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Abstract 

Rangelands are extremely important for livestock grazing purposes in South Africa. Grazing 

should thus be regulated in order to conserve grass, shrubs and trees thereby ensuring 

sustainability of rangelands. In South Africa, the existing national grazing capacity estimate was 

developed in 1993 and updated in 2005 using National Oceanic and Atmospheric Administration 

Advanced Very High Resolution Radiometer (NOAA-AVHRR) satellite data. Largely due to 

changing land use practices (as well as changing data availability), there exists a clear need to 

create a new estimate, making use of current available data. For Limpopo, a province shown to 

be prone to recent land degradation, droughts and climate change, developing such an updated 

carrying capacity (CC) product (adjusted monthly according to monitoring data and seasonal 

forecasts) may help support more sustainable agricultural practices.  

 

The main objectives of the study are to update current CC products and to create deviation maps 

from CC for several years with relevant data. For estimation of the CC product, input data have 

included Satellite Pour l’Observation de la Terre (SPOT) VEGETATION Dry Matter Productivity 

(DMP), vegetation map of 2009 and downscaled coupled model data (ECHAM4.5–MOM3-DC2). 

A tree density product of 2003, observed rainfall and secondary ground truth data are also used.  

 

Study results show that Remote Sensing (RS) and Geographic Information System (GIS) 

technology, Earth Observation System (EOS) data and products, climate data and ground truth 

data are successfully used in a series of steps, processes with modelling to ultimately estimate 

grazing capacity. It is clear that rainfall is a primary determinant of DMP. The Coupled General 

Circulation Model (CGCM) shows that the December-January-February (DJF) rainfall season is 

important as a predictor season for the November through to April (NDJFMA) DMP growing 

season for the Limpopo Province. This model can discriminate high and low DMP (and GC) 

seasons. This study shows that the DMP product can, with certain assumptions, be used as a 

proxy for grass biomass. There is a strong drive towards the application of seasonal forecasts in 

agriculture. This project demonstrates the development of a tailored forecast, an avenue that 

should be explored in enhancing relevance of forecasts to agricultural production.  

Keywords: DMP, Remote Sensing, Limpopo Province, grazing capacity, seasonal forecasts 
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Preface 

Carrying capacity is a vital component in agricultural activities particularly for a province like 

Limpopo because of its varying climate. Limpopo Province capitalizes on subsistence farming 

including livestock and crop production. However, some of these subsistence farming practices 

are not sustainable and can negatively influence the rangelands resulting in land degradation. 

This dissertation addresses land degradation, its causes and possible remediation methods. The 

latter is accomplished by estimating grazing capacity; which looks at cattle farming and stocking 

rates. The grazing capacity concept implies that livestock should be allocated grazing land 

according to the land’s productivity and capacity. It is important to note that the words “carrying 

capacity” and “grazing capacity” are used interchangeably throughout the dissertation. 

There is an indisputable link between precipitation and agricultural production and it is therefore 

crucial to analyze this relationship for the purpose of this study.  In order to study this relationship, 

seasonal forecasts along with satellite data as well as field data are employed. The Limpopo 

Province experiences summer rainfall and high skill of predictability has been shown by coupled 

global circulation models. 

The work done in this dissertation involves a fusion of modelling, downscaling of seasonal 

forecasts hindcasts to DMP data, GIS and RS technology. The hypothesis to be tested in this 

study is: “Is it possible to use seasonal forecasts and RS products to estimate a dynamically 

adjusted carrying capacity output for Limpopo Province?” The following steps will be followed to 

address the hypothesis: 

(i) Obtain satellite data and products 

(ii) Collect available field data for selected sites for the Limpopo Province 

(iii) Obtain historical rainfall data and seasonal hindcasts 

(iv) Create grazing capacity maps based on data for several historical years 

(v) Estimate grazing capacity anomalies 

There are five chapters in this dissertation. In Chapter 1 an introduction to the carrying capacity 

concept in South Africa is given. Chapter 2 looks at the literature review covering the history of 

remote sensing and geographic information systems in the region, as well as seasonal forecasts 

and their varied application in the agricultural sector of South Africa. Lastly, current trends in the 

above mentioned subjects are also reviewed. The study area and data collection – types of 

products, tools, data sources, and application – are covered in Chapter 3. Chapter 4 covers the 

results and processes towards estimating grazing capacity. Then finally, Chapter 5 brings the 
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dissertation to a closure by giving conclusions, thereby giving recommendations that can further 

improve grazing capacity, seasonal forecasts, operational use and livestock productivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



vi 
 

Acknowledgements 

 I would like to thank the Agricultural Research Council - Institute for Soil, Climate and 

Water (ARC-ISCW) and National Research Foundation (NRF) for funding – and supplying 

resources for my studies 

 I would also like to thank ARC-ISCW staff, especially Agrometeorology and 

Geoinformation for their advice on data sources and technical issues 

 I would also like to thank Catherine Odendaal-Etsebeth for generously sharing the office 

space with me and giving me support  

 I would like to acknowledge my supervisor Prof. Willem Landman for his continued 

guidance and keen supervision 

 I would like to express my thanks to Dr. Johan Malherbe and Dr. Emma Archer for their 

relentless support by giving input and assistance 

 I would also like to appreciate all the contribution from Dr. Tony Palmer, Agricultural 

Research Council - Range and Forage Institute for his advice on methodology and 

supplying biomass field data 

 I would also like to thank the following people for providing me with field data: 

 Dr. Izak Smit for Kruger National Park biomass data 

 Mr. Christians Harmse for Rustenburg and Molopo biomass data 

 Mr. Jock McMillan for Mabula biomass data 

 My family, for their consistent love and faith in me 

 My best friend, Nhlamulo Chauke for always listening to all my moaning and cheering me 

on 

 

 

 

 “Commitment means crashing through all quitting points.” 

Ed Young. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



vii 
 

Contents 

ABSTRACT ……………………………………………………………………………………………...iii 

PREFACE …………………………………………………………………………………………….....iv 

ACKNOWLEDGEMENTS …………………………………………………………………………......vi 

LIST OF FIGURES ……………………………………………………………………………………...ix 

LIST OF TABLES ……………………………………………………………………………………..xiv 

LIST OF APPENDICES …………………………………………………………………………….....xv 

ABBREVIATIONS, ACRONYMS AND GLOSSARY ……………………………………………...xvi 

CHAPTER 1. INTRODUCTION ……………………………………………………………………......1 

1.1 Background …………………………………………………………………………….....1 

1.2 Problems to be solved …………………………………………………………………...2 

1.3 Research questions……………………………………………………………………….4 

CHAPTER 2. LITERATURE REVIEW…………………………………………………………………6 

 2.1 Introduction to Remote Sensing and Geographic Information Systems......................6 

2.2 The application of seasonal forecasts in agriculture....................................................7 

2.3 Use of vegetation indices in rangeland degradation monitoring…………………….....9 

2.4 Current trends in RS, GIS products and climate models………………………………11 

2.5 Synopsis....................................................................................................................14 

CHAPTER 3. STUDY AREA AND METHODOLOGY………………………………………………15 

  3.1 Area of study..............................................................................................................15 

3.2 Data collection……………………………………………………………………………...18 

   3.2.1 Earth Observation System data……………………………………………………...22 

   3.2.1.1 SPOT-VEGETATION DMP data…………………………………………………..22 

   3.2.1.2 MODIS data………………………………………………………………………….24 

   3.2.1.3 Tree density Product of 2003………………………………………………………25 

   3.2.1.4 Vegetation map of 2009…………………………………………………………….27 

   3.2.2 CPT……………………………………………………………………………………...28 

   3.2.3 Forecast verification…………………………………………………………………...29 

   3.2.4 Rainfall data…………………………………………………………………………….29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



viii 
 

   3.2.5 Coupled model data.............................................................................................29 

   3.2.6 Grass biomass field data……………………………………………………………...30 

   3.2.7 Modelling using the ERDAS software ………………………………………………31 

3.3 Synopsis…………………………………………………………………………………..33 

CHAPTER 4. RESULTS AND DISCUSSION…………………………………………………….....34 

    4.1 SPOT-VEGETATION DMP and CPT data analysis……………………………………34 

4.1.1 Spearman’s correlation tests………………………………………………………..34 

4.1.2 ROC and Reliability diagrams………………………………………………………37 

4.1.3 Coupled model and accumulated DMP correlation tests………………………...47 

4.2 MODIS NPP data analysis………………………………………………………………..51 

    4.3 Ground truth data and EO data analysis………………………………………………...52 

4.3.1 Ground truth data...............................................................................................52 

     4.3.2 Vegetation map of 2009 product analysis...………………………………………..53 

     4.3.3 Tree density product of 2003 analysis................................................................59 

     4.4 Estimation of GC........................................................................................................66 

  4.5 Synopsis………………………………………………………………………………….....72 

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS……………………………………..73 

REFERENCES…………………………………………………………………………………………..77 

APPENDIX 1………………………………………………………………………………………….....96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



ix 
 

List of figures 

Figure 1          Land degradation in the Limpopo Province is higher than other provinces in South 

Africa (Hoffman et al., 1999) …………………………………………….....................3 

Figure 2        Map showing high skill of seasonal rainfall predictability over Limpopo Province. 

The Limpopo Province is the area on the top-right corner highlighted in Orange. 

The map shows Kendall’s tau correlations between observed and coupled model 

precipitation as obtained from downscaling to rainfall districts for December-

January-February (DJF) totals (Landman et al., 2012) ……………………………...4 

Figure 3         Schematic flow on how climate models can be made accessible to users for 

increased crop and livestock production (Goddard et al., 2014) ............................9 

Figure 4         Vegetation activity for 1-10 January 2015 compared to 1-10 December 2014 

covering South Africa from Umlindi Newsletter, 2015 (http://www.arc.agric.za) ...13 

Figure 5           Map of Limpopo Province (http://www.mapsharing.org.za/) .................................16 

Figure 6        The different biomes found in South Africa (Rutherford et al., 2006) ……………..17 

Figure 7    1993 National GC potential map for South Africa (Department of Agriculture, 

Forestry and Fisheries, 1993) ………………………………………………………...19  

Figure 8           2005 National GC map for South Africa; as an upgrade to the 1993 product 

(Morgenthal et al., 2004) ………………………………………………………………20 

Figure 9           Flow diagram showing the processes and products involved in estimating GC …21 

Figure 10        DMP raster image for southern Africa for the year 2008/09 ……...........................23 

Figure 11         DMP image extracted for the Limpopo Province for the year 2008/09 ……………24 

Figure 12         MODIS NPP raster image for southern Africa for the year 2008/09 ………………25 

Figure 13         Tree density map of 2003 showing the distribution of trees across South Africa ..26 

Figure 14         Domain from which model data are used to do downscaling ……………….........28 

Figure 15      Field data sites for Mabula (n=48), Kruger National Park (n=5301), Rustenburg 

(n=116) and Molopo (n=49) …………………………………………………………. 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 

http://www.arc.agric.za/
http://www.mapsharing.org.za/


x 
 

Figure 16    Spearman’s rank correlations for the coupled model DJF rainfall data used as 

predictor downscaled to NDJFMA DMP values over the Limpopo Province 

spanning the 12-year period ………………………………………………………….35 

Figure 17      Spearman’s rank correlations for the coupled model DJF 850 hPa geopotential 

heights downscaled to DMP values considering four 3-month seasons (a) Coupled 

model vs NDJ-DMP, (b) Coupled model vs DJF-DMP, (c) Coupled model vs JFM-

DMP and (d) Coupled model vs FMA-DMP over the Limpopo Province spanning 

the 12-year period …………………………………………………………………….36 

Figure 18        ROC curves obtained by retroactively predicting DMP probabilistically over 12 

years (1998/99-2009/10) for the NDJ season for above-, below- and near-normal 

tercile values of the climatological record. The areas underneath the respective 

curves are shown in parenthesis on the Figure. The x axis shows False-alarm rate, 

while the y axis shows Hit rate ……………………………………………………...38 

Figure 19         ROC curves obtained by retroactively predicting DMP probabilistically over 12 

years (1998/99-2009/10) for the DJF season for above-, below- and near-normal 

tercile values of the climatological record. The areas underneath the respective 

curves are shown in parenthesis on the Figure. The x axis shows False-alarm rate, 

while the y axis shows Hit rate …………...............................................................39 

Figure 20 ROC curves obtained by retroactively predicting DMP probabilistically over 12 

years (1998/99–2009/10) for the JFM season for above-, below- and near-normal 

tercile values of the climatological record. The areas underneath the respective 

curves are shown in parenthesis on the Figure. The x axis shows False-alarm rate, 

while the y axis shows Hit rate ……………………………………………….............40 

Figure 21         ROC curves obtained by retroactively predicting DMP probabilistically over 12 

years (1998/99-2009/10) for the FMA season for above-, below- and near-normal 

tercile values of the climatological record. The areas underneath the respective 

curves are shown in parenthesis on the Figure. The x axis shows False-alarm rate, 

while the y axis shows Hit rate ..............................................................................41 

Figure 22       Reliability diagram and frequency histogram for above- (66th tercile) and below- 

(33rd tercile) normal DMP values for NDJ obtained by downscaling the coupled 

model’s low level circulation. The thick blue (red) curve and the blue (red) bars 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



xi 
 

represent high (low) DMP category. The thin blue (red) line is the weighted least 

squares regression line of the high (low) DMP reliability curve ……………………43 

Figure 23       Reliability diagram and frequency histogram for above- (66th tercile) and below- 

(33rd tercile) normal DMP values for DJF obtained by downscaling the coupled 

model’s low level circulation. The thick blue (red) curve and the blue (red) bars 

represent high (low) DMP category. The thin blue (red) line is the weighted least 

squares regression line of the high (low) DMP reliability curve ……………………44 

Figure 24         Reliability diagram and frequency histogram for above- (66th tercile) and below- 

(33rd tercile) normal DMP values for JFM obtained by downscaling the coupled 

model’s low level circulation. The thick blue (red) curve and the blue (red) bars 

represent high (low) DMP category. The thin blue (red) line is the weighted least 

squares regression line of the high (low) DMP reliability curve ……………………45 

Figure 25         Reliability diagram and frequency histogram for above- (66th tercile) and below- 

(33rd tercile) normal DMP values for FMA obtained by downscaling the coupled 

model’s low level circulation. The thick blue (red) curve and the blue (red) bars 

represent high (low) DMP category. The thin blue (red) line is the weighted least 

squares regression line of the high (low) DMP reliability curve ……………………46 

Figure 26      Spearman’s rank correlations for the coupled model DJF 850 hPa geopotential 

heights downscaled to NDJFMA DMP values over the Limpopo Province spanning 

the 12-year period ……………………………………………………………….........47 

Figure 27 ROC curves obtained by retroactively predicting DMP probabilistically over 12 

years (1998/99-2009/10) for the NDJFMA season for above-, below- and near-

normal tercile values of the climatological record. The areas underneath the 

respective curves are shown in parenthesis on the Figure. The x axis shows False-

alarm rate, while the y axis shows Hit rate …………………………………………..48 

Figure 28         Reliability diagram and frequency histogram for above- (66th tercile) and below- 

(33rd tercile) normal DMP values for NDJFMA obtained by downscaling the 

coupled model’s low level circulation. The thick blue (red) curve and the blue (red) 

bars represent high (low) DMP category. The thin blue (red) line is the weighted 

least squares regression line of the high (low) DMP reliability curve ……………...49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



xii 
 

Figure 29         Time series showing a good correlation between observations and hindcasts over 

the 12-year training period ……………………………………………………………50 

Figure 30        Time series showing a positive correlation between DMP and NPP for 11 years 

(2000-2010) ……………………………………………………………………………51 

Figure 31       Relationship between average NDJFMA DMP and grass biomass for all veld types 

(n=12). The x-axis shows grass biomass while the y-axis shows DMP …………..52 

Figure 32         Relationship between average NDJFMA DMP and grass biomass for Mopane veld 

type (n=12). The x-axis shows grass biomass while the y-axis shows DMP ……..53 

Figure 33         Relationship between average NDJFMA DMP and grass biomass for Lowveld veld 

type (n=11). The x-axis shows grass biomass while the y-axis shows DMP ….…54 

Figure 34 Relationship between average NDJFMA DMP and grass biomass for Alluvial veld 

type (n=12). The x-axis shows grass biomass while the y-axis shows DMP ……..55 

Figure 35         Relationship between average NDJFMA DMP and grass biomass for Zonal and 

Intrazonal veld type (n=7). The x-axis shows grass biomass while the y-axis shows 

DMP …………………………………………………………………………………….56 

Figure 36        Relationship between average NDJFMA DMP and grass biomass for Central 

bushveld veld type (n=8). The x-axis shows grass biomass while the y-axis shows 

DMP …………………………………………………………………………………….57 

Figure 37       Relationship between average NDJFMA DMP and grass biomass for Azonal veld 

type (n=7). The x-axis shows grass biomass while the y-axis shows DMP ………58 

Figure 38         Relationship between grass biomass points and NDJFMA DMP from 1998/99-

2009/10 according to various tree density classes for the Mopane veld type. The 

x-axis shows grass biomass while the y-axis shows DMP …………………………60 

Figure 39  Relationship between grass   biomass points and NDJFMA DMP from 1998/99-

2009/10 according to various tree density classes for the Lowveld veld type. The 

x-axis shows grass biomass while the y-axis shows DMP …………………………61 

Figure 40      Relationship between grass biomass points and NDJFMA DMP from 1998/99-

2009/10 according to various tree density classes for the Alluvial veld type. The x-

axis shows grass biomass while the y-axis shows DMP ………………………......62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



xiii 
 

Figure 41         Relationship between grass biomass points and NDJFMA DMP from 1998/99-

2009/10 according to various tree density classes for the Zonal and Intrazonal veld 

type. The x-axis shows grass biomass while the y-axis shows DMP ……………..63 

Figure 42      Relationship between grass biomass points and NDJFMA DMP from 1998/99-

2009/10 according to various tree density classes for the Central bushveld veld 

type ……………………………………………………………………………………..64 

Figure 43     Relationship between grass biomass points and NDJFMA DMP from 1998/99-

2009/10 according to various tree density classes for the Azonal veld. The x-axis 

shows grass biomass while the y-axis shows DMP ………………………………...65 

Figure 44         Grass biomass estimates per season for the 12-year period, 1998/99-2009/10 in 

the Limpopo Province …………………………………………………………………67 

Figure 45       GC maps per season for the 12-year period,1998/99-2009/10 in the Limpopo 

Province ………………………………………………………………………………..68 

Figure 46     Spearman’s rank correlations for the coupled model DJF 850 hPa geopotential 

heights downscaled to NDJFMA GC values over the Limpopo Province spanning 

the 12-year period …………………………………………………………………….69 

Figure 47       ROC curves obtained by retroactively predicting GC probabilistically over 12 years 

(1998/99–2009/10) for the NDJFMA season for above-, below- and near-normal 

tercile values of the climatological record. The areas underneath the respective 

curves are shown in parenthesis on the Figure. The x axis shows False-alarm rate, 

while the y axis shows Hit rate ………………………………………………………..70 

Figure 48         Reliability diagram and frequency histogram for above- (66th tercile) and below- 

(33rd tercile) normal GC values for NDJFMA obtained by downscaling the coupled 

model’s low level circulation. The thick blue (red) curve and the blue (red) bars 

represent high (low) GC category. The thin blue (red) line is the weighted least 

squares regression line of the high (low) GC reliability curve ……………………...71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



xiv 
 

List of tables 

Table 1     Various veld types found in the Limpopo Province …………………………………….27 

Table 2  Summary of ROC scores comparing the four 3-month seasons to the whole 

season.......................................................................................................................50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



xv 
 

List of appendices 

       Appendix 1     Stratification of data into various veld types with respect to tree density (%) …………96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



xvi 
 

Abbreviations, Acronyms and Glossary 

ARC-ISCW           Agricultural Research Council - Institute for Soil, Climate and Water,  

                 Pretoria, South Africa 

ARC-RFI             Agricultural Research Council - Range and Forage Institute,  

                     Grahamstown, South Africa 

ANPP                 Above Ground Net Primary Production 

AVHRR              Advanced Very High Resolution Radiometer 

CC                      Carrying Capacity  

CSIR                  Council for Scientific and Industrial Research, South Africa 

CCA                   Canonical Correlation Analysis           

CCAM                Conformal-Cubic Atmospheric Model 

CGCM                 Coupled General Circulation Model 

CPC             Climate Prediction Center, USA                    

CPT       Climate Predictability Tool 

dbf                      database files 

Dekad                 10-day period encompassing either the first ten days (1st-10th), second ten 

days (11th-20th), or remainder of the month (21st-end)    

DJF                     December-January-February 

DMP                   Dry Matter Productivity 

ECHAM4.5          The Global Climate Model developed by the Max Planck Institute for  

–MOM3-DC2  Meteorology, one of the research organizations of the Max Planck Society. 

It was created by modifying global forecast models developed by European      

Centre for Medium-Range Weather Forecasts (ECMWF) to be used for 

climate research    

ECMWF              European Centre for Medium-Range Weather Forecasts      

ERDAS      Earth Resources Data Analysis    

EOS       Earth Observation System       

EOTM                 Earth Observatory Thematic Mapper 

FMA                    February-March-April 

GC   Grazing Capacity 

GCM                   General Circulation Model 

GDP                    Gross Domestic Product 

GIS                     Geographic Information System 

hPa                     hectopascal is a standard measurement unit of pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



xvii 
 

IRI       International Research Institute for Climate and Society 

JFM                    January-February-March 

KNP                    Kruger National Park 

Landsat               NASA’s Landsat satellite 

MLR                    Multiple Linear Regression 

MODIS                Moderate Resolution Imaging Spectroradiometer 

MSS                    Multispectral Mapper 

MVC      Maximum Normalized Difference Vegetation Index Value Composite 

NASA                  National Aeronautics and Space Administration, USA 

NDJ                     November-December-January 

NDJFMA            November-December-January-February-March-April  

NDVI                   Normalized Difference Vegetation Index 

NGO                   Non-governmental Organization 

NOAA                 National Oceanic and Atmospheric Administration 

NPP                    Net Primary Production 

PAR                    Photosynthetically Active Radiation 

PCR                    Principal Components Regression 

PROBA-V            is a small satellite on board the French SPOT-4 and SPOT-5 Earth  

                         Observation missions  

RFE                     Rainfall Estimate product 

RS                       Remote Sensing 

R2                        Coefficient of determination 

SADC                  Southern African Development Community 

SANBI                 South African National Biodiversity Institute 

SAWS                 South African Weather Service 

SPOT                  The French Satellite Pour l’Observation de la Terre. SPOT was                

-VEGETATION            launched on 24 March 1998. The VEGETATION instrument onboard  

 SPOT-VEGETATION is funded by the European Union, Belgium, France, 

Italy and Sweden and led by French space agency Centre National 

d’études spatiales 

TM                      Thematic Mapper (of Landsat) 

WUE                            Water use efficiency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



1 
 

CHAPTER 1 

INTRODUCTION 

1.1  Background 

In South Africa, livestock production comprises a key contribution to the agricultural gross 

domestic product (GDP) of the country, making the sustainable usage of rangelands of paramount 

importance (De Leeuw & Tothill, 1990; Stroebel et al., 2008; Palmer & Bennet, 2013). If livestock 

numbers are not monitored, overgrazing may result. Unsustainable grazing may lead to severe 

impacts on the environment, such as land degradation, erosion and depletion of non-renewable 

natural resources (De Leeuw & Tothill, 1990; Pickup et al., 1994; Calvao & Palmeirim, 2004; Zika, 

2008; Kurtz et al., 2010). Land degradation can be defined as the long-term state where the land 

loses ecosystem function and productivity, i.e. can no longer produce crops or sustain livestock. 

The causes for the latter state are disturbances from which the land cannot recover unaided. 

Several factors contribute to land degradation; including erosion, soil compaction, bush 

encroachment, salinization, as well as, and linked to human activities – dating back to previous 

land policies – and overgrazing (Hoffman et al., 1999; Archer, 2004; Vanderpost et al., 2011).  

Current and former communal grazing areas in the provinces of KwaZulu-Natal, Eastern Cape 

and Limpopo have suffered effects of sharing land for settlement, farming and grazing – later 

often resulting in inappropriate land use practices. While it is sometimes difficult to indicate the 

key causes of land degradation, it remains increasingly problematic and a threat to food and 

livelihood security, hence optimal utilization of rangelands is vital (Pickup et al., 1998; Kurtz et al., 

2010).  

 

Carrying capacity (CC) is defined as the number of herbivores/livestock that the natural rangeland 

can support without the addition of external feeding sources that can potentially result in 

degrading the environment (De Leeuw & Tothill, 1990; Hayward et al., 2007). It is clear that the 

CC of a rangeland should be estimated relative to the number of livestock in it – ideally before 

any livestock is introduced therein – in order to be able to manage and monitor its sustainability, 

acknowledging limitations on such measurement (Roe, 1997; Archer, 2004). The latter has, 

however, not always been the case in South Africa as farmers and pastoralists in certain areas 

used to overstock rangelands (Wessels et al., 2007a). The assumptions behind this notion 

generally considered climate vagaries to be solely responsible for land degradation, hence 

overlooking the contribution made by humans and animal activities (De Leeuw & Tothill, 1990; 

Wessels et al., 2007b). In the past, estimation of CC used to be time consuming and costly. 
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Nowadays, however, various techniques of estimating CC exist, depending on the specific biome, 

long-term climate in location and soil texture (Pickup et al., 1998; Xia & Shao, 2008). It is important 

to note that the use of technology has not, however, rendered null the need for field work in order 

to collect data. It is true that grazing capacities may be estimated without making use of biomass 

data, but it is advisable to use concrete biomass data as an indicator of production (Morgenthal 

et al., 2004). Field data undoubtedly serve as an important verification tool in remote sensing (RS) 

studies. 

1.2 Problems to be solved 

Figure 1 supports the fact that rangelands in the Limpopo Province are extensively degraded – 

so much so that the province has been perceived as one of the most degraded in South Africa 

(Hoffman et al., 1999; Wessels et al., 2007a,). Limpopo Province further experiences multiple 

challenges as well as limitations when it comes to livestock farming, grazing practices and 

regulations. The impetus behind this study is to assist the provincial government of the Limpopo 

Province in raising awareness about rangeland grazing capacity (GC) and also by providing a 

monitoring time-management tool. The CC product is intended to assist decision makers to outline 

and apportion grazing land according to vegetation productivity in the different seasons of the 

year. The latter should contribute to managing land degradation, since the intensity of land use 

can exceed the productive potential (Hoffman et al., 1999).  

 

Furthermore, the CC product should provide sound guidance to livestock farmers and grazers on 

rangeland maintenance, monitoring of grazing particularly how to adjust their grazing schedules 

– which should ultimately support rehabilitation of land that had previously been degraded due to 

overgrazing. With the CC product in place, local government relief projects will be able to regulate 

compensation funds in cases of droughts or veld fires according to GC guidelines that will be 

implemented. It is envisaged that this product will ultimately enable government, decision support 

systems and farmers to devise better grazing practices, subsequently rehabilitating natural 

resources (which can take many years). A CC system would be of great utility to have in place as 

it would be updated monthly as a predictive tool with projection for future months, making it 

possible for farmers and herders to manage and graze their livestock cautiously, and to engage 

in adaptive management.  
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Figure 1: Land degradation in the Limpopo Province is higher than other provinces in South Africa 

(Hoffman et al., 1999). 

This study focuses on the Limpopo Province as it is a semi-arid region, making it susceptible to 

land degradation (Hoffman et al., 1999). The Limpopo Province has high variability in forage thus 

overgrazing can easily occur, moreover unreliable rainfall contributes to the great variability in 

forage throughout the province. The study commenced in January 2014 with collection of Satellite 

Pour l’Observation de la Terre (SPOT) VEGETATION Dry Matter Productivity (DMP) dataset for 

12 years (1998/99-2009/10), as well as biomass field data. CC over the Limpopo Province is 

strongly linked to seasonal rainfall totals, and, since seasonal forecast skill over the area is 

relatively high compared to other areas over South Africa, (Figure 2), employing seasonal 

forecasts over the region should lead to positive and useful results to improve agricultural 

management and operations (Landman et al., 2012; Malherbe et al., 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



4 
 

 

Figure 2: Map showing high skill of seasonal rainfall predictability over Limpopo Province. The 

Limpopo Province is the area on the top-right corner highlighted in Orange. The map shows 

Kendall’s tau correlations between observed and coupled model precipitation as obtained from 

downscaling to rainfall districts for December-January-February (DJF) totals (Landman et al., 

2012). 

1.3  Research questions 

This study will address the following questions: 

 What is the potential to update the existing national CC map for Limpopo Province on both 

monthly and annual basis? 

 What is the possibility of developing an updated skillful operational CC product for 

Limpopo Province? 
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The objectives can be outlined as follows: 

Objectives 

 To update current CC products for Limpopo Province. 

 To create CC deviation maps for several years with relevant data. 

 To screen current and future available monitoring data. 

 To develop an operational method to update baseline CC monthly according to: 

(i) Progress of current CC season. 

(ii) Forecast for current CC season. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction to Remote Sensing and Geographic Information Systems 

The use of satellite technologies such as RS first appeared in the 1960s, and was later applied in 

vegetation monitoring (Gallo & Daughtry, 1987; Hayes & Decker, 1998; Fraser et al., 2000; Lamb, 

2000). The debut of RS technology coupled with GIS technology has provided significant research 

opportunities – thus today, RS and GIS applications have advanced into different fields of science. 

These products are numerous and may be customized for various tasks to provide desired results. 

The demand for new methods and algorithms in both science and communities is driving 

emerging techniques. 

Climatological data, particularly precipitation, and RS products such as the Normalized Difference 

Vegetation Index (NDVI), derivatives of the NDVI etc. have been used in a wide range of resource 

monitoring applications. These include (but are not limited to) forecasting crop yield (Smoliak, 

1956; Murphy, 1970; Shiftlet & Dietz, 1974; Wight et al., 1984; Benedetti & Rossini, 1993; Moran 

et al., 1997; Reynolds et al., 2000; Calvao & Palmeirim, 2004; Frost, 2006), monitoring rangelands 

(Townshend, 1986; Baret & Guyot, 1991; Nicholson et al., 1998; Azzali & Menenti, 2000, 

Anyamba et al., 2001; Myneni et al., 2002; Hunt et al., 2003; Wessels et al., 2006) and identifying 

rangeland degradation (Archer, 2004; Wessels et al., 2007a; Vanderpost et al., 2011). The use 

of RS technology has seen improved results and efficiency in various research projects, 

particularly environmental monitoring (Townshend, 1992; Goodchild, 1994; Hayes & Decker, 

1998; Jianlong et al., 1998; Xie et al., 2008; Han et al., 2013). Another benefit of using RS and 

GIS methods is that less input data, i.e. number of parameters, are required, which may not be 

the case with most crop models (Joshi et al., 2004; Becker-Reshef et al., 2010).  

There are, however, shortcomings in using NDVI. Soil background, clouds and atmospheric 

particles such as aerosols may affect the quality of these derivatives of satellite images. 

Nonetheless, they are still widely used because they are less intricate to work with, long-term 

datasets are available (Bartalev et al., 2003; Gibson, 2006; Xie et al., 2008), and they are sensitive 

to change and applicable to large scale studies (Xie et al., 2008). The type and intensity of image 

degradation by atmospheric constituents vary spatially. Studies have shown positive results for 

the use of RS and GIS technologies for yield estimates, resulting in increased confidence towards 

improved crop production (Hanson et al., 1983; Jianlong et al., 1998; Becker-Reshef et al., 2010). 

When crop yield is estimated a few months prior to harvest, decisions can be made based on 
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whether there will be a surplus or shortage of food (e.g. Reynolds et al., 2000; Mkhabela et al., 

2005; Sivakumar, 2006). RS and GIS technologies have been utilized to estimate grassland yield 

in China (Jianlong et al., 1998). As mentioned earlier, grassland yield estimates can be useful – 

if timely and accurate – in livestock production. A combination of RS and ground truth data was 

shown to be useful for estimating and monitoring grassland yield at a large scale (Jianlong et al., 

1998). As mentioned previously, yield estimates may be used by decision makers to advise 

livestock farmers on grazing periods, systems and/or routines. 

2.2 The application of seasonal forecasts in agriculture 

Maize is an important staple crop in most rural areas of sub-Saharan Africa, making yield 

forecasts for the maize crop vital (Sileshi et al., 2008; You et al., 2009; Malherbe et al., 2014; 

Wetterhall et al., 2015). The application of RS products, specifically NDVI, varies greatly, with 

substantial research concentrating on the use of the index in agriculture such as for estimating 

maize yield (Unganai & Kogan, 1998; Verdin et al., 1999; Tadross et al., 2005; Frost, 2006). For 

example, the potential usefulness of NDVI in making maize yield forecasts in Swaziland was 

evaluated (Mkhabela et al., 2005). In the study, three agroecological regions (Lowveld, middleveld 

and Lubombo plateau) showed a positive linear relationship between maize yield and 

accumulated average NDVI. However, for the Highveld region, where cloud contamination of 

imagery can play a major role, the correlation proved poor. The study further aimed to establish 

the best lead-time for making a reliable forecast to alleviate food insecurity (Mkhabela et al., 2005; 

Mkhabela et al., 2011). The findings further showed that maize forecasts may be issued 2-3 

months prior to harvest, providing government, non-government organizations (NGOs) and other 

food security stakeholders with sufficient time (in this case) to plan for maize imports, should a 

shortage occur.  

The combination of climate data and RS constitutes a rapidly evolving technology applicable to a 

wide range of fields. Meteorological variables, especially rainfall, play a very important role in the 

planting and growth stages of the maize crop. The use of climate data, models and seasonal 

forecasts thus make a conspicuous contribution towards improving the quality of crop yield 

forecasts. The relationship between seasonal rainfall characteristics and maize yields has been 

explored in several studies focusing on the maize crop in South Africa (Unganai & Kogan, 1998; 

Verdin et al., 1999; Tadross et al., 2005; Tsubo et al., 2005; Frost, 2006; Walker & Schulze, 2006; 

Rockstrom et al., 2009; Tadross et al., 2009; Malherbe et al., 2014). Spatial rainfall and Moderate 

Resolution Imaging Spectroradiometer (MODIS) products were used to improve maize crop yield 
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estimates by considering the seasonal NDVI curve with respect also to the planting date (Frost, 

2006). 

In the past, seasonal forecasts were not extensively used in agriculture for many reasons, one of 

them being their lack of applicability (Landman et al., 2009; Goddard et al., 2010; Haigh et al., 

2015). This has, however, changed recently, with a growing trend of research being done on 

improved modelling, communication as well as accessibility of seasonal forecasts and climate 

data to users (Ziervogel et al., 2014; Malherbe et al., 2014; Haigh et al., 2015; Wetterhall et al., 

2015). One impetus behind this increased interest is addressing food security, by providing useful 

seasonal forecasts – coupled with crop and rangeland modelling – to decision makers and 

extension officers (Murphy, 1993; Reynolds et al., 2000; Goddard et al., 2010; Thornton et al., 

2011).  

The need for seasonal forecasts in crop modelling to assist with the added-value and tailor-made 

part of expanding of seasonal climate forecasts to be useful for farmers cannot be emphasized 

enough.  It should be noted, however, that climate models also have caveats which may affect 

results, depending on the desired product/output (Mkhabela et al., 2005; Sivakumar, 2006; 

Semenov & Stratonovitch, 2010; Landman & Beraki, 2012). Training would thus be beneficial for 

decision makers and users in climate and crop modelling, sparking interest in employing 

probabilistic seasonal forecasts in agricultural production, as well as improving their efficiency 

(Moeletsi et al., 2013). Maize yield and stream flows were, for example, successfully estimated 

over north-eastern South Africa with the use of SINTEX-F coupled model (Malherbe et al., 2014), 

and results show the potential of using seasonal forecasts in an agricultural field operationally.  

As mentioned previously, significant need exists to make use of seasonal forecasts for food 

production and climate risk management, to assist farmers advance their methods of planting, i.e. 

planting dates, irrigation scheduling, marketing and trade of their products (Marletto, 2005; 

Sivakumar, 2006; Goddard et al., 2014; Ziervogel et al., 2014). The latter would, ideally, ultimately 

inspire progression from short- and mid-range weather forecasts to employing long-range climatic 

projections (Marletto, 2005; Goddard et al., 2014; Wetterhall et al., 2015). If the latter can be 

achieved in small-scale farming, progressing to commercial farming, food production would, under 

certain circumstances, stabilize according to Marletto, (2005) and Goddard et al. (2014) (Figure 

3). Research has further shown that multi-models make better seasonal forecasts than single 

models, during both El Niño and La Niña years (Mason et al., 1999; Landman & Beraki, 2012; 

Malherbe et al., 2014). 
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Figure 3: Schematic flow on how climate models can be made accessible to users for increased 

crop and livestock production (Goddard et al., 2014). 

Tailored forecasting can improve the significance and use of seasonal forecasts in agricultural 

production (Sivakumar, 2006; Goddard et al., 2010; Zuma-Netshiukhwi et al., 2013).  Tailored 

forecasting refers to forecasts which focus on specific needs, i.e. aviation, insurance, livestock 

farming or rangeland management. Research focusing on tailored forecasts to support the 

livestock sector has limited focus as compared to the crop sector in South Africa (Landman, 2014). 

The incorporation of available historical climate and commodity production information in the 

making of seasonal forecasts could contribute to enhanced application by meeting users’ needs. 

For example, seasonal forecasts for grazing would focus on location and species composition of 

grasses in South Africa as well as the growth cycles, i.e. July-June. These forecasts would be 

more useful in estimating deviations from previously determined GC, with concomitant potential 

impacts on livestock production and, therefore, livestock production farmers may be inclined to 

employ these forecasts in agricultural risk management (Malherbe et al., 2014).  

 

2.3 Use of vegetation indices in rangeland degradation monitoring 

Whether land degradation is attributed to human practices or precipitation variability remains an 

ongoing dispute. As mentioned earlier, NDVI – and other vegetation indices – have been 

employed in many studies to determine what the causes of land degradation are and what 

solutions exist for this problem (e.g. Azzali & Menenti, 2000; Archer, 2004; Wessels et al., 2007a; 
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Vanderpost et al., 2011; Palmer & Bennet, 2013). These studies concluded that anthropogenic 

influences, such as management practices of rangelands, play a major role in land degradation. 

Precipitation variability is also, however, responsible for land degradation (Pickup et al., 1998; 

Evans & Geerken, 2004; Pachavo & Murwira, 2013). Grazing practices and their effects on 

vegetation cover in the Karoo were determined using 12 years of NDVI data (corrected for rainfall), 

highlighting the role of anthropogenic activities in land degradation (Archer, 2004).  

 

The cumulative NDVI from both Advanced Very High Resolution Radiometer (AVHRR) and 

MODIS for 6 years (2000-2005) in the Limpopo Province of South Africa were used to show that 

land degradation resulting from higher stocking rates has significant effects on long-term 

vegetation productivity (Wessels et al., 2007a). This result was achieved by dividing the area into 

land capability units in order to separate the severity of land degradation within each rangeland 

with respect to different soils, topography and climate. Rangeland degradation (in some cases) 

can be the dominant factor for interannual vegetation variability in rangelands (Paudel & 

Andersen, 2010). 

 

Inappropriate anthropogenic practices such as deforestation and overgrazing can affect 

rangelands negatively, ultimately lowering production capacity of the land. The importance of 

anthropogenic influences such as unsustainable farming practices in land degradation instead of 

climate variability was demonstrated for Botswana (Vanderpost et al., 2011). Conclusions were 

based on comparison of findings over protected versus communal areas, which showed 

extremely degraded conditions in the communal areas (e.g. Palmer & Bennet, 2013). Conversely, 

droughts, climate variability and climate change also affect natural vegetation production in 

rangelands (Smoliak, 1986).  

 

Rangelands basically sustain livestock by providing abundant forage of good quality. Forage 

production (expressed as grass biomass and Above Ground Net Primary Production (ANPP) in 

many studies) from rangelands directly affects livestock production (Trollope et al., 1990; Du et 

al., 2004; Xiao et al., 2004; Flombaum & Sala, 2007; Guevara et al., 2009; Montès, 2009; Palmer 

& Yunusa, 2011; Pachavo & Murwira, 2013). In an epitome rangeland (other factors negligible), 

high forage production would mean that livestock production increases – forage production can, 

however, be negatively affected by land degradation. For example, ANPP was estimated in the 

Northern Cape Province, showing that water use efficiency (WUE) was lower than previous 
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estimates reflecting the degraded state of rangeland in the dwarf shrublands and arid savanna of 

the Riemvasmaak Rural Area of Northern Cape (Palmer & Yunusa, 2011). 

 

Land that is degraded may take many years to be restored (Hoffman et al., 1999; Archer, 2004) 

– nonetheless this does not mean that efforts should not be made towards land restoration. GC 

is strongly linked to land management – if the GC of land is estimated and updated monthly, 

guidelines on available and unavailable pasture may be given to farmers. There are existing 

national long-term GC products for South Africa for 1993 and 2005 expressed in hectares per 

large stock unit (ha/LSU). The 2005 GC product was estimated using National Oceanic and 

Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA-AVHRR) 

satellite derived data, thereby indicating that the map could be updated for succeeding years 

(Morgenthal et al., 2004).  

 

Apart from GC products, other technologies and land assessment procedures are in place across 

the globe for rangeland management, and these include a combination of land cover maps and 

continuous assessment of above ground biomass (Lamb, 2000; Bartalev et al., 2003; Kurtz et al., 

2010). Satellite (remotely sensed spectral, NDVI) data, biomass ground truth data, ancillary crop 

and soil information are also used for monitoring purposes. Many studies have recommended the 

use of the land cover classification system towards supporting rangeland farmers and advisory 

services (Jianlong et al., 1998; Reynolds et al., 2000; Kurtz et al., 2010; Wessels et al., 2012). 

There is also a great need for an operational rangeland system which can be updated in real time. 

 

2.4 Current trends in RS, GIS products and climate models  

Current research trends in the integration of RS products and climatological data have yielded 

promising results, as shown above. Precipitation is one of the many meteorological variables that 

affects growth of crops, therefore it is not unexpected that NDVI and precipitation variability will 

show a high correlation (Nicholson et al., 1990; Di et al., 1994; Richard & Poccard, 1998; Verdin 

et al., 1999; Kawabata et al., 2001; Wang et al., 2003; Zhang et al., 2003; Wessels et al., 2012).  

The following are the most popular products used in RS studies: National Aeronautics and Space 

Administration (NASA)’s Landsat satellite, vegetation indices from satellite imagery from the 

following sensors; NOAA-AVHRR, MODIS, SPOT-VEGETATION, PROBA-V, Multispectral 

Mapper (MSS), Thematic Mapper (TM) and Earth Observatory Thematic Mapper (EOTM). 

Ground truth data play a very important role as a verification tool (e.g. Gallo & Daughtry, 1987; 
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Marsh et al., 1992; Goetz et al., 1999; Marletto, 2005; Paudel & Andersen, 2010; Nutini et al., 

2011).  

 

The development of climate models (statistical and dynamical) for research has seen immense 

improvement in understanding how sea-surface temperatures influence the livelihoods of human 

beings and the environment. As a result, these models are readily used in many South African 

institutions today such as the South African Weather Service (SAWS), the Council for Scientific 

and Industrial Research (CSIR) and the University of Cape Town for seasonal forecasting 

research (Landman, 2014). Single-models such as the Conformal-Cubic Atmospheric Model 

(CCAM) and the ECHAM4.5–MOM3-DC2 coupled model as well as multi-model ensembles have 

been used successfully in many studies for seasonal forecasting, predicting extreme climate 

phenomena and projections for climate change scenarios (Landman et al., 2009; Semenov & 

Stratonovitch, 2010; Engelbrecht et al., 2011; Barnston et al., 2012; Landman & Beraki, 2012; 

Robertson et al., 2013; Malherbe et al., 2014).  

 

SPOT-VEGETATION satellite has become popular in research because of its multi-spectral 

bands and daily image capturing abilities (Gallo & Daughtry, 1987; Fraser et al., 2000; Lupo et 

al., 2001; Xiao et al., 2002; Kamthonkiat et al., 2005; Tucker et al., 2005; Nutini et al., 2011). The 

NOAA-AVHRR, SPOT-VEGETATION and PROBA-V satellite imagery datasets in particular are 

being used for research purposes focusing on monitoring of vegetation condition by the 

Agricultural Research Council - Institute for Soil, Climate and Water (ARC-ISCW). These products 

have been successfully used in several studies for the following objectives: estimating crop yields, 

assessing and monitoring rangelands, classifying landcover, producing land degradation maps, 

managing rangeland systems and making yield forecasts (Shiftlet & Dietz, 1974; Townshend, 

1992; Pickup et al., 1994; Leconte & Brissette, 2004; Frost, 2006; Prasad et al., 2006; Wardlow 

et al., 2007; Funk & Budde, 2009). Figure 4 is a product of PROBA-V satellite showing vegetation 

activity – approximation for biomass productivity – in South Africa. 
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Figure 4: Vegetation activity for 1-10 January 2015 compared to 1-10 December 2014 covering 

South Africa from Umlindi Newsletter, 2015 (http://www.arc.agric.za). 

The SPOT-VEGETATION DMP product dataset is going to be used by the Southern African 

Development Community (SADC) (in partnership with the ARC-ISCW) in creating a GC output for 

the SADC region (Malherbe, 2015). The above literature shows the potential application of 

seasonal forecasts, RS and GIS products in the agricultural environment. The current study 

therefore aims to show the application of RS products and seasonal forecasts in the agricultural 

field by developing an operational dynamic CC product for the Limpopo Province. Further on, the 

study aims to bridge the existing gap of seasonal forecast tailored for livestock production by 

estimating a product that will be updated monthly. 
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2.5 Synopsis   

This chapter reviews CC estimation techniques, data/products that are employed as well as the 

results obtained. Limitations and gaps regarding RS and seasonal forecasts application in the 

agricultural sector discovered in these studies are highlighted as well as how this current study 

aims to bridge those gaps. RS and GIS techniques involve the use of numerous satellite imagery 

such as NOAA AVHRR NDVI, MODIS NDVI, SPOT-VEGETATION DMP to mention a few. 

Further, application of seasonal forecasts in agriculture is explored, encompassing yield 

estimates, forecasts and risk management. It is further shown that a fusion of satellite data, 

biomass ground truth data, ancillary crop as well as soil information has been most successful in 

supporting rangeland farmers and advisory services. Lastly, current trends in RS, GIS products 

and seasonal forecasts in South Africa are briefly discussed.  
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CHAPTER 3 

STUDY AREA AND METHODOLOGY 

3.1 Area of study 

The Limpopo Province is located in the most northern parts of the Republic of South Africa, north 

of 22-25˚ S and west of 26-32˚ E (Figure 5). The region is generally semi-arid, covers 

approximately 129 910 km2 of land and the landscape ranges from mountainous to flat land and 

the climate is hot and dry. In summer, the days and nights can be extremely hot with average 

maximum temperatures of 27˚C, but winter is mild with average minimum temperatures of 20˚C 

(Schulze & McGee, 1978). Limpopo is a summer rainfall region, with an annual rainfall of less 

than 350 mm in the lower lying areas, while the higher lying Drakensberg escarpment receives 

more than 1000 mm in certain places. Most parts of Limpopo are rural, supporting extensive 

livestock farming and ranching operations with irrigated crops (Vogel et al., 2010). The latter 

increases rangelands’ vulnerability to overgrazing, causing land degradation to worsen in many 

parts of the province. However, it should be noted that overgrazing is mainly prevalent in the 

north-eastern parts of the Limpopo Province. Therefore, an operational CC system developed for 

Limpopo Province may be able to provide forecasts for grazing conditions and assist government 

with policy making, monitoring and managing of rangelands. 
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Figure 5: Map of Limpopo Province (http://www.mapsharing.org.za/).  

Limpopo Province falls largely under the Savanna biome, as shown in Figure 6, which is the 

biggest of all biomes in South Africa. The topography is characterized by undulating plains, i.e. 

flat plains to mountainous slopes. The Savanna biome is a summer rainfall area with semi-arid 

conditions and varying rainfall patterns (Buckle, 1996). Erratic rainfall can affect vegetation growth 

and production (rainfall is a primary determinant of forage growth) for grazing to livestock and 

game available in the area.  Domestic animals that graze include mainly cattle with goats on a 

limited scale in the south-western parts. The dominant veld type has been identified as the 

Mopane veld (Acocks, 1988). Various trees, shrubs and grass types have been identified in the 

Mopane veld (Van Oudtshoorn, 1999). 
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Figure 6: The different biomes found in South Africa (Rutherford et al., 2006). 

 

Examples of trees and shrubs include: Colophospermum mopane (Mopane), Acacia tortilis 

(Umbrella Thorn),  Adansonia digitata (Baobab), Acacia nigrescens (Knobthorn)  and Kirkia 

acuminate (Seringa), the common grasses include: Aristida congesta (Tassel Three-awn),  

Enneapogon cenchroides (Nine-awned grass), Cenchrus ciliaris (Blue Buffalo grass) and 

Stipagrostis uniplumis (Silky Bushman grass) (Van Oudtshoorn, 1999). Bush encroachment by 

the Sickelbush (Dichrostachys cinerea) is a common problem in this area, which reduces 

availability of grass feed for livestock. Forage has different growth stages and cycles – grass in 

particular grows in the July-June season. In this study, the growth season of grass tailors for both 

summer and winter DMP imagery of the vegetation cover. Livestock graze on natural vegetation 

and it is therefore important that forage is monitored and conserved – this can be supported by 

estimating GC and supplying forecasts for future months. 

Grazing routines in the Limpopo Province, in certain areas, may not be in place or monitored – 

compounding problems of degradation.  Land degradation is a major challenge as it limits farmers 
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from grazing large areas because as livestock continue to graze on the same land the problem is 

exacerbated, and most farmers thrive on crop and livestock farming. It is therefore important that 

GC for the Province be estimated in order to assist in scheduling grazing patterns for farmers, 

planning for future seasons – based on forecast model outputs and looking into options of land 

restoration programmes. How the latter is implemented requires a tactful approach for farmers 

and local municipalities, including capacity building. 

3.2 Data collection 

A set of methods including GIS and Earth Observation System data (EOS), seasonal climate 

forecasts and secondary ground truth data are employed to calculate CC for the Limpopo 

Province. The calculations are based on satellite data per growing season for the years 1998/99-

2009/10 (12 seasons). Products that are used in this study include; SPOT-VEGETATION DMP 

based (http://proba-v.vgt.vito.be/), seasonal hindcasts (re-forecasts) from ECHAM4.5–MOM3-

DC2 coupled model (http://iri.columbia.edu/resources/data-library/), gridded observed rainfall 

from ARC-ISCW, tree density product_2003 (ARC-ISCW databank), vegetation map of 2009 

(http://bgis.sanbi.org/vegmap/map.asp), MODIS Net Primary Production (NPP) 

(http://www.nasa.gov/) and grass biomass field data. The 1993 map (Figure 7) was estimated 

using various grazing capacity information such as field data, however, the 2005 (Figure 8) update 

was estimated using NOAA-AVHRR (http://www.noaa.gov/) and MODIS satellite data. 
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Figure 7: 1993 National GC potential map for South Africa (Department of Agriculture, 

Forestry and Fisheries, 1993).  
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Figure 8: 2005 National GC map for South Africa; as an upgrade to the 1993 product (Morgenthal 

et al., 2004). 

The data are analyzed using the following tools: Earth Resources Data Analysis System–

IMAGINE (ERDAS version 14.00) software (http://www.hexagongeospatial.com/), Excel 2013, 

and the Climate Predictability Tool (CPT; http://iri.columbia.edu/). The tree-density product, 

vegetation map, grass biomass data and veld types are used to adjust the Dry Matter Productivity 

to estimate grass biomass for a final estimate of CC as shown on the flowchart of methodology 

(Figure 9).  
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 Figure 9: Flow diagram showing the processes and products involved in estimating GC. 
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3.2.1 Earth Observation System data 

The data are acquired in different formats and scales, therefore, data quality control is imperative. 

The latter leads to the deletion of certain data points due to missing and/or incomplete data. The 

following tools: Excel 2013, ArcMap 10.3, ArcView 3.1, CPT and ERDAS software are employed 

in analyzing the data and ultimately for estimating GC. In ArcMap, all datasets (both vector and 

raster) that are used are converted to the WGS-1984 projection for uniformity and better display, 

particularly for output as maps. 

3.2.1.1 SPOT-VEGETATION DMP data 

SPOT-VEGETATION DMP for 12 years (1998/99-2009/10) are obtained from the PROBA-V 

website (http://proba-v.vgt.vito.be/) in January 2014. DMP satellite imagery are produced from a 

combination of RS and meteorological data from the European Centre for Medium-Range 

Weather Forecasts (ECMWF). The meteorological data considered in these estimations are solar 

shortwave radiation and temperature based on the eminent Monteith (1972) model (Nutini et al., 

2011). Each satellite image represents the maximum value of DMP per month. The SPOT satellite 

captures high quality global images using the VEGETATION sensor which was launched in 1998, 

developed by a collaboration between France, European Commission, Belgium, Italy and Sweden 

(Fraser et al., 2000). Although the resolution of SPOT-VEGETATION is 1 km, the sensor has 

numerous advantages such as high temporal resolution and multi-spectral bands (Fraser et al., 

2000; Xiao et al., 2002; Bartalev et al., 2003). The data obtained consist of S10 DMP dekads (10 

day composites) for each month, i.e. 1-10 days; 11-20 and 21 to the last day of the month.  

DMP represents the total biomass production of vegetation across an area. It should be noted 

however that DMP only reflects the above-ground dry matter biomass and the Disc Pasture Meter 

method also estimates the above-ground biomass, thereby endorsing the use of biomass field 

data for validation purposes. Moreover, DMP only indicates the quantity of vegetative growth and 

does not take into account the quality of harvested biomass. As a result, DMP should be 

considered as an indicator of potential production but not the actual marketable product 

(ENDELEO, 2009). The DMP dataset is in a raster format, Figure 10 shows the DMP map for 

2008/09 that is drawn in ArcMap. The Spatial Analyst tool in ArcMap 10.3 is used to get the 

maximum of the 3 dekads DMP per month, resulting in the Maximum DMP Value composite 

(MVC) per year. The latter is done to reduce cloud and atmospheric noise owing to the coarse 

resolution of the data (Kamthonkiat et al., 2005; Tucker et al., 2005). DMP data are analyzed in 

ArcMap 10.3 using the Spatial Analyst tool, and maximum DMP composites are calculated per 
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year. The data are subsequently analyzed in Excel. ERDAS software is used to estimate GC – 

based on the average of the DMP values per pixel for the 1998/99-2009/10 period. Further 12-

month composites for each annual growing period of grasses (e.g. July 1998-June 1999) are also 

calculated, resulting in 12 years of DMP composites. All these datasets are converted to database 

files (dbf) so that they can be compatible with Excel 2013 and checked for contamination or 

missing values to minimize the potential of inconsistencies in results. Spatial subsets are created 

for the Limpopo Province. 

 

 Figure 10: DMP raster image for southern Africa for the year 2008/09. 

Rainfall influences crop production (Zambatis et al., 2006), thus in years with below normal rainfall 

or droughts, production decreases, whereas in good years with normal or above normal rainfall, 

production increases. However, it should be noted that the time when the rainfall is received is 

also crucial, regarding vegetation growth seasons. Given that the rainfall season in the Limpopo 

Province is November through April (NDJFMA). DMP maximum composites for this period are 
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also calculated resulting in 12 years of composites. In ArcMap, the Spatial Analyst tool-Extraction 

tool is used to extract the DMP composite data for an even grid of points for the Limpopo Province 

for the year 2008/09 (Figure 11).  

Since dry matter production is primarily determined by rainfall in semi-arid areas, it is necessary 

to run tests that analyze the relationship between these two variables in order to establish whether 

or not rainfall can be used as a predictor for the DMP product in the Limpopo Province. The CPT 

is used to achieve this objective through Canonical Correlation Analysis (CCA); where the 

predictor is coupled model rainfall data and the predictand is the DMP product data. After several 

test runs, the CPT gives acceptable results in the form of graphs, diagrams, maps and tables. 

 

Figure 11: DMP image extracted for the Limpopo Province for the year 2008/09. 

 

3.2.1.2 MODIS data 

MODIS NPP data from 1999/00-2010/11 are obtained from the MODIS website 

(http://www.nasa.gov/). The spatial resolution of MODIS is 250 m. These data are used in this 

study because the 2005 GC map is produced using MODIS NPP data (Morgenthal et al., 2004; 

Pachavo & Murwira, 2013). Therefore, a comparison between SPOT-VEGETATION DMP and 

MODIS NPP is made in order to validate the prospect of using the DMP data product in this study. 
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This MODIS NPP product is a raster dataset, as can be seen in Figure 12. In ArcMap, the Spatial 

Analyst-Extraction tool is therefore used to extract NPP data to the Limpopo shapefile. Maximum 

composites of MODIS NPP data (11 years) are created in ArcMap 10.3 using the Spatial Analyst 

tool. The CPT downscaling tool is used to analyze the linear association between NPP and DMP. 

The results are further analyzed in Excel 2013. 

 

    Figure 12: MODIS NPP raster image for southern Africa for the year 2008/09.  

 

3.2.1.3 Tree density product of 2003 

The tree density product of 2003 that is used is obtained from ARC-ISCW databank. The tree 

density map has been successfully used in research to refine rangeland GC ratings calculated 

with the use of NDVI data (Hansen et al., 2003). The tree density product comprises a map 

showing tree density distribution across South Africa (Figure 13). The map is produced from 

MODIS imagery by a consortium of institutions from Maryland in the United States of America 

using a global tree cover dataset (Hansen et al., 2003). 
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  Figure 13: Tree density map of 2003 showing the distribution of trees across South Africa. 

 

The tree density product is a raster dataset and is used as a sub-layer in ArcMap. The Spatial 

Analyst tool-Zonal statistics is used to calculate the tree density percentage. Further, data are 

stratified into various tree density categories, namely low (0-10%), medium (10-20%), high (20-

30%) and extremely high tree density (30% and above). The choice of range of tree density values 

is influenced by the fewer tree species in the Limpopo Province in comparison with South Africa 

as a whole. The Geoprocessing tool is thus used to intersect the output tree density table with the 

vegetation map output. The output is later opened in Excel for further analysis and contains the 

following data: identification number (ID no), date, site no, Latitude, Longitude, grass biomass, 

DMP, veld types and tree density percentage per point (Appendix 1). The tree density percentage 

is useful for indicating areas with many trees as well as areas with less, since grass biomass will 

be analyzed relative to tree density across the Limpopo Province. The influence of tree density 

on grass biomass production varies according to percentage for example; low tree density would 

have minimum or no influence whereas high tree density would potentially impede biomass 

production. However, it should also be noted that various tree species may influence biomass 

production differently.   
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3.2.1.4 Vegetation map of 2009 

The vegetation map of 2009 is obtained from the South African National Biodiversity Institute 

(SANBI) website (http://bgis.sanbi.org/vegmap/map.asp). This vegetation product comprises a 

map showing various vegetation types across South Africa. 

 

The vegetation map is used for stratification of the DMP and Grass biomass data into various veld 

types in the Limpopo Province. The map is a raster dataset. Firstly, the data are added into 

ArcMap and the attribute table is analyzed to display the data contained in the map. The data 

contain columns of latitude, longitude, DMP, Grass biomass, biome, veld type and group ID. The 

Spatial Analyst tool is used to extract the data to the Limpopo shapefile to get corresponding 

positions and their veld types. This is done so that each veld type can be treated separately as 

each contains unique vegetation types. The output table shows veld types found in the Limpopo 

Province, namely Mopane, Lowveld, Azonal forests, Alluvial, Zonal & Intrazonal forests and 

Central bushveld (Table 1). This output table is intersected with the DMP product for each year 

separately. The intersect tables are later combined into one table with all the points, making it 

easier to analyze each grass biomass point, DMP dataset and corresponding veld type. The table 

is utilized to analyze the relationship between grass biomass and DMP for each veld type 

respectively. 

 

Table 1: Various veld types found in the Limpopo Province. 

ID Latitude Longitude DMP 

(kgDM/ha/day) 

Grass biomass 

(kg/ha) 

Veld type Group 

ID 

332 
 

-24.07 
 

31.62 
 

49724 
 

1387 
 

Mopane 87 

29 -25.42 31.48 92187 4668 Lowveld 7 

409 
 

-22.42 
 

31.24 
 

76736 
 

8018 
 

Azonal forests 17 

319 
 

-23.15 
 

31.49 
 

34479 
 

276 
 

Alluvial 23 

490 
 

-22.66 
 

30.99 
 

63449 3502 
 

Zonal & 

Intrazonal 

13 

63 
 

-25.55 
 

27.34 
 

55035 
 

675 
 

Central 

bushveld 

6 
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3.2.2 CPT  

The CPT version 14.7.4 software is obtained from the International Research Institute for Climate 

and Society (IRI) website (http://iri.columbia.edu/). CPT is a statistical prediction and downscaling 

software which offers the following options: Principal Components Regression (PCR), CCA, 

Multiple Linear Regression (MLR) and General Circulation Model (GCM) verification. The CCA 

option is used in this study because it analyzes linear relationship between two variables – in this 

case DMP and low level circulation (850 hPa) of the coupled model. CCA further measures linear 

combinations of the two variables with maximum correlation, which meets the objective required 

from CPT. 

The file requires input data in the form of a predictor (typically an output from a climate model) 

and a predictand (in this case DMP). The domains of interest are selected next in order to 

represent the predictor domain (Figure 14) and the predictand domain, i.e. the Limpopo Province. 

Statistical downscaling from the climate models to observed DMP data is performed with the CPT 

in order to represent verification statistics and to identify modes of seasonal-to-interannual co-

variability between the predictor and predictand fields during the 12-year period. 

 

Figure 14: Domain from which model data are used to do downscaling.  
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3.2.3. Forecast verification 

It is vital that the model’s forecasts are verified, for validation of forecast quality. These results will 

enable the performance and accuracy of the proposed method to be analyzed. The CPT allows 

for the comparison of the skill of different models. In this study, probabilistic forecast verification 

tests are run retroactively for a 12-year period (1998/99-2009/10) to validate CPT output results. 

The initial training period for cross-validation is 6 years, extended by 1 year after each integration.   

Verification attributes of discrimination and reliability are respectively estimated with relative 

operating characteristic (ROC; Mason & Graham, 1999; Mason & Graham, 2002) and reliability 

(Hamill, 1997, Wilks, 2006) diagrams in order to test the discrimination and reliability attributes of 

the forecasts. Further, the tests generate probability forecasts using error variances which are 

then verified (Landman et al., 2014). If the ROC score is 1.0, then perfect discrimination is 

achieved, however if the ROC scores are ≤ 0.5, the forecasts lack sufficient skill. The level of 

confidence in the probabilistic forecasts is seen in the reliability diagrams. When the slope of a 

reliability regression line lies above (below) the diagonal line of perfect reliability, the forecasts 

are said to be underconfident (over-confident). However, if the regression line lies perfectly on 

the diagonal line then perfect reliability of the forecasts is achieved. ROC and reliability diagrams 

are defined and interpreted in more detail in Troccoli et al. (2008), Barnston et al. (2010) and 

Wilks (2011) among others.  

3.2.4 Rainfall data 

Observed daily rainfall data for the period 1998/99-2009/10 are obtained from the ARC-ISCW, 

Agroclimatology division’s data bank. Subsequently, rainfall grids are created using the Spatial 

Analyst tool in ArcView 3.1 from 10-day intervals data for 700-800 automatic weather stations in 

the Limpopo Province. The rainfall data are complimented with the National Oceanic and 

Atmospheric Prediction Centre’s Climate Prediction Centre (NOAA-CPC) satellite rainfall estimate 

(RFE) product. The rainfall values are extracted for the corresponding number of years as the 

DMP, which is 1998/99-2009/10. These data are tested in CPT with rainfall as predictor and DMP 

as predictand. Further data analysis is done with Excel 2013. 

3.2.5 Coupled model data 

Climate model hindcasts of precipitation and circulation (850 hPa geopotential heights) data are 

obtained from the data library of the IRI. A coupled model, ECHAM4.5–MOM3-DC2 is used in this 
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study (see reference in Landman et al., 2012). The data are obtained for the corresponding DMP 

annual maximum composites. 

3.2.6 Grass biomass field data 

Ground truth data for 12 years (1998/99-2009/10) are obtained through collaboration with Dr. 

Tony Palmer, a specialist scientist from the Agricultural Research Council - Range and Forage 

Institute (ARC-RFI) who has been involved in the development of a previous CC product across 

South Africa. Grass biomass field data are used for the following places: Kruger National Park 

(KNP) for 5310 sites; Rustenburg for 116 sites; Molopo for 49 sites and Mabula game reserve for 

48 sites (Figure 15). From the field data collected, only data for the Limpopo Province are used 

to do calculations in this study, while data for Rustenburg and Molopo are used for calibration 

purposes. The field data are collected using the Disc Pasture Meter method (kg/ha). The Disc 

pasture method is only used when measuring grass length or height, therefore the results are 

limited to grazers due to the field data obtained. The DPM is widely used for veld management 

purposes. 

 

Ground truth data are received in Excel files with columns for average Disc measurements, date, 

latitude and longitude, and later converted into a GIS friendly format in ArcMap 10.3. The Spatial 

Analyst tool in ArcMap 10.3 is used to extract the DMP values at the ground truth points 

(represented by site numbers) to a shapefile for the Limpopo Province. The output is saved as a 

DBF table and the tables for all sites, i.e. Kruger National Park, Rustenburg, Molopo and Mabula 

are merged. The table is opened in an Excel spreadsheet and a regression between DMP and 

grass biomass for all the years is calculated. The Geoprocessing tool is used to intersect the data 

with the vegetation and tree density maps, whereby stratification according to group veld types is 

done in order to get regression equations between Grass biomass and Dry matter productivity for 

each veld type. Linear regression graphs are used to calculate the coefficient of determination 

(R2) per veld type. The above mentioned steps are required in order to obtain equations for the 

veld types, which are ultimately used in calculating GC per veld type.  
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Figure 15: Field data sites for Mabula (n=48), Kruger National Park (n=5301), Rustenburg 

(n=116) and Molopo (n=49).  

 

3.2.7 Modelling using the ERDAS software 

In the ERDAS software, the objective is to calculate a GC estimate per veld type for each year in 

the 12-year period (1998/99-2009/10). The input data used in these calculations are tree density, 

veld type and DMP. Equations are developed with the ERDAS software in a GIS model for use in 

calculations. In order to calculate a GC estimate; an adjusted grass biomass is calculated first 

and the output is later used as input data towards calculating a DMP product estimate. The DMP 

product is used as a first estimate of biomass productivity. All these products are ultimately used 

as inputs towards estimating GC, per veld type. The first model for calculating an estimate of 

grass biomass is built for each year in the 12-year period. Moving forward, average DMP for all 

the years, i.e.1998/99-2009/10 is calculated. The mean DMP value is used as an input towards 

calculating an estimate of DMP for the 12-year period. These DMP estimates are ultimately used 

as inputs in a formula to calculate GC (Morgenthal et al., 2004). Lastly GC anomalies are 
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calculated for each year using a model in ERDAS. GC is calculated by using the following 

equation:  

GC = 
365⨯10

𝐷𝑀⨯0.35
 

Whereby:  

365 =Days of the year 

10 = Dry mass requirement per day for a large stock unit (LSU) (Kg dry mass/day) 

DM = Dry biomass (kg/ha) 

0.35 =Utilization factor    
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3.3 Synopsis   

In chapter 3, data collection is tackled in different steps showing the types of products used, tools, 

sources and their application. These datasets/products include EOS data, field data, vegetation 

map, tree density and the ECHAM4.5–MOM3-DC2 coupled model output.  The tools that are used 

for analyzing the data are as follows:  ArcMap, Excel, CPT and ERDAS software. This chapter 

also shows specifications for choosing detailed dataset. A brief overview of forecast verification 

is given highlighting the use of ROC and reliability diagrams. 

Secondary ground truth data are being used for validation in this study because there are limited 

funds to collect field data. The relationship between grass biomass and DMP data is determined 

by using linear regression where R2 values are calculated per veld type. The veld types that show 

highly significant R2 values indicate a positive relationship between DMP and ground truth data, 

while those with low R2 values show a poor relationship for that specific veld type. The vegetation 

map product (2009) is the most recent available product at the time of this study and is useful to 

delineate the various vegetation types in Limpopo.  

GC varies in different locations (veld types), thus the vegetation map serves the purpose of 

showing the types of vegetation found at all DMP points. Subsequently the tree density product 

is used for stratification purposes and calculating tree density per veld type. Veld types with higher 

tree density will have less grass for grazing due to shade and competition for sunlight or radiation. 

Finally, in the ERDAS software GIS models are built to calculate GC with the following inputs: 

Tree density product, veld type and DMP for each year (1998/99-2009/10), for each growing 

season (NDJFMA). The outputs are CC deviation maps which give confidence in forecasting GC 

for NDJFMA seasons in the Limpopo Province. 
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CHAPTER 4 

RESULTS AND DISCUSSION  

4.1 SPOT-VEGETATION DMP and CPT data analysis 

4.1.1 Spearman’s correlation tests 

The main objective of this chapter is to explore if there is skill in forecasting CC for the Limpopo 

Province; which is potentially achieved by exploring the relationship between DMP and coupled 

model rainfall using the Spearman’s rank correlation. Whether a hypothesis is approved or 

disproved may be decided with the aid of the Spearman’s rank correlation which is a robust and 

resistant alternative to the Pearson or ordinary correlation. 

Figure 16 shows the Spearman’s rank correlation, reflecting the skill of the model (coupled model 

DJF rainfall data as a predictor for DMP). It shows whether the correlation between the variables 

is high or low based on the values -0.8 (inversely/negatively correlated) to 0.8 (highly positively 

correlated). The results indicate positive correlations between forecast seasonal rainfall and the 

DMP product over the Limpopo Province, especially over the drier areas where grazing is 

prevalent, i.e. north-eastern parts of the Limpopo Province. The low correlation at the escarpment 

is a result of the quality of the RS products. The results, however certainly show that rainfall can 

be used to predict DMP in the Limpopo Province. These results show potential use of a forecast 

model to predict CC, considering that DMP is one of the primary input parameters for calculating 

CC. 
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Figure 16: Spearman’s rank correlations for the coupled model DJF rainfall data used as predictor 

downscaled to NDJFMA DMP values over the Limpopo Province spanning the 12-year period. 

One of the aims of the research is to use seasonal forecasts to estimate the expected CC product 

every month. To dynamically update CC within a season, best lead-times for rainfall seasons 

must be identified. Therefore, further tests are run with the CPT using the coupled model rainfall 

and DMP data at a 1-month lead time, which means that for DJF, the data are downloaded in 

November and the same rule applies to all other 3-month, 4-month and whole season periods.  

Ultimately, eight rainfall (and DMP composites) seasons are identified as follows: November-

December-January (NDJ), November-December-January-February (NDJF), NDJFMA, DJF, 

December-January-February-March (DJFM), January-February-March (JFM), January-February-

March-April (JFMA) and February-March-April (FMA) to allow for optimal correlation windows.  

Subsequently, the coupled model data for these eight seasons are downloaded and accumulated 

– as well as DMP composites for the respective seasons calculated in ArcMap. Other variables 

than rainfall are explored for predicting DMP such as coupled model regional circulation (850 hPa 

geopotential heights) data. The coupled model geopotential heights (850 hPa) are shown to 

resolve DMP response, as the results show a similar level of skill to the coupled model rainfall, 

especially in areas with high grazing activities. Results show largely positive correlations between 

downscaled regional circulation (850 hPa) and DMP. Yet again, this validates the potential use of 
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low level circulation predicted by a coupled model to in turn predict CC. Further tests are run in 

the CPT to investigate which of the 8 coupled model geopotential heights (850 hPa) seasons best 

predict the DMP product (also considering 8 DMP seasons). After analyzing the output results 

from the CPT, four of the eight seasons show substantial positive results, namely NDJ, DJF, JFM 

and FMA. However, of the four model data seasons, DJF is identified to give high skill in predicting 

NDJ, DJF, JFM and FMA DMP seasons (Figure 17). 

 

Figure 17: Spearman’s rank correlations for the coupled model DJF 850 hPa geopotential heights 

downscaled to DMP values considering four 3-month seasons (a) Coupled model vs NDJ-DMP, 

(b) Coupled model vs DJF-DMP, (c) Coupled model vs JFM-DMP and (d) Coupled model vs FMA-

DMP over the Limpopo Province spanning the 12-year period.  
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4.1.2 ROC and Reliability diagrams   

The main goal of this section is to demonstrate how skillful the DJF coupled model geopotential 

heights (850 hPa) hindcasts are in predicting DMP seasons over the Limpopo Province by testing 

the 4 growing seasons (NDJ, DJF, FMA and JFM). Figure 18 for NDJ season shows above-

normal scores of 0.55, which means that there is 55% chance for above-normal DMP events to 

occur. Below-normal ROC scores are 0.58, which means that there is 58% chance for the below-

normal events to occur. Lastly is the near-normal category, which shows less than 50% chance 

of near-normal events happening. Therefore, the results show good discrimination of above- and 

below-normal DMP seasons by the ECHAM4.5–MOM3-DC2 model.  

Figure 19 for DJF season shows that for the above-normal category, ROC scores are 0.61 which 

means there is a high chance for above-normal DMP conditions during DJF. The below-normal 

category shows ROC scores of 0.72, which shows an even higher chance of below-normal 

conditions occurring during DJF. Near-normal category shows less than 50% chance of near-

normal DMP conditions occurring. The CGCM is unable to discriminate near-normal DMP 

seasons from other seasons.  

Figure 20 for JFM season shows that the above-normal ROC scores are 0.56, while ROC scores 

for below-normal category are 0.66. And lastly near-normal events are less than 50% which 

means that there is little skill in the ECHAM4.5–MOM3-DC2 model predicting near-normal DMP 

seasons. However, the CGCM is able to discriminate above- and below-normal DMP seasons 

from other seasons. 

Finally, Figure 21 for FMA season shows that the above-normal ROC scores are 0.70, showing 

a high chance of above-normal events happening. The below-normal ROC scores are 0.78, 

showing an even higher chance of below-normal events occurring. However, less than 50% 

chance for near-normal category can be seen. Therefore, it can be seen that above- and below-

normal categories are discriminated with great skill, however below-normal category shows the 

highest skill of prediction during this season. 

Above- and below-normal DMP conditions are crucial for farmers in the Limpopo Province 

therefore the diagrams below can assist in giving guidelines for example, if the forecasts show 

above-normal DMP conditions, the farmers can know how many livestock should be grazed on a 

portion of grazing land. Below-normal conditions can mainly be seen during drought conditions 

when rainfall is less than what is needed for natural vegetation to grow, so these results can be 

utilized to give advisories during times of droughts. For example, in the 2014/15 El Niño period, 
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these results could have been used to guide livestock farmers on grazing patterns as well as 

grazing their livestock close to water sources. It is important to note that for all the above figures, 

near-normal conditions are not well discriminated by the ECHAM4.5–MOM3-DC2 DJF model. 

Studies show that near-normal conditions are not easily captured by models and are therefore 

not reported in most studies (Van den Dool & Toth, 1991). 

 

Figure 18: ROC curves obtained by retroactively predicting DMP probabilistically over 12 years 

(1998/99-2009/10) for the NDJ season for above-, below- and near-normal tercile values of the 

climatological record. The areas underneath the respective curves are shown in parenthesis on 

the Figure. The x axis shows False-alarm rate, while the y axis shows Hit rate.  
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Figure 19: ROC curves obtained by retroactively predicting DMP probabilistically over 12 years 

(1998/99-2009/10) for the DJF season for above-, below- and near-normal tercile values of the 

climatological record. The areas underneath the respective curves are shown in parenthesis on 

the Figure. The x axis shows False-alarm rate, while the y axis shows Hit rate. 
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Figure 20: ROC curves obtained by retroactively predicting DMP probabilistically over 12 years 

(1998/99-2009/10) for the JFM season for above-, below- and near-normal tercile values of the 

climatological record. The areas underneath the respective curves are shown in parenthesis on 

the Figure. The x axis shows False-alarm rate, while the y axis shows Hit rate. 
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Figure 21: ROC curves obtained by retroactively predicting DMP probabilistically over 12 years 

(1998/99-2009/10) for the FMA season for above-, below- and near-normal tercile values of the 

climatological record. The areas underneath the respective curves are shown in parenthesis on 

the Figure. The x axis shows False-alarm rate, while the y axis shows Hit rate. 
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In Figure 22, considering the NDJ DMP season, High DMP regression line shows over-

confidence, which means the model is not reliable in predicting high DMP conditions during this 

season. The low DMP regression line shows underconfidence between 0-43%, thus showing 

better reliability in the model for predicting low DMP conditions in this season. 

In Figure 23, considering the DJF season, high DMP regression line is underconfident for only 

about 19%, but is over-confident between 20-100%. The regression line for low DMP shows over-

confidence between 0-60%, but shows underconfidence for only a small portion (about 40%). 

Therefore, model shows low reliability in predicting both high and low DMP conditions in this 

season. 

In Figure 24, during JFM, high DMP regression line shows over-confidence (34%) which means 

low reliability in the model predicting high DMP conditions in this season. However, the low DMP 

regression line shows underconfidence between 35-75%. There is high reliability in the model for 

predicting low DMP conditions in this season. 

Lastly, during the FMA season (Figure 25), regression lines for both high and low DMP are lying 

close to the perfect diagonal. However, the high DMP line shows over-confidence, while the low 

DMP line shows underconfidence for about 42% and over-confidence between 43-100%. There 

is therefore low reliability in the model for predicting both high and low DMP conditions in this 

season. Reliability diagrams show over-confidence for high DMP seasons and underconfidence 

for low DMP seasons during the NDJ and JFM seasons, whereas low reliability in the model is 

demonstrated during the DJF and FMA seasons for both high and low DMP conditions.  
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Figure 22: Reliability diagram and frequency histogram for above- (66th tercile) and below- (33rd 

tercile) normal DMP values for NDJ obtained by downscaling the coupled model’s low level 

circulation. The thick blue (red) curve and the blue (red) bars represent high (low) DMP category. 

The thin blue (red) line is the weighted least squares regression line of the high (low) DMP 

reliability curve. 
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Figure 23: Reliability diagram and frequency histogram for above- (66th tercile) and below- (33rd 

tercile) normal DMP values for DJF obtained by downscaling the coupled model’s low level 

circulation. The thick blue (red) curve and the blue (red) bars represent high (low) DMP category. 

The thin blue (red) line is the weighted least squares regression line of the high (low) DMP 

reliability curve. 
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Figure 24: Reliability diagram and frequency histogram for above- (66th tercile) and below- (33rd 

tercile) normal DMP values for JFM obtained by downscaling the coupled model’s low level 

circulation. The thick blue (red) curve and the blue (red) bars represent high (low) DMP category. 

The thin blue (red) line is the weighted least squares regression line of the high (low) DMP 

reliability curve. 
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Figure 25: Reliability diagram and frequency histogram for above- (66th tercile) and below- (33rd 

tercile) normal DMP values for FMA obtained by downscaling the coupled model’s low level 

circulation. The thick blue (red) curve and the blue (red) bars represent high (low) DMP category. 

The thin blue (red) line is the weighted least squares regression line of the high (low) DMP 

reliability curve. 
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4.1.3 Coupled model and accumulated DMP correlation tests 

More tests are run using the CPT where an accumulated value of the DMP 3-month seasons is 

used to analyze what the outcome would be and positive results are found, leaving coupled model 

DJF low level circulation (850 hPa) as the best predictor of NDJFMA DMP product (Figure 26).   

 

Figure 26: Spearman’s rank correlations for the coupled model DJF 850 hPa geopotential heights 

downscaled to NDJFMA DMP values over the Limpopo Province spanning the 12-year period. 

Subsequently verification tests are run to demonstrate that DJF low-level circulation is a good 

predictor of NDJFMA DMP – thus showing that it is possible to predict DMP with the coupled 

model data (850 hPa geopotential heights).  In the ROC diagram, above- and below-normal 

curves lie more to the upper left corner showing good skill – coupled model can discriminate 

below- and above-normal DMP seasons from other seasons in the Limpopo Province (Figure 27). 

However, the normal curve lies on the right of the no skill line showing lack of skill of coupled 

model in predicting DMP in near-normal DMP seasons. Therefore, forecasts for both above-and 

below-normal conditions can be issued with confidence to farmers. 
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The reliability diagram in Figure 28 shows over-confidence for the high DMP regression line, while 

the low DMP regression line shows underconfidence for about 44% and over-confidence between 

45-100%. The model shows better reliability in predicting below-normal DMP conditions during 

the NDJFMA season. 

 

Figure 27: ROC curves obtained by retroactively predicting DMP probabilistically over 12 years 

(1998/99-2009/10) for the NDJFMA season for above-, below- and near-normal tercile values of 

the climatological record. The areas underneath the respective curves are shown in parenthesis 

on the Figure. The x axis shows False-alarm rate, while the y axis shows Hit rate.  
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Figure 28: Reliability diagram and frequency histogram for above- (66th tercile) and below- (33rd 

tercile) normal DMP values for NDJFMA obtained by downscaling the coupled model’s low level 

circulation. The thick blue (red) curve and the blue (red) bars represent high (low) DMP category. 

The thin blue (red) line is the weighted least squares regression line of the high (low) DMP 

reliability curve.  

The ROC scores are summarized in a table format for better comparison and to show that 

NDJFMA indeed shows improved results as a whole season compared to the four 3-month 

seasons (Table 2). The ROC scores confirm that the CGCM model successfully discriminates 

below- and above- normal DMP seasons, albeit it is only for a short climatological record. Figure 

29 shows a typical time series of good correlation between hindcasts and observations for the 12-

year period (e.g. Wilks, 2011). It should be noted however that it is a challenging task to use short 

data sets in verification tests (Landman et al., 2014). 
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Table 2: Summary of ROC scores comparing the four 3-month seasons to the whole season. 

Period Season Below-normal Near-normal Above-normal 

3-month season NDJ 0.58 0.47 0.55 

DJF 0.72 0.45 0.61 

JFM 0.66 0.47 0.56 

FMA 0.78 0.45 0.70 

Whole season NDJFMA 0.76 0.45 0.67 

 

  

     Figure 29: Time series showing a good correlation between observations and hindcasts over the 

12-year training period.  
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4.2 MODIS NPP data analysis 

A comparison between the DMP dataset product and MODIS NPP is made in order to validate 

the prospect of using SPOT-VEGETATION data in this study. DMP and NPP are directly related, 

however the units of measurement differ, it should be noted that for the sake of better comparison, 

units of measurement are customized in this study. DMP is generally lower than NPP and 

sometimes NPP could be twice as much as DMP. A time series graph (Figure 30), shows a 

positive correlation between NPP and DMP, giving confidence in the use of DMP data in the 

current study.  

 

Figure 30: Time series showing a positive correlation between DMP and NPP for 11 years 

(2000-2010).    
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4.3 Ground truth data and EO data analysis 

4.3.1 Ground truth data  

The relationship between DMP and field data in each specific site is analyzed for 12 years 

(1998/99-2009/10) using linear regression (Figure 31). The R2 value of 0.75 shows a positive and 

high correlation between these two variables. This positive correlation shows that DMP may be 

used as a representative of grass biomass in this research. 

 

 

Figure 31: Relationship between average NDJFMA DMP and grass biomass for all veld types 

(n=12). The x-axis shows grass biomass while the y-axis shows DMP. 
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4.3.2 Vegetation map of 2009 product analysis 

The vegetation map of 2009 – the most recent available product at the time of this study – is used 

to stratify the grass biomass and DMP data into various biomes and veld types. Linear regression 

graphs are used to explore the relationship between grass biomass and DMP in each respective 

veld type (Figures 32-37). The results show positive high correlations between average grass 

biomass and DMP for some veld types. Figure 32 shows a positive correlation with an R2 value 

of 0.82 in the Mopane veld type. The Mopane veld type lies in the eastern parts of the Limpopo 

Province (mostly in the KNP) where wildlife grazing is prevalent. This veld type contains high 

grass biomass as the area is a natural habitat and therefore consists of natural vegetation for the 

various types of wildlife that are conserved in the park.  

 

 

Figure 32: Relationship between average NDJFMA DMP and grass biomass for Mopane veld 

type (n=12). The x-axis shows grass biomass while the y-axis shows DMP. 

 

y = 1.3016x + 1267
R² = 0.8239

0

2000

4000

6000

8000

0 2000 4000 6000 8000

D
M

P
 (

kg
/h

a)

Grass biomass (kg/ha)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



54 
 

The Lowveld shows a positive R2 value of 0.41 (Figure 33) and is located in the south eastern 

parts of the province.  

 

Figure 33: Relationship between average NDJFMA DMP and grass biomass for Lowveld veld 

type (n=11). The x-axis shows grass biomass while the y-axis shows DMP. 
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Figure 34 shows a low R2 of 0.0001 for the Alluvial vegetation veld type. This shows that the DMP 

cannot distinguish the differences in grass biomass for this veld type. The Alluvial veld type is 

characterized by low grass biomass, as it is found on the northern borders of the Limpopo 

Province characterized by dry and warm conditions.  

 

Figure 34: Relationship between average NDJFMA DMP and grass biomass for Alluvial veld type 

(n=12). The x-axis shows grass biomass while the y-axis shows DMP. 
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The Zonal and Intrazonal veld type is characterized by high grass biomass, therefore a high R2 

value of 0.70 (Figure 35).  

 

Figure 35: Relationship between average NDJFMA DMP and grass biomass for Zonal and 

Intrazonal veld type (n=7). The x-axis shows grass biomass while the y-axis shows DMP. 
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Figure 36 shows a positive R2 value of 0.05, which is low. The Central bushveld type is 

characterized by woody vegetation where the Savanna shrubs are dominant. The low correlation 

between grass biomass and DMP could be affected by the high tree density in the area. The 

quality of RS imagery is possibly also negatively affected because this veld type lies in a 

mountainous region. Therefore, DMP should be used with caution for the central bushveld veld 

type as a representation. 

 

Figure 36: Relationship between average NDJFMA DMP and grass biomass for Central bushveld 

veld type (n=8). The x-axis shows grass biomass while the y-axis shows DMP. 
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The Azonal veld type shows a positively good relationship between grass biomass and DMP with 

R2 value of 0.76 (Figure 37).  

 

 

Figure 37: Relationship between average NDJFMA DMP and grass biomass for Azonal veld type 

(n=7). The x-axis shows grass biomass while the y-axis shows DMP. 
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4.3.3 Tree density product of 2003 analysis  

The tree density product is used as a sublayer to obtain equations per respective veld type. 

Figures 38-43 show the linear relationship between DMP and grass biomass per tree density 

category.  

In the Mopane veld type (Figure 38), a positive slope is seen in all tree density classes. Grass 

biomass and DMP show a good relationship. The latter could be attributed to low tree density in 

this veld type, thus no shadowing effect and less disturbance of the DMP signal. positive R2 of 

0.23 is seen in the medium tree density class, while a low R2 of 0.09 is seen in the extremely high 

tree density. The Lowveld has a positive slope in all the classes (Figure 39). The highest R2 value 

of 0.27 is seen in the low tree density class and the lowest R2 value of 0.14 is seen at the high 

tree density class. Figure 40 shows the alluvial veld type, whereby a negative slope is seen in the 

3 density classes. The highest R2 of 0.15 is seen in the extremely high tree density class.  

The Zonal and Intrazonal veld type (Figure 41) shows a positive slope in the 3 tree density 

classes. The highest R2 value of 0.77 is seen in the high tree density class, while the lowest R2 

value of 0.41 is seen in the extremely high tree density class. For the Central bushveld type 

(Figure 42), very limited ground truthing data are available, thereby affecting the results. However, 

Central bushveld shows a negative slope for low tree density with an R2 value of 0.01 and a 

positive slope for medium tree density class with an R2 value of 0.11.  

The Azonal veld type shows a positive slope for extremely high tree density with a high R2 value 

of 0.76. (Figure 43). Tree density affects grass biomass growth (and DMP imagery). The graphs 

below show the relationship between grass biomass and DMP within each veld type, and these 

relationships differ, some show high R2 values and others show low R2 values.  
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              Figure 38: Relationship between grass biomass points and 

NDJFMA DMP from 1998/99-2009/10 according to various 

tree density classes for the Mopane veld type. The x-axis 

shows grass biomass while the y-axis shows DMP. 
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Figure 39: Relationship between grass biomass points and 

NDJFMA DMP from 1998/99-2009/10 according to various 

tree density classes for the Lowveld veld type. The x-axis 

shows grass biomass while the y-axis shows DMP. 
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Figure 40: Relationship between grass biomass points and 

NDJFMA DMP from 1998/99-2009/10 according to various tree 

density classes for the Alluvial veld type. The x-axis shows grass 

biomass while the y-axis shows DMP. 
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Figure 41: Relationship between grass biomass points and NDJFMA 

DMP from 1998/99-2009/10 according to various tree density classes 

for the Zonal and Intrazonal veld type. The x-axis shows grass 

biomass while the y-axis shows DMP. 
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Figure 42: Relationship between grass biomass points and NDJFMA DMP 

from 1998/99-2009/10 according to various tree density classes for the 

Central bushveld veld type. 
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Figure 43: Relationship between grass biomass points and NDJFMA DMP from 1998/99-2009/10 

according to various tree density classes for the Azonal veld. The x-axis shows grass biomass 

while the y-axis shows DMP. 
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4.4. Estimation of GC 

Grass biomass is first estimated using the ERDAS software by building models. There is a strong 

relationship between rainfall and natural vegetation production hence these maps are interpreted 

relative to the influence of rainfall. The maps for 1998/99, 1999/00 and 2007/08 show high grass 

biomass in the Limpopo Province, a result of high rainfall during these years. Dry years such as 

2002/03 and 2009/10 show very low grass biomass values. High correlation between field data 

and maximum DMP over the period of available data clearly indicates, that there is a strong 

relationship between biomass and GC. Figure 44 shows the output maps from ERDAS software 

which are later finalized in ArcMap. 

Simplified GC maps for 1998/99-2009/10 are calculated (Figure 45). These maps show estimated 

GC in the Limpopo Province based on the relationship between GC and DMP, neglecting inputs 

such as palatability. It should be noted that good years are less than 2.0 ha/LSU and bad years 

are greater than 2.5 ha/LSU. The years with high GC are as follows:1998/99-except the western 

parts, 1999/00, 2007/08 and 2008/09-except eastern KNP. The years showing low GC are: 

2002/03 (large areas in the north), 2003/04 (small areas), 2004/05, 2006/07 (north and east) and 

2009/10 (all areas). Overall GC values are high for the Limpopo Province. El Niño years include 

2002/03 and 2009/10, whilst La Niña years include 1998/99, 1999/00, 2000/01 and 2007/08. The 

following years: 2000/01, 2001/02, 2003/04, 2004/05, 2006/07 and 2008/09 are categorized as 

neutral years according to Oceanic Niño Index (ONI) table 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml). It is 

further emphasized that the dry (wet) years correspond with El Niño (La Niña) years. 

The positive bias in the GC estimate may be related to the collection of grass biomass data using 

the Disc Pasture Meter method from the Kruger National Park – as the grass may include 

remnants of the previous growing season (Morgenthal, 2015: Personal communication). 

Furthermore, the period (1998/99-2009/10) during which the GC estimate is made for the current 

study is characterized by higher rainfall than the periods (reference to the 2005/1993) during 

which the earlier estimates were made. Moreover, the current study, is more focused on 

identifying potential deviations before summer than calculating the actual long-term mean – which 

may additionally be obtained over and above the current average estimate.  
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Figure 44: Grass biomass estimates per season for the 12-year period, 1998/99-2009/10 in the 

Limpopo Province. 
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Figure 45: GC maps per season for the 12-year period,1998/99-2009/10 in the Limpopo 

Province. 
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Figure 46 shows that the coupled model’s geopotential heights (850 hPa) predict GC over the 

Limpopo Province. These positive results therefore prove the prospect of updating the CC product 

monthly during the growing season in the Limpopo Province.  

 

Figure 46: Spearman’s rank correlations for the coupled model DJF 850 hPa geopotential 

heights downscaled to NDJFMA GC values over the Limpopo Province spanning the 12-year 

period.  

The ROC diagram (Figure 47) shows both above- and below-normal ROC scores of 0.67, 

therefore there are high chances of above- and below-normal GC events occurring. ROC scores 

for near-normal GC conditions show a small chance of near-normal events occurring. Therefore, 

again the coupled DJF model shows good discrimination of the above- and below-normal GC 

seasons, but its discrimination of the near-normal GC seasons is poor. 
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Figure 47: ROC curves obtained by retroactively predicting GC probabilistically over 12 years 

(1998/99–2009/10) for the NDJFMA season for above-, below- and near-normal tercile values of 

the climatological record. The areas underneath the respective curves are shown in parenthesis 

on the Figure. The x axis shows False-alarm rate, while the y axis shows Hit rate.  

The reliability diagram (Figure 48) shows that during NDJFMA, the high GC regression line lies 

above the diagonal line showing underconfidence (56%), with a small portion (between 57-100%) 

showing over-confidence. However, the low GC regression line lies below the diagonal line which 

means that the forecasts are over-confident. The forecast probabilities for high GC seasons show 

higher reliability in the forecasts than those for low GC seasons during NDJFMA.  
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Figure 48: Reliability diagram and frequency histogram for above- (66th tercile) and below- (33rd 

tercile) normal GC values for NDJFMA obtained by downscaling the coupled model’s low level 

circulation. The thick blue (red) curve and the blue (red) bars represent high (low) GC category. 

The thin blue (red) line is the weighted least squares regression line of the high (low) GC reliability 

curve. 
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4.5 Synopsis 

This chapter shows results for all the products, data, and tools that are used to estimate GC in 

this dissertation. The CPT tool is used to run tests by analyzing correlation between the SPOT-

VEGETATION DMP and coupled model rainfall or geopotential heights (850 hPa) data. The initial 

test is run using coupled model rainfall and DMP data where a positive correlation is found. Other 

variables are explored as predictors, namely coupled model low level circulation (850 hPa) data. 

Largely positive correlations are seen between coupled model rainfall and DMP as well as low 

level circulation and DMP for the central part of the Province. Four rainfall seasons are chosen 

after several tests are run using CPT namely; NDJ, DJF, JFM and FMA. Of these four 3-month 

seasons, DJF low level circulation season is shown to best predict the four DMP seasons i.e. 

NDJ, DJF, JFM and FMA. Verification tests are carried out using the ROC and reliability diagrams. 

The ROC diagrams show good skill in predicting NDJFMA DMP (and GC) by using DJF low level 

circulation data for the above- and below-normal DMP (and GC) seasons. A cumulative value for 

all the four 3-month seasons is also tested as a predictand, ultimately showing DJF low level 

circulation data to be the best predictor of NDJFMA DMP. Reliability diagrams show that the low 

DMP seasons are underconfident for the NDJ and JFM seasons, while over-confidence is shown 

for the DJF and FMA seasons, however for the NDJFMA season; underconfidence is seen for the 

high GC season while over-confidence is seen for the low GC seasons. Therefore, forecasts for 

both above- and below-normal conditions can be given out with confidence to farmers along with 

guidelines for grazing livestock. 

Ground truth data are used in ArcMap along with EOS data to analyze the relationship between 

grass biomass and DMP data. Linear regressions are calculated giving a positive R2 value of 

0.75. The vegetation map product of 2009 product is used to stratify the field data into 6 veld 

types in the Limpopo Province as follows: Mopane, Lowveld, Azonal, Alluvial, Zonal and 

Intrazonal and Central bushveld type. Subsequently, the tree density product is used to categorize 

the data into low, medium, high tree density and extremely high tree density in order to obtain 

equations per respective veld type. These equations would enable the estimation of CC per veld 

type with simplicity as GC differs in the different veld types. In the ERDAS software, GC is 

estimated for the 12-year period (1998/99-2009/10). The last crucial step towards GC is 

estimating grass biomass by building GIS models. Further, GC is estimated using an equation 

expressed in ha/LSU and maps are subsequently drawn showing vegetation in different rainfall 

seasons spanning the 12-year period.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

Livestock farming and ranching operations comprise a significant component of economic activity 

in the Limpopo Province with most of the farmers relying on rainfall for irrigation of livestock 

fodder. This semi-arid area experiences erratic summer rainfall, with a large effect on grass 

production. Mid-summer characteristics are a good estimate of how the entire rainfall season may 

behave for Limpopo Province. During dry years, grass production decreases, affecting livestock 

farming negatively (e.g. condition, morbidity, and probabilities for mortality) and sometimes 

necessitating the culling of animals, which has major impacts on rural livelihoods.  

The motivation to have done this study in the first place is to assist the Limpopo Department of 

Agriculture (DOA) with management of rangelands and controlling of grazing on pastures by 

giving spatial and temporal guidelines on a seasonal to inter-annual basis. Seasonal forecasts 

(compiled from coupled global circulation model output) are employed to analyze the predictability 

of DMP over the Limpopo Province. These models can produce probabilistic forecasts for 

favourable or unfavourable grazing in order to advise farmers regarding the availability of pasture 

in the up-coming season.  

It is crucial to have an estimate of GC and to know the deviation from the capacity prior to and 

during a growing season. The processes involved in this study take into account parameters that 

influence forage production and its availability. Such information provided to all relevant parties 

can guide good management practices, supporting proactive adaptive management and provide 

alternatives in the decision making process. Where seasonal forecasts display sufficient skill, an 

opportunity is presented where monitoring data can be used in conjunction with such forecasts to 

make assumptions regarding expected deviations from a long-term mean GC.  

In the CPT tool, CCA is used to run tests between the SPOT-VEGETATION DMP and coupled 

model rainfall data. The CCA is used to analyze correlation between these variables. The results 

show a positive correlation between coupled model rainfall and DMP data. Improved positive 

results are seen between coupled model low level circulation (850 hPa) data and DMP data. The 

following rainfall seasons: NDJ, DJF, JFM and FMA are chosen after several tests, however, DJF 

low level circulation is selected as the best predictor of the NDJFMA DMP season. ROC and 

reliability diagrams are used for forecast verification and the results show that CGCM has skill 

discriminating above- and below-normal GC seasons. Reliability of the probability forecasts is 

good, showing underconfidence for high GC and over-confidence for low GC seasons and thus 
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these results can be used to warn farmers of approaching high GC conditions usually 

characterized by wet (La Niña) seasons. Overall verification results show that forecasts can be 

issued out to the Limpopo Province farmers for both high and low GC conditions, however, low 

GC forecasts should be given with great caution. 

The ground truth data are used to analyze the relationship between grass biomass and DMP data 

per veld type. A high R2 value is seen when DMP is correlated with grass biomass for all the years 

and veld types combined and this shows a positive relationship between DMP and ground truth 

data. The following veld types; Mopane, Lowveld, Azonal, Alluvial, Zonal and Intrazonal and 

Central bushveld are delineated with the use of the vegetation map. The tree density product (in 

conjunction with the vegetation map) is used to obtain equations per respective veld type and this 

is achieved by categorizing the data into 4 classes, namely low, medium, high tree density and 

extremely high tree density. These classes are related to biomass because when there is low tree 

density, it is expected that grass biomass will be high as a result of less shading effects. 

Finally, GC is estimated for the 12-year period (1998/99-2009/10) using ERDAS software where 

GC maps are drawn showing vegetation – mainly positive values – in different rainfall seasons 

spanning the 12-year period. The high positive GC values are attributed to the Disc Pasture Meter 

method (which is used to collect field data) because it focuses on grass length measurements, 

therefore this method can overestimate as it may include remnants from previous growing 

seasons. However, the CC anomalies are forecast for each year per growing season, which 

proves to give positive results.  

The results further show that the DMP product can, with certain assumptions, be used as a proxy 

for grass biomass. In future, work will be done on a large scale where a GC product will be 

estimated for the SADC region using the same approach that is used in the current study. The 

main objectives of the current study (to update current CC products and create deviation maps 

from CC for several historical years with relevant data) have been achieved. The deviation from 

CC, as derived in this thesis, will play an important role in providing practical advice to livestock 

farmers in the Limpopo Province of South Africa. 

A recent scenario would be the current 2015/16 strong El Niño, characterized by drought and heat 

stress conditions, that has negatively impacted the agricultural sector across South Africa with 

the following provinces: KwaZulu-Natal, North West, Free State, Limpopo and the Northern Cape 

classified as disaster areas (Department of Water and Sanitation Drought report, 2015). The costs 

for drought relief are an imminent setback to the country’s finances, especially for the above 
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mentioned provinces. However, if the described CC system had been in place prior to the 2015/16 

El Niño drought, agricultural advisories could have guided livestock farmers with precautionary 

measures and alternate management options to minimize loss and damage, as well as finding 

cost effective means of obtaining supplementary feed for livestock as well as reducing the size of 

livestock herds. CC would have been estimated by substituting the relevant inputs to estimate 

GC. The CC maps can as a result of this research be produced operationally and updated during 

a growing season. 

The need for tailored forecasting in the agricultural sector should not be overlooked. The use of 

these forecasts with grazing management options can potentially assist in controlling overgrazing, 

resulting in sustainable veld maintenance. The ARC-ISCW is involved in the quarterly meeting of 

the National Agrometeorological Committee where, various monitoring and early-warning 

products and messages are assembled and combined into an advisory that is distributed through 

the Provincial DOA to the extension service structure.  

This study is relevant in the Limpopo Province, however the uptake of modelling and seasonal 

forecasts by farmers and decision makers remains challenging. More effort needs to be 

channeled towards reaching out to farmers and communities by providing interactive training 

sessions focusing on seasonal forecasts and their use in agricultural production. Indigenous 

methods of weather forecasting and GC estimations are also interesting topics to investigate e.g. 

Zuma-Netshiukhwi et al. (2013). However, unavailability of documentation with regards to 

empirical methods, their implementation, results and/or verification remains a challenge. Finally, 

the technique may be improved by working from a more detailed baseline CC product.   

For future studies, more field data (30 years or more) should be acquired, together with relevant 

satellite data, to allow for an optimal correlation time period.  More field data could potentially yield 

improved results as there would be more data to be used for verification tests. Species 

composition is also a necessary branch to explore. Livestock graze on grasses according to 

palatability, hence more detailed maps would estimate GC considering those aspects. Skill in 

forecasting deviations from a simplified GC estimate is demonstrated. The estimates may be 

improved by taking such elements into account in future work, and serve to produce an updated 

new GC map, which can be used as the baseline for estimating current and expected deviations 

prior to and during future growing seasons. 

Dry matter eaten by grazers and browsers could also be tackled separately in future studies, as 

the former feed on grass while the latter feed on twigs, shrubs and leaves from trees. This project 
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demonstrates the development of a tailored forecast, an avenue that should be explored in 

enhancing relevance of forecasts in agricultural production. Data analysis forms a crucial part of 

any research project. There are important factors to consider as far as data analysis is concerned 

and these include: 

 Study area boundaries 

 Biophysical factors  

 Data sources 

 Field data collection methods 

 Instrumentation and calibration 

 Tools and software packages 

  Data quality control and model specifications 

 Metadata 

If attention is given to these factors mentioned above, all modelling work can be carried out more 

efficiently towards finding solutions that will benefit farmers and pastoralists in southern Africa. 
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APPENDIX 1 

Stratification of data into various veld types with respect to tree density (%). 

ID Date Site 

no 

Grass Biomass 

(kg/ha) 

Lon Lat NDJFMA DMP 

(kgDM/ha/day) 

Veld types Group ID Tree density 

436 1999 2407 2997 

 

31.470

0 

 

-23.9200 

 

69639 

 

 

Mopane 

Bioregion 

 

 

87 

 

11 

135 2000 1121 4939 31.210

0 

 

-23.3800 

 

67335 Mopane 

Bioregion 

 

87 17 

27 2005 209 4580 31.370

0 

 

-25.4300 

 

91378 

 

Lowveld 

Bioregion 

 

7 33 

366 2009 3503 2448 31.243

8 

 

-23.0526 

 

45819 

 

Alluvial 

Vegetation 

 

23 13 

162 2007 2711 

 

5867 

 

31.463

3 

 

-22.9903 

 

36448 

 

Mopane 

Bioregion 

 

87 7 

57 2010 1708 

 

4354 

 

31.831

3 

 

-24.4241 

 

38051 

 

Lowveld 

Bioregion 

 

7 

 

0 

 

472 2005 3406 1841 30.990

0 

-22.6600 40827 Zonal & 

Intrazonal 

forests 

13 14 

436 2006 2802 3869 31.240

0 

-22.4200 63185 Azonal 

forests 

 

17 48 
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