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Abstract
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The main question that has been answered in this research project is: what
happens to the singularities of the S-matrix when the interaction potential
becomes complex? In other words, we looked at the resonance spectral points
and traced their movements on the complex momentum plane, when the
imaginary part of the potential is gradually increased from zero to a certain
reasonable value. This question is important in many fields of research where
optical potentials are used. An optical potential can effectively take into
account the loss of the beam of particles into all the reaction channels that
are formally ignored. Such a simplified approach is widely used in nuclear
and atomic physics. In order to study the movement of the spectral points,
we used a simple potential and the Jost function method that allowed us to
easily locate the spectral points as complex zeros of the Jost function.
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1 Introduction

Resonance was discovered by Galileo Galilei, during his investigations of pen-
dulums and musical strings in 1602. The vibrations or oscillations of systems
constitute one of the most important fields of study in physics. Virtually
every system possesses the capability for vibration, and most systems can
vibrate freely in a large variety of ways.

As Bishop puts it:

”After all, our hearts beat, our lungs oscillate, we shiver when we
are cold, we sometimes snore, we can hear and speak because our
eardrums and larynges vibrate. The light waves which permit
us to see entail vibration. We move by oscillating our legs. We
cannot even say ’vibration’ properly without the tip of the tongue
oscillating...Even the atoms of which we are constituted vibrate.”
[1]

In classical physics, the phenomenon of resonance occurs when a system is
made to ’vibrate’at a driving frequency that is close to its natural frequency of
vibration. Then, the amplitude of oscillation becomes very large by repeated
application of a relatively small force. [2]

In a classical example of ’mass and spring’ system, the system is acted upon
by an external agent, one parameter of which (the frequency) is varied. The
response of the system, as measured by its amplitude and phase, or by the
power absorbed, undergoes rapid changes as the frequency passes through a
certain value. The form of the response is described by two quantities: a res-
onance frequency, and a width, which characterise the distinctive properties
of the driven system.

Resonance is the phenomenon of driving the system under such conditions
that the interaction between the driving agent and the system is maximised.
The interaction has its maximum at or near the natural frequency. [2]

Resonance phenomena occur whenever vibrations or waves or periodic mo-
tion occurs. There is mechanical resonance, acoustic resonance, electromag-
netic resonance, nuclear magnetic resonance (NMR), electron spin resonance
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1 INTRODUCTION 11

(ESR),etc.

In classical physics, a particle is well localised in space, because its position
and velocity can be measured simultaneously with precision. Within the
context of quantum mechanics, quantum particles display both particle and
wave features (wave-particle duality). A quantum particle is described by
a wave function, Ψ corresponding to the matter wave associated with the
particle. The quantum particle exhibits the de Broglie wave relation of E =
~ω which describes the relationship between the energy E and the circular
frequency ω, and ~ which is the Planck constant [3].

The wave function of a quantum particle is generally denoted as Ψ(E, ~r),
indicating that it is a function of energy E and position ~r. Whilst in clas-
sical mechanics, resonance refers to a state when the system vibrates with
maximum amplitude, in quantum mechanics, resonance is a phenomenon
of localizing Ψ(E, ~r) for a certain time interval. In other words, the
particle stays within a certain defined volume of space longer than expected,
instead of simply passing by. Indeed, the propagation of a wave packet in
the presence of a resonance experiences a time delay [33].

Radioactive decay is an example or instance of a temporarily localized quan-
tum particle, or, of a particle decaying from quantum resonance. A
quantum resonance is a quasi-stationary or quasi-bound states and have a
finite lifetime. When resonance is formed, energy (of the unstable quantum
particle) is rapidly distributed among all possible degrees of freedom and the
quantum particle forgets how it entered into the resonance. This means that
there is no preferred direction for its decay. It further implies that the in-
formation contained in the incoming wave (before it entered into resonance)
is forgotten. This principle forms the basis of the mathematics to locate a
resonance or determine when a resonance will occur [6]. Mathematically, this
fact implies that the asymptotics of the wave function only has the outgoing
wave.

An instance of a resonance decaying isotropically can be observed in the
case of a sample of Polonium atoms 212Po. The nuclei of these atoms can
be viewed as quasi-bound states of 208Pb and α-particles. During the de-
cay process,these α-particles are emitted randomly in all directions with a
uniform distribution. It is an isotropic decay.
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1 INTRODUCTION 12

Quantum resonance decays stochastically according to the radioactive law;

N = N0 exp (−Γt/~) ,

where, N0 is the number of particles in an initial ensemble of quantum par-
ticles,
N is the number of particles at time t,
Γ is the resonance width and is measured in the units of energy. It is com-
monly known as the decay rate.

The time dependent wave functionΨ of the quantum particles that constitute
the ensemble N0 can be expressed as:

Ψ(~r, t) = Ψ(~r) exp (
−i

~
Et)

Note that the space distribution of the probability does not depend on time,
if the energy E is real. Indeed the probability density is given by [3]:

|Ψ(~r, t)|2 = Ψ∗(~r, t)Ψ(~r, t) = |Ψ(~r)|2

In order to satisfy the radioactive law of decay, the time dependent wave
function of the particle, Ψ, must be proportional to exp (−Γt/2~). This
requirement is fulfilled when the energy E has a negative imaginary part,
given as;

E = Er + Ei where Ei = −iΓ/2

then Eresonance = Er − iΓ/2

and Ψ(~r, t) = Ψ(~r) exp
−i

~
(Er − iΓ/2)t

Quantum resonances, similar to bound states,are spectral points. Spectral
points are certain discrete points in the complex energy E− plane, at which
the physical wave function has only outgoing waves in its asymptotic be-
haviour (i.e, how the wave behaves as r → ∞). The bound, resonant and
virtual states are spectral points on the E− plane [15]. The energies of
quantum resonances are however complex eigen values [8]. The imaginary
part Γ determines how fast the resonance decays or the duration the particle
stays localized. The half-life of the quantum resonance is given as

τ1/2 =
~ ln 2

Γ
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1 INTRODUCTION 13

The bigger the value of Γ, the smaller the half-life, i.e., the faster the decay.
The half-life of nuclear decay varies greatly across the spectrum of atoms.
The 14C has a half-life of 5730 years whilst a muon particle µ+ has a lifetime
of 2.2x10−6 seconds. 218Po decays through α-emission with a half-life of
3.1 minutes to 214Pb, whilst the newly created lead particle decays through
β-emission to 214Bi with a half-life of 27 minutes [7].

The temporary localization of a quantum particle, i.e, quantum resonance,
can be visualised in terms of a particle moving towards a centre of force
with such a kinetic energy that its trajectory around the centre is almost
closed. As a result it does many revolutions around the centre before moving
away. The more revolutions it does, the longer the resonance lives . From
a quantum mechanical perspective, the particle forms a partially localized
state which slowly leaks out [9].

Resonances are characterised by discrete values of resonant frequency at
which energy is accumulated in small region of space. The frequency window
around the discrete energy values, are known as the resonance width or Γ.
The accumulated energy leaks out through the window. Narrow resonances
are most pronounced and visible in experiment because the frequency win-
dow or alternatively known as resonance widths, are narrow. The leakage of
energy is thus slower than in the case of broad resonances. This means that
narrow resonances live longer than broad resonances.

Let us consider an experiment in which a ’particle’ is scattered from a ’target’.
The ’particle’ can be, for example, an electron, a nucleon, an atom or a
molecule. The ’target’ can be a nucleus, an atom, a molecule, a flat or
corrugated solid surface. In an elastic scattering experiment the energy of
the ’particle’ is conserved. In a non-elastic scattering experiment there is an
energy exchange between the ’particle’ and the intrinsic degrees of freedom
of the ’target’. Also the final energy of the ’particle’ in its ’out’ asymptote
limit can be smaller or larger than the initial energy of the ’particle’ in its ’in’
asymptote limit. In a reactive scattering experiment the ’particle’ and the
’target’ undergo a change during the re-arrangement collision and become
different species. Two possibilities of scattering exist [12].

(i) Figure 1(a) illustrates a direct scattering event.

(ii) Figure 1(b) illustrates the second possibility, where, due to multiple-
scattering events, the particle is temporarily trapped by the target.
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1 INTRODUCTION 14

Figure 1: Two Different possible Scattering Orbits

When the lifetime of the particle-target system in the region of inter-
action is larger than the collision time in a direct collision process, this
phenomenon is called a resonance phenomenon.

Thus, a resonance state can also be defined as a long-lived state of a system
which has sufficient energy to break-up into two or more subsystems. The
subsystems are associated with the scattering particle and the target [12].

In scenario 1(b), before moving apart, the ’particle’ and the ’target’ stay to-
gether for a while. During the resonance lifetime, the ’particle’ move around
the ’target’ and ’forget’ the direction from which it came [13]. When the res-
onance eventually decays, the particle ’chooses’ the direction to move away
at random. In quantum mechanics, this physical concept is mathematically
formulated. The resonant states are spectral points, i.e, the eigenstates of
the Hamiltonian,

HΨ = EΨ

with pure outgoing wave asymptotics and no ’memory’ of the in-
coming information.

In the system described above of a particle moving towards a centre in a
circular orbit, the wave function describing the resonance state obeys the
differential Schrödinger equation, in spherical coordinates:

{

∂2
r + k2 −

l(l+ 1)

r2

}

Ψl(k, r) = V (r)Ψl(k, r)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



1 INTRODUCTION 15

where k is the wave number [11]. The general solution for this differential
equation asymptotically behaves as:

Ψl(k, r) →
r→∞

f
(in)
l (k)h

(−)
l (kr) + f

(out)
l (k)h

(+)
l (kr)

where h
(±)
l (kr) are the Riccati-Hankel functions. h

(−)
l (kr) represents the

incoming spherical wave and h
(+)
l (kr) is the outgoing spherical waves. The

functions f
(in)
l and f

(out)
l are the amplitudes of the corresponding waves.

They depend on the total energy and vary with the angular momentum
ℓ. [16]

Based on the physical concept that the particle does not remember how it
entered into a resonance state, mathematically, it means that the coefficient
of the incoming wave should be zero, that is;

f
(in)
l (k) = 0

This coefficient is commonly referred to as the Jost function. Siegert ap-
plied this mathematical approach to obtain scattering resonance positions as
far back as 1939 [6]. Resonances therefore correspond to spectral points of
Eresonance which are complex and at which the Jost function of the incom-
ing wave is effectively zero. This is the concept on which this dissertation is
premised.

Several techniques have been developed by scientists over the years for locat-
ing resonances for various potential models. The objective of most studies
is to increase the accuracy of values obtained and to improve the computa-
tional efficiency in locating resonances. There are two sets of methods for
investigating the location of the resonances:

• Directly in the complex energy plane or complex momentum k plane,
since

k2 =
2m

~2
(E)

• Indirectly by analyzing the scattering data at real energies.

Using the direct method, the resonance can be located by finding the zeroes
of the Jost function [14].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



1 INTRODUCTION 16

The direct method is premised on the fact that the energy spectrum of the
Hamiltonian consists of three parts [13]:

• A discrete set of real points on the negative energy axis corresponding
to the bound states,

• Real positive energy line corresponding to the continuum scattering
states,

• A discrete set of points in the lower half of the complex energy plane
corresponding to the resonance states.

The third part are quasi-stationary/resonant states that are unstable, decay-
ing at a rate that increases with the negative value of the imaginary part of
the resonance energy (i.e. Γ/2).

In this dissertation, we use the direct method and trace the location of the
resonance on the complex momentum k plane. We start with the second order
differential radial Schrödinger equation in spherical coordinates. The asym-
totic behaviour (as r → ∞) of the radial wave function ul(k,r), indicates
that it behaves as a linear combination of the Riccati-Hankel functions. By
applying the variation parameters methods and the Lagrange condition [10]
, the second order Shrödinger equation is transformed into a coupled system
of first order differential equations for the Jost functions. The Jost functions
are, as explained previously, amplitudes in the asymtotics of the radial wave
function. A numerical solution is used to solve the coupled differential equa-
tions and to calculate the values of the complex momentum k that result in
the Jost function being zero. These zeroes determine the location or presence
of resonances. On the k− plane, the resonances are spectral points that are
located in the fourth quadrant, i.e., negative imaginary k values and positive
real k values.

The boundary behaviour of the radial wave function from r = 0 at the centre
of the spherical potential, to r at large distances are critical in determining
the solution to the coupled first order differential equations. Within the
spherical boundary under consideration, we assume that the wave function
ul (k,r) must be zero at r = 0. In the case of a finite-range potential,
it is assumed that the potential vanishes to zero at large enough r. Then,
the Jost functions can be accurately determined. The energy parameter, in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



1 INTRODUCTION 17

these differential equations, can be set to any complex value, as required at
resonance.

Thus, using certain boundary conditions, it appears to be simple enough
to determine the zeroes of the Jost functions and hence to locate the reso-
nances. However, in reality, we are confronted with two main challenges in
this approach.

• The first challenge is the asymptotic behaviour of the interacting
potential. In real life the potential does not simply vanish to zero as
the particle moves to infinity.

Realistic potentials have tails extending to infinity. In such cases, the
solutions to the coupled differential equations do not always converge
to the corresponding Jost functions. The zeroes of the Jost functions
cannot be accurately determined and thus, the resonant wave seems to
diverge to infinity.

Realistic potentials are usually divided into two classes, the short-range
and long-range potentials. The short-range potentials tend to vanish
exponentially or faster at infinity. In our dissertation we have used a
potential that vanish at infinity faster than the Coulomb potential (i.e
V (r) = (−e2)/r).

• The second challenge arises from the fact that the scattering event
usually results into non-conservation of the probability density of the
wave function. The probability density is not conserved because of
a loss of flux. What happens generally is that the scattering event
results in a major outcome plus some sub-outcomes (or subsystems)
that account for the loss of flux or particles before the event not being
exactly the same as to what is emitted after the event. Each outcome
can be described by a particular set of partial wave channel. Hence the
event is known as a multi- channel interaction when multiple outcomes
occur.

To resolve the problem that as r → ∞ the potential does not abruptly cut
off (i.e, the first challenge explained above), the common approach is the:

• Complex Coordinate Rotationmethod also known as complex scal-
ing method (CSM). In this method the coordinates of the system are
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1 INTRODUCTION 18

rotated in the complex coordinate (momentum) plane. After the com-
plex rotation,the resonance wave function is damped in the asymptotic
region and the complex eigen value gives the resonance parameters Er

and Γ/2 (the resonance energy and the decay width).

To account for the change or loss in flux subsequent to a scattering event,
that leads to resonance, the most suitable potential that can mathematically
model the interaction between, say two nuclei, is one that has a negative
imaginary as well as a real component [33]. The mathematical implication
of the imaginary component of the potential V (r) is described below.

In general, quantum particles interaction is given by the Shrödinger equation;

(T̂ + V̂ )Ψ = i~
∂Ψ

∂t

where, V̂ represents the effective interacting potential.

If the interacting potential is purely real, then it accounts only for those
events where total probability density is conserved. In nature, however, there
are more reactions occurring, leading to loss in conservation of probability
density. Such reactions remove flux from elastic scattering. This removal
can be equivalently modelled using complex potentials. The imaginary com-
ponent of the potential can also model actual interactions that reproduce
resonances that diverge. The potentials that fit or best model elastic scat-
tering are therefore generally complex.

If the potential is V (r) + iW (r) and the imaginary part W < 0, then it
is an absorptive potential. It accounts for the loss of flux during a scattering
event or an interaction between two or more particles.

Potentials with both real and imaginary components are also referred to as
optical potentials since they describe both the refraction and the absorption,
(that occurs during a scattering event) in the same way as a light wave
passing through a cloudy refractive medium.

The Shrödinger equation is then written as;

(T̂ + V + iW )Ψ = i~
∂Ψ

∂t
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1 INTRODUCTION 19

where it has an imaginary potential W . The rate of loss of flux is then
calculated as;

∂ΨΨ∗

∂t
= −~∇ ·~j +

2

~
WΨΨ∗

where j is the flux or nuclear probability current.

AsW < 0, the imaginary potential effectively acts as a sink of particles. The
imaginary potential accounts for the loss of flux that occurs in a scattering
event. The effective complex potential V + iW is also referred to as the
complex absorbing potential [33].

In this project, initially, we use a purely real central potential, V (r). The
coupled differential equation is solved numerically to locate the zero of the
Jost function. A negative imaginary component is then added to the poten-
tial. The value of the imaginary component is increased gradually. For each
value of the imaginary component the corresponding values of the complex
momentum k, where the Jost function is zero, is calculated. These are then
plotted on the complex k plane. Thus, we obtain a trajectory of resonances
in the fourth quadrant of the complex k− plane.

Since,

k2 =
2µE

~2

it implies that

E =
~
2

2µ

{

(Rek)2 − (Im k)2 + 2i(Rek)(Imk)

}

The values of the resonant energy E can then be calculated as well as the
imaginary part of the energy which is given as;

Ei = 2i(Rek)(Imk)

Knowing that Ei = −Γ/2, the resonance width Γ can be calculated. Thus
we are able to observe the trend in the width of the resonance as the imag-
inary component W or ImV becomes more negative. The observation is
that the spectral points or resonances move further away from the real-k
axis towards the negative imaginary-k axis. That is, as the imaginary com-
ponent of the potential becomes more negative, sub-threshold resonances are
observed.
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1 INTRODUCTION 20

The results correspond to those found elsewhere in the literature. [15] [18] [9].

This report is organised as follows. In the first section, we explain the the-
oretical relationship between the complex momentum k and the complex
energy E when a particle is subjected to a spherical central potential. We
elaborate on how different energy eigen values, result in the quantum particle
being in one of three different states, namely,the bound state, the scattering
state and the resonance state. The asymptotics or boundary conditions that
satisfy the Shrödinger radial equation for each of these states are described.

In the second section we apply the variation parameters method for trans-
forming the radial Schroedinger equation, into a coupled first order linear
differential equations of the Jost functions. The asymptotic behaviour of the
short-range potential in the determination of the zeroes of the Jost function
is explained. We also determine the limit of convergence of the Jost function
on the complex k− plane.

In the third section, we explain the mathematical implications of the imagi-
nary component of a potential, its impact on the divergence of the resonance
wave and the actual complex potential that has been chosen for this project
research. The coupled differential equation is then solved numerically using
an iterative computation to determine the zeroes of the Jost function. The
results of the computation are presented graphically and thus, we demon-
strate the trajectory of the resonance spectral points (that is, zero of Jost
function) as the imaginary component of the potential is decreased incre-
mentally, on the complex k− plane. Broader resonances (spectral points
are located further away from the real positive k− axis) are obtained as the
imaginary component of the potential decreases.

In the final section, the significance of the trajectory of the resonance spectral
points are explained and compared with previous theses. We then give an
overview of instances where the complex absorbing potential approach of
locating resonances can be utilised.
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2 Quantum States

In quantum mechanics, a state of a physical system is completely described
by the wave function Ψ obeying the Schrödinger equation:

EΨ = ĤΨ (1)

It generally relates to standing waves called stationary states (also known as
’orbitals’ as in atomic orbitals or molecular orbitals). The equation describes
stationary states of any quantum particle (i.e., could be proton, neutron,or
electron).

Let us consider the motion of a particle of mass µ moving under the influence
of a potential V . In the coordinate representation, equation (2) reads:

EΨ(~r) =

[

−~
2

2µ
∇2 + V (~r)

]

Ψ(~r) (2)

where:
~ = 1.05459 x 10(−34) J·s and it is the Planck’s constant,
∇2 is the Laplace operator, and
Ψ(~r) is the wave function of the particle, defined over space.

The wave functionΨ contains all the information about a particle or quantum
system.

2.1 The Three Dimensional Schrödinger Equation

In a three dimensional problem, using the spherical coordinates, the Lapla-
cian operator ∇2 or △, has the form;

△ =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂ϕ2
(3)

21
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2 QUANTUM STATES 22

where, the spherical angles θ is the polar coordinate with θ ∈ [0, π]
and, ϕ is the azimuthal coordinate with ϕ ∈ [0, 2π].
Figure below shows the relationship between θ, ϕ and r [28].

Figure 2: Spherical Coordinates

Inserting (3) into equation (2), the three dimensional Schrödinger equation
in spherical coordinates can be expanded as:

EΨ(r, θ, ϕ) =
−~

2

2µ

[

1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂ϕ2

]

Ψ(r, θ, ϕ)

+ V (r)Ψ(r, θ, ϕ) (4)

The wave function Ψ can generally be expressed as:

Ψ(~r, θ, ϕ) =
∑

ℓm

Rℓ(r)Yℓm(θ, ϕ)

where,
Rℓ(r) is the radial part of the wave function,
Yℓm(θ, ϕ) is the angular part of the wave function.

Replacing the unknown function Rℓ(r) with the function uℓ(r) via the rela-
tionship Rℓ(r) = uℓ(r)/r and, using the method of separation of variables,
the equation (4) can be decomposed into r, θ and ϕ [28].

Denoting

U(r) =
2µ

~2
V (r)
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2 QUANTUM STATES 23

for the radial part of the wave function in (4), we obtain:

−
d2uℓ(r)

dr2
+

[

U(r) +
ℓ(ℓ+ 1)

r2

]

uℓ(r) =
2µ

~2
Euℓ(r) (5)

The energy and momentum are related to each other in the same way as in
classical mechanics, that is,

E =
p2

2µ

In quantum mechanics, it is more convenient to use the so-called wave vector
~k = ~~p, for which this relation gives

k2 =
2µ

~2
E

k is also known as the dimensionless momentum and it corresponds to the
’shifted’ energy.

Equation (5) can be further simplified to

{

d2

dr2
+ k2 −

[

ℓ(ℓ+ 1)

r2
+ U(r)

]}

u(r) = 0 (6)

where ℓ(ℓ+ 1)/r2 is analogous to the centrifugal potential of classical
mechanics.

The centrifugal potential is a repelling force that is associated with orbital
angular momentum and it repels the particle away from the spherical centre.
It is called the centrifugal barrier. Since the variable r can take on non-
negative real values only, the centrifugal potential is always positive or zero
[3].
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2 QUANTUM STATES 24

2.2 Asymptotic Behaviour

It is important to understand how both the radial wave function uℓ(r) and
the potential U(r) behave as the particle moves towards the centre, that
is, r → 0 as well as when the particle drifts away from the centre, that is,
r → ∞.

2.2.1 Radial wave behaviour as r → 0

The radial wave function Rℓ(r) is a physical wave that has to be finite
everywhere. Since Rℓ(r) = uℓ(r)/r, then at the origin where r = 0, uℓ(r)
must vanish, i.e., uℓ(0) = 0 at the origin.

For very small values of r, we can assume that the potential U(r) is less
singular than the centrifugal potential, i.e,

lim
r→0

r2U(r) = 0

then the equation (6) reduces to

d2uℓ(r)

dr2
+ k2uℓ(r)−

ℓ(ℓ+ 1)

r2
uℓ(r) ≃ 0 as r → 0

whose solution is of the form;

uℓ(r) = Arℓ+1 +Br−ℓ

where A and B are constants.

Since uℓ(r) vanishes at r = 0 whilst the second term r−ℓ diverges at r = 0,
the latter has to be discarded. Hence, for small values of r, the solution is [3];

uℓ(r) −→
r→0

const · rℓ+1

2.2.2 Potential as r → 0

In order to distinguish the reasonable potentials from the unreasonable ones
(e.g., where the attraction is so strong that the particle falls deep into the
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2 QUANTUM STATES 25

spherical potential well), we consider possible restrictions on the behaviour
of the potential.

Suppose the potential behaves near the centre as;

V (r) −→
r→0

−
α

rs
, where α > 0.

If we look at a wave function that is finite in a small sphere of radius ro
around the centre and is zero outside of this sphere, then it is located near
the point r = 0 with an uncertainty △r ∼ ro.

The corresponding uncertainty of the momentum is thus [27],

△p ∼ ~/ro

And the total energy is;

< E >=< Ekin > + < V >∼
~
2

2µr2o
−
α

rso
(7)

Note that

• < Ekin > is positive

• < V > is negative

This indicates that the total energy < E > can be either +∞ or −∞, as
ro → 0. There are three possibilities that depend on whether the exponent
s is; s > 2 or s < 2 or s = 2

As can be seen from (7), the fall onto the centre (i.e. < E >= −∞) can
be avoided only if s < 2.

This means that the physical potentials are those potentials that are less
singular at the origin than 1/r2. It should be noted, however, that this
conclusion is only valid for an attractive potential. Equation (7) shows that
for a repulsive potential, the value of s can be anything.
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2 QUANTUM STATES 26

2.3 The Free Radial Schrödinger Equation

In the instance where the potential V (r) = 0, and equation (6) becomes
the ’free’ radial Schrödinger equation:

{

d2

dr2
+ k2 −

ℓ(ℓ+ 1)

r2

}

uℓ(r) = 0 (8)

The solutions to the free radial Schrödinger (8) are the so-called Riccati-
Bessel, Riccati- Neumann and Riccati-Hankel functions;

jℓ(kr) and nℓ(kr) and h
(±)
ℓ (kr)

where h
(±)
ℓ (kr) = jℓ(kr) ± inℓ(kr)

At large distances, the Riccati-Hankel functions, independently of the value
of the angular momentum, behave exponentially [27];

h
(±)
ℓ (kr) →

r→∞
∓i exp[±i(kr − ℓπ/2)] (9)

When ℓ = 0, the solution to equation (8) are the well-known trigonometric
functions;

sin(kr) and cos(kr) ,

which are particular cases of the Riccati-Bessel and Riccati-Neumann func-
tions.

As can be seen from equation (9), the functions h
(−)
ℓ (kr) and h

(+)
ℓ (kr)

describe the in-coming and out-going spherical waves, respectively.
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2 QUANTUM STATES 27

2.4 Jost Functions in the Schrödinger Solution

In the case where the potential V (r) is present, the radial Schrödinger equa-
tion is,

[

d2

dr2
+ k2 −

ℓ(ℓ+ 1)

r2

]

uℓ(E, r) = V (r)uℓ(E, r) (10)

The above equation can be solved using the method of variation of parameters
as described in the theory of ordinary differential equation [36]. Let us write
the unknown radial wave function as:

uℓ(E, r) = h
(−)
ℓ (kr)F

(in)
ℓ (E, r) + h

(+)
ℓ (kr)F

(out)
ℓ (E, r) (11)

where; F
(in/out)
ℓ (E, r) are unknown functions of energy E and position r.

At large distances (i.e., r → ∞), where the potential disappears, equation
(10) becomes the ”free” Shrödinger equation. As we have seen in Section
(2.3), its two independent solutions are the Riccati- Hankel functions. Any
other solution is their linear combination.

Therefore,

uℓ(E, r) →
r→∞

h
(−)
ℓ (kr)f

(in)
ℓ (E) + h

(+)
ℓ (kr)f

(out)
ℓ (E) (12)

where
f

(in/out)
ℓ (E) = lim

r→∞
F

(in/out)
ℓ (E, r)

The coefficients f
(in)
ℓ (E) and f

(out)
ℓ indicate the type of quantum state, the

particle can be found. The particle can be in either bound, scattering or
resonance state. These coefficients depend on the energy of the system and
vary with the momentum k.

These coefficients are called the Jost functions. In equation (12), the func-

tion h
(−)
ℓ (kr) represents the incoming wave and f in

ℓ (E) is its amplitude,

h
(+)
ℓ (kr) represents the outgoing wave and fout

ℓ (E) is the amplitude of the
outgoing wave.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



2 QUANTUM STATES 28

2.5 Jost Function and the Bound State

In physics, a bound state is the state of a system where a particle is subject
to a potential such that the particle remains localized in one or more regions
of space. The potential may be either an external potential or the result of
the presence of another particle.

In quantum mechanics, a bound state is a state in Hilbert space that corre-
sponds to two or more particles whose interactive or joint energy is less than
the total energy of each separate particle, and thus, these particles cannot
be separated unless energy is spent.

Examples of bound states are:

1. A proton and an electron can move separately. The total centre of
mass energy is positive and such a pair of particles can be described as
ionized atom. Once the electron starts to ’orbit’ the proton, the energy
becomes negative and a bound state, namely the hydrogen atom, is
formed.

2. A nucleus is a bound state of protons and neutrons commonly called
nucleons.

3. A positronium ’atom’ is an unstable bound state of an electron and a
positron. It decays into photons because of the e+e− annihilation.

In a bound state, a particle cannot leave the source of the attractive field.
The probability density wanes when r → ∞ and ul(E, r) → 0
Since the total probability of finding the particle somewhere around the
source of potential is 1, then

∫

|ψ(~r)|2d~r = 1

If we choose the energy scale in such a way that the energy at infinite r is
zero, it means that the energy decreases from zero at infinity to the bound
states. That is, the bound states have negative energies and thus, the
momentum k is imaginary since,

k =

√

−2µ

~2
|E| = iκ , κ > 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



2 QUANTUM STATES 29

Since, in a bound state,
uℓ(E, r) →

r→∞
0 (13)

Comparing equation (13) with equation (12), the radial wave function van-
ishes to zero, depending on the asymptotic behaviour of the Riccati functions
and Jost coefficients.

As r → ∞, the Riccati-Hankel functions with pure imaginary k = iκ be-
have in a way that the one term grows exponentially while the other vanishes,
i.e.,

h
(+)
ℓ (kr) →

r→∞
exp (−κr) as r → ∞ h

(+)
ℓ (kr) → 0

h
(−)
ℓ (kr) →

r→∞
exp (κr) as r → ∞ h

(−)
ℓ (kr) → ∞

This implies that in equation (12), only the second term can survive for a
bound state,i.e.,

uℓ(E, r) −→
r→∞

h
(+)
ℓ (kr)fout

ℓ (E) (14)

This bound state condition may be achieved at certain discrete points, E < 0
that are roots of the equation f in

ℓ (E) = 0.

This correlates with the theory that the amplitude of the incoming wave
is zero as r → ∞. Since the amplitude of the incoming wave is given as

f
(in)
ℓ (E), by calculating f

(in)
ℓ (E) = 0, that is, by determining the zero of

the Jost function, the bound state can be located.

On an energy plane or k-plane, bound states correspond to the points where

the Jost functions f
(in)
ℓ are zeroes that is, where the physical wave function

has only outgoing waves in its asymptotic behaviour. The energies of the
bound state are negative and the corresponding momentum k are imaginary.

The discrete points where the Jost function is zero are called the spectral
points. Figure (3) shows the location of the bound states on the k and E
planes.
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2 QUANTUM STATES 30

Figure 3: Bound States on k plane and Energy plane.

2.6 Jost Function at a Resonance State

As explained in the Introduction, resonances are created when interacting
particles are trapped together inside a potential barrier for a period of time
τ . Quantum resonances are similar to bound states but are not stable as
bound states. Resonances are also known as quasi-stationary or quasi-bound
states. Spherically symmetric potential V (r) supporting resonances is the
potential that describes for example, the decay of radioactive nuclei or of
unstable particles [12]. Resonances have a finite lifetime and stochastically
decay according to the radioactive law:

N = N0exp(−Γt/~) (15)

where,
N0 is an initial number of particles in an ensemble of quantum particles,
N is the number of particles in the ensemble at time t,
Γ is the resonance width and is measured in units of energy. It is commonly
known as the decay rate.

At resonance, the Hamiltonian has complex eigen values. In fact, the energy
E has a negative imaginary part given as;

E = Er + Ei where Ei = −iΓ/2

then Eresonance = Er − iΓ/2

and Ψ(~r, t) = Ψ(~r)e
−i

~
(Er−iΓ/2)t
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The decay law of equation (15) is obtained, if we recall that the number of
particles is determined by the probability density:

N ∼ |Ψ|2 ∼ exp(−Γt/~)

The half-life of the quantum resonance is given as

τ1/2 =
~ ln 2

Γ

The bigger the value of Γ, the smaller the half-life and the faster the resonance
decays. Bigger Γ hence, refers to more unstable resonance or shortlived
resonance.

After a quasi-stationary state has been excited, the energy is distributed
rapidly in all possible degrees of freedom. As it decays, the eigenfunction
of Hamiltonian corresponding to the complex energies at resonance, consist
of outgoing waves only. In relation to the radial wave function uℓ(E, r), it
means that equation (12) consists of outgoing wave only. Therefore, similar
to the case of a bound state, the wave function can then be expressed as:

uℓ(E, r) −→
r→∞

h
(+)
ℓ (kr)fout

ℓ (E)

This implies that there is no incoming wave and the coefficient or amplitude

f
(in)
ℓ (E) is zero.

Thus, the bound and resonant states are very similar and are both spec-
tral points. They have similar boundary conditions. The difference is that
the bound states have real negative energies while the resonances occur at
complex energies.

Figure (4) schematically illustrates the trajectory of a quantum particle at
a resonance. It forms a partially localised state which slowly leaks out.
The particle then moves out of the localised state, randomly, without any
reference to where it came from.

Owing to the fact that f
(in)
ℓ (E) = 0 at resonances, the latter corresponds

to spectral points on complex energy E plane and k plane. Figure (5) shows
where the resonance states are located on the k plane and E plane.
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2 QUANTUM STATES 32

Figure 4: A resonance scattering orbit.

Figure 5: Resonances on the k plane and Energy plane.
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2.7 Jost Function and the Scattering State

As seen in figure (6), transmission of a plane wave through a barrier and its
reflection is in effect, a simplified scattering problem. In the world of atomic
and sub-atomic particles, the only method to study the properties of these
invisible objects is to collide them and watch what happens.

Figure 6: Differential cross-section of scattered wave dΩ.

Suppose we have an incoming asymptotic state at t = −∞, the transition
from the initial to final state can be written as the action of an operator,
called the S-matrix, whereby:

|Ψ >= Ŝ|Ψin >

The energy E of scattering states is real and positive. The corresponding
momentum k is thus real and positive. Applying the particle conservation
principle to the incoming and outgoing waves, the flux of the particles is
conserved. The absolute value of the amplitude of the incoming and outgoing
waves should then be identical.

If the amplitude of incoming wave is equal to the amplitude of outgoing wave,
then

|f
(in)
ℓ (E)| = |f

(out)
ℓ (E)| for E > 0

These amplitudes differ only by the phase factor.

The Riccati-Hankel solution is such that,

h
(±)
ℓ (kr)]∗ = h

(∓)
ℓ (kr) if Im(kr) = 0
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Figure 7: Transition between initial and final state

This leads to the fact that the amplitudes of the incoming and outgoing
wave, which are essentially the Jost functions, should be complex conjugates
of each other,

f
(in)
ℓ (E) = [f

(out)
ℓ (E)]∗ for E > 0

Or we could write the amplitudes as:
{

f
(in)
ℓ (E) = |f

(in)
ℓ (E)|e−iδℓ(E)

f
(out)
ℓ (E) = |f

(out)
ℓ (E)|e+iδℓ(E)

for E > 0 (16)

The ”real” function δℓ(E) is called the phase shift.

From equation (16), it is clear that the incoming wave amplitude is trans-
formed into the outgoing amplitude by a function Sl(E), such that,

f
(out)
ℓ (E) = Sℓ(E)f (in)(E)

where,
Sℓ(E) = ei2δℓ(E) for E > 0

This transformation function Sℓ(E) is called the S-matrix. It contains the
complete information about the scattering process. It can be expressed as
the ratio of the incoming to the outgoing wave amplitude
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Sℓ(E) = f
(out)
ℓ (E)[f

(in)
ℓ (E)]−1

The S-matrix is analytic everywhere except for isolated poles. The poles are

those points where the Jost function f
(in)
ℓ (E) is zero, that is, at the spectral

points on the energy surface.

2.7.1 Relationship between Resonance and Scattering State

A resonance will show characteristically as a rapid rise of the scattering
phase shift δ(E), and this surge corresponds to a time delay. Regarding the
scattering of a wave packet, the delay is of the order [33]

∆t ∼ ~
dδ(E)

dE

where,
δ(E) = δbg(E) + δres(E)

and,

δres(E) = arctan
( Γ/2

Er − E

)

+ n(E)π

for Γ > 0. The n(E) is an integer depending on energy that may be
optionally added to make δres(E) a continuous function of energy. Thus,
the propagation of a wave packet in the presence of a resonance experiences
a time delay of

τ ∼ ~ dδres(E)/ dE

Using the first order approximation for the Jost function near a resonance

spectral point where E0 = Er− iΓ/2 and the symmetry property, f
(out)
ℓ =

f
(in)∗
ℓ , which is valid for real positive energies, the S matrix on the real axis

next to E0 can be approximated to;

Sℓ(E) ≈
f

(in)∗
ℓ (E)

f
(in)
ℓ (E)

≈
f

(in)∗
ℓ (E0)(E − E0)

∗

f
(in)
ℓ (E0)(E − E0)

= e−2iδbg
ℓ
E − Er − iΓ/2

E − Er + iΓ/2

(17)
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When the background phase shift δbgℓ ≈ 0 then the resonance contributes to
a partial wave cross section of;

σres
ℓ (E) =

4π

k2
(2L+ 1)

Γ2/4

(E − Er)2 + Γ2/4
(18)

Equation(18) is the Breit-Wigner resonance formula. It shows a clear peak
at E ≈ Er with a full width at half maximum of Γ [33] [35].

Using the Sℓ− matrix as defined in (17), at resonance the function Sℓ(E)
will have a pole, where the denominator is zero, i.e, at Ep = Er − iΓ/2.
These are poles in the fourth quadrant of the complex energy plane close to
and below the real energy axis. The existence of such a complex pole leads
most theorists to define resonance by its pole position.

Mathematically, a resonance is therefore a pole of the S-matrix in the fourth
complex energy quadrant with Re(Ep) > 0 and Im(Ep) < 0 where Ep is
the energy at the resonance pole. Resonances may also be characterised as
nearly-bound or almost-bound states. These are states that would be bound
if the potential were stronger. In the complex plane, bound states are also
poles on the negative real energy axis and on the positive imaginary k− axis.

If the potential for a bound state becomes weaker, the pole moves towards
zero energy (as shown in diagram below), and then it becomes a resonance
if a potential barrier between large distances and the interior nuclear attrac-
tion.This trapping barrier could be the repulsive Coulomb barrier in the case
of proton-nucleus scattering, or a centrifugal barrier for either neutrons or
protons in angular momentum, ℓ > 0 states [33]. The wide resonances are
far away from the real axis. Wide resonances do not have a pronounced effect
on scattering at real energies.

2.8 Spectral Points on the k−plane

The energy at which a bound state or a resonance occurs is the energy at

which the incoming amplitude f
(in)
ℓ (E) is zero, i.e, the Jost function has

a zero. By determining the zero of the Jost function, the bound state and
resonance can be found on the energy plane.
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Figure 8: Trajectory of a bound state caused by a progressively weaker po-
tential

Since

k2 =
2µ

~2
E then E =

~
2

2µ
[(Rek)2 − (Imk)2 + i2(Rek)(Imk)]

The spectral points can be plotted on the complex momentum k− plane as
well. In this case,

1. The bound states are points on the positive imaginary k− axis,

2. The scattering states are along the positive real k− axis,

3. The resonance states are points in the fourth quadrant, between the
real positive and the imaginary negative k− axes.

The figure below illustrates the plot of the spectral points on the complex k
plane.
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Figure 9: Spectral Points on k−plane
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3 Determination by Jost Method

The Jost function contains information about all spectral points. If this
function can be calculated for any complex energy, then we would be able
to locate the bound states and the resonances, using the fact that for these
states,

f
(in)
ℓ (E) = 0

In this section the Schrödinger equation is transformed in order to more easily
determine the energy (or momentum k), at which spectral points occur, i.e,
at which bound or resonance state occurs, by means of the Jost function.

Considering a quantum particle in a spherical potential V (r), the radial
Schrod̈inger equation is,

[

d2

dr2
+ k2 −

ℓ(ℓ+ 1)

r2

]

uℓ(E, r) = V (r)uℓ(E, r) (19)

We recall that when the potential V (r) = 0, then the free radial Shrödinger
equation is obtained:

[

d2

dr2
+ k2 −

ℓ(ℓ+ 1)

r2

]

uℓ(E, r) = 0 (20)

The solution to equation (20), as explained in previous chapter, is the Riccati-
Bessel and Riccati-Neumann functions jℓ(kr) and nℓ(kr) or the Riccati-

Hankel functions h
(±)
ℓ (kr). To simplify the notation, the incoming and

outgoinf spherical waves can be denoted as:

W
(in)
ℓ (E, r) = h

(−)
ℓ (kr) (21)

W
(out)
ℓ (E, r) = h

(+)
ℓ (kr) (22)

Hence the general solution to (20) is a linear combination:

W
(in)
ℓ F

(in)
ℓ +W

(out)
ℓ F

(out)
ℓ

39
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3 DETERMINATION BY JOST METHOD 40

where F
(in/out)
ℓ are some constant parameters.

The solution to the equation (19) where the potential is non-zero can be
expressed similarly:

uℓ(E, r) = W
(in)
ℓ (E, r)F

(in)
ℓ (E, r) +W

(out)
ℓ (E, r)F

(out)
ℓ (E, r) (23)

where F
(in/out)
ℓ (E, r) are unknown functions.

The variation parameters method from the theory of linear differential equa-
tion can be used to solve the equation.

It must be noted that F
(in/out)
ℓ (E, r) are unknown functions introduced to

solve the unknown function uℓ(E, r). As such these three unknowns must
be related to each other and cannot be independent of one another. An
arbitrary condition can be imposed that relates the unknown functions as
follows:

W
(in)
ℓ (E, r)∂rF

(in)
ℓ (E, r) +W

(out)
ℓ (E, r)∂rF

(out)
ℓ (E, r) = 0 (24)

This condition is known as the Lagrange Condition and is well-defined in
calculus [36].

Using the lagrange condition (24), the second derivative of uℓ(E, r) is:

d2

dr2
uℓ = W

′′(in)
ℓ F

(in)
ℓ +W

′′(out)
ℓ F

(out)
ℓ +W

′(in)
ℓ F

′(in)
ℓ +W

′(out)
ℓ F

′(out)
ℓ

When substituting (23) into (19), the following is obtained:

{ [

d2

dr2
+ k2 −

ℓ(ℓ+ 1)

r2

]

W
(in)
ℓ (E, r)

}

F
(in)
ℓ (E, r) (25)

+

{ [

d2

dr2
+ k2 −

ℓ(ℓ+ 1)

r2

]

W
(out)
ℓ (E, r)

}

F
(out)
ℓ (E, r) (26)

+W
′(in)
ℓ (E, r)F

′(in)
ℓ (E, r) +W

′(out)
ℓ (E, r)F

′(out)
ℓ (E, r) = V (r)uℓ(E, r) ,

(27)
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3 DETERMINATION BY JOST METHOD 41

The first two terms in the curly brackets disappear since W
(in)
ℓ (E, r) and

W
(out)
ℓ (E, r) are solutions to (20). Therefore we get:

W
′(in)
ℓ F

′(in)
ℓ +W

′(out)
ℓ F

′(out)
ℓ = V

[

W
(in)
ℓ F

(in)
ℓ +W

(out)
ℓ F

(out)
ℓ

]

(28)

From equation (24), it follows that:

F
′(out)
ℓ = −

[

W
(out)
ℓ

]−1

W
(in)
ℓ F

′(in)
ℓ (29)

Substituting (29) into (28) results into:

[

W
(out)
ℓ

]−1

W
(out)
ℓ

{

W
′(in)
ℓ −W

′(out)
ℓ

[

W
(out)
ℓ

]−1

W
(in)
ℓ

}

F
′(in)
ℓ

= V
[

W
(in)
ℓ F

(in)
ℓ +W

(out)
ℓ F

(out)
ℓ

]

And then,

F
′(in)
ℓ =

[

W
(out)
ℓ W

′(in)
ℓ −W

′(out)
ℓ W

(in)
ℓ

]−1

W
(out)
ℓ V

[

W
(in)
ℓ F

(in)
ℓ +W

(out)
ℓ F

(out)
ℓ

]

(30)

Applying the same condition as (29) to F
′(in)
ℓ results into:

F
′(out)
ℓ =

[

W
(in)
ℓ W

′(out)
ℓ −W

′(in)
ℓ W

(out)
ℓ

]−1

W
(in)
ℓ V

[

W
(in)
ℓ F

(in)
ℓ +W

(out)
ℓ F

(out)
ℓ

]

(31)

The first factors of (50) and (51) differ only by the sign and are equal to the
inverted Wronskian of the incoming and the outgoing spherical waves, i.e,
the Riccati-Hankel functions,

h
(−)
ℓ (kr)∂rh

(+)
ℓ (kr)− h

(+)
ℓ (kr)∂rh

(−)
ℓ (kr) = 2ik (32)

Thus finally the second order differential Shrod̈inger equation (19) is reduced
to a coupled system of the first order differential equations of the Jost func-
tions;







∂rF
(in)
ℓ (E, r) = −

h
(+)
ℓ

(kr)

2ik
V (r)

[

h
(−)
ℓ (kr)F

(in)
ℓ (E, r) + h

(+)
ℓ (kr)F

(out)
ℓ (E, r)

]

∂rF
(out)
ℓ (E, r) =

h
(−)
ℓ

(kr)

2ik
V (r)

[

h
(−)
ℓ (kr)F

(in)
ℓ (E, r) + h

(+)
ℓ (kr)F

(out)
ℓ (E, r)

]

(33)
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3 DETERMINATION BY JOST METHOD 42

The system of equation (33) is completely equivalent to the Schrödinger
equation (19), from which we started. It is however more convenient for
locating the spectral points.

Indeed, since V (r) →
r→∞

0 the right hand sides of equation(33) at large

distances vanish, which means that F
(in/out)
ℓ (E, r) become constant. These

constants are the Jost functions. In other words, these equations give us a
simple way of direct calculation of the Jost functions [37].
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3.1 Boundary Conditions for F
(in/out)
ℓ (E, r)

In order to solve (33), the boundary conditions on F
(in/out)
ℓ (E, r) have to

be established.

Recalling that the radial wave function should vanish at the centre, that is,
uℓ(E, 0) = 0, and given the general expression for uℓ(E, r) as;

uℓ(E, r) = h
(−)
ℓ (kr)F

(in)
ℓ (E, r) + h

(+)
ℓ (kr)F

(out)
ℓ (E, r)

(referring to equation (23), it implies that the two functions F
(in/out)
ℓ (E, r)

should be equal to the same constant, when r → 0.

It is only when the two functions F
(in/out)
ℓ (E, r) are equal that uℓ(E, 0) =

0, because,

h
(+)
ℓ (kr) + h

(−)
ℓ (kr) = 2jℓ(kr) →

r→0
0

A simple boundary condition could then be;

F
(in/out)
ℓ (E, 0) = 1 (34)

Since (33) are of the first order, the boundary conditions (34) imposed at
r = 0, completely determine the solutions as well as the wave function of
(23).

In the case of r → ∞, and the potential tends to vanish, the radial wave
function (23) can be written as:

uℓ(E, r) →
r→∞

h
(−)
ℓ (kr)f

(in)
ℓ (E) + h

(+)
ℓ (kr)f

(out)
ℓ (E) (35)

Then the Jost functions are the limits as r → ∞:

f
(in)
ℓ (E) = lim

r→∞
F

(in)
ℓ (E, r) (36)

and
f

(out)
ℓ (E) = lim

r→∞
F

(out)
ℓ (E, r) (37)

Under the assumption that V (r) = 0 at distances greater than R, the
limit of the above equations is reached at r = R, because beyond this

43
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3 DETERMINATION BY JOST METHOD 44

point the right hand sides of equations (33) are zero and therefore the

F
(in/out)
ℓ (E, r) are constants since their first derivatives vanish. This means

that F
(in/out)
ℓ (E, r) are the Jost functions for the potential that cuts off

abruptly at the point r.

The differential equations of (33) determining the functions F
(in/out)
ℓ (E, r)

can be written simply as;

∂rF
(in)
ℓ (E, r) = −

h
(+)
ℓ (kr)

2ik
V (r)uℓ(E, r) (38)

∂rF
(out)
ℓ (E, r) =

h
(−)
ℓ (kr)

2ik
V (r)uℓ(E, r) (39)

If the first derivative of the Jost function do not vanish as r → ∞ i.e., if
the following conditions are not satisfied;

∂rF
(in/out)
ℓ → 0 as r → ∞

then,

F
(in/out)
ℓ 6→ constant r → ∞

That is, F
(in/out)
ℓ cannot have finite limits, and hence diverge.

Furthermore for these limits to exist, the first order derivatives must decrease
to 0, faster than ∼ r−1. This is possible in the case of short range potentials
that vanish faster at infinity than the Coulomb potential (i.e.,−e2/r).

Assuming that

V (r) ∝
1

r1+ǫ
where ǫ > 0

then from (38) and (39), we can further assume that

∂rF
(in/out)
ℓ (E, r) ∝

1

r1+ǫ

This implies that the integral will be;

F
(in/out)
ℓ (E, r) ∼

r→∞

∫

dr

r1+ǫ
=

(

const −
1

ǫrǫ

)

→
r→∞

const
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3 DETERMINATION BY JOST METHOD 45

At large distances the Riccati-Hankel functions, independently of the value
of the angular momentum ℓ, behave exponentially [27];

h
(±)
ℓ (kr) →

r→∞
∓iexp[±i(kr − ℓπ/2)]

and, since:
exp (∓iℓπ/2) = exp (iπ/2)(∓ℓ) = i∓ℓ

then,
hℓ(kr) →

|kr|→∞
(∓i)ℓ+1 exp (±ikr)

Given that;

uℓ(E, r) →
r→∞

h
(−)
ℓ (kr)f

(in)
ℓ (E) + h

(+)
ℓ (kr)f

(out)
ℓ (E)

By substituting the asymptotes of the Riccati-Hankel functions in the above
equation, we can rewrite the above equation as;

uℓ(E, r) →
r→∞

aℓ(E) exp (−ikr) + bℓ(E) exp (+ikr) (40)

Equation (40) is in effect the asymptotic behavior (as r → ∞) of the radial
wave function uℓ(E, r) on the momentum k-plane.

The coefficients aℓ(E) and bℓ(E) are related to the Jost functions at large
distances, i.e,

aℓ(E) = (i)ℓ+1f
(in)
ℓ (E) and bℓ(E) = (−i)ℓ+1f

(out)
ℓ (E)

It is important to note that aℓ(E) and bℓ(E) are r-independent functions
of the energy only.

By substituting equation (40) into (38) and (39), the following are obtained;

∂rF
(in)
ℓ (E, r) →

r→∞

(−i)ℓ

2k
V (r)

[

aℓ(E) + bℓ(E)e(2ikr)
]

(41)

and

∂rF
(out)
ℓ (E, r) →

r→∞

(i)ℓ

2k
V (r)

[

aℓ(E)e(−2ikr) + bℓ(E)
]

(42)

Using the asymptotic behaviour of the first order partial derivative of the Jost

functions (as outlined above), the behavior of the Jost functions F
(in/out)
ℓ (E, r),

as r → ∞, for different values of k, can be analysed on the complex k-plane.
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3.2 Asymptotics on the k-plane

Let us consider various domains of the k-plane.

The momentum k is real

In this case, both derivatives ∂rF
(in/out)
ℓ vanish fast enough, because we

assumed that the potential vanishes faster than the Coulomb potential (∝

1/r). It implies that when k is real, both Jost functions F
(in/out)
ℓ converge

to a constant.

The momentum k has a positive imaginary part, but is not a spectral point

Since k does not coincide with a spectral point kn, both aℓ(E) and bℓ(E)
are nonzero. The factors e−2Im(kr) and e+2Im(kr) on the right hand sides

of these equations, play the dominant roles. As r → ∞, ∂rF
(in)
ℓ → 0.

Hence, the function F
(in)
ℓ (E, r) converges to a constant, while F

(out)
ℓ (E, r)

diverges.

The momentum k has a negative imaginary part, but is not a spectral point

As is easily seen, the situation is just opposite to the one in the previous

item, i.e., the function F
(out)
ℓ (E, r) converges while F

(in)
ℓ (E, r) diverges.

The momentum k = kn is a spectral point

By definition of spectral points (refer to the first two chapters), aℓ(En) =
0, the incoming wave is zero and hence only the outgoing amplitude i.e,

F
(out)
ℓ (E, r) converges irrespective of the sign of Imkn.

Referring to equation (41), F
(in)
ℓ (En, r) converges to its limiting value only

if Imkn > 0.

46
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3 DETERMINATION BY JOST METHOD 47

Figure 10: Domains of the k-plane where the functions F
(in/out)
l (E, r) have

finite limits

Summary of the domains where the limits of F
(in/out)
ℓ (E, r) exist

The line Im(kr) = 0 divides the k-plane in two domains. The upper
domain is the domain where Im(kr) is positive and ≥ 0. The lower domain

is where Im(kr) is negative or Im(kr) ≤ 0. The function F
(in)
l (E, r)

converges to its limiting value f
(in)
l (E) as r → ∞, if Im(kr) ≥ 0. The

function F
(out)
l (E, r) converges to f

(out)
l (E) if Im(kr) ≤ 0 at large r. At

all spectral points k = kn irrespective of the sign of Im(kr).

F
(in)
l (E, r) →

r→∞
f

(in)
l (E) if Im(kr) ≥ 0 (43)

F
(out)
l (E, r) →

r→∞
f

(out)
l (E) if Im(kr) ≤ 0 (44)

F
(out)
l (En, r) →

r→∞
f

(out)
l (En) at all spectral points En (45)
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3.3 Complex Scaling Method

We have so far determined the Jost functions F
(in/out)
ℓ (E, r), assuming that

the potential is cut off at r = R. The solution is flawed however, when the
potential extends to infinity. The problem is that in certain domains of the E-

surface, the limiting values of f
(in/out)
ℓ (E) cannot be reached, by integrating

the coupled differential equations (33) along the real r-axis.

To circumvent this problem that occurs as we move away from the real E-
axis, the independent variable r in the Schrödinger equation can be con-
sidered as a complex variable. This is acceptable since the energy and the
angular momentum are complex and the problem arises at complex values of
E.

It can also be proven that a solution ϕ(z) of the differential equation;

d2ϕ(z)

dz2
+ J(z)ϕ(z) = 0

is an analytic function of z everywhere in the domain of analyticity of J(z).
Therefore, if the potential V (r) is an analytic function, then the wave func-
tion uℓ(E, r) is also an analytic function of r. Thus, if we want to calculate
uℓ(E, r) at a point R on the real axis, the Schrödinger equation can be in-
tegrated from r = 0 to r = R either directly along the real axis or moving
into the complex plane of r.

Figure 11: Integration from r = 0 to r = R
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3 DETERMINATION BY JOST METHOD 49

We can thus calculate the Jost functions using the definition of a complex r
as,

r = ρeiθ , ρ = |r| (46)

The acceptable range for the rotation angle θ is limited by the interval

−π/2 < θ < +π/2 (47)

Outside of this interval the incoming and outgoing waves (∼ e∓ikr) swap
roles. This interval can be narrowed further through the properties of the
function V (r). The angle should be such that the potential vanishes at the
far end of the ray (46) faster than 1/|r|,

∫ ∞

|R′|

|V (ρeiθ)|dρ < ∞ (48)

otherwise, the functions F
(in/out)
ℓ (E, r) do not converge to constant values.

On the ray (46), the coupled first order differential equations of the incoming
and outgoing Jost functions become;



























∂ρF
(in)
ℓ (E, ρ, θ) = −

eiθh
(+)
ℓ (kρ)

2ik
V (r)×

[

h
(−)
ℓ (kρ)F

(in)
ℓ (E, ρ) + h

(+)
ℓ (kρ)F

(out)
ℓ (E, ρ)

]

∂ρF
(out)
ℓ (E, ρ, θ) =

eiθh
(−)
ℓ

(kρ)

2ik
V (ρ)×

[

h
(−)
ℓ (kρ)F

(in)
ℓ (E, ρ) + h

(+)
ℓ (kρ)F

(out)
ℓ (E, ρ)

]

(49)

where the derivatives are with respect to the real variable ρ and not r. The
boundary conditions for these equations remain the same as in equation (33).

To derive the conditions for the convergence of the limits, instead of the
real k-axis (Imk=0), on which both limits exist, we use the line Im(kr)=
ρIm(keiθ)=0. Based on condition (48), we obtain

F
(in)
l (E, ρeiθ) →

ρ→∞
f

(in)
l (E) if Im(keiθ) ≥ 0 (50)

F
(out)
l (E, ρeiθ) →

ρ→∞
f

(out)
l (E) if Im(keiθ) ≤ 0 (51)
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3 DETERMINATION BY JOST METHOD 50

F
(out)
l (En, ρe

iθ) →
ρ→∞

f
(out)
l (En) at all spectral points En

(52)

When r is real, the sign of Im(kr) depends purely on the sign of Im(k). In
the case of complex rotation, an appropriate rotation angle θ can be chosen
such that Im(keiθ) is either positive or negative. Figures (12) and (13)

below illustrate the domain where the functions F
(in/out)
ℓ (E, r) converge,

ie., have finite limits on the k-plane, based on angle θ [37].

Figure 12: Complex Scaling position of function F
(in)
l (E, r)

Since the energy is a quadratic function of the momentum k, that is,

E = ~
2k2/(2µ)

the effect of the complex rotation in the complex energy plane is the following:

• the discrete bound state spectrum which lies on the negative energy
axis remains unchanged;
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3 DETERMINATION BY JOST METHOD 51

Figure 13: Complex Scaling position of function F
(out)
l (E, r)

• the branch cut (the discontinuity) along the real positive energy axis
rotates clockwise by the angle 2θ;

• resonances in the lower half of the complex energy plane located in the
sector which is bounded by the new rotated cut line and the positive
energy axis get exposed and become isolated [15].

By considering complex values of r, the function f
(in/out)
ℓ (E) is made analyt-

ically continuous across the dividing line to the domains where the equations
(33) do not give finite values of these functions, that is, when V (r) extends
to infinity.

Hence complex rotation solves the problem of calculating the Jost function

f
(in)
ℓ (E) in the fourth quadrant of the k-plane. An appropriate positive

angle θ can be chosen which turns the dividing line and thus allows access
to the resonance domain. Resonance spectral points can then be calculated.
The rotation is illustrated in the diagram (14) below. The complex rotation
method is also commonly called the complex scaling method, owing to the
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3 DETERMINATION BY JOST METHOD 52

Figure 14: Appropriate angle θ for rotation

fact that the coordinate r is being scaled by the factor exp (iθ), within the
limits of angle θ.

Complex scaling may be viewed as a technique which ”compresses” informa-
tion about the evolution of a resonance state at infinity into a small well-
defined space. The tail in spatial domain of a single, time independent,
square integrable resonance wave function contains all the information about
the quantum system, including information on partial width and the way in
which the system evolves as the separation between the quantum particle
and the ’target’ increases to infinity ∞.

The parameter Γ which is the imaginary part of the complex resonance en-
ergy, is associated with the rate of decay and with the inverse lifetime of the
’particle-target’ system. The angle θ can be interpreted as a control param-
eter which brings information of the decay process from ∞ to a finite region
in space, the size of which depends on the value of θ. As θ increases, the
information about the decay process is compressed into a smaller part of the
coordinate space. However, θ cannot exceed a critical value, as defined in
(47) [12].

Figures (15) and (16) illustrate the rotation on the k- plane and E- plane
respectively.
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3 DETERMINATION BY JOST METHOD 53

Figure 15: Complex Rotation in the k-plane

Figure 16: Result in the E-plane
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4 Numerical Calculation

Considering a single non-relativistic particle at a distance r from the centre,
under a spherical potential V (r), in order to determine the location of the
resonances, a direct method of finding the spectral points on the complex-k
plane is applied.

As explained in the previous section, the second order differential Schrödinger
equation can be transformed into a coupled system of partial first order differ-

ential equations of the incoming and outgoing Jost function F
(in/out)
ℓ (E, r).

In order to circumvent the problem of potential that tails off to infinity very
slowly, the complex scaling method is used, such that

r = ρ expiθ where − π/2, θ < +π/2

At the centre of the sphere, the boundary condition is:

F
(in/out)
ℓ (E, 0) = 1 at r = 0

As r → ∞, the limit of the Jost function is defined as:

lim
r→∞

F
(in/out)
ℓ (E, r) = f

(in/out)
ℓ (E)

The procedure for calculating the Jost function is based on solving the couple
first order partial differential equation from ρ = 0 to some maximum ρ where

F
(in/out)
ℓ reaches a constant value or converges.

The spectral points corresponding to resonance states can be found in the
complex k domain by taking the rotation angle θ over a large enough region.
The zero of the Jost function is then determined in that region of the k
domain.

Then, the partial differential equations are solved through an iterative inte-
gration approach, namely the Newton method. A computational program in
Fortran, attached in Annexure A, is used to simulate the Newton numerical
method.

54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



4.1 The Complex Absorbing Potential

When a particle collides with a target, the collision is not always purely elas-
tic. For example, if electrons are incident on hydrogen atoms in the ground
state, and if these electrons have a kinetic energy larger than the excitation
energy of the n = 2 hydrogen state (10.2eV), then electron impact excita-
tion of n = 2 states, which are inelastic collisions, will occur in addition
to elastic scattering. The fact that ”non-elastic” processes take place means
that some particles have been removed from the incident (elastic) channel,
or in other words have been ”absorbed”.

This absorption of particles can be represented mathematically by introduc-
ing a complex or ”optical” potential having a negative imaginary part. To
prove this, let us start with the Schrödinger equation;

i~
∂ψ

∂t
= −

~
2

2µ
∇2ψ + V ψ (53)

and its complex conjugate;

i~
∂ψ∗

∂t
= −

~
2

2µ
∇2ψ∗ + V ∗ψ∗ (54)

where V 6= V ∗. Indeed, let the potential be complex as in;

V (r) = VR(r) + iVI(r) (55)

If we multiply (53) by ψ∗ and (54) by ψ, and we subtract the two equations,
then we obtain

i~
∂(ψ∗ψ)

∂t
= −

~
2

2µ
∇ · [ψ∗∇ψ − (∇ψ∗)ψ] + (V − V ∗)ψ∗ψ (56)

The probability density is given as;

ρ = ψψ∗

and the probability current density is;

~j = ~

2µi
[ψ∗∇ψ − (∇ψ∗)ψ]

55
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4 NUMERICAL CALCULATION 56

Thus, equation (56) can be rewritten in the form of the continuity equation,
viz.

∂ρ

∂t
+ ∇ ·~j =

1

i~
(V − V ∗)ρ (57)

If the potential is real, the right side of equation (57) is zero, and therefore

any change of ρ at a point ~r is exactly compensated by the flux ∇ · ~j of
probability through a surface enclosing this point. If the potential is complex,
this is not so because,

∂ρ

∂t
+ ∇ ·~j =

2ρ

~
VI (58)

Thus equation (58) shows that if VI > 0 an increase of ρ exceeds the
incoming flux, which means the presence of a source. If VI < 0 an increase
of ρ is less than the flux, which means the presence of a sink. A sink also
means there is local absorption of the incident beam. The rate of absorption
of the incident particles per second per unit volume at the point r is 2|VI|.
Thus when the complex potential has a negative imaginary part, absorption
occurs during the scattering process [19] [33].

The main effect of the imaginary part of the potential is to lessen the scatter-
ing intensity. Complex potentials including of imaginary component, can be
used to study elastic scattering between composite systems (e.g., ions, atoms
and molecules) [20] [21].
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4.2 Resonance Observation

In this numerical calculation, the objective is to study what happens to the
spectral points when the potential acquires an imaginary part. The complex
potential used is:

V (r) = 7.5r2 exp(−r)− iα exp(−r)

where
VR = 7.5r2 exp(−r) VI = −α exp(−r)

The figure (17) that follows is the real component of the complex potential
used in this thesis. The main reason for using this potential is that it has
been successfully applied in other similar numerical experiments. The results
are therefore well established and predictable.

✉

V (r)

Figure 17: Plot of Potential used in our computation

When an imaginary component is added, the computational program is run
for values of α from 0 to 0.01 incrementing by 0.001. For each value of
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4 NUMERICAL CALCULATION 58

α, the zeroes of the Jost function is calculated. The following table (1)
presents the values of real and imaginary momentum that were entered into
the computational program, and the resulting real and imaginary momentum
k where the zeroes of the Jost function occur, i.e, the location of resonances.
These resonances were thus located as the imaginary potential became more
negative.

Imaginary potential Input momentum Resonant momentum
α of VI Inp Re(k) Inp Im(k) Res Re(k) Res Im(k)
0.0 6 α 6 0.02 2.6 0 2.6175529443 -0.0090360903

3 1 3.012653958 -0.3991257473
3 1.5 3.0218703414 -1.65695133712
2.3 1.8 3.036237501 -1.0352490003

Table 1: Corresponding resonant momentum for values of component of VI

between 0.0 ≤ α ≤ 0.02

The resulting momentum values k where the zeroes of the Jost function occur,
are plotted on the complex k plane. Figure (18) shows that the zeroes occur
for values of the momentum located in the fourth quadrant. This complies
with the theory that spectal points corresponding to resonance states, are
found in the fourth quadrant of the complex k plane, where the Re(k) is
positive and the Im(k) is negative.

The plot further shows that the resonant zeroes follow a downward path.
The resonance spectal points move further away from the real Re(k) axis
and closer towards the negative Im(k) axis, as the imaginary component
of the potential VI(r) becomes more negative. This trajectory indicates the
presence of very broad resonances with shorter lifetimes. That is as the imag-
inary component of the potential |VI| increases, sub-threshold resonances are
observed.

These results correspond with those found in the literature review [9] [15] [18]
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4 NUMERICAL CALCULATION 59

✉α = 0.01

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉α = 0.0

❄

Im (k)

✲ Re (k)

Figure 18: Plot of Spectral Points when 0 < α < 0.01, ie, an increasing
negative imaginary component of the potential
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4 NUMERICAL CALCULATION 60

Recalling that

k2 =
2µE

~2

it implies that

E =
~
2

2µ

{

(Rek)2 − (Imk)2 + 2i(Rek)(Imk)

}

the values of Im(k) andRe(k) of the computation above can be substituted
in the equation above to obtain the resonant energy Eres.

Since
Eres = Er + Ei where Ei = −iΓ/2

the width of the resonance window Γ can be determined In fact

Γ = −2

{

~
2/µ(Rek)(Imk)

}

Therefore, as the absolute value of the imaginary component of the central
potential |VI| increases, i.e, α increases from 0 to 0.01, the |Im(k)|, abso-
lute value of imaginary component of momentum increases. Hence the value
of Γ, i.e, the width of the resonance increases. This implies energy can leak
out faster and the resonance decays rapidly.

Alternatively, the half-life of the resonance

τ1/2 =
~ ln 2

Γ

becomes smaller as Γ increases. The lifetime is thus shorter and there is a
rapid resonance decay.

Theoretically, there is a certain minimum energy that is required for collision
or scattering to occur giving rise to quantum resonances. This minimal
energy is the threshold energy and on the complex k- plane, it lies on the
diagonal line where Re(k) = Im(k).

As explained previously, when a collision occurs, it gives rise to different out-
comes expressed as different channels. Each of these channels has a specific
threshold energy. Subthreshold resonances are those that occur when

Re(k) < Im(k)
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4 NUMERICAL CALCULATION 61

which is below the diagonal where the threshold energy lies.

In this thesis, it is evident that as |VI| increases, sub-threshold resonances
are obtained. That is, broad resonances occur as a result of the increasing
absorptive potential.

The following graphs show the trend in the resonance values, i.e, the zeroes
of the Jost functions as the α value of the imaginary component varies.
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4 NUMERICAL CALCULATION 62

✉α = 0.0

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉α = 0.01

❄

Im (k)

✲ Re (k)

This is the plot of spectral points for 0 < α < 0.01, i.e., the negative
imaginary component, Im(V ), is getting more negative.
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4 NUMERICAL CALCULATION 63

The following graph illustrates the downward trend for two different reso-
nances.

Plot for resonance at Re(p) = 3 and Im(p) = 1
α = 0.0✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

α = 0.02

Plot for resonance at Re(p) = 2.5 and Im(p) = 2.5

α = 0.0
s
s
s
s
s
s

s
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s
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s
s
s
s

α = 0.02

❄

Im (k)

✲

Re (k)
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5 Conclusion

The postulates of quantum mechanics require that all observable physical
quantities are described by hermitian operators. One of the reason for such
a requirement is the fact that all the eigen-values of hermitian operators
are real. When we deal with Hamiltonians, this means that the energy is
real. In many cases, however, it is convenient to allow the energy variable to
have complex values. In particular, the quasi-bound (or resonant) states are
defines as the spectral points of the Hamiltonian at complex energies. Due to
the presence of the imagginary part in the energy, these states become non-
stationary, i.e., the time- dependent exponential factor in the wave function
diminishes with time. One way to locate such complex eigen values of a
Hamiltonian is the method of complex rotation of the coordinate (which we
use in our calculations). As a result of such a rotation, the Hamiltonian
becomes non-hermitian.

Another case when it is convenient to deviate from the requirement of her-
micity, is an approximate treatment of multi-channel systems, when only
one, the most important channel is considered explicitly, while the presencce
and influence of all the other channels are simulated by an imaginary part
of the interaction potential. The Hamiltonian with a complex potential is
non-hermitian and does not conserve the number of particles. The particles
from the explicit channel disappear when they transit into any of the implicit
channels.

Complex potentials are called optical potentials, by analogy with classical
optics where the absorption of light can be simulated by introducing com-
plex refractive index. Originally, optical model was introduced around 60
years ago in the theory of nuclear reactions. Since then it found vast appli-
cations not only in nuclear physics but also in atomic, molecular, solid state
and particle physics. The idea of reducing a multi-channel problem to an
effective single-channel one by simple introduction of an imaginary part of
the potential turned out to be very attractive and beneficial. However, the
optical model was mostly used in calculations of the scattering processes.
When it comes to dealing with resonances, the model finds itself on shaky
grround. The difficulty stems from the fact that in this instance, there are
two types of non-hermicity: one due to the complex part of the potential,
and the other due to the complex eigen values of the Hamiltonian.
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5 CONCLUSION 65

In the present thesis, one aspect of the difficulty associated with the ap-
plication of the optical model to locating resonances, is clarified. Using a
model optical potential, it is shown that the presence of the imaginary part
in the potential causes the resonance spectral points to move towards and
into the sub-threshold domain of the complex energy surface. To those who
deal with resonances within the optical model, this result gives an indication
and a guide as to where the resonances could be found and how their widths
are modified by the implicit channels.
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