that (un) is a Cauchy
sequence inMLl(Ω). Furthermore, ⟨un⟩ ∼C F so that each ∼C-equivalence class contains
a Cauchy sequence. Therefore we may represent NLl(Ω) as

NLl(Ω) = Cs[MLl(Ω)]/ ∼Cs

where Cs[MLl(Ω)] denotes the set of Cauchy sequences inMLl(Ω), and for (un), (vn) ∈
Cs[MLl(Ω),

(un) ∼C (vn)⇐⇒ ⟨un − vn⟩ ∈ λl(0).

In view of (3.5), the structure of NLl(Ω) depends only on the properties of the Cauchy
sequences inMLl(Ω). In this regard, we have the following

Proposition 3.4. A sequence (un) in MLl(Ω) is Cauchy sequence with respect to the
uniform convergence structure on Jl if and only if there exists a residual set R ⊂ Ω such
that (Dpun(x)) is a convergent sequence in R for each x ∈ R and p ∈ Nn with |p| ≤ l.

Proof. It follows from Proposition 3.2 and 3.3 that a sequence (un) inMLl(Ω) is Cauchy
if and only if (Dpun) is Cauchy inML0(Ω) for every |p| ≤ l. The result now follows from
Proposition 2.47.

By Proposition 3.4, we have that

(un) ∼Cs (vn)⇐⇒

 ∃ R ⊆ Ω, a residual set :
∀ p ∈ Nn, |p| ≤ l, x ∈ R :
Dpun(x)−Dpvn(x)→ 0 in R.

 (3.7)

In order to represent the space NLl(Ω) as an algebra of generalized functions, we show
that each ∼Cs-equivalence class contains a sequence of C l-smooth functions. To do this,
we make use of the Principle of Partition of Unity, see [60].

Theorem 3.5. Let O be a locally finite open cover of an open subset Ω of Rn. Then there
is a collection

{ϕU : Ω −→ [0, 1] : U ∈ O}

of C l-smooth functions ϕU such that the following hold:

(i) For each U ∈ O, the support of ϕU is contained in U.

(ii)
∑
U∈O

ϕU(x) = 1, for each x ∈M.
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A consequence of Theorem 3.5 is that disjoint, closed sets in Ω are separated by C l-
smooth, real valued functions. In this regard, let A and B be disjoint, nonempty, closed
subsets of Ω. Then it follows from Theorem 3.5 that

∃ ϕ ∈ C l(Ω, [0, 1]) :
(1) x ∈ A =⇒ ϕ(x) = 1
(2) x ∈ B =⇒ ϕ(x) = 0

(3.8)

Lemma 3.6. Let (un) be a Cauchy sequence inMLl(Ω) with respect to Jl. Then C
l(Ω)N∩

[(un)]Cs ̸= ∅, where [(un)]Cs denotes the ∼Cs-equivalence class generated by (un).

Proof. Let (un) be a Cauchy sequence in MLl(Ω). Then for each n ∈ N, there exists a
closed, nowhere dense set Γn ⊂ Ω so that un ∈ C l(Ω\Γn). For each k ∈ N, let

Bk
n = cl

({
x ∈ Ω

∣∣∣∣ ∃ y ∈ Γn :
∥x− y∥ ≤ 1

k

})
and

Ak
n =

{
x ∈ Ω

∣∣∣∣ ∃ y ∈ Γn :
∥x− y∥ ≥ 2

k

}
.

Then for fixed n, k ∈ N, Bk
n and Ak

n are disjoint, closed subsets of Ω, and

Γn ⊂ Bk
n.

By Theorem 3.5, there exist for all n, k ∈ N a function ϕn
k ∈ C l(Ω, [0, 1]) so that

x ∈ Ak
n =⇒ ϕn

k(x) = 1

and
x ∈ Bk

n =⇒ ϕn
k(x) = 0.

Since un ∈ C l(Ω\Γn), it follows that

vn,k = unϕ
n
k ∈ C l(Ω).

Furthermore,
vn,k(x) = un(x), x ∈ Ak

n.

Since Ak
n ⊂ Ak+1

n for all n, k ∈ N and∪
k∈N

Ak
n = Ω\Γn,

it follows that

∀ x ∈ Ω\Γn :
∃ V ⊂ Ω\Γn open, x ∈ V :
∃ KV ∈ N :
∀ k ≥ KV , y ∈ V :

un(x) = vn,k(x).

It therefore follows that (Dpvn,k(x)) −→ Dpun(x), in R for every x ∈ Ω\Γn.
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Let R0 = Ω\
∪
Γn. It follows that for each n ∈ N there exists a sequence (vn,k) of

C l-smooth functions on Ω so that

(Dpvn,k(x)) −→ Dpun(x), x ∈ R0, |p| ≤ l.

But (un) is Cauchy inMLl(Ω) so there exists a residual set R1 ⊆ Ω so that (Dpun(x)) is
convergent in R to same α(x) ∈ R, |p| ≤ l. Let R = R0 ∩R1. Then R is a residual subset
of Ω, and

(Dpvn,k(x)) −→ Dp(un)(x), x ∈ R, |p| ≤ l,

and

(Dpun(x)) −→ α(x), x ∈ R, |p| ≤ l

Thus there exists a strictly increasing sequence (kn) of natural numbers so that

(Dpvn,kn(x)) −→ α(x), x ∈ R, |p| ≤ l (see Proposition3.4).

It now follows from Proposition 3.4 that (vn,kn) ⊂ C l(Ω) is Cauchy inMLl(Ω). Further-
more,

(Dpun(x)−Dpvn,kn(x)) −→ 0, x ∈ R, |p| ≤ l

so that (un) ∼Cs (vn,kn) by (3.7). This completes the proof.

The main result of this section is the following.

Theorem 3.7. Let S l
cs = Cs[MLl(Ω)] ∩ C l(Ω)N and I lcs = λl(0) ∩ C l(Ω)N. Then

(i) S l
cs is a subalgebra of C l(Ω)N and I lcs is an ideal in S l

cs.

(ii) ∆(C l(Ω)) ⊆ S l
cs and ∆(C l(Ω)) ∩ I lcs = {0}.

(iii) There exists a bijective mapping El
cs : NLl(Ω) −→ S l

cs/I lcs such that the diagram

S l
cs

-L NLl(Ω)

?

El
cs

S l
cs/I lcs

R

qSl
cs

(3.9)

commutes. Here, qSl
cs

is the canonical mapping associated with the quotient algebra
S l
cs/I lcs, and the mapping L is defined as

L : S l
cs ∋ u = (un) 7→ u♯ ∈ NLl(Ω), (3.10)

where u♯ is the limit of (un) in NLl(Ω).
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Proof. The result in (i) follows from Proposition 3.4. Indeed, by Proposition 3.4, (an), (bn) ∈
S l
cs if and only if there exist residual sets Ra and Rb such that (Dpan(x)) and (Dpbn(x))

converge in R for each x ∈ Ra and x ∈ Rb respectively and for all |p| ≤ l. It follows, by the
linearity of Dp and the Leibnitz rule that S l

cs is closed under addition and multiplication.
Since any (un) ∈ I lcs is Cauchy, it follows that I lcs ⊆ S l

cs. Moreover, for any (an) ∈ S l
cs,

there exists residual set Ra such that (Dpan(x)) converges in R, for every x ∈ Ra and
|p| ≤ l. For any (un) ∈ I lcs there exists residual set Ru such that (Dpun(x)) converges
to 0 for each x ∈ Ru and |p| ≤ l. Thus for x ∈ R = Ra ∩ Ru and |p| ≤ l we have that
(Dp(anun)(x)) converge to 0 in R by the Leibnitz rule. This implies that (an)(un) ∈ I lcs.
Thus I lcs is an ideal in S l

cs.
To proof the result in (ii), let u ∈ C l(Ω). Then the sequence ∆(u) converges to u in
NLl(Ω) and hence it is Cauchy. Thus ∆(C l(Ω)) ⊆ S l

cs. Moreover, ∆(u) ∈ ∆(C l(Ω))∩I lcs,
implies that ∆(u) ∈ I lcs. Since λl is Hausdorff, it follows that ∆(u) converges to u = 0.
Thus ∆(C l(Ω)) ∩ I lcs = {0}.
We now proof the result in (iii). According to Lemma 3.6, the mapping L is surjective.
The quotient mapping qSl

cs
is also a surjection. For u, v ∈ S l

cs we have that

L(u) = L(v)⇐⇒ u♯ = v♯

⇐⇒ [u] = [v]

⇐⇒ u ∼Cs v

⇐⇒ (u− v) ∈ λl(0)
⇐⇒ u− v ∈ I lcs
⇐⇒ u+ I lcs = v + I lcs
⇐⇒ qSl

cs
(u) = qSl

cs
(v).

Hence L(u) = L(v) if and only if qSl
cs
(u) = qSl

cs
(v), so that the mapping

El
cs : NLl(Ω) ∋ u♯ 7→ qSl

cs
(L−1(u♯)) ∈ S l

cs/I lcs (3.11)

is well defined on S l
cs/I lcs.

Furthermore, since L is surjective, the mapping (3.11) is defined at each u♯ ∈ NLl(Ω)
so that qSl

cs
being surjective implies that is El

cs is surjective. Moreover, the mapping El
cs

is injective. Indeed, for u♯, v♯ ∈ NLl(Ω) we have that

El
cs(u

♯) = El
cs(v

♯)⇐⇒ u− v ∈ I lcs

for some u ∈ L−1(u♯) and v ∈ L−1(v♯), so that u ∼Cs v. This implies u♯ = v♯ by (3.5).
Thus El

cs is a bijection.

3.2 Chain Structure of {NLl(Ω) : l ∈ N}
In this section we show how the spaces of generalized functions NLl(Ω), l ∈ N, may be
represented as a chain of algebras of generalized functions. By virtue of the definition of
the uniform convergence structure onMLl(Ω), the partial derivative operators

Dp :MLl(Ω) −→MLk(Ω), k + |p| ≤ l (3.12)
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are uniformly continuous. Hence there exists unique uniformly continuous extension

Dp♯ : NLl(Ω) −→ NLk(Ω), k + |p| ≤ l (3.13)

of the mappings in (3.12). On the other hand, since S l
cs ⊂ Cs[MLl(Ω)] and I lcs consists

of null sequences in MLl(Ω), it follows by uniform continuity of the mapping in (3.12)
that

Dp(I lcs) ⊆ Ikcs, and Dp(S l
cs) ⊆ Sk

cs, p ∈ Nn, |p| ≤ l − k, (3.14)

so that

Dp : S l
cs/I lcs ∋ (u) + I lcs 7→ Dp(u) + Ikcs ∈ Sk

cs/Ikcs (3.15)

define linear mappings that satisfy the Leibnitz rule.

Proposition 3.8. The diagram

NLl(Ω) NLk(Ω)

-

-

El
csEl

cs

??

Dp♯

Dp

S l
cs/I lcs Sk

cs/Ikcs

(3.16)

commutes for all p ∈ Nn, l, k ∈ N, so that k + |p| ≤ l with

Dp♯ : NLl(Ω) −→ NLk(Ω), k + |p| ≤ l.

given by (3.13) and

Dp : S l
cs/I lcs −→ Sk

cs/Ikcs (3.17)

given by (3.15).

Proof. Fix u♯ ∈ NLl(Ω). According to Theorem 3.7, u♯ ∈ L(u) for some u ∈ S l
cs, and

El
cs(u

♯) = u+I lcs. So Dp(El
cs(u

♯)) = Dp(u)+Ikcs. But Dp♯u♯ = L(Dpu) so that, by Theorem
3.7, Ek

cs(Dp♯u♯) = Dpu+ Ikcs = Dp(El
cs(u

♯). Thus the diagram (3.16) commutes.

Observe that

S l
cs ⊆ Sk

cs and I lcs ⊆ Ikcs (3.18)

for all l, k ∈ N such that k ≤ l. Indeed, it follows directly from the definition of the
uniform convergence structure onMLl(Ω) andMLk(Ω), respectively, that the inclusion
map

MLl(Ω) ∋ u 7→ u ∈MLk(Ω)

is uniformly continuous. Thus (3.18) follows immediately from the definition of I lcs and
S l
cs. Thus

γlk : S l
cs/I lcs ∋ (u) + I lcs 7→ u+ Ikcs ∈ Sk

cs)/Ikcs (3.19)
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defines an algebra homomorphism, see (1.42) and (1.43).
In view of Theorem 3.7 and Proposition 3.8, the spaces NLl(Ω), and the differential

operators

Dp♯ : NLl(Ω) −→ NLk(Ω)

with |p| + k ≤ l, may be identified with the algebras S l
cs/I lcs, with differential operators

Dp : S l
cs/I lcs −→ Sk/Ikcs defined in (3.15). Therefore we denote the algebras S l

cs/I lcs by
NLl(Ω).

As a direct application of Theorem 1.15 we now have the following

Theorem 3.9. With the algebra homomorphism

γlk : NLl(Ω) −→ NLk(Ω)

define as in (3.19) and the differential operator

Dp : NLl(Ω) −→ NLk(Ω),

with k + |p| ≤ l define as in (3.17),

Aoc = {(NLl(Ω),NLk(Ω), γlk) | k, l ∈ N, k ≤ l}

is a differential chain of algebra of generalized functions.

Proof. The result follows from (3.14), (3.18) and Theorem 1.15.

Next we address the issue of embedding smooth functions into the chainAoc of algebras
of generalised functions.

Theorem 3.10. For each l ∈ N, there exists an injective algebra homomorphism

E lcs : C l(Ω) −→ NLl(Ω)

so that the diagram

NLl(Ω) -
γlk

?

γlh

NLk(Ω) -
γkh

NLh

6

E lcs EhcsEkcs
6

C l(Ω) -⊆ Ck(Ω) -⊆

6

Ch(Ω)

(3.20)

commutes. Here γlk, γkh, γlh, are injective algebra homomorphisms defined by (3.19),
while E lcs, Ehcs, Ekcs are linear injective algebra homomorphisms define as in (1.50).

Proof. Since S l
cs is contained in the set Cs[MLl(Ω)] of Jl - Cauchy sequences inMLl(Ω),

it follows that U l
N(Ω) ⊆ S l

cs. Furthermore, I lcs ⊂ λl(0), so that, since λl is Hausdorff
I lcs ∩ U l

N(Ω) = {0}. The result now follows from Theorem 1.18.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Embedding of MLl(Ω) into NLl(Ω) 59

3.3 Embedding of MLl(Ω) into NLl(Ω)
The embedding Cl(Ω) −→ NLl(Ω) extends in a natural way to an embedding

H l
oc :MLl(Ω) −→ NLl(Ω). (3.21)

Theorem 3.11. For each l ∈ N there exists an injective homomorphism

H l
oc :MLl(Ω) −→ NLl(Ω).

so that the following hold.

(i) The diagram

NLl(Ω) -γlk
NLk(Ω)

6

Hk
oc

6

MLl(Ω) -

H l
oc

⊂ MLk

(3.22)

commutes whenever k ≤ l.

ii The diagram

NLl(Ω) -Dp

NLk(Ω)

6

Hk
oc

6

MLl(Ω) -

H l
oc

Dp

MLk

(3.23)

commutes whenever k + |p| ≤ l.

(iii) The diagram

MLl(Ω) -H l
oc

NLl(Ω)

�

E lcs

I

Cl(Ω)

⊂ (3.24)

commutes for all l ∈ N.

Proof. Consider the map

H l
oc :MLl(Ω) ∋ u 7→ (un) + I lcs ∈ NLl(Ω) (3.25)

where (un) ∈ S l
cs converges to u with respect to λl. The existence of such a sequence

follows from Lemma 3.6. To see that Γl
oc is well defined, let (un), (vn) be two sequences in
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S l
cs converging to u with respect to λl. Based on Proposition 3.2 we conclude that (un−vn)

converges to 0 with respect to λl, so that (un − vn) ∈ I lcs. It follows from Proposition 3.2
that H l

oc is an injective algebra homomorphism. Indeed, if H l
oc(u) = H l

oc(v) for some
u, v ∈ML(Ω), then there exists (un) ∈ S l

cs that converges to u and v with respect to λl.
Since λl is Hausdorff, it follows that u = v. If (un), (vn) ∈ S l

cs converge to u, v ∈MLl(Ω)
with respect to λl, respectively, then (unvn) converges to uv with respect to λl. Hence

H l
oc(u)H

l
oc(v) = ((un) + I lcs)((vn) + I lcs)

= (unvn) + I lcs
= H l

oc(uv).

Linearity of H l
oc follows the same way.

(i) The commutativity of the diagram (3.22), follows immediately from th definitions
of the homomorphisms H l

oc, H
k
oc and γ

l
k.

(ii Recall that, for k + |p| ≤ l, the partial differential operator

Dp :MLl(Ω) −→MLk(Ω)

is uniformly continuous, thus continuous with respect to the convergence structure
λl and λk. Thus if

H l
oc(u) = (un) + I loc

for some u ∈ MLl(Ω), then Dp(un) = (Dpun) converges to Dpu in MLk(Ω) with
respect to λk. Hence

Hk
oc(Dpu) = Dp(un) + Ikcs.

By definition,
Dp(H l

ocu) = Dp(un) + Ikcs.

Thus (3.23) is commutative.

(iii) The embedding E lcs : Cl(Ω) −→ NLl(Ω) is given by

E lcs(u) = ∆(u) + I lcs

where ∆ : Cl(Ω) −→ S l
cs maps each u ∈ Cl(Ω) to the constant sequence with all

terms equal to u. Since this sequence converges to u with respect to λl, the result
follows immediately from the definition of the map H l

oc.

3.4 Existence of Chain Generalised Solutions

In this section, we give an interpretation of the existence result for smooth PDEs, Theorem
2.55, in the context of the chain

Aoc = {(NLl,NLk, γlk) : k, l ∈ N, k ≤ l}
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of algebra of generalized functions. In particular, we show that the generalized solution
u♯ ∈ NL∞(Ω) obtained through the Theorem 2.55 is a chain generalized solution, see
Definition 1.28 in Section 1.6. In this regard, consider the nonlinear partial differential
operator

T : C l(Ω) −→ Ck(Ω), k +m ≤ l (3.26)

of order at most m, defined through a C∞-smooth mapping

F : Ω× RM −→ R

by setting

Tu(x) = F (x, u(x), · · · , Dpu(x), · · · ), |p| ≤ m (3.27)

for each x ∈ Ω. Since
T (C l(Ω)) ⊆ Ck(Ω),

it follows that
T (C l(Ω)N) ⊆ Ck(Ω)N.

Using (2.42), and owing to F being C∞-smooth, the mapping (3.26) may be extended to
a map

T :MLl(Ω) −→MLk(Ω) k +m ≤ l. (3.28)

It follows from Theorem 2.52 and the uniform continuity of the embedding

MLl(Ω) ∋ u 7→ u ∈MLk(Ω) k ≤ l.

that (3.28) is uniformly continuous for all l, k ∈ N such that k+m ≤ l. Hence there exists
unique uniformly continuous extensions

T ♯ : NLl(Ω) −→ NLk(Ω), k +m ≤ l. (3.29)

of (3.28).
On the other hand, in view of the construction of the extension of a uniformly contin-

uous map to the completion of its domain, see Section 2.2.1, the map

T : C l(Ω)N ∋ (un) 7→ (Tun) ∈ Ck(Ω)N k +m ≤ l.

satisfies
T (S l

cs) ⊆ Sk
cs, k +m ≤ l

and
(un)− (vn) ∈ I lcs =⇒ T (un)− T (vn) ∈ Ikcs, k +m ≤ l

Thus in view of (1.66) - (1.70), and since S l
cs and I lcs satisfy the neutrix condition (1.49),

it follows that

T : NLl(Ω) ∋ u+ I lcs 7→ Tu+ Ikcs ∈ NLk(Ω) k +m ≤ l. (3.30)
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defines an extension of (3.26). Using the same argument as in the proof of Theorem 3.9,
it follows that (3.29) and (3.30) are equal, in the sense that the diagram

NLl(Ω) -T ♯

NLk(Ω)

?

El
cs

?
S l
cs/I lcs -

El
cs

T Sk
cs/I lcs

(3.31)

commutes for all l, k ∈ N, k +m ≤ l
Our main result is the following

Theorem 3.12. Assume that the PDE

T (x,D)u(x) = f(x), x ∈ Ω (3.32)

with f ∈ C∞(Ω) and T defined as in (3.27) satisfies (2.64). Then (3.32) admits a chain
generalized solution u+ I∞cs ∈ NL∞(Ω).

Proof. According to Theorem 2.55, there exists a generalized solution u ∈ NL∞(Ω) of
the PDE (3.32). Thus there exists a sequence (un) ∈ S l

cs so that

u = (un) + I∞cs

satisfies Tu = f in NL∞(Ω). That is,

(Tun)− f ∈ I∞cs ⊆ Ikcs, k ∈ N. (3.33)

By definition of the algebra homomorphism

γlk : NLl(Ω) −→ NLk(Ω) (3.34)

we have

T (γlk(u)) = T (un) + Ikcs, k +m ≤ l (3.35)

and

γ∞k (f) = f + I lcs (3.36)

Thus (3.33), (3.35) and (3.36) imply that

T (γlk(u)) = γ∞cs (f + I∞), k +m ≤ l
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Chapter 4

Nowhere Dense Algebras

In this chapter we considered so-called nowhere dense algebra of generalized functions.
These are quotient algebras A = S/I, where the ideal I in S ⊆ C∞(Ω)Λ is defined in
terms of a dense vanishing condition. In particular, we consider Rosinger’s nowhere dense
algebra A∞

nd(Ω), see [49, 50, 51], and the associated chain

And = {(Al
nd(Ω), A

k
nd(Ω), γ

l
k) : k, l ∈ N, k ≤ l}

of algebras of generalized functions, as well as Verneave’s almost everywhere algebra
A∞

ae(Ω), see [73, 74]. Using Verneave’s construction of the algebra A∞
ae, we obtain a

differential chain
Aae = {(Al

ae(Ω), A
k
ae(Ω), γ

l
k) : k, l ∈ N, k ≤ l}

of algebras of generalized functions.
We considered the extent to which the distributions may be embedded into the chain

Aae, as well as the way in which the chain Aoc relates to the chain And and Aae, re-
spectively. This leads to an interpretation of Theorem 3.12 within the chains And and
Aae, giving an existence result of a large class of nonlinear PDEs within the mentioned
chains of algebras of generalized functions. An application to so-called space-time foam
differential algebras of generalised functions.

4.1 Two Constructions of Nowhere Dense Algebras

4.1.1 Rosinger’s Nowhere Dense Algebra

In this section we discuss the construction of nowhere dense algebra of generalized func-
tions introduced by Rosinger, see [49], [50], [51]. In particular, we recall how the nowhere
dense chain of algebras of generalised functions is constructed, and discuss the embedding
of distributions into this chain. In this regard, let l ∈ N and denote by I lnd the set of all
sequences of functions in C l(Ω) satisfying the following asymptotic vanishing condition:

u = (un)n∈N ∈ I lnd ⇐⇒


∃ Γ ⊂ Ω closed nowhere dense :
∀ x ∈ Ω\Γ :
∃ V ⊂ Ω\Γ, neighbourhood of x, NV ∈ N :
∀ y ∈ V, n ≥ NV :

un(y) = 0

(4.1)
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Two Constructions of Nowhere Dense Algebras 64

In other words, the terms of the sequence (un) vanish at each point of the open and dense
subset Ω\Γ, provided n ∈ N is sufficiently large. The set I lnd is an ideal in C l(Ω)N as
stated in [49, Chapter 1 Sction 7]. The ideal I lnd ⊆ C l(Ω)N is called the nowhere dense
ideals on Ω.

Furthermore, I lnd satisfied the neutrix condition, and the inclusions

I lnd ⊂ Iknd, k ≤ l

and
Dp(I lnd) ⊂ Iknd, |p|+ k ≤ l

hold. In view of Theorem 1.15, we have

Theorem 4.1.
And = {(Al

nd(Ω),Ak
nd(Ω), γ

l
k) : k, l ∈ N, k ≤ l}

is a differential chain of algebras of generalized functions.

The algebra homomorphism

γlk : Al
nd(Ω) −→ Ak

nd(Ω), k ≤ l

is defined as (1.43). That is,

γlk : Al
nd(Ω) ∋ u+ I lnd 7→ u+ Iknd ∈ Ak

nd(Ω), k ≤ l (4.2)

Since the neutrix condition (1.49) is satisfied, it follows from Theorem 1.18 that

El : C l(Ω) ∋ u 7→ ∆(u) + I lnd ∈ Ak
nd(Ω).

defines an injective algebra homomorphism for each l ∈ N. Furthermore, the diagrams

Al
nd

-
γlk

?

γlh

Ak
nd

-
γkh

Ah
nd

6

El EkEh
6

C l(Ω) -⊆
Ck(Ω) -⊆

6

Ch(Ω)

(4.3)

and

Al′

nd(Ω)
-Dp

Ak′

nd(Ω)
6

γkk′

6

γll′

Al
nd(Ω) -Dp

Ak
nd(Ω)

(4.4)

commute, for all h ≤ k ≤ l and all k + |p| ≤ l.
We next discuss briefly the details of embedding the distributions D′(Ω) into the chain

And. It follows from a modification of Theorem 1.11 that I lnd is C l-regular in C l(Ω)N for
every l ∈ N. Therefore each of the algebras Al

nd(Ω) admits a linear embedding of D′(Ω)
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which is an algebra homomorphism when restricted to C l(Ω) ⊂ D′(Ω). In what follows
we give an explicit construction of such a linear embedding. In this regard, we consider
suitable representations of the distributions. For l ∈ N, let

V l
N = {(un) ∈ C l(Ω)N : un converges weakly to u ∈ D′(Ω)} (4.5)

and

W l
N = {(un) ∈ C l(Ω)N : un converges weakly to 0 ∈ D′(Ω)}. (4.6)

Clearly,

Ll : V l
N ∋ (un) 7→ lim

n→∞
un ∈ D′(Ω) (4.7)

is a linear surjection, where lim
n→∞

un denotes the weak limit of (un) ∈ V l
N. Furthermore,

U l
N ⊂ V l

N, and (4.7) is an extension of

U l
N ∋ (un) 7→ u ∈ C l(Ω) ∋ u 7→ Tu ∈ D′(Ω)

where for u ∈ C l(Ω), the distribution Tu is defined by

Tu : D(Ω) ∋ ψ 7→
∫
Ω

u(x)ψ(x)dx ∈ R.

With, W l
N the kernel of the mapping (4.7), we have a vector space isomorphism

qD′(Ω) : V l
N/W l

N ∋ (u) +W l
N 7→ T ∈ D′(Ω), (4.8)

and thus a representation of distributions given as

D′(Ω) = V l
N/W l

N. (4.9)

Due to the weak continuity of the differential operatorsDp, the pair (V l
N,Ll) is a C

l-smooth
representation of the distributions.

In order to obtain a regularization for the representation (4.5) - (4.7) of the distribu-
tion, we set

W l
nd = I lnd ∩W l

N

and
V l
nd =W l

nd ⊕ V l
N ⊕ Ll

nd

where Ll
nd is defined as follows. According to [51, Section 6.2] there exists algebraic bases

{ai : i ∈ I} and {bj : j ∈ J} for W l
N and I lnd ∩ V l

N, respectively, such that {ck : k ∈ K} is
a basis for W l

N ∩ I lnd, where

K = I ∩ J, ck = ak = bk, k ∈ K.

Furthermore, there exists an injection α : J \K −→ I \K. The linear space Ll
nd is defined

as
Ll

nd = span{aα(j) + bj|j ∈ J \K}.
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It follows from [51, Theorem 1 p 228] that

(W l
nd,V l

nd, I lnd, C l(Ω)N) (4.10)

is a regularization of the representation (V l
N,Ll) of D′(Ω). In particular, since

∆(C l(Ω)N) = U l
N(Ω) ⊆ V l

nd

it follows that the regularization (4.10) is C l-regular. That is, there exists a linear injection

El : D′(Ω) −→ Al
nd(Ω) (4.11)

so that the diagram

C l(Ω) -⊂ D′(Ω)

El

?
Al

nd(Ω)R

El (4.12)

commutes.
Clearly the inclusions

V l
N ⊆ Vk

N, V l
N ⊆ Wk

N, W l
nd ⊆ Wk

nd

hold for all k ≤ l. Furthermore, the vector spaces Ll
nd may be constructed in such a way

that
Ll

nd ⊆ Lk
nd, k ≤ l

It then follows that
V l
nd ⊆ Vk

nd, k ≤ l.

Applying Theorem 1.23, we therefore have the following

Theorem 4.2. For all h, k, l ∈ N with h ≤ k ≤ l, the diagram

Al
nd

-γlk ?

γlh

Ak
nd

-γkh Ah
nd

6

El EhEk

6

D′(Ω) -id
D′(Ω) -id

6

D′(Ω)

(4.13)

commutes. Here γlk, γkh, γlh, are algebra homomorphisms defined by (1.43) while the
linear injections El, Eh, Ek are defined by (4.11).

Furthermore, for l ∈ N, the map El restricted to C l(Ω) ⊂ D′(Ω) is an algebra homo-
morphism. In particular, the diagram

C l(Ω) -⊂ D′(Ω)

El

?
Al

nd(Ω)R

El (4.14)

commutes.
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4.1.2 Verneave’s Almost Everywhere Algebra

It is unknown whether or not a linear embedding

D′(Ω) ↪→ A∞
nd(Ω)

exists which commutes with the partial differential operators Dp. However, the algebra
A∞

nd(Ω) and the chain And have some desirable properties. In particular, as shown in [51,
Theorem 1, Chapter 2], A∞

nd(Ω) admits a global Cauchy - Kovalevskaia Theorem. An
analytic PDE with analytic initial conditions specified on a non-characteristic hyperplane
has a global generalized solution in A∞

nd which is analytic everywhere except possibly in
a closed nowhere dense set Γ.

In order to address the issue of embedding D′(Ω) into an algebra of generalised func-
tions which admits global generalised solutions of analytic nonlinear PDEs such that
distributional derivatives are preserved, Vernaeve [73] introduced the so called almost
everywhere algebras, the construction of which is now recalled.

LetM0 be a subset of {Γ ⊂ Ω : Γ is closed and nowhere dense} that is closed under
the formation of finite unions. Consider the set

E∞ae (Ω) =

(un)

∣∣∣∣∣∣∣∣
∃ Γ ∈M0 :
∀ n ∈ N :

(1) un : Ω −→ R :
(2) un ∈ C∞(Ω\Γ)

 (4.15)

With respect to componentwise operations on sequences of real valued functions, E∞ae is
an algebra over R. Let

IE =

(un) ∈ E∞ae

∣∣∣∣∣∣∣∣
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ y ∈ V, n ≥ N :

un(y) = 0

 (4.16)

and

Iae =

(un) ∈ E∞ae

∣∣∣∣∣∣
∃ Γ ∈M0 :
∀ n ∈ N, x ∈ Ω \ Γ :

un(x) = 0

 . (4.17)

Both IE and Iae are ideals in E∞ae (Ω), hence IE + Iae is an ideal as well. The almost
everywhere algebra A∞

ae(Ω) is defined as

A∞
ae(Ω) = E∞ae/(IE + Iae) (4.18)

We note that the ideal IE + Iae may be expressed as

IE + Iae =

(un) ∈ E∞ae

∣∣∣∣∣∣∣∣∣∣
∃ Γ ∈M0 :
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ y ∈ V \ Γ, n ≥ N :

un(y) = 0

 . (4.19)
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With each partial differential operator

Dp : C∞(Ω) −→ C∞(Ω)

we may associate a relation
Dp : E∞ae (Ω) −→ E∞ae (Ω)

by setting

Dp(un) =

vn ∈ E∞ae
∣∣∣∣∣∣
∀ n ∈ N :

(1)vn : Ω −→ R :
(2)Dpun(x) = vn(x), x ∈ Ω \ Γ.

 (4.20)

where for (un) ∈ E∞ae (Ω), Γ ∈M0 is the set associated with (un) through (4.15).
It is easy to see, using (4.19), thatDp(un) is an (IE+Iae-equivalence class inA∞

ae(Ω) for
each (un) ∈ E∞ae (Ω) and p ∈ Nn.Moreover, if (un)−(vn) ∈ IE+Iae, then Dp(un) = Dp(vn)
for all p ∈ N. Thus we have a mapping

Dp : A∞
ae(Ω) ∋ (un) + (IE + Iae) 7→ Dp(un) + (IE + Iae) ∈ A∞

ae, (4.21)

for each p ∈ Nn. The mappings (4.21) are linear and satisfy the Leibnitz rule for derivative
of products. Hence A∞

ae(Ω) is a differential algebra.
Since

U∞
N (Ω) ⊆ E∞ae (Ω), U∞

N (Ω) ∩ (IE + Iae) = {0},

it follows that

C∞(Ω) ∋ u 7→ ∆∞
N (u) + (IE + Iae) ∈ A∞

ae(Ω) (4.22)

defines an injective algebra homomorphism, with

∆∞
N : C∞(Ω) −→ C∞(Ω)N ⊂ E∞ae (Ω)

defined as in (1.9). The homomorphism (4.22) commutes with the differential oper-
ator (4.21), hence (4.21) defines extensions of the classical differential operators Dp :
C∞(Ω) −→ C∞(Ω).

We now discuss the embedding of D′(Ω) into A∞
ae(Ω). In this regards, recall that a

sequence (χn) in D(Ω) ⊂ C∞(Ω) is a unit sequence on Ω if

∀ K ⊂ Ω compact :
∃ N ∈ N :
∀ n ∈ N, n ≥ N :

χn(x) = 1, x ∈ K

(4.23)

A sequence (ψn) in D(Ω) is a strict delta sequence if

∀ V ∈ V0 :
∃ N ∈ N :
∀ n ∈ N, n ≥ N :

suppψn ⊂ V,
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Two Constructions of Nowhere Dense Algebras 69

∫
Ω

ψn = 1, n ∈ N

and there exists µ > 0 so that ∫
Ω

|ψn(x)|dx ≤ µ, n ∈ N.

For T ∈ D′(Ω) and ϕ ∈ D(Ω), the convolution T ⋆ ϕ of T and ϕ is defined as

T ⋆ ϕ : Ω ∋ x 7→ T (τxϕ̌) ∈ R

where

τxϕ̌(y) = ϕ̌(y − x), y ∈ Ω (4.24)

and

ϕ̌(y) = ϕ(−y), y ∈ Ω. (4.25)

Note that, in (4.24) and (4.25), we are implicitly extending ϕ ∈ D(Ω) to a function in
D(Rn) by setting ϕ(x) = 0, x ∈ R \Ω. It is well known, see for instance [55, Chapter 6],
that T ⋆ ϕ ∈ C∞(Ω), for all T ∈ D′(Ω) and ϕ ∈ D(Ω).

Finally, a smooth-part map is a linear surjection

F : D′(Ω) −→ C∞(Ω)

such that

F (u) = u, u ∈ C∞(Ω)

and

Dp(F (T )) = F (DpT ), T ∈ D′(Ω), p ∈ Nn.

The existence of a smooth - path map is guaranteed whenever Ω is convex, [73, 74]

Theorem 4.3. Let (ψn) be a strict delta sequence, (χn) a unit sequence, and F : D′(Ω) −→
C∞(Ω) a smooth - part map. Then

D′(Ω) ∋ T 7→ ((F (T ) + [(T − F (T ))χn] ⋆ ψn) + (Iae + IE)) ∈ A∞
ae(Ω)

defines a linear injection which commutes with partial derivatives and is an algebra ho-
momorphism when restricted to C∞(Ω) ⊂ D′(Ω).

The algebra A∞
ae(Ω) and A∞

nd(Ω) are related to each other in the following way.

Theorem 4.4. There exists a surjective algebra homomorphism

A∞
ae(Ω) −→ A∞

nd(Ω)

that commutes with partial derivatives.
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4.2 The chain of almost everywhere algebras

In this section we introduce, following the construction discussed in Section 4.1.2, the
almost everywhere chain Aae of algebras of generalized functions. We also consider the
embedding of distribution into this chain. LetM0 be a set of closed nowhere dense subset
of Ω that is closed under the formation of finite unions of its elements. For l ∈ N, let

E lae(Ω) =

(un)

∣∣∣∣∣∣∣∣
∃ Γ ∈M0 :
∀ n ∈ N :

(1) un : Ω −→ R :
(2) un ∈ C l(Ω\Γ)

 (4.26)

Clearly, E lae(Ω) is an algebra over R with respect to the termwise operations on sequences
of functions. Following (4.16) and (4.17), we introduce the ideals

I lE :=

(un) ∈ E lae(Ω)

∣∣∣∣∣∣∣∣
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = 0, y ∈ V

 (4.27)

and

I lae :=

(un) ∈ E lae(Ω)

∣∣∣∣∣∣
∃ Γ ∈M0 :
∀ n ∈ N :

un(x) = 0, x ∈ Ω \ Γ

 (4.28)

Lemma 4.5. For each l ∈ N,

I lE + I lae =

(un) ∈ E lae(Ω)

∣∣∣∣∣∣∣∣∣∣
∃ Γ ∈M0 :
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = 0, y ∈ V \ Γ

 . (4.29)

Proof. Let (un) be a sequence in E lae. Then

(un) ∈ I lE + I lae ⇐⇒ (un) = (an) + (bn) for some (an) ∈ I lE and (bn) ∈ I lae

⇐⇒


∃ Γ ∈M0 :
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = 0, y ∈ V ∩ (Ω \ Γ) = V \ Γ

Hence

I lE + I lae =

(un) ∈ E lae(Ω)

∣∣∣∣∣∣∣∣∣∣
∃ Γ ∈M0 :
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = 0, y ∈ V \ Γ

 .
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Define the algebra Al
ae(Ω) as

Al
ae(Ω) = E lae/(I lE + I lae). (4.30)

Since

E lae(Ω) ⊆ Ekae(Ω) and I lE + I lae ⊆ IkE + Ikae (4.31)

whenever l ≥ k, it follows that

γlk : Al
ae(Ω) ∋ u+ (I lE + I lae) 7→ u+ (IkE + Ikae) ∈ Ak

ae(Ω) (4.32)

defines an algebra homomorphism. By setting

Dp(un) =

(vn) ∈ Ekae(Ω)

∣∣∣∣∣∣∣∣∣∣
∃ Γ0 ∈M0 :
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

vn(y) = Dpun(y), y ∈ V \ (Γ ∪ Γ0)

 (4.33)

for each (un) ∈ E lae(Ω) and |p|, k ≤ l, where Γ ∈ M0 is the set associated with (un)
through (4.26), we obtain a relation

Dp : E lae(Ω) ⇒ Ekae(Ω), k + |p| ≤ l.

Proposition 4.6. For (un), (u′n) ∈ E lae(Ω) and |p|+ k ≤ l, the following are true.

(i) Dp(un)−Dp(un) ⊆ IkE + Ikae.

(ii) If (vn)− (wn) ∈ IkE + Ikae, for some (vn) ∈ Dp(un) and (wn) ∈ Ekae(Ω), then (wn) ∈
Dp(un).

(iii) αDp(un) + βDp(u′n) ⊆ Dp(αun + βu′n)

Proof. (i) Let (vn) and (wn) be sequences in Dp(un). Then according to (4.33),

∃ Γ1 ∈M0 :
∀ x ∈ Ω :
∃ V1 ∈ Vx, N1 ∈ N :
∀ n ∈ N, n ≥ N1 :

vn(y) = Dpun(y), y ∈ V1 \ (Γ ∪ Γ1)

and

∃ Γ2 ∈M0 :
∀ x ∈ Ω :
∃ V2 ∈ Vx, N2 ∈ N :
∀ n ∈ N, n ≥ N2 :

wn(y) = Dpun(y), y ∈ V2 \ (Γ ∪ Γ2).
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where Γ ∈M0 is the set associated with (un) through (4.26). Let Γ0 = Γ1 ∪Γ2 and
v = v1 + v2. Then

∀ x ∈ Ω :
∀ n ∈ N, n ≥ max{N1, N2} :

vn(y)− wn(y) = Dpun(y)−Dpun(y) = 0,
y ∈ V \ (Γ ∪ Γ0).

Thus (vn)− (wn) ∈ IkE + Ikae which implies that Dp(un)−Dp(un) ⊆ IkE + Ikae.

(ii) Let (vn − wn) ∈ I lE + I lae for some (vn) ∈ Dp(un) and (wn) ∈ Ekae(Ω). Let Γ1 ∈ M0

be the closed nowhere dense set associated with (vn−wn) through Lemma 4.5, and
let Γ2 ∈ M0 be the closed nowhere dense set associated with (vn) through (4.33).
Let Γ0 = Γ1 ∪ Γ2. Fix x ∈ Ω. Then by Lemma 4.5, there exists V1 ∈ Vx and N1 ∈ N
so that

vn(y)− wn(y) = 0, y ∈ V \ Γ0, n ≥ N1.

By (4.33) there exists V2 ∈ Vx and N2 ∈ N so that

vn(y) = Dpun(y), y ∈ V2 \ (Γ ∪ Γ2) n ≥ N2,

where Γ ∈ M0 is the closed nowhere dense se associated with (un) through (4.26).
If N = max{N1, N2} and V = V1 ∩ V2, then

Dpun(y)− wn(y) = vn(y)− wn(y) = 0, y ∈ V \ (Γ ∪ Γ0), n ≥ N,

so that wn(y) = Dpun(y), y ∈ V \ (Γ ∪ Γ0), n ≥ N. Hence (wn) ∈ Dp(un).

(iii) Let (vn) ∈ Dp(un) and (v′n) ∈ Dp(u′n). Then there exists Γ1, Γ2,∈ M0, so that for
every x ∈ Ω there exists N1, N2 ∈ N and V1, V2 ∈ Vx, so that

vn(y) = Dp(un)(y), y ∈ V1 \ (Γ ∪ Γ1), n ≥ N1

and
v′n(y) = Dp(u′n)(y), y ∈ V2 \ (Γ′ ∪ Γ2), n ≥ N2,

where Γ, Γ′ ∈ M0 are closed nowhere dense sets associated with (vn) and (v′n),
respectively, through (4.26). Hence, for α, β ∈ R,

αvn(y) = αDp(un)(y), y ∈ V1 \ (Γ ∪ Γ1), n ≥ N1,

and
βv′n(y) = βDp(u′n)(y), y ∈ V2 \ (Γ′ ∪ Γ2), n ≥ N2.

Thus

αvn(y) + βv′n(y) = αDp(un)(y) + βDp(u′n)(y) = Dp(αun + βu′n)(y),

y ∈ (V1 ∩ V2) \ ((Γ ∪ Γ′) ∪ (Γ1 ∪ Γ2)), n ≥ max{N1, N2}

which implies that
α(vn) + β(v′n) ∈ Dp(αun + βu′n).

Therefore
αDp(un) + βDp(u′n) ⊆ Dp(αun + βu′n).
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In view of Proposition 4.6 above, we have the following.

Proposition 4.7. For all l, k ∈ N and p ∈ Nn so that |p|+ k ≤ l

Dp : Al
ae(Ω) ∋ (un) + (I lE + I lae) 7→ Dp(un) ∈ Ak

ae(Ω) (4.34)

is well defined and linear. Furthermore, (4.34) satisfies the Leibnitz rule

Dp
(
((un) + (I lE + I lae))((vn) + (I lE + I lae))

)
=
∑
q≤p

(
p
q

)
Dp−q((un) + (I lE + I lae))Dq((vn) + (I lE + I lae))

Proof. That (4.34) is well defined and linear follows immediately from Proposition 4.6.
To see that the Leibnitz rule holds, consider

(un) + (I lE + I lae), (vn) + (I lE + I lae) ∈ Al
ae(Ω).

Then by (4.33) and (4.34),

Dp
(
((un) + (I lE + I lae))((vn) + (I lE + I lae))

)
= Dp((unvn) + (I lE + I lae)) = Dp(unvn).

Let (wn) be a sequence in Dp(unvn). According to (4.33),

∃ Γ1 ∈M0 :
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

wn(y) = Dp(unvn)(y) =
∑
q≤p

(
p
q

)
Dp−qun(y)D

qvn(y), y ∈ V \ (Γ ∪ Γ1)

where Γ ∈ M0 is the set associated with (unvn) ∈ E lae(Ω) through (4.26). This implies,
since Dp satisfies Leibnitz rule, that

∃ Γ1 ∈M0 :
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

wn(y) =
∑
q≤p

(
p
q

)
Dp−qun(y)D

qvn(y), y ∈ V \ (Γ ∪ Γ1),

so that for p, q ∈ Nn the sequences Dp−qun = w′
n and Dqvn = w′′

n for some sequences (w′
n)

and (w′′
n) in D

p−q(un) and Dq(vn) respectively. Thus we have that

Dp(unvn) =
∑
q≤p

(
p
q

)
Dp−qunDqvn.

Hence according to (4.34) we have

Dp
(
((un) + (I lE + I lae))((vn) + (I lE + I lae))

)
=
∑
q≤p

(
p
q

)
Dp−qun(y)Dqvn(y)

=
∑
q≤p

(
p
q

)
Dp−q((un) + (I lE + I lae))Dq((vn) + (I lE + I lae)).

This completes the proof.
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The chain of almost everywhere algebras 74

Theorem 4.8.
Aae = {Al

ae(Ω),Ak
ae(Ω), γ

l
k} | l, k ∈ N, k ≤ l}

is a differential chain of algebras of generalized functions with γlk defined in (4.32).

Proof. The commutativity of the diagram

Al
ae(Ω)

-γlh Ah
ae(Ω)

�

γkh

R
Ak

ae(Ω)

γlk (4.35)

with h ≤ k ≤ l follows immediately from (4.32).
Now consider the diagram

Al
ae(Ω) -Dp

Ak
ae(Ω)

?

γkk′
?

Al′
ae(Ω) -

γll′

Dp

Ak′
ae(Ω)

(4.36)

with l′ ≤ l, k′ ≤ l, |p|+k ≤ l and |p|+k′ ≤ l′. The commutativity of the diagram follows
immediately upon noting that for (un) + (I lE + I lae) ∈ Al

ae(Ω),

Dp((un) + (I lE + I lae)) = (vn) + (IkE + Ikae)

for any member (vn) of the set Dp(un).

We now consider the embedding of the distributions into the chain Aae. A first result
in this regard is the following

Proposition 4.9. For each l ∈ N, there exists an injective algebra homomorphism

C l(Ω) −→ Al
ae(Ω) (4.37)

such that the diagrams

Al
ae(Ω) -γlk Ak

ae(Ω)
6 6

C l(Ω) -⊂ Ck(Ω)

(4.38)

and

Al
ae(Ω) -Dp

Ak
ae(Ω)

6 6

C l(Ω) -Dp

Ck(Ω)

(4.39)

commutes, for all k ≤ l and |p|+ k ≤ l, respectively.
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The chain of almost everywhere algebras 75

Proof. The existence of the injective algebra homomorphism (4.37) follows immediately
from

U l
N ⊂ E lae(Ω), U l

N ∩ (I lE + I lae = {0}.
In particular, we obtain (4.37) by setting

C l(Ω) ∋ u 7→ ∆∞
N (u) + (I lE + I lae) ∈ Al

ae(Ω)

where ∆∞
N (u) denotes the sequence in C l(Ω)N ⊆ E lae(Ω) with all terms equal to u. The

commutativity of the diagram (4.38) now follows immediately from (4.32).
Since for u ∈ C l(Ω), and |p| + k ≤ l, Dp∆∞

N (u) = ∆∞
N (Dp(u)), it follows that the

diagram (4.39) commutes.

Next we consider the embedding ofD′(Ω) intoAae. In this regard we have the following.

Theorem 4.10. Assume that Ω is convex. For each l ∈ N, there exists a linear injection

El
ae : D′(Ω) −→ Al

ae(Ω)

with the following properties.

(i) The diagram

Al
ae(Ω)

-γlk Ak
ae(Ω)

�

Ek
ae

I

D′(Ω)

El
ae (4.40)

commutes, for all k ≤ l.

(ii) The diagram

Al
ae(Ω) -Dp

Ak
ae(Ω)

6

Ek
ae

6

D′(Ω) -

El
ae

Dp

D′(Ω)

(4.41)

commutes whenever k + |p| ≤ l.

(iii) El
ae is an algebra homomorphism when restricted to C∞(Ω) ⊆ D′(Ω). In particular,

the diagram

D′(Ω) -El
ae Al

ae(Ω)

�

↪→

I

C∞(Ω)

⊂ (4.42)

commutes for each l ∈ N, with the algebra homomorphism C∞(Ω) ↪→ Al
ae(Ω) the

restriction of Ek
ae : Cl(Ω) −→ Al

ae(Ω) to C∞(Ω) ⊂ Cl(Ω).
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The chain of almost everywhere algebras 76

(iv) El
ae is not an algebra homomorphism when restricted to C l(Ω) ⊂ D′(Ω). In particu-

lar, the diagram

D′(Ω) -El
ae Al

ae(Ω)

�

↪→

I

C l(Ω)

⊂ (4.43)

does not commute, with the embedding C l(Ω) ↪→ Al
ae(Ω) given by Proposition 4.9.

Proof. According to Theorem 4.3, there exists a linear injection

E∞
ae : D′(Ω) −→ A∞

ae(Ω)

such that the diagrams

D′(Ω) -E∞
ae A∞

ae(Ω)

�

↪→

I

C∞(Ω)

⊂ (4.44)

with C∞ ↪→ A∞
ae(Ω). given in (4.22), and

A∞
ae(Ω) -Dp

A∞
ae(Ω)

6

E∞
ae

6

D′(Ω) -

E∞
ae

Dp

D′(Ω)

(4.45)

commute for all p ∈ Nn.
For each l ∈ N, let

El
ae : D′(Ω) ∋ T 7→ γ∞l (E∞

ae(T )) ∈ A∞
ae(Ω).

Note that γ∞l : A∞
ae(Ω) −→ Al

ae(Ω) is injective if and only if (I lE + I lae)
∩
E∞ae (Ω) =

(I∞E +I∞ae ). To see this, let (I lE+I lae)
∩
E∞ae (Ω) = (I∞E +I∞ae ). Then for any (un), (vn) ∈ E∞ae ,

we have that

γl∞((un) + (I∞E + I∞ae )) = γl∞((vn) + (I∞E + I∞ae ))
⇐⇒ (un) + (I lE + I lae) = (vn) + (I lE + I lae)
⇐⇒ (un)− (vn) ∈ (I lE + I lae).

Since (un) − (vn) ∈ E∞ae , it follows that (un) − (vn) ∈ (I lE + I lae)
∩
E∞ae (Ω) = (I∞E + I∞ae ).

Thus (un) + (I∞E + I∞ae ) = (vn) + (I∞E + I∞ae ). Hence γl∞ is injective. Conversely, let γl∞
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The chain of almost everywhere algebras 77

be injective. Take (un) ∈ (I∞E + I∞ae ) ∩ E∞ae , and since γl∞ is injective, the inverse image
of (un) + (I lE + I lae) in Al

ae(Ω) is (un) + (I∞E + I∞ae ) in A∞
ae(Ω) so that (un) ∈ (I lE + I lae)

implies (un) ∈ (I∞E + I∞ae ) Thus

(I lE + I lae) ∩ S∞
ae ⊆ (I∞E + I∞ae ). (4.46)

From (4.31) we deduce that

E∞ae (Ω) ⊆ E lae(Ω) and I∞E + I∞ae ⊆ I lE + I lae (4.47)

Therefore, from (4.46) and (4.47) we have that

(I lE + I lae) ∩ S∞
ae = (I∞E + I∞ae ).

We now show that the results in (i) - (iv) hold.

(i) It follows from Theorem 4.8 that

γlk ◦ γ∞l = γ∞k whenever k ≤ l.

Hence for k ≤ l

γlk ◦ El
ae = Ek

ae

(ii) It follows from Theorems 4.3 and 4.8 that the diagram

Al
ae(Ω) -Dp

Ak
ae(Ω)

6

A∞
ae A∞

ae

�I

-Dp

� I

Ek
ae

γ∞l

E∞
ae E∞

ae

γ∞k

6

D′(Ω) -

El
ae

Dp

D′(Ω)

(4.48)

commutes whenever |p|+ k ≤ l. Thus the result follows.

(iii) This follows immediately from Theorem 4.3.

(iv) Suppose that, for some l ∈ N, El
ae is an algebra homomorphism when restricted

to C l(Ω) ⊂ D′(Ω).4 Since γ∞l : A∞
l (Ω) −→ Al

ae(Ω) is injective, it follows from (i)
that E∞

ae is an algebra homomorphism when restricted to C l(Ω) ⊂ D′(Ω) This is
impossible by Corollary 1.27. Therefore El

ae is not an algebra homomorphism when
restricted to C l(Ω) ⊂ D′(Ω). The fact that the diagram (4.43) does not commute
follows immediately.
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4.3 Functions with Nowhere Dense Singularities

In this Section, we consider the embedding of the spacesMLl(Ω) into the chain of algebras
of generalized functions considered in Section 4.1. We also consider the questions of wether
or not the embedding introduced here is compatible with the embedding of distribution
into the chains And and Aae as discussed in Section 4.1.

4.3.1 Embedding MLl(Ω) into And

For each l ∈ N and u ∈MLl(Ω), there exists Γ ⊂ Ω closed and nowhere dense so that

u ∈ C l(Ω \ Γ) (4.49)

Applying Theorem 3.5, we find for each n ∈ N a function ϕn ∈ C∞(Ω, [0, 1]) so that , for
each x ∈ Ω, (

∃ y ∈ Γ :
∥x− y∥ ≤ 1

2n

)
=⇒ ϕn(x) = 0 (4.50)

and (
∀ y ∈ Γ :
∥x− y∥ ≥ 1

n

)
=⇒ ϕn(x) = 1 (4.51)

Thus un = ϕnu ∈ C l(Ω) satisfies(
∃ y ∈ Γ :
∥x− y∥ ≤ 1

2n

)
=⇒ un(x) = 0 (4.52)

and (
∀ y ∈ Γ :
∥x− y∥ ≥ 1

n

)
=⇒ un(x) = u(x). (4.53)

for each x ∈ Ω.
For each u ∈MLl(Ω), let

Iu =


(un) ∈ C l(Ω)N

∣∣∣∣∣∣∣∣∣∣∣∣

∃ Γ ⊂ Ω closed nowhere dense :
(1) u ∈ C l(Ω \ Γ) :
(2) ∀ x ∈ Ω\Γ :
∃ V ∈ Vx, N ∈ N :
∀ y ∈ V, n ≥ N :

un(y) = u(y)


. (4.54)

In view of the construction (4.50) - (4.53), Iu is non-empty for each u ∈MLl(Ω).We will
use the following properties of the set Iu to construct the desired embedding ofMLl(Ω)
into Al

nd(Ω).

Proposition 4.11. The following is true for all u, v ∈MLl(Ω).

(i) If (un) ∈ Iu and (vn) ∈ Iv, then (unvn) ∈ Iuv.
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Functions with Nowhere Dense Singularities 79

(ii) If (un) ∈ Iu and (vn) ∈ Iv, then (αun + βvn) ∈ Iαu+βv, for all α, β ∈ R.

(iii) If (un), (u
′
n) ∈ Iu, then (un − u′n) ∈ Ind.

(iv) If (un) ∈ Iu and (vn − vn) ∈ Ind for some (vn) ∈ C l(Ω)N, then (vn) ∈ Iu.

(v) Dp(Iu) ⊆ IDp(u) for all |p| ≤ l.

(vi) If Iu ∩ Iv ̸= ∅, then u = v.

Proof. (i) Let Γ0,Γ1 ⊂ Ω be the closed, nowhere dense set associated with (un) and
(vn) respectively, through (4.54). Then Γ = Γ0∪Γ1 is closed and nowhere dense and
u, v ∈ C l(Ω \ Γ). Fix x ∈ Ω \ Γ. Then according to (4.54), there exists V0, V1 ∈ Vx
and N0, N1 ∈ N so that

un(y) = u(y), y ∈ V0, n ≥ N0

and
vn(y) = v(y), y ∈ V1, n ≥ N1.

Hence the result follows upon setting V = V0 ∩ V1 and N = max{N0, N1}.

(ii) The proof of (2) follows in the same way, and is therefore omitted.

(iii) Let Γ0,Γ1 ⊂ Ω be the closed nowhere dense set associated with (un) and (u′n)
respectively, through (4.54). Let Γ = Γ0 ∪ Γ1. For x ∈ Ω \ Γ there exists, according
to (4.54), neighbourhoods V0 and V1 of x and natural numbers N0 and N1 so that

un(y) = u(y), y ∈ V0, n ≥ N0

and
vn(y) = v(y), y ∈ V1, n ≥ N1.

Setting V = V0 ∩ V1 and N = max{N0, N1}, we find that

un(y)− vn(y) = 0, y ∈ V, n ≥ N.

Since V is open, it follows that

Dp(un(y)− vn(y)) = 0, y ∈ V, n ≥ N, |p| ≤ l.

Hence (un − vn) ∈ I lnd.

(iv) Since (un − vn) ∈ I lnd, it follows from (4.1) that there exists Γ0 ⊂ Ω closed and
nowhere dense so that

∀ x ∈ Ω\Γ0 :
∃ V0 ∈ Vx, N0 ∈ N :
∀ y ∈ V0, n ≥ N0 :

un(y)− vn(y) = 0.

(4.55)

Let Γ1 ⊂ Ω be the closed nowhere dense set associated with (un) through (4.54).
Let Γ = Γ0 ∪Γ1. Then u ∈ C l(Ω \Γ) and according to (4.54), we have for x ∈ Ω \Γ
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an open neighbourhood V1 of x and a natural number N1 so that Setting V = V0∩V1
and N = max{N0, N1}, we find that

un(y) = u(y), y ∈ V, n ≥ N.

Since x ∈ Ω \ Γ ⊂ Ω \ Γ0, (4.55) applies so that

vn(y) = u(y), y ∈ V, n ≥ N.

Hence (vn) ∈ Iu.

(v) Let Γ ⊂ Ω be the closed nowhere dense set associated with (un) through (4.54).
Then Dpu ∈ C l−|p|(Ω \ Γ) and for each x ∈ Ω \ Γ there exists V ∈ Vx and N ∈ N so
that

un(y) = u(y), y ∈ V, n ≥ N.

Since V is open,

Dpun(y) = Dpu(y) = Dpu(y), y ∈ V, n ≥ N.

Hence (Dpun) ∈ IDp(u).

(vi) If Iu ∩ Iv ̸= ∅, then it follows from (4.54) that u(x) = v(x) for all x in some open
and dense set D ⊂ Ω. Proposition 2.41 now implies that u = v.

Theorem 4.12. There exists, for each l ∈ N, an injective algebra homomorphism

H l
nd :MLl(Ω) −→ Al

nd(Ω)

so that the diagrams

MLl(Ω) -Dp

MLk(Ω)

?

Hk
nd

?
Al

nd(Ω) -

H l
nd

Dp

Ak
nd(Ω)

(4.56)

and

MLl(Ω) -⊂

γlk

MLk(Ω)

?

Hk
nd

?
Al

nd(Ω) -

H l
nd

Ak
nd(Ω)

(4.57)

commute for k + |p| ≤ land k ≤ l, respectively.

Proof. It follows from Proposition 4.11 (iii) and (iv) that Iu is an I lnd-equivalence class
for each u ∈MLl(Ω), so that

H l
nd :MLl(Ω) ∋ u 7→ Iu ∈ Al

nd(Ω)

is well-defined. It follows from Proposition 4.11(vi) that H l
nd is injective,while proper-

ties (i) and (ii) of the same proposition imply that H l
nd is an algebra homomorphism.

Proposition 4.11 (5) implies the commutativity of the diagram (4.56), while the com-
mutativity of diagram (4.57) follows immediately from the definitions of the respective
algebra homomorphisms.
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4.3.2 Embedding MLl(Ω) into Aae

We now deal with the embedding of MLl(Ω) into the chain Aae introduced in Section
4.2. We consider the particular case whereM0 = {Γ ⊆ Ω : Γ closed nowhere dense }.
In this regard, we have the following

Theorem 4.13. For each l ∈ N there exists an injective algebra homomorphism

H l
ae :MLl(Ω) −→ Al

ae(Ω) (4.58)

so that the diagrams

MLl(Ω) -⊂

γlk

MLk(Ω)

?

Hk
ae

?
Al

ae(Ω) -

H l
ae

Ak
ae(Ω)

(4.59)

and

MLl(Ω) -Dp

MLk(Ω)

?

Hk
ae

?
Al

ae(Ω) -

H l
ae

Dp

Ak
ae(Ω)

(4.60)

commute whenever k ≤ l and k + |p| ≤ l respectively.

Proof. Let u ∈MLl(Ω) for some l ∈ N. Then there exists Γ ∈M0 so that u ∈ C l(Ω \Γ).
Let

∆u =

(un) ∈ E lae(Ω)

∣∣∣∣∣∣∣∣∣∣
∃ Γ0 ∈M0 :
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = u(y), y ∈ V \ (Γ ∪ Γ0)

 (4.61)

It follows from Lemma 4.5 that (un − vn) ∈ I lE + I lae for all (un), (vn) ∈ ∆u.
Assume that (un − vn) ∈ I lE + I lae for some (un) ∈ ∆u and (vn) ∈ E lae. Let Γ1 be the

closed nowhere dense set associated with (un − vn) through Lemma 4.5, and let Γ2 be
the closed nowhere dense set associated with (un) through (4.61). Let Γ = Γ1 ∪ Γ2. Fix
x ∈ Ω. Then by Lemma 4.5, there exists V1 ∈ Vx and N1 ∈ N so that

un(y)− vn(y) = 0, y ∈ V \ Γ1, n ≥ N1.

By (4.61) there exists V2 ∈ Vx and N2 ∈ N so that

un(y)− u(y) = 0, y ∈ V2 \ (Γ ∪ Γ2), n ≥ N2.

If N = max{N1, N2} and V = V1 ∩ V2, then

vn(y) = u(y), y ∈ V \ (Γ ∪ Γ0), n ≥ N,
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so that (vn) ∈ ∆u. It therefore follows that ∆u is an I lE + I lae-equivalence class so that

H l
ae :MLl(Ω) ∋ u 7→ ∆u ∈ Al

ae (4.62)

is well defined. That H l
ae is an algebra homomorphism follows immediately upon noting

that

∆u∆v ⊆ ∆uv, ∆αu+βv ⊆ α∆u + β∆v

for all u, v ∈MLl(Ω) and α, β ∈ R. Indeed, if (un) ∈ ∆u and (vn) ∈ ∆v, then there exists
Γ1,Γ2 ∈M0 so that for every x ∈ Ω there exist N2 ∈ N and V1, V2 ∈ Vx, so that

un(y) = u(y), y ∈ V1 \ (Γ ∪ Γ1), n ≥ N1,

and

vn(y) = v(y), y ∈ V2 \ (Γ ∪ Γ2), n ≥ N2

where u ∈ Cl(Ω \ Γ) and v ∈ Cl(Ω \ Γ′). Hence

un(y)vn(y) = u(y)v(y), y ∈ (V1 ∩ V2) \ ((Γ ∪ Γ′) ∪ (Γ1 ∪ Γ2)), n ≥ max{N1, N2}.

Thus (unvn) ∈ ∆uv. The second inclusion follows in the same way. In order to show
that H l

ae is injective, it is sufficient to show that, for u, v ∈ MLl(Ω), u = v whenever
∆u ∩ ∆v ̸= ∅. Suppose that u ∈ Cl(Ω \ Γ) and v ∈ Cl(Ω \ Γ′) for some Γ, Γ′ ∈ M0.
According to (4.61) thre exists Γ0,Γ1 ∈M0 so that for each x ∈ Ω there exists V1, V2 ∈ Vx
and N1, N2 ∈ N so that

wn(y) = u(y), y ∈ V1 \ (Γ ∪ Γ0), n ≥ N1

and

wn(y) = v(y), y ∈ V2 \ (Γ′ ∪ Γ1), n ≥ N2.

Hence u(y) = un(y) = v(y) whenever n ≥ max{N1, N2} and y ∈ (V1∩V2)\ (Γ∪Γ′)∪ (Γ0∪
Γ1). Thus u = v on an open and dense subset of Ωso that u = v on Ω by Proposition 2.41
The commutativity of the diagram (4.59) follows immediately from (4.32) and (4.62). To
see that (4.60) commutes, fix k, l ∈ N, l ≥ k and p ∈ Nn so that |p| + k ≤ l. Then for
u ∈MLl(Ω), it follows from (4.34) that

Dp(H l
ae(u)) = Dp(un) = Dp((un) + I lE + I lae)

for any (un) ∈ ∆u. But from (4.61), (4.33) and (4.62) that

Hk
ae(Dpu) = ∆Dpu = Dp(un) = Dp((un) + I lE + I lae)

for any (un) ∈ ∆u. Therefore the diagram (4.60) commutes.

We now consider the compatibility of the embedding of D′(Ω) into Aae obtained in
Theorem 4.8 with that ofMLl(Ω) discussed in Theorem 4.13 above. In this regard, let

MLl
0(Ω) =MLl(Ω) ∩ Ll

loc(Ω).
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So thatMLl(Ω) ⊂ D′(Ω) andMLl
0(Ω) ⊂MLl(Ω). As we show next, the commutativity

of diagram

D′(Ω) -El
ae

Al
ae(Ω)

�

H l
ae

I

MLl
0(Ω)

⊂ (4.63)

fails in a dramatic way.

Theorem 4.14. For each l ∈ N, the following is true.

(i) The diagram (4.63) does not commute.

(ii) If l ≥ 1, then there exists u ∈MLl
0(Ω) so that

Dp(El
ae(u)) ̸= Dp(H l

ae(u)) in Ak
ae(Ω)

for some p ∈ Nn with |p| = 1 and all k ∈ N such that k < l.

Proof. (i) Since C l(Ω) ⊂MLl
0(Ω) is a subalgebra ofMLl(Ω), the result follows imme-

diately from Theorem 4.10 (iv).

(ii) Fix a = (a1, · · · , an) ∈ Ω. Let Γ = {x ∈ Ω|x1 = a1}. Then Γ ∈ M0, so that
u : Ω −→ R defined by

u(x) =

{
0 if x1 ≤ a1
1 if x1 > a1

}
belongs toMLl

0(Ω) for every l ∈ N. Furthermore, Dpu = 0 for every p ∈ Nn. Thus
Dp(H l

ae(u)) = 0 in Ak
ae(Ω), for all |p| = 1 and k < l. But for k < l and |p| = 1,

Dp(El
aeu) = Ek

ae(D
pu) ̸= 0 in Ak

ae(Ω),

since Dpu ̸= 0 in D′(Ω) and El
ae is a linear injection.

In view of Theorem 4.14, a function u ∈ MLl
0(Ω) may have at least two distinct

representations in the algebra Al
ae(Ω), namely, El

ae(u) and H
l
ae(u). These representations

are different in the sense that
El

ae(u) ̸= H l
ae(u)

and more generally,
Dp(El

ae(u)) ̸= Dp(H l
ae(u))

for some p ∈ Nn and all k so that k + |p| ≤ l. In particular, the heaviside function
u ∈MLl

0(R) given by

u(x) =

{
0 if x ≤ 0
1 if x > 0

}
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has representations H l
ae(u), E

l
ae(u) ∈ Al

ae(R), l ∈ N, for which

∂

∂x
H l

ae(u) = 0,
∂

∂x
El

ae(u) = δ ̸= 0 in Ak
ae(R)

for all l ∈ N and k + 1 ≤ l. Therefore u is a chain generalized solution of the equation

∂u

∂x
= 0 (4.64)

in the chain Aae. In particular, u is a generalized solution of (4.64) in the algebra A∞
ae(Ω).

Clearly, u is not a generalized solution of (4.64) in the sense of distributions. It follows
that a generalized solution u ∈ML∞

0 (Ω) of a linear or nonlinear PDE

T (x,D)u(x) = f(x)

in A∞
ae(Ω) such as those given by [73, Theorem 10], may fail to be a solution in the sense

of distributions.

4.4 NLl(Ω) and Nowhere Dense Algebras

In this section we show how the chain Aoc is related to the chains And and Aae considered
in Section 4.1. It is shown how the existence result for chain generalized solutions of
nonlinear PDEs in Aoc, Theorem 3.10, leads to corresponding existence result in the
chains And and Aae.

4.4.1 The chain Aoc and And

In order to establish the relationship between the chains Aoc and And, we introduce an
auxiliary chain A0

nd. In this regard, we note that

I lnd ⊂ I lcs ⊂ S l
cs, l ∈ N. (4.65)

Indeed, for each (un) ∈ I lnd there exists Γ ⊂ Ω closed and nowhere dense such that

∀ x ∈ Ω \ Γ :
∃ N ∈ N :
∀ n ≥ N, |p| ≤ l :

Dpun(x) = 0

Thus (un) converges to 0 pointwise on an open and dense, hence residual, subset of Ω. It
follows from Proposition 3.4 that (un) ∈ I lcs. Since I lnd is an ideal in C l(Ω)N, it is also an
ideal in S l

cs. Furthermore, the inclusions,

I lnd ⊆ Iknd, S l
cs ⊆ Sk

cs, k ≤ l

and

Dp(I lnd) ⊆ Iknd, Dp(S l
cs) ⊆ Sk

cs, |p|+ k ≤ l
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imply that
A0

nd = {Al
0(Ω),Ak

0(Ω), γ
l
k)|l, k ∈ N, k ≤ l}

with Al
0(Ω) = S l

cs/I lnd and γlk defined as

γlk : Al
0(Ω) ∋ (un) + I lnd 7→ (un) + Iknd ∈ Ak

0(Ω) k ≤ l (4.66)

is a differential chain of algebras of generalized functions. The way in which Aoc is related
to And is given in the following

Theorem 4.15. For each l ∈ N then there exists an injective algebra homomorphism

H l : Al
0(Ω) −→ Al

nd(Ω)

and a surjective algebra homomorphism

Gl : Al
0(Ω) −→ NLl(Ω)

such that the following hold.

(i) The diagrams

Al
0(Ω) -H l

Al
nd(Ω)

?

γlk
?

Ak
0(Ω) -

γlk

Hk

Ak
nd(Ω)

(4.67)

and

Al
0(Ω) -Gl

NLl(Ω)

?

γlk
?

Ak
0(Ω) -

γlk

Gk

NLk(Ω)

(4.68)

commute for all k ≤ l.

(ii) The diagrams

Al
0(Ω) -Dp

Ak
0(Ω)

?

Hk

?
Al

nd(Ω) -

H l

Dp

Ak
nd(Ω)

(4.69)

and

Al
0(Ω) -Dp

Ak
0(Ω)

?

Gk

?
NLl(Ω) -

Gl

Dp

NLk(Ω)

(4.70)

commute whenever k + |p| ≤ l.
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Proof. For each l ∈ N define H l and Gl as

H l : Al
0(Ω) ∋ (un) + I lnd 7→ (un) + I lnd ∈ Al

nd(Ω) (4.71)

and

Gl : Al
0(Ω) ∋ (un) + I lnd 7→ (un) + I lcs ∈ NLl(Ω) (4.72)

H l is well defined since S l
cs ⊆ C l(Ω)N, while Gl also well defined since I lnd ⊆ Ics. Clearly

H l is injective, and Gl is surjective.

The commutativity of the diagrams in (i) follows immediately from (4.66), (4.71) and
(4.72) as well as the definition of the algebra homomorphisms

γlk : Al
nd(Ω) −→ Ak

nd(Ω) k ≤ l (4.73)

and

γlk : NLl(Ω) −→ NLk(Ω) (4.74)

see (4.2) and (3.19).

The commutativity of the diagrams in (ii) follows in a similar way taking into account
the definitions of the differential operators in the algebras Al

nd(Ω), Al
0(Ω) and NLl(Ω),

respectively.

As shown in Sections 3.3 and 4.3.1, each of the algebras Al
nd and NLl(Ω) contain

MLl(Ω) as a subalgebra. In particular, there exists injective algebra homomorphisms

H l
oc :MLl(Ω) −→ NLl(Ω) (4.75)

and

H l
nd :MLl(Ω) −→ Al

nd(Ω) (4.76)

so that the diagrams

NLl(Ω) -γlk
NLk(Ω)

-MLl(Ω) MLk(Ω)

66

Hk
nd

Hk
oc

⊂

? ?

H l
oc

H l
nd

Al
nd(Ω) -γlk Ak

nd(Ω)

(4.77)
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and

NLl(Ω) -Dp

NLk(Ω)

-MLl(Ω) MLk(Ω)

66

Hk
nd

Hk
oc

Dp

? ?

H l
oc

H l
nd

Al
nd(Ω) -Dp

Ak
nd(Ω)

(4.78)

commute whenever k ≤ l and k + |p| ≤ l, respectively.

A trivial modification of Theorem 4.12 yields the following

Proposition 4.16. For each l ∈ N, there exists an injective algebra homomorphism

Γl
0 :MLl(Ω) −→ Al

0(Ω)

such that the diagrams

Al
0(Ω)

-γlk Ak
0(Ω)
6

Γk
0

6

Γl
0

MLl(Ω) -⊂ MLk(Ω)

(4.79)

and

Al
0(Ω)

-Dp

Ak
0(Ω)
6

Γk
0

6

Γl
0

MLl(Ω) -Dp

MLk(Ω)

(4.80)

commute, whenever k ≤ l and |p|+ k ≤ l, respectively.

As we show next, the homomorphism

H l : Al
0(Ω) −→ Al

nd(Ω)

and

Gl : Al
0(Ω) −→ NLl(Ω)

leaveMLl(Ω) invariant.
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Theorem 4.17. The following diagrams

Al
0(Ω)

-H l

Al
nd(Ω)

�

H l
nd

I

MLl(Ω)

Γl
0

(4.81)

and

Al
0(Ω)

-Gl

NLl(Ω)

�

H l
oc

I

MLl(Ω)

Γl
0

(4.82)

commute for all l ∈ N.

Proof. For each u ∈MLl(Ω),

Γl
0(u) = (un) + I lnd

where (un) ∈ Cl(Ω)N ⊂ S l
cs satisfies

∀ x ∈ Ω\Γ :
∃ V ∈ VX , N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = u(y), y ∈ V.

(4.83)

where Γ ⊂ Ω is closed, nowhere dense set so that u ∈ Cl(Ω\Γ). Likewise, the map H l
nd(u)

may be expressed as

H l
nd(u) = (un) + I lnd

where (un) ∈ Cl(Ω)N satisfies (4.83). Clearly, (un) ∈ S l
cs for any (un) ∈ Cl(Ω)N that

satisfies (4.83). Thus the commutativity of (4.81) follows from the Definition 4.71 of H l.

Since any sequence (un) ∈ Cl(Ω)N that satisfies (4.83) converges to u ∈ MLl(Ω) with
respect to λl, the commutativity of (4.82) follows the same way as that of (4.81), taking
into account the definition (3.25) of H l

oc.

4.4.2 The chain Aoc and Aae

We now consider the relationship between the chain Aoc and Aae. In this regards, we note
that

I l0 = (I lE + I lae) ∩ C l(Ω)N ⊆ I lcs ⊂ S l
cs, l ∈ N
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Indeed, for (un) ∈ I l0 there exists, by Lemma 4.5, a closed nowhere dense set Γ ∈ M0 so
that

∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = 0, y ∈ V \ Γ.

Hence (un) converges point-wise to 0 on the open and dense set Ω \ Γ so that (un) ∈ I lcs.
Furthermore, the inclusions

I l0 ⊂ Ik0 , S l
cs ⊂ Sk

cs, l, k ∈ N (4.84)

and

Dp(I l0) ⊂ Ik0 , Dp(S l
cs) ⊂ Sk

cs, k + |p| ≤ l (4.85)

hold. Therefore
A0

ae = {(Bl
ae,Bk

ae, γ
l
k)|l, k ∈ N, k ≤ l}

is a differential chain of algebra of generalized functions, where

Bl
ae(Ω) = S l

cs/I l0
and

γlk : Bl
ae(Ω) ∋ (un) + I l0 7→ (un) + Ik0 ∈ Bk

ae(Ω) (4.86)

for all l, k ∈ N with k ≤ l. The differential operators are defined in the usual way, that is

Dp : Bl
ae(Ω) ∋ (un) + I l0 7→ Dp(un) + Ik0 ∈ Bk

ae(Ω), |p|+ k ≤ l.

Theorem 4.18. For every l ∈ N there exists an injective algebra homomorphism

F l
ae : Bl

ae(Ω) −→ Al
ae(Ω)

and a surjective algebra homomorphism

Gl
ae : Bl

ae(Ω) −→ NLl(Ω)

so that the following hold.

(i) The diagrams

Bl
ae(Ω)

-F l
ae

Al
ae(Ω)

?

γlk

?

γlk

Bk
ae(Ω) -F k

ae Ak
ae(Ω)

(4.87)

and

Bl
ae(Ω)

-Gl
ae

NLl(Ω)

?

γlk

?

γlk

Bk
ae(Ω) -Gk

ae NLk(Ω)

(4.88)

commute for all k ≤ l.
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(ii) The diagrams

Bl
ae(Ω)

-Dp

Bk
ae(Ω)

?

F k
ae

?

F l
ae

Al
ae(Ω) -Dp

Ak
ae(Ω)

(4.89)

and

Bl
ae(Ω)

-Dp

Bk
ae(Ω)

?

Gk
ae

?

Gl
ae

NLl(Ω) -Dp

NLk(Ω)

(4.90)

commute whenever k + |p| ≤ l.

Proof. For each l ∈ N define algebra homomorphisms F l
ae and G

l
ae as

F l
ae : Bl

ae(Ω) ∋ (un) + I l0 7→ (un) + (I lE + Iae) ∈ Al
ae(Ω) (4.91)

and

Gl
ae : Bl

ae(Ω) ∋ (un) + I l0 7→ (un) + I lcs ∈ NLl(Ω). (4.92)

Since S l
cs ⊆ C l(Ω)N ⊆ E lae and I l0 ⊆ (I lE +Iae) it follows that F l

ae is well defined. Also G
l
ae

is well defined since I l0 ⊆ Ics. The mapping F l
ae is injective since I l0 = (I lE + I loc) ∩ S l

cs

which implies that {(un) + I l0 ∈ Bl
ae | F l

ae((un) + I l0) = 0} = {0}. Gl
ae is surjective since

I l0 ⊆ I lcs.

The commutativity of the diagrams in (i) follows immediately from (4.86), (4.91) and
(4.92) as well as the definition of the algebra homomorphisms

γlk : Al
ae(Ω) −→ Ak

ae(Ω) k ≤ l (4.93)

and

γlk : NLl(Ω) −→ NLk(Ω) (4.94)

given by (4.32) and (3.19) respectively.
The commutativity of the diagrams in (ii) follows in a similar way taking into account

the definitions of the differential operators in the algebras Al
ae(Ω), Bl

ae(Ω) and NLl(Ω)
respectively.

As shown in Section 4.3.2, if M0 consists of all closed nowhere dense subsets of Ω,
then each of the algebras Al

ae(Ω) contain MLl(Ω) as a subalgebra. In particular, there
exists for each l ∈ N an injective algebra homomorphism

H l
ae :MLl(Ω) −→ Al

ae(Ω) (4.95)
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so that the diagrams

NLl(Ω) -γlk NLk(Ω)

-MLl(Ω) MLk(Ω)

66

Hk
ae

Hk
oc

⊂

? ?

H l
oc

H l
ae

Al
ae(Ω) -γlk Ak

ae(Ω)

(4.96)

and

NLl(Ω) -Dp

NLk(Ω)

-MLl(Ω) MLk(Ω)

66

Hk
ae

Hk
oc

Dp

? ?

H l
oc

H l
ae

Al
ae(Ω) -Dp

Ak
ae(Ω)

(4.97)

commute whenever k ≤ l and k + |p| ≤ l respectively, where H l
oc is defined by (4.75).

In view of Theorem 4.13 we have the following

Proposition 4.19. Assume that M0 = {Γ ⊂ Ω|Γ is closed nowhere dense}. Then for
each l ∈ N, there exists an injective algebra homomorphism

H l
ae :MLl(Ω) −→ Bl

ae(Ω)

such that the diagrams

Bl
ae(Ω)

-γlk Bk
ae(Ω)
6

Hk
ae

6

H l
ae

MLl(Ω) -⊂ MLk(Ω)

(4.98)

and

Bl
ae(Ω)

-Dp

Bk
ae(Ω)
6

Hk
ae

6

H l
ae

MLl(Ω) -Dp

MLk(Ω)

(4.99)

commute, whenever k ≤ l and |p|+ k ≤ l respectively.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



NLl(Ω) and Nowhere Dense Algebras 92

We note that the algebra homomorphism

H l
oc(u) :MLl(Ω) −→ Bl

ae(Ω)

is obtained by setting
H l

oc(u)(u) = (un) + I l0
where (un) ∈ S l

cs is any sequence satisfying (4.61). The existence of such a sequence is
guaranteed by Lemma 3.6.

We now show that the homomorphism

F l
ae : Bl

ae(Ω) −→ Al
ae(Ω)

and
Gl

ae : Bl
ae(Ω) −→ NLl(Ω)

leave the subalgebraMLl(Ω) of Bl
ae(Ω) invariant.

Theorem 4.20. Assume that M0 = {Γ ⊂ Ω|Γ is closed nowhere dense . Then the dia-
grams

Bl
ae(Ω)

-F l
ae

Al
ae(Ω)

�

H l
ae

I

MLl(Ω)

H l
ae

(4.100)

and

Bl
ae(Ω)

-Gl
ae

NLl(Ω)

�

H l
oc

I

MLl(Ω)

H l
ae (4.101)

commute for all l ∈ N.

Proof. The proof is similar to that of Theorem 4.17 which we outline below.
For each u ∈MLl(Ω),

Γl
0(u) = (un) + I lnd

where (un) ∈ Cl(Ω)N ⊂ S l
cs satisfies

∀ x ∈ Ω\Γ :
∃ V ∈ VX , N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = u(y), y ∈ V.

(4.102)
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where Γ ⊂ Ω is closed, nowhere dense set so that u ∈ Cl(Ω\Γ). Likewise, the map H l
ae(u)

may be expressed as
H l

ae(u) = (un) + I lnd
where (un) ∈ Cl(Ω)N satisfies (4.102). Clearly, (un) ∈ S l

cs for any (un) ∈ Cl(Ω)N that
satisfies (4.102). Thus the commutativity of (4.100) follows from the definition (4.91) of
F l
ae.
Since any sequence (un) ∈ Cl(Ω)N that satisfies (4.102) converges to u ∈MLl(Ω) with

respect to λl, the commutativity of (4.101) follows the same way as that of (4.100), taking
into account the definition (3.25) of H l

oc.

4.4.3 Chain generalized solutions in And and Aae

In this section we show how the existence result for chain generalized solutions of nonlinear
PDEs in Aoc given in Theorem 3.10 leads to corresponding existence results in the chains
Aae and And, respectively. In this regards, consider a polynomial nonlinear differential
operator

T =
∑
1≤i≤h

ci(x)
∏

1≤j≤ki

Dpij , x ∈ Ω (4.103)

where h, ki ∈ N, ci ∈ C∞(Ω) and pij ∈ Nn satisfies |pij| ≤ m for all i = 1, · · · , h and
j = 1, · · · , ki. For f ∈ C∞(Ω) we show that, under a mild assumption on the operator T,
the polynomial PDE,

Tu = f. (4.104)

admits a chain generalized solutions in And and Aae respectively.
We deal first with the case of solutions in And. In this regard, it is clear that

T (I lnd) ⊂ Iknd

whenever k +m ≤ l and, obviously,

T (C l(Ω)N) ⊂ Ck(Ω)N, k +m ≤ l

Therefore, since I lnd is off diagonal, (un)− (vn) ∈ I lnd which implies (Tun)− (tvn) ∈ Iknd,
see Section 1.6, so that

Tnd : Al
nd(Ω) ∋ (un) + I lnd 7→ T (un) + Iknd ∈ Ak

nd(Ω) k +m ≤ l

defines an extension of
T : C l(Ω) −→ Ck(Ω),

for k +m ≤ l. In the same way,

Toc : NLl(Ω) ∋ (un) + I lcs 7→ T (un) + Ikcs ∈ NLk(Ω), k +m ≤ l

and
T0 : Al

0(Ω) ∋ (un) + I lnd 7→ T (un) + Iknd ∈ Ak
0(Ω) k +m ≤ l

defines an extension of T : C l(Ω) −→ Ck(Ω).
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Proposition 4.21. The diagrams

Al
0(Ω)

-T0 Ak
0(Ω)

?

F k
nd

?

F l
nd

Al
nd(Ω) -Tnd Ak

nd(Ω)

(4.105)

and

Al
0(Ω)

-T0 Ak
0(Ω)

?

Gk
nd

?

Gl
nd

NLl(Ω) -Toc NLk(Ω)

(4.106)

commute whenever k + m ≤ l, with F l
nd and Gl

nd the algebra homomorphisms obtain in
Theorem 4.12

Proof. For u = (un) + I lnd ∈ Al
0 with k +m ≤ l,

Tnd(F
l
nd(u)) = Tnd((un) + I lnd)

= T (un) + Iknd
and

F k
nd(T0(u)) = F k

nd(T (un) + Iknd)
= T (un) + Iknd

Hence (4.105) commutes. The commutativity of the diagram (4.106) follows in the same
way.

Theorem 4.22. If f ∈ C∞(Ω), and the operator T defined in (4.103) satisfies (2.63) to
(2.64) then the PDE

Tu = f (4.107)

admits a chain generalized solution in And.

Proof. According to Theorem 3.12, there exists a chain generalized solution of (4.107) in
Aoc. That is, there exists (un) ∈ S∞

cs so that u = (un) + I lcs satisfies

Tu = T (un) + Ikcs = f + Ikcs
for all l, k ∈ N with k +m ≤ l. Since

Gl
nd : Al

0(Ω) −→ NLl(Ω)

is surjective for each l ∈ N, it follows that there exists v = (vn) + I lnd ∈ A∞
0 (Ω) so that

G∞
nd(v) = u. It follows from Theorem 4.12 and Proposition 4.21 that

To((vn) + I lnd) = f + Iknd
for all k, l ∈ N so that k +m ≤ l. In the same way, it follows that

F∞
nd(v) = (vn) + I∞nd ∈ A∞

nd(Ω)

is a chain generalized solution of (4.107) in And.
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Let us now consider the existence of chain generalized solutions of the PDE (4.107) in
the chain Aae. It is clear that

(un)− (vn) ∈ I l0 =⇒ T (un)− T (vn) ∈ Ik0

for all (un), (vn) ∈ C∞(Ω)N and k +m ≤ l. Thus

TB : Bl
ae(Ω) ∈ (un) + I l0 7→ T (un) + Ik0 ∈ Bk

ae(Ω)

is a well-defined extension of T : C l(Ω) −→ Ck(Ω), for all l, k ∈ N such that m + k ≤ l.
With each (un) ∈ E lae(Ω) and k ∈ N, we associate the set

T ae(un) =

(vn) ∈ Ekae(Ω)

∣∣∣∣∣∣∣∣∣∣
∃ Γ0 ∈M0 :
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

vn(y) = Tun(y), y ∈ V \ Γ

 . (4.108)

This gives rise to a relation

E lae(Ω) ∋ (un) 7→ T ae(un) ⊂ Ekae(Ω).

It follows from Proposition 4.6 that

T ae(un)− T ae(un) ⊆ IkE + Ikae

and
(vn) ∈ T ae(un), ((vn)− (wn)) ∈ IkE + Ikae =⇒ (wn) ∈ T ae(un)

for all (un) ∈ E lae(Ω) and l, k ∈ N such that k +m ≤ l. Therefore,

Tae : Al
ae(Ω) ∋ (un) + (I lE + I lae) 7→ T ae(un) ∈ Ak

ae(Ω) (4.109)

is well-defined for all k, l ∈ N such that m+ k ≤ l. Note that

Tae((un) + (I lE + I lae)) = (vn) + (IkE + I lae)

where (vn) is any member of the set T ae(un). Since the ideal I lE + I lae is off diagonal, it
follows that (4.109) is an extension of

T : C l(Ω) −→ Ck(Ω), k +m ≤ l.

Proposition 4.23. For all k, l ∈ N so that m+ k ≤ l, the diagrams

Bl
ae(Ω)

-TB Bk
ae(Ω)

?

Gk
ae

?

Gl
ae

NLl(Ω) -Toc NLk(Ω)

(4.110)
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and

Bl
ae(Ω)

-TB Bk
ae(Ω)

?

F k
ae

?

F l
ae

Al
ae(Ω) -Tae Ak

ae(Ω)

(4.111)

commute.

Proof. For u = (un) + I l0 ∈ Bl
ae with k +m ≤ l,

Toc(G
l
ae(u)) = Toc((un) + I lcs)

= T (un) + Ikcs

and

Gk
ae(TB(u)) = Gk

ae(T (un) + Ik0 )
= T (un) + (Ikcs)

Hence (4.110) commutes. The commutativity of the diagram (4.111) follows in the same
way.

Theorem 4.24. If f ∈ C∞(Ω), and the operator T defined in (4.103) satisfies (2.63) to
(2.64) then the PDE

Tu = f (4.112)

admits a chain generalized solution in Aae.

Proof. According to Theorem 3.12, there exists a chain generalized solution of (4.107) in
Aoc. That is, there exists (un) ∈ S∞

cs so that u = (un) + I lcs satisfies

Tu = T (un) + Ikcs = f + Ikcs

for all l, k ∈ N with k +m ≤ l. Since

Gl
ae : Bl

ae(Ω) −→ NLl(Ω)

is surjective for each l ∈ N, there exists v = (vn)+I l0 ∈ B∞
ae(Ω) so that G∞

ae(v) = (un)+I l0.
It follows from Theorem 4.12 and Proposition 4.23 that

TB((vn) + I l0) = f + Ik0

for all k, l ∈ N so that k +m ≤ l. In the same way, it follows that

F∞
ae (v) = (vn) + I∞0 ∈ A∞

nd(Ω)

is a chain generalized solution of (4.107) in Aae.

Theorem 4.24 establishes the existence of chain generalized solution in Aae for a large
class of PDEs, as demonstrated in the following
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Example 4.25. Consider the PDE

Dtu(x, t) =
∑
1≤i≤h

ci(x)
∏

1≤j≤ki

Dpij
x u(x, t), (x, t) ∈ Ω = Ω′ × R (4.113)

where Ω′ ⊂ Rn−1 is open, h, ki ∈ N, ci ∈ C∞(Ω) and pij ∈ Nn satisfies |pij| ≤ m for all
i = 1, · · · , h and j = 1, · · · , ki. The PDE (4.113) can be written in the form

T (x, t,D)u(x, t) = 0, (x, t) ∈ Ω

where 0 denotes the zero function on Ω. The operator T (x, t,D) is defined through a
jointly continuous, C∞-smooth mapping

F : Ω× RM+1 −→ R (4.114)

as
T (x, t,D) = F (x, t, u(x, t), · · · , Dpij

x u(x, t), · · · , Dtu(x, t)).

where M is the cardinality of {pij | i = 1 · · ·h, j = 1 · · · ki}. In particular,

F (x, t, ξ1 · · · , ξM+1) = ξM+1 −
∑
1≤i≤h

ci(x)
∏

1≤j≤ki

ξpij , (x, t) ∈ Ω = Ω′ × R.

Since the PDE in (4.113) is a linear ξM+1, it follows that the range of F in R is given
by

RF = {F (x, t, ξ1 · · · , ξM+1)|(x, t) ∈ Ω, (x, t, ξ1 · · · , ξM+1) ∈ RM+1} = R.
Hence RF is open and F is surjective. Furthermore, RF = intRF = R so that 0 ∈ intRF .

Now define the mapping

F∞ : Ω× RNn+1 −→ RNn+1

by setting

F∞(x, t, (ξM+1)M∈Nn) = (F β(x, t, · · · , ξM , ξM+1)), β ∈ Nn+1

where, for each β ∈ Nn+1, the mapping

F β : Ω× RNn+1 −→ RNN+1

is defined by setting

Dβ(T (x, t,D)u(x, t)) = F β(x, t, · · · , Dpiju(x, t), · · · , Dtu(x, t)), |pij| ≤ m+ |β|

for all u ∈ C∞(Ω). Note that for each β ∈ Nn+1, F β is linear in at least one factor of
RNn+1

, so that, for β′ = neβ, F β is independent of this factor. Hence

∀ (x, t) ∈ Ω

∃ ξ(x, t) ∈ RNn+1
, F∞(x, t, ξ(x, t)) = 0

∃ V ∈ V(x,t),W ∈ Vξ(x,t) :
F∞ : V ×W ∈ RNn+1

is open

Thus the PDE (4.113) satisfies (2.64). Therefore by Theorems 4.24, the PDE (4.113) has
a chain generalized solution in Aae.
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4.5 Space-time Foam Algebras

Recently, see [39, 47, 52, 53, 54, 65], Rosinger introduced so-called space-time foam (STF)
algebras. These are differential algebras of generalized functions which can deal with
singularities that occur on a dense subset of Ω, as opposed to the closed, nowhere dense
singularity set used in the nowhere dense algebra A∞

nd(Ω). The main motivation for this
work is to provide a mathematical model for space-time foam singularities in general
relativity, proposed by physicists in order to deal with quantum phenomena. Let us now
recall briefly the construction of such space-time foam algebras, see [39, 47, 52, 53]. Let
S be a collection of subsets of Ω such that

Σ ∈ S =⇒ Ω \ Σ is dense in Ω (4.115)

and

∀ Σ, Σ′ ∈ S :
∃ Σ′′ ∈ S :

Σ ∪ Σ′ ⊆ Σ′′
(4.116)

Let L = (Λ,≤) be a right directed partially ordered set. That is,

∀ λ, λ′ ∈ Λ
∃ λ′′ ∈ Λ

λ, λ′ ≤ λ′′

For Σ ∈ S, the ideal IL,Σ ⊆ C∞(Ω)Λ is defined as the set of Λ-sequences (uλ)λ∈Λ ∈
C∞(Ω)Λ that satisfy the asymptotic vanishing condition

∀ x ∈ Ω \ Σ :
∃ λ ∈ Λ :
∀ µ ∈ Λ, µ ≥ λ :
∀ p ∈ Np :

Dpuµ(x) = 0.

(4.117)

Clearly, for all Σ,Σ′ ∈ S, we have

Σ ⊆ Σ′ =⇒ IL,Σ ⊆ IL,Σ

so that

IL,S =
∪
Σ∈S

IL,Σ (4.118)

is an ideal in C∞(Ω)Λ. Based on (4.118), we associate with the collection of singularity
sets the multi-foam algebra

BL,S(Ω) = C∞(Ω)Λ/IL,S. (4.119)

Note that, due to the denseness of Ω \ Σ in Ω for each Σ ∈ S, it follows that the ideal
IL,S satisfies the neutrix condition (1.11). Hence

C∞(Ω) ∋ u 7→ ∆∞(u) + IL,S ∈ BL,S(Ω) (4.120)
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defines an injective algebra homomorphism where ∆∞ is defined by. Furthermore, since

Dp(IL,S) ⊆ IL,S, p ∈ Nn,

it follows that for each p ∈ Nn

Dp : BL,S(Ω) ∋ (uλ) + IL,S(Ω) 7→ Dp(uλ) + IL,S ∈ BL,S(Ω) (4.121)

defines an extension of the differential operator

Dp : C∞(Ω) −→ C∞(Ω)

which is linear and satisfy the Leibnitz rule.
If we set

S = Snd = {Γ ⊆ Ω | Γ is closed nowhere dense}
then the construction (4.115) to (4.121) above reduces to that of the nowhere dense algebra
A∞

nd(Ω) discussed in Section 4.1.1.
In order to deal with singularities that occur on a dense subset of Ω, using the con-

struction (4.115) to (4.121), the collection S of singularity sets must satisfy

∃ Σ ∈ S :
Σ is dense inΩ.

(4.122)

Condition (4.122) is clearly not satisfied by the collection Snd, which gives rise to the
nowhere dense algebra A∞

nd(Ω). Given the utility of the algebra A∞
nd(Ω), in particular when

it comes to the solution of nonlinear PDEs, solutions which may exhibit singularities in
closed nowhere dense subsets of Ω, the following is a natural choice.

Let
SBaire−I = {Σ ⊂ Ω | Σ is of first Baire category in Ω} .

Clearly, SBaire−I satisfies (4.115) and (4.116) so that

BBaire−I(Ω) = C∞(Ω)Λ/IL,SBaire−I
(4.123)

is a differential algebra of generalized functions admitting a canonical embedding of
C∞(Ω). SinceSBaireI satisfies (4.122), it would seem that the algebra BBaire−I(Ω) can deal
with functions admitting singularities on dense subset of Ω, in particular, on arbitrary
sets of first Baire category. However, in [65] it is shown that if L = (Λ,≤) is countably
co-final, that is

∃ Λ0 ⊂ Λ countable :
∀ λ ∈ Λ :
∃ λ0 ∈ Λ0 :

λ ≤ λ0,

then IL′SBaire−I
= I∞nd, so that

BBaire−I(Ω) = A∞
nd(Ω).

In this section, we introduced an alternative construction of algebras admitting dense
singularities of a particular form based on the theory of chains of algebra of generalized
functions.
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4.5.1 Constructing differential algebras from differential chains
of algebras

Let

A = {(Al(Ω),Ak(Ω), γlk) | l, k ∈ N, k ≤ l}

be a differential chain of algebras of generalized functions . Among the algebras Al(Ω)
in A, only A∞(Ω) is a differential algebra. Our aim in this section is to construct, using
the algebras Al(Ω), l ∈ N, a differential algebra that is typically larger than the algebra
A∞(Ω). In this regard, let

A∞
0 (Ω) =

∩
l∈N

γl0(Al(Ω)) ⊂ A0(Ω). (4.124)

Since each

γl0 : Al(Ω) −→ A0(Ω)

is an algebra homomorphism, it follows that A∞
0 (Ω) is a subalgebra of A0(Ω). Note that

A∞
0 (Ω) is not the trivial algebra {0}, except when γ∞0 (A∞(Ω)) = {0}. Indeed, due to the

commutative diagram (1.38), it follows that

γ∞0 (A∞(Ω)) ⊂ A∞
0 (Ω).

Theorem 4.26. Let A be a differential chain of algebra of generalized functions. Let
A∞

0 (∞)(Ω) be defined as in (4.124), and assume that γl0 is injective for all l ∈ N. Then
for each p ∈ Nn there exists a map

Dp : A∞
0 (Ω) −→ A∞

0 (Ω)

so that the following hold

(i) For each u ∈ A∞
0 (Ω), Dp(u) = γl0(u) for all l ∈ N so that |p| ≤ l.

(ii) Dp is linear and satisfies the Leibnitz rule.

Proof. Since each γl0 is injective and the diagram (1.38) commutes, it follows that

∀ u ∈ A∞
0 (Ω), l ∈ N :

∃! ul ∈ Al(Ω) :
(1) γl0(ul) = u
(2) γlk(ul) = uk, k ≤ l.

(4.125)

In view of the commutativity of the diagrams (1.38) and (1.39), the diagram

Al(Ω) -Dp

Ak(Ω)

?

γkk′

?

γll′

Al′(Ω)

A0(Ω)
R

�
-

γk0

γk
′

0Dp

Ak′(Ω)

(4.126)
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commutes for all p ∈ Nn, l ≥ l′ ≥ |p| and k, k′ ∈ N so that k + |p| ≤ l and k′ + |p| ≤ l′.
Hence for each u ∈ A∞

0 (Ω), p ∈ Nn, l ≥ l′ ≥ |p| and k, k′ ∈ N so that k + |p| ≤ l and
k′ + |p| ≤ l′, we have

γk0 (D
pul) = γk

′

0 (D
p(ul′)) in A0(Ω) (4.127)

Thus for each u ∈ A∞
0 (Ω) and p ∈ Nn there exists a unique w ∈ A∞

0 (Ω) so that

γk0 (D
pul) = w, l ∈ N, k + |p| ≤ l. (4.128)

This proves the existence of a map

Dp : A∞
0 (Ω) −→ A∞

0 (Ω),

for each p ∈ N, so that Theorem 4.26(i) holds.
For u, v ∈ A∞

0 (Ω) and α, β ∈ R,

γl0(αul + βvl) = αu+ βv

so that
(αu+ βv)l = αul + βvl

for all l ∈ N. Thus

Dp(αu+ βv) = γk0 (D
p(αul + βvl))

= αγk0 (D
pul) + βγk0 (D

pvl)

for all l, k ∈ N so that k + |p| ≤ l. Hence

Dp(αu+ βv) = αDp(u) + βDp(v).

In the same way, (uv)l = ulvl for all l ∈ N. Hence

Dp(uv) = γk0 (D
p(ulvl))

= γk0

(∑
q≤p

(
p
q

)
Dp−qulD

qvl

)

=
∑
q≤p

(
p
q

)
γk0 (D

p−qul)γ
k
0 (D

qvl)

whenever k+ |p| ≤ l. In fact, due to the commutativity of the diagrams (1.38) and (1.39)
we have

Dp(uv) =
∑
q≤p

(
p
q

)
γ
kp−q

0 (Dp−qul)γ
kq
0 (Dqvl)

whenever kp−q + |p− q| ≤ l and kq + |q| ≤ l. It therefore follows that

Dp(uv) =
∑
q≤p

(
p
q

)
Dp−quDqv

for all u, v ∈ A∞
0 (Ω).
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Assuming that γl0 is injective for each l ∈ N, we have obtained a differential algebra
A∞

0 (Ω) from the algebras Al(Ω), l ∈ N, in the chain A. Due to the commutativity of the
diagram (1.38), we have

γ∞0 (A∞(Ω)) ⊆ A∞
0 (Ω) ⊂ A0(Ω).

Thus, if γ∞0 : A∞(Ω) −→ A0(Ω) is also injective, it follows that A∞
0 (Ω) contains A∞(Ω)

as a subalgebra. Furthermore, due to (1.39), the diagram

A∞
0 (Ω) -Dp

A∞
0 (Ω)
6

γ∞0

6

γ∞0

A∞(Ω) -Dp

A∞(Ω)

(4.129)

commutes for all p ∈ Nn, so that we may view A∞
0 (Ω) as an extension of A∞(Ω). It can

be shown that
γ∞0 : A∞(Ω) −→ A∞

0 (Ω)

is typically not an isomorphism, so that A∞
0 (Ω) is a proper extension of A∞(Ω).

We now investigate the extent the which properties of the chain A carry over to
the algebra A∞

0 (Ω). In particular, we consider the embedding of smooth functions and
distributions into the A∞

0 (Ω) as well as the existence of generalized solutions to nonlinear
PDEs.

Let us consider first the embedding of smooth functions into A∞
0 (Ω).

Theorem 4.27. Assume that γl is injective for each l ∈ N. Further assume that there
exists for each l ∈ N an injective algebra homomorphism

C∞(Ω) ↪→ Al(Ω)

so that the diagram

Al(Ω) -γlk
Ak(Ω)

�

↪→

I

C∞(Ω)

↪→ (4.130)

commutes for all l, k ∈ N with k ≤ l. Then there exists an injective algebra homomorphism

C∞(Ω) ↪→ A∞
0 (Ω)

so that the diagram

A∞(Ω) -γ∞0
A∞(Ω)

�

↪→

I

C∞(Ω)

↪→ (4.131)
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commutes.

If in addition, the diagram

Al(Ω) -Dp

Ak(Ω)
6

↪→
6

↪→

C∞(Ω) -Dp

C∞(Ω)

(4.132)

commutes for all p ∈ Nn and l, k ∈ N so that k + |p| ≤ l then the diagram

Al
0(Ω)

-Dp

Ak
0(Ω)
6

↪→
6

↪→

C∞(Ω) -Dp

C∞(Ω)

(4.133)

commutes.

Proof. If u ∈ C∞(Ω), then γl0(u) = γk0 (u) for all l, k ∈ N. Hence there exists a unique
wu ∈ A0(Ω) so that

γl0(u) = wu l ∈ N.

Consider the map

E∞
0 : C∞(Ω) ∋ u 7→ wu ∈ A∞

0 (Ω).

Then E∞
0 (u) = γl0(u) for all u ∈ C∞(Ω) and l ∈ N, and if γl0(u) = wu for all l ∈ N,

then wu = E∞
0 (u). The injectivity of E∞

0 follows from that of γl0. For u, v ∈ C∞(Ω) and
α, β ∈ R we have , for all l ∈ N,

E∞
0 (uv) = γl0(uv) = γl0(u)γ

l
0(v) = E∞

0 (u)E∞
0 (v)

and

E∞
0 (αu+ βv) = γl0(αu+ βv) = αγl0(u) + βγl0(v) = αE∞

0 (u) + βE∞
0 (v)

so that E∞
0 is an algebra homomorphism.

The commutativity of the diagram (4.131) follows immediately from (4.130).

Now assume that (4.132) commutes for all p ∈ Nn and l, k ∈ N such that k + |p| ≤ l.
Then for u ∈ C∞(Ω) we have, for l ≥ |p|,

Dp(E∞
0 (u)) = Dp(γl0(u))

= γl0(D
p(u))

= E∞
0 (Dp(u)).

Hence the diagram (4.133) commutes.

In the same way as above we obtain the following
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Theorem 4.28. Assume that γl0 is injective for all l ∈ N, and there exists a linear
injection

El : D′(Ω) −→ Al(Ω)

so that the diagram

Al(Ω) -γlk
Ak(Ω)
�

Ek

I

D′(Ω)

El (4.134)

commutes for all l, k ∈ N so that k ≤ l. Then there exists a linear injection

E∞
0 : D′(Ω) −→ A∞

0 (Ω).

If, in addition, the diagram

Al(Ω) -Dp

Ak(Ω)
6

Ek

6

El

D′(Ω) -Dp

D′(Ω)

(4.135)

commutes whenever |p|+ k ≤ l, then the diagram

Al
0(Ω)

-Dp

Ak
0(Ω)
6

E∞
0

6

E∞
0

D′(Ω) -Dp

D′(Ω)

(4.136)

commutes for all p ∈ Nn.

Proof. For all l, k ∈ N and T ∈ D′(Ω), we have

γl0(E
l(T )) = γk0 (E

k(T )).

Hence for each T ∈ D′(Ω) there exists a unique wT ∈ A∞
0 (Ω) ⊂ A0(Ω) so that

γl0(E
l(T )) = wT in A0(Ω), l ∈ N.

Consider the map
E∞

0 : D′(Ω) ∋ T 7→ wT ∈ A∞
0 (Ω).

Since each El is a linear injection, it follows by arguments essentially simillar to those
employed in the proof of Theorem 4.27 that E∞

0 is a linear injection. The commutativity
of (4.136), subject to that of (4.135), follows likewise by arguments similar to those in
the proof of Theorem 4.27.
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Let us now consider a polynomial nonlinear PDE

Tu = f (4.137)

of order at most m with f ∈ C∞(Ω), and T defined as in (4.103). We observe that, due to
the polynomial nature of T, it admits an extension to any differential algebra containing
C∞(Ω). Thus in view of Theorem (4.27), T may be extended to A∞

0 (Ω).

Theorem 4.29. Assume that γl0 is injective for each l ∈ N and that the chain A admits
an embedding of C∞(Ω). If there exists a chain generalized solution u ∈ A∞(Ω) of (4.137)
in A, then there exists a solution of (4.137) in the algebra A∞

0 (Ω).

Proof. If u ∈ A∞(Ω) is a chain generalized solution of (4.137), then

T (γ∞l (u)) = f in Ak(Ω) (4.138)

whenever m+ k ≤ l. In view of the fact that the diagram

A∞(Ω) -γ∞0
A∞

0 (Ω)

?

Dp

?

Dp

A∞(Ω)

A0(Ω)
R

�
-

⊂

⊂γ∞0 A∞
0 (Ω)

(4.139)

commutes for all p ∈ N, it follows that the diagram

A∞(Ω) -γ∞0
A∞

0 (Ω)

?

T

?

T

A∞(Ω)

A0(Ω)
R

�
-

⊂

⊂γ∞0 A∞
0 (Ω)

(4.140)

commutes. It therefore follows from (4.138) that γ∞0 (u) ∈ A∞
0 (Ω) ⊂ A0(Ω) is a solution

of (4.137) in A∞
0 (Ω).

4.5.2 Differential algebras with dense singularities

In this section we give two examples of differential algebras of generalized functions ob-
tained through the construction in Section 4.5.1, which are able to deal with dense sin-
gularities of a certain type. As a first illustrative example, we consider the following.

Example 4.30. Recall from Section 2.1 that, for l ∈ N,

C l
nd(Ω) =

{
u : Ω −→ R

∣∣∣∣ ∃ Γ ⊂ Ω, closed and nowhere dense :
u ∈ C l(Ω \ Γ)

}
.

We claim that, in general, ∩
l∈N

C l
nd(Ω) ̸= C∞

nd(Ω).
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In this regard, let Ω = (0, 1) and let {qn | n ∈ N} be an enumeration of Q∩ (0, 1). For
each l ∈ N and x ∈ Ω, let

ul(x) =

{
0 if x ≤ ql
xl+1

(l+1)!
if x > ql.

(4.141)

Then ul ∈ (C l(Ω) \ C l+1(Ω)) ∩ C∞
nd(Ω) for all l ∈ N. Let

u(x) =
∑
l∈N

1

2l
ul(x). (4.142)

Since the series is uniformly convergent on (0, 1), it follows that u ∈ C0(Ω).More generally,
the series

up(x) =
∑
l∈N

1

2l
u
(p
l (x) (4.143)

is uniformly convergent on Ω \ {q1, · · · , qp−1} for all p ∈ N, so that u ∈ Clnd(Ω) for every
l ∈ N. Since {ql | l ∈ N} is dense in Ω, it follows that u is not C∞-smooth on any non-
empty open subset of Ω. That is, u is singular on a dense subset of Ω. In particular,
u /∈ C∞nd(Ω).

Example 4.30 may be extrapolated in a straight forward way to an arbitrary open set
Ω ⊂ Rn. It follows that the set

(
∩
l∈N

MLl(Ω)) \ML∞(Ω) (4.144)

is nonempty. In particular, there exists u ∈ML∞
0 (Ω) =

∩
l∈N
MLl(Ω) such that u /∈ C∞(U)

for every open subsets U of Ω. As shown in Theorem 4.12 and 4.13, the algebras A∞
nd(Ω)

and A∞
ae(Ω) can handle singularities of functions in ML∞(Ω). In particular, there exist

injective algebra homomorphisms

H∞
nd :ML∞(Ω) −→ A∞

nd(Ω) (4.145)

and
H∞

ae :ML∞(Ω) −→ A∞
ae(Ω) (4.146)

so that the diagrams

A∞
nd(Ω)

-Dp

A∞
nd(Ω)
6

H∞
nd

6

H∞
nd

ML∞(Ω) -Dp

ML∞(Ω)

(4.147)

and

A∞
ae(Ω)

-Dp

A∞
ae(Ω)
6

H∞
ae

6

H∞
ae

ML∞(Ω) -Dp

ML∞(Ω)

(4.148)
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commute for all p ∈ Nn. The method by which the embeddings (4.145) and (4.146) are
obtained does not yield an embedding

ML∞
0 (Ω) =

∩
l∈N

MLl(Ω) ↪→ A∞
nd(Ω)

or

ML∞
0 (Ω) =

∩
l∈N

MLl(Ω) ↪→ A∞
ae(Ω).

In this regard, let us recall briefly the main points involved in the construction of the
embedding (4.145) and (4.146), respectively. We deal first with the embedding (4.145).
For u ∈ ML∞(Ω) there exists Γ ⊂ Ω closed and nowhere dense so that u ∈ C∞(Ω \ Γ).
An application of the Principle of Partition of Unity , see Theorem 3.5, yields a sequence
(un) in C

∞(Ω, [0, 1]) so that

∀ x ∈ Γ :
∀ n ∈ N :
∃ V ∈ Vx :

ϕn(y) = 0, y ∈ V,

∀ x ∈ Ω \ Γ :
∃ N ∈ N :
∃ V ∈ Vx :

ϕn(y) = 1, y ∈ V, n ≥ N.

The embedding (4.145) is obtained by setting

H∞
nd(u) = (uϕn) + I∞nd.

Clearly this strategy will not deliver an embedding

ML∞
0 (Ω) ↪→ A∞

nd(Ω)

since , as mentioned, there exists u ∈ML∞
0 (Ω) so that

u /∈ C∞(U), U ⊆ Ω open.

Let us now consider the construction of algebras of generalized functions that admit
embeddings ofML∞

0 (Ω). In this regard, we have the following

Theorem 4.31. The set

A∞
nd,0(Ω) =

∩
l∈N

γl0(Al
nd(Ω))

is a differential algebra of generalized functions. Furthermore, the following is true

(i) There exists an injective algebra homomorphism

C∞(Ω) ↪→ A∞
nd,0(Ω) (4.149)
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such that the diagram

A∞
nd,0(Ω)

-Dp

A∞
nd,0(Ω)
6

↪→
6

↪→

C∞(Ω) -Dp

C∞(Ω)

(4.150)

commutes for all p ∈ Nn.

(ii) There exists a linear injection

Γ∞
nd,0 : D′(Ω) −→ A∞

nd,0(Ω)

so that the diagram

D′(Ω) -Γ∞
nd,0

A∞
nd,0(Ω)

�

↪→

I

C∞(Ω)

⊂ (4.151)

commutes.

Proof. Let

A∞
nd,0(Ω) =

∩
l∈N

γl0(Al
nd(Ω))

with γl0 : Al
nd −→ A0

nd the algebra homomorphism defined by γl0((un)+I lnd) = (un)+I0nd.
Since each γl0 is an algebra homomorphism, A0

nd is a subalgebra ofA0
nd. Each γ

l
0 is injective.

To see that this is so, observe that

I lnd = Cl(Ω)N
∩
I0nd

for each l ∈ N. Indeed, I lnd ⊂ I0nd and I lnd ⊂ Cl(Ω)N so that I lnd ⊆ Cl(Ω)N, then there
exists Γ ∈ Ω closed nowhere dense so that

∀ x ∈ Ω\Γ :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = 0, y ∈ V.

(4.152)

Since V ∈ Vx is open for each x, it follows that

∀ x ∈ Ω\Γ :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :
∀ p ∈ Nn, |p| ≤ l : Dpun(y) = 0, y ∈ V.

(4.153)
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Hence (un) ∈ I lnd so that I0nd
∩
Cl(Ω)N ⊆ I lnd. If for (vn) ∈ I lnd,

γl0((un) + I lnd) = γl0((vn) + I lnd),

then according to the definition of γl0, (un)− (vn) ∈ I0nd. But (un)− (vn) ∈ Cl(Ω)N so that
(un)− (vn) ∈ I lnd. Hence (un) + I lnd = (vn) + I lnd so that γl0 is injective.

It follows from Theorem 4.26 that there exists for each p ∈ Nn a linear map

Dp : A∞
nd,0(Ω) −→ A∞

nd,0(Ω)

that satisfies the Leibnitz rule. Furthermore, Dp(u) = γk0 (D
pγ−0 (u)) for all u ∈ A∞

nd,0(Ω),
p ∈ Nn and l, k ∈ N so tha k|p| ≤ l.

Item (i) follows immediately from (4.3), (4.4) and Theorem 4.27. The assertion in (ii)
follows directly from Theorem 4.2 and 4.28.

The following is an immediate consequence of Theorem 4.22 and Theorem 4.31.

Corollary 4.32. If a polynomial nonlinear PDE (4.104) satisfies (2.63) to (2.64), then
there exists a generalized solution u ∈ A∞

nd,0(Ω) of (4.104).

We now show that A∞
nd,0(Ω) admits an embedding ofML∞

0 (Ω).

Theorem 4.33. There exists an injective algebra homomorphism

H∞
nd,0 :ML∞

0 (Ω) −→ A∞
nd,0(Ω)

so that the diagram

A∞
nd,0(Ω)

-Dp

A∞
nd,0(Ω)
6

H∞
nd,0

6

H∞
nd,0

ML∞
0 (Ω) -Dp

ML∞
0 (Ω)

(4.154)

commutes for all p ∈ Nn.

Proof. It follows from Theorem 4.12 that there exists, for each l ∈ N, an injective algebra
homomorphism

H l
nd :MLl(Ω) −→ Al

nd(Ω)

so that the diagram

ML∞
0 (Ω)

�

R

⊂

⊂

MLl(Ω) -H l
nd Al

nd(Ω)

?

γlk

?

⊂

MLk(Ω)

A0
nd(Ω)

R

�
-

γl0

γk0Hk
nd Ak

nd(Ω)

(4.155)

commutes whenever k ≤ l. Hence for each u ∈ ML∞
0 (Ω) there exists a unique wu ∈

A0
nd(Ω) so that

(γk0 ◦Hk
nd)(u) = wu = (γl0 ◦H l

nd)(u), k ≤ l.
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Hence the map
H∞

nd,0 :ML∞
0 (Ω) ∋ u 7→ wu ∈ A∞

nd,0(Ω) ⊂ A0
nd(Ω)

is well defined. The injectivity of H∞
nd,0 follows from the fact that the algebra homomor-

phisms H l
nd and γl0 are injective.

Since the diagram

ML∞
0 (Ω) -H∞

nd,0
A∞

nd,0(Ω)
-⊂
A0

nd(Ω)

?

γl0

6

⊂

MLl(Ω)
H l

nd -Al
nd(Ω)

(4.156)

commutes for all l ∈ N, it follows that H∞
nd,0 is an algebra homomorphism. It follows from

Theorems 4.1 and 4.12 and the definition of H∞
nd,0 that

Dp(H∞
nd,0(u)) = Dp(γl0(H

l
nd(u))

= γ
l−|p|
0 (Dp(H l

nd(u)))

= γ
l−|p|
0 (H

l−|p|
nd (Dp(u)))

= H∞
nd,0(Dp(u))

for all u ∈ML∞
0 (Ω), p ∈ Nn and l ≥ |p|. Therefore the diagram (4.154) commutes.

We now consider the construction of an algebra of generalized functions from the
almost everywhere algebra of generalized functions that admit embedding of ML∞

0 (Ω).
In this regard, we have the following

Theorem 4.34. Assume Ω is convex. Then

A∞
ae,0(Ω) =

∩
l∈N

γl0(Al
ae(Ω))

is a differential algebra of generalized functions. Furthermore, the following hold.

(i) There exists an injective algebra homomorphism

C∞(Ω) ↪→ A∞
ae,0(Ω)

such that the diagram

A∞
ae,0(Ω)

-Dp

A∞
ae,0(Ω)

6
↪→

6
↪→

C∞(Ω) -Dp

C∞(Ω)

(4.157)

commutes for all p ∈ Nn.
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(ii) There exists a linear injection

Γ∞
ae,0 : D′(Ω) −→ A∞

ae,0(Ω)

so that the diagrams

D′(Ω) -Γ∞
ae,0

A∞
ae,0(Ω)

�

↪→

I

C∞(Ω)

⊂ (4.158)

and

D′(Ω) -Γ∞
ae,0 A∞

ae,0(Ω)

6
Dp

6
Dp

D′(Ω) -Γ∞
ae,0 A∞

ae,0(Ω)

(4.159)

commute.

Proof. Let

A∞
ae,0(Ω) =

∩
l∈N

γl0(Al
ae(Ω)),

where γl0 : Al
ae −→ A0

ae is an algebra homomorphism defined by γl0((un) + (I lE + I lae)) =
(un) + (I0E + I0ae). Note that γl0 is injective for all l ∈ N. Indeed, for (un), (vn) ∈ E lae(Ω),
we have

γl0((un) + (I lE + I lae)) = γl0((vn) + (I lE + I lae))
⇐⇒ (un) + (I0E + I0ae) = (vn) + (I0E + I0ae)
⇐⇒ (un)− (vn) ∈ (I0E + I0ae).

But (I lE+I lae) = E lae(Ω)
∩
(I0E+I0ae). The inclusion (I lE+I lae) ⊆ E lae(Ω)

∩
(I0E+I0ae) holds

trivially. the opposite inclusion follows immediately from Lemma 4.5. Hence

γl0((un) + (I lE + I lae)) = γl0((vn) + (I lE + I lae))
⇐⇒ (un)− (vn) ∈ I lE + I lae

so that
(un) + (I lE + I lae) = (vn) + (I lE + I lae).

Item (i) follows immediately from Theorems4.10 and 4.27. The assertion in (ii) follows
immediately from Theorems 4.10 and 4.28.

An immediate consequence of Theorem 4.24 and Theorem 4.34 is the following.
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Corollary 4.35. Assume thatM0 consists of all closed, nowhere dense subsets of Ω. If a
polynomial nonlinear PDE (4.104) satisfies (2.63) to (2.64), then there exists a generalized
solution u ∈ A∞

ae,0(Ω) of (4.104).

Finally we establish the existence of an embedding ofML∞
0 (Ω) into A∞

ae,0.

Theorem 4.36. Assume that M0 consists of all closed, nowhere dense subsets of Ω.
There exists an injective algebra homomorphism

H∞
ae,0 :ML∞

0 (Ω) −→ A∞
ae,0(Ω)

so that the diagram

A∞
ae,0(Ω)

-Dp

A∞
ae,0(Ω)
6

H∞
ae,0

6

H∞
ae,0

ML∞
0 (Ω) -Dp

ML∞
0 (Ω)

(4.160)

commutes for all p ∈ Nn

Proof. It follows from Theorem 4.13 that there exists, for each l ∈ N, an injective algebra
homomorphism

H l
ae :MLl(Ω) −→ Al

ae(Ω)

so that the diagram

ML∞
0 (Ω)

�

R

⊂

⊂

MLl(Ω) -H l
ae Al

ae(Ω)

?

γlk

?

⊂

MLk(Ω)

A0
ae(Ω)

R

�
-

γl0

γk0Hk
ae Ak

ae(Ω)

(4.161)

commutes whenever k ≤ l. Hence for each u ∈ML∞
0 (Ω) there exists a unique wu ∈ A0

ae(Ω)
so that

(γk0 ◦Hk
ae)(u) = wu = (γl0 ◦H l

ae)(u), k, ∈ N.

Hence the map

H∞
ae,0 :ML∞

0 (Ω) ∋ u 7→ wu ∈ A∞
ae,0(Ω) ⊂ A0

ae(Ω)

is well defined. The injectivity of H∞
ae,0 follows from the fact that the algebra homomor-

phisms H l
ae and γ

l
0 are injective.

Since the diagram

ML∞
0 (Ω) -H∞

ae,0
A∞

ae,0(Ω)
-⊂
A0

ae(Ω)

?

γl0

6

⊂

MLl(Ω)
H l

ae -Al
ae(Ω)

(4.162)
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commutes for all l ∈ N, it follows that H∞
ae,0 is an algebra homomorphism. It follows from

Theorems 4.8 and 4.13 and the definition of H∞
ae,0 that

Dp(H∞
ae,0(u)) = Dp(γl0(H

l
ae(u))

= γ
l−|p|
0 (Dp(H l

ae(u)))

= γ
l−|p|
0 (H

l−|p|
ae (Dp(u)))

= H∞
ae,0(Dp(u))

for all u ∈ML∞
0 (Ω), p ∈ Nn and l ≥ |p|. Therefore the diagram (4.160) commutes.
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Chapter 5

Concluding Remarks

5.1 Main results

We have shown that the underlying spaces of generalized functions, NLl(Ω), involve in
the Order Completion Method as formulated in the setting of convergence spaces, may be
represented as algebras of generalized functions. These algebra of generalized functions
are shown to form a differential chain Aoc of algebras of generalized functions. Any
generalized solution in the underlying space may be interpreted as a chain generalized
solution.

We also considered chains of nowhere dense algebras, and established the way in which
such chains are related to the chain Aoc. In particular, we considered the Rosinger’s
nowhere dense algebras, which constitutes the chain And, and, based on a construction
introduced by Verneave [73, 74], see also [20], the chain Aae of almost-everywhere algebras
was introduced. It was shown that the existence results for chain generalized solution of
nonlinear PDEs lead to corresponding existence results in And and Aae, respectively.
The embedding of D′(Ω) and the spaces of smooth functions into the chains Aae was
also obtained. It was shown that chains And and Aae admits embeddings of the spaces
NLl(Ω) which preserve both the algebraic and differential structure of NLl(Ω). These
results demonstrates the extent to which these chains of are able to handle singularities
occurring on closed, nowhere dense set. The embedding ofMLl(Ω) into Aae was shown
not to be compatible with the embedding of D′(Ω) into the chain Aae. Thus a locally
integrable function in MLl(Ω) may have more than one representation in the algebra
Al(Ω).

This leads naturally to the consideration of the questions of whether or not these
chains can deal also with singularities occurring on more general sets. In this regards, we
considered the problem of embedding the algebra

ML∞
0 (Ω) =

∩
l∈N

MLl(Ω)

into a differential algebra A(Ω). The question is motivated by the problem of constructing
so-called space-time foam algebras [52, 53].

A general method was introduced by which a differential algebra A∞
0 (Ω) may be

constructed from the algebras in a differential chain A = {Al(Ω),Ak(Ω), γlk | k ≤ l}. In
general, the differential algebra A∞

0 (Ω) is larger than A∞(Ω), and may therefore be able
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to deal with a larger class of singularities than the algebra A∞(Ω). It was shown how
properties of the chain A induces the corresponding properties of the algebra A∞

0 (Ω).
Applying the general method to the chains And and Aae, we constructed algebras of
generalized function admitting embedding of ML∞

0 (Ω). The embedding of D′(Ω) into
these algebras, as well as the existence of generalized solutions of a large class of nonlinear
PDEs in these algebras was also established.

5.2 Further research

As we have shown, there is a close connection between the spaces of generalised func-
tions upon which the Order Completion Method is based and, on the other hand, the
nowhere dense and almost everywhere algebras. The extent to which this connection can
be exploited in order to improve the regularity results of generalised solutions of nonlinear
PDEs obtained through the Order Completion Method is a possibly fruitful avenue for
future research. A further possibility for future research is the way in which the chain
Aoc relates to other differential algebras of generalized functions, such as the Colombeau
algebra [14, 15, 16].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



REFERENCES 116

References

[1] D.F. Agbebaku. Solution of conservation laws via convergence space completion.
Master’s thesis, University of Pretoria, 2011.

[2] R. Anguelov. Dedekind order completion of C(x) by hausdorff continuous functions.
Quaestiones Mathematicae, 27(2):153–169, 2004.

[3] R. Anguelov. An introduction to some spaces of interval functions. Arxiv preprint
math/0408013, 2004.

[4] R. Anguelov, S. Markov, and B. Sendov. On the normed linear space of hausdorff
continuous functions. Large-Scale Scientific Computing, pages 281–288, 2006.

[5] R. Anguelov, S. Markov, and B. Sendov. The set of hausdorff continuous functions-
the largest linear space of interval functions. Reliable Computing, 12(5):337–363,
2006.

[6] R. Anguelov and E.E. Rosinger. Hausdorff continuous solutions of nonlinear partial
differential equations through the order completion method. Quaestiones Mathemat-
icae, 28(3):271–285, 2005.

[7] R. Anguelov and E.E. Rosinger. Solving large classes of nonlinear systems of pdes.
Computers & Mathematics with Applications, 53(3):491–507, 2007.

[8] R. Anguelov and J.H. van der Walt. Order convergence structure on C(x). Quaes-
tiones Mathematicae, 28(4):425–457, 2005.
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d’une série terme à terme. Comptes Rendus de l’Acad. Sc. Paris, 201:1457–1460,
1935.

[30] S. Kovalevskaia. Zur theorie der partiellen differentialgleichung. Journal für die reine
und angewandte Mathematik, 80:1–32, 1875.

[31] A. Kriegl and P.W. Michor. The convenient setting of global analysis, volume 53.
Amer Mathematical Society, 1997.

[32] Wen-Chi Kuo, Coenraad CA Labuschagne, and Bruce A Watson. Discrete-time
stochastic processes on riesz spaces. Indagationes Mathematicae, 15(3):435–451, 2004.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



REFERENCES 118

[33] P.D. Lax. Hyperbolic systems of conservation laws ii. Selected Papers Volume I,
pages 233–262, 2005.

[34] H. Lewy. An example of a smooth linear partial differential equation without solution.
The Annals of Mathematics, 66(1):155–158, 1957.

[35] W.A.J. Luxemburg. Riesz spaces. Elsevier, 2000.

[36] W.A.J. Luxemburg and A.C. Zaanen. Riesz Spaces: Vol.: 1. North-Holland Pub-
lishing Company, 1971.

[37] H.M. MacNeille. Partially ordered sets. Trans. Amer. Math. Soc, 42(3):416–460,
1937.

[38] B. Malgrange. Existence et approximation des solutions des équations aux dérivées
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