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Abstract

In this work, four finite volume methods have been constructed to solve the 2D convective Cahn-
Hilliard equation with specified initial condition and periodic boundary conditions. We prove existence
and uniqueness of solutions. The stability and convergence analysis of the numerical methods have been
discussed thoroughly. The nonlinear terms are approximated by a linear expression based on Mickens’
rule [1] of nonlocal approximations of nonlinear terms. Numerical experiments for a test problem have
been carried out to test all methods.
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1 Introduction

The general setting of this work is the 2D convective Cahn-Hilliard equation:

ut − γu(βββ · ∇u) + ε2∆2u = ∆f(u), (x, y) ∈M, t > 0, (1.1)

with initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈M, (1.2)

and periodic boundary conditions

∂ju

∂xj
(−L1, y, t) =

∂ju

∂xj
(L1, y, t), y ∈ (−L2, L2) and 0 ≤ t ≤ T, (1.3)

∂ju

∂yj
(x,−L2, t) =

∂ju

∂yj
(x, L2, t), x ∈ (−L1, L1) and 0 ≤ t ≤ T, (1.4)

where

f(u) = u3 − u,

γ is the driving force, j = 0, 1, 2, 3, M = (−L1, L1) × (−L2, L2), M is the closure of M, L1 and L2 are
positive constants, u0 ∈ L2(M), ε is a dimensionless interfacial width and βββ is a vector in 2D.

This equation is a successful model for the description of several physical phenomena: spinodal decomposition
of phase separating systems in the presence of an external field (e.g. gravitational, magnetic and electronic)
[2, 3, 4], formation of facets and corners in crystal growth [5, 6].

In the absence of the driving field, i.e. γ = 0, the system reduced to the well known Cahn-Hilliard equation

ut + ε2∆2u = ∆f(u), (1.5)

1Corresponding author: Jules.Djokokamdem@up.ac.za
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which is a model to describe the evolution of a concentration field for a binary mixture [7] and phase
separation of binary liquids or binary alloys [8]. This reduced model has been studied by several authors
(see [9, 10, 11] and the references therein). In [11], higher order schemes preserving the properties such as
energy and large time behavior are constructed. The Cahn-Hilliard equation, (1.5), admits a Lyapunov (free
energy) functional which guarantees that generically all solutions converge to an equilibrium.

The one-dimensional case of (1.1) has been studied by several researchers, theoretically and numerically.
Analytical solutions have been obtained for a single interface in the presence of the driving force, i.e. γ 6= 0,
in an infinite system [2]. The effect of this driving force on the coarsening dynamics of the one-dimensional
Cahn-Hilliard equation at T = 0 has been studied by Emmott and Bray [3] when ε = 1. They observed
that the driving force γ has an asymmetric effect on the solution of a single stationary domain wall. They
also noted that the behavior of the kink-anti kink pair (bubble) depends on γ−1 and the separation of the
interfaces. Later, Golovin et al. [12] demonstrated numerically that the one-dimensional convective Cahn-
Hilliard equation exhibits a transition from coarsening to chaotic behaviour as γ increases. The presence
of the driving force elucidates a fundamental asymmetry between kinks and anti-kinks which is not present
in the Cahn-Hilliard theory [13]. In Podolny et al. [14], the dynamics of domain walls (kinks) governed
by the convective Cahn-Hilliard equation is studied by means of asymptotic and numerical methods. The
bifurcations of stationary solutions for different values of γ with ε = 1 has been studied by Zaks et. al
[15]. Eden and Kalantarov [16] proved the existence of compact attractor and a finite inertial manifold
that contains it and Zhao and Liu [17] proved the existence of optimal solutions for the one dimensional
convective Cahn-Hilliard Equation. Aderogba et al. [18] solved the one dimensional convective Cahn-Hilliard
equation numerically using fractional step-splitting methods for γ = 0.1 and ε = 1. The authors observe
that the solution coarsens as t progresses and they tested numerically the transition of convective Cahn-
Hilliard equation from coarsening to an order less pattern as γ increases, which is the behavior of Kuramoto
Sivashinsky equation.

For multi-dimensional convective Cahn-Hilliard equation, the transition to roughening and the structure of
the steady states are not well understood [3, 12, 19]. The existence of optimal solutions for the 2D convective
Cahn-Hilliard equation has been proved by Zhao and Liu [20]. Eden and Kalantarov [19] considered the 3D
convective Cahn-Hilliard equation with periodic boundary conditions and proved the existence of absorbing
balls.

It is worth noting that (1.1) together with (1.3) and (1.4), for j = 0, leads to∫∫
M
u(x, y, t) dx dy =

∫∫
M
u0(x, y) dx dy, ∀t.

Hence for the analysis of (1.1)-(1.4), it is important to assume that [21]∫∫
M
u0(x, y) dxdy = 0. (1.6)

Our objective is to propose numerical techniques based on the work in [22, 23] to compute the numerical
solution of (1.1)-(1.4).

In this work, we focus on the numerical solution of the 2D convective Cahn-Hilliard equation with γ = 1
and βββ = 〈1, 1〉, using multilevel finite volume methods. Multilevel methods were introduced to improve
calculation speed in the simulation of complex physical phenomena while maintaining an accurate solution
[22, 23, 24, 25, 26, 27]. We construct two schemes associated with (1.1)-(1.4) based on the work of Bousquet
et al. [23]. The schemes we construct are easy to implement and are respectively called:

(a) linear implicit multilevel approximation, and

(b) explicit multilevel approximation.
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Our contribution can be regarded as extension to the works of Bousquet et al. [22, 23]. Indeed, in the latter
1D advection equation is analyzed and 2D shallow water linearized around a constant flow is proposed and
implemented. In contrast, in our work we tackle fourth order 2D nonlinear partial differential equation.
One of the challenge as mentioned earlier is to discretize the nonlinear term u(βββ · ∇u) in a linear way while
maintaining basic properties, and as a consequence saving computational time.

For the sake of comparison, we also formulate two one-level methods associated to the multilevel methods.
One of the difficulties is to design an appropriate linear expression for the nonlinear term. We achieve that
thanks to the nonlocal approximation of nonlinear quantity introduced by Mickens [1] and Anguelov [28]. In
particular, following [29], we approximate the nonlinear term u(βββ ·∇u) in a linear way such that the property∫∫

M

u(βββ · ∇u)u dxdy = 0 (1.7)

is constructed at the discrete level.

After the construction of new schemes, we show the existence and uniqueness of the solution. At this step,
we should bear in mind that since we are dealing with linear equations in finite dimension, existence of
solutions is equivalent to uniqueness, thus, we provide conditions under which there is one solution. Of
course, this analysis is only done for the one-level implicit scheme and easily extended to multilevel. The
third contribution of this work is the stability of the new schemes. We show that the implicit multilevel
method is conditionally stable with a region of stability smaller than one obtained from the one-level implicit
method on the fine mesh. The fourth contribution of our study is the convergence analysis of the implicit
methods. Indeed, we show that the implicit methods are first order accurate in time and second order
accurate in space. Our last contribution is numerical result that supports our theoretical findings. We
compute L2-error and rate of convergence for the proposed numerical methods. We also demonstrate that
in all numerical tests, the multilevel methods are faster than the one-level methods on the fine mesh.

The rest of this work is organized as follows: in the next section, we recall some preliminaries and introduce
some standard notations. We also discuss, in Section 2, some properties of difference operators and the
discrete analogue of L2 space. In Sections 3 and 4, we construct one-level and multilevel finite volume
methods and proved those methods are conditionally stable and conditionally convergent. In Section 5, we
present some numerical results comparing computations done by one-level methods and computations done
by the multilevel methods. Lastly, conclusions are given in Section 6.

2 Some Preliminaries and Space Discretizations

In this section, we recall some preliminaries which are helpful to our discussion and we present the space
discretization in a 2D rectangular region. To develop finite volume approximations that satisfy the discrete
analogue of (1.7), we first introduce some standard notations and results. We partition M into N1 × N2

control volumes (ki,j)1≤i≤N1,1≤j≤N2
of uniform area ∆x∆y, where ∆x and ∆y are the spatial step sizes in

the x− and y− directions, respectively. It is assumed that the partition of the domain is conform, meaning
that for two elements A and B one has, A ∩ B is either a face, a vertex or empty set. For 0 ≤ i ≤ N1 and
0 ≤ j ≤ N2,

xi+1/2 = i∆x− L1, yj+1/2 = j∆y − L2,

so that
ki,j = (xi−1/2, xi+1/2)× (yj−1/2, yj+1/2) for 1 ≤ i ≤ N1, 1 ≤ j ≤ N2.

(xi, yj) is the centre of the (i, j) control volume, which is given by the formula

(xi, yj) = ((i− 1)∆x+
∆x

2
− L1, (j − 1)∆y +

∆y

2
− L2), 1 ≤ i ≤ N1, 1 ≤ j ≤ N2.
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In the rest of this work, we take h = (∆x,∆y). The approximate solution to the control volume average of
the true solution at tn = n∆t is denoted by uni,j , i.e.

uni,j ≈
1

∆x∆y

∫∫
ki,j

u(x, y, tn)dxdy, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2,

where ∆t is the temporal step size such that ∆tM = T , which is obtained recursively by starting with the
initial average value, u0

i,j , given by

u0
i,j =

1

∆x∆y

∫∫
ki,j

u0(x, y)dxdy, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2.

Define the space Hh as

Hh =

u =
(
ui,j
)
i,j∈Z, ui,j ∈ R| ui+N1,j = ui,j = ui,j+N2

, and

N1∑
i=1

N2∑
j=1

ui,j = 0

 ,

equipped with the inner product and discrete L2 norm

(u,v)h = ∆x∆y

N1∑
i=1

N2∑
j=1

ui,jvi,j and ‖u‖h =

∆x∆y

N1∑
i=1

N2∑
j=1

u2
i,j

1/2

,

respectively.
For u ∈ Hh, we introduce the following difference operators:

∇−1,hui,j =
1

∆x
(ui,j − ui−1,j) , ∇+

1,hui,j =
1

∆x
(ui+1,j − ui,j) , (2.1)

∇−2,hui,j =
1

∆y
(ui,j − ui,j−1) , ∇+

2,hui,j =
1

∆y
(ui,j+1 − ui,j) , (2.2)

∆1,hui,j =
1

∆x2
(ui+1,j − 2ui,j + ui−1,j) , (2.3)

∆2,hui,j =
1

∆y2
(ui,j+1 − 2ui,j + ui,j−1) , (2.4)

∆2
1,hui,j =

1

∆x2
(∆1,hui+1,j − 2∆1,hui,j + ∆1,hui−1,j) , (2.5)

∆2
2,hui,j =

1

∆y2
(∆2,hui,j+1 − 2∆2,hui,j + ∆2,hui,j−1) . (2.6)

From (2.1)-(2.6), we have

βββ · ∇±h = ∇±1,h +∇±2,h, ∆h = ∆1,h + ∆2,h, ∆2
h = ∆2

1,h + ∆1,h∆2,h + ∆2,h∆1,h + ∆2
2,h. (2.7)

The discrete analogue of the derivative of product of functions is given as follows: for u,v ∈ Hh,

(βββ · ∇+
h )(ui,jvi,j) = (∇+

1,hui,j)vi+1,j + ui,j(∇+
1,hvi,j) + (∇+

2,hui,j)vi,j+1 + ui,j(∇+
2,hvi,j), (2.8)

(βββ · ∇−h )(ui,jvi,j) = (∇−1,hui,j)vi−1,j + ui,j(∇−1,hvi,j) + (∇−2,hui,j)vi,j−1 + ui,j(∇−2,hvi,j). (2.9)

From the definition of Hh and the discrete product rules, (2.8) and (2.9), one obtains:

Lemma 2.1. Let u,w ∈ Hh. Then for any vector βββ = 〈β1, β2〉 with β1, β2 ∈ R

N1∑
i=1

N2∑
j=1

wi,j(βββ · ∇+
h )ui,j = −

N1∑
i=1

N2∑
j=1

ui,j(βββ · ∇−h )wi,j .
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Proof. To prove this, we use the definition of Hh.

N1∑
i=1

N2∑
j=1

wi,j(βββ · ∇+
h )ui,j =

N1∑
i=1

N2∑
j=1

wi,j(β1∇+
1,hui,j + β2∇+

2,hui,j)

=
β1

∆x

 N1∑
i=1

N2∑
j=1

wi,jui+1,j −
N1∑
i=1

N2∑
j=1

wi,jui,j

+
β2

∆y

 N1∑
i=1

N2∑
j=1

wi,jui,j+1 −
N1∑
i=1

N2∑
j=1

wi,jui,j


=

β1

∆x

 N1∑
i=2

N2∑
j=1

wi−1,jui,j −
N1∑
i=1

N2∑
j=1

wi,jui,j

+
β2

∆y

 N1∑
i=1

N2∑
j=2

wi,j−1ui,j −
N1∑
i=1

N2∑
j=1

wi,jui,j


+

β1

∆x

N2∑
j=1

wN1,ju1,j +
β2

∆y

N1∑
i=1

wi,N2ui,1

= −
N1∑
i=1

N2∑
j=1

ui,j

[
β1

(
wi,j − wi−1,j

∆x

)
+ β2

(
wi,j − ui,j−1

∆y

)]

= −
N1∑
i=1

N2∑
j=1

ui,j(βββ · ∇−h )wi,j .

We define the following discrete semi-norms and norms for u = (ui,j), 1 ≤ i ≤ N1, 1 ≤ j ≤ N2.

|u|1,h =

∆x∆y

N1∑
i=1

N2∑
j=1

[
(∇−1,hui,j)

2 + (∇−2,hui,j)
2
] 1

2

, (2.10)

|u|2,h =

∆x∆y

N1∑
i=1

N2∑
j=1

(∆hui,j)
2

 1
2

, (2.11)

‖u‖∞,h = max
1≤i≤N1
1≤j≤N2

|ui,j |, ‖u‖21,h = |u|21,h + ‖u‖2h.

In (2.10), ∇−1,h and ∇−2,h can be replaced by ∇+
1,h and ∇+

2,h, respectively. Using (2.10) and (2.11), we have

|u|21,h ≤ 4

(
1

∆x2
+

1

∆y2

)
‖u‖2h, (2.12)

and the following are obtained by direct computations

‖u‖2h ≤ 4L1L2‖u‖2∞,h

and

‖u‖2∞,h ≤
1

∆x∆y
‖u‖2h. (2.13)

Moreover, it is important to note that if u belongs to Hh, then the discrete Poincaré’s inequality holds; this
is to say that there is η > 0, independent of ∆x and ∆y such that

η ‖u‖h ≤ |u|1,h. (2.14)
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Remark 2.1. With (2.14), we conclude that the semi-norm | · |1,h is a norm on Hh equivalent to ‖ · ‖1,h.

The following identities and inequalities will be helpful.

• For any u,v ∈ Hh

2(u− v,u)h = ‖u‖2h − ‖v‖2h + ‖u− v‖2h, (2.15)

2(u− v,v)h = ‖u‖2h − ‖v‖2h − ‖u− v‖|2h. (2.16)

• For x ∈ [0, 1
2 ], (

1

2

)2x

≤ 1− x. (2.17)

• Young’s inequality: For any a, b ∈ R and δ > 0, we have

ab ≤ δ

2
a2 +

1

2δ
b2. (2.18)

• Cauchy-Schwarz’s inequality: For N ∈ N

N∑
i=1

aibi ≤

(
N∑
i=1

a2
i

)1/2( N∑
i=1

b2i

)1/2

. (2.19)

In order to approximate the nonlinear term, we introduce the bilinear map: Ch : Hh×Hh → RN1×N2 in the
form

Ch(u,v)i,j = α1[ui,j(βββ · ∇+
h )vi,j + vi,j(βββ · ∇−h )ui,j + vi+1,j∇+

1,hui,j + vi,j+1∇+
2,hui,j ]

+ α2[ui,j(βββ · ∇−h )vi,j + vi,j(βββ · ∇+
h )ui,j + vi−1,j∇−1,hui,j + vi,j−1∇−2,hui,j ], (2.20)

where α1 and α2 are constants. We use this bilinear map to approximate the nonlinear term u(βββ · ∇)u at
tn+1 and tn for the implicit and explicit methods, respectively.
Using (2.8), (2.9) and Lemma 2.1, we prove the following.

Lemma 2.2. For u, v ∈ Hh
N1∑
i=1

N2∑
j=1

(Ch(u, v))i,jui,j = 0. (2.21)

Proof. For all u,v ∈ Hh, we have

N1∑
i=1

N2∑
j=1

ui,j((βββ · ∇+
h )vi,j)ui,j =

N1∑
i=1

N2∑
j=1

ui,j(βββ · ∇+
h )(vi,jui,j)−

N1∑
i=1

N2∑
j=1

ui,j(∇+
1,hui,j)vi+1,j

−
N1∑
i=1

N2∑
j=1

ui,j(∇+
2,hui,j)vi,j+1 using (2.8)

= −
N1∑
i=1

N2∑
j=1

ui,jvi,j(βββ · ∇−h )(ui,j)−
N1∑
i=1

N2∑
j=1

ui,j(∇+
1,hui,j)vi+1,j

−
N1∑
i=1

N2∑
j=1

ui,j(∇+
2,hui,j)vi,j+1 using Lemma 2.1.
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Similarly

N1∑
i=1

N2∑
j=1

ui,j((βββ · ∇−h )vi,j)ui,j = −
N1∑
i=1

N2∑
j=1

ui,jvi,j(βββ · ∇+
h )(ui,j)−

N1∑
i=1

N2∑
j=1

ui,j(∇−1,hui,j)vi−1,j

−
N1∑
i=1

N2∑
j=1

ui,j(∇−2,hui,j)vi,j−1.

Thus we have

N1∑
i=1

N2∑
j=1

ui,j

[
ui,j(βββ · ∇+

h )vi,j + vi,j(βββ · ∇−h )ui,j + vi+1,j∇+
1,hui,j + vi,j+1∇+

2,hui,j

]
= 0

and

N1∑
i=1

N2∑
j=1

ui,j

[
ui,j(βββ · ∇−h )vi,j + vi,j(βββ · ∇+

h )ui,j + vi−1,j∇−1,hui,j + vi,j−1∇−2,hui,j
]

= 0.

Therefore, the proof is complete.

Remark 2.2. For any d-dimensional space problem with d ≥ 3, we can easily extend (2.20) such that an
analogous of (2.21) holds. That is

Ch(u, v)i1,i2,··· ,id = α1

[
ui1,i2,··· ,id(βββ · ∇+

h )vi1,i2,··· ,id + vi1,i2,··· ,id(βββ · ∇−h )ui1,i2,··· ,id +

d∑
s=1

vs+∇+
s,hui1,i2,··· ,id

]

+ α2

[
ui1,i2,··· ,id(βββ · ∇−h )vi1,i2,··· ,id + vi1,i2,··· ,id(βββ · ∇+

h )ui1,i2,··· ,id +

d∑
s=1

vs−∇−s,hui1,i2,··· ,id

]
,

where vs± = vi1,··· ,is±1,··· ,id , for s = 1, 2, · · · , d and is is the position of the vector at the sth coordinate.

Lemma 2.3. For u,w ∈ Hh
N1∑
i=1

N2∑
j=1

∆1,h(∆1,hui,j)wi,j =

N1∑
i=1

N2∑
j=1

∆1,h(ui,j)∆1,h(wi,j).

Proof. For all u,w ∈ Hh, we have

N1∑
i=1

N2∑
j=1

∆1,h(∆1,hui,j)wi,j =

N2∑
j=1

[
N1∑
i=1

1

∆x4
(ui+2,j − 2ui+1,j + ui,j)wi,j − 2

N1∑
i=1

1

∆x4
(ui+1,j − 2ui,j + ui−1,j)wi,j

+

N1∑
i=1

1

∆x4
(ui,j − 2ui−1,j + ui−2,j)wi,j

]
. (2.22)

From the periodic boundary conditions,
∑N1

i=1 ui,j =
∑N1

i=1 ui−1,j =
∑N1

i=1 ui+1,j for each j = 1, . . . , N2 and
hence (2.22) yields

N1∑
i=1

N2∑
j=1

∆1,h(∆1,hui,j)wi,j =

N2∑
j=1

[
N1∑
i=1

1

∆x2
(∆1,hui,j)wi−1,j − 2

N1∑
i=1

1

∆x2
(∆1,hui,j)wi,j +

N1∑
i=1

1

∆x2
(∆1,hui,j)wi+1,j

]

=

N2∑
j=1

N1∑
i=1

(∆1,hui,j)

(
1

∆x2
(wi−1,j − 2wi,j + wi+1,j)

)

=

N1∑
i=1

N2∑
j=1

(∆1,hui,j)(∆1,hwi,j).
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Lemma 2.3 also holds when one (or two) of the operator(s) ∆1,h is (are) replaced by ∆2,h.

Lemma 2.4. For u,w ∈ Hh

N1∑
i=1

N2∑
j=1

∆2
h(ui,j)wi,j =

N1∑
i=1

N2∑
j=1

∆h(ui,j)∆h(wi,j).

Proof. For any u,w ∈ Hh using (2.7), we have

N1∑
i=1

N2∑
j=1

∆2
h(ui,j)wi,j =

N1∑
i=1

N2∑
j=1

[
(∆2

1,h + ∆1,h∆2,h + ∆2,h∆1,h + ∆2
2,h)(ui,j)

]
wi,j

=

N1∑
i=1

N2∑
j=1

∆1,hui,j∆1,hwi,j +

N1∑
i=1

N2∑
j=1

∆2,hui,j∆1,hwi,j +

N1∑
i=1

N2∑
j=1

∆1,hui,j∆2,hwi,j

+

N1∑
i=1

N2∑
j=1

∆2,hui,j∆2,hwi,j using Lemma 2.3

=

N1∑
i=1

N2∑
j=1

(∆1,hui,j + ∆2,hui,j)(∆1,hwi,j + ∆2,hwi,j)

=

N1∑
i=1

N2∑
j=1

∆hui,j∆hwi,j .

The following lemma will be used later.

Lemma 2.5. For u ∈ {u = (u)i,j , ui,j ∈ R| ui+N1,j = ui,j = ui,j+N2
, i, j ∈ Z}, the following inequality holds

true

|u|21,h ≤ |u|2,h‖u‖h.

Proof. Using (2.7), for u ∈ {u = (u)i,j , ui,j ∈ R| ui+N1,j = ui,j = ui,j+N2 , i, j ∈ Z}, we have

(∆hu,u)h = (∆1,hu + ∆2,hu,u)h

=

N1∑
i=1

N2∑
j=1

[
ui+1,j − 2ui,j + ui−1,j

∆x2
+
ui,j+1 − 2ui,j + ui,j−1

∆y2

]
ui,j

=

N1∑
i=1

N2∑
j=1

(
ui+1,j − ui,j

∆x2

)
ui,j −

N1∑
i=1

N2∑
j=1

(
ui,j − ui−1,j

∆x2

)
ui,j

+

N1∑
i=1

N2∑
j=1

(
ui,j+1 − ui,j

∆y2

)
ui,j −

N1∑
i=1

N2∑
j=1

(
ui,j − ui,j−1

∆y2

)
ui,j . (2.23)

Using periodicity, we obtain

(∆hu,u)h = −
N1∑
i=1

N2∑
j=1

(
ui,j − ui−1,j

∆x

)2

−
N1∑
i=1

N2∑
j=1

(
ui,j − ui,j−1

∆y

)2

= −|u|21,h.
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Using Cauchy-Schwarz’s inequality, we have

|u|21,h =≤ ‖∆hu‖h‖u‖h = |u|2,h‖u‖h.

For u ∈ Hh, Lemma 2.5 and Young’s inequality implies the existence of η, positive constant independent of
both ∆y, and ∆x such that

η|u|1,h ≤ |u|2,h. (2.24)

3 One-level Finite Volume Methods

In this section, we present two traditional one-level finite volume methods: namely implicit finite volume
method and explicit finite volume method. The existence, uniqueness and convergence of solution for the
implicit method are proved and stability analysis is examined for both schemes. For both methods thirteen
point stencils are used to approximate (1.1)-(1.4), as shown in Fig. 1. The introduction of these classical
schemes is important at least for three reasons:

(a) comparison with multilevel methods;

(b) these schemes that are categorized as classical present significant challenges for their analysis as we will
see;

(c) the analysis of these schemes will shed lights in the analysis of multilevel methods.

3.1 Implicit one-level finite volume method

The nonlinear term u(βββ · ∇u) at tn+1 is approximated linearly using the bilinear map defined in section 2,
(2.20), and is given by

[u(βββ · ∇)u] |n+1
i,j ≈

(
Ch(un+1, ũn)

)
i,j
, (3.1)

where ũn is the approximation of un+1, given by

ũn = a1u
n + a2u

n−1 + a3u
n−2 + · · ·+ am0

un−m0+1, (3.2)

where m0 ∈ {1, 2, . . . , n} and a1, a2, . . . , and am0
are coefficients that determine the approximation with

3(α1 + α2)(a1 + a2 + · · ·+ am0
) = 1, ensuring consistency of the approximation. For m < m0 − 1, the term

ũm is given by the relation

ũm = um. (3.3)

We approximate the nonlinear term on the right hand side of (1.1) at tn+1 by a linear second order accurate
in space as follows:

∆f(u)|n+1
i,j ≈ ∇

+
1,h(ϕni−1/2,j∇

−
1,hu

n+1
i,j ) +∇+

2,h(ϕni,j−1/2∇
−
2,hu

n+1
i,j ). (3.4)

where

ϕni−1/2,j =
f ′(uni,j) + f ′(uni−1,j)

2
and ϕni,j−1/2 =

f ′(uni,j) + f ′(uni,j−1)

2
.

Lemma 3.1. For un,un+1 ∈ Hh

∆x∆y

N1∑
i=1

N2∑
j=1

[
∇+

1,h(ϕni−1/2,j∇
−
1,hu

n+1
i,j ) +∇+

2,h(ϕni,j−1/2∇
−
2,hu

n+1
i,j )

]
un+1
i,j ≤ |u

n+1|21,h.
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Figure 1: Finite volume discretization in 2D

Proof. For un,un+1 ∈ Hh, applying Lemma 2.1, we have

∆x∆y

N1∑
i=1

N2∑
j=1

∇+
1,h(ϕni−1/2,j ∇

−
1,hu

n+1
i,j )un+1

i,j +∇+
2,h(ϕni,j−1/2∇

−
2,hu

n+1
i,j )un+1

i,j

= −∆x∆y

N1∑
i=1

N2∑
j=1

[
ϕni−1/2,j (∇−1,hu

n+1
i,j )2 + ϕni,j−1/2 (∇−2,hu

n+1
i,j )2

]

= −3

2
∆x∆y

N1∑
i=1

N2∑
j=1

[(
(uni,j)

2 + (uni−1,j)
2
)

(∇−1,hu
n+1
i,j )2 +

(
(uni,j)

2 + (uni,j−1)2
)

(∇−2,hu
n+1
i,j )2

]

+ ∆x∆y

N1∑
i=1

N2∑
j=1

[
(∇−1,hu

n+1
i,j )2 + (∇−2,hu

n+1
i,j )2

]

≤ ∆x∆y

N1∑
i=1

N2∑
j=1

[
(∇−1,hu

n+1
i,j )2 + (∇−2,hu

n+1
i,j )2

]
= |un+1|21,h.

The fourth order derivative is discretized using the central difference method and combining together with
(3.1) and (3.4), the implicit one-level finite volume discretization of (1.1)-(1.4) is given as follows:

un+1
i,j − uni,j

∆t
− Ch(un+1, ũn)i,j + ε2∆2

hu
n+1
i,j = ∇+

1,h(ϕni−1/2,j∇
−
1,hu

n+1
i,j ) +∇+

2,h(ϕni,j−1/2∇
−
2,hu

n+1
i,j ), (3.5a)

uni,j = uni+N1,j = uni,j+N2
, (3.5b)

u0
i,j =

1

∆x∆y

∫∫
ki,j

u0(x)dxdy. (3.5c)

Remark 3.1. It is worth noting thanks to (2.20), that (3.5a)-(3.5c) is a linear system of equations, while
(1.1)-(1.4) is nonlinear.
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Before discussing some qualitative properties of the solution of (3.5a)-(3.5c), we first address its feasibility.

Theorem 3.1. If ∆t < 4ε2, then the approximate solution un of (3.5a)-(3.5c) is unique.

Noting that Equations (3.5a)-(3.5c) is a linear system in finite dimensional space, its existence is equivalent
to uniqueness of solution [30]. Thus, we only show that the approximations u1,u2, . . . ,uM satisfying (3.5a)-
(3.5c), are unique.

Proof. For n = 0, 1, 2, . . . ,M, let vn and un be two sequences of solutions of (3.5a)-(3.5c) with v0 = u0.
Let zn = un − vn and clearly z0 = 0. We shall prove by induction that zn = 0 for all n = 1, 2, . . . ,M . We
observe that zn+1 is a solution of

1

∆t
(zn+1
i,j − z

n
i,j)− (Ch(un+1, ũn))i,j+(Ch(vn+1, ṽn))i,j + ε2∆2

hz
n+1
i,j

= ∇+
1,h(ϕni−1/2,j∇

−
1,hu

n+1
i,j ) +∇+

2,h(ϕni,j−1/2∇
−
2,hu

n+1
i,j )

−∇+
1,h(ψni−1/2,j∇

−
1,hv

n+1
i,j ) +∇+

2,h(ψni,j−1/2∇
−
2,hv

n+1
i,j ), (3.6)

for i = 1, · · · , N1, j = 1, · · · , N2 and

ψni−1/2,j =
f ′(vni,j) + f ′(vni−1,j)

2
and ψni,j−1/2 =

f ′(vni,j) + f ′(vni,j−1)

2
.

By induction, we assume that zn = 0 and we want to show that zn+1 = 0. It follows then that

zn+1
i,j −∆t (Ch(zn+1, ũn))i,j + ∆t ε2∆2

hz
n+1
i,j = ∆t

[
∇+

1,h(ϕni−1/2,j∇
−
1,hz

n+1
i,j ) +∇+

2,h(ϕni,j−1/2∇
−
2,hz

n+1
i,j )

]
.

(3.7)

Multiplying (3.7) by ∆t∆x∆y zn+1
i,j and summing the resulting equalities for i = 1, . . . , N1, j = 1, . . . , N2,

with help of (2.21) and Lemma 2.1, we obtain

‖zn+1‖2h + ∆tε2|zn+1|22,h = −∆t∆x∆y

N1∑
i=1

N2∑
j=1

[
ϕni−1/2,j(∇

−
1,hz

n+1
i,j )2 + ϕni,j−1/2(∇−2,hz

n+1
i,j )2

]
,

which after the application of Lemma 3.1 gives

‖zn+1‖2h + ∆tε2|zn+1|22,h ≤ ∆t|zn+1|21,h. (3.8)

Applying Lemma 2.5 and Young’s inequality, (3.8) implies that

(1− ∆t

4ε2
)‖zn+1‖2h ≤ 0. (3.9)

For
∆t

4ε2
< 1, we get

‖zn+1‖2h ≤ 0.

Therefore, zn+1 = 0. This completes the proof of uniqueness, hence the existence of solution.

With the existence of solution being conditioned, it is quite clear that all possible results will be under at
least the same condition, that is ∆t < 4ε2. About the stability of the method (3.5a)-(3.5c), we have the
following theorem.

Theorem 3.2. The finite volume method defined by (3.5a)-(3.5c), is conditionally stable in L∞(0, T ;Hh),
that is, for ∆t ≤ ε2 and 1 ≤ n ≤M ,

‖un‖2h ≤ 2

2T

ε2 ‖u0‖2h.
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Proof. By multiplying (3.5a) with 2∆x∆y∆t un+1
i,j and summing from i = 1 to N1 and j = 1 to N2, we

obtain

‖un+1‖2h − ‖un‖2h + ‖un+1 − un‖2h + 2∆t ε2(∆2
hu

n+1,un+1)h

= 2∆x∆y∆t

N1∑
i=1

N2∑
i=1

[
∇+

1,h(ϕni−1/2,j∇
−
1,hu

n+1
i,j ) +∇+

2,h(ϕni,j−1/2∇
−
2,hu

n+1
i,j )

]
un+1
i,j . (3.10)

Using Lemmas 2.4 and 3.1 together with (3.10), we have

‖un+1‖2h − ‖un‖2h + ‖un+1 − un‖2h + 2∆tε2|un+1|22,h ≤ 2∆t|un+1|21,h. (3.11)

Due to Lemma 2.5, Young’s inequality and dropping the term ‖un+1 − un‖2h, (3.11) gives

‖un+1‖2h − ‖un‖2h ≤
∆t

2ε2
‖un+1‖2h,

which is re-written as follows [
1− ∆t

2ε2

]
‖un+1‖2h ≤ ‖un‖2h. (3.12)

Based on (2.17), for
∆t

2ε2
≤ 1

2
, (3.12) gives

‖un+1‖2h ≤ 2

2∆t

ε2 ‖un‖2h.

By induction over n, we obtain

‖un‖2h ≤ 2

2n∆t

ε2 ‖u0‖2h ≤ 2

2T

ε2 ‖u0‖2h.

Therefore, the proof is complete.

Remark 3.2. Starting with (3.11) and Lemma 2.5, one has

‖un+1‖2h − ‖un‖2h + ‖un+1 − un‖2h + 2∆tε2η2|un+1|21,h ≤ 2∆t|un+1|21,h. (3.13)

Hence, we obtain

‖un+1‖2h + 2∆t(ε2η2 − 1)|un+1|21,h ≤ ‖un‖2h, (3.14)

from which one deduces that if ε is big enough, then

‖un+1‖2h ≤ ‖un‖2h ≤ ‖un−1‖2h ≤ · · · ≤ ‖u0‖2h.

This alternative stability result requires both that ∆t < 4ε2 and the viscosity constant ε big enough.

Theorem 3.3. Suppose that the solution u(x, t) of (1.1)-(1.4) is sufficiently smooth.
Assume that ∆t < min(4ε2, c), with c given by (3.43), independent of ∆x and ∆y.
Assume that ∆t, ∆x and ∆y satisfy the relation (3.45).
Then, the solution of the finite volume discretization (3.5a)-(3.5c) converges to the solution of the problems
(1.1)-(1.4) in the discrete L2-norm with rate of convergence O(∆t+ ∆x2 + ∆y2).
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Proof. For i = 1, . . . , N1 and j = 1, . . . , N2, let

υni,j =
1

∆x∆y

∫∫
ki,j

u(x, y, tn)dxdy,

be the cell average of the exact solution u of (1.1)-(1.4) at time tn, for 0 ≤ n ≤M , on the cell ki,j . Since u
is smooth enough by assumption, (hence at least continuous on [−L1, L1]× [−L2, L2]) we let

s = max
−L1≤x≤L1,−L2≤y≤L2,0≤t≤T

|u(x, y, t)|. (3.15)

Also, the smoothness of u gives

υni,j = u(xi, yj , tn) +O(∆x2 + ∆y2), 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 and 0 ≤ n ≤M.

Making use of Taylor’s expansion (see Appendix A), we obtain

υn+1
i,j − υni,j

∆t
= ut|ni,j +O(∆t+ ∆x2 + ∆y2), (3.16)

∆2
hυ

n+1
i,j = ∆2u|ni,j +O(∆t+ ∆x2 + ∆y2), (3.17)

∇+
1,h(ψni− 1

2 ,j
∇−1,hυ

n+1
i,j ) +∇+

2,h(ψni,j− 1
2
∇−2,hυ

n+1
i,j ) = ∆f(u)|ni,j +O(∆t+ ∆x2 + ∆y2), (3.18)

and

(Ch(υυυn+1, υ̃υυn))i,j = (α1 − α2)(a1 + a2 + · · ·+ am0
)(∆x (u2

x)|ni,j + ∆y (u2
y)|ni,j)

+
1

2
(α1 − α2)(a1 + a2 + · · ·+ am0

)(∆x (uuxx)|ni,j + ∆y (uuyy)|ni,j)

+ 3(α1 + α2)(a1 + a2 + · · ·+ am0
) (u (βββ · ∇)u)|ni,j +O(∆t+ ∆x2 + ∆y2). (3.19)

One observes that the numerical scheme is first order accurate when α1 6= α2 and it is second order accurate
in space if α1 = α2, from which (3.19) gives

Ch(υυυn+1, υ̃υυn)i,j = (u(βββ · ∇)u)|ni,j +O(∆t+ ∆x2 + ∆y2). (3.20)

In this study, we consider the case α1 = α2 to obtain second order accurate method. Combining (3.16)-(3.18)
and (3.20), we obtain

υn+1
i,j − υni,j

∆t
− (Ch(υυυn+1, υ̃υυn))i,j + ε2∆2

hυ
n+1
i,j = ∇+

1,h(ψn
i− 1

2 ,j
∇−1,hυ

n+1
i,j ) +∇+

2,h(ψn
i,j− 1

2

∇−2,hυ
n+1
i,j ) + rni,j ,

υ0
i,j =

1

∆x∆y

∫∫
ki,j

u0(x, y)dxdy,

(3.21)

where rni,j is the truncation error of the finite volume discretization (3.5a) for 0 ≤ n ≤ M − 1, 1 ≤ i ≤ N1

and 1 ≤ j ≤ N2. There exists a positive constant c1 such that

max
i,j,n
|rni,j | ≤ c1(∆t+ ∆x2 + ∆y2), 0 ≤ n ≤M − 1, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2. (3.22)

Let en = υυυn − un, 0 ≤ n ≤M , where uni,j is the solution of (3.5a)-(3.5c). Clearly en ∈ Hh and e0 = 0.
Substituting uni,j = υni,j − eni,j into (3.5a), and using (3.21), we obtain

en+1
i,j − eni,j

∆t
− (Ch(en+1, υ̃υυn − ẽn))i,j + ε2∆2

he
n+1
i,j = ∇+

1,h(ϕni− 1
2 ,j
∇−1,he

n+1
i,j ) +∇+

2,h(ϕni,j− 1
2
∇−2,he

n+1
i,j )

+∇+
1,h

[(
3(υni,j e

n
i,j + υni−1,j e

n
i−1,j)−

3

2
[(eni,j)

2 + (eni−1,j)
2]

)
∇−1,hυ

n+1
i,j

]
+ (Ch(υυυn+1, ẽn))i,j

+∇+
2,h

[(
3(υni,j e

n
i,j + υni,j−1 e

n
i,j−1)− 3

2
[(eni,j)

2 + (eni,j−1)2]

)
∇−2,hv

n+1
i,j

]
+ rni,j , (3.23)
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where

ψni−1/2,j =
f ′(υni,j) + f ′(υni−1,j)

2
and ψni,j−1/2 =

f ′(υni,j) + f ′(υni,j−1)

2
.

Multiplying (3.23) by 2∆t∆x∆y en+1
i,j and summing the corresponding equalities for i = 1, . . . , N1 and

j = 1, . . . , N2, together with (2.15) and Lemmas 2.1 and 3.1, we obtain

‖en+1‖2h − ‖en‖2h + ‖en+1 − en‖2h + 2∆tε2|en+1|22,h ≤ 2∆t|en+1|21,h

− 6∆t∆x∆y

N1∑
i=1

N2∑
j=1

[(
υni,j e

n
i,j + υni−1,j e

n
i−1,j

)
∇−1,hυ

n+1
i,j ∇

−
1,he

n+1
i,j +

(
υni,j e

n
i,j + υni,j−1 e

n
i,j−1

)
∇−2,hv

n+1
i,j ∇

−
2,he

n+1
i,j

]

+ 3∆t∆x∆y

N1∑
i=1

N2∑
j=1

[
[(eni,j)

2 + (eni−1,j)
2]∇−1,hυ

n+1
i,j ∇

−
1,he

n+1
i,j + [(eni,j)

2 + (eni,j−1)2]∇−2,hv
n+1
i,j ∇

−
2,he

n+1
i,j

]
+ 2∆t(Ch(υυυn+1, ẽn), en+1)h + 2∆t(rn, en+1)h

=

7∑
m=1

Im. (3.24)

We estimate each of the terms I2, . . . , I7 (3.24) as follows:

I2 ≤ 6∆t

 max
1≤i≤N1
1≤j≤N2

|υni,j |

  max
1≤i≤N1
1≤j≤N2

|∇−1,hυ
n
i,j |

∆x∆y

N1∑
i=1

N2∑
j=1

|eni,j ||∇−1,he
n+1
i,j |+ |e

n
i−1,j ||∇−1,he

n+1
i,j |


(3.25)

Since u is smooth then there exist constants c2 and c3 such that

max
1≤i≤N1
1≤j≤N2

|∇−1,hυ
n+1
i,j | ≤ c2 and max

1≤i≤N1
1≤j≤N2

|∇−2,hυ
n+1
i,j | ≤ c3 ∀n = 0, 1, · · · ,M − 1.

Thus,

I2 ≤ 12sc2 ∆t ‖en‖h

∆x∆y

N1∑
i=1

N2∑
j=1

(∇−1,he
n+1
i,j )2

1/2

(3.26)

In a similar way, one obtains

I3 ≤ 12sc3 ∆t ‖en‖h

∆x∆y

N1∑
i=1

N2∑
j=1

(∇−2,he
n+1
i,j )2

1/2

. (3.27)

Combining (3.26) and (3.27), and applying Young’s inequality, we obtain

I2 + I3 ≤ 6 ∆t

(
2s2 c24
δ1
‖en‖2h + δ1 |en+1|21,h

)
, (3.28)

where c4 = max{c2, c3}.

I4 ≤ 3c2 ∆t

∆x∆y

N1∑
i=1

N2∑
j=1

[
(eni,j)

2 + (eni−1,j)
2
]
|∇−1,he

n+1
i,j |


≤ 6c2 ∆t ‖en‖∞,h‖en‖h

∆x∆y

N1∑
i=1

N2∑
j=1

(∇−1,he
n+1
i,j )2

1/2

. (3.29)
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Similarly, we get

I5 ≤ 6c3 ∆t ‖en‖∞,h‖en‖h

∆x∆y

N1∑
i=1

N2∑
j=1

(∇−2,he
n+1
i,j )2

1/2

. (3.30)

Adding (3.29) and (3.30), one obtains

I4 + I5 ≤ 6
√

2 c4 ∆t ‖en‖∞,h ‖en‖h |en+1|1,h

≤ 3∆t

(
2 c24
δ2
‖en‖2h + δ2‖en‖2∞,h |en+1|21,h

)
. (3.31)

From the definition of the bilinear map Ch, we have

(Ch(υυυn+1, ẽn), en+1)h

= ∆x∆y α

N1∑
i=1

N2∑
j=1

[
υn+1
i,j (βββ · ∇+

h )ẽni,j + ẽni,j(βββ · ∇−h )υn+1
i,j + ẽni+1,j∇+

1,hυ
n+1
i,j + ẽni,j+1∇+

2,hυ
n+1
i,j

]
en+1
i,j

+ ∆x∆y α

N1∑
i=1

N2∑
j=1

[
υn+1
i,j (βββ · ∇−h )ẽni,j + ẽni,j(βββ · ∇+

h )υn+1
i,j + ẽni−1,j∇−1,hυ

n+1
i,j + ẽni,j−1∇−2,hυ

n+1
i,j

]
en+1
i,j . (3.32)

We now estimate each of the terms in (3.32).

∆x∆y

N1∑
i=1

N2∑
j=1

υn+1
i,j (βββ · ∇−h ẽ

n
i,j) e

n+1
i,j = −∆x∆y

N1∑
i=1

N2∑
j=1

ẽni,j(βββ · ∇+
h )(υn+1

i,j en+1
i,j )

≤ (c2 + c3)‖ẽn ‖h‖en+1‖h +
√

2s ‖ẽn‖h |en+1|1,h
= c5‖ẽn ‖h‖en+1‖h +

√
2s ‖ẽn‖h |en+1|1,h, (3.33)

where c5 = c2 + c3.

∆x∆y

N1∑
i=1

N2∑
j=1

ẽni,j(βββ · ∇−h υ
n+1
i,j ) en+1

i,j ≤ max
1≤i≤N1
1≤j≤N2

|(βββ · ∇−h )υn+1
i,j |

∆x∆y

N1∑
i=1

N2∑
j=1

|ẽni,j | |en+1
i,j |


≤

 max
1≤i≤N1
1≤j≤N2

|∇−1,hυ
n+1
i,j |+ max

1≤i≤N1
1≤j≤N2

|∇−2,hυ
n+1
i,j |

∆x∆y

N1∑
i=1

N2∑
j=1

|ẽni,j | |en+1
i,j |


≤ c5‖ẽn‖h‖en+1‖h. (3.34)

∆x∆y

N1∑
i=1

N2∑
j=1

[
ẽni+1,j∇+

1,hυ
n+1
i,j + ẽni,j+1∇+

2,hυ
n+1
i,j

]
en+1
i,j ≤ max

1≤i≤N1
1≤j≤N2

|∇+
1,hυ

n+1
i,j |

∆x∆y

N1∑
i=1

N2∑
j=1

|ẽni+1,j | |en+1
i,j |


+ max

1≤i≤N1
1≤j≤N2

|∇+
2,hυ

n+1
i,j |

∆x∆y

N1∑
i=1

N2∑
j=1

|ẽni,j+1| |en+1
i,j |


≤ c2‖ẽn‖h‖en+1‖h + c3‖ẽn‖h‖en+1‖h
= c5‖ẽn‖h‖en+1‖h. (3.35)
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In a similar fashion, we obtain

∆x∆y

N1∑
i=1

N2∑
j=1

υn+1
i,j (βββ · ∇−h ẽ

n
i,j) e

n+1
i,j ≤ c5‖ẽ

n ‖h‖en+1‖h +
√

2s ‖ẽn‖h |en+1|1,h. (3.36)

∆x∆y

N1∑
i=1

N2∑
j=1

ẽni,j(βββ · ∇+
h υ

n+1
i,j ) en+1

i,j ≤ c5‖ẽ
n‖h‖en+1‖h. (3.37)

∆x∆y

N1∑
i=1

N2∑
j=1

[
ẽni−1,j∇−1,hυ

n+1
i,j + ẽni,j−1∇−2,hυ

n+1
i,j

]
en+1
i,j ≤ c5‖ẽ

n‖h‖en+1‖h. (3.38)

Combining the inequalities from (3.33)-(3.38), and using Young’s inequality, we obtain

2∆t(Ch(υυυn+1, ẽn), en+1)h ≤ ∆t

[
8s2α2

δ4
‖ẽn‖2h + δ4|en+1|21,h

]
+ ∆t

[36c25α
2

δ5
‖ẽn‖2h + δ5‖en+1‖2h

]
. (3.39)

Finally, using (3.22) and Young’s inequality, we obtain

(rn, en+1)h = ∆x∆y

N1∑
i=1

N2∑
j=1

rni,je
n+1
i,j ≤

16L2
1L

2
2c

2
1

2δ3

(
∆t+ ∆x2 + ∆y2

)2
+
δ3
2
‖en+1‖2h. (3.40)

Thus, from (3.28), (3.31), (3.39) and (3.40), we get

‖en+1‖2h − ‖en‖2h + 2∆tε2|en+1|22,h ≤ 2∆t|en+1|21,h + 6 ∆t

(
2s2 c24
δ1
‖en‖2h + δ1 |en+1|21,h

)
+ 3∆t

(
2 c24
δ2
‖en‖2h + δ2‖en‖2∞,h |en+1|21,h

)
+ ∆t

[
8s2α2

δ4
‖ẽn‖2h + δ4|en+1|21,h

]
+ ∆t

[36c25α
2

δ5
‖ẽn‖2h + δ5‖en+1‖2h

]
+

16∆t L2
1L

2
2c

2
1

δ3
(∆t+ ∆x2 + ∆y2)2 + ∆t δ3‖en+1‖2h,

which after using (2.13) and applying Lemma 2.5 and Young’s inequality gives

[1−∆t(δ3 + δ5)]‖en+1‖2h + ∆tε2|en+1|22,h ≤
∆t(2 + 6δ1 + δ4)2

4ε2
‖en+1‖2h +

[
1 + 6 ∆t

(
2s2 c24
δ1

+
c24
δ2

)]
‖en‖2h

+
3∆t δ2
∆x∆y

‖en‖2h |en+1|21,h + 4∆t α2

[
2s2

δ4
+

9c25
δ5

]
‖ẽn‖2h +

16∆t L2
1L

2
2c

2
1

δ3
(∆t+ ∆x2 + ∆y2)2. (3.41)

Using (2.24), (3.41) gives

[1−∆t c]‖en+1‖2h + ∆tε2η2|en+1|21,h ≤ (1 + ∆tc9) ‖en‖2h + ∆tc8‖ẽn‖2h +
12∆t δ2
∆x∆y

‖en‖2h |en+1|21,h

+ ∆tc7(∆t+ ∆x2 + ∆y2)2, (3.42)

where

c7 =
16L2

1L
2
2c

2
1

δ3
, c = δ3 + δ5 +

(2 + 6δ1 + δ4)2

4ε2
c9 = 6

(
2s2 c24
δ1

+
c24
δ2

)
, c8 = 4α2

[
2s2

δ4
+

9c25
δ5

]
.

For

∆t ≤ 1

2c
≡ c (3.43)
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then it follows from (3.42) that

‖en+1‖2h + ∆tε2η2|en+1|21,h ≤ 4∆tc
[
(1 + ∆tc9) ‖en‖2h + ∆tc8‖ẽn‖2h +

3∆t δ2
∆x∆y

‖en‖2h |en+1|21,h

+ ∆tc7(∆t+ ∆x2 + ∆y2)2
]
. (3.44)

Now for

3δ2 c7
∆x∆y

[
(∆t+ ∆x2 + ∆y2)2

]
≤ c10

2
ε2η24−Tc exp

(
−Tc10

)
, (3.45)

where c10 = c9 +m0Ac8 and A =
∑m0

i=1 |ai|2, we prove by inductive method that

‖en+1‖2h +
1

2
∆tε2η2|en+1|21,h ≤ 4∆t c

[
(1 + ∆tc9) ‖en‖2h + ∆tc8‖ẽn‖2h + ∆tc7(∆t+ ∆x2 + ∆y2)2

]
. (3.46)

For n = 0 from (3.44), one obtains

‖e1‖2h + ∆tε2η2|e1|21,h ≤ 4∆t c

[
(1 + ∆t(c9 + c8)) ‖e0‖2h +

3∆t δ2
∆x∆y

‖e0‖2h |e1|21,h
]

+ ∆tc7(4∆t c)
[
(∆t+ ∆x2 + ∆y2)2

]
,

and hence,

‖e1‖2h +
1

2
∆tε2η2|e1|21,h ≤ 4∆t c

[
(1 + ∆t(c9 + c8)) ‖e0‖2h + ∆tc7(∆t+ ∆x2 + ∆y2)2

]
,

which is (3.46) for n = 0. Now suppose that (3.46) is true up to the order n−1. Thus, for s = 0, 1, . . . , n−1,

‖es+1‖2h +
1

2
∆tε2η2|es+1|21,h ≤ 4∆t c

[
(1 + ∆tc9) ‖es‖2h + ∆tc8‖ẽs‖2h + ∆tc7(∆t+ ∆x2 + ∆y2)2

]
. (3.47)

It is now remaining to treat the term ‖ẽs‖2h. For s < m0−1, it is clear from (3.3) that ‖ẽs‖h = ‖es‖h. Thus,
(3.47) becomes

‖es+1‖2h +
1

2
∆tε2η2|es+1|21,h ≤ 4∆t c

[
(1 + ∆t(c9 + c8)) ‖es‖2h + ∆tc7(∆t+ ∆x2 + ∆y2)2

]
. (3.48)

It follows from (3.48) that

‖es+1‖2h ≤ 4∆t c
[
(1 + ∆t(c9 + c8)) ‖es‖2h + ∆tc7(∆t+ ∆x2 + ∆y2)2

]
.

After s+ 1 iterations, we get

‖es+1‖2h ≤ 4∆t(s+1) c
[
∆tc7(∆t+ ∆x2 + ∆y2)2

s∑
j=0

(1 + ∆t(c9 + c8))j
]
. (3.49)

For the case s ≥ m0 − 1 and m0 > 1, it follows from (3.2) that

‖ẽs‖h ≤
m0∑
i=1

|ai|‖ẽs−i+1‖h,

which by Cauchy-Schwartz’s inequality gives

‖ẽs‖2h ≤ A
[
‖es‖2h + ‖es−1‖2h + · · ·+ ‖es−m0+1‖2h

]
. (3.50)
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Hence, (3.47) gives

‖es+1‖2h ≤ 4∆t c
[
(1 + ∆tc9) ‖es‖2h + ∆tc8A

(
‖es‖2h + ‖es−1‖2h + · · ·+ ‖es−m0+1‖2h

)]
+ 4∆t c

[
∆tc7(∆t+ ∆x2 + ∆y2)2

]
. (3.51)

It follows easily that

max
{
‖es+1‖2h, ‖es‖2h, . . . , ‖es−m0+2‖2h

}
≤ 4∆tc

[
(1 + ∆t c10) max

{
‖es‖2h, ‖es−1‖2h, . . . , ‖es−m0+1‖2h

}
+ ∆t c7(∆t+ ∆x2 + ∆y2)2

]
. (3.52)

which after s−m0 + 2 iterations gives

max
{
‖es+1‖2h,‖es‖2h, . . . , ‖es−m0+2‖2h

}
≤ 4(s−m0+2)∆tc

[
(1 + ∆t c10)s−m0+2 max

{
‖em0−1‖2h, ‖em0−2‖2h, . . . , ‖e0‖2h

}
+ ∆t c7(∆t+ ∆x2 + ∆y2)2

s−m0+1∑
j=0

(1 + ∆tc10)j

]
. (3.53)

Combining (3.49) and (3.53), we get

‖es+1‖2h ≤ 4(s+1)∆tc
[
∆t c7(∆t+ ∆x2 + ∆y2)2

s∑
j=0

(1 + ∆tc10)j
]

= 4(s+1)∆tc
[
∆t c7(∆t+ ∆x2 + ∆y2)2

(
(1 + ∆tc10)s+1 − 1

∆tc10

)]
≤ 4(s+1)∆tc exp((s+ 1)∆t c10)

[ c7
c10

(∆t+ ∆x2 + ∆y2)2
]

(3.54)

and

‖ẽs+1‖2h ≤ m0A 4(s+1)∆tc exp((s+ 1)∆t c10)
[ c7
c10

(∆t+ ∆x2 + ∆y2)2
]
, (3.55)

for s = 0, 1, . . . , n− 1.
Going back to (3.44), and using (3.54) we obtain

‖en+1‖2h + ∆tε2η2|en+1|21,h ≤4∆tc
[
(1 + ∆tc9) ‖en‖2h + ∆tc8|ẽn|2h + ∆tc7(∆t+ ∆x2 + ∆y2)2

]
+

3∆t δ2
∆x∆y

4n∆tc exp(n∆t c10)
[ c7
c10

(∆t+ ∆x2 + ∆y2)2
]
|en+1|21,h,

which by (3.45) gives

‖en+1‖2h + ∆tε2η2|en+1|21,h ≤ 4∆tc
[
(1 + ∆tc9) ‖en‖2h + ∆tc8‖ẽn‖2h + ∆tc7(∆t+ ∆x2 + ∆y2)2

]
+

1

2
∆tε2η2|en+1|21,h.

Thus, we have

‖en+1‖2h +
1

2
∆tε2η2|en+1|21,h ≤ 4∆tc

[
(1 + ∆tc9) ‖en‖2h + ∆tc8‖ẽn‖2h + ∆tc7 (∆t+ ∆x2 + ∆y2)2

]
. (3.56)
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Using (3.54) and (3.55), (3.56) gives

‖en‖2h ≤ 4n∆tc exp (n∆tc10)
[ c7
c10

(∆t+ ∆x2 + ∆y2)2
]

≤ 4Tc exp(T c10)
[ c7
c10

(∆t+ ∆x2 + ∆y2)2
]
, (3.57)

for n = 1, 2, . . . ,M . Thus, it follows from (3.57) that

‖en‖h ≤ C(∆t+ ∆x2 + ∆y2),

for constant C independent of ∆t, ∆x and ∆y. This completes the proof.

Remark 3.3. The assumption ∆t < 4ε2 in Theorem 3.3 is to ensure the existence of solution for (3.5a)-
(3.5c). It is worth noting that the convergence result Theorem 3.3 is conducted for α1 = α2. The case when
α1 6= α2 is treated in the same way but the rate of convergence will change.

3.2 Explicit Finite Volume Method

In this section, we approximate the solution of (1.1) using an explicit finite volume method:

un+1
i,j − uni,j

∆t
− (Ch(un,un))i,j + ε2∆2

hu
n
i,j = ∇+

1,h(ϕni−1/2,j∇
−
1,hu

n
i,j) +∇+

2,h(ϕni,j−1/2∇
−
2,hu

n
i,j), (3.58a)

uni,j = uni+N1,j = uni,j+N2
, (3.58b)

u0
i,j =

1

∆x∆y

∫∫
ki,j

u0(x, y)dxdy, (3.58c)

for 1 ≤ n ≤M − 1 and 1 ≤ i ≤ N1, 1 ≤ j ≤ N2. (3.58) is explicit, hence the solution un is computed at each
time step. One important feature of this scheme is stated in the following.

Theorem 3.4. We assume that the following are satisfied for some δ, 0 < δ < 1:

∆t

(
1

∆x2
+

1

∆y2

)2

≤ 1− δ
64ε2

, (3.59)

16∆t

(
1

∆x2
+

1

∆y2

)
≤ ε2δη2(1− δ), (3.60)

72∆t

∆x∆y

(
(|α1|+ |α2|)2 +

4

∆x∆y

(
1

∆x2
+

1

∆y2

)
‖u0‖2h

)
‖u0‖2h ≤ ε2δ2η2 exp

(
−2T

ε2

)
, (3.61)

where α1 and α2 are the constants in (2.20). Then the finite volume method defined by (3.58) is L∞(0, T ;Hh)
stable in the following sense:

‖un‖2 ≤ exp

(
∆t

ε2

)
‖un−1‖2 ≤ · · · ≤ exp

(
n∆t

ε2

)
‖u0‖2 ≤ exp

(
T

ε2

)
‖u0‖2, n = 1, 2 . . . ,M,

∆t

2
ε2δ2η2

M−1∑
n=0

exp

(
(M − n)∆t

ε2

)
|un|21,h ≤ exp

(
T

ε2

)
‖u0‖2

Proof. To prove this assertion we use the approach of Temam [31]. Multiplying (3.58a) by 2∆t∆x∆yuni,j
and summing the equalities for i = 1, . . . , N1 and j = 1, . . . , N2, together with (2.16), (2.18) and Lemma 2.5,
we arrive at

‖un+1‖2h − ‖un+1 − un‖2h + ∆tε2|un|22,h ≤ exp

(
∆t

ε2

)
‖un‖2h. (3.62)
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Now we have to estimate the term ‖un+1 − un‖2h. By multiplying (3.58a) by 2∆t∆x∆y(un+1
i,j − uni,j) and

adding the corresponding equalities for i = 1, . . . , N1 and j = 1, . . . , N2, we obtain

2‖un+1 − un‖2h = 2∆t(Ch(un,un),un+1 − un)h − 2∆tε2(∆hu
n,∆h(un+1 − un))

− 2∆t∆x∆y

N1∑
i=1

N2∑
i=1

[
ϕni−1/2,j∇

−
1,hu

n+1
i,j

]
∇−1,h(un+1

i,j − u
n
i,j)

− 2∆t∆x∆y

N1∑
i=1

N2∑
i=1

[
ϕni,j−1/2∇

−
2,hu

n+1
i,j

]
∇−2,h(un+1

i,j − u
n
i,j) (3.63)

Using (2.18) and (2.19), we majorize all the terms on the right hand side of (3.63) as follows:

2∆t(Ch(un,un),un+1 − un)h ≤
36∆t2

∆x∆y
(|α1|+ |α2|)2‖un‖2h|un|21,h +

1

4
‖un+1 − un‖2h; (3.64)

−2∆tε2(∆hu
n,∆h(un+1 − un))h ≤ 64ε4∆t2

(
1

∆x2
+

1

∆y2

)2

|un|22,h +
1

4
‖un+1 − un‖2h; (3.65)

−2∆t∆x∆y

N1∑
i=1

N2∑
i=1

[(
ϕni−1/2,j∇

−
1,hu

n+1
i,j

)
∇−1,h(un+1

i,j − u
n
i,j) +

(
ϕni,j−1/2∇

−
2,hu

n+1
i,j

)
∇−2,h(un+1

i,j − u
n
i,j)
]

≤ 144∆t2

∆x2∆y2

(
1

∆x2
+

1

∆y2

)
‖un‖4h|un|21,h +

1

4
‖un+1 − un‖2h

+ 16∆t2
(

1

∆x2
+

1

∆y2

)
|un|21,h +

1

4
‖un+1 − un‖2h. (3.66)

Thus using (3.64)-(3.66), (3.63) becomes

‖un+1 − un‖2h ≤
36∆t2

∆x∆y
(|α1|+ |α2|)2‖un‖2h|un|21,h + 64ε4∆t2

(
1

∆x2
+

1

∆y2

)2

|un|22,h

+
144∆t2

∆x2 ∆y2

(
1

∆x2
+

1

∆y2

)
‖un‖4h|un|21,h + 16∆t2

(
1

∆x2
+

1

∆y2

)
|un|21,h,

which by (3.59) gives

‖un+1 − un‖2h ≤
36∆t2

∆x∆y
(|α1|+ |α2|)2‖un‖2h|un|21,h + ∆tε2(1− δ)|un|22,h

+
144∆t2

∆x2 ∆y2

(
1

∆x2
+

1

∆y2

)
‖un‖4h|un|21,h + 16∆t2

(
1

∆x2
+

1

∆y2

)
|un|21,h. (3.67)

On substitution of (3.67) back to (3.62), we arrive at

‖un+1‖2h − exp

(
∆t

ε2

)
‖un‖2h + ∆tε2δ|un|22,h ≤ 16∆t2

(
1

∆x2
+

1

∆y2

)
|un|21,h

+
36∆t2

∆x∆y

[
(|α1|+ |α2|)2 +

4

∆x∆y

(
1

∆x2
+

1

∆y2

)
‖un‖2h

]
‖un‖2h|un|21,h.

(3.68)

Using (2.24) and (3.60), (3.68) gives

‖un+1‖2h − exp

(
∆t

ε2

)
‖un‖2h + ∆tε2δ2η2|un|21,h

≤ 36∆t2

∆x∆y

(
(|α1|+ |α2|)2 +

4

∆x∆y

(
1

∆x2
+

1

∆y2

)
‖un‖2h

)
‖un‖2h|un|21,h.

(3.69)
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We then need to show by induction on n, that

‖un+1‖2h +
∆t

2
ε2δ2η2|un|21,h ≤ exp

(
∆t

ε2

)
‖un‖2h. (3.70)

For n = 0, from (3.69), we obtain

‖u1‖2h + ∆tε2δ2η2|u0|21,h

≤ exp

(
∆t

ε2

)
‖u0‖2h +

36∆t2

∆x∆y

[
(|α1|+ |α2|)2 +

4

∆x∆y

(
1

∆x2
+

1

∆y2

)
‖u0‖2h

]
‖u0‖2h|u0|21,h,

which with (3.61) leads to

‖u1‖2h +
∆t

2
ε2δ2η2|u0|21,h ≤ exp

(
∆t

ε2

)
‖u0‖2h,

which is (3.70) for n = 0. Assuming now that (3.70) is true up to the order n − 1, this is to say that for
s = 0, 2, . . . , n− 1, we have

‖us‖2h ≤ exp

(
∆t

ε2

)
‖us−1‖2h and ‖us‖2h ≤ exp

(
s∆t

ε2

)
‖u0‖2h. (3.71)

Using (3.71) in (3.69), one obtains

‖un+1‖2h + ∆tε2δ2η2|un|21,h ≤ exp

(
∆t

ε2

)
‖un‖2h

+
36∆t

∆x∆y
exp

(
2n∆t

ε2

)[
(|α1|+ |α2|)2 +

4

∆x∆y

(
1

∆x2
+

1

∆y2

)
‖u0‖2h

]
‖u0‖2h|un|21,h,

which by (3.61) gives

‖un+1‖2h + ∆tε2δ2η2|un|21,h ≤ exp

(
∆t

ε2

)
‖un‖2h +

∆t

2
ε2δ2η2|un|21,h,

re-written also as follows

‖un+1‖2h +
∆t

2
ε2δ2η2|un|21,h ≤ exp

(
∆t

ε2

)
‖un‖2h.

We then have

‖un+1‖2h ≤ exp

(
∆t

ε2

)
‖un‖2h −

∆t

2
ε2δ2η2|un|21,h

≤ exp

(
2∆t

ε2

)
‖un−1‖2h −

∆t

2
ε2δ2η2 exp

(
∆t

ε2

)
|un−1|21,h −

∆t

2
ε2δ2η2|un|21,h

≤ exp

(
3∆t

ε2

)
‖un−2‖2h −

∆t

2
ε2δ2η2 exp

(
2∆t

ε2

)
|un−2|21,h −

∆t

2
ε2δ2η2 exp

(
∆t

ε2

)
|un−1|21,h

− ∆t

2
ε2δ2η2|un|21,h

...

≤ exp

(
(n+ 1)∆t

ε2

)
‖u0‖2h −

∆t

2
ε2δ2η2

n∑
s=0

exp

(
(n− s)∆t

ε2

)
|us|21,h.

Hence we get

‖un+1‖2h +
∆t

2
ε2δ2η2

n∑
s=0

exp

(
(n− s)∆t

ε2

)
|us|21,h ≤ exp

(
(n+ 1)∆t

ε2

)
‖u0‖2h.

Therefore, the proof is complete.
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4 Multilevel Finite Volume Approximation

Multilevel methods were introduced to improve calculation speed in the simulation of complex physical
phenomena while maintaining a good level of accuracy, see [22, 23, 24, 25, 26, 27]. This section is an
application of the work presented in [23], in which the shallow water equations is analyzed. Here, we are
concerned with the two dimensional convective Cahn-Hilliard equation (1.1)-(1.4). We formulate in the
spirit of [23] two methods approximating (1.1)-(1.4), namely: implicit multilevel finite volume method and
explicit multilevel finite volume method. These new methods are next studied thoroughly and comparison
by stability and CPU time with the associated one-level methods discussed in section 3.1 are established.
To make this text self-contained for the reader, we recall below the multilevel finite volume approximation
as described in Bousquet et. al. [23].

Here N1 and N2 are assumed to be divisible by 3. Let N0
1 , N

0
2 and M0 be integers such that 3N0

1 =
N1, 3N

0
2 = N2 and ∆tM0 = T . We discretizeM into fine meshes and coarse meshes. The fine mesh consists

of 3N0
1 × 3N0

2 regular cells (ki,j)1≤i≤3N0
1 ,1≤j≤3N0

2
of uniform area ∆x∆y.

The coarse mesh consists of N0
1N

0
2 control volumes (Kl,m)1≤l≤N0

1 ,1≤m≤N0
2

of uniform area 9∆x∆y, where

Kl,m = (x3l−2−1/2, x3m+1/2)× (y3m−2−1/2, y3m+1/2).

We denote the approximate solutions on the fine grid by ui,j , 1 ≤ i ≤ 3N0
1 , 1 ≤ j ≤ 3N0

2 . The approximation
on the coarse mesh is given by

Ul,m =
1

9

2∑
α,β=0

u3l−α,3m−β , 1 ≤ l ≤ N0
1 , 1 ≤ m ≤ N0

2 ,

and the incremental unknowns are given by the relation

Z3l−α,3m−β = u3l−α,3m−β − Ul,m. (4.1)

Let p > 1 and q > 1 be two fixed integers. We discretize (1.1) on the fine mesh by using time step ∆t/p and on
the coarse mesh by using time step ∆t. We assume that n is a multiple of q + 1 and (uni,j)1≤i≤3N0

1 , 1≤j≤3N0
2

are known, where uni,j is an approximation of the average value of u over ki,j at the grid t = n∆t, for

i = 1, . . . , 3N0
1 , j = 1, . . . , 3N0

2 . For r = 0, 1, . . . , p and s = 1, 2, . . . , q + 1, we let u
n+r/p
i,j be the approximate

solution of the mean values over ki,j at time tn+t/p = n∆t + r∆t/p for i = 1, . . . , 3N0
1 , j = 1, . . . , 3N0

2 and

Un+s
l,m the approximate solution of the mean value on the coarse mesh Kl,m at time tn+s = (n + s)∆t for

l = 1, . . . , N0
1 and m = 1, . . . , N0

2 .

4.1 Implicit multilevel Finite volume Method

For 0 ≤ r ≤ p− 1 and 1 ≤ s ≤ q, the following multilevel scheme is used to discretize (1.1)-(1.4).

p

∆t
(u
n+(r+1)/p
i,j − un+r/p

i,j )− (Ch(un+(r+1)/p, ũn+r/p))i,j + ε2∆2
hu

n+(r+1)/p
i,j

= ∇+
1,h(ϕ

n+r/p
i−1/2,j∇

−
1,hu

n+(r+1)/p
i,j ) +∇+

2,h(ϕ
n+r/p
i,j−1/2∇

−
2,hu

n+(r+1)/p
i,j ), (4.2a)

Un+s+1
l,m − Un+s

l,m

∆t
− (C3h(Un+s+1, Ũ

n+s
))l,m + ε2∆2

3hU
n+s+1
l,m

= ∇+
1,3h(Φn+s

l−1/2,m∇
−
1,3hU

n+s+1
l,m ) +∇+

2,3h(Φn+s
l,m−1/2∇

−
2,3hU

n+s+1
l,m ), (4.2b)

u
n+(r+1)/p
i,j = u

n+(r+1)/p

i+3N0
1 ,j

= u
n+(r+1)/p

i,j+3N0
2

, (4.2c)

Un+s+1
l,m = Un+s+1

l+N0
1 ,m

= Un+s+1
l,m+N0

2
, (4.2d)

u0
i,j =

1

∆x∆y
,

∫∫
ki,j

u0(x, y)dxdy, (4.2e)
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where 1 ≤ i ≤ 3N0
1 , 1 ≤ j ≤ 3N0

2 , 1 ≤ l ≤ N0
1 , 1 ≤ m ≤ N0

2 and

ϕ
n+r/p
i−1/2,j =

f ′(u
n+r/p
i,j ) + f ′(u

n+r/p
i−1,j )

2
, ϕ

n+r/p
i,j−1/2 =

f ′(uni,j) + f ′(u
n+r/p
i,j−1 )

2
,

Φn+s
l−1/2,m =

f ′(Un+s
l,m ) + f ′(Un+s

l−1,m)

2
, Φn+s

l,m−1/2 =
f ′(Unl,m) + f ′(Un+s

l,m−1)

2
.

The multilevel discretization consists of alternating p steps on (4.2a) with smaller time step ∆t/p, from tn
to tn+1 followed by q steps on (4.2b) with time step ∆t, the incrementals being frozen at tn+1 from tn+1 to
tn+q+1. Then, using (4.1), we can go back to the fine mesh for p steps from tn+q+1 to tn+q+2.

Since (4.2) is a succession of linear equation, the existence and uniqueness of solution follows the existence
and uniqueness of solution discussed in section 3, Theorem 3.1.

Theorem 4.1. The multilevel method defined by the equations (4.2a)-(4.2e) is conditionally stable in L∞(0, T ;Hh),
that is, if ∆t ≤ ε2 and 1 ≤ n ≤M , then

‖un‖2h ≤ 2

2T

ε2 ‖u0‖2h.

Proof. By multiplying (4.2a) by 2∆t
p ∆x∆y u

n+(r+1)/p
i,j and adding the corresponding equalities for i =

1, . . . , 3N0
1 and j = 1, . . . , 3N0

2 , after the application of Lemmas 2.2 and 3.1, we obtain

‖un+(r+1)/p‖2h − ‖un+r/p‖2h + ‖un+(r+1)/p − un+r/p‖2h+2
∆t

p
ε2|un+(r+1)/p|22,h ≤

2∆t

p
|un+(r+1)/p|21,h. (4.3)

And then using Young’s inequality and Lemma 2.5, (4.3) yields

‖un+(r+1)/p‖2h − ‖un+r/p‖2h + ‖un+(r+1)/p − un+r/p‖2h ≤
∆t

2pε2
‖un+(r+1)/p‖2h.

Thus we have [
1− ∆t

2pε2

]
‖un+(r+1)/p‖2h ≤ ‖un+r/p‖2h.

Based on (2.17), for
∆t

2p ε2
≤ 1

2
, we have

‖un+(r+1)/p‖2h ≤ 2
2∆t
p ε2 ‖un+r/p‖2h.

After p iterations, we obtain

‖un+1‖2h ≤ 2
2∆t
ε2 ‖un‖2h. (4.4)

We now perform q iterations on the coarse grid, (4.2b), using time step ∆t and the relations (4.1). At time
tn+s = (n + s)∆t, 2 ≤ s ≤ q + 1, the incremental unknowns Zi,j are frozen at time (n + 1)∆t. Multiplying
(4.2b) by 18∆t∆x∆y Un+s+1

l,m and adding the equalities for l = 1, . . . , N0
1 and m = 1, . . . , N0

2 , together with
Lemmas 2.5 and 3.1 and Young’s inequality, we obtain

‖Un+s+1‖23h − ‖U
n+s‖23h + ‖Un+s+1 −Un+s‖23h ≤

∆t

2ε2
‖Un+s+1‖23h.
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Thus we have [
1− ∆t

2ε2

]
‖Un+s+1‖23h ≤ ‖U

n+s‖23h.

Using (2.17), for
∆t

2ε2
≤ 1

2
, we have

‖Un+s+1‖23h ≤ 2
2∆t
ε2 ‖Un+s‖23h. (4.5)

From the definition of the increments Zn+1
3l−α,3m−β , we have

un+s
3l−α,3m−β = Un+s

l,m + Zn+1
3l−α,3m−β , 1 ≤ l ≤ N0

1 , 1 ≤ m ≤ N0
2 , α, β = 0, 1, 2.

Taking the sum over α and β, we get

2∑
α,β=0

|un+s
3l−α,3m−β |

2 =

2∑
α,β=0

|Un+s
l,m + Zn+1

3l−α,3m−β |
2 = 9|Un+s

l,m |
2 +

2∑
α,β=0

|Zn+1
3l−α,3m−β |

2.

For s = 1, . . . , q + 1, the following relation holds

‖un+s‖2h = ‖Un+s‖23h + ‖Zn+1‖2h. (4.6)

By adding ‖Zn+1‖2h to both sides of inequality (4.5) and using (4.6), we get

‖un+s+1‖2h ≤ 2

2∆t

ε2 ‖un+s‖2h.

After q iterations, and using (4.4), we have

‖un+q+1‖2h ≤ 2

2∆t (q + 1)

ε2 ‖un‖2h.

By induction over n, we obtain

‖un‖2h ≤ 2

2n∆t

ε2 ‖u0‖2h ≤ 2

2T

ε2 ‖u0‖2h.

This completes the proof.

Theorem 4.2. Suppose that the solution u(x, t) of (1.1)-(1.4) is sufficiently smooth.
Assume that ∆t < 4ε2, (4.9), and (4.14) are satisfied.
Assume that ∆t,∆x and ∆y satisfy (4.11).
Then, the solution of the finite volume discretization (4.2a)-(4.2e) converges to the solution of (1.1) in the
discrete L2-norm with rate of convergence O(∆t+ (3∆x)2 + (3∆y)2).

Proof. Let n is a multiple of q + 1. Let

υ
n+r/p
i,j =

∫∫
ki,j

u(x, y, tn+r/p)dxdy,

be the cell average of u at time tn+r/p on the cell ki,j for 1 ≤ i ≤ 3N0
1 , 1 ≤ j ≤ 3N0

2 , 0 ≤ r ≤ p. Denote

s = max
−L1≤x≤L1,−L2≤y≤L2,0≤t≤T

|u(x, y, t)|.
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Making use of Taylor expansion, we obtain

υ
n+(r+1)/p
i,j − υn+r/p

i,j

∆t/p
− (Ch(υυυn+(r+1)/p, υ̃υυn+r/p))i,j + ε2∆2

hυ
n+(r+1)/p
i,j = ∇+

1,h

[
ψ
n+r/p

i− 1
2 ,j
∇−1,hυ

n+(r+1)/p
i,j

]
+∇+

2,h

[
ψ
n+r/p

i,j− 1
2

∇−2,hυ
n+(r+1)/p
i,j

]
+ τ

n+r/p
i,j , (4.7)

where τ
n+r/p
i,j ∈ Hh is the truncation error of the finite volume discretization (4.2a) for 1 ≤ i ≤ 3N0

1 , 1 ≤ j ≤
3N0

2 . There exists a positive constant c1 such that

max
i,j,n
|τn+r/p
i,j | ≤ c1

(
∆t

p
+ ∆x2 + ∆y2

)
, 1 ≤ r ≤ p and ≤ 1 ≤ i ≤ 3N0.

Let en+r/p = υυυn+r/p−un+r/p, where u
n+r/p
i,j is the solution of (4.2a). Substituting u

n+r/p
i,j = υ

n+r/p
i,j −en+r/p

i,j

in (4.2a), and using (4.7), we obtain

e
n+(r+1)/p
i,j − en+r/p

i,j

∆t/p
− (Ch(en+(r+1)/p, υ̃υυn+r/p − ẽn+r/p))i,j + ε2∆2

he
n+(r+1)/p
i,j = (Ch(υυυn+(r+1)/p, ẽn+r/p))i,j

+∇+
1,h

[(
3(υ

n+r/p
i,j e

n+r/p
i,j + υ

n+r/p
i−1,j e

n+r/p
i−1,j )− 3

2
[(e

n+r/p
i,j )2 + (e

n+r/p
i−1,j )2]

)
∇−1,hυ

n+(r+1)/p
i,j

]
+∇+

2,h

[(
3(υ

n+r/p
i,j e

n+r/p
i,j + υ

n+r/p
i,j−1 e

n+r/p
i,j−1 )− 3

2
[(e

n+r/p
i,j )2 + (e

n+r/p
i,j−1 )2]

)
∇−2,hυ

n+(r+1)/p
i,j

]
+∇+

1,h

(
ϕ
n+r/p

i− 1
2 ,j
∇−1,he

n+(r+1)/p
i,j

)
+∇+

2,h

(
ϕ
n+r/p

i,j− 1
2

∇−2,he
n+(r+1)/p
i,j

)
+ τ

n+r/p
i,j . (4.8)

Multiplying (4.8) by 2∆t∆x∆y
p e

n+(r+1)/p
i,j and summing for i = 1, . . . , 3N0

1 and j = 1, . . . , 3N0
2 , together with

(2.15) and Lemmas 3.1 and 2.1, we obtain

‖en+(r+1)/p‖2h − ‖en+r/p‖2h + ‖en+(r+1)/p − en+r/p‖2h +
2∆t

p
ε2‖en+(r+1)/p‖22,h ≤

2∆t

p
‖en+(r+1)/p
i,j ‖21,h

− 2∆t∆x∆y

p

3N0
1∑

i=1

3N0
2∑

j=1

[(
3(υ

n+r/p
i,j e

n+r/p
i,j + υ

n+r/p
i−1,j e

n+r/p
i−1,j )− 3

2
[(e

n+r/p
i,j )2 + (e

n+r/p
i−1,j )2]

)
∇−1,hυ

n+(r+1)/p
i,j

]
∇−1,he

n+(r+1)/p
i,j

− 2∆t∆x∆y

p

3N0
1∑

i=1

3N0
2∑

j=1

[(
3(υ

n+r/p
i,j e

n+r/p
i,j + υ

n+r/p
i,j−1 e

n+r/p
i,j−1 )− 3

2
[(e

n+r/p
i,j )2 + (e

n+r/p
i,j−1 )2]

)
∇−2,hυ

n+(r+1)/p
i,j

]
∇−2,he

n+(r+1)/p
i,j

+
2∆t

p
(Ch(υυυn+(r+1)/p, ẽn+r/p), en+(r+1)/p)h +

2∆t

p
(τττn+r/p, en+(r+1)/p)h.

Using the approach implemented on the proof of Theorem 3.3, we deduce in the fine mesh taking

∆tc ≤ p

2
, (4.9)

then

‖en+(r+1)/p‖2h +
1

p
∆tε2η2|en+(r+1)/p|21,h ≤

3∆t δ2 4∆tc

p∆x∆y
‖en+r/p‖2h |en+(r+1)/p|21,h

+ 4∆tc
[(

1 +
∆tc9
p

)
‖en+r/p‖2h +

∆t c8
p
‖ẽn+r/p‖2h +

∆t

p
c7

(
∆t

p
+ ∆x2 + ∆y2

)2]
. (4.10)

For

3δ2 c7
∆x∆y

(
∆t

p
+ ∆x2 + ∆y2

)2

≤ 1

2T
ε2η24−Tc exp

(
−T c10

)
, (4.11)
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as shown in Theorem 3.3, we obtain

‖en+(r+1)/p‖2h +
1

2p
∆tε2η2|en+(r+1)/p|21,h

≤ 4

∆t c

p

[(
1 +

∆tc9
p

)
‖en+r/p‖2h +

∆tc8
p
‖ẽn+r/p‖2h +

∆t

p
c7

(
∆t

p
+ ∆x2 + ∆y2

)2
]
, (4.12)

which after p iterations gives

‖en+1‖2h ≤ 4∆tc exp (∆t c10)
[
‖en‖2h + ∆t c7

(
∆t

p
+ ∆x2 + ∆y2

)2]
. (4.13)

In a similar way for 1 ≤ s ≤ q, and being on the coarse mesh and for

∆tc ≤ 1

2
, (4.14)

we get

‖En+s+1‖23h +
1

2
∆tε2η2|En+s+1|21,3h ≤ 4∆t c

[
(1 + ∆tc9) ‖En+s‖23h + ∆tc8‖Ẽ

n+s‖23h + ∆tc7(∆t+ (3∆x)2 + (3∆y)2)2
]
,

(4.15)

where En+s = ΥΥΥn+s − Un+s and ΥΥΥn+s and Un+s are exact cell average and numerical solutions on the
coarse mesh, respectively. For n+ s < m0 − 1, we have

‖En+s+1‖23h ≤ 4∆tc exp (∆t (c9 + c8))
[
‖En+s‖23h + ∆t c7 (∆t+ (3∆x)2 + (3∆y)2)2

]
, (4.16)

As we said at the beginning of this section, the numerical increments Zi,j ’s are fixed between steps n + 1
and n+ q + 1 and therefore for 1 ≤ s ≤ q, 1 ≤ l ≤ N0

1 and 1 ≤ m ≤ N0
2 ,

Zn+s+1
3l−α,3m−β = Zn+1

3l−α,3m−β = un+1
3l−α,3m−β − U

n+1
l,m , α, β = 0, 1, 2.

Using (4.1), we have

en+s+1
3l−α,3m−β = En+s+1

l,m + ζn+s+1
3l−α,3m−β ,

where

ζn+s+1
3l−α,3m−β = (υn+s+1

3l−α,3m−β −Υn+s+1
l,m )− Zn+1

3l−α,3m−β ,

is the difference of the numerical increment from exact increment. It is clear from the definition of increments
that

2∑
α,β=0

(υn+s+1
3l−α,3m−β −Υn+s+1

l,m ) =

2∑
α,β=0

Zn+1
3l−α,3m−β = 0,

and hence

2∑
α,β=0

ζn+s+1
3l−α,3m−β = 0. As a result for s = 1, . . . , q,

2∑
α,β=0

(
en+s+1

3l−α,3m−β

)2

= 9
(
En+s+1
l,m

)2

+

2∑
α,β=0

(
ζn+s+1
3l−α,3m−β

)2

. (4.17)
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Multiplying (4.17) by ∆x∆y and taking the sum for l = 1, . . . , N0
1 and m = 1, . . . , N0

2 , we obtain

‖en+s+1‖2h = ‖En+s+1‖23h + ‖ζζζn+s+1‖2h. (4.18)

We now estimate the term ζζζn+s+1. From the definition of increments for u ∈ Hh, we have

Ul,m = u3l−α,3m−β +O(∆x+ ∆y), (4.19)

from which

Υn+s+1
l,m − υn+s+1

3l−α,3m−β = Υn+s
l,m − υ

n+s
3l−α,3m−β + ∆tO(∆x+ ∆y).

Hence

ζζζn+s+1 = ζζζn+s + ∆tO(∆x+ ∆y). (4.20)

(4.20) gives

‖ζζζn+s+1‖2h = ‖ζζζn+s‖2h + ∆tO(∆t (∆x+ ∆y)2),

which with the application of Young’s inequality, (2.18) gives

‖ζζζn+s+1‖2h ≤ ‖ζζζn+s‖2h + ∆t c11 (∆t+ ∆x2 + ∆y2)2, (4.21)

where c11 is a constant independent of ∆t, ∆x and ∆y.
Combining (4.16), (4.18) and (4.21), we obtain

‖en+s+1‖2h ≤ 4∆tc exp (∆t (c9 + c8))
[
‖en+s‖2h + ∆t c12 (∆t+ (3∆x)2 + (3∆y)2)2

]
,

which after s iterations gives

‖en+s+1‖2h ≤ 4∆t s c exp (∆t s (c9 + c8))
[
‖en+1‖2h + ∆t s c12 (∆t+ (3∆x)2 + (3∆y)2)2

]
, (4.22)

where c12 = max{c7, 4−∆tc exp (−∆t (c9 + c8)) c11}. Together with (4.13), (4.22) becomes

‖en+s+1‖2h ≤4∆t (s+1) c exp [∆t s (c9 + c8)]

[
exp (∆t c10)

[
‖en‖2h + ∆tc12 (∆t+ ∆x2 + ∆y2)2

]
+ ∆t s c12 (∆t+ (3∆x)2 + (3∆y)2)2

]
.

Since m0A ≥ 1, it follows from this inequality that

‖en+s+1‖2h ≤ 4∆t (s+1) c exp (∆t (s+ 1) c10)
[
‖en‖2h + ∆t (s+ 1) c12 (∆t+ (3∆x)2 + (3∆y)2)2

]
.

Thus, after n iterations, we get

‖en+s+1‖2h ≤ 4∆t (n+s+1) c exp (∆t (n+ s+ 1) (c10))
[
∆t (n+ s+ 1) c12 (∆t+ (3∆x)2 + (3∆y)2)2

]
. (4.23)

For the case n+ s ≥ m0 − 1, we have

‖En+s+1‖23h ≤ 4∆tc (1 + ∆t c9) ‖En+s‖23h + ∆t A c8 4∆tc
[
‖En+s‖23h + ‖En+s−1‖23h + · · ·+ ‖En+s−m0+1‖23h

]
+ ∆t c12 4∆tc(∆t+ (3∆x)2 + (3∆y)2)2, (4.24)
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which implies

max
{
‖En+s+1‖23h, . . . , ‖E

n+s−m0+2‖23h,
}
≤ 4∆tc exp (∆t c10) max

{
‖En+s‖23h, ‖E

n+s−1‖23h, . . . , ‖E
n+s−m0+1‖23h

}
+ ∆t c12 4∆tc(∆t+ (3∆x)2 + (3∆y)2)2. (4.25)

Using (4.18), (4.21) and (4.25), we obtain

max
{
‖en+s+1‖2h, . . . , ‖en+s−m0+2‖2h

}
≤ 4∆tc exp (c10) max

{
‖en+s‖2h, ‖en+s−1‖2h, . . . , ‖en+s−m0+1‖2h

}
+ ∆t c12 4∆tc(∆t+ (3∆x)2 + (3∆y)2)2

≤ 4∆t(n+s−m0+1)c exp [∆t c10(n+ s−m0 + 1)]
[

max
{
‖em0−1‖2h, ‖em0−2‖2h, . . . , ‖e0‖2h

}
+ ∆t (n+ s−m0 + 1)c12 (∆t+ (3∆x)2 + (3∆y)2)2

]
. (4.26)

Using (4.23), (4.26) and induction on n, one obtains

‖en‖2h ≤ 4∆t(n)c exp [n∆t (c10)]
[
‖e0‖2h + n∆tc12 (∆t+ (3∆x)2 + (3∆y)2)2

]
≤ 4Tc exp [T (c10)]

[
Tc12 (∆t+ (3∆x)2 + (3∆y)2)2

]
, (4.27)

for n = 1, . . . ,M . Therefore, we have

‖en‖h ≤ C(∆t+ (3∆x)2 + (3∆y)2),

where C is a constant independent of ∆t,∆x and ∆y. This completes the proof.

The rate of convergence depends on the mesh size of the coarse mesh.

4.2 Explicit Multilevel Finite Volume Method

For 0 ≤ r ≤ p− 1 and 1 ≤ s ≤ q, we discretize (1.1) using explicit multilevel finite volume method.

p

∆t
(u
n+(r+1)/p
i,j − un+r/p

i,j )− (Ch(un+r/p,un+r/p))i,j + ε2∆2
hu

n+r/p
i,j

= ∇+
1,h(ϕ

n+r/p
i−1/2,j∇

−
1,hu

n+r+/p
i,j ) +∇+

2,h(ϕ
n+r/p
i,j−1/2∇

−
2,hu

n+r/p
i,j ), (4.28a)

Un+s+1
l,m − Un+s

l,m

∆t
− (C3h(Un+s,Un+s))l,m + ε2∆2

3hU
n+s
l,m

= ∇+
1,3h(Φn+s

l−1/2,m∇
−
1,3hU

n+s
l,m ) +∇+

2,3h(Φn+s
l,m−1/2∇

−
2,3hU

n+s
l,m ). (4.28b)

u
n+r/p
i,j = u

n+r/p

i+3N0
1 ,j

= u
n+r/p

i,j+3N0
2
, (4.28c)

Un+s
l,m = Un+s

l+N0
1 ,m

= Un+s
l,m+N0

2
, (4.28d)

u0
i,j =

1

∆x∆y

∫∫
ki,j

u0(x, y)dxdy, (4.28e)

where 1 ≤ i ≤ 3N0
1 , 1 ≤ l ≤ N0

1 , 1 ≤ j ≤ 3N0
2 and 1 ≤ m ≤ N0

2 .
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Theorem 4.3. We assume that the following satisfied for some δ, 0 < δ < 1:

32∆t

(
1

∆x2
+

1

∆y2

)2

≤ 1− δ
2ε2

min{p, 81}, (4.29)

16∆t

(
1

∆x2
+

1

∆y2

)
≤ ε2δη2(1− δ) min{p, 9}, (4.30)

72∆t

p∆x∆y

(
(|α1|+ |α2|)2 +

4

∆x∆y

(
1

∆x2
+

1

∆y2

)
‖u0‖2h

)
‖u0‖2h ≤ ε2δ2η2 exp

(
−2T

ε2

)
, (4.31)

8∆t

∆x∆y

(
(|α1|+ |α2|)2 +

4

81∆x∆y

(
1

∆x2
+

1

∆y2

)
‖u0‖2h

)
‖u0‖2h ≤ ε2δ2η2 exp

(
−2T

ε2

)
. (4.32)

Then the multilevel method defined by the equations (4.28a) - (4.28e) is L∞(0, T ;Hh) stale in the following
sense:

‖un‖2 ≤ exp

(
∆t

ε2

)
‖un−1‖2 ≤ · · · ≤ exp

(
n∆t

ε2

)
‖u0‖2 ≤ exp

(
T

ε2

)
‖u0‖2, n = 1, 2 . . . ,M0, (4.33)

‖us(q+1)+r/p‖2 ≤ exp

(
r∆t

pε2

)
‖us(q+1)‖2, r = 1, 2, . . . , p. (4.34)

Proof. To prove this theorem we use the approach discussed in Theorem 3.4. We assume n is a multiple of

q + 1. Multiplying (4.28a) by 2∆t
p ∆x∆yu

n+r/p
i,j and taking the sum for i = 1, . . . , 3N0

1 and j = 1, . . . , 3N0
2

together with (2.16) and Lemma 2.5, we obtain

‖un+(r+1)/p‖2h − ‖un+(r+1)/p − un+r/p‖2h +
∆t

p
ε2|un+r/p|22,h ≤ exp

(
∆t

pε2

)
‖un+r/p‖2h. (4.35)

To estimate the term ‖un+(r+1)/p − un+r/p‖2h, we multiply (4.28a) by 2∆t
p ∆x∆y(u

n+(r+1)/p
i,j − un+r/p

i,j ) and

summing from i = 1 to i = 3N0
1 and from j = 1 to j = 3N0

2 , we find

‖un+(r+1)/p − un+r/p‖2h ≤
36∆t2

p2 ∆x∆y
(|α1|+ |α2|)2‖un+r/p‖2h|un+r/p|21,h +

64∆t2

p2

(
1

∆x2
+

1

∆y2

)2

ε4|un+r/p|22,h

+
144∆t2

p2 ∆x2∆y2

(
1

∆x2
+

1

∆y2

)
‖un+r/p‖4h|un|21,h +

16∆t2

p2

(
1

∆x2
+

1

∆y2

)
|un+r/p|21,h.

Using (4.29), we obtain

‖un+(r+1)/p − un+r/p‖2h ≤
36∆t2

p2 ∆x∆y
(|α1|+ |α2|)2‖un‖2h|un+r/p|21,h +

∆t

p
ε2(1− δ)|un+r/p|22,h

+ 144
∆t2

p2 ∆x2∆y2

(
1

∆x2
+

1

∆y2

)
‖un+r/p‖4h|un+r/p|21,h +

16∆t2

p2h2
|un+r/p|21,h.

(4.36)

On substitution of (4.36) into (4.35), we get

‖un+(r+1)/p‖2h +
∆t

p
ε2δ|un+r/p|22,h ≤ exp

(
∆t

pε2

)
‖un+r/p‖2h

+
36∆t2

p2 ∆x∆y

[
(|α1|+ |α2|)2 +

4

∆x∆y

(
1

∆x2
+

1

∆y2

)
‖un+r/p‖2h

]
‖un+r/p‖2h|un+r/p|21,h

29



Using 2.24 and (4.30), we obtain

‖un+(r+1)/p‖2h − exp

(
∆t

pε2

)
‖un+r/p‖2h +

∆t

p
ε2δ2η2|un+r/p|21,h

− 36∆t2

p2 ∆x∆y

[
(|α1|+ |α2|)2 +

4

∆x∆y

(
1

∆x2
+

1

∆y2

)
‖un+r/p‖2h

]
‖un+r/p‖2h|un+r/p|21,h ≤ 0.

(4.37)

In a similar fashion, from (4.28b) together with the assumptions (4.29), (4.30) and (4.32), we obtain

‖Un+m+1‖23h − exp

(
∆t

ε2

)
‖Un+m‖23h + ∆tε2δ2η2|Un+m|21,3h

≤ 4∆t2

∆x∆y

[
(|α1|+ |α2|)2 +

4

81 ∆x∆y

(
1

∆x2
+

1

∆y2

)
‖Un+m‖23h

]
‖Un+m‖23h|U

n+m|21,3h.

(4.38)

Now we need to prove the following by induction on n

‖un+(r+1)/p‖2h +
∆t

2p
ε2δ2η2|un+r/p|21,h ≤ exp

(
∆t

pε2

)
‖un+r/p‖2h, for r = 0, 1, . . . , p− 1, (4.39)

‖Un+s+1‖23h +
∆t

2
ε2δ2η2|Un+s|21,3h ≤ exp

(
∆t

ε2

)
‖Un+s‖23h, for s = 1, 2, . . . , q. (4.40)

We first show (4.39) and (4.40) hold by induction on r and s when n = 0. We first show

‖u1‖2h +
∆t

2p
ε2δ2η2

p−1∑
r=0

exp

(
(p− 1− r)∆t

pε2

)
|ur/p|21,h ≤ exp

(
∆t

pε2

)
‖ur/p‖2h. (4.41)

For n = 0, the relation (4.37) becomes

‖u(r+1)/p‖2h +
∆t

p
ε2δ2η2|ur/p|21,h ≤ exp

(
∆t

pε2

)
‖ur/p‖2h

+ 36
∆t2

p2 ∆x∆y

[
(|α1|+ |α2|)2 +

4

∆x∆y

(
1

∆x2
+

1

∆y2

)
‖ur/p‖2h

]
‖ur/p‖2h|ur/p|21,h.

(4.42)

For r = 0 using (4.31), we get

‖u1/p‖2h +
∆t

2
ε2δ2η2|u0|21,h ≤ exp

(
∆t

pε2

)
‖u0‖2h.

Let us assume that (4.41) holds up to r − 1. From the assumption for s = 1, 2, . . . , r − 1, we have

‖us/p‖2h ≤ ‖u(s−1)/p‖2h
and

‖us/p‖2h ≤ exp

(
s∆t

pε2

)
‖u0‖2h (4.43)

The relation (4.42) becomes

‖u(r+1)/p‖2h +
∆t

p
ε2δ2η2|ur/p|21,h ≤ exp

(
∆t

pε2

)
‖ur/p‖2h

+ 36
∆t2

p2 ∆x∆y
exp

(
2r∆t

pε2

)[
(|α1|+ |α2|)2 +

4

∆x∆y

(
1

∆x2
+

1

∆y2

)
‖u0‖2h

]
‖u0‖2h|ur/p|21,h

≤ exp

(
∆t

pε2

)
‖ur/p‖2h +

∆t

2p
ε2δ2η2|ur/p|21,h, (4.44)
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which shows us that (4.39) is true for n = 0. From (4.44), we have

‖u1‖2h +
∆t

p
ε2δ2η2

p−1∑
r=0

exp

(
(p− 1− r)∆t

pε2

)
|ur/p|21,h ≤ exp

(
∆t

ε2

)
‖u0‖2h,

which implies

‖u1‖2h ≤ exp

(
∆t

ε2

)
‖u0‖2h. (4.45)

We then show (4.40) by using induction on s for n = 0. From the definition of U, we have

‖Un‖23h ≤ ‖un‖2h. (4.46)

For s = 1, from (4.29), we have

‖U2‖23h − exp

(
∆t

ε2

)
‖U1‖23h + ∆tε2δ2η2|U1|21,3h

− 4∆t2

∆x∆y

[
(|α1|+ |α2|)2 +

4

81 ∆x∆y

(
1

∆x2
+

1

∆y2

)
‖U1‖23h

]
‖U1‖23h|U

1|21,3h ≤ 0.

Then using (4.45) and (4.46), we have

‖U2‖23h − exp

(
∆t

ε2

)
‖U1‖23h + ∆tε2δ2η2|U1|21,3h

− 4∆t2

∆x∆y
exp

(
2∆t

ε2

)[
(|α1|+ |α2|)2 +

4

81∆x∆y

(
1

∆x2
+

1

∆y2

)
‖u0‖2h

]
‖u0‖2h|U

1|21,3h ≤ 0, (4.47)

and using (4.32), we arrive at

‖U2‖23h +
∆t

2
ε2δ2η2|U1|21,3h ≤ exp

(
∆t

ε2

)
‖U1‖23h.

We now assume that (4.40) holds true up to the order q − 1, that is

‖Uq‖23h +
∆t

2
ε2δ2η2|Uq−1|21,3h ≤ exp

(
∆t

ε2

)
‖Uq−1‖23h. (4.48)

and we observe that

‖Us+1‖23h ≤ exp

(
∆t

ε2

)
‖Us‖23h, for s = 1, . . . , q − 1. (4.49)

From (4.38) and (4.49) together with (4.32) we obtain the result. Thus using (4.1) and (4.6), we find

‖us+1‖2h ≤ exp

(
∆t

ε2

)
‖us‖2h, for s = 0, . . . , q.

Now suppose that (4.39) and (4.40) holds up to the order n. Using the same approach as in the case n = 0,
it can be easily proved by induction on r and s. Hence, (4.39) and (4.40) hold for any n = z(q + 1), where
z ∈ N+.

Therefore, the proof is complete.
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Remark 4.1. By the subscript 3h, we mean the discrete operators, discrete norms and semi-norms are
applied on the coarser discretization.

Remark 4.2. To compare the stability regions of the explicit finite volume methods, we use ∆t
p on the fine

mesh and ∆t on the coarser mesh as discussed in this section.

• When p ≤ 9, the multilevel method has the same region of stability as the one-level method on the fine
mesh but smaller region of stability than the one-level method on the coarse mesh.

• When p ≥ 81, the multilevel method has the same region of stability as the one-level method on the
coarse mesh but smaller region of stability than the one-level method on the fine mesh.

• When 9 < p < 81, the multilevel method is less restrictive than the one-level method on the fine mesh
and more restrictive than the one-level method on the coarse mesh.

5 Numerical Simulations

In this section, some numerical simulations of the 2D convective Cahn-Hilliard equation, (1.1), with specified
initial condition and periodic boundary conditions at some values of T are presented. All the results are
computed in a matlab platform using Windows 10 Intel CORE i3, 6G RAM PC and the parameters are
chosen as: α1 = α2 = 1

6 , p = 5 and q = 8.
For the one-level finite volume methods, we use the following temporal and spatial step sizes

• One-level method on the fine mesh (Fine): time step ∆t/p and spatial step sizes ∆x = ∆y.

• One-level method on the coarse mesh (Coarse): time step size ∆t and spatial step sizes 3∆x = 3∆y.

For the implicit one-level method, ũn is given by the relation:

ũn =
1

2

(
un + un−1

)
, for n = 1, 2, . . . ,M − 1.

Similarly for the implicit multilevel method, for a non-negative integer m and n = m(q + 1), we use the
following approximations:

ũm(q+1)+r/p =
1

2

(
um(q+1)+r/p + um(q+1)+(r−1)/p

)
, for r = 1, . . . , p− 1,

ũm(q+1) = um(q+1),

Ũ
m(q+1)+s

=
1

2

(
Um(q+1)+s + Um(q+1)+s−1

)
, for s = 1, . . . , q,

and for both implicit methods ũ0 = u0.
To test the numerical methods, we consider the exact solution

u(x, y, t) = sin

(
2π x

L

)
sin

(
2π y

L

)
cos(2π t),

where L1 = L2 = L = 3, from which the source term is obtained on substitution of (1.1). As shown by Fig.
2, it is observed that the numerical results obtained using the multilevel finite volume methods are close to
the results obtained from one-level methods on the fine mesh as compared to the one-level on the coarse
mesh. There is no need to plot u versus y because of the similarities with u versus x.
Tables 1-2 show that we can save more time using the multilevel method as compared to the one-level
methods on the fine mesh. From the numerical simulations, it is observed that all methods are second order
accurate in space and the solutions obtained from the multilevel methods are intermediate between the ones
obtained from one-level methods on the fine mesh and on the coarse mesh.
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Method ∆x(= ∆y) ∆t L2-error CPU time L2 Rate

Fine
0.2 0.01 0.0518 1.032
0.1 0.0025 0.0131 15.134 1.9594
0.05 0.000625 0.0033 1232.888 2

Coarse

0.2 0.01 0.3947 0.150
0.1 0.0025 0.1128 0.272 1.5661
0.05 0.000625 0.0291 3.822 1.8806
0.025 0.00015625 0.0073 159.934 1.9607

Multilevel

0.2 0.01 0.0518 1.341
0.1 0.0025 0.0279 4.643 0.8927
0.05 0.000625 0.0098 271.597 1.5094
0.025 0.00015625 0.0027 15701.626 1.8598

Table 1: Convergence rate, CPU time and L2-error for some values of spatial step sizes and ∆t for the
implicit methods at T = 0.01.

Method ∆x(= ∆y) ∆t L2-error CPU time L2 Rate

Fine
0.2 0.0002 0.0441 1.765
0.1 0.0000125 0.0112 73.639 1.9773
0.05 0.00000078125 0.0031 10267.945 1.8532

Coarse

0.2 0.0002 0.3749 0.571
0.1 0.0000125 0.0983 2.079 1.9312
0.05 0.00000078125 0.0249 117.542 1.9810

Multilevel

0.2 0.0002 0.0449 0.469
0.1 0.0000125 0.0143 10.725 1.6507
0.05 0.00000078125 0.0043 723.252 1.7336

Table 2: Convergence rate, CPU time and L2-error for some values of spatial step sizes and ∆t for the
explicit methods at T = 0.001.
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(a) Exact when ∆x = ∆y = 0.1 and ∆t = 0.0025 at T =
0.01.
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(b) Exact when ∆x = ∆y = 0.1 and ∆t = 0.0000125 at
T = 0.001.
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(c) u versus x obtained from implicit methods when ∆x =
∆y = 0.1,∆t = 0.0025 at the cells with centre y = 0.15
and T = 0.01.
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(d) u versus x obtained from implicit methods when ∆x =
∆y = 0.2,∆t = 0.01 at the cells with centre y = 0.3 and
T = 0.01.
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(e) u versus x obtained from explicit methods when ∆x =
∆y = 0.1,∆t = 0.0000125 at the cells with centre y = 0.15
and T = 0.001.
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(f) u versus x obtained from explicit methods when ∆x =
∆y = 0.2,∆t = 0.0002 at the cells with centre y = 0.3 and
T = 0.001.

Figure 2: Numerical results for some values of spatial step sizes and ∆t.
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6 Conclusion

We have extended the work of [22, 23] in two directions: first, we have considered a nonlinear equation in
which the nonlinear term has been linearized following Mickens’ rules. Secondly, we have shown that the
method can be adapted to higher order partial differential equations. In this paper, four numerical methods
have been presented and analyzed. The implicit methods discussed here are linear and easy to implement.
Existence, uniqueness of solutions for the schemes formulated are discussed and detailed convergence analysis
of implicit schemes is furnished. We compare the multilevel methods with the one-level methods by means
of stability, convergence and CPU time. It is shown that the multilevel methods are faster than the one-level
methods on the fine mesh. We also study the stability of these schemes which allow us to make a classification
based on region of stability. But as the numerical experiments reveal, comparing these schemes only with
the stability is misleading, hence the CPU time is good indicator for a classification. From the convergence
analysis, it is proven that all the methods are second order accurate in space and it is validated by numerical
experiments. Our future plan is to extend this work to Navier Stokes equations and its variants.
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Appendix A Taylor’s expansion about υni,j

In this section, we prove the Taylor’s expansion given by (3.17), (3.18) and (3.19). Note for simplicity that
we omit |ni,j on the expanded terms (right hand sides of each equations).

Proof of (3.17).
To find the Taylor’s expansion of the approximation of the fourth order derivative, we use the relation

∆2
hυ

n+1
i,j = ∆2

1,hυ
n+1
i,j + ∆2,h∆1,hυ

n+1
i,j + ∆1,h∆2,hυ

n+1
i,j + ∆2

2,hυ
n+1
i,j . (A.1)

It is clear that

∆2
1,hυ

n+1
i,j = uxxxx +O(∆t+ ∆x2).

∆2
2,hυ

n+1
i,j = uyyyy +O(∆t+ ∆y2).

We only find the Taylor’s expansion of the second term of the right hand side of (A.1) and hence the
expansion of the third term can be obtained accordingly. Using central difference approximation, we have

∆2,h∆1,hυ
n+1
i,j =

(un+1
i+1,j+1 − 2un+1

i,j+1 + un+1
i−1,j+1)− 2(un+1

i+1,j − 2un+1
i,j + un+1

i−1,j) + (un+1
i+1,j−1 − 2un+1

i,j−1 + un+1
i−1,j−1)

∆x2 ∆y2
.

(A.2)

Then applying Taylor’s expansion, one can verify that

∆2,h∆1,hυ
n+1
i,j = uxxyy +O(∆t+ ∆x2 + ∆x∆y + ∆y2), (A.3)

and

∆1,h∆2,hυ
n+1
i,j = uyyxx +O(∆t+ ∆x2 + ∆x∆y + ∆y2). (A.4)

Therefore, we conclude (3.17).

Proof of (3.18).

∇+
1,h(ψni− 1

2 ,j
∇−1,hυ

n+1
i,j ) =

3

2∆x

(
(υni+1,j)
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2
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+
3

2

(
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2
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n+1
i,j .

(A.5)

Clearly ∆1,hυ
n+1
i,j = uxx +O(∆t+ ∆x2). Making use of Taylor’s expansion, we obtain

3

2∆x2

(
(υni+1,j)

2 − (υni−1,j)
2
) (
υn+1
i+1,j − υ

n+1
i,j

)
= 6uu2

x + 3∆xuux uxx +O(∆t+ ∆x2),
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and

3

2

(
(υni,j)

2 + (υni−1,j)
2
)

∆1,hυ
n+1
i,j = 3u2uxx − 3uuxuxx +O(∆t+ ∆x2),

which give

∇+
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2 ,j
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i,j ) = 6uu2
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In a similar way, we obtain
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2
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i,j ) = 6uu2
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Combining (A.6) and (A.7), we obtain (3.18).

Proof of (3.19).
We recall that
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Then applying Taylor’s expansion, we obtain
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.

Hence
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In a similar way, one obtains
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Combining (A.9) and (A.10), we obtain (3.19).
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