
Dependence structures in multidimensional arrays

by

Kwok-Ho Lau

Submitted in partial ful�llment of the requirements for the degree

Magister Scientiae

In the Department of Statistics

In the Faculty of Natural and Agricultural Sciences

University of Pretoria

July 2016

© University of Pretoria

1

I, Kwok-Ho Lau, declare that this mini-dissertation, which I hereby submit for the degree Magister

Scientiae in Mathematical Statistics at the University of Pretoria, is my own work and has not previously

been submitted by me for a degree at this or any other tertiary institution.

Signature:

Date:

© University of Pretoria

Summary

In the process of data acquisition the information obtained are more than often contaminated by noise.

To purify the data smoothers are designed to remove the noise. The LULU operators are such smoothers,

more speci�cally, they are designed to remove impulsive noise. Carl Rohwer and his collaborators devel-

oped the LULU operators in one dimension in the last four decades and, more recently, the operators

have been extended to higher dimensions by Roumen Anguelov and Inger Fabris-Rotelli [2]. The prop-

erties in shape preservation and total variation preservation are extended from one-dimensional LULU

operators. This allows for smoothing with the operators in images. However, because their de�nition

uses a morphological concept of a connection, the question of how complex the connectivity should be

therefore arises. Using the results from correlation analysis, we explore the extent at which the pixels of

an image depend on its neighbours and establish the complexity of the connectivity for LULU operators

in two-dimensions. In addition, as a measure of how e�ective the LULU smoothers remove noise, we

examine the noise extractions by the operators for images.

2

© University of Pretoria

Contents

1 Introduction 5

2 Smoothers 6

2.1 Introduction . 6

2.2 Operators on sequences . 6

2.3 LULU operators in one dimension . 8

2.4 Compositions of Ln and Un operators . 11

2.5 Variation reduction and shape preservation . 15

2.6 The Discrete Pulse Transform . 17

2.6.1 The Roadmaker's Algorithm . 18

2.7 LULU operators and DPT for multidimensional arrays . 19

2.7.1 Intricasy of Nn(x) . 20

2.7.2 LULU operators on Z2 . 28

2.7.3 The Discrete Pulse Transform . 29

2.8 Conclusion . 31

3 An empirical study of dependence structures in images 32

3.1 Introduction . 32

3.2 Testing dependence of neighbouring pixels . 33

3.3 Application . 35

3.4 Local dependence in the presence of noise . 38

3.4.1 Correlation analysis of noisy videos . 39

3.5 Conclusion . 44

4 Noise removal in images 46

4.1 Introduction . 46

4.2 Analysis of noisy images . 46

4.3 Application . 49

4.3.1 Total variation plots . 49

4.3.2 Smoothed vs original images . 64

4.3.3 Removed vs original noise . 72

3

© University of Pretoria

CONTENTS 4

4.3.4 PP plots for extracted noise samples with minimum SSE 80

4.3.5 Final observations . 93

4.4 Conclusion . 94

5 Conclusion 107

Appendix i

Intricasy of Nn(x) [SAS] . i

An empirical study of image pixels [MATLAB] . xvii

Noise removal in images [MATLAB] . xxx

© University of Pretoria

Chapter 1

Introduction

In the process of data acquisition the information obtained are more than often contaminated by noise.

To purify the data smoothers are designed to remove the noise. The LULU operators are such smoothers,

more speci�cally, they are designed to remove impulsive noise. Carl Rohwer and his collaborators devel-

oped the LULU operators in one dimension in the last four decades and, more recently, the operators

have been extended to higher dimensions by Roumen Anguelov and Inger Fabris-Rotelli [2]. The prop-

erties in shape preservation and total variation preservation are extended from one-dimensional LULU

operators. This allows for smoothing with the operators in images. However, because their de�nition

uses a morphological concept of a connection, the question of how complex the connectivity should be

therefore arises. Using the results from correlation analysis, we explore the extent at which the pixels of

an image depend on its neighbours and establish the complexity of the connectivity for LULU operators

in two-dimensions. In addition, as a measure of how e�ective the LULU smoothers remove noise, we

examine the noise extractions by the operators for images.

We �rst lay the foundation of LULU operators in Chapter 2. Therein we also discuss the properties

and the Discrete Pulse Transform of the operators in one- and two- dimensions. In Chapter 3 we study the

dependence of image pixels with respect to its neighbours by use of a dependence structure. In Chapter

4 we investigate the e�ectiveness of the LULU operators in removing noise.

5

© University of Pretoria

Chapter 2

Smoothers

2.1 Introduction

In data analysis smoothing is required to capture patterns inherent in the dataset or to purify the noisy

data so that inferences regarding the data are not polluted by unwanted variation. Linear �lters are

traditionally used for such purposes, however, their e�ciency is apparent only when the data contains

well-behaved noise - such as noise that have a Gaussian distribution.

Alternatively non-linear �lters have shown to be more robust than linear �lters. For example, Tukey

[20] proposed the median �lter which selects the central order statistic in a running window of observations.

Rohwer [28] bases the LULU operators on the extreme order statistics.

In this chapter we cover the LULU operators in one and two dimensions. More speci�cally, Section

2.2 covers the foundation of smoothers, Section 2.3 introduces the LULU operators in one dimension,

of which their compositions and properties are discussed in Sections 2.4 and 2.5 respectively, and the

one-dimensional Discrete Pulse Transform in Section 2.6. The rest of the chapter covers LULU operators

in higher dimensions in Section 2.7.

2.2 Operators on sequences

To study sequences it is convenient to use the vector space framework. Let X be the set of bi-in�nite

sequences of real numbers x = 〈xi〉∞i=−∞.

Some criteria for the designing and comparing a smoother P functioning as a separator of "signal"

from a sequence where it's contaminated by "noise" are [28]:

6

© University of Pretoria

CHAPTER 2. SMOOTHERS 7

Figure 2.1: Two-stage separator cascade (graphic from [28]).

E�ectiveness For each x, Px should be signal and (I − P)x noise.

Consistency Signals should be preserved and noise mapped onto 0.

Stability The smoother should be robust to small input perturbations.

E�ciency The computations should not require excessive running time.

We thus have the following smoother axioms [28]:

Smoother Axioms An operator P on X is a smoother if:

1. PE = EP , where E is the shift operator.

2. P (x+ c) = P (x) + c, for each x, c ∈ X such that c is a constant sequence.

3. P (αx) = αP (x), for each x ∈ X and scalar α ≥ 0.

The consistency criterion then describes the following separator axioms [28]:

Separator Axioms A smoother P is a separator if it also satis�es the additional axioms:

4. P 2 = P (Idempotence).

5. (I − P)2 = I − P (Co-idempotence).

An argument for the axioms above can be presented with a simple analogy. Suppose the operator P

separates milk x into two components: Px - the curd, and (I − P)x - the whey. The performance of the

separator P could be measured by passing Px into P again or to pass (I − P)x through P and compare

them to Px and (I − P)x. This is illustrated in Figure 2.1.

© University of Pretoria

CHAPTER 2. SMOOTHERS 8

Suppose the curd is the signal and the whey the noise. If P 2x = Px, then P is considered to be

a consistent signal-extractor. On the other hand, if (I − P)2x = (I − P)x, the separator is considered

noise-consistent. In the above cases, P is called idempotent and co-idempotent [23] respectively.

2.3 LULU operators in one dimension

We introduce the LULU operators in one dimension, developed by Rohwer [28, 33] and his collaborators

Wild and Laurie. The LULU operators are �rst presented in [31], their properties in [5, 6, 7, 23, 26, 25,

24, 27, 28, 33], and [38], the comparison with the median �lter in [22, 32], the Discrete Pulse Transform in

[8, 16, 17] and [30], the LULU distributions and statistical properties in [4, 14], and [29], and the LULU

operators on a continuous domain in [1, 3] and [18]. Unless stated otherwise, the de�nitions and results

provided in the rest of Section 2.3 are obtained from [28].

De�nition 2.1. Let the operators
n∨
and

n∧
, for n ≥ 1, that map the sequence x onto y be de�ned by

n∨
: y =

n∨
x = 〈yi = max{xi, ..., xi+n−1, xi+n}〉 ,

n∧
: y =

n∧
x = 〈yi = min{xi−n, xi−n+1, ..., xi}〉 .

The LULU operators are then compositions of these min and max selectors; de�ned as

Ln =

n∨ n∧
, Un =

n∧ n∨
.

It can be seen that the LULU operators are de�ned in such a way to temper the initial use of extreme

selectors
∨

and
∧

by the immediate application of its opposite. That is the Ln operator selects the

maximum of the set of minimums within a sequence whereas the Un operator selects the minimum of the

set of maximums.

Note further that the original sequence x is always contained within the interval [Lnx, Unx], and, for

any n > 0, it is true that Ln+1 ≤ Ln and Un ≤ Un+1. Thus the following relationship holds:

Ln+1 ≤ Ln ≤ I ≤ Un ≤ Un+1,

where I is the identity operator. In relation to the median operator Mn = median{xi−n, ..., xi, ..., xi+n},

we have that the following inequality holds true:

UnLn ≤Mn ≤ LnUn.

De�nition 2.2. Let N be the negative operator on any sequence, then an operator B is the dual of A if

AN = NB.

The Ln and Un operators are duals of each other. Furthermore, any composition of Ln and Un is also

dual to the operator by interchanging Ln and Un for each n.

© University of Pretoria

CHAPTER 2. SMOOTHERS 9

De�nition 2.3.

1. A subsequence 〈xi, xi+1, ..., xi+n, xi+n+1〉 is an upward n-pulse if

min{xi+1, xi+2, ..., xi+n} > max{xi, xi+n+1}.

2. A subsequence 〈xi, xi+1, ..., xi+n, xi+n+1〉 is a downward n-pulse if

max{xi+1, xi+2, ..., xi+n} < min{xi, xi+n+1}.

The subsequence is a constant upward pulse (constant downward pulse) if xj = c ∀j = i+1, i+2, ..., i+n

for some constant c in the above the de�nition. Note that Ln removes all upwards pulses of size n or

smaller and Un removes all downward pulses of size n or smaller. Note that by `remove' we imply the

sequence has been smoothed by LnUn or UnLn and the n-pulse sequence positions have been replaced

by either the value at position i or i + n + 1 - see the example that follows for the details as well as the

Roadmaker's algorithm in Section 2.6. This then gives us the First Idempotence Theorem, since there

will be no n-pulses to remove after the application of Lm and Um:

LnLm = Lm and UnUm = Um for m ≥ n.

Result 2.1. An n-pulse is removed from any constant sequence by LmUm and UmLm, if m ≥ n.

From Result 2.1 we obtain the Second Idempotence Theorem, since reapplying the operators will have no

e�ect:

(LnUn)2 = LnUn and (UnLn)2 = UnLn.

Example 2.1. Consider the sequence x = {1, 1, 5, 4, 7, 1, 2}. We smooth x sequentially with UnLn as

follows1.

At n = 1,

(L1x)i =
∨(∧

x
)
i

(U1x)i =
∧(∨

x
)
i

= max

{(∧
x
)
i
,
(∧

x
)
i+1

}
= min

{(∨
x
)
i−1

,
(∨

x
)
i

}
= max{min{xi−1, xi},min{xi, xi+1}} = min{max{xi−1, xi},max{xi, xi+1}}

It follows that

(L1x)1 = max{min{0, 1},min{1, 1}} = max{0, 1} = 1

(L1x)2 = max{min{1, 1},min{1, 5}} = max{1, 1} = 1

(L1x)3 = max{min{1, 5},min{5, 4}} = max{1, 4} = 4

(L1x)4 = max{min{5, 4},min{4, 7}} = max{4, 4} = 4

1Recall that x is a bi-in�nite sequence of real numbers. Thus {1, 1, 5, 4, 7, 1, 2} represents {...0, 0, 1, 1, 5, 4, 7, 1, 2, 0, 0, ...}

© University of Pretoria

CHAPTER 2. SMOOTHERS 10

(L1x)5 = max{min{4, 7},min{7, 1}} = max{4, 1} = 4

(L1x)6 = max{min{7, 1},min{1, 2}} = max{1, 1} = 1

(L1x)7 = max{min{1, 2},min{2, 0}} = max{1, 0} = 1

At n = 2,

(L2x)i =

2∨(
2∧
x

)
i

= max

{(
2∧
x

)
i

,

(
2∧
x

)
i+1

,

(
2∧
x

)
i+2

}

= max{min{xi−2, xi−1, xi},min{xi−1, xi, xi+1},min{xi, xi+1, xi+2}}

(U2x)i =

2∧(
2∨
x

)
i

= min

{(
2∨
x

)
i−2

,

(
2∨
x

)
i−1

,

(
2∨
x

)
i

}

= min{max{xi−2, xi−1, xi},max{xi−1, xi, xi+1},max{xi, xi+1, xi+2}}

And so on. Applying L1 on x results in a new sequence L1x = {1, 1, 4, 4, 4, 1, 1}. Note that L1 has removed

all upward pulses of size 1 (see Figure 2.2). Applying U1 on L1x would result in L1x since there are no

downward pulses of size 1. Similarly, U2L2U1L1x = L1x because there are no upward nor downward

pulses of size 2. A new sequence would be obtained when L3 is applied since L1x contains an upward

3-pulse: L3U2L2U1L1x = {1, 1, 1, 1, 1, 1, 1}.

This process is continued until the zero sequence (in this case) is obtained. Note that by the same

reasoning as above, U6L6...U1L1x = U5L5...U1L1x = ... = U3L3U2L2U1L1x = {1, 1, 1, 1, 1, 1, 1}. Finally,

L7 removes the last upward 7-pulse and the zero sequence remains. This is depicted Figure 2.2.

© University of Pretoria

CHAPTER 2. SMOOTHERS 11

Figure 2.2: Decomposition of a sequence x using LULU operators. Note that n = 0 is the original

sequence.

Note that in Figure 2.2, the transparent bars indicate the pulses that will be removed at the next

application of UnLn - that is, they are still part of the sequence at the nth step. For instance, at n = 0,

we see three transparent bars at i = 3, 5, 7 this is because, at the next step n = 1, U1L1 removes all pulses

of size 1. At n = 2, we see one transparent bar of width 3. This indicates that it will be removed by U3L3

at the next step.

�

2.4 Compositions of Ln and Un operators

The successive application of LnUn and UnLn yields better smoothing results as opposed to just an

application for a single speci�ed n. Here, we de�ne the `ceiling' and `�ooring' operators Cn and Fn

respectively. The de�nitions and results in this section are also obtained from [28] unless otherwise

stated.

De�nition 2.4.

C1 = L1U1 and Cn+1 = Ln+1Un+1Cn,

F1 = U1L1 and Fn+1 = Un+1Ln+1Fn.

© University of Pretoria

CHAPTER 2. SMOOTHERS 12

Result 2.2. For each n, UnLn ≤ Fn ≤ Cn ≤ LnUn.

Example 2.2. A sequence y = sin3(4πx3) with added noise from N(0, 0.032) is simulated. The original

graph line of y as well as noisy y is shown in Figure 2.3.

Figure 2.3: Series plot of y (original) in blue and noisy y in red.

The e�ects of LnUn, UnLn, Fn, and Cn are shown in Figure 2.4 to 2.10 for di�erent values of n. Notice

that, for each n, UnLn ≤ Fn ≤ Cn ≤ LnUn, so [Fn, Cn] concentrates the signal interval [Ln, Un].

Furthermore, since the LULU operators remove noise with respect to pulse length, it can be seen that

the performance of these operators deteriorates as the value of n increases. There are several reasons for

this. The simulated noise are iid Gaussian distributed, thus the only pulses believed to be noise within

the contaminated line are of length one. Already after the application of L1U1 or U1L1, the amount of

unwanted variation has been removed by these operators. The extent to which we remove noise will be

discussed in Chapter 4.

As the value of n increases, the operator removes all pulses that are of length n or less even when

these pulses are considered to be natural according to the de�nition of the line - this is most evident at

n = 50 in Figure 2.10 where the operators completely ignore the natural pulses occurring within the line.

We thus introduce a formal de�nition of variation in order to measure the amount of smoothing by the

LULU operators.

© University of Pretoria

CHAPTER 2. SMOOTHERS 13

Figure 2.4: F1, C1, L1U1, and U1L1 applied to noisy signal y.

Figure 2.5: F2, C2, L2U2, and U2L2 applied to noisy signal y.

Figure 2.6: F3, C3, L3U3, and U3L3 applied to noisy signal y.

© University of Pretoria

CHAPTER 2. SMOOTHERS 14

Figure 2.7: F5, C5, L5U5, and U5L5 applied to noisy signal y.

Figure 2.8: F10, C10, L10U10, and U10L10 applied to noisy signal y.

Figure 2.9: F20, C20, L20U20, and U20L20 applied to noisy signal y.

© University of Pretoria

CHAPTER 2. SMOOTHERS 15

Figure 2.10: F50, C50, L50U50, and U50L50 applied to noisy signal y.

�

2.5 Variation reduction and shape preservation

To measure the degree of smoothing, Rohwer [28] makes use of total variation to measure the level of

continuity present within the original sequence and its LULU derivatives.

De�nition 2.5. The total variation of a sequence x is de�ned as T (x) =
N∑

i=−N
|xi+1 − xi|.

It is clear that if x ∈ l1, then T (x) ∈ l12, since

N∑
i=−N

|xi+1 − xi| ≤
N∑

i=−N
(|xi|+ |xi+1|) ≤ 2‖x‖1.

where ‖x‖1 =
N∑

i=−N
|xi|.

The total variation has the following properties:

Result 2.3.

i. T (Ex) = T (x), where E is the shift operator.

2The l1 norm [15] of a vector x = [x1, x2, ..., xn]T is de�ned by

‖x‖1 = |x1|+ |x2|+ ...+ |xn|,

and satis�es the following conditions:

1. ‖x‖1 = 0 only if x is the zero vector.

2. ‖cx‖1 = |c|‖x‖1.

3. ‖x+ y‖1 ≤ ‖x‖1 + ‖y‖1.

© University of Pretoria

CHAPTER 2. SMOOTHERS 16

ii. T (x+ y) ≤ T (x) + T (y) (subadditivity).

iii. T (αx) = |α|T (x) and T (x) = 0 only if x = 0.

From the above Result 2.3 we can see that the operator T is a semi-norm [15].

Result 2.4. T (
∧∨

x) = T (
∨
x) and T (

∨∧
x) = T (

∧
x) for each x ∈ l1.

Result 2.5 below shows that the total variation for any sequence x can be separated into two parts,

namely, the total variation of the signal extracted by the operator (Un or Ln) and its noise ((I − Un)

or (I − Ln) respectively). Therefore, no variation is added or lost during the application of the LULU

operators or their compositions and T (·) thus provides a mechanism to track the information (variation)

in the sequence as it is smoothed by the LULU operators.

Result 2.5. Variation preservation

a) T (x) = T (Unx) + T ((I − Un)x).

b) T (x) = T (Lnx) + T ((I − Ln)x).

c) T (x) = T (LnUnx) + T ((I − LnUn)x).

d) T (x) = T (UnLnx) + T ((I − UnLn)x).

Example 2.3. Continuing from Example 2.1 the total variation for the sequence x = {1, 1, 5, 4, 7, 1, 2}

is calculated as T (x) = 18. If we �nd the total variation for each new sequence obtained by Fn =

UnLnUn−1Ln−1...U1L1 for di�erent values of n in Table 2.1. We can see that total variation is preserved.

n 0 1, 2 3, 4, 6, 7

T (Fnx) 18 8 2 0

T [(I − Fn)x] 18 10 16 18

T (Fnx)/T (x) 1 0.4444 0.1111 0

T [(I − Fn)x]/T (x) 1 0.5556 0.8889 1

Table 2.1: Preservation of total variation in sequence x

�

Example 2.4. From Example 2.2, we obtain the variation for each Fn, (I − Fn), Cn, (I − Cn) on x for

n = 1, 2, ..., 20 and plot them together. Figure 2.11 depicts the results. It can be noted that beyond n = 3

the variation tends slower to 0. As noted before, the added noise are iid Gaussian, thus the expected pulse

length is 1 at all points of the line (see Figure 2.3). Even so, it is not unlikely that these noise should

appear consecutively to create pseudo -upward or -downward pulses of length longer than 1. Hence the

© University of Pretoria

CHAPTER 2. SMOOTHERS 17

rate of total variation decreases fast for small n. However, because is it unlikely that long pulses exist on

the line in the presence of iid Gaussian noise, we have that the change in total variation is less obvious

for larger values of n.

Figure 2.11: Graphical depiction of total variation in Fn and Cn.

�

2.6 The Discrete Pulse Transform

The Discrete Pulse Transform (DPT) [8, 17, 30] is a mapping of a sequence x = 〈xi〉∞i=−∞ onto a vector

of sequences r(n) = Dn(x), at di�erent `resolution levels', such that

DPT (x) = [D1(x), D2(x), ..., DN (x), D0(x)],

where D0(x) = CNx or FNx and Dn(x) = (I − Cn)x or Dn(x) = (I − Fn)x with N > 0.

There are two equivalent natural primary choices for such a decomposition procedure, based on the

smoothers Cn, or Fn. Considering the �rst choice, the decomposition proceeds recursively as follows: the

sequence x is initially divided by C1 into a `smoother' sequence C1x and the highest resolution sequence

(I −C1)x = D1(x) = r(1). The smoother part C1x is then separated by C2 to yield the second `resolution

component' r(2) = D2(x) = (I − C2)C1x and the smoother part C2C1x. This is continued until after the

N th separation only a constant sequence D0(x) remains. A similar method exists for the decomposition

of a sequence x by the �ooring operator Fn.

© University of Pretoria

CHAPTER 2. SMOOTHERS 18

Let φns be the sequences each containing a removed pulse from x of size s at level n, then any sequence

x can be written as the sum of all its pulses removed by LULU operators, providing a decomposition of

the sequence x,

x =

N∑
n=1

γn∑
s=1

φns. (2.1)

where γn is the number of pulses of size n. This decomposition obtained via the DPT provides a breakdown

of a sequence into scales n = 1, 2, ..., N, thus a multiscale representation.

2.6.1 The Roadmaker's Algorithm

The Roadmaker's algorithm [16, 17] is an alternative algorithm to decompose a sequence x into constant

pulses as the direct method (i.e. using the theoretical de�nition as illustrated in Example 2.1) described

above is computationally intensive as n becomes large. De�ne the features n-bump as a constant upward

pulse of size n and an n-pit as a constant downward pulse of size n. Then the Roadmaker's algorithm

sequentially removes all n-bumps and n-pits for increasing values of n:

1. Suppose x is a constant upward n-pulse, then we de�ne Bn to level x by setting x equal to the

largest of its neighbours.

2. Suppose x is a constant downward n-pulse, then we de�ne Pn to �ll x by setting x equal to the

smallest of its neighbours.

Whenever we extract from x, we also store the pieces that were subtracted or added. If x is a sequence

of length N , then the following operations sequentially decompose x:

B1 Level all 1-bumps.

P1 Fill all 1-pits.

B2 Level all 2-bumps.

P2 Fill all 2-pits.

... B3 Level all N -bumps.

P3 Fill all N -pits.

The total sum of the pieces obtained from the extractions then results in the original sequence, namely

the DPT decomposition as in equation 2.1.

Note that the application of the Roadmaker's algorithm is directly equivalent to applying DPT to any

sequence x. However, because application of the DPT directly is computionally taxing, the Roadmakers

algorithm is preferred. In particular, the Roadmaker's algorithm has O(n) complexity. Note that Bn is

equivalent to Ln, and Pn to Un.

Example 2.5. Consider the same sequence x = {1, 1, 5, 4, 7, 1, 2} in Example 2.1 and 2.3.

© University of Pretoria

CHAPTER 2. SMOOTHERS 19

For n = 1, the subsequences at i = 1, 2 are {0, 1, 1} and {1, 1, 5} do not form bumps of size 1 - so

B1 ignores them. However, at i = 3, {1, 5, 4} is a bumps since 5 exceeds both 1 and 4, thus B1 brings 5

to the maximum of its neighbours by subtracting 1. The same arguments holds for i = 4, 5, 6, and 7, in

particular, {4, 7, 1} and {1, 2, 0} are bumps and B1 subtracts 3 and 1 respectively to level them out. The

resultant sequence after applying B1 is then {1, 1, 4, 4, 4, 1, 1} and, since it does not contain any pits, we

store the extractions in a new sequence as {0, 0, 1, 0, 3, 0, 1}.

The decompositions at di�erent values for n are given in Table 2.2 below:

n Extractions

1 0 0 1 0 3 0 1

2 0 0 0 0 0 0 0

3 0 0 3 3 3 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

7 1 1 1 1 1 1 1

sum 1 1 5 4 7 1 2

Table 2.2: The DPT decomposition of x into constant pulses using the Roadmaker's algorithm.

�

2.7 LULU operators and DPT for multidimensional arrays

The LULU operators have been extended from one dimension to multidimensions in [2]. Their extension

preserves all essential properties such as consistent separation, total variation and shape preservation (see

[28]). However, since Zd is only partially ordered3, the concept of connectivity is used to assist in the

de�nition of LULU operators for multidimensional arrays. The morphological concept of a set connection

[35] is given below:

De�nition 2.6. Let B be an arbitrary nonempty set. A family C of subsets of B is called a connected

class or a connection on B if:

3The de�nition of a partially ordered space [28] is as follows: Let A be a set and R a relation in A. R is a partial order

(partial order relation) if the following are satis�ed:

1. R is re�exive: (a, a) ∈ R, ∀a ∈ A.

2. R is anti-symmetric: (a, b) ∈ R and (b, a) ∈ R implies a = b.

3. R is transitive: (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R.

© University of Pretoria

CHAPTER 2. SMOOTHERS 20

i. ∅ ∈ C,

ii. {x} ∈ C for all x ∈ B,

iii. {Ci : i ∈ I} ⊆ C,
⋂
i∈I Ci 6= ∅ ⇒

⋃
i∈I Ci ∈ C.

If C belongs to a connection C then C is called connected.

In addition to the de�nition of a connected class C, we assume that the set Zd equipped with connection

also satis�es the following conditions [2]:

• Zd ∈ C.

• For any a ∈ Zd, Ea(C) ∈ C whenever C ∈ C so that C is translation invariant, where Ea is the shift

operator for a shift of a.

• If V,W ∈ C and V (W , then there exists x ∈W \ V such that V
⋃
{x} ∈ C.

De�nition 2.7. Given a point x ∈ Zd and n ∈ N we denote by Nn(x) the set of all connected sets of size

n+ 1 that contain point x [2], that is

Nn(x) = {V ∈ C : x ∈ V, card(V) = n+ 1}.

2.7.1 Intricasy of Nn(x)

Some illustrations are given below for d = 2 dimensions using 4-connectivity4. Figure 2.12 shows all the

possible connected sets of size n + 1 = 1 + 1 containing x and Figure 2.13 shows all connections of size

n+ 1 = 2 + 1 containing x.

Figure 2.12: N1(x) for Z2.

44-connectivity refers to the immediate adjacent elements of x ∈ Z2.

© University of Pretoria

CHAPTER 2. SMOOTHERS 21

Figure 2.13: N2(x) for Z2.

As is deducible from above, if n in Nn(x) increases, then so will the complexity in listing the unique

connected sets. We provide programs in SAS5 that determine the number of elements in the set Nn(x)

for any n > 1 (see the Appendix). Table 2.3 contains the computed numbers.

n card (Nn(x)) card (Nn(x)) /card (Nn−1(x))

1 4

2 18 4.5

3 72 4

4 213 2.9583̇

5 596 2.7981

6 1628 2.7315

7 4484 2.7543

8 12200 2.7208

9 33316 2.7308

10 90252 2.7090

Table 2.3: The number of elements in the set Nn(x) for n = 1, 2, ..., 8 in Z2.

To get the general idea of how connected sets are structured, we display the sum of the connected

sets in matrices (since for n = 8 we have 12200 outputs to show). Figures 2.16 to 2.23 illustrate the

overlapping of connected sets. That is, each number in the respective matrices represents the number of

times connected sets overlap for a particular element when we sum all the possible sets aligned at x. This

is illustrated in Figure 2.14. Note how all the sets are aligned at the centre element x (shown with bold

lines) and the elements which uniquely de�nes each set in N2(x) protude from x at each level.

5SAS 9.4 (SAS Institute)

© University of Pretoria

CHAPTER 2. SMOOTHERS 22

Figure 2.14: Stacking of all possible connected sets in N1(x) for Z2.

For each of the summed matrices below from Figures 2.15 to 2.23, let Sn =
[
s
(n)
ij (x)

]
denote the matrix

of the sum of all possible connected sets of Nn(x) in Z2. For example, the sum of connected sets in N1(x)

is given by

S1 =

s
(1)
11 (x) s

(1)
12 (x) s

(1)
13 (x)

s
(1)
21 (x) s

(1)
22 (x) s

(1)
23 (x)

s
(1)
31 (x) s

(1)
32 (x) s

(1)
33 (x)

 =

0 1 0

1 4 1

0 1 0

 .

Figure 2.15: S1 in Z2.

Figure 2.16: S2 in Z2.

© University of Pretoria

CHAPTER 2. SMOOTHERS 23

Figure 2.17: S3 in Z2.

Figure 2.18: S4 in Z2.

Figure 2.19: S5 in Z2.

Figure 2.20: S6 in Z2.

© University of Pretoria

CHAPTER 2. SMOOTHERS 24

Figure 2.21: S7 in Z2.

Figure 2.22: S8 in Z2.

Figure 2.23: S9 in Z2.

From plain view, these matrices show little mathematical insight since the only thing we are certain

of from these matrices is the fact that the number of overlaps decrease as we move away from the centre.

However, if we start summarising the matrices above, we arrive at some intriguing results.

De�ne the di�erence operator ∆ on a ordered sequence x = {x1, x2, x3, ...} as,

∆xi = xi − xi−1

© University of Pretoria

CHAPTER 2. SMOOTHERS 25

for i = 2, 3, 4, Applying ∆ twice to a sequence yields:

∆2xi = ∆(∆xi)

= ∆(xi − xi−1)

= ∆xi −∆xi−1

= (xi − xi−1)− (xi−1 − xi−2)

= xi − 2xi−1 + xi−2.

Note that for any sequence x, it is true that if ∆kx (for some k ≥ 0) yields a nonzero constant sequence,

then the sequence x can be written as a polynomial of order k.

Example 2.6. Consider a quadratic sequence given by x = {xn}∞n=1 = {27, 33, 41, 51, 63, 77, ...}. This is

a polynomial of order 2 since we can capture xn with a second order polynomial function

xn = an2 + bn+ c,

where coe�cients a, b and c are real numbers. To solve the coe�cients, we substitute the values of the

sequence in the polynomial with corresponding values of n:

n = 1 : 27 = a+ b+ c

n = 2 : 33 = 4a+ 2b+ c

n = 3 : 41 = 9a+ 3b+ c

This can be rewritten as an augmented matrix, in which the coe�cients can be obtained by solving the

system of equations. Thus,
1 1 1

4 2 1

9 3 1

∣∣∣∣∣∣∣∣∣
27

33

41

 ∼

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣
1

3

23

 ,
which implies that the sequence may be predicted with the following equation:

xn = n2 + 3n+ 23.

To establish that the order of the polynomial may be determined by the number of the di�erence needed

to be taken until a nonzero sequence occurs, we note that,

• ∆x = {6, 8, 10, 12, 14, ...}, and

• ∆2x = ∆(∆x) = {2, 2, 2, 2, ...}.

© University of Pretoria

CHAPTER 2. SMOOTHERS 26

Therefore ∆kx is a constant sequence of two's, and the order of the polynomial is k = 2.

�

Consider the �rst row of each matrix Sn for n = 1, 2, 3, The sequence given by the nonzero element

in the �rst row of Sn is {
s
(n)
1,n+1

}∞
n=1

=
{
s
(1)
12 , s

(2)
13 , s

(3)
14 , ...

}
= {1, 1, 1, ...},

which implies
{
s
(n)
1,n+1

}∞
n=1

is a polynomial sequence of order 0 since the sequence itself is constant con-

taining only 1's. That is, since ∆ks
(n)
1,n+1 is constant for k = 0, the sequence is a polynomial of order 0.

The second row of each matrix Sn yields three sequences from the three nonzero elements. These are

given by (from the left sequence to right):

•
{
s
(n)
2,n

}∞
n=1

=
{
s
(1)
21 , s

(2)
22 , s

(3)
23 , ...

}
= {1, 2, 3, ...} which is a polynomial of order 1 since ∆s

(n)
2,n yields a

constant sequence of 1's.

•
{
s
(n+1)
2,n+2

}∞
n=1

=
{
s
(2)
23 , s

(3)
24 , s

(4)
25 , ...

}
= {6, 6, 6, ...} which is a polynomial of order 0 since the sequence

is a constant of 6's.

•
{
s
(n)
2,n+2

}∞
n=1

=
{
s
(n)
2,n

}∞
n=1

by symmetry of Sn.

If we summarise the sequences so far, we have that the sequences in pyramid form:{
s
(n)
1,n+1

}
{
s
(n)
2,n

} {
s
(n+1)
2,n+2

} {
s
(n)
2,n+2

}
. .
.

. .
. ...

. . .
. . .

have polynomials of order,

0

1 0 1

. .
.

. .
. ...

. . .
. . .

and their constant sequences,

c1

c1 c6 c1

. .
.

. .
. ...

. . .
. . .

where ci de�nes the constant sequence with the recurring number i.

Consider now the third row of each Sn for n ≥ 2. Starting on the left of the nonzero elements:

•
{
s
(n+1)
3,n

}∞
n=1

=
{
s
(2)
31 , s

(3)
32 , s

(4)
33 , ...

}
= {1, 3, 6, 10, ...} which is a polynomial sequence of order 2 since

∆2s
(n+1)
3,n yields a constant sequence of 1's.

© University of Pretoria

CHAPTER 2. SMOOTHERS 27

•
{
s
(n+2)
3,n+2

}∞
n=1

=
{
s
(3)
33 , s

(4)
34 , s

(5)
35 , ...

}
= {11, 17, 23, ...} which is a polynomial sequence of order 1 since

∆s
(n+2)
3,n+2 yields a constant sequence of 6's.

•
{
s
(n+3)
3,n+4

}∞
n=1

=
{
s
(4)
35 , s

(5)
36 , s

(6)
37 , ...

}
= {27, 33, 41, 51, ...} which is a polynomial sequence of order 2

since ∆2s
(n+3)
3,n+4 yields a constant sequence of 2's.

•
{
s
(n+2)
3,n+4

}∞
n=1

=
{
s
(n+2)
3,n+2

}∞
n=1

by symmetry of Sn.

•
{
s
(n+1)
3,n+4

}∞
n=1

=
{
s
(n+1)
3,n

}∞
n=1

by symmetry of Sn.

Continuing in this fashion, we obtain the following pyramids through the evidence from the sums of the

connected sets Sn(x). The order of the polynomials inherent in the sequence of summed connected sets

is found as:

0

1 0 1

2 1 2 1 2

3 2 3 2 3 2 3

4 3 ◦ 3 ◦ 3 ◦ 3 4

. .
.

. .
.

.
. .
. ...

. . .
. . .

...
. . .

. . .

and their constant sequences:

c1

c1 c6 c1

c1 c6 c2 c6 c1

c1 c6 c3 c12 c3 c6 c1

c1 c6 ◦ c18 ◦ c18 ◦ c6 c1

. .
.

. .
.

.
. .
. ...

. . .
. . .

...
. . .

. . .

We can see a cascading e�ect exists in the structure of these sequences since each constant sequence is

exactly the sum of the two directly above it6 (excluding the middle). For example, c3 = c1 + c2 and

c12 = c6 + c6.

For the order of the polynomials, we see a tendency for vertical pairs and row-alternating numbers in

the triangle and that a linear relationship exists along the diagonals. This means that the order complexity

of the polynomial sequences obtained from Sn increases linearly as n increases.

Since we can only obtain Sn for n = 1, 2, ..., 9 because of the intensive computing power required to

run any number n that is greater than 9, we lack the information required to complete the last row of

both the order and constant sequence pyramids (indicated by ◦). If we postulate the following pattern

for row 5 of constant sequences as,

c1 c6 c4 c18 c6 c18 c4 c6 c1,

6Much like Pascal's triangle [21].

© University of Pretoria

CHAPTER 2. SMOOTHERS 28

then it is possible to deduce that the order of the polynomial for sequences number 3, 5, and 7 of row 5

is 4. From this, the complete row for row 5 is,

4 3 4 3 4 3 4 3 4.

It is interesting to see how intricately the connections are designed by a simple de�nition such as Nn(x).

How the rows, columns, diagonals, and elements satisfy strict mathematical rules (when we add up con-

nections of speci�c order and form sequences from them) and how they ultimately depend on each other.

2.7.2 LULU operators on Z2

The de�nitions for Ln and Un in general 2-dimensions are given below [2]:

De�nition 2.8. Let f ∈ A(Z) and n ∈ N. Then for x ∈ Z2,

Ln(f)(x) = max
V ∈Nn(x)

min
y∈V

f(y),

Un(f)(x) = min
V ∈Nn(x)

max
y∈V

f(y).

For example, refering to Figure 2.13, L2(x) �rst determines the minimum of each individual 12 con-

nections. From there, L2(x) then returns the maximum of these 12 minimums in Z2.

Analogous to their case in 1-dimension, Ln and Un operating in Z2 also removes upward and downward

pulses. Here, we refer to them also as local maximum and minimum sets respectively [2]:

De�nition 2.9. A connected subset V of Zd is a

1. Local maximum set of f ∈ A(Z2) if sup
y∈adj(V)

f(y) < inf
x∈V

f(x).

2. Local minimum set of f ∈ A(Z2) if inf
y∈adj(V)

f(y) < sup
x∈V

f(x).

In Figure 2.24 we graphically present an example of local maximum and minimums sets of size 7 in

Z2. We see that the adjacent elements of the local maximum set are strictly less than the set itself. A

similar observation holds for the local minimum set.

a) b)

Figure 2.24: Local maximum (a) and minimum (b) sets of size 7 in Z2.

© University of Pretoria

CHAPTER 2. SMOOTHERS 29

The characterisations of Ln and Un operators are preserved from their extension to multidimensions

[2]. The operator Ln only removes local maximum sets of size n or smaller in f . That is to say that it

will not create any new local minimum sets except the case when, as a consequence of the removal of the

local maximum set7, it enlarges an existing minimum or joins two or more of them to become one local

minimum set. Furthermore, Ln(f) = f if and only if f does not possess any local maximum sets of size n

or less. A similar case holds for Un [2]. We focus in this text on the case d = 2, that is Z2, for an image

domain.

2.7.3 The Discrete Pulse Transform

The Discrete Pulse Transform (DPT) of f ∈ Z2 [2] is obtained iteratively by applying the Ln and Un

operators with n increasing from 1 to N :

DPT (f) = (D1(f), D2(f), ..., DN (f)),

where

D1(f) = (I − P1)(f),

Dn(f) = (I − Pn) ◦Qn−1(f) for n = 2, ..., N,

and Pn = Ln ◦ Un or Pn = Un ◦ Ln and Qn = Pn ◦ ... ◦ P1, n ∈ N.

Let φns be the zero matrices each containing a removed pulse from f of size s at position n, then any

multiscale sequence f can be written as the sum of all its pulses removed by LULU operators, providing

a multiscale decomposition of the image f ,

f =

N∑
n=1

γn∑
s=1

φns.

Example 2.7. Consider an image f of grey-scale values given by:

f =

1 3 4 4

3 3 5 4

6 2 8 4

9 5 5 1

The decomposition of f using the DPT (with 4-connectivity) with Pn = UnLn is displayed below. Recall

that in the one-dimensional case, zeros are appended to the �nite sequence so that it becomes a bi-in�nite

sequence. The same methodology is applied here. The �nite matrix f is appended with zeroes surrounding

7Recall that Ln removes a local maximum set V by subtracting the appropriate amount such that V is a constant set

with values equal to the supremum of adj(V).

© University of Pretoria

CHAPTER 2. SMOOTHERS 30

f itself. Thus, in actuality, the decomposition of f using the DPT is performed on f∗ given as

f∗ =

. . .
...

...
...

... . .
.

. . .
. . . 0 0 0 0 . .

.
. .
.

· · · 0 1 3 4 4 0 · · ·

· · · 0 3 3 5 4 0 · · ·

· · · 0 6 2 8 4 0 · · ·

· · · 0 9 5 5 1 0 · · ·

. .
.

. .
.

0 0 0 0
. . .

. . .

. .
. ...

...
...

...
. . .

Since D1(f) = (I − P1)(f) = f − P1f = f − U1L1(f), and

U1(L1(f)) = U1

1 3 4 4

3 3 5 4

6 2 5 4

6 5 5 1

 =

1 3 4 4

3 3 5 4

6 3 5 4

6 5 5 1

 ,

where the changes of Qn−1f after an application of the Qn operator are given in bold. Thus, we have

that,

D1(f) = f − U1L1(f) =

1 3 4 4

3 3 5 4

6 2 8 4

9 5 5 1

−

1 3 4 4

3 3 5 4

6 3 5 4

6 5 5 1

 =

0 0 0 0

0 0 0 0

0 −1 3 0

3 0 0 0

Similarly,

Q2(f) =

1 3 4 4

3 3 5 4

5 3 5 4

5 5 5 1

 and D2(f) =

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 0

Since there are no pulses of size 3, 4 or 5, Q5(f) = Q4(f) = Q3(f) = Q2(f), and D5(f) = D4(f) =

D3(f) = 0, where 0 : 4× 4 is the zero matrix.

Q6(f) =

1 3 4 4

3 3 4 4

4 3 4 4

4 4 4 1

 and D6(f) =

0 0 0 0

0 0 1 0

1 0 1 0

1 1 1 0

Similarly, Q7(f) = Q8(f) = Q9(f) = Q6(f) since there are no pulses of size 7, 8, or 9, with corresponding

© University of Pretoria

CHAPTER 2. SMOOTHERS 31

zero matrices D7(f), D8(f), and D9(f). To end this:

Q10(f) =

1 3 3 3

3 3 3 3

3 3 3 3

3 3 3 1

 and D10(f) =

0 0 1 1

0 0 1 1

1 0 1 1

1 1 1 0

Q14(f) =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 and D14(f) =

0 2 2 2

2 2 2 2

2 2 2 2

2 2 2 0

and

Q16(f) =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 and D16(f) =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

�

2.8 Conclusion

In Section 2.7.1 4-connectivity was used to de�ne the sets in Nn(x). In De�nition 2.8 Nn(x) allows for any

connected set de�nition satisfying De�nition 2.7, of which 8-connectivity is also valid. The question of

what connection to use therefore arises. We investigate this in the next chapter by empirically investigating

the dependence structure of local pixel neighbours.

© University of Pretoria

Chapter 3

An empirical study of dependence

structures in images

3.1 Introduction

From the de�nition of the LULU operators in two dimensions, the operators act on a pixel x using

information from the neighbours of x as illustrated in Figures 2.12 and 2.13. Thus, if independence

between pixels is not assumed (and should not be because not all images are white noise as they contain

structure) then we must incorporate the dependence between pixels with, say, some matrix-covariance

structure. Using the property of global independence and local dependence shown herein, we motivate

the connectivity choice for the LULU operators.

We investigate the property of global independence and local dependence. The idea is that for any one

pixel, the dependence it exhibits in relation to neighbouring pixels decreases as the distance1 between that

pixel and the neighbouring pixel increases. The assumption is not unsupported. For a group of pixels in an

image that dictate a particular object should be in close proximity to one another as well as have high cor-

relation with each other in that group. For a pixel x in an image, the following property is then postulated:

The correlations of x to its neighbours {y ∈ N (x)} decreases as the distance between x and y in the

image increases, where N (x) is the set of neighbouring pixels of x. That is, at some distance, the corre-

lations are statistically insigni�cant.

The rest of the chapter is presented as follows. Section 3.2 discusses the theory required to perform

tests of independence between any two pixels in a video stream, Section 3.3 performs the tests of indepen-

1Discrete 4-connected distance on Z2, de�ned as D
(
x(i1,j1), x(i2,j2)

)
= |i1 − i2| + |j1 − j2| for image pixel locations

(i1, j1) and (i2, j2).

32

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 33

dence between pixels in the dependence structure with arbitrary videos, and we end in Section 3.5 with

concluding remarks.

3.2 Testing dependence of neighbouring pixels

For this study our data set will consist of a number of videos which provides a sample of images. Since a

video stream is an ordered sequence of image frames, each frame has dependence on previous realisations.

In other words, each successive pixel can be explained (to some degree) by its previous values. This allows

us to model each pixel with an autoregressive (AR) time series model. Furthermore, our video database

consists of recordings of stationary scenes (i.e. the camera does not pan or zoom in the process of record-

ing) since most surveillance systems are of this type, thus all our models are covariance-stationary. Note

that we discuss the case of non-stationary scenes in the conclusion. Therefore, we can implement the test

of independence between two univariate covariance stationary time series from Haugh [12]. We begin with

some de�nitions and notations:

For each pixel x(i, j) ≡ x for position (i, j) ∈ Z2, in a video frame we �t an autoregressive time series

model of order p, with p chosen such that the residuals of the model are uncorrelated. This then allows

us to write a pixel xt at time t as

xt = c+ φ1xt−1 + φ2xt−2 + ...+ φpxt−p + ut,

where c is the intercept of the model, {φ1, φ2, ..., φp} are the autoregressive parameters, and ut is white

noise innovations with variance equal to σ2.

To begin the correlation (dependence) analysis we impose, again for each pixel xt at time t, a depen-

dence structure M
(K)
t with a frame containing pixel xt and all neighbours with discrete distances less

than or equal to K - this is portrayed in Figure 3.1. The notation, x
(D,d)
t , used for each neighbour of

xt reveals the discrete distance on Z2 from the neighbour to xt as D, and the number (labeling) of the

neighbour (d = 1, 2, ..., 4D) with distance D from xt.

For example in a single frame:

• M (1)
t will have 5 elements,

• M (2)
t will have 13 elements,

• ...

• M (K)
t will have K2 + (K + 1)2 elements.

According to Haugh [12], if two covariance-stationary univariate time series are dependent, then their

white noise innovations will also be dependent. That is, suppose {xt}∞t=−∞ and {yt}∞t=−∞ are two time

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 34

Figure 3.1: An illustration of the dependence structure M
(K)
t .

series with white innovations {ut}∞t=−∞ and {vt}∞t=−∞ respectively. Then if ut−j and vt are independent

at all lags j ∈ Z, then {xt}∞t=−∞ and {yt}∞t=−∞ are independent.

To measure the relationship between the two innovations at lag j, Haugh [12] uses the crosscorrelation

function,

ρuv(j) =
γuv(j)

σuσv
, j ∈ Z,

where γuv(j) is the covariance between the innovations at lag j, with σ2
u and σ2

v the variances of ut and

vt respectively. For a sample size of n observations from each time series, we can obtain the white noise

residuals2 ût and v̂t, and estimate the cross correlations with,

ρ̂uv(j) = ruv(j) =

[
n∑
t=1

û2t

n∑
t=1

v̂2t

]−1/2
γ̂uv(j),

with

γ̂uv(j) =

n∑

t=j+1

ût−j v̂t

n∑
t=|j|+1

ûtv̂t−|j|

if j = 0, 1, 2, ...

if j = −1,−2,−3,

2From OLS, if the model is E[y] = Xb, where y contains the dependent variables, X the design matrix, and b the vector

of parameters to be estimated, then ε̂εε = y −Xb is the vector of residuals from the model. Here, for our AR(p) model,

y = xn = [xn xn−1 ... xp+1]′, X = [1 xn−1 xn−2 ... xn−p] and b = [c φ1 φ2 ... φp]′.

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 35

Under the null hypothesis that xt and yt are independent, we have from Haugh [12] that,

s = n

M∑
j=−M

r2uv(j),

is asymptotically χ2 distributed with 2M + 1 degrees of freedom.

In light of the above, we perform the test of independence of time series (our pixel sample data) from

Haugh [12] with xt as our centre pixel and yt as each one of its neighbours in the considered neighbourhood

M
(K)
t .

3.3 Application

In this section, we perform the empirical analysis of the image pixels' dependence structure. Denote an

image sequence (video) as f - with ft the t
th frame of the video. Then for a video f , we use MATLAB3,

for the following:

1. For each pixel xt ∈ ft, we �t an AR(p) model with 500 observations from f1 to f500 (i.e. 500 frames).

The AR parameters are found by ordinary least squares estimation and the degree p is such that

the residuals of the model are uncorrelated.

2. Impose for each pixel xt the dependence structure M
(K)
t (see Figure 3.1). Then from each structure

at each pixel,

(a) Find the correlation between the centre pixel time series xt and its neighbours at lag 0 (i.e. in

the same frame), rxt,yt(0), yt ∈M (K)
t

(b) Perform the test of independence from Haugh [12] for M = 6 with xt as the centre pixel and

yt as each one of its neighbours, yt ∈M (K)
t , and �nd the p-value of each test.

3. Average the results from step 2 over the whole pixel domain.

In our application, we implemented the test for di�erent values ofK and only will outputK = 3 results.

The reason for this is that information in terms of rejecting of the null hypothesis is already contained in

K = 3 structures and by having larger values of K we will only include redundant information.

Table 3.1 contains the correlation and p-values. The results obtained from MATLAB are doubly

symmetric (to 2 decimal places) about the horizontal and vertical axis. Therefore, we display one full

quadrant of the average correlation and p-value structures of f . Here, the lower triangular numeric val-

ues represent the average correlations and the upper triangle the average p-values of the independence test.

Figure 3.2 contains the single frames of each video. The �rst four videos are indoor videos taken inside

a mall4, all of which is security footage. The others are recorded by the author5, all of outdoor scenes.

3MATLAB and Statistics Toolbox Release 2016a, The MathWorks, Inc., Natick, Massachusetts, United States.
4Videos can be obtained from http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
5Link to videos: https://github.com/AlexUP/MMD-Videos.

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 36

For every video, 500 frames were considered.

(a) 288× 384 (b) 288× 384 (c) 288× 384 (d) 288× 384

(e) 270× 480 (f) 270× 480 (g) 270× 480 (h) 270× 480

(i) 270× 480 (j) 270× 480 (k) 270× 480 (l) 270× 480

Figure 3.2: A single frame of all videos with their dimensions.

From Table 3.1, we can see that the average correlation decreases and the p-value of the test increases

as we venture away from the centre. This relationship is consistent throughout all the videos.

Furthermore, all videos, except for (b),(c),(d), and (j) in Table 3.1, show the characteristics of global

independence and local dependence since we can reject the null hypothesis of independence between the

centre pixel and neighbours at α = 10% for neighbours with discrete distances less than or equal to

1. The same may not be said for videos (b),(c),(d), and (j) in Table 3.1 where we can reject the null

hypothesis for the whole region of the dependence structure at α = 5% . Note that the `NaN' values in Ta-

ble 3.1 indicate that the pixel considered in that position is outside the limits of the dependence structure.

Table 3.2 contains the average of the autoregressive parameters of each pixel from each video. Note

that zeros entries imply that the AR parameter is less than 0.001. We can see that the videos that are

consistent with the assumption have signi�cant AR parameter only at lag 1. However for videos (b),(c),(d)

in Table 3.1, where the assumptions does not hold for K = 3, they have signi�cant AR parameters at

lags 1 and 2. This could possibly describe the need of a bigger dependence structure to incorporate the

dependence in time series with AR(p) processes where p > 1. But in general the dependence does not

extend for larger values of K.

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 37

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Table 3.1: The correlation results from videos.

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 38

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

φ1 0.6574 0.5691 0.5224 0.5577 0.8762 0.8337 0.9849 0.9203 0.8763 0.9800 0.8602 0.9564

φ2 0.0106 0.1039 0.1591 0.0981 0 0 0 0 0 0 0 0

φ3 0.0011 0.0048 0.0101 0 0 0.0020 0.0054 0.0064 0 0.0042 0.0021 0.0045

Table 3.2: Average of the AR parameters of videos from Figure 3.2.

3.4 Local dependence in the presence of noise

In order to study how added noise a�ects the dependence structure, we add Gaussian white noise to the

videos in section 3.3. Using the Box-Muller algorithm [11] with uniform variates simulated from the Linear

Congruential Generator (LCG) [10], we create three additional videos from each of the originals such that

a speci�ed signal to noise (SNR) is obtained. The SNR, as used by Parrish et. al [19], is a measure of

the strength of a signal, de�ned as the ratio of the mean of the signal and the standard deviation of the

noise, that is,

SNR =
µsignal
σnoise

.

For each video we de�ne µsignal as the grand average of all the pixel values within the video sequence,

and σnoise as the variance of the noise content in the image. The algorithm for creating a new video with

additive noise for a speci�ed SNR is given as follows:

1. Specify SNR.

2. For a video f = {f1, f2, ..., fN}, where fi : m × n is the ith frame of the video and n is the total

number of frames, populate a vector u : (mnN) × 1 with uniform variates using the LCG. This is

done as follows:

(a) Specify three positive integers:

• a - the multiplier,

• c - the increment, and

• m - the modulus.

(b) With an initial value x0 (seed), obtain a sequence of integers x1, x2, ..., xmnN with the recursive

formula given by

xn = (axn−1 + c)(mod m).

Thus xn is the remainder of axn−1 + c after dividing by m.

(c) Multiply the sequence x1, x2, ..., xmnN by 1/m to obtain mnN random numbers on the interval

[0, 1).

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 39

3. Transform the uniform variates into normal variates using the Box-Muller algorithm. This is done

as follows:

(a) For each pair of uniform variates (ui, ui+1) in u, i = 1, 3, 5, ...,mnN − 1, compute,

zi =
√
−2 lnu1 cos(2πu2), and

zi+1 =
√
−2 lnu1 sin(2πu2).

Note that zi and zi+1 are independent standard normal variates. Next, store all random

standard normal variates in a vector z : mnN × 1.

4. Transform the standard normal random numbers to a normal distribution with variance for a spec-

i�ed SNR. This is done by multiplying the vector z by σnoise, where σnoise = SNRµsignal

5. Add the noise to f . Note that because the simulated noise are from continuous distributions with

(bi) in�nite support, f needs to be discretized and set such that the maximum of any element within

f is 255 and minimum 0.

3.4.1 Correlation analysis of noisy videos

Using the methods discussed in section 3.3, we analyse the dependence structure for videos with added

noise. The intensity of the noise is chosen such that three levels of SNR are achieved (according to the

Rose criterion [37]), namely,

• Strong signal: SNR = 9,

• Medium signal: SNR = 5, and

• Weak signal: SNR = 1.

The tables below contain the results from the correlation analysis. For ease of comparison we included

the original tables from Table 3.1 as a sub-table for videos without added noise (indicated by .1). The

labelling of sub-tables .2, .3, and .4 correspond to the results from videos with strong, medium and weak

signals respectively. Furthermore, the lettering of (a) through (l) is kept consistent with video description

in Figure 3.2.

It can be seen that the same patterns hold in both correlation and p-values in the dependence struc-

tures. That is, the correlations between the centre pixel and its neighbour decreases and the p-values of

the test of independence increases as we venture away from the centre even for noisy videos.

It can be seen also from the results that the addition of noise annihilates the dependence structure

in general. Most notably in videos (a) to (d) since the hypothesis that the centre pixel is independent of

its neighbours cannot be rejected at p-values higher than 0.40 for all dependence structures M
(k)
t where

k ≥ 1.

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 40

This e�ect is less prominent for videos (e) to (l). Although the addition of noise does remove the

dependence between neighbouring pixels, there are some cases where exceptions are required, namely:

• Video (i) - The analysis on strong signal in (i2) contains a partial M
(1)
t .

• Video (k) - The analysis on strong (k2) and medium (k3) signal preserves the M
(1)
t depdendence

structure.

• Video (j) - The analysis on all videos in (j) reveals dependence structures previously unseen from

the original video. Here, (j2) has M
(2)
t , (j3) has M

(2)
t , and (j4) has M

(1)
t at 5% signi�ance level.

(a1) (a2)

(a3) (a4)

Table 3.3: Correlation results from video (a)

(b1) (b2)

(b3) (b4)

Table 3.4: Correlation results from video (b)

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 41

(c1) (c2)

(c3) (c4)

Table 3.5: Correlation results from video (c)

(d1) (d2)

(d3) (d4)

Table 3.6: Correlation results from video (d)

(e1) (e2)

(e3) (e4)

Table 3.7: Correlation results from video (e)

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 42

(f1) (f2)

(f3) (f4)

Table 3.8: Correlation results from video (f)

(g1) (g2)

(g3) (g4)

Table 3.9: Correlation results from video (g)

(h1) (h2)

(h3) (h4)

Table 3.10: Correlation results from video (h)

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 43

(i1) (i2)

(i3) (i4)

Table 3.11: Correlation results from video (i)

(j1) (j2)

(j3) (j4)

Table 3.12: Correlation results from video (j)

(k1) (k2)

(k3) (k4)

Table 3.13: Correlation results from video (k)

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 44

(l1) (l2)

(l3) (l4)

Table 3.14: Correlation results from video (l)

3.5 Conclusion

We have motivated the use of a univariate AR process for a sample of stationary videos to model each

pixel in a video stream in Section 3.2, as well as discussed its covariance-stationarity. This allowed us to

make use of the test of independence between two univariate covariance-stationary times series [12], and

hence aids in the investigation of the extent to which the assumption of global independence and local

dependence holds in images.

In Section 3.3 we used the dependence structure M
(K)
t (de�ned in Section 3.2) for K = 3 and found

the correlation and the p-value of the independence test of each pixel xt with its neighbour yt ∈M (3)
t for

12 di�erent videos and averaged the results over the whole pixel domain. Furthermore, we also found the

average of the AR parameters of each time series xt.

From the results, we discovered a relationship between the assumption of global independence and

local dependence, and the average of the AR parameters of each video. Here, if the majority of the pixel

time series can be modeled with an AR(1), then the assumption holds (with exception to video (j) from

Table 3.1); and if the pixels in a video stream can be modeled with an AR(2), then the assumption will

not hold in that video.

In regards to video (j) from Table 3.1, we note that the contents of the image consisted only of the

silhouette of a tree and the sky background with clouds - these areas are also relatively large considering

the dimensions of the video as well as the size of the dependence structure (K = 3). Meaning video

(j) is comparatively less complicated than the rest of the videos, and M
(3)
t captures the full dependence

of silhouette to silhouette pixels and sky to sky pixels. This implies, on average, we rejected the null

hypothesis of independence for the whole region of M
(3)
t . Thus in an image with lower content/texture

level a larger local dependence structure could be motivated. The case of dependence in non-stationary

images will be discussed in the conclusion.

© University of Pretoria

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 45

In Section 3.4 we added Gaussian noise to the sample video data and performed the correlation

analysis on the noisy videos in Section 3.4.1. The addition of noise decreased the size of the dependence

structures since the noise themselves are iid Gaussian white noise. This renders the relationship between

pixels ambiguous when the variation present within the video increases. However, the motivation of local

dependence and global independence is still clearly justi�ed by these experiments.

In the chapter that follows, with the justi�cation of using local dependence, we investigate the ability

of the LULU smoothers to remove various noise types in contaminated images.

© University of Pretoria

Chapter 4

Noise removal in images

4.1 Introduction

In this chapter we demonstrate the e�ciency of the LULU operators in removing noise added to an image.

This research follows on from work done in [9] on one-dimensional noise removal by the LULU smoothers.

The objectives of this study are to see the extent at which the LULU operators restore an image that has

been contaminated by noise, as well as the level of retrieval of the noise particles added to the image. We

use the structural similarity index (SSIM) to measure the similarity of the original image to the puri�ed

noisy image at level n of the LULU operators as an indication of how well the image is restored [13], and

probability plots to see how the extracted noise �ts its original distribution.

4.2 Analysis of noisy images

To investigate the e�ciency of the LULU operators in removing noise, we �rst add noise distributions

with di�erent shape properties (see Table 4.1) to the image. For each noise distribution, three noisy

images are created from f such that the signal to noise ratio (SNR) of each noisy image is either 1, 5, or

9 since these values represent the weak, medium and strong signals (according to the Rose criterion [19]).

Using the DPT with Qn = LnUn
1 the noise is extracted, and both the puri�ed image and noise at level

n of the DPT is analysed using measures SSIM (structural similarity index) and SSE (sum of squared

errors) respectively. The SSIM [13] measures the similarity between two images, x and y, where one is

the reference image and is considered to be distortion-free, is given as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

where µx is the mean of image x, µy the mean of image y, σ
2
x and σ

2
y are the variances of images x and y re-

spectively, σxy the covariance between image x and y, c1 = (0.01L)2 and c2 = (0.03L)2 are used to stabilise

1The results obtained using the DPT with Qn = LnUn and Qn = UnLn are similar. Thus we focus only on the former.

46

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 47

the division with a weak denominator, and L is the dynamic range (typically 2number of bits per pixel − 1).

For the noise analysis, denote the noise extracted at position (i, j) at level n of the DPT as e
(n)
ij =

[(I−LnUn)f]ij . Since its distribution is believed to be completely speci�ed by its CDF F (x), we have that
̂

F
(
e
(n)
ij

)
is uniformly distributed over the interval [0, 1]. Thus a measure to see how well the extracted

noise �ts its orginal distribution, we �nd the SSE de�ned as

SSE(n) =

N∑
k=1

(
k

N
−

̂
F
(
e
(n)
k:N

))2

where N is the total number of pixels, and e
(n)
k:N are the ordered noise observations.

The properties of distributions of the di�erent noise used are displayed in Table 4.1. As we can see,

except for the Rayleigh and exponential distribution, we can set the mean of each distribution to zero.

The parameters for these distributions are then obtained by setting the variance equal to σ2
noise and solving

them accordingly in the SNR formula:

SNR =
µsignal
σnoise

.

For the Rayleigh and exponential distribution, the parameter σ (Rayleigh) and θ (exponential) are also

obtained in the same way. However, because the support of these distributions are positive, we shift the

Rayleigh and exponential variates by subtracting their respective medians to simulated noise, in order

for positive and negative noise to be simulated. This is required since the LULU operators smooth from

below and above.

PDF z Support E[X] var(X)

1. Uniform f(x) = 1
b−a . a ≤ x ≤ b a+b

2
(b−a)2

12

2. Normal f(x) = 1√
2πσ

e−z
2/2 z = x−µ

σ −∞ < x <∞ µ σ2

3. Logistic f(x) = e−z

s(1+e−z)2 z = x−µ
s −∞ < x <∞ µ s2π2

3

4. Rayleigh f(x) = x
σ2 e
−x2/2σ2

. x ≥ 0 σ
√

π
2

4−π
2 σ2

5. Gumbel f(x) = 1
β e
−(z+e−z) z = x−µ

β −∞ < x <∞ µ+ βγ 2 π2

6 β
2

6. Exponential f(x) = 1
θ e
−x/θ . x ≥ 0 θ θ2

Table 4.1: The distributions of the noise added to images.

A graph for the pdfs of the di�erent noise types is given in Figure 4.1. We see that the uniform, normal,

and logistic distributions are symmetric about the mean, and the rest are skewed to the right.

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 48

Figure 4.1: Probability density functions of noise distributions with standard deviations all equal to 1.

The algorithm for this study is given as follows:

1. Specify SNR as 1, 5 or 9.

2. For an image f : m× n, populate a vector u : mn× 1 with independent uniform variates using the

LCG (see step 2 of the algorithm in Section 3.4).

3. For each noise distribution, transform the uniform variates into random numbers from the respective

noise distribution:

• If the distribution is Gaussian, use the Box-Muller algorithm (see step 3 of the algorithm in

Section 3.4).

• For other noise types in Tables 4.1, use the inverse transform method [34] to obtain variates

from the required distribution. This is done as follows:

(a) Set E[X] equal to zero and solve for the unknown parameters by setting var(X) equal to the

required variance of the noise content in the image. That is, set var(X) = σ2
noise = SNRµf

and solve for the unknown parameter. Note that because the E[X] and var(x) of the

Rayleigh and exponential distribution depends on the same parameters, their variates are

obtained by solving for the required parameter through var(X) (without setting E[X] = 0).

(b) For each element ui in u, compute xi = F−1(ui). If the distribution is Rayleigh or

exponential, shift the variate x to the left by the median of the distribution such that 50%

of the variates lie above and below 0.

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 49

4. Add the noise to the original image f . Note that because the simulated noise are from continuous

distributions with (bi) in�nite support, the noise contaminated f needs to be discretized and set

such that the maximum of any element within f is 255 and minimum 0.

5. Smooth the noisy images of f with Qn = LnUn.

4.3 Application

The study is performed on the same video dataset as in Figure 3.2 of Chapter 3. However, instead of

using the whole video stream, only a single frame is selected for the analysis. Each image is resized to

contain 270 × 384 pixels for comparison of results. First we look at the total variation as each image is

smoothed by the LULU operators.

4.3.1 Total variation plots

The total variation of an image f is given by [2]:

TV (f) =
∑

(i,j)∈Z2

(|f(xi,j+1)− f(xij)|+ |f(xi+1,j)− f(xij)|).

The properties of total variation stated in Results 2.3 - 2.5 in Chapter 2 are preserved in two dimensions.

In Figures 4.2 to 4.13 the proportion of total variation (y-axis) retained at level n (x-axis) of the DPT

is shown. Since the required number of levels to fully decompose the noisy images is n = 103680, the linear

x-axis has been changed to the natural logarithm of the original n values. Furthermore, reference lines

are included in each �gure to indicate the proportion of the total variation of the original image to the

total variation of the noisy image for di�erent SNR values. For each line the point where the horizontal

section meets the y-axis indicates the proportion of the total variation of the original image to the total

variation of the noisy image and, for that same line, the point where the vertical section meets the x-

axis indicates the required level ln(n) of the DPT to reach the original total variation from the noisy image.

For all total variation plots we can see a disproportional relationship exists between the total variation

of a noisy image and the nth level of the decomposition. This is expected since the LULU operators do

not increase variation in the process of smoothing [2] and is consistent in the decomposition.

Furthermore, there is a tendency for the total variation of images with strong signals to be the largest,

and the total variation of the images with weak signals to be the smallest. Since these plots show the

proportion of total variation retained with their respective noisy images, it does not necessarily show that

strong signals have larger total variation than weak signals, however, it does imply that strong signals

behave the best and weak signal the worst in terms of smoothing possibility. The reason is that images with

strong signals retain most of the information in the original image and so contains much more information

than the rest. That is, it can withstand the decomposition and retain more variability because it is less

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 50

sparse. Images with high noisy content are subjected to pixel value limits (minimum 0 and maximum

255) and so appear to have less `true' variation than that of the images with strong signals.

Lastly, the decaying rate of the total variation is fast for the �rst few n levels and then slows down for

the remainder of the process (recall the x-axis is the natural logarithm of the nth level of the decompo-

sition). This implies that most of the variation is contained within small pulses. However, this may also

be due to image size and content.

The proportion of the original total variation to the total variation of their noisy counterparts may be

explained in two parts, their values may be found in Table 4.2:

• Consider the total variation plots of images (a) to (d). We can see that for these images the level

n required to achieve the original total variation is spread out amongst the signal strength. Most

notably, the noisy images with strong signal require less decomposition than the others to reach

original total variation, while the weak signals require the most.

• For images (e) to (l), we see that the total variation of the original image can be reached after one

application of LULU operators (L1U1) for medium and strong signals.

It should be noted that images (a) to (d) are obtained from an internet source, while images (e) to (l)

are otained by the author. Therefore, a di�erence in results with respect to image sources imply that the

way in which the images are obtained in�uence results. For example, images (a) to (d) are downloaded

from the internet, and so have most likely gone through processes of cleaning, compressing, and editing.

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 51

SNR (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

U
n
if
o
rm

1 140 3096 663 1657 12 7 11 11 11 5 13 27

5 11 239 64 66 1 1 1 1 1 1 1 2

9 5 95 26 27 1 1 1 1 1 1 1 1

N
o
rm

a
l 1 81 2122 429 683 8 5 8 7 8 4 8 17

5 8 167 49 49 1 1 1 1 1 1 1 1

9 3 70 20 21 1 1 1 1 1 1 1 1

L
o
g
is
ti
c 1 72 1852 408 549 7 4 7 6 6 3 7 15

5 7 137 43 42 1 1 1 1 1 1 1 1

9 3 61 19 19 1 1 1 1 1 1 1 1

R
ay
le
ig
h 1 87 1751 424 832 8 5 8 7 8 4 9 18

5 8 162 50 54 1 1 1 1 1 1 1 1

9 3 69 20 21 1 1 1 1 1 1 1 1

G
u
m
b
el

1 72 1524 345 583 7 4 7 6 7 3 7 16

5 7 137 42 42 1 1 1 1 1 1 1 1

9 3 59 19 18 1 1 1 1 1 1 1 1

E
x
p
o
n
en
ti
a
l

1 59 1392 287 464 5 4 5 5 6 4 6 12

5 6 102 34 34 1 1 1 1 1 1 1 1

9 2 46 14 14 1 1 1 1 1 1 1 1

Table 4.2: The required level of DPT to reach original total variation from noisy image.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

5
2

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.2: Total variation removed at each level of DPT for video (a) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

5
3

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.3: Total variation removed at each level of DPT for video (b) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

5
4

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.4: Total variation removed at each level of DPT for video (c) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

5
5

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.5: Total variation removed at each level of DPT for video (d) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

5
6

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.6: Total variation removed at each level of DPT for video (e) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

5
7

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.7: Total variation removed at each level of DPT for video (f) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

5
8

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.8: Total variation removed at each level of DPT for video (g) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

5
9

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.9: Total variation removed at each level of DPT for video (h) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

6
0

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.10: Total variation removed at each level of DPT for video (i) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

6
1

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.11: Total variation removed at each level of DPT for video (j) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

6
2

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.12: Total variation removed at each level of DPT for video (k) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

6
3

Uniform Normal Logistic

Rayleigh Gumbel Exponential

Figure 4.13: Total variation removed at each level of DPT for video (l) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 64

The noise removed in each case is determined as the pulses of the DPT up until the nth as indicated in

Table 4.2. We now look in detail at this removed noise and the smoothed images for each case.

4.3.2 Smoothed vs original images

In Figures 4.14 to 4.25 the SSIM index (y-axis) of the decomposed image at level n (x-axis) of the DPT

with the original image is shown. The SSIM is a similarity measure, thus it is preferable to have SSIM

close to 1. Note that, for all graphs, the maximum n for the SSIM calculated is such that the total

variation of decomposed image at level n is smaller than or equal to the total variation of the original

image. Thus the stop criterion is to decompose the noisy image until its total variation is as large as the

total variation of the original image. The level of DPT required to achieve maximum SSIM is displayed

in Table 4.3

For all SSIM plots, it can be seen that the set of noise distributions follows a certain order when

considering the SSIM at each level of the DPT. In descending order: exponential, logistic, Gumbel,

normal, Rayleigh, and uniform. That is, the SSIM of the puri�ed image at level n of the DPT will always

be the largest for the exponential distribution regardless of the signal strength for any image, and similarly

for the other noise distributions.

Furthermore, there are two pairs of noise distributions that behave similarly. These pairs tend to stay

close to one another at each level of the DPT: logistic and Gumbel distribution, and normal and Rayleigh

distribution. This is most prominent in the medium and strong signaled SSIM plots of images (a) to (d)

and all the weak signaled SSIM plot of images (e) to (l).

For images (a) to (d), the SSIM for weak signals tend to increase quickly and then deteriorate slowly

in the process of decomposition. In medium and strong signals, the SSIM increases quickly and stabilises.

Furthermore, the SSIM plots of each noise distribution is well-separated from each other.

For image (e) to (l), the SSIM for weak signals increase during the initial phase of the DPT then

decreases slowly. However, the SSIM for the other signals only decreases as the decomposition furthers

on. Moreover, as the strength of the signal increases, the width of the band of distributions decreases.

This is because, as a result of high variance in noise distributions, the images with weak signals have a

lower similarity than those with medium and strong signals. That is, the variability of the noise causes

variability of image similarity.

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 65

SNR (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

U
n
if
o
rm

1 48 147 62 165 15 1 8 6 9 1 9 27

5 18 50 20 23 1 1 1 1 1 1 1 1

9 12 27 12 21 1 1 1 1 1 1 1 1

N
o
rm

a
l 1 31 166 81 87 9 2 5 5 7 1 7 20

5 15 43 18 25 1 1 1 1 1 1 1 1

9 10 26 10 16 1 1 1 1 1 1 1 1

L
o
g
is
ti
c 1 59 180 87 91 6 2 5 6 7 1 7 18

5 14 35 18 20 1 1 1 1 1 1 1 2

9 9 21 9 15 1 1 1 1 1 1 1 1

R
ay
le
ig
h 1 50 118 79 93 9 2 6 5 7 2 10 17

5 16 38 16 28 1 1 1 1 1 1 1 1

9 10 29 12 18 1 1 1 1 1 1 1 1

G
u
m
b
el

1 60 100 63 98 7 2 5 4 6 2 7 20

5 15 43 18 21 1 1 1 1 1 1 1 2

9 9 28 10 16 1 1 1 1 1 1 1 1

E
x
p
o
n
en
ti
a
l

1 57 85 75 66 4 3 5 4 7 3 6 14

5 17 33 14 26 1 1 1 1 1 1 1 2

9 8 29 9 12 1 1 1 1 1 1 1 1

Table 4.3: The level of DPT required to achieve maximum SSIM.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

6
6

Weak Medium Strong

Figure 4.14: SSIM of noisy image at each level of DPT for video (a) using LULU .

Weak Medium Strong

Figure 4.15: SSIM of noisy image at each level of DPT for video (b) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

6
7

Weak Medium Strong

Figure 4.16: SSIM of noisy image at each level of DPT for video (c) using LULU .

Weak Medium Strong

Figure 4.17: SSIM of noisy image at each level of DPT for video (d) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

6
8

Weak Medium Strong

Figure 4.18: SSIM of noisy image at each level of DPT for video (e) using LULU .

Weak Medium Strong

Figure 4.19: SSIM of noisy image at each level of DPT for video (f) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

6
9

Weak Medium Strong

Figure 4.20: SSIM of noisy image at each level of DPT for video (g) using LULU .

Weak Medium Strong

Figure 4.21: SSIM of noisy image at each level of DPT for video (h) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

7
0

Weak Medium Strong

Figure 4.22: SSIM of noisy image at each level of DPT for video (i) using LULU .

Weak Medium Strong

Figure 4.23: SSIM of noisy image at each level of DPT for video (j) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

7
1

Weak Medium Strong

Figure 4.24: SSIM of noisy image at each level of DPT for video (k) using LULU .

Weak Medium Strong

Figure 4.25: SSIM of noisy image at each level of DPT for video (l) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 72

4.3.3 Removed vs original noise

The PP plot evaluates the goodness-of-�t of a sample that is believed to follow a certain distribution

by comparing the empirical CDF of the sample to the theoretical CDF. Thus, if the sample is from

the speci�ed distribution, then the graph with co-ordinates (F (xk:n), kn), where xk:n is the kth ordered

observation from a sample size of n and F (x) is the theoretical distribution function [39]. Here our sample

is the noise extracted at position (i, j) at level n of the DPT as e
(n)
ij = [(I −LnUn)f]ij . The level of DPT

required to achieve minimum SSE is displayed in Table 4.43.

In Figures 4.26 to 4.37 the plots of the SSE of the PP plot (y-axis) to the nth level (x-axis) of the

DPT is shown. Note that the stop criterion is the same as that for the SSIM plots in Section 4.3.2. Since

SSE is a measure for the amount of error, it is preferable for SSE to be small.

For images (a) to (d), an ordering in SSE can be observed for �ve of the six noise distribution at

each level of the DPT (in ascending order): logistic, normal, Rayleigh, uniform, and Gumbel. For these

distributions, the SSE is strictly increasing and is concave. This implies that the larger the pulses LULU

extracts from the image the less the noise resembles its anticipated distribution, however, this is true since

the noise added to the images were all independent pulses of size 1.

In contrast to its peers, the exponential distribution does not behave consistently in terms of signal

strength. For weak and medium signal strength, the shape of the SSE is concave, however, for strong

signals it is convex. Notice also that the starting SSE for each signal strength (with respect to an image)

is approximately the same. This is because the exponential pdf contains a sharp upward tail on the left

side and the noise sample is relatively symmetric (i.e. equally weighted above and below zero). This

renders the ability to mimic the cdf of the exponential distribution with only one noise sample from the

images di�cult and so results in the recurring starting SSE.

For images (e) to (l), the same order exists in the weak signal SSE plots of images (a) to (d). In the

plots of medium and strong signals, it is clear that the exponential and Gumbel distributions perform

worst.

3The code used to determine the minimum SSE is written such that at least the �rst levels of the DPT will be run to

capture a range of values of the DPT and the maximum level is equal when the total variation of the noisy image is close

to the original image. That is, if the level of DPT required to reach minimum SSE is 20, it means the PP plot improves as

the decomposition furthers on. However, this speculation is spurious as the noise simulated is of size 1.

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 73

SNR (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

U
n
if
o
rm

1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1

N
o
rm

a
l 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 20 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1

L
o
g
is
ti
c 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 20 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1

R
ay
le
ig
h 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 20 1 20 20 20 1 20 1

9 1 1 1 1 5 2 7 5 9 2 10 1

G
u
m
b
el

1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 20 1 20 20 20 1 20 1

9 1 1 1 1 4 7 6 3 8 1 10 20

E
x
p
o
n
en
ti
a
l

1 1 1 1 1 1 3 1 1 1 18 1 1

5 2 2 2 2 5 20 20 20 20 20 19 20

9 20 3 19 20 1 13 8 14 6 20 7 20

Table 4.4: The level of DPT require to acquire minimum SSE of noise sample.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

7
4

Weak Medium Strong

Figure 4.26: SSE of noise at each level of DPT for video (a) using LULU .

Weak Medium Strong

Figure 4.27: SSE of noise at each level of DPT for video (b) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

7
5

Weak Medium Strong

Figure 4.28: SSE of noise at each level of DPT for video (c) using LULU .

Weak Medium Strong

Figure 4.29: SSE of noise at each level of DPT for video (d) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

7
6

Weak Medium Strong

Figure 4.30: SSE of noise at each level of DPT for video (e) using LULU .

Weak Medium Strong

Figure 4.31: SSE of noise at each level of DPT for video (f) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

7
7

Weak Medium Strong

Figure 4.32: SSE of noise at each level of DPT for video (g) using LULU .

Weak Medium Strong

Figure 4.33: SSE of noise at each level of DPT for video (h) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

7
8

Weak Medium Strong

Figure 4.34: SSE of noise at each level of DPT for video (i) using LULU .

Weak Medium Strong

Figure 4.35: SSE of noise at each level of DPT for video (j) using LULU .

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

7
9

Weak Medium Strong

Figure 4.36: SSE of noise at each level of DPT for video (k) using LULU .

Weak Medium Strong

Figure 4.37: SSE of noise at each level of DPT for video (l) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 80

4.3.4 PP plots for extracted noise samples with minimum SSE

In Figures 4.38 to 4.49 we plot the PP plots for nth level of the DPT which yields the lowest SSE. That

is, the graphs show the best possible PP plots attainable throughout the decomposition of the noisy images.

In general it can be seen that the PP plots with weak signals struggles to match its original distribution

and that the performance of noise from images with medium and strong signals are the same. Furthermore,

the PP plots of the noise from weak signals are smooth, this is followed by the noise from medium signals,

and lastly the noise from strong signals possess a `block' quality about its PP plots. This is because when

we consider the range of values the weak, medium, and strong signals can possess and the fact the noise is

discretized, the noise from weak signals have a larger range (because of a larger variance) than the noise

from strong signals, thus its `block' feature is masked when the PP plot normalises percentile values to [0,1].

In terms of distributions, the PP plots of the noise from symmetric distributions are more linear

than those of asymmetric distributions. Which implies that the LULU operators extract noise more

e�ectively for distributions which have equal weights in values below and above zero. There are however

alternative compositions of Ln and Un available, see [14]. Their ability for smoothing in such cases should

be investigated.

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 81

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.38: PP plot with minimum SSE for video (a) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 82

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.39: PP plot with minimum SSE for video (b) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 83

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.40: PP plot with minimum SSE for video (c) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 84

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.41: PP plot with minimum SSE for video (d) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 85

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.42: PP plot with minimum SSE for video (e) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 86

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.43: PP plot with minimum SSE for video (f) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 87

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.44: PP plot with minimum SSE for video (g) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 88

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.45: PP plot with minimum SSE for video (h) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 89

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.46: PP plot with minimum SSE for video (i) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 90

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.47: PP plot with minimum SSE for video (j) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 91

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.48: PP plot with minimum SSE for video (k) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 92

Uniform Normal

Logistic Rayleigh

Gumbel Exponential

Figure 4.49: PP plot with minimum SSE for video (l) using LULU .

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 93

4.3.5 Final observations

In Tables 4.5 to 4.16 we provide a summary of the results for n which highlight the study. For each noise

distribution and at each SNR level, we consider three criteria:

1: The nth level of the DPT which yields the total variation closest to the total variation of the original

image.

2: The nth level of the DPT which yields the smallest SSE for the PP plots.

3: The nth level of the DPT which yields the highest SSIM.

In addition we include the SSE and SSIM for the corresponding n level. Ideally, the preferable outcome

is that the n which satis�es all three criteria is the same since that indicates, for some n:

• The total variation at level n is approximately the same as that of the original image.

• For that same n, the noise that is extracted matches best to the simulated noise distribution.

• Finally, for the same n, the image retrieved is most similar to the original image.

Thus, having satisi�ed all three criterias simultaneously with the same n implies that no extra or de�cit

variation resulted from the decomposition, and the noise was neither over- or under- extracted.

In general, we see that the value of SSIM increases as the signal strength increases, as well as that the

SSE of the PP plots decreases as the signal strength decreases. This is expected since the images with

weak signals contain noise with high variance which greatly distorts the original image and the retrieval

is not performed on the full noise distribution since the pixel values are limited to 0 and 255. Similarly

for the other signal strengths.

For images (a) to (d) we make the following comments:

• For weak signals, a large n is usually required to reach the original variation. For strong signals it

is the opposite.

• The level of DPT required to achieve best PP plot is 1 (except for exponential).

The implication is that the noise distributions with high variance (weak signal) in�ate the total variation

more prominently than the noise distributions with small variance (strong signal). Furthermore, the level

n = 1 of DPT required to obtain the best PP plot indicates that the LULU operators can retrieve noise

e�ectively since all simulated noise are of size 1.

For images (e) to (l) we make the following comments:

• For weak signals, a small n is required to reach the original variation. For the other signal strengths,

a n = 1 is su�cient.

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES 94

• Triplets of 1's appear consistently for:

� Uniform, SNR = 5 and 9

� Normal, SNR = 9

This implies that the LULU operators are able to e�ectively retrieve images with noise distributed

as uniform or normal.

The di�erence in the level of DPT required to reach original total variation between images (a) to (d) and

(e) to (l) shows that the way in which the data is obtained a�ects results as the same noise (the LCG use

for each noisy image set uses the same parameters) is used for the study.

4.4 Conclusion

In this chapter we have studied the e�ectiveness at which LULU removes noise. In Section 4.2 we described

the process of adding noise to images as well as introduced measures to analyse results. For Section 4.3,

we applied the LULU operators on a set images obtained by taking a single frame out of the video dataset

used in Chapter 3. We found that results di�er with respect to the source of the image in terms of total

variation plots, SSIM and PP plots.

For total variation, it was observed that the level of DPT required to reach the total variation of the

original image from the noisy image is less for images with strong and medium signals than images with

weak signals.

For SSIM plots, depending on the source of the image, the SSIM either stabilises or deteriorates, both

at a fast rate. The variability of SSIM indices decreases as the strength of signal increases.

For PP plots, the noise obtained from images with strong and medium signal strengths matches better

than those from weak signals. Furthermore, the LULU operators are able to retrieve noise from symmetric

distributions better than those from asymmetric distributions. Most importantly, the LULU operators

are able to extract the noise from multiple distribution types with similar e�ectiveness, a strong property

for a smoother. For example, linear smoothers are not able to remove noise with long tailed distributions

[36].

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

9
5

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 140 4894.06 0.09

N
o
rm

a
l

1

1 81 4258.51 0.13

L
o
g
is
ti
c

1

1 72 4054.92 0.14

2 1 828.51 0.06 2 1 577.39 0.08 2 1 510.31 0.09

3 48 4389.84 0.10 3 31 3665.17 0.13 3 59 3965.20 0.14

5

1 11 1651.64 0.34

5

1 8 1321.77 0.39

5

1 7 1144.23 0.41

2 1 252.02 0.29 2 1 227.45 0.32 2 1 209.37 0.34

3 18 1917.17 0.34 3 15 1611.09 0.39 3 14 1452.18 0.42

9

1 5 858.97 0.46

9

1 3 494.58 0.50

9

1 3 441.00 0.52

2 1 205.07 0.43 2 1 160.39 0.46 2 1 149.21 0.48

3 12 1201.94 0.47 3 10 884.11 0.52 3 9 760.00 0.54

R
ay
le
ig
h

1

1 87 4280.71 0.11
G
u
m
b
el

1

1 72 6238.97 0.13

E
x
p
o
n
en
ti
a
l

1

1 59 3659.22 0.15

2 1 629.28 0.08 2 1 1543.29 0.09 2 1 1260.19 0.11

3 50 3989.05 0.11 3 60 6134.15 0.13 3 57 3646.47 0.15

5

1 8 1360.87 0.38

5

1 7 2646.96 0.40

5

1 6 1341.69 0.43

2 1 327.62 0.32 2 1 1289.93 0.33 2 2 1248.97 0.39

3 16 1693.30 0.39 3 15 3130.31 0.41 3 17 1553.67 0.44

9

1 3 561.34 0.50

9

1 3 1596.60 0.52

9

1 2 1239.86 0.54

2 1 263.23 0.46 2 1 1130.70 0.47 2 20 1143.89 0.56

3 10 952.50 0.52 3 9 2133.74 0.54 3 8 1168.34 0.57

Table 4.5: Summary of video (a) results.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

9
6

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 3096 5685.10 0.06

N
o
rm

a
l

1

1 2122 5137.02 0.09

L
o
g
is
ti
c

1

1 1852 4872.42 0.10

2 1 1121.35 0.02 2 1 745.44 0.03 2 1 654.67 0.04

3 147 5453.14 0.08 3 166 5079.86 0.11 3 180 4953.02 0.13

5

1 239 2777.60 0.29

5

1 167 2427.20 0.35

5

1 137 2198.52 0.36

2 1 294.35 0.21 2 1 282.62 0.24 2 1 269.71 0.25

3 50 2934.37 0.31 3 43 2513.89 0.36 3 35 2306.28 0.38

9

1 95 1957.64 0.42

9

1 70 1579.94 0.47

9

1 61 1402.83 0.49

2 1 264.99 0.34 2 1 226.47 0.37 2 1 212.30 0.39

3 27 1986.04 0.43 3 26 1634.10 0.49 3 21 1435.46 0.50

R
ay
le
ig
h

1

1 1751 5206.13 0.09
G
u
m
b
el

1

1 1524 7361.00 0.10

E
x
p
o
n
en
ti
a
l

1

1 1392 4672.65 0.11

2 1 813.18 0.03 2 1 1673.26 0.04 2 1 1215.62 0.05

3 118 4990.02 0.11 3 100 6978.76 0.12 3 85 4468.77 0.14

5

1 162 2509.03 0.34

5

1 137 4338.17 0.37

5

1 102 2088.51 0.40

2 1 386.74 0.23 2 1 1255.11 0.25 2 2 1347.51 0.31

3 38 2556.77 0.36 3 43 4314.23 0.38 3 33 2149.56 0.41

9

1 69 1635.42 0.47

9

1 59 3132.08 0.49

9

1 46 1507.26 0.53

2 1 336.96 0.37 2 1 1113.30 0.38 2 3 1318.08 0.47

3 29 1673.19 0.47 3 28 3108.69 0.50 3 29 1526.23 0.53

Table 4.6: Summary of video (b) results.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

9
7

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 663 4851.88 0.11

N
o
rm

a
l

1

1 429 4358.19 0.15

L
o
g
is
ti
c

1

1 408 4126.68 0.17

2 1 1027.78 0.06 2 1 735.21 0.08 2 1 647.68 0.08

3 62 4650.88 0.14 3 81 4319.30 0.17 3 87 4161.13 0.19

5

1 64 2205.50 0.42

5

1 49 1798.72 0.48

5

1 43 1623.08 0.49

2 1 279.35 0.35 2 1 256.51 0.38 2 1 239.79 0.40

3 20 2077.74 0.43 3 18 1727.13 0.48 3 18 1567.55 0.50

9

1 26 1319.25 0.56

9

1 20 996.82 0.61

9

1 19 863.62 0.63

2 1 227.80 0.51 2 1 185.20 0.54 2 1 168.05 0.56

3 12 1241.52 0.57 3 10 948.38 0.61 3 9 834.27 0.63

R
ay
le
ig
h

1

1 424 4413.12 0.15
G
u
m
b
el

1

1 345 6478.80 0.16

E
x
p
o
n
en
ti
a
l

1

1 287 3876.05 0.20

2 1 788.29 0.08 2 1 1658.08 0.08 2 1 1233.33 0.11

3 79 4384.89 0.17 3 63 6231.50 0.18 3 75 3893.13 0.22

5

1 50 1840.96 0.47

5

1 42 3418.08 0.49

5

1 34 1642.70 0.52

2 1 366.61 0.38 2 1 1213.82 0.40 2 2 1346.63 0.46

3 16 1739.59 0.48 3 18 3235.01 0.50 3 14 1577.54 0.53

9

1 20 1079.55 0.61

9

1 19 2216.85 0.63

9

1 14 1260.57 0.66

2 1 303.43 0.54 2 1 1046.28 0.55 2 19 1248.48 0.65

3 12 1036.94 0.61 3 10 2135.31 0.63 3 9 1274.98 0.66

Table 4.7: Summary of video (c) results.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

9
8

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 1657 5156.60 0.09

N
o
rm

a
l

1

1 683 4686.55 0.13

L
o
g
is
ti
c

1

1 549 4538.10 0.14

2 1 987.76 0.04 2 1 688.55 0.06 2 1 609.48 0.06

3 165 5178.19 0.11 3 87 4568.00 0.15 3 91 4370.73 0.16

5

1 66 2417.29 0.37

5

1 49 1983.72 0.42

5

1 42 1806.12 0.45

2 1 283.00 0.29 2 1 260.60 0.32 2 1 245.46 0.34

3 23 2285.91 0.38 3 25 1963.69 0.43 3 20 1747.48 0.45

9

1 27 1506.74 0.52

9

1 21 1188.36 0.56

9

1 19 1010.01 0.58

2 1 239.05 0.44 2 1 198.57 0.47 2 1 182.55 0.49

3 21 1498.02 0.52 3 16 1173.53 0.56 3 15 1001.08 0.58

R
ay
le
ig
h

1

1 832 4654.60 0.13
G
u
m
b
el

1

1 583 6839.68 0.14

E
x
p
o
n
en
ti
a
l

1

1 464 4223.48 0.16

2 1 742.95 0.05 2 1 1595.15 0.06 2 1 1254.20 0.08

3 93 4497.33 0.14 3 98 6574.68 0.15 3 66 4001.12 0.18

5

1 54 2024.30 0.42

5

1 42 3591.75 0.45

5

1 34 1766.87 0.48

2 1 368.30 0.32 2 1 1214.76 0.34 2 2 1346.81 0.40

3 28 2002.81 0.43 3 21 3460.94 0.45 3 26 1758.00 0.48

9

1 21 1222.22 0.56

9

1 18 2440.32 0.58

9

1 14 1301.87 0.61

2 1 314.51 0.47 2 1 1053.21 0.48 2 20 1287.68 0.60

3 18 1210.26 0.56 3 16 2425.73 0.58 3 12 1304.78 0.61

Table 4.8: Summary of video (d) results.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

9
9

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 12 2804.1 0.14

N
o
rm

a
l

1

1 8 2074.99 0.18

L
o
g
is
ti
c

1

1 7 1840.8 0.21

2 1 1007.66 0.12 2 1 663.29 0.15 2 1 582.21 0.17

3 15 3009.88 0.14 3 9 2176.69 0.18 3 6 1704.87 0.21

5

1 1 120.88 0.65

5

1 1 61.39 0.67

5

1 1 46.74 0.69

2 1 120.88 0.65 2 20 38.77 0.4 2 20 15.01 0.42

3 1 120.88 0.65 3 1 61.39 0.67 3 1 46.74 0.69

9

1 1 20.4 0.79

9

1 1 9.59 0.8

9

1 1 13.68 0.81

2 1 20.4 0.79 2 1 9.59 0.8 2 1 13.68 0.81

3 1 20.4 0.79 3 1 9.59 0.8 3 1 13.68 0.81

R
ay
le
ig
h

1

1 8 2094.88 0.18
G
u
m
b
el

1

1 7 3290.08 0.21

E
x
p
o
n
en
ti
a
l

1

1 5 1663.55 0.24

2 1 733.72 0.16 2 1 1559.19 0.18 2 1 1263.37 0.23

3 9 2195.9 0.18 3 7 3290.08 0.21 3 4 1571.42 0.24

5

1 1 214.89 0.68

5

1 1 756.7 0.69

5

1 1 1584.33 0.71

2 20 141.38 0.41 2 20 546.13 0.42 2 5 1524.63 0.6

3 1 214.89 0.68 3 1 756.7 0.69 3 1 1584.33 0.71

9

1 1 109.75 0.8

9

1 1 587.57 0.81

9

1 1 1666.48 0.82

2 5 62.01 0.65 2 4 523.03 0.68 2 1 1666.48 0.82

3 1 109.75 0.8 3 1 587.57 0.81 3 1 1666.48 0.82

Table 4.9: Summary of video (e) results.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

1
0
0

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 7 2164.93 0.21

N
o
rm

a
l

1

1 5 1612.39 0.25

L
o
g
is
ti
c

1

1 4 1370.35 0.27

2 1 1217.34 0.23 2 1 951.59 0.26 2 1 842.64 0.27

3 1 1217.34 0.23 3 2 1179.67 0.26 3 2 1061.74 0.28

5

1 1 117.26 0.57

5

1 1 68.05 0.59

5

1 1 50.26 0.60

2 1 117.26 0.57 2 1 68.05 0.59 2 1 50.26 0.60

3 1 117.26 0.57 3 1 68.05 0.59 3 1 50.26 0.60

9

1 1 34.36 0.66

9

1 1 25.85 0.67

9

1 1 32.01 0.68

2 1 34.36 0.66 2 1 25.85 0.67 2 1 32.01 0.68

3 1 34.36 0.66 3 1 25.85 0.67 3 1 32.01 0.68

R
ay
le
ig
h

1

1 5 1602.90 0.25
G
u
m
b
el

1

1 4 2323.73 0.27

E
x
p
o
n
en
ti
a
l

1

1 4 1587.10 0.30

2 1 1046.97 0.25 2 1 1336.12 0.27 2 3 1580.19 0.30

3 2 1227.50 0.26 3 2 1741.70 0.27 3 3 1580.19 0.30

5

1 1 168.22 0.59

5

1 1 837.34 0.60

5

1 1 1298.42 0.61

2 1 168.22 0.59 2 1 837.34 0.60 2 20 785.70 0.40

3 1 168.22 0.59 3 1 837.34 0.60 3 1 1298.42 0.61

9

1 1 69.83 0.67

9

1 1 711.68 0.68

9

1 1 1371.76 0.69

2 2 51.92 0.63 2 7 685.27 0.52 2 13 1098.19 0.47

3 1 69.83 0.67 3 1 711.68 0.68 3 1 1371.76 0.69

Table 4.10: Summary of video (f) results.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

1
0
1

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 11 2509.55 0.20

N
o
rm

a
l

1

1 8 1876.46 0.25

L
o
g
is
ti
c

1

1 7 1656.34 0.28

2 1 982.98 0.18 2 1 691.71 0.22 2 1 612.11 0.25

3 8 2278.50 0.20 3 5 1561.86 0.25 3 5 1438.05 0.28

5

1 1 110.35 0.68

5

1 1 65.19 0.69

5

1 1 49.13 0.70

2 1 110.35 0.68 2 1 65.19 0.69 2 1 49.13 0.70

3 1 110.35 0.68 3 1 65.19 0.69 3 1 49.13 0.70

9

1 1 28.96 0.79

9

1 1 9.39 0.80

9

1 1 10.71 0.80

2 1 28.96 0.79 2 1 9.39 0.80 2 1 10.71 0.80

3 1 28.96 0.79 3 1 9.39 0.80 3 1 10.71 0.80

R
ay
le
ig
h

1

1 8 1888.38 0.25
G
u
m
b
el

1

1 7 3040.68 0.27

E
x
p
o
n
en
ti
a
l

1

1 5 1587.22 0.32

2 1 763.92 0.23 2 1 1554.07 0.25 2 1 1290.00 0.31

3 6 1704.41 0.25 3 5 2741.01 0.27 3 5 1587.22 0.32

5

1 1 196.13 0.70

5

1 1 838.74 0.71

5

1 1 1443.93 0.72

2 20 131.85 0.51 2 20 749.88 0.52 2 20 1072.93 0.54

3 1 196.13 0.70 3 1 838.74 0.71 3 1 1443.93 0.72

9

1 1 108.28 0.80

9

1 1 646.63 0.80

9

1 1 1501.01 0.81

2 7 32.46 0.67 2 6 549.12 0.69 2 8 1378.84 0.67

3 1 108.28 0.80 3 1 646.63 0.80 3 1 1501.01 0.81

Table 4.11: Summary of video (g) results.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

1
0
2

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 11 2598.89 0.17

N
o
rm

a
l

1

1 7 1877.15 0.22

L
o
g
is
ti
c

1

1 6 1623.33 0.24

2 1 964.12 0.16 2 1 708.53 0.20 2 1 622.67 0.22

3 6 2112.66 0.18 3 5 1636.55 0.22 3 6 1623.33 0.24

5

1 1 96.06 0.62

5

1 1 53.10 0.63

5

1 1 39.42 0.64

2 1 96.06 0.62 2 1 53.10 0.63 2 1 39.42 0.64

3 1 96.06 0.62 3 1 53.10 0.63 3 1 39.42 0.64

9

1 1 23.62 0.71

9

1 1 11.54 0.72

9

1 1 14.24 0.72

2 1 23.62 0.71 2 1 11.54 0.72 2 1 14.24 0.72

3 1 23.62 0.71 3 1 11.54 0.72 3 1 14.24 0.72

R
ay
le
ig
h

1

1 7 1878.59 0.22
G
u
m
b
el

1

1 6 2925.74 0.24

E
x
p
o
n
en
ti
a
l

1

1 5 1622.93 0.29

2 1 787.71 0.20 2 1 1422.79 0.22 2 1 1401.10 0.27

3 5 1643.12 0.22 3 4 2516.50 0.24 3 4 1560.88 0.29

5

1 1 182.89 0.64

5

1 1 804.24 0.64

5

1 1 1443.18 0.66

2 20 177.23 0.42 2 20 804.08 0.43 2 20 1078.47 0.44

3 1 182.89 0.64 3 1 804.24 0.64 3 1 1443.18 0.66

9

1 1 80.56 0.72

9

1 1 645.49 0.72

9

1 1 1454.92 0.73

2 5 32.79 0.60 2 3 616.37 0.65 2 14 1200.28 0.52

3 1 80.56 0.72 3 1 645.49 0.72 3 1 1454.92 0.73

Table 4.12: Summary of video (h) results.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

1
0
3

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 11 2489.08 0.21

N
o
rm

a
l

1

1 8 1898.07 0.27

L
o
g
is
ti
c

1

1 6 1573.87 0.29

2 1 990.14 0.19 2 1 730.35 0.24 2 1 639.58 0.26

3 9 2357.80 0.21 3 7 1810.90 0.27 3 7 1662.36 0.29

5

1 1 120.84 0.69

5

1 1 71.00 0.71

5

1 1 59.27 0.72

2 1 120.84 0.69 2 1 71.00 0.71 2 1 59.27 0.72

3 1 120.84 0.69 3 1 71.00 0.71 3 1 59.27 0.72

9

1 1 35.01 0.81

9

1 1 14.20 0.82

9

1 1 13.37 0.82

2 1 35.01 0.81 2 1 14.20 0.82 2 1 13.37 0.82

3 1 35.01 0.81 3 1 14.20 0.82 3 1 13.37 0.82

R
ay
le
ig
h

1

1 8 1901.74 0.27
G
u
m
b
el

1

1 7 2989.41 0.29

E
x
p
o
n
en
ti
a
l

1

1 6 1641.69 0.33

2 1 805.56 0.24 2 1 1452.30 0.26 2 1 1359.16 0.30

3 7 1814.55 0.27 3 6 2843.90 0.29 3 7 1684.53 0.33

5

1 1 211.69 0.71

5

1 1 823.44 0.72

5

1 1 1469.06 0.74

2 20 162.04 0.55 2 20 749.98 0.55 2 20 1153.67 0.57

3 1 211.69 0.71 3 1 823.44 0.72 3 1 1469.06 0.74

9

1 1 105.92 0.82

9

1 1 637.34 0.82

9

1 1 1534.02 0.83

2 9 27.92 0.68 2 8 545.71 0.69 2 6 1463.05 0.73

3 1 105.92 0.82 3 1 637.34 0.82 3 1 1534.02 0.83

Table 4.13: Summary of video (i) results.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

1
0
4

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 5 1698.49 0.36

N
o
rm

a
l

1

1 4 1309.15 0.40

L
o
g
is
ti
c

1

1 3 1094.41 0.43

2 1 1255.07 0.39 2 1 979.54 0.42 2 1 870.00 0.44

3 1 1255.07 0.39 3 1 979.54 0.42 3 1 870.00 0.44

5

1 1 124.89 0.67

5

1 1 73.92 0.68

5

1 1 59.81 0.69

2 1 124.89 0.67 2 1 73.92 0.68 2 1 59.81 0.69

3 1 124.89 0.67 3 1 73.92 0.68 3 1 59.81 0.69

9

1 1 44.85 0.72

9

1 1 39.25 0.73

9

1 1 44.98 0.73

2 1 44.85 0.72 2 1 39.25 0.73 2 1 44.98 0.73

3 1 44.85 0.72 3 1 39.25 0.73 3 1 44.98 0.73

R
ay
le
ig
h

1

1 4 1310.48 0.40
G
u
m
b
el

1

1 3 1829.15 0.43

E
x
p
o
n
en
ti
a
l

1

1 4 1490.70 0.45

2 1 1085.82 0.41 2 1 1263.30 0.43 2 18 1375.77 0.38

3 2 1169.77 0.41 3 2 1585.16 0.43 3 3 1526.51 0.45

5

1 1 155.22 0.68

5

1 1 925.17 0.68

5

1 1 1225.75 0.69

2 1 155.22 0.68 2 1 925.17 0.68 2 20 668.69 0.47

3 1 155.22 0.68 3 1 925.17 0.68 3 1 1225.75 0.69

9

1 1 93.07 0.73

9

1 1 771.46 0.73

9

1 1 1338.40 0.74

2 2 83.23 0.68 2 1 771.46 0.73 2 20 932.98 0.49

3 1 93.07 0.73 3 1 771.46 0.73 3 1 1338.40 0.74

Table 4.14: Summary of video (j) results.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

1
0
5

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 13 2751.62 0.18

N
o
rm

a
l

1

1 8 1984.86 0.23

L
o
g
is
ti
c

1

1 7 1744.45 0.25

2 1 967.43 0.15 2 1 685.59 0.20 2 1 602.56 0.22

3 9 2456.52 0.18 3 7 1882.45 0.23 3 7 1744.45 0.25

5

1 1 122.58 0.65

5

1 1 74.99 0.67

5

1 1 56.30 0.68

2 1 122.58 0.65 2 1 74.99 0.67 2 1 56.30 0.68

3 1 122.58 0.65 3 1 74.99 0.67 3 1 56.30 0.68

9

1 1 31.54 0.77

9

1 1 12.20 0.78

9

1 1 10.51 0.79

2 1 31.54 0.77 2 1 12.20 0.78 2 1 10.51 0.79

3 1 31.54 0.77 3 1 12.20 0.78 3 1 10.51 0.79

R
ay
le
ig
h

1

1 9 2076.77 0.22
G
u
m
b
el

1

1 7 3150.37 0.25

E
x
p
o
n
en
ti
a
l

1

1 6 1673.67 0.29

2 1 753.14 0.20 2 1 1521.42 0.22 2 1 1290.59 0.27

3 10 2155.55 0.23 3 7 3150.37 0.25 3 6 1673.67 0.29

5

1 1 206.19 0.67

5

1 1 845.69 0.68

5

1 1 1423.45 0.70

2 20 194.76 0.51 2 20 775.54 0.52 2 19 1192.40 0.54

3 1 206.19 0.67 3 1 845.69 0.68 3 1 1423.45 0.70

9

1 1 107.37 0.78

9

1 1 655.59 0.79

9

1 1 1479.15 0.80

2 10 29.85 0.64 2 10 574.96 0.65 2 7 1352.61 0.69

3 1 107.37 0.78 3 1 655.59 0.79 3 1 1479.15 0.80

Table 4.15: Summary of video (k) results.

© University of Pretoria

C
H
A
P
T
E
R
4
.
N
O
IS
E
R
E
M
O
V
A
L
IN

IM
A
G
E
S

1
0
6

Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM Noise SNR Criteria n SSE SSIM

U
n
if
o
rm

1

1 27 3722.40 0.11

N
o
rm

a
l

1

1 17 2942.26 0.14

L
o
g
is
ti
c

1

1 15 2682.53 0.16

2 1 878.69 0.08 2 1 638.10 0.10 2 1 568.81 0.12

3 27 3722.40 0.11 3 20 3073.70 0.14 3 18 2830.57 0.16

5

1 2 373.90 0.47

5

1 1 150.34 0.51

5

1 1 123.93 0.52

2 1 200.53 0.48 2 1 150.34 0.51 2 1 123.93 0.52

3 1 200.53 0.48 3 1 150.34 0.51 3 2 231.94 0.52

9

1 1 90.01 0.64

9

1 1 46.18 0.66

9

1 1 35.33 0.67

2 1 90.01 0.64 2 1 46.18 0.66 2 1 35.33 0.67

3 1 90.01 0.64 3 1 46.18 0.66 3 1 35.33 0.67

R
ay
le
ig
h

1

1 18 2981.86 0.14
G
u
m
b
el

1

1 16 4567.82 0.16

E
x
p
o
n
en
ti
a
l

1

1 12 2263.90 0.19

2 1 697.91 0.10 2 1 1606.48 0.11 2 1 1276.20 0.15

3 17 2929.40 0.14 3 20 4808.56 0.16 3 14 2376.56 0.19

5

1 1 254.68 0.51

5

1 1 1076.89 0.53

5

1 1 1286.27 0.55

2 1 254.68 0.51 2 1 1076.89 0.53 2 20 1027.09 0.46

3 1 254.68 0.51 3 2 1217.52 0.53 3 2 1239.27 0.55

9

1 1 145.04 0.66

9

1 1 843.79 0.67

9

1 1 1327.75 0.69

2 1 145.04 0.66 2 20 787.67 0.52 2 20 1062.26 0.53

3 1 145.04 0.66 3 1 843.79 0.67 3 1 1327.75 0.69

Table 4.16: Summary of video (l) results.

© University of Pretoria

Chapter 5

Conclusion

We have provided the foundation of LULU operators in Chapter 2. The LULU operators in one- and

two- dimensions were discussed along with their shape and total variation properties, and their respective

Discrete Pulse Transforms. We have also included a small study on the intricasy of Nn(x) in Z2.

Using results from correlation analysis, we have explored the extent at which the pixels of an image

depend on its neighbours and establish the complexity of the connectivity for LULU operators in two-

dimensions in Chapter 3. In there, using videos obtained from an internet source and our own recorded

ones, we have shown that the property of local dependence and global independence holds for images,

as well as 4-connectivity is su�cient for the de�ned connection in two-dimensional LULU operators.

Furthermore, we have also demonstrated how the addition of noise renders the dependence between pixels

ambiguous as a result of in�ated variance.

In Chapter 4 we investigated how e�ective the LULU smoothers remove noise by examining the noise

extractions by the LULU operators from images and the puri�ed images themselves. We saw that for

images with low noise content (well-behaved variation) are able to withstand the DPT in terms of variation

preserving than those with medium or high noise content, that is, the rate of deterioration of total variation

is faster for images with medium or high noise content. In addition, the optimal n-level DPT required

to extract the noise is 1 since the added noise are idd observations from the same distribution with pulse

size 1.

Future work includes exploring alternative compositions of the LULU operators by [14] in noise removal

for images. Also we will improve the noise removal algorithm, that is, a second step to improve the blocky

e�ect of the puri�ed image.

107

© University of Pretoria

Bibliography

[1] R. Anguelov. LULU operators and locally δ-monotone approximations. In Constructive Theory of

Functions. Citeseer, 2005.

[2] R. Anguelov and I. Fabris-Rotelli. LULU operators and Discrete Pulse Transform for multidimen-

sional arrays. Image Processing, IEEE Transactions on, 19(11):3012�3023, 2010.

[3] R. Anguelov and C.H. Rohwer. LULU operators for functions of continuous argument. Quaestiones

Mathematicae, 32(2):187�202, 2009.

[4] WJ Conradie, T De Wet, and M Jankowitz. Exact and asymptotic distributions of LULU smoothers.

Journal of Computational and Applied Mathematics, 186(1):253�267, 2006.

[5] W.J. Conradie, T. De Wet, and M. D. Jankowitz. Performance of nonlinear smoothers in signal

recovery. Applied Stochastic Models in Business and Industry, 25(4):425�444, 2009.

[6] W.J. Conradie, T. De Wet, and M.D. Jankowitz. An overview of LULU smoothers with application

to �nancial data. Journal for Studies in Economics and Econometrics, 29(1):97�121, 2005.

[7] T. de Wet and W. Conradie. Smoothing sequences of data by extreme selectors. Proceedings of

ICOTS7, 2006.

[8] J.P. Du Toit. The Discrete Pulse Transform and applications. PhD thesis, Stellenbosch: University

of Stellenbosch, 2007.

[9] I. Fabris-Rotelli, K. Van Oldenmark, and P. Van Staden. Evaluation of noise removal in signals by

LULU operators. Proceedings of South African Statistical Association, 2010.

[10] C. Fontaine. Linear Congruential Generator. Encyclopedia of Cryptography and Security, pages

721�721, 2011.

[11] E.R. Golder and J.G. Settle. The Box-Muller method for generating pseudo-random normal deviates.

Applied Statistics, pages 12�20, 1976.

[12] L.D. Haugh. Checking the independence of two covariance-stationary time series: a univariate residual

cross-correlation approach. Journal of the American Statistical Association, 71(354):378�385, 1976.

108

© University of Pretoria

BIBLIOGRAPHY 109

[13] A. Hore and D. Ziou. Image quality metrics: PSNR vs. SSIM. In Pattern recognition (icpr), 2010

20th international conference on, pages 2366�2369. IEEE, 2010.

[14] M.D. Jankowitz. Some statistical aspects of LULU smoothers. PhD thesis, Stellenbosch: University

of Stellenbosch, 2007.

[15] E. Kreyszig. Introductory functional analysis with applications, volume 81. Wiley New York, 1989.

[16] D.P. Laurie. The roadmaker's algorithm for the Discrete Pulse Transform. Image Processing, IEEE

Transactions on, 20(2):361�371, 2011.

[17] D.P. Laurie and C.H. Rohwer. Fast implementation of the Discrete Pulse Transform. In Proceedings

International Conference Numerical and Analytical Applied Mathematics, pages 15�19. Weinheim,

Germany, 2006.

[18] E Malkowsky and CH Rohwer. The LULU-semigroup for envelopes of functions. Quaestiones Math-

ematicae, 27(1):89�97, 2004.

[19] T.B. Parrish, D.R. Gitelman, K.S. LaBar, and M.M. Mesulam. Impact of signal-to-noise on functional

MRI. Magnetic Resonance in Medicine, 44:925�932, 2000.

[20] I. Pitas and A.N. Venetsanopoulos. Median Filters. In Nonlinear Digital Filters, pages 63�116.

Springer, 1990.

[21] D.G. Rogers. Pascal triangles, Catalan numbers and renewal arrays. Discrete Mathematics, 22(3):301�

310, 1978.

[22] C.H. Rohwer. Idempotent one-sided approximation of median smoothers. Journal of Approximation

Theory, 58(2):151�163, 1989.

[23] C.H. Rohwer. Projections and separators. Quaestiones Mathematicae, 22(2):219�230, 1999.

[24] C.H. Rohwer. Fast approximation with locally monotone sequences. In Proceedings 4th FAAT Confer-

ence, Maratea. In: Supplemento ai rendiconti del Circolo matimatico di Palermo, Serie II, volume 68,

2002.

[25] C.H. Rohwer. Multiresolution analysis with pulses. In Advanced Problems in Constructive Approxi-

mation, pages 165�186. Springer, 2002.

[26] C.H. Rohwer. Variation reduction and LULU-smoothing. Quaestiones Mathematicae, 25(2):163�176,

2002.

[27] C.H. Rohwer. Fully trend preserving operators. Quaestiones Mathematicae, 27(3):217�229, 2004.

© University of Pretoria

BIBLIOGRAPHY 110

[28] C.H. Rohwer. Nonlinear Smoothing and Multiresolution Analysis, volume 150. Springer Science &

Business Media, 2006.

[29] C.H. Rohwer. The estimation of moments of an unknown error distribution in the Discrete Pulse

Transform. Numerical Algorithms, 45(1-4):239�251, 2007.

[30] C.H. Rohwer and D.P. Laurie. The Discrete Pulse Transform. SIAM Journal on Mathematical

Analysis, 38(3):1012�1034, 2006.

[31] C.H. Rohwer and L.M. Toerien. Locally monotone robust approximation of sequences. Journal of

Computational and Applied Mathematics, 36(3):399�408, 1991.

[32] C.H. Rohwer and M. Wild. Natural alternatives for one dimensional median �ltering. Quaestiones

Mathematicae, 25(2):135�162, 2002.

[33] C.H. Rohwer and M. Wild. LULU theory, idempotent stack �lters, and the mathematics of vision of

marr. Advances in Imaging and Electron Physics, 146:57�162, 2007.

[34] R.Y. Rubinstein and B. Melamed. Modern Simulation and Modeling, volume 7. Wiley New York,

1998.

[35] J. Serra. A lattice approach to image segmentation. Journal of Mathematical Imaging and Vision,

24(1):83�130, 2006.

[36] P.F. Velleman. Robust nonlinear data smoothers: De�nitions and recommendations. Proceedings of

the National Academy of Sciences, 74(2):434�436, 1977.

[37] M. Watanabe, D.B. Williams, and Y. Tomokiyo. Comparison of detection limits for elemental map-

ping by EF-TEM and STEMXEDS. Microscopy and Microanalysis, 8:1588�1589, 2002.

[38] M. Wild. Idempotent and co-idempotent stack �lters and min�max operators. Theoretical Computer

Science, 299(1):603�631, 2003.

[39] M.B. Wilk and R. Gnanadesikan. Probability plotting methods for the analysis of data. Biometrika,

55(1):1�17, 1968.

© University of Pretoria

Appendix

Intricasy of Nn(x) [SAS]

Introduction

In the following pages, we describe the process of obtaining the actual numbers of Nn(x) in SAS iml for

any n > 1 and x ∈ Z2. This is the �rst step to acquiring a de�nitive formula for the total number of

elements in Nn(x). The de�nition of usability in Nn(x) are

1. Any one connected set in Nn(x) must have length exactly equal to n+ 1.

2. Any two connections must di�er from each other.

Some terminology before starting:

Branch A branch is any single connected set beginning from the centre.

Burst A burst is de�ned as mapping of 3 points in the direction of a branch as well as the immediate

adjacent elements in Z2. For example, suppose that a branch is moving in the upward direction,

then a burst is mapping of the right, top and left elements from the reference element. This is

depicted in Figure A.1.

Figure A.1: A depiction of a burst for a branch approaching from the bottom.

Subroutines

This section describes some pieces of code that are used extensively throughout the program. We stored

them as subroutines to make the coding more elegant. There are 5 in total which can be grouped into 2

i

© University of Pretoria

APPENDIX ii

parts:

• Three_Rotations, Maps and One_Branch

One_Branch �nds branches of lengthN+1 , that is, it �nds connections with the centre at the starting

element of any branch. Three_Rotations accepts a square matrix and outputs three matrices

containing the original matrix but rotated 90◦, 180◦, and 270◦. Maps direction vector and outputs

the burst co-ordinates with respect to the direction vector.

• n_Comb and N_Connect

N_Connect is the �nal subroutine which �nds all connected sets of length N + 1 using integral

subroutine One_Branch since the centre x may occur anywhere in the connection. This is done by

�nding all possible 2, 3 or 4 combinations of connections of length 1 to N with auxiliary subroutine

n_Comb.

We now describe the subroutines in detail.

�����������������������������

1 start Three_Rotations(In, Out1,Out2,Out3);

2 n = nrow(In);

3 Out1 = J(n,n,0);

4 Out2 = Out1;

5 Out3 = Out2;

6 do i = 1 to n;

7 do j = 1 to n;

8 k = n-i+1;

9 l = n-j+1;

10 Out1[j,k] = In[i,j];

11 Out2[k,l] = In[i,j];

12 Out3[l,i] = In[i,j];

13 end;

14 end;

15 finish Three_Rotations;

�����������������������������

Input variable

In: n× n Any square matrix.

Output variables

Out1: n× n The rotated form of input matrix In by 90◦ clockwise.

Out2: n× n The rotated form of input matrix In by 180◦ clockwise.

Out3: n× n The rotated form of input matrix In by 270◦ clockwise.

© University of Pretoria

APPENDIX iii

Method For any square matrix In, Three_Rotations rotates In by 90◦k and stores the new matrices

in Out1, Out2, and Out3. This subroutine decreases the total number of computations for �nding all

branches by a factor of 4 since we need only to �nd one branch and Three_Rotations will give the rest.

For example, the �rst matrix in Figure A.2 is a single branch of N2(x) connectivity.

Figure A.2: A single branch of N2(x) connectivity.

Calling Three_Rotations with input matrix equal to In we get our 3 outputs in Figure A.3.

Figure A.3: The 3 outputs of Three_Rotations for a given square matrix In.

�����������������������������

1 start Maps(Dir);

2 Mu = { 0 -1 0,

3 -1 0 1};

4 Mr = {-1 0 1,

5 0 1 0};

6 Md = { 0 1 0,

7 1 0 -1};

8 Ml = { 1 0 -1,

9 0 -1 0};

10

© University of Pretoria

APPENDIX iv

11 if (Dir = (-1 || 0))[+] = 2 then M = Mu;

12 if (Dir = (0 || 1))[+] = 2 then M = Mr;

13 if (Dir = (1 || 0))[+] = 2 then M = Md;

14 if (Dir = (0 ||-1))[+] = 2 then M = Ml;

15

16 return (M);

17 finish;

�����������������������������

Input variable

Dir: 1× 2 A vector indicating the direction a branch is moving from. Here, the �rst element represents i

and the second element j for matrix element displacement [i, j] from one matrix element to another.

For example, if a branch grows from matrix elements (3, 3) to (2, 3) the direction vector representing

this event is given by [−1 0]T .

Return variable

M: 2× 3 The set of the directions the current branch will be moving to.

Method The subroutine Maps creates a burst by de�ning auxiliary matrices that depend on the direction

(Dir) a branch is moving to. Its usage shall become clear once we have explained One_N. For now, the

letters U, R, D and L represent directions up, right, down, and left respectively. And for any direction,

three `map points' are created in the front and on the immediate adjacent elements with respect to the

direction the branch is facing.

For example, if the branch is going U, then maps are dictated at elements positioned at right, up, and

left from where the branch is sitting given by direction vectors [0 − 1]T , [−1 0]T and [0 1]T respectively.

�����������������������������

1 start One_Branch(N,size);

2 *Creating an empty matrix to store the connected sets;

3 fix = J(2*size + 1,2*size + 1,0);

4 fix[(size || size+1),size + 1] = 1;

5 l = (2*size + 1)##2;

6

7 /*WS = Walking Stick - an auxiliary matrix that guides the program on how and where

8 to make connections*/

9 *1st column contains the number of iterations left before completing a single burst;

10 *2nd and 3rd column stores the position of the last burst;

11 *4th and 5th column contains the direction of moving from i-1 to i in WS;

12 initial = 0 || (size || (size+1)) || (-1 || 0);

13 WS = initial // (J(N-1,1,3) || J(N-1,4,0));

14

15 C_temp = fix;

16 p = 2; *p (position) indexes WS;

17 do while ((WS[,1])[+] ^= 0);

© University of Pretoria

APPENDIX v

18

19 /*Adding 1 of N Bursts*/

20 M = Maps(WS[p-1,4:5]);

21 ij = WS[p-1,2:3] + M[,WS[p,1]]`;

22 C_temp[ij[1], ij[2]] = C_temp[ij[1], ij[2]] + 1;

23 WS[p,2:3] = ij;

24 WS[p,4:5] = M[,WS[p,1]]`;

25 WS[p,1] = WS[p,1] - 1;

26

27 /*Incrementing p or Updating Parameters*/

28 if p+1 ^= N+1 then p = p+1;

29 else do;

30 call Three_Rotations(C_temp,C1,C2,C3);

31 C = C || shape(C_temp,l,1) || shape(C1,l,1)

32 || shape(C2,l,1) || shape(C3,l,1);

33

34 if (WS[,1]^=0)[+] ^= 0 then p = max(loc(WS[,1]^=0));

35

36 if N-p ^= 0 then WS[p+1:N,1] = J(N-p,1,3);

37

38 if p ^= 2 then do;

39 do i = p to N;

40 C_temp[WS[i,2],WS[i,3]] = C_temp[WS[i,2],WS[i,3]] - 1;

41 end;

42 end;

43 else C_temp = fix;

44 end;

45 end;

46

47 return (C);

48 finish One_Branch;

�����������������������������

Input variable

N: 1× 1 The order (or length) of the connected set.

size: 1 × 1 A value specifying the matrix size in which to store the connections. Note that the �nal

connection will be contained within a (2 ∗ size + 1)× (2 ∗ size + 1) matrix.

Return variable

C: (2 ∗ size + 1)2 × 4 ∗ (3N−1) Each column of C contains a variation of connected set of length N + 1

reshaped from a (2 ∗ size + 1) × (2 ∗ size + 1) matrix to a (2 ∗ size + 1)2 × 1 vector. Since the

total number ways (including replications) we can have a connected set of length N + 1 with only

1 branch is 4 ∗ (3N−1), that number is also our total number of columns.

Method One_Branch �nds all possible combinations of having a connected set of length N + 1 with

only 1 branch spawning from the centre. The subroutine uses an auxiliary matrix WS (for Walking Stick)

© University of Pretoria

APPENDIX vi

that helps guide the program to know how and where to make a single burst by storing the number of

bursts left, the historical and direction of previous bursts. We shall explain the subroutine by example

for (N,size) = (3,3).

The subroutine begins by de�ning a template matrix called fix. The template is created so that when

the program has �nished all bursts for a single branch we can refresh process by simply assigning the

temporary matrix to �x again. It is assumed that the process already has one single burst.

Next we create the auxiliary matrix WS. Some facts regarding WS:

• The 1st column indicates the number of bursts left before the process ends, 2nd and 3rd stores the

position [matrix index (i, j)] of the last burst, and the last two columns contains the direction of

the latest burst. The initial position for this process is the index (3, 4) and the direction is upwards

[−1 0] since we assume that we moved from the centre (4,4) to (3,4) - this is indicated in row 1.

• Each row of WS represents the level of the process in creating a branch. For connected sets of length

N + 1 , we will require N levels (with centre as level-0). Note that since the �rst element of WS

is 0, it implies all possible combinations of level-1 bursts have been exhausted (because we will

call Three_Rotations for the other branches starting at East, South and West from the centre);

and since we have values of 3 for the �rst element of row 2 and row 3, we still have 32 = 9 more

combinations till completion. When the sum of the �rst column equals 0, it implies all possible

branches have been created.

• WS operates by iteratively running through consecutive rows until the last row. For each row be-

ing operated, the following updates occur: the position and direction of new bursts, as well as

decrementing the �rst element of each row to indicate a completed singular burst.

We let C_temp be the temporary matrix that stores the connected sets. Initially C_temp is set to fix.

Each paired output below is the result of one completed iteration of the do while loop. From the �rst

pair we can note the following:

© University of Pretoria

APPENDIX vii

• The length of the branch in C_temp has been increased by one unit (element (3, 5) has been changed

from 0 to 1). That is, the branch has grown from matrix elements (3, 4) to (3, 5).

• The change in WS in the second row (for level-2 changes) are as follows: the position of the current

single burst from (0, 0) to (3, 5), and the direction in which it was created (3, 4) → (3, 5) = [0 1].

In addition, we have decremented the level-2 connections from 3 to 2 in the �rst element of the 2nd

row. This indicates 1 of 3 bursts have been completed for level-2 - given the history of the previous

levels.

Since we want a N = 3 connected set, we require the next iteration for a complete branch.

The output below for C_temp indicates the branch has grown from (3, 5) to (4, 5). This information

is recorded similarly as for the �rst iteration in WS. However, because we have one full branch of a N = 3

connected set, we also call subroutine Three_Rotations to replicate this branch for branches spawning

from the East, South, and West of the centre. All connected sets are then reshaped into vectors and the

results are stored in a matrix C.

We now display signi�cant output for reader to grasp the methodology of creating connected sets.

It is important to note the changes of the �rst column of WS from the output above and below. The

© University of Pretoria

APPENDIX viii

output above gives [0 2 0]T which indicates level-3 bursts have been exhausted (given the history of

previous levels).

To renew the process, we assign 3 to level-3 again and subtract 1 from level-2. That is, for a second

single burst of level-2, we have 3 new bursts for level-3. This is given by the �rst column of WS below as

[0 1 3]T as well as a change in the level-2 branch element in C_temp.

... This process will continue until all bursts have been exhausted (indicated by a column of zeros in

the �rst column of WS).

The program may be run for any N > 1. The relevance of the size parameter (which sets the size

of the matrix where we store connected sets) becomes apparent in the next subroutine.

Note that, by the de�nition of the code, repeats and overlaps may occur. For example, for n = 5, a

particular branch is created by turning right 4 times (since we exhaust bursts by consistently mapping

right, forward, and left of any direction) this implies that the �nal connection is only of order 4 and not

5 as needed. These problems will be alleviated in subroutine N_Connect where we �nalised all possible

connections.

�����������������������������

The need for the following subroutines arises when we concern ourselves with connected sets not

only with the centre occuring at the start of any connection, but also anywhere within the connecte set.

Therefore, we need to �nd all possible combinations (2, 3 or 4 since these are the possible ways of creating

branches from the centre with 4-connecttivity) of 1, 2, ..., n − 1 lengthed connections that creates a

n-connected set in addition to the one combination of n-connected sets.

�����������������������������

1 start n_Comb (N,c);

2 free key_c keep list;

3 do i = 1 to N/2;

4 rem = mod(N,i);

5 mult = min((N-rem)/i,c-1);

6 key_c = key_c || J(1,mult,i);

© University of Pretoria

APPENDIX ix

7 end;

8

9 if round(N/c) - N/c = 0 then do;

10 key_c = key_c || N/c;

11 key_c = key_c || (round(N/2):N);

12 end;

13 else key_c = key_c || (round(N/2):N);

14

15 comb_key = allcomb(ncol(key_c),c);

16 do i = 1 to nrow(comb_key);

17 check_N = key_c[,comb_key[i,]];

18 dup = (check_N # ({1 10 100 1000})[,1:c])[+];

19

20 if check_N[+] = N & ncol(xsect(dup,list)) = 0 then do;

21 keep = keep // check_N;

22 list = list // dup;

23 end;

24 end;

25

26 return (keep);

27 finish n_Comb;

�����������������������������

Input variables

N: 1× 1 The order (or length) of any one connected set.

c: 1× 1 The number of combinations to consider.

Return variable

keep: cN × c The matrix with each row containing a particular c permutation of 1, 2, ..., n− 1 items such

that its sum is equal to N.

Method n_Comb begins by determining a vector of c or less multiples of numbers 1, 2, ..., N such that

the sum of all multiples of any one number is less than N and stores them in key_c. For example, for input

parameters (N,c) = (5, 3) (possible 3 combinations of 1, 2, 3, 4, 5 lengthed connected sets that satis�es

a 5-lengthed connected set), we have that the vector key_c is equal to [1 1 2 2 3 4 5]. The reasoning

is as follows:

• Two values of 1's occur since three 1's do not make a 5, however, the sum of two 1's and one 3 makes

a 5. Similarly for two values of 2's.

• Any number greater than half of 5 only appears once since twice that number is greater 5. That is,

inclusion of any multiples of them is redundant.

© University of Pretoria

APPENDIX x

Thus the order of the multiple of any one number included in the vector key_c is such that no multiple

is redundant and that possible c combinations of the numbers in key_c adds up to N.

Next we determine all possible c combinations of the elements in key_c and select those combinations

where their sum is equal to N. We also eliminate repeats of these combinations in this process with a

vector list which keeps track of the number of unique combinations. The �nal variable returned for this

subroutine are permutations of numbers 1, 2, ..., n−1 such that its sum is equal to N. The output for input

parameters (5,c), c = 2, 3, 4, is given in the Figures below.

Figure A.4: All possible 2 permutations such that their sum is equal to 5.

Figure A.5: All possible 3 permutations such that their sum is equal to 5.

Figure A.6: All possible 4 permutations such that their sum is equal to 5.

Note that the maximum number of items to permute is 4 since we can only branch away from the

centre in 4 or less branches. Since N + 1 > N , the only way to branch once from the centre is N -lengthed

connections since anymore would violate the de�nition.

From Figure A.4, we have two possible cases for 5-lengthed connected sets using single branches from 1

- 4 -lengthed connections. Namely we use one single branch from 2-lengthed and 3-lengthed connections,

and one single branch from 1-lengthed and 4-lengthed connections. The rest follows similarly.

�����������������������������

1 start N_Connect (N);

2 size = N;

3 l = (2*size + 1)##2;

4

5 /*N_1 Connections*/

6 N_1 = J(2*size + 1,2*size + 1,0);

7 N_1[(size||size+1),size+1] = 1;

8 call Three_Rotations(N_1,O1,O2,O3);

9 C = shape(N_1,l,1) || shape(O1,l,1) || shape(O2,l,1) || shape(O3,l,1);

© University of Pretoria

APPENDIX xi

10 key = J(4,1,1);

11

12 /*N_n Connections*/

13 do i = 2 to N;

14 C = C || One_Branch(i,size);

15 key = key // J(4*(3**(i-1)),1,i);

16 end;

17

18 /*Determining the 1 - 4 combinations of 1 - N that make n-lengthed connected set*/

19 *1 Combination;

20 idx_N = loc(key = N);

21 All_C = C[,idx_N];

22 check = (All_C > 0)[+,];

23 keep = loc(check = N+1);

24 All_C = All_C[,keep];

25 *2 - 4 Combinations;

26 mix = 0;

27 do cmb = 2 to min(4,N);

28 N_sum = n_Comb (N,cmb);

29

30 *Applying the form of the c permutation to our complete one branch set C;

31 do i = 1 to nrow(N_sum);

32 u_j = unique(N_sum[i,])`;

33

34 *Determining the number of the multiple of each number in c;

35 free idx_i idx_n;

36 u_j = u_j || J(nrow(u_j),1,0);

37 do j = 1 to nrow(u_j[,1]);

38 u_j[j,2] = ncol(loc(N_sum[i,] = u_j[j,1]));

39 idx_n = idx_n || ncol(loc(key = u_j[j,1]));

40 end;

41

42 *Finding all combinations of c;

43 context1 = ncol(loc(key < u_j[1,1]))[+];

44 mix = allcomb(idx_n[1],u_j[1,2]) + context1;

45 if nrow(u_j) > 1 then do;

46 do j = 2 to nrow(u_j);

47 next_mix = allcomb(idx_n[j],u_j[j,2]);

48

49 free mixmix;

50 do k = 1 to nrow(next_mix);

51 context2 = ncol(loc(key < u_j[j,1]))[+];

52 mixmix = mixmix // (mix

53 || repeat(next_mix[k,],nrow(mix),1) + context2);

54 end;

55 mix = mixmix;

56 end;

57 end;

58 end;

59

60 *Adding the connected set to the full set All_C;

61 dup_vec = uniform(J(nrow(C),1,1);

62 Add_C = J(l,nrow(mix),0);

63 ii = 1;

© University of Pretoria

APPENDIX xii

64 do i = 1 to nrow(mix);

65 C_temp = (C[,mix[i,]])[,+];

66 dup = (C_temp # dup_vec)[+];

67 if (C_temp > 0)[+] = N+1 & ncol(xsect(dup,list_dup)) = 0 then do;

68 Add_C[,ii] = (C_temp > 0);

69 list_dup = list_dup // dup;

70 ii = ii + 1;

71 end;

72 end;

73 All_C = All_C || Add_C[,1:ii-1];

74 end;

75

76 return (All_C);

77 finish N_Connect;

�����������������������������

Input variable

N: 1× 1 The order (or length) of the connected sets.

Return variable

All_C: (2N + 1)2 × cN The matrix containing all the possible forms of N-lengthed connected sets in its

columns.

Method N_Connect begins by �nding all branches of length 1 to N by calling One_Branch (and manually

for 1-lengthed connected sets, since One_Branch does not work for N = 1). We store all branches in matrix

C and keep track of their locations with vector key where jth element in key represents the order of the

connecte set and references the jth column in C. For example, if the 10th element in key is 4, then it

implies that the 10th column in C contains a 4-lengthed connected sets.

Next we determine the 1 to 4 permutations of items {1, 2, ..., N} such that the sum of the permutation

is equal to N.

• For 1 permutation, only item N is possible.

• For 2 to 4 permutations, we require subroutine n_Comb (see above for details).

For each of the output from n_Comb we then determine the multiple of each item in the permutation.

This then indicates the number of distinct items to choose from each connected set. For example, from

Figure A.6, we require three items from set 1 and one item from set 2 for possible 5-lengthed connected

sets. However, because we cannot choose any two items twice within any set (since this would decrease

the order of the connection), we need to choose three distinct items from the set of 1-lengthed connected

sets and one item the set of 2-lengthed connections.

© University of Pretoria

APPENDIX xiii

From here, we �nd all the possible ways of choosing n1 items from set 1, n2 items from set 2, ..., nN items

from set N, where nk is the multiple of the number appearing from set k in n_Comb and card{n1, n2, ..., nN},

for k = 1, 2, ..., N. For all these combinations, we:

1. Sum up the combination of the connected sets.

2. Check that the �nal connected set is of order N.

3. Check for uniqueness.

If the resulting connected set is of order N and is unique to the set All_C (to prevent duplicates), we

append it to All_C.

We now demonstrate the subroutine by calling N_Connect with N = 5. Since the beginning of the

code is straight forward, we start the demonstration at the cmb loop - where we �nd all possible 2, 3, 4

permutations of the items in the set {1, 2, ..., N− 1} such that the permutation's sum is equal to N.

For all 2 permutations of the numbers {1, 2, 3, 4, 5}, we �nd that two of them have their sum equal to

5. This is given in the matrix N_sum below.

For each row N_sum, we determine the multiple of all the numbers that occur in the permutation and

store it in u_j. The �rst row implies that we need to choose 1 item from the set that contains all 2-lengthed

connected sets and 1 item from the set containing all 3-lengthed connected sets. From output idx_N, we

see that there are totals of 12 and 36 items from sets of 2 and 3 -lengthed connected sets respectively.

Therefore, for this particular combination, we require 12× 36 = 432 di�erent combinations to consider.

The matrix mixmix contains at each row the column indices where we reference C - the matrix that

stores all 1, 2, ..., 5 -lengthed connected sets.

© University of Pretoria

APPENDIX xiv

... More Output ...

For the �rst row of mixmix, we can have a (possible) 5-lengthed connected set if we sum columns 5

and 17 of C since it contains a 2 and 3 -lengthed connected set there. Similarly for the other rows.

The connected set obtained from adding the the 5th and 17th column (�rst row of mixmix) is displayed

in the output below. The 1-lengthed connected set is displayed in Figure A.7 and the 4-lengthed1 connected

set in Figure A.8. Since this results in a 4-lengthed connected set, we do not add this to our �nal connected

set All_C.

1As noted before, since one particular 4-lengthed connected set can be created by turning right 3 times, some connections

are invalid from the start. Hence any addition of connections to column 17 of C will not result in a 5-lengthed connected set.

© University of Pretoria

APPENDIX xv

Figure A.7: Matrix form of column 5 from C.

Figure A.8: Matrix form of column 17 from C.

Figure A.9: Resultant connected set from adding columns 5 and 7 of C.

For an example of a successful addition of 2 permuted connected sets, we have that adding columns 3

and 57 of the full set C results in a 5-lengthed connected set. Note that column 3 contains a 1-lengthed

connected set in Figure A.10 and column 57 in Figure A.11 contains a 4-lengthed connected set.

Figure A.10: Matrix form of column 3 from C.

© University of Pretoria

APPENDIX xvi

Figure A.11: Matrix form of column 57 from C.

Figure A.12: Resultant connected set from adding columns 3 and 57 of C.

We add the connected set in Figure A.12 if it is unique to the set All_C by setting all nonzero

elements in the matrix to one (this is done for testing uniqueness), reshaping the matrix to vector form

and appending it to All_C.

This process is repeated for the rest of the 2 permutations, then for all 3 and 4 permutations until

All_C contains all possible 5-lengthed connected sets.

Note that N_Connect may be run for all N > 1, however, because the programs are computationally

intensive, it is not recommended for N > 9.

�����������������������������

© University of Pretoria

APPENDIX xvii

An empirical study of image pixels [MATLAB]

Introduction

In this section we describe the process of obtaining the tables in Table 3.1 from MATLAB. In addition to

variables like scalars and matrices, MATLAB also o�ers structure variables where we can store �elds at

each of its elements. For example, if dog is a structure variable, then it have �elds like gender, weight,

height, breed etc. Thus, structure variables are super-variables where we can store many facets of a

particular variable of interest.

Functions

Here we describe the purpose of each function and how they relate to each other:

• Auxiliary functions

1. Map_Maker

Map_Maker is used to created the dependence structure de�ned in section 3.2 of Chapter 3 for

di�erent values of K. Its purpose is for convenience since we have generalised the MATLAB

code to not only accept the dependence structure in sectrion 3.2, but also others as well.

2. Diamond_Maker

Similar to Map_Maker, but with no �lling. Thus, in using maps from Diamond_Maker as input

map_in, we only focus on the border pixels of the dependence structure - limiting the focus of

our study and decreasing the amount of computations required for a full run of a video.

• Main functions

1. TSA_Image

For a video stream as input, TSA_Image models, for each pixel (i, j) within a frame, as a AR

process and estimates its p parameters with CLS using 500 observations - that is, the video

must contain at least 500 frames. The number p is such that the residuals are uncorrelated

(according to the Durbin-Watson test of uncorrelated residuals) and thus is a white noise

process. We also perform a test for normality with the Anderson-Darling test on the residuals.

2. TSA_Correl_Image

TSA_Correl_Image �nds the covariance and correlation between the centre pixel and the other

pixels present in an input dependence structure. In addition, we also determine its mean (with

respect to the AR model estimated by TSA_Image). Its purpose is to understand the video

better with sample statistics, more importantly, the correlations between the centre pixel and

the rest in a dependence structure.

© University of Pretoria

APPENDIX xviii

3. TSA_HypoTest

TSA_HypoTest uses the AR model estimated by TSA_Image to obtain residuals for each pixel

in the dependence structure. Then we perform Haugh's test of independent univariate time

series [12] with the centre pixel and the rest de�ned in the dependence structure.

• Supplementary functions

1. Ave_ARpar

For the input image used in TSA_Image, Ave_ARpar �nds the average of the AR regressive

parameters in the video stream.

2. TSA_FAverage

For the input image used in TSA_Correl_Image, TSA_FAverage �nds the average of the corre-

lations in the dependence structures for each pixel in the video stream.

We now begin explaining the functions in detail.

�����������������������������

1 function [map] = Map_Maker(lim)

2

3 n = 2*lim+1;

4 map = zeros(n,n);

5 for i = 1 : n

6 if i < lim + 1

7 map(i,(lim+2-i:lim+i)) = 1;

8 elseif i > lim + 1

9 k = n - i + 1;

10 map(i,(lim+2-k:lim+k)) = 1;

11 else

12 map(i,(1:n)) = 1;

13 end

14 end

15

16 end

�����������������������������

Input variable

lim: 1× 1 The number of connected elements to extend from the centre.

Return variable

map: (2 ∗ lim + 1)× (2 ∗ lim + 1) A matrix representation of the dependence structure de�ned in section

3.2 of Chapter 3.

© University of Pretoria

APPENDIX xix

Method Map_Maker creates the dependence structure de�ned in section 3.2 with lim = K. It assigns a

value of one where the elements of the matrix corresponds to the form of the dependence structure. For

example, for M (3), we have that map = Map_Maker(3) produces the following matrix in MATLAB:

�����������������������������

1 function [Diamond] = Diamond_Maker(lim)

2

3 out = Map_Maker(lim);

4 in = Map_Maker(lim-1);

5

6 s_out = size(out);

7 s_in = size(in);

8

9 in = [zeros(s_in(1)+1,1) , [zeros(1,s_in(2)) ; in]];

10 [I,J] = ind2sub(size(in),find(in == 1));

11 ind = sub2ind(s_out,I,J);

12

13 Diamond = out;

14 Diamond(ind) = 0;

15 Diamond(lim+1,lim+1) = 1;

16

17 end

�����������������������������

Input variable

lim: 1× 1 The number of elements to extend from the centre.

Return variable

Diamond: (2 ∗ lim + 1)× (2 ∗ lim + 1) A matrix representation of a diamond.

Method Diamond_Maker creates a `hollow' dependence structure by calling Map_Maker twice - �rst to

de�ne the full structure, second to subtract from the �rst to obtain to remove all the 1's in the �lling.

For example, calling Di = Diamond_Maker(3) produces the following output from MATLAB:

© University of Pretoria

APPENDIX xx

�����������������������������

1 function [TSA] = TSA_Image(Image)

2

3 %Obtaining image dimensions

4 [m , n] = size(Image(1,1).frames);

5

6 %Initialising structure classes for speed

7 TSA(m,n).normal = 0;

8 TSA(m,n).rescorr = 0;

9 TSA(m,n).ARlag = 0;

10 TSA(m,n).ARpar = zeros(1,10);

11 for i = 1 : m

12 for j = 1 : n

13 f = ones(500,1);

14

15 for k = 1 : 500

16 f(k) = Image(k,1).frames(i,j);

17 end

18

19 dw = 0;

20 lag = 0;

21 stop = 0;

22 %Estimating time series parameters with CLS

23 while dw < 0.05 && stop == 0

24 lag = lag + 1;

25 y = f(lag+1:500);

26 X = [];

27 for l = 1 : lag;

28 X = [f(l:500-(lag-(l-1))) , X];

29 end

30 X = [ones(n-lag,1) , X];

31 b = inv(X'*X)*X'*y;

32 r = y - X*b;

33

34 %Durbin-Watson test for uncorrelated residuals

35 dw = dwtest(r,X);

36 if lag > 10

37 stop = 1;

38 end

39 end

40 %Anderson-Darling test for normality of residuals

© University of Pretoria

APPENDIX xxi

41 ad = adtest(r);

42

43 TSA(i,j).normal = ad;

44 TSA(i,j).rescorr = dw;

45 TSA(i,j).ARlag = numel(b) - 1;

46 TSA(i,j).ARpar(1:numel(b)) = b;

47 end

48 end

49

50 end

�����������������������������

Input variable

Image: k×1 A structure variable containing an image sequence (video) with each structure element holding

one frame in a �eld called frames: m× n.

Return variable

TSA: m × n A structure variable containing the following �elds at each element for each pixel (i, j),

i = 1, 2, ..., m and j = 1, 2, ..., n:

normal: 1× 1 The p-value from the Anderson-Darling test for normality of residuals.

rescorr: 1× 1 The p-value from the Durbin-Watson test for uncorrelated residuals.

ARlag: 1× 1 The number of AR parameters required for the time series model.

ARpar: 1×10 The vector containing the estimated AR parameters from conditional least squares. Note

that the maximum number of AR parameters allowed is 10.

Method TSA_Image begins by initialising �elds normal, rescorr, ARlag and ARpar. This is done to

improve on computing speed. Then for each pixel (i, j) within the frame we extract 500 observations from

the video stream to estimate our AR parameters. The procedure of estimation is as follows [lines 11 - 48]:

1. Start p, the number of AR parameters, at 1.

2. [lines 25 - 31] Formulate the vector of dependent observations y and design matrix X as

y = xn = [xn xn−1 ... xp+1]′,

and

X = [1 xn−1 xn−2 ... xn−p],

with xi the ith observation in the sample of pixels. Estimate the AR parameters by CLS as

y = Xb,

with b = [c φ1 φ2 ... φp]
′.

© University of Pretoria

APPENDIX xxii

3. [lines 33 & 35] Compute the residuals εεε = y −Xb then apply the Durbin-Watson test for uncorrelated

residuals (the function readily available in MATLAB).

4. If the p-value of the test is less than 0.05 then redo steps 2 and 3 with new p equal to old p plus 1,

else proceed to step 5.

5. [lines 41 - 46] Apply the Anderson-Darling test for normality (the function readily available in MAT-

LAB) on the residuals, store the p-values from the Anderson-Darling and Durbin-Watson tests, and

the AR parameters in the appropriate �elds. Move onto the next pixel.

�����������������������������

1 function [TSACorr] = TSA_Correl_Image(V_range, H_range, map_in, Image , TSA)

2

3 %Determining image size

4 s_map = size(map_in);

5 cen = s_map(1) - (s_map(1) - 1)/2;

6

7 %Centering the dependence structure map_in

8 [I,J] = find(map_in == 1);

9 M_full = transpose([I-cen,J-cen]);

10

11 D_H = (H_range(1) : H_range(2));

12 D_V = (V_range(1) : V_range(2));

13

14 %Preallocating structure fields for speed

15 sam = 500;

16 TSACorr(V_range(2)-V_range(1)+1,H_range(2)-H_range(1)+1).Corr = zeros(s_map(1),s_map(1));

17 TSACorr(V_range(2)-V_range(1)+1,H_range(2)-H_range(1)+1).Cov = zeros(s_map(1),s_map(1));

18 TSACorr(V_range(2)-V_range(1)+1,H_range(2)-H_range(1)+1).Map = zeros(s_map(1),s_map(1));

19 TSACorr(V_range(2)-V_range(1)+1,H_range(2)-H_range(1)+1).Mean = zeros(s_map(1),s_map(1));

20 for i = V_range(1) : V_range(2)

21 for j = H_range(1) : H_range(2)

22 %Creating maps to suit current (i,j) location. Here, if the indices

23 %of TestM are contained in D_H and D_V, then we choose those

24 %indices as our current map.

25 TestM = M_full + repmat([i;j],1,size(M_full,2));

26 loc_i = unique(intersect(TestM(1,:),D_V)) - i;

27 loc_j = unique(intersect(TestM(2,:),D_H)) - j;

28

29 map = [];

30 for ii = 1 : size(loc_i,2)

31 for jj = 1 : size(loc_j,2)

32 if map_in(loc_i(ii)+cen, loc_j(jj)+cen) ~= 0

33 map = [map , [loc_i(ii) ; loc_j(jj)]];

34 end

35 end

36 end

37

38

39 X = zeros(sam,size(map,2));

40 X_bar = zeros(1,size(map,2));

© University of Pretoria

APPENDIX xxiii

41 for m = 1 : size(map,2)

42 for n = 1 : sam

43 X(n,m) = Image(n,1).frames(i+map(1,m),j+map(2,m));

44 end

45

46 par = TSA(i+map(1,m),j+map(2,m)).ARpar;

47 X_bar(m) = par(1)/(1 - sum(par(2:numel(par))));

48 end

49

50 %Sample statistics.

51 X0 = X - repmat(X_bar,size(X,1),1);

52 X_cov = transpose(X0)*X0/(sam-1);

53 D = real(sqrt(inv(eye(size(X_cov,1)).*(X_cov))));

54 X_cor = D*X_cov*D;

55

56 %Storing results in structures. With (0,0) as a reference point, we

57 %can recreate the map_in using our temporary map.

58 i0 = find(map(1,:) == 0);

59 j0 = find(map(2,:) == 0);

60 loc0 = intersect(i0,j0);

61 for m = 1 : size(map,2)

62 TSACorr(i,j).Corr(map(1,m)+cen,map(2,m)+cen) = X_cor(loc0,m);

63 TSACorr(i,j).Mean(map(1,m)+cen,map(2,m)+cen) = X_bar(m);

64 end

65 TSACorr(i,j).Cov = X_cov;

66 TSACorr(i,j).Map = map;

67 end

68 end

69

70 end

�����������������������������

Input variables

V_range: 2×1 A vector storing the range of vertical pixels to consider when running TSA_Correl_Image with

�rst and last element the minimum and maximum of the pixel location respectively. The intersection

of V_range and H_range then de�nes a rectangular region for the function to operate on.

H_range: 2× 1 Similar to V_range but for horizontal considerations.

map_in: mmap ×mmap An odd matrix with 1 at the centre and zeros and ones elsewhere (user-de�ned). Note

that a value of 1 at element (i, j) corresponds to �nding the correlation and covariance between

element (i, j) and the centre for each pixel in the frame.

Image: k × 1 See Input variables in function TSA_Image.

TSA: m× n See Return variable in function TSA_Image.

© University of Pretoria

APPENDIX xxiv

Return variable

TSACorr: V×H A structure variable containing the correlation matrix, covariance matrix and the mean for the

set of pixels de�ned by the dependence structure2 map in �elds Corr, Cov and mean respectively.

Furthermore, we also store the location of these image pixels in a matrix called Map. Note that the

number of rows V of TSA_Corr is determined by V_Range as V = V_range(2) - V_range(1) + 1.

This goes similarly for the number of columns H.

Method [lines 3 - 9] For input dependence structure map_in, we obtain the subscripts of where the value

of 1's occur and centralise them. Thus we obtain, for each value of 1, the total vertical and horizontal

displacement required to travel from the centre to another point within map_in - these are stored in

M_full. This implies that, for each pixel (i, j), we can recreate the dependence structure centred at (i, j)

simply by adding the displacements to (i, j).

[lines 11 - 12] The variables D_H and D_V contain all possible (i, j) pixel locations to consider (as dictated

by V_range and H_range). These are used to prevent the dependence structures from extending beyond

feasible limits of the frame or the user-de�ned limits. For example, for the dependence structure de�ned

in FILLMEIN, we have that centering the structure at the top-left hand corner pixel (1, 1) places parts

of the structure beyond the scope of the frame. Intersecting D_H and D_V with the dependence structure

at (1, 1), we will get usable pixel information.

[lines 39 - 66] For each pixel within the dependence structure centred at (i, j), we extract 500 samples

from the video stream. Then we compute the sample covariance matrix and sample correlation matrix.

After which we store these results with respect to the input dependence structure. This is repeated for

all (i, j) dictated by V_range and H_range.

�����������������������������

1 function [Ave_pval , TSA_HypoTest] = TSA_HypoTest(V_range , H_range , map_in ,

2 alpha , TSA , Image)

3

4 %Determining image size

5 [m , n] = size(TSA);

6

7 %Centering the dependence structure map

8 s_map = size(map_in);

9 cen = s_map(1) - (s_map(1) - 1)/2;

10 [I,J] = find(map_in == 1);

11 M_full = transpose([I-cen,J-cen]);

12

13 %Determining all possible pixel values

14 D_H = (H_range(1) : H_range(2));

15 D_V = (V_range(1) : V_range(2));

16

17 sam = 500;

18 M = round(log(sam));

2Not a MATLAB structure, but the dependence structure de�ned in FILLMEIN

© University of Pretoria

APPENDIX xxv

19

20 %Preallocating structure fields for speed

21 TSA_HypoTest(m,n).p_value = zeros(s_map(1),s_map(1));

22 TSA_HypoTest(m,n).Haugh = zeros(s_map(1),s_map(1));

23 TSA_HypoTest(m,n).RejH0 = zeros(s_map(1),s_map(1));

24 Ave_pval = zeros(s_map(1),s_map(1));

25 Nval = Ave_pval;

26 for i = V_range(1) : V_range(2)

27 for j = H_range(1) : H_range(2)

28 %Creating maps to suit current (i,j) location. Here, if the indices

29 %of TestM are contained in D_H and D_V, then we choose those

30 %indices as our current map

31 TestM = M_full + repmat([i;j],1,size(M_full,2));

32 loc_i = unique(intersect(TestM(1,:),D_V)) - i;

33 loc_j = unique(intersect(TestM(2,:),D_H)) - j;

34

35 map = [];

36 for ii = 1 : size(loc_i,2)

37 for jj = 1 : size(loc_j,2)

38 if map_in(loc_i(ii)+cen, loc_j(jj)+cen) ~= 0

39 map = [map , [loc_i(ii) ; loc_j(jj)]];

40 end

41 end

42 end

43

44 %Creating a temporary observation matrix X to find the residuals

45 %from the AR model defined in TSA

46 X = zeros(sam,size(map,2));

47 for nn = 1 : sam

48 for mm = 1 : size(map,2)

49 X(nn,mm) = Image(nn,1).frames(i+map(1,mm),j+map(2,mm));

50 end

51 end

52

53 i0 = find(map(1,:) == 0);

54 j0 = find(map(2,:) == 0);

55 loc0 = intersect(i0,j0);

56

57 %Computing residuals for centre pixel

58 lag = TSA(i,j).ARlag;

59 y0 = X(lag+1:sam,loc0);

60 X0 = [];

61 for l = 1 : lag;

62 X0 = [X(l:sam-(lag-(l-1)),loc0) , X0];

63 end

64 X0 = [ones(sam-lag,1) , X0];

65 b = TSA(i,j).ARpar(1:lag+1)';

66 u0 = y0 - X0*b;

67

68 %Computing residuals for the other pixels defined in the dependence

69 %structure. In addition, apply Haugh's test of independence.

70 for mm = 1 : size(map,2)

71 i1 = i + map(1,mm);

72 j1 = j + map(2,mm);

© University of Pretoria

APPENDIX xxvi

73

74 if mm ~= loc0 && TSA(i1,j1).ARlag < 10

75 lag = TSA(i1,j1).ARlag;

76 y1 = X(lag+1:sam,mm);

77 X1 = [];

78 for l = 1 : lag;

79 X1 = [X(l:sam-(lag-(l-1)),mm) , X1];

80 end

81 X1 = [ones(sam-lag,1) , X1];

82 b = TSA(i1,j1).ARpar(1:lag+1)';

83 u1 = y1 - X1*b;

84

85 s = 0;

86 for k = -M : M

87 s = s + r_uv(k,u0,u1)^2;

88 end

89 s = s*min(numel(u0),numel(u1));

90

91 i_map = cen + map(1,mm);

92 j_map = cen + map(2,mm);

93 TSA_HypoTest(i,j).p_value(i_map,j_map) = 1 - chi2cdf(s,2*M+1);

94 TSA_HypoTest(i,j).Haugh(i_map,j_map) = s;

95 end

96 end

97

98 %Extracting p-values from each test

99 p_val = TSA_HypoTest(i,j).p_value;

100 if sum(sum(isnan(p_val))) == 0

101 s = TSA_HypoTest(i,j).Haugh;

102 TSA_HypoTest(i,j).RejH0 = (p_val < alpha).*(s > 0);

103

104 m1 = size(p_val,1);

105 n1 = size(p_val,2);

106 Ave_pval(1:m1,1:n1) = Ave_pval(1:m1,1:n1) + p_val;

107 Nval(1:m1,1:n1) = Nval(1:m1,1:n1) + (s > 0);

108 end

109 end

110 end

111 Ave_pval = Ave_pval.*(Nval > 0)./Nval;

112

113 end

�����������������������������

Input variables

V_range: 2× 1 See Input variables in function TSA_Correl_Image.

H_range: 2× 1 See Input variables in function TSA_Correl_Image.

map_in: mmap ×mmap See Input variables in function TSA_Correl_Image.

alpha: 1×1 The signi�cance level for Haugh's [12] test of independence between two univariate time series.

© University of Pretoria

APPENDIX xxvii

TSA: m× n See Return variable in function TSA_Image.

Image: k × 1 See Input variables in function TSA_Image.

Return variables

Ave_pval: mmap ×mmap A matrix containing the average of the p-values of the tests with its structure de�ned

by map_in.

TSA_HypoTest: m × n A structure variable with each element (i, j) containing the hypothesis tests results for

corresponding pixel at location (i, j). The following �elds are embedded within each structure

element:

p_value: mmap×mmap A matrix containing the p-values of the tests with its structure de�ned by map_in.

Haugh: mmap ×mmap A matrix containing the test statistics of the tests with its structure de�ned by

map_in.

RejH0: mmap ×mmap A matrix containing 0's and 1's of the tests with its structure de�ned by map_in.

Note that 1 implies we have rejected the null hypothesis of independence and 0 otherwise.

Method Same as TSA_Correl_Image, TSA_HypoTest begins by developing the displacements from the

centre to points in the input map_in and determining the range of i and j values so that the dependence

structure centred at each pixel (i, j) is in context.

[lines 44 - 51] At pixel (i, j), create a temporary observation matrix X to store 500 observations of the

pixel variables present within the input dependence structure.

[lines 53 - 66] To begin with Haugh's test of independence between two univariate time series [12], we

begin by calculating the residuals for the centre pixel and �xing it constant for the particular ith and jth

iteration of the two vertical and horizontal pixel loops. This is because these residuals remain constant

throughout the test for each pixel within the dependence structure. To obtain the residuals, we use the

information from the structure variable TSA to recreate our design matrix X from CLS (since TSA contains

the estimated AR parameters) and vector of regressors y, and set the residuals as εεε = y −Xb, with b

the vector containing our AR parameters.

[lines 68 - 96] This process is repeated for all pixel present within the dependence structure. In addition,

we implement Haugh's test of independent univariate time series [12] with the centre pixel and the others.

We store the p-values and their test statistics in �elds p_value and Haugh respectively.

[lines 98 - 107] In these lines we keep a running total of the p-values in the dependence structure where,

at the end of the code, we divide by the total number of occurences to get the average p-value of the

whole dependence structure.

�����������������������������

© University of Pretoria

APPENDIX xxviii

1 function [Ave_ARpar] = Ave_ARpar(TSA)

2

3 [m,n] = size(TSA);

4 N = 0;

5 Ave_ARpar = zeros(11,1);

6 for i = 1 : m

7 for j = 1 : n

8 ARpar = TSA(i,j).ARpar(2:numel(TSA(i,j).ARpar));

9 ARpar = reshape(ARpar,numel(ARpar),1);

10

11 if sum(isnan(ARpar)) == 0 && sum(isinf(ARpar)) == 0

12 Ave_ARpar(1:numel(ARpar)) = Ave_ARpar(1:numel(ARpar)) + ARpar;

13 N = N + 1;

14 end

15

16 end

17 end

18

19 Ave_ARpar = Ave_ARpar/N;

20

21 end

�����������������������������

Input variable

TSA: m× n See Return variable in function TSA_Image.

Return variable

Ave_ARpar: 11× 1 A vector containing the average of the AR parameters within the video from TSA_Image.

Method For each pixel (i, j), Ave_ARpar keeps a running sum of the AR parameters of the pixel in the

video stream. The �nal sum is then divided by the total number of occurences to obtain the average.

�����������������������������

1 function [Corr_Ave] = TSA_FAverage(TSACorr)

2

3 Corr_Ave = zeros(size(TSACorr(1,1).Corr,1),size(TSACorr(1,1).Corr,1));

4 N = Corr_Ave;

5

6 for i = 1 : size(TSACorr,1)

7 for j = 1 : size(TSACorr,2)

8 rho = TSACorr(i,j).Corr;

9

10 if sum(sum(isnan(rho))) == 0

11 size_rho = size(rho);

12 Corr_Ave(1:size_rho(1),1:size_rho(2)) = Corr_Ave(1:size_rho(1),1:size_rho(2))

13 + rho;

14 N(1:size_rho(1),1:size_rho(2)) = N(1:size_rho(1),1:size_rho(2)) + (rho ~= 0);

15 end

© University of Pretoria

APPENDIX xxix

16 end

17 end

18

19 Corr_Ave = Corr_Ave ./ N;

20 end

Input variable

TSACorr: m× n See Return variable in function TSA_Correl_Image.

Return variable

Corr_Ave: mmap ×mmap The average of the correlations within each dependence structure.

Method We sum over all correlations within each dependence structure and divide the result by the

total number of occurences.

�����������������������������

© University of Pretoria

APPENDIX xxx

Noise removal in images [MATLAB]

Introduction

In this section we provide the codes used to obtain results in Chapter 4. A summary of the functions is

given below:

LCG: Simulates uniform variates using the LCG algorithm.

Box_Muller: Simulates standard normal variates using the Box-Muller algorithm (uses LCG).

Noisy: Simulates random variates from distributions speci�ed in Table 4.1 of Chapter 4 (uses LCG and

Box_Muller).

L_n: Applies the Ln operator on an image f .

U_n: Applies the Un operator on an image f .

PP_plotv2: Finds the PP plot co-ordinates for input noise sample.

�����������������������������

1 function [U] = LCG(a, c, m, x0, dim)

2

3 n = dim(1)*dim(2);

4

5 x = [x0 ; zeros(n,1)];

6 for i = 2 : (n+1)

7 x(i) = mod(a*x(i-1) + c, m);

8 end

9 x = x(2:n+1,:)/m;

10

11 U = reshape(x,dim(1),dim(2));

12

13 end

�����������������������������

Input variables

a: 1× 1 The multiplier.

c: 1× 1 The increment.

m: 1× 1 The modulus.

x0: 1× 1 The initial value (seed).

dim: s× t The dimension of the matrix in which we populate with random uniform variates.

© University of Pretoria

APPENDIX xxxi

Return variable

U: s× t A matrix containing independent uniform variates.

Method With an initial value x0 (seed), the function obtains a sequence of integers x1, x2, ..., xst with

the recursive formula given by

xn = (axn−1 + c)(mod m).

Thus xn is the remainder of axn−1 + c after dividing by m. The integers x1, x2, ..., xst are then multiplied

by 1/m to obtain mn random numbers on the interval [0, 1).

�����������������������������

1 function [N , U] = Box_Muller(a, c, m, x0, dim)

2

3 n = dim(1)*dim(2);

4 if mod(n,2) ~= 0

5 n = n + 1;

6 end

7

8 U = LCG (a, c, m, x0, [n 1]);

9

10 U_v = reshape(U,n,1);

11

12 odd_idx = (1:2:n);

13 even_idx = (2:2:n);

14

15 z1 = sqrt(-2*log(U_v(odd_idx,:))) .* cos(2*pi*U_v(even_idx,:));

16 z2 = sqrt(-2*log(U_v(odd_idx,:))) .* sin(2*pi*U_v(even_idx,:));

17

18 N = zeros(dim);

19 N(odd_idx) = z1;

20 select = intersect(even_idx,(1:dim(1)*dim(2)));

21 N(select) = z2(1:numel(select));

22

23 end

�����������������������������

Input variables

a: 1× 1 The multiplier.

c: 1× 1 The increment.

m: 1× 1 The modulus.

x0: 1× 1 The initial value (seed).

dim: s× t The dimension of the matrix in which we populate with standard random normal variates.

© University of Pretoria

APPENDIX xxxii

Return variables

N: s× t A matrix containing independent standard normal variates.

U: s× t A matrix containing the independent uniform variates used to simulate the normal variates in

N.

Method Since the Box-Muller algorithm generates an even number of standard normal variates, [lines

3 - 6] ensures that we simulate an even number of variates. For each pair of uniform variates (ui, ui+1) in

u, i = 1, 3, 5, ..., st− 1 generated by the LCG ([line 8]), compute,

zi =
√
−2 lnu1 cos(2πu2), and

zi+1 =
√
−2 lnu1 sin(2πu2).

Note that zi and zi+1 are independent standard normal variates and are stored in z1 and z2 respectively.

Next, store all random standard normal variates in a matrix N by selecting from the appropriate elements

of z1 and z2.

�����������������������������

1 function [Noise , U] = Noisy (a , c, m, x0, dim, k, std_dev)

2

3 var = std_dev^2;

4 U = LCG(a, c, m, x0, dim);

5 if k == 1

6 Noise = (U .* (2*sqrt(3)*std_dev)) - sqrt(3)*std_dev;

7 elseif k == 2

8 [Noise , U1] = Box_Muller(a, c, m, x0, dim);

9 Noise = Noise*std_dev;

10 elseif k == 3

11 s = sqrt(3*var/pi^2);

12 Noise = -s*log(U .^ (-1) - 1);

13 elseif k == 4

14 s = 2/(4 - pi)*var;

15 Noise = sqrt(-2*s*log(1 - U)) - sqrt(-2*s*log(0.5));

16 elseif k == 5

17 beta = sqrt(6/(pi^2)*var);

18 mu = -beta*0.5772;

19 Noise = -beta*log(-log(U)) + mu;

20 elseif k == 6

21 Noise = -std_dev*log(1 - U) + std_dev*log(0.5);

22 end

23

24 end

�����������������������������

Input variables

a: 1× 1 The multiplier.

© University of Pretoria

APPENDIX xxxiii

c: 1× 1 The increment.

m: 1× 1 The modulus.

x0: 1× 1 The initial value (seed).

dim: m× n The dimension of the matrix in which we populate with random variates.

k: 1× 1 The type of noise to generate (see Method).

std_dev: 1× 1 The standard deviation of the random numbers.

Return variables

Noise: m × n A matrix containing independent variates from the same distribution speci�ed by k with

standard deviation std_dev.

U: m × n A matrix containing the independent uniform variates used to simulate the normal variates

in N.

Method Noisy simulates random variates from distributions given in Table 4.1 of Chapter 4. This is

done by setting the mean of the distribution equal to zero and solving for the distribution parameters by

setting its variance equal to the input parameter std_dev2. If the distribution is not normal, the inverse

transform method is used, else the Box-Muller is used. The type of distribution to simulate is determined

by the input parameter k, if:

k = 1 Noisy simulates random variates from the uniform distribution.

k = 2 Noisy simulates random variates from the normal distribution.

k = 3 Noisy simulates random variates from the logistic distribution.

k = 4 Noisy simulates random variates from the Rayleigh distribution.

k = 5 Noisy simulates random variates from the Gumbel distribution.

k = 6 Noisy simulates random variates from the exponential distribution.

In addition, for Rayleigh and exponential distributions, the whole sample is shifted to the left by its

median.

�����������������������������

1 function [L_f] = L_n(f_in, n)

2

3 f = [zeros(1,size(f_in,2)+2) ;

4 zeros(size(f_in,1),1) , f_in , zeros(size(f_in,1),1) ;

5 zeros(1,size(f_in,2)+2)];

© University of Pretoria

APPENDIX xxxiv

6

7 mn = size(f);

8 remove = f;

9 numele = sort(unique(f),'descend');

10

11 for i = 1 : numel(numele)

12 isnumele = (f >= numele(i));

13

14 c = bwconncomp(isnumele, 4);

15 c_struct = cell2struct(c.PixelIdxList,'PixIdx',1);

16

17 for j = 1 : size(c_struct,1)

18 if size(c_struct(j,1).PixIdx) <= n

19 [I,J] = ind2sub(mn,c_struct(j,1).PixIdx);

20 IJ_all = [I + 1 , J ;

21 I , J + 1 ;

22 I - 1 , J ;

23 I , J - 1];

24

25 check1 = (IJ_all > 0);

26 check2 = (IJ_all(:,1) <= mn(1));

27 check3 = (IJ_all(:,2) <= mn(2));

28 check = (check1 == [check2 , check3]);

29 IJ_all = IJ_all((sum(check,2) == 2) ,:);

30

31 ind_all = sub2ind(mn,IJ_all(:,1),IJ_all(:,2));

32 ind_set = sub2ind(mn,I,J);

33 ind_sur = setdiff(ind_all, ind_set);

34

35 if max(f(ind_sur)) < numele(i)

36 remove(ind_set) = max(f(ind_sur));

37 end

38 end

39 end

40 end

41

42 L_f = remove(2:mn(1) - 1, 2:mn(2) - 1);

43

44 end

�����������������������������

Input variables

f_in: h× w An image f .

n: 1× 1 The level n at which to apply Ln.

Return variable

L_f: h× w The image Lnf .

© University of Pretoria

APPENDIX xxxv

Method L_f removes all pulses of size n or less by using the Roadmaker's algorithm. That is, it does

not incorporate the de�nition (this would computationally intense).

[lines 3 - 5] appends zeros around the image f. This is done so that 4-connectivity can be used. Next

we set an empty matrix remove equal to f so that we can track all the removed pulses and store all the

unique elements within f in numele.

[lines 11 - 40] For each element in numele, say u, we �nd the logical matrix isnumele where,

isnumeleij =

 1

0

if the element in fij is greater than u

otherwise.

Apply bwconncomp3 on isnumele to extract all connected sets that have pixel values greater than or equal

to u and store all indices in c_struct (a structure variable).

For each element in c_struct determine its size. Since the size of the element indicates the size of

the pulse, we proceed if the size is less than n (since Ln removes all pulses of size n or smaller) else move

onto the next element in c_struct. Next we change the indices to subscripts and determine the indices

that are above, below, to the left, and right of them. After locating the indices, set the pulse equal to the

maximum of its surrounding elements by changing the appropriate values in remove.

Once all the unique elements of f have been examined, all upward pulses of size n or less are removed

in removed. After which we return L_f as removed without the appended zeros.

�����������������������������

1 function [U_f] = U_n(f_in, n)

2

3 f = [zeros(1,size(f_in,2)+2) ;

4 zeros(size(f_in,1),1) , f_in , zeros(size(f_in,1),1) ;

5 zeros(1,size(f_in,2)+2)];

6

7 mn = size(f);

8 remove = f;

9 numele = sort(unique(f),'ascend');

10

11 for i = 1 : numel(numele)

12 isnumele = (f <= numele(i));

13

14 c = bwconncomp(isnumele, 4);

15 c_struct = cell2struct(c.PixelIdxList,'PixIdx',1);

16

17 for j = 1 : size(c_struct,1)

18 if size(c_struct(j,1).PixIdx) <= n

19 [I,J] = ind2sub(mn,c_struct(j,1).PixIdx);

20 IJ_all = [I + 1 , J ;

21 I , J + 1 ;

3bwconcomp(f,c) is a MATLAB function which �nds all nonzero connected sets in f with c-connectivity and stores the

information in a structure variable. The most important �eld of which is .PixelIdxList which contains all the indices of

the connected sets in cell format.

© University of Pretoria

APPENDIX xxxvi

22 I - 1 , J ;

23 I , J - 1];

24

25 check1 = (IJ_all > 0);

26 check2 = (IJ_all(:,1) <= mn(1));

27 check3 = (IJ_all(:,2) <= mn(2));

28 check = (check1 == [check2 , check3]);

29 IJ_all = IJ_all((sum(check,2) == 2) ,:);

30

31 ind_all = sub2ind(mn,IJ_all(:,1),IJ_all(:,2));

32 ind_set = sub2ind(mn,I,J);

33 ind_sur = setdiff(ind_all, ind_set);

34

35 if min(f(ind_sur)) > numele(i)

36 remove(ind_set) = min(f(ind_sur));

37 end

38 end

39 end

40 end

41

42 U_f = remove(2:mn(1) - 1, 2:mn(2) - 1);

43

44 end

Input variables

f_in: h× w An image f .

n: 1× 1 The level n at which to apply Un.

Return variable

U_f: h× w The image Unf .

Method Similar to L_f.

�����������������������������

1 function [TVf] = TV2(f)

2

3 mn = size(f);

4

5 v_diff = f(2:mn(1),:) - f(1:mn(1)-1,:);

6 h_diff = f(:,2:mn(2)) - f(:,1:mn(2)-1);

7

8 TVf = sum(sum(abs(v_diff))) + sum(sum(abs(h_diff)));

9

10 end

�����������������������������

© University of Pretoria

APPENDIX xxxvii

Input variable

f: An image f .

Return variable

TVf: The total variation of image f

Method This function utilises the de�nition of total variation in section 3.3.1 in Chapter 3. It starts

by �nding the vertical di�erences in v_diff, all the horizontal di�erences in h_diff and summing the

absolute value of the di�erences.

�����������������������������

1 function [PP_cord] = PP_plotv2 (noise , k , std_dev)

2

3 sam_n = size(noise,1)*size(noise,2);

4 X = sort(real(reshape(noise,[sam_n,1])));

5 X = X(X ~= 0);

6

7 Emp_Dist = (1/size(X,1) : 1/size(X,1) : 1)';

8

9 var = std_dev^2;

10 if k == 1

11 sam_Dist = (X + sqrt(3)*std_dev)/(2*sqrt(3)*std_dev);

12 elseif k == 2

13 sam_Dist = 0.5 + 0.5*erf((X)/(sqrt(2)*std_dev));

14 elseif k == 3

15 s = sqrt(3*var/pi^2);

16 sam_Dist = (1+exp(-(X/s))).^(-1);

17 elseif k == 4

18 s = 2/(4 - pi)*var;

19 sam_Dist = 1 - exp(-((X + sqrt(-2*s*log(0.5))).^2)/(2*s));

20 elseif k == 5

21 beta = sqrt(6/(pi^2)*var);

22 mu = -beta*0.5772;

23 sam_Dist = exp(-exp(-(X-mu)/beta));

24 elseif k == 6

25 lambda = 1/std_dev;

26 sam_Dist = 1 - exp(-lambda*(X - std_dev*log(0.5)));

27 end

28

29 sam_Dist(sam_Dist < 0) = 0;

30 sam_Dist(sam_Dist > 1) = 1;

31

32 QQ_cord = [Emp_Dist , sort(real(sam_Dist))];

33

34 end

�����������������������������

© University of Pretoria

APPENDIX xxxviii

Input variables

noise: m× n The matrix containing the noise sample.

k: 1× 1 The parameter specifying the type of distribution.

std_dev: 1× 1 The required standard deviation of the distribution.

Return variable

Noise: m× n The matrix containing a sample of the distribution speci�ed by k.

Method The function starts by reshaping the matrix noise into a vector X and sorting the sample in

ascending order. This is done so that we can �nds its sample cdf. The theoretical cdf is the uniform

vector [0, 1], with total number of elements equal to the sample size. For the sample cdf, we determine

the cdf values by using the appropriate distribution function dictated by k, which follows the exact same

call as function Noisy. Finally, because the noise is extracted from images it can contain values outside

the support of the speci�ed distribution, we set all negative cdf values to 0 and all values greater than

one to 1.

Note that for the Rayleigh and exponential distributions we shift the sample to the right by the

appropriate distribution median so that the range of the sample is within the support of the distribution.

�����������������������������

© University of Pretoria

