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Abstract

A non-linear model-based control architecture for a single-stage grinding mill circuit closed with a hydrocy-
clone is proposed. The control architecture aims to achieve independent control of circuit throughput and
product quality, and consists of a non-linear model predictive controller for grinding mill circuit control, and
a dynamic inversion controller to control the fast sump dynamics. A particle filter is used to estimate the mill
states, and an algebraic routine is used to estimate the sump states. The observers make use of real-time
continuous measurements commonly available on industrial plants. Simulation results show that control
objectives can be achieved by the controller despite the presence of measurement noise and disturbances.

Keywords: dynamic inversion, grinding mill, model predictive control, non-linear, particle filter,
run-of-mine, state estimation

1. Introduction

A run-of-mine (ROM) ore milling circuit is primarily used to grind mined ore containing valuable metals
into a very fine product. The fine material is sent to a downstream process after grinding to separate the
valuable metal from the gangue material. The separation process results in a concentrate of valuable metals,
and a tailings stream of waste. As shown by Mclvor and Finch (1991) and Munoz and Cipriano (1999),
a sufficiently fine milling circuit product results in improved recovery of valuable metals in the separator
concentrate. However, the finer product of the comminution circuit comes at the cost of reduced throughput.
Although it is desirable to have independent control of the circuit’s product quality and throughput, these
variables are inversely proportional (Bauer and Craig, 2008). A degree of independent control of quality
and throughput cannot realistically be achieved without sufficient independent manipulated variables.

1.1. Control of grinding mill circuits

Whether to achieve a consistent product quality or throughput, a ROM ore milling circuit is a difficult
process to control because of non-linearities, large time delays, unmeasured disturbances, process variables
that are difficult to measure, and modelling uncertainties (Coetzee et al., 2010; Hodouin, 2011). Tradition-
ally milling circuits are controlled by decentralized proportional-integral-derivative (PID) controllers (Wei
and Craig, 2009b) despite the multivariable nature of the circuits (Pomerleau et al., 2000). Significant im-
provement in product quality, throughput and power consumption is possible through multivariable control
techniques. This is illustrated by the industrial implementation of a multivariable controller on a ROM ore
grinding circuit documented in Hulbert et al. (1990) and Craig et al. (1992b), the robust controller applied
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to an industrial semi-autogenous (SAG) mill in Craig and MacLeod (1995, 1996), and the linear model
predictive control for an industrial ball mill circuit in Chen et al. (2007).

A robust non-linear model predictive controller (RNMPC) was proposed by Coetzee et al. (2010) to
control a ROM ore milling circuit. Full state feedback was assumed. Simulation showed the RNMPC
competently controlling the milling circuit’s product quality in the presence of typical disturbances such as
ore hardness and ore feed size distribution variations. Although the circuit’s throughput was included as a
controlled variable, independent control of product fineness and throughput was not achieved. Because the
computational power required for the RNMPC exceeds what is normally available in industrial installations,
the controller is not yet viable for on-line industrial implementation. Alternative structures reducing the
computational burden are therefore critical for industrial MPC applications (Qin and Badgwell, 2003; Xi
et al., 2013).

The set-point tracking model predictive static programming (MPSP) control approach of le Roux et al.
(2014) aims to overcome the computational burden of solving the non-linear minimisation problem of MPC.
In their simulation study, where full state feedback was assumed, independent regulation of throughput
and product fineness was not achieved, but the computational time was significantly reduced. Although
MPSP is a possible alternative for on-line implementation of non-linear model predictive control (NMPC),
the minimisation routine of MPSP assumes the problem is unconstrained in terms of the input and output.
Box constraints can be applied to the inputs, but these constraints are not explicitly included within the
minimisation routine. Further research is required to develop MPSP for set-point tracking problems with
input and output constraints.

1.2. State Estimation

The use of model-based controllers is preferred over traditional PID controllers for grinding mill circuits
(Niemi et al., 1997; Pomerleau et al., 2000; Ramasamy et al., 2005). However, apart from the issue of
computational time, the use of model-based controllers in industrial circuits are impeded by the lack of
adequate plant measurements to estimate states and parameters for state feedback. Hodouin (2011) describes
how the peripheral tools of a control loop are as important as the controller itself to successfully control
and optimise a mineral processing plant. The peripheral tools include disturbance observers for external
disturbance rejection (Olivier et al., 2012a), model-plant mismatch detection (Olivier and Craig, 2013), and
state and parameter estimation (Olivier et al., 2012b).

Currently, the extended Kalman filter (EKF) is the most common choice for estimation in mineral
processing plants (Bouche et al., 2005). However, during linearization it is necessary to assume all higher
order terms are close to zero and the linearization around the current operating point will ensure convergence
with the omission of the higher order terms. If these two requirements do not hold concurrently it could
result in divergence even for a system as simple as y = 22 (Van der Merwe, 2004).

A particle filter does not suffer from the disadvantage of the EKF in that even highly non-linear non-
Gaussian models can be used. A particle filter was successfully applied to a grinding mill circuit in simulation
in Olivier et al. (2012b) to estimate the mill states. A comparison between EKF and particle filtering for
grinding mill circuits can be seen in Cuevas and Cipriano (2008).

1.8. Contribution

The novel contribution of this paper is a control architecture using state estimation that can indepen-
dently regulate product quality and throughput. This is in contrast to Coetzee et al. (2010) and le Roux
et al. (2014) where full state feedback was assumed and independent regulation of quality and throughput
was not achieved. Independent regulation of quality and throughput is achieved in this paper by using
the percentage of critical mill speed as an additional independent manipulated variable (assuming the mill
is fitted with a variable speed drive (VSD)). The control architecture incorporates a state estimator for
feedback to the controller. Even though comprehensive measurements are generally not available at indus-
trial circuits, the estimator makes use of on-line measurements commonly found at industrial grinding mill
circuits (Wei and Craig, 2009b). To address the issue of computational time, a combination of NMPC and
dynamic inversion (DI) control is used, the former for plant-wide control and the latter for sump slurry
volume control.
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Figure 1: Generalised control loop for mineral processing (from Hodouin (2011)).

This paper builds on the particle filter state estimator of Olivier et al. (2012b) to estimate the states
representing the contents of the grinding mill. Olivier et al. (2012b) assumed on-line measurements at the
inflow and discharge of the mill. Because measurements at the mill discharge are rarely possible in practice,
this paper proposes a state estimator for the mill states relying on measurements that are readily available
on industrial plants. In addition, the RNMPC of Coetzee et al. (2010) and the MPSP of le Roux et al.
(2014) considers the milling circuit as a whole, and does not make use of the fact that the sump dynamics
are much faster than the mill dynamics. In this paper the sump controller is decoupled from the milling
circuit controller to make use of this difference in the dynamics of the circuit.

A quantitative comparison of the controller presented in this study and other MPC controllers is beyond
the scope of this study. As reference, Wei and Craig (2009a) compared the economic performance of three-
single loop PID controllers to an NMPC using the same plant model as presented here.

The generalised control loop shown in Fig. 1 was developed by Hodouin (2011) for mineral processing
and is helpful to understand the structure and aim of this article. The figure illustrates the flow of data
between the controller (Block 2), the process (Block 3), and the peripheral tools. The process (Block 3) is
described in Section 2 and the process model in Section 3. The controller (Block 2) is formulated in Section 4
and the state estimation strategy (Blocks 7 and 8) in Section 5. Although steady-state optimization (Blocks
1 and 6) is not considered in this study, a strategy for optimization of power consumption, material cost
and production time using the same process model is shown in Matthews and Craig (2013). Fault detection
and isolation (Block 5) is also not considered in this study. A review of fault detection and isolation can be
seen in Venkatasubramanian et al. (2003). Finally, Section 6 shows the simulated results of the controller
applied to the milling circuit described by Block 3. Conclusions are discussed in Section 7.

2. Process description

The single-stage closed ROM ore milling circuit considered in this study is shown in Fig. 2 and constitute
a SAG mill with an end-discharge grate, a sump and a hydrocyclone. The mill receives four streams as inputs:
mined ore, water to assist with material transport, steel balls to assist with ore breakage, and underflow
from the hydrocyclone. This study assumes that a VSD fitted on the mill motor can be used to manipulate
the mill speed allowing improved control of the product particle size (Viklund et al., 2006). The mill
motor power draw serves as an indication of the energy required to lift the mill charge. The ground ore
in the mill mixes with the water to form a slurry and is discharged from the mill to the sump through
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Figure 2: Single-stage closed ROM ore milling circuit.

an end-discharge grate. The slurry in the sump is diluted with
for classification. It is assumed the pump is fitted with a variable speed motor to manipulate the cyclone
feed flow-rate. The cyclone feed density can be adjusted by the
does not overflow or run dry. The hydrocyclone is responsible for the separation of the in-specification and
out-of-specification ore discharged from the sump. The lighter, smaller and in-specification particles in the
slurry pass to the overflow of the hydrocyclone, while the heavier, larger and out-of-specification particles
pass to the underflow. The underflow is passed to the mill for further grinding while the overflow flows to
a downstream process. The volumetric flow-rate of solids in the overflow is the throughput of the circuit
and is equal to the volumetric feed rate of ore at steady-state operation of the circuit. The quality of the

water and is pumped to the hydrocyclone

sump dilution water as long as the sump

Table 1: Variables for the run-of-mine ore milling circuit.

Variable Description Unit
Manipulated variables
MIW Mill inlet water flow-rate [m? /h]
MFO Mill feed-rate of ore [t/h]
MFB Mill feed-rate of balls [t/h]
Qspeed Fraction of critical mill speed [Fraction]
SFW  Sump feed water flow-rate [m?/h]
CFF Cyclone feed flow-rate [m3 /h]
Controlled variables
LOAD  Fraction of mill filled [Fraction]
PSE Product particle size [Fraction < 75 pm]
THP Volumetric throughput of solids  [m?/h]
SVOL  Slurry volume in sump [m?]
Measured variables
CFD Cyclone feed density [t/m?]
P Power draw of the mill motor kW]




circuit product is indicated by the fraction of particles in the overflow smaller than specification size. The
manipulated, measured and controlled variables mentioned above are shown in Table 1 and are common to
most industrial milling plants (Wei and Craig, 2009b).

3. Process model

The continuous time dynamic phenomenological non-linear population balance model validated by le Roux
et al. (2013) is used in this study to describe the circuit shown in Fig. 2. Each process unit in the circuit
is modelled separately. The approach in developing the model was to produce reasonably accurate model
responses using as few parameters and states as possible and makes the model ideal for control purposes.

The model divides the ore into three size classes: rocks, coarse ore and fine ore. Rocks are classified as
ore too large to pass through the mill discharge grate. Coarse ore can pass through the mill discharge grate
but is larger than the specification size. Fine ore also passes through the mill discharge grate but is within
specification size. The sum of coarse and fine ore is defined as solids. Although only three size classes are
used to describe the ore in the circuit, they are sufficient for the model to produce qualitatively accurate
responses (le Roux and Craig, 2013).

The model defines fives states to describe the mill charge volumetric hold-ups: water (X, ), solids
(Xms), fines (Xyny), rocks (X)), and steel balls (X,,;). Because of the mill discharge grate, only three
states are necessary to describe the sump slurry volumetric hold-ups: water (X, ), solids (Xss), and fines
(Xsr). The states of the mill and sump are not measured and need to be estimated.

For the population balance model equations, V denotes a flow-rate in m®/h and X denotes the states
of the model as volumes in m3. Table 2 provides a description of the subscripts for V and X. The first
subscript indicates the module considered (mill, sump or cyclone), the second subscript specifies which state
is considered (rocks, solids, coarse, fines, balls, or water), and in the case of flow-rates the final subscript
indicates an inflow, outflow or underflow. Only a brief overview of the model is presented here. A detailed
description of the model is provided in le Roux et al. (2013). The model nomenclature is shown in Table 3.

3.1. Mill model

The population volume balance of mill hold-ups - water (X)), solids (Xi,,s), fines (X, ¢), rocks (Xpmr),
and steel balls (X,;) - are defined in terms of the inflow, outflow and generation/consumption of each state

Xinw = Viwi + Vewu — Vinwo (1a)
Xins = Vinsi + Vesu — Vinso + RC (1b)
Xong = Vinsi + Vepu — Vingo + FP (1c)
Xmr = Vipri — RC (1d)

(le)

me = Vmbi - BC

where Viwi, Vinsi, Vingis Vinre and Vg (m?/h) are the flow-rates of water, solids, fines, rocks and balls into
the mill respectively, Viwo, Vinso and Vi o (m3 /h) are the discharge flow-rates of water, solids and fines
respectively, RC, BC and FP (m3/h) are the rock consumption, ball consumption and fines production
respectively, and Ve, Vesy and Veg, (m?/h) represent the cyclone water, solids and fines underflow flow-
rates respectively.

Table 2: Description of subscripts

Subscript  Description

Xo- m-mill; s-sump; c-cyclone
X_n w-water; s-solids; c-coarse; f-fines; r-rocks; b-balls
V__no i-inflow; o-outflow; u-underflow
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3.1.1. Mill feed

The flow of material into the mill is defined as

Vinwi = MIW

Vinsi = (1 — a,)MFO/ps
Vingi = oy MFO/ps
Vinri = o MFO/ps

Vinvi = MFB/pp

—~~
[N}
=

o~
[\
NSNS N

2e

~—~

where MIW (m?/h) is the mill inlet water flow-rate, M FO (t/h) is the mill feed-rate of ore, M FB (t/h) is
the mill feed-rate of steel balls, pg (t/m?) is the approximate ore density, pp (t/m3) is the ball density, and
parameters oy and o, represent the fraction of fines and rocks in M FO respectively. Although MFO in
an industrial plant can be controlled fairly well, variations in feed size distribution (represented by «, and
ay) upset the equilibrium in a mill considerably and impede maintaining a mill in the optimum operating

region.
Table 3: Nomenclature. (Dimensionless parameters are shown without units.)
Parameter Value Description
Mill parameters
o 0.055  Fraction of fines in the feed ore
o 0.465 Fraction of rocks in the feed ore
ap 1 Fractional power reduction per fractional reduction of critical mill speed
Qs 0.01 Fractional change in kW /fines produced per change in fractional filling of mill
XP 0 Cross-term for maximum power draw
Ops 2.898 Power-change parameter for fraction solids in the mill
dpy 2.898  Power-change parameter for volume of mill filled
do 84.5 Discharge rate [h1]
Esv 0.6 Max fraction of solids by volume slurry at zero slurry flow
OPran 0.57 Rheology factor for maximum mill power draw
o 90 Steel abrasion factor [kWh/t)
o5 31.31  Power needed per ton of fines produced [kWh/t]
b 8.06 Rock abrasion factor [kWh/t]
ps 3.2 Density of ore [t/m?]
pB 7.85 Density of balls [t/m?]
oW 1 Density of water [t/m?]
VP, 0w 0.34 Fraction of mill volume filled for maximum power draw
Vymill 59.1 Mill volume [m?]
Hydrocyclone parameters
sy 1.497 Parameter related to fraction solids in underflow
Es 111.85 Parameter related to coarse split [m?/h]
Ch 0.6 Constant
Cy 0.7 Constant
Cs 4 Constant
Cy 4 Constant
Cs 0.6 Constant

)



3.1.2. Mill discharge
The mill discharge flow-rates are defined as

X’ITL’LU
Vinwo = ¢do Xmw <Mu> (33)
KXms
Vinso = @dOXm'w (W) (3b)
Xong
= X —_—
meo @dO muw (Xms T me> (SC)

where dy (1/h) is the discharge rate, and ¢ is an empirical function called the rheology factor. The rheology
factor attempts to incorporate the effect of the fluidity and density of the slurry on the milling circuit’s

performance and is defined as
1 Xoms \ 7
Sv mw

where £, is the maximum fraction of solids by volume of slurry at zero slurry flow. A rheology factor

of unity corresponds to ))((::w = 0 indicating the slurry consists only of water. A rheology factor of zero
corresponds to ))(( = ==~ indicating the slurry is a non-flowing mud.

3.1.8. Material consumption and production

The general formulation of the breakage equations has its parallel in the cumulative breakage rates
expressions in Hinde and Kalala (2009) and Amestica et al. (1996). The rock consumption (RC), ball
consumption (BC') and fines production (F'P) are defined as

(Ppmiller
RC = 5
pS¢r (er + Xms) ( )
L Xomp
BC = 6
¢b [IOS (er + Xms) + /)Bme} ( )
Fp P (7)

- ps¢f [1 + Qg (LOAD — ’Upmw)]

where ¢, and ¢, (kWh/t) are the abrasion rates of rocks and balls respectively, ¢; (kWh/t) is the energy
required per tonne of fines produced, vp,,, is the fraction of the mill filled at maximum power draw, o,
accounts for the change in ¢ per change in mill filling, and P, is the mill power draw. The equilibrium of
the mill is not only upset through variations of the feed size distribution, but also variations in ore hardness.

This can be simulated through variation of parameters ¢; and ¢,.

3.1.4. Mill load and power draw
The fraction of the mill filled with charge (LOAD) is defined as

LOAD = (me + Xons + X + me) /Umill (8)

where v,,,;; (m?) is the total volume of the mill.
The mill power draw is modelled as a quadratic function depending on the total mill charge and the
fluidity and density of the slurry in the mill

Pmill - Pmaw(aspeed)ap(l - 6P’UZ5 - 2XP6P’U6PSZIZT - 5PsZr2) (9)

where P4 (kW) is the maximum mill power draw, aspeeq 1S the fraction of critical mill speed, ap is
the fractional power reduction per fractional reduction from critical mill speed, dp, is the power change
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parameter for volume of mill filled, §ps is the power change parameter for the fraction of solids in the mill,
and yp is the cross term for maximum power draw. The parabolic shape of mill power draw as a function
of mill load is further discussed in Powell et al. (2009).

The effect of the total charge on mill power is modelled by the empirical definition of Z, = ﬁOAD —1, and

max
-1

the effect of the solids content on the mill power is modelled by the empirical definition of Z, =

PPmax

where pp__ is the rheology factor at maximum mill power draw.

max

3.2. Sump model

The population volume balance of sump hold-ups - water (X, ), solids (Xs,), and fines (X, s) - are
defined as

Xsw = Vmwo - ‘/swo + SFW (10&)
Xss = ‘/mso - Vvsso (1Ob)
Xsf = meo - sto (IOC)

where Vo, Vsso and Vi, (m3/h) are the sump discharge flow-rates of water, solids and fines respectively,
and SFW (m?/h) is the sump feed water flow-rate. It is assumed the slurry in the sump is fully mixed.

3.2.1. Sump discharge
The discharge of each state from the sump through the variable speed pump is defined as

X

swo = o) Qi — 11
Vewo = CFF 32— (11a)
X
Viso = CFF % 11b
XSU} +XSS ( )
Xsf
Vito =CFF———— 11
f X X, (11c)

where CFF (m?/h) is the cyclone feed flow-rate.

3.2.2. Slurry volume and cyclone feed density
The volume of the sump filled with slurry (SVOL) (m?®) and the cyclone feed density (CFD) (t/m?3) are
defined as

SVOL = X, + Xsu (12)
pWszo + pS‘/;so

CFD = 13

‘/«SU)O + ‘/SSO ( )

where py is the density of water.

3.8. Hydrocyclone model

3.3.1. Underflow and overflow

Static non-linear models in the form of efficiency curves are used to model a number of classification
units in minerals processing (Nageswararao et al., 2004). The non-linear static cyclone model presented here
aims to model the product size and density by taking the effects of angular velocity of the particle inside

the cyclone, the slurry density and slurry viscosity into account. The underflow of coarse material (V.. )
(m?/h) is modelled as

View = (Ve = Vo) (1= Crewp (5 ) (1 (&) CB) (1) (14)




Visso
CFF

(m?/h) relates to the coarse split, C; relates to the split at low-flows when the centrifugal force on particles
is relatively small, Cy normalizes the fraction solids in the feed according to the upper limit for the packing
fraction of solid particles, and C3 and Cy adjusts the sharpness of the dependency on F; and P;.

To determine the amount of water and fines accompanying the coarse underflow, the fraction of solids
in the underflow (F},) must be determined. This is modelled as

is the fraction solids in the cyclone feed, P; = “;Sf °

sso

where F; = is the fraction fines in the feed solids, e,

Fu = C'5 - (CS - Fz) €exp (_chcu/(asugc)) (15)

where Cj is the approximate maximum packing fraction, and «g, relates to the fraction solids in the
underflow.
The cyclone underflow flow-rates (as shown in (1)) are defined as

V;wa (V::cu - Fu‘/ccu)
V;wu = 16a
Fu‘/swo‘FFusto_‘/sfo ( )

V;‘fo (Vccu - Fuvccu)
Vc u = 16b
! Fu‘/swo_FFu‘/sfo_ Vvsfo ( )

V::su = V;au + V::fu (]-GC)

These equations follow from the assumption that the fines are not influenced by centrifugal forces. This
implies the ratio of fines to water in the overflow, underflow and feed is equal, and that the fraction of solids
in the underflow can be written as F, = % Consequently, the cyclone water overflow flow-rate
(Vewo), solids overflow flow-rate (Vi) and fines overflow flow-rate (V.f,) can be calculated using a flow
balance around the cyclone.

3.3.2. Product quality and throughput

The product quality is defined as the fraction of fines to solids in the cyclone overflow, and is represented
by the particle size estimate (PSE). The product throughput (THP) (m?/h) is defined as the volumetric
flow of solids in the cyclone overflow.

pSE = Veto (17)

cso

THP = V.., (18)

3.4. Process Model

The Plant model can be represented in non-linear state-space as

Xp(t) = fp (t,Xp, uP) (19&)
yP(t) =gp (t,Xp, up) (19b)

where xp represents the plant’s state variables, yp represents the plant’s measured variables, and up
represents the plant’s manipulated variables. The states, the manipulated variables and measured variables
are
T
Xp = [meaX'msame7er7meaxswaxssaXsf]
up = [MIW,MFO,MFB,0pcca, CFF,SFW]" (20)
[

yp LOAD, Py, SVOL,CFD,PSE, THP]" .
Function fp is given by (1) and (10), and function gp is given by (8), (9), (12), (13), (17) and (18).
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4. Control Architecture

The grinding mill circuit shown in Fig. 2 is a mixture of both fast and slow dynamics. The time constant
for the dynamics of M FO to PSE is in the range of 30 min, whereas the time constant of CFF to PSE
is in the range of 2 min. Also, the mill exhibits slow integrating dynamics compared to the sump’s fast
integrating action. If, for example, the difference between C FF and SFW is 300 m®/h, a sump with 5 m?
of slurry could potentially run dry within 1 min (Coetzee et al., 2010). Because the slow and fast dynamics
are clearly separable in the circuit, a fast acting controller with low processing requirements can be used for
the sump while an optimizing controller with a greater processing burden can be used for the remainder of
the circuit.

The chosen control architecture is depicted in Fig. 3 and consists of DI control coupled with NMPC. A DI
controller is chosen to manage the fast dynamics of the sump allowing more time for NMPC to determine the
optimal trajectories of the remaining variables. Instead of two isolated controllers, the closed-form solution
produced by the DI controller is used by the NMPC.

Since the cyclone model in Section 3.3 and the mill power draw model in Section 3.1.4 are static non-
linear equations, linearisation will reduce the models to constant gains only accurate in a small region around
the operating point. Non-linear control is therefore justified since it has the advantage of directly using the
static non-linear models as internal prediction models to ensure accurate results over a larger operating
window. Also, as seen in the system identification of an industrial single-stage closed grinding mill circuit
by Craig and MacLeod (1995), the uncertainties in linear transfer function elements can range from 10% to
65%.

For a degree of independent control of THP and PSE, it is necessary to evaluate which manipulated
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variables are most suitable as control handles for THP and PSE. The following discussion is done with
reference to the conceptual block diagram in Fig. 4. Manipulation of CF'D and CFF allows control of PSE
and THP. The CFF can be manipulated through the VSD of the sump pump. The CFD is a function of
the sump states X, and X, and manipulation of either sump state can be used to achieve a desired CF D.
X can easily be manipulated at the sump through SFW, whereas X is not so easily manipulated. X
is determined by the grinding efficiency of the mill and cannot be changed at the sump. To increase X,
more solids need to be produced and discharged by the mill. This can be achieved by using ogpeeq as a
manipulated variable to vary Pp,;; in (9). An increase in P,,;; will result in an increase in the generation of
solids through RC in (5), a subsequent increase in X,,s through (1b), an increase in the discharge flow-rate
Vinso in (3b), and finally to the increase of X, through (10b). Not only will this increase in X5 cause an
increase in CF D, it can also allow for an increase in THP as more solids are available to be discharged
from the circuit. Using aspeeq as manipulated variable therefore allows further control over T'H P.

As shown in Fig. 3, the NMPC uses the manipulated variables MIW, MFO, MFB, aspeed, CFF,
and X, to achieve the desired LOAD, THP, and PSE set-points. The NMPC therefore feeds X, as
a set-point to the DI controller. The DI controller controls X, via SFW. This is done because of the
dependence of PSE and THP on X,, via CFD, and the ease with which X, can be controlled by
manipulating SFW. The variation range of X, is bound by the limits of SVOL to ensure the sump does
not run dry or overflow. Since SVOL has no steady-state impact on the circuit performance, no set-point
is specified. The only requirement is that it remains within its constraints.

In this section, the overall control objectives are summarised in Section 4.1, the NMPC is discussed in
Section 4.2, and the DI controller in Section 4.3.

4.1. Control objectives
The control objectives considered in this paper are

1. tracking of set-points with independent control of PSE and TH P, and
2. compensation for model-plant mismatch.

4.2. Non-linear model predictive control (NMPC)

4.2.1. Continuous and Discrete Model
The Controller model can be represented in continuous-time state-space as

Xc(t) = fC (t,Xc, uc) (21&)
ye(t) = gc (t,xc,uc). (21b)

As illustrated in Fig. 3, the states, the manipulated variables and controlled variables used by the NMPC

model are
mea Xmsa me7 er7me7X557 Xsf}T

Xc [
uc = [MIW,MFO,MFB, o, CFF, X" (22)
yc¢ = |[LOAD,PSE,THP]"

where function f¢ is given by (1) and (10b)-(10c¢), and function g¢ is given by (8), (17) and (18). (Eq. (10a)

is not included in function fo since it is a controlled variable.)
The trapezoidal rule is used to derive the discrete form of function f¢:

1
Xgp+1 = X + ih [fC (t(k‘ + 1), X0, uc) + fo (t(k), X, uc)] (23)
where h is the step size, and the subscript C' is removed from the discrete controller model variables for the
sake of simplicity. The equation above can be solved for xj41 using the Newton-Raphson method:

-1

-1 c -1
X}c-&-l = X7]’{;+1 - - §§|xk+l7uk+1 (0 (X;chl?xk?uk""l’ uk) (24)

11



where 7 is the iteration index, and

. 1
w (X;c—i-ll? Xy Uk+1, uk) = Xk+1 — X — Eh [fc (t(k + 1), X, uc) + fc (t(k), X, uc)] . (25)
The discrete model for the controller is represented in non-linear state-space as

xpt1 = fo, (xi,ur) (26)
Ye o = 8o (Xkug).
4.2.2. NMPC Cost Function
Given the discrete model in (26), the aim of the controller can be described as

min J (Wgy ooy W N, —1, Xk
Ug,.-s Uk Ne—1

st Xpq1 = ka (Xk, uk)
Yi = 8¢, (Xk, ug) (27)
w <u; <uy
Au; < Aug < Au,
YiISYr SV

where the objective function J is defined as

Np_l Nc—l
J() = Z (Ysp — Yrtilk + D)T Q1 (Yop — Yitik + D) + Z (Auk-i-i\k)T Q2 (Auyiijk) (28)
i=0 1=0

with y, the controlled variable set-points, IV, the prediction horizon and N, the control horizon.

The constant term D = y —yy is included to add integral action to the controller, where y is the plant
output and yy is the model output at ¢(k). As noted by Meadows and Rawlings (1997), this conventional
feedback procedure assumes the difference between the process and model outputs is a result of additive
step disturbances which persist throughout the prediction horizon. The method corresponds to adding a
bias to the controller prediction. Although simplistic, this method of integral action has the advantage of
accurately modelling set-point changes which enter the feedback loop as step disturbances, approximating
slowly varying model mismatch errors, and zero offset for step changes in the set-point. However, this
method can be sensitive to random fluctuations in the output.

There is no direct penalty on the input terms in the MPC formulation as contradictory goals may arise.
At steady-state T H P is equal to the M FO. If sufficient ore is available, then T H P can be increased as long
as PSF is maintained at the increased T H P. Minimisation of M FO as an input is then contradictory to the
goal of increasing T H P as these two are equal at steady-state. Rather, the rate of change of the manipulated
variables are penalised as this reduces high energy expenditure to make changes in the manipulated variables.

The upper and lower constraints for the controlled variables (y, and y;) and the manipulated variables
(u, and u;) are shown in Table 4. The aim of the manipulated and controlled variables’ constraints is
to maintain the circuit within an operable region. Since the plant model provides the equality between
the manipulated and controlled variables, the states are assumed to remain within operable bounds if the
manipulated and controlled variables are within bounds. State constraints are therefore not included in the
MPC formulation. The tuning parameters for the NMPC are the weighting matrices Q1 for the controlled
variables and Qs for the rate of change in the manipulated variables, as are discussed next.

4.2.8. Controller Weights

Since PSE and T H P determine the economic efficiency of the circuit, it is desired to have tighter control
of these controlled variables compared to LOAD. Therefore, the weighting matrix Q; = diag{q11, ¢12, ¢13}
for the output variables was determined such that a 0.5% deviation from set-point for T'H P will produce

12



an error in the cost function equal to a 1% deviation of PSE from set-point and a 10% deviation of LOAD
from set-point, i.e.

@11 (10%LOADgp)* = qu2 (0.5%THPsp)? = 15 (1% PSEsp)® (29)

The weighting matrix Q2 = diag{go1, ¢22, - - -, g6} for the input variables was determined such that 1%
change of half the ranges of CFF and X, will produce the same error as 2% change of half the ranges of
MIW and MFO, and as 15% change of half the ranges of aspeeq and M FB. The aim is to use less of aspeed
and M F' B to achieve set-point as these variables can affect power consumption dramatically. Care should
be taken not to increase MIW too quickly as this could wash out the fines in the mill and drop the mill
power draw very quickly. As shown in Craig et al. (1992a), effective use of MIW can improve the range of
control of PSFE. The input weighting matrix is

@21 (2%MIW,ange/2)” = qo2 QAMFOyange/2)” = 23 (15%MF Brange/2)” =

2 2 30
424 (15%Oéspcedmnge/2) = (25 (1%OFFrange/2)2 = {26 (1%Xswm,n_qe/2) ( )

The Q2 matrix is scaled to produce 1% of the error in J compared to the Q; matrix, and is also scaled with
the ratio between the control and prediction horizon, i.e.

N,
g21 QB MIW,ange/2)° = 100q11 (10%LOADgp)? (31)
C

4.8. Dynamic inversion (DI)

As shown in Fig. 3, the NMPC demands a specific value of X, to minimise the cost function in (28).
Because of its simple design structure, DI is chosen to control X, through the manipulation of SFW. DI
control operates on the principle that the output error dynamics are enforced as a stable linear system.
After selecting an appropriate form for the error dynamics, usually in PID form, the control is computed by
inverting the system dynamics. If the non-linear system dynamics are available, the DI controller realisation
is preferable over a PID realisation. This is because the DI method leads to a closed form solution for the
controller, guarantees asymptotic stability of the error dynamics, and is easy to implement online (Enns
et al., 1994; Teo et al., 2009).

Dynamic inversion allows the specification of a desired response path by choosing a proportional gain
value (K,) and an integral gain value (K7) such that:

t
er+K[/6dT+é:0 (32)
0

where e = § — ys;) is the difference between the measured value (3) and the set-point (ysp).

4.3.1. Synthesis of SFW and Constraint handling

Control of X, cannot be done without consideration of physical bounds imposed by the sump. SVOL
should not reduce to zero or exceed the total volume of the sump. The constraints of SVOL is incorporated
in the control of X, through the function illustrated in Fig. 5. In the ‘safe’ region between lower bound
(Sr) and upper bound (Syp) there is no concern of the sump overflowing or running dry. In this region the
controller can focus on meeting the set-point of X, through manipulation of SFW. As SVOL approaches
critical operational constraints (S, Or Spae.) manipulated variable SFW is used to bring SVOL back to
the ‘safe’ region. This can be compared to error-squared control (Seborg et al., 2004).

The manipulated variable, SFW, is the synthesis of SFWx_, and SFWgyor through a convex combi-
nation

SFW = (1-XN)SFWx,, + ASFWsvor (33)

where SFWx_  denotes the case where X, is the main target of the controller, and SFWgy o denotes

sw

the case where the sump slurry is in danger of violating the constraints on SVOL. In other words, SFW is
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Smin Sre Sus Smazx

Figure 5: Conceptual figure illustrating convex combination.

determined from the requirements for the water fraction in the sump slurry and the constraints of the sump
slurry volume. The function A, illustrated in Fig. 5, is defined as

1 . SVOL < Spin
55 (SVOL—=Sp) 3 Smin <SVOL<Sip

A=40 i S <SVOL < Syg (34)
555 (SVOL—Syp) ; Sup <SVOL < Spas
1 . SVOL > Spax

For SFWgvyor, the error in the controller equation (32) is defined as

SVOL—SUB ] SVOLS(SLB-‘FSUB)/Z

€=ASVOL={ SVOL—-Srg ; SVOL > (SLB+SUB)/2

such that .
i ASVOL)+ K,1(ASVOL) + K, ASVOL)dr = 0. 35
dt P
0

For SFWx_,,, the error in the controller equation (32) is defined as e = AX;,, = Xg — X7, where X7, is
the set-point and X, is the current state. Thus

d

t
o (AXow) + Kpp(AX ) + Kr2 / (AX,p)dr = 0. (36)
0

From the differentiation and subsequent simplification of SVOL in (12), it is possible to simplify (35) to
t

SFWgsvor = (CFF — Viwo — Vinso) — Kp1 (ASVOL) — Ky / (ASVOL)dr. (37)
0

Using (10a), it is possible to simplify (36) to

sw

t
SFWx... = Vewo — Vinwo — KIQ/ (AXy)dT — Kpa(AX ). (38)
0

5. State estimation

As seen from Wei and Craig (2009b), the measurements available on industrial grinding mill circuits
are limited. Full-state feedback to the controller is not possible as the modelled states cannot be measured
directly. State estimation is done separately for the mill and sump because the mill and sump states are
distinct by definition.

The particle filter method of Olivier et al. (2012b) is used for the estimation of all five mill states. How-
ever, to use this method it is necessary to inferentially determine the mill discharge flow-rates as industrial
mills have no direct measurements of these variables. The only measurement of mill contents available at
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Figure 6: Block diagram illustrating the estimation configuration.

the mill is LOAD. Fortunately, if the sump states are known, it is possible to determine the mill discharge
flow-rates Vipwo, Vinso and Vi, by means of a flow balance over the sump. The sump states are readily
observable from the measurable variables SVOL, CFF, CFD and PSE. The next two subsections describe
the process followed to estimate the sump states through algebraic equations and the mill states using a
particle filter. The estimation process is illustrated in Fig. 6.

5.1. State estimation of the sump states

The CF'F is given by
CFF = Vo + Vsso- (39)

Assuming the total mass of slurry in the sump is given by My = Mg + My, where Mg is the mass of solids
and My is the mass of water, (39) can be written as

My  Ms My

= 40
CFD ~ s ' ow 1)
Therefore, (40) can be simplified to give the solid mass fraction
Ms 0}1«“D —1
= . 41
My L1 (1)
ps

From the result above, the estimates of the sump water volume (X,,,) and solids volume (X,,) can be
expressed in terms of measured quantities as

N L-CFD S
Xsw - SVO ¢ (1 - CIfD_ 1 > (423)
W s
X, =SVOL (11_CFD> . (42b)
—Ps

Because the fraction of fines in the sump outflow is not measured, the measurement of PSE has to be
used for the estimate of the sump fines volume (X,f). By writing PSE in (17) in terms of the sump states
and C'F'F, it is possible to solve numerically for X,.
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5.2. State estimation of the mill states
The particle filter of Olivier et al. (2012b) is used to provide mill state estimates for water (X,nu),

solids ()A(ms)7 fines (X,,s), rocks (X,,,) and balls (X,,;). Only a brief description of the particle filter
implementation is given here and further details can be found in Olivier et al. (2012b).

5.2.1. Particle filter formulation

Particle filtering is a technique that implements a recursive Bayesian filter using Monte Carlo simula-
tions. It relies on the technique of representing the posterior probability density function, which is used for
estimation, by a set of random samples and associated weights. The locations of the particles represent the
locations at which the probability density function is evaluated and the sizes of the particles represent the
associated weights, giving an indication of the value of the probability density function at this location. This
representation is expandable to an arbitrary number of dimensions and is applicable to any distribution,
even multi-modal and other non-Gaussian distributions. As the number of particles becomes very large, this
method of representing the probability density function becomes equivalent to the functional description of
the posterior probability density function.

Let yo.x = {vo, --., yx } represent the sequence of all measurements up to the current time, then the general
state estimation problem is formulated as the solution of the conditional distribution function p(xg|yo.x),
which is the distribution of the state given all the observations up to time ¢(k). The probability density
function at t(k) may then be approximated as

N
plaklyon) ~ Y wid(zx — ) (43)
=1

where Ny is the number of particles and {x}c, w}c}il is the set of particles and associated weights (Arulam-
palam et al., 2002). These weights are defined to be
W), X W,_y ——
(@21, k)

(44)

where r(zi |zt |, yx) is a proposal distribution called an importance density. Ideally the importance density
should be the true posterior distribution p(x|yx), but this is generally not known. Instead, the transitional
prior is used as the proposal distribution because of the ease of implementation and good accuracy (Ristic
et al., 2004), i.e. r(widal_,,yx) =p (:Ek|x}€_1) This is a sufficiently accurate suboptimal choice when a
more complex importance density is not warranted. If the process noise is assumed to be additive zero-mean
Gaussian noise, the transitional prior becomes

p (xk|x§€,1) = N(wk . fk ("Ezfl) 7Rk71) (45)

where Ry, is the noise standard deviation. This assumption also means that particles can be drawn from the
Gaussian distribution

ah ~ N (fi (2h_1) s Reo1) - (46)
The assumption of Gaussian noise simplifies the particle filter implementation, although it is not generally
required in the particle filtering framework.

The variance of the importance weights can only increase over time (Douchet et al., 2000). This means
that after only a couple of iteration steps all but one particle will have negligible normalized weights. This
effect is known as degeneracy. Degeneracy is eliminated through the use of resampling to eliminate the
particles with low importance weights and multiplies particles with high importance weights. The algorithm
uses the cumulative sum of weights defined as

%
Jj=1

and draws samples from u € [0, 1] to map new samples from W. The pseudo-code for the resampling routine
is provided in Algorithm 1 (Arulampalam et al., 2002).
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5.2.2. Particle filter implementation

A sequential importance resampling (SIR) particle filter is used and the pseudo-code for this filter is
shown in Algorithm 2 (Arulampalam et al., 2002). The inputs (upr) and outputs (ypr) necessary for the
particle filter to determine the five mill states are

uprp = [MIWMFOvMFBaaspeed>Vrcwu7‘/csu»chu}T (47)
YPr = [Vmww Vmsoa me07 LOAD, Pmill]T .

Algorithm 1 Systematic resampling
{ wi}),] = RESAMPLE[{x}, w} })_ |

o Initialize W: ¢; = wj
e FORi=2: N

— Construct W: ¢; = ¢;_1 + w,@
e END FOR

Begin at bottom of W: i =1

]

Z|~

Draw a starting point: uy ~ U0,

FOR j=1:N
— Move along W: uj =uy + +(j — 1)
— Find the smallest value of 7 such that u; < ¢;
— Assign sample: xi* =i
. . . 7 _ 1
— Assign weight: w), = +

END FOR

Algorithm 2 SIR particle filter
{aiHiia] = SIR[{@},_y Hly, vl
e FORi=1:N

— Draw i ~ p(@x|rr—_1)

— Calculate @} = p(yx|zx)

END FOR

Calculate the sum of the weights: ¥, = SUM[{w} }]
FORi=1:N

.

N s i W
Normalize: w;, = o,

END FOR

Resample using Algorithm 1
{zi}X ] = RESAMPLE[{z}, wi }}¥ ]
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R Using (16), the cyclone underflows can be determined from the estimated sump states Xsw, XSS and
X,s (see Section 5.1). The mill discharge flow-rates Vo, Vinso and Vi, s, are not measured directly and
are calculated using the sump population balance equations in (10). Therefore,

d o Xsw
Vinwo = 7 Xow + CFF o5 — SFW (48a)
d o Xss'
so = 77 Xss FF ‘ 4
Vinso = X + CFE G707 (48b)
d Xy
meo == %Xsf + CFFSVOL (48C)

where derivatives of the sump state estimates can be determined using for example a Savitzky-Golay filter
if a time-series of estimates is available (Savitzky and Golay, 1964). The uncertainty in the sump estimates
is assumed to appear as white noise at the particle filter, and is therefore absorbed in the formulation of the
particle filter.

Similarly to the NMPC, the particle filter is based on a discrete model. The Trapezoidal rule and
Newton-Raphson method as described in Section 4.2.1 are used to discretize and propagate the model. The
state-space model for the particle filter is the five mill state equations in (1). The output equations are given

by (3), (8) and (9).
6. Simulation and results

6.1. Simulation environment
Table 4 shows the initial conditions of the variables and states for the simulations. The setup of the
general simulation environment is as follows:

Table 4: Initial conditions, limits (Min, Max), and rate constraints (A) of the plant described in Section 3.

Var Value Min Max A Unit
Manipulated Variables

MIW  4.71 0 40 2 [m? /h]
MFO  66.9 0 100 1 [t/h]
MFB  6.43 0 15 0.5  [t/h]
Ospecd  0.72 0.6 0.85 0.01 [
CFF 267 200 450 5 [m? /h]
SFW 67.1 0 300 - [m? /h]
Measured Variables
LOAD 0.31 0.2 0.4 - ]
PSE 0.60 0.5 0.8 - []
THP 209 15 30 - [m3/n]
SVOL 10.0 2.5 17 - [m?]
Pin 1142 - - - [kW]
CFD 1.79 - - - [t/m?]
States
Xw 3.78 - - - [m?]
Xoms 3.45 - - - [m?]
Xy 1.08 - - - [m?]
X 1.86 - - - [m?]
Xob 9.23 - - - [m?]
Xsw 6.43 2.5 17 - [m?]
X 3.57 - - - [m?]
Xof 112 - ; - ]
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(i)
(ii.)

(iii.)

(vi.)

(vii.)

The total simulation time is 7 h.

The states of the plant as given by (19) is integrated over each time interval ¢t = (k — 1)Ty to t = kT
using the explicit fourth order Runge-Kutta method at a sampling time of 75 = 10 s.

The manipulated variables determined by the NMPC are implemented at intervals of 60 s because of
the slow mill dynamics. The fmincon function with the sqp algorithm in MATLAB? R2015a is used to
minimize the cost function. Section 4.2.1 describes the discrete model used for the NMPC algorithm.
(The Newton-Raphson method used to solve for x;41 in (24) is terminated if the answer to (25) is
smaller than 107°).

The manipulated variable constraints and maximum allowable rate of change are shown in Table 4.
These constraints are applied in the minimization routine. Note that X, is seen as a manipulated
variable by the NMPC, which is why a minimum and maximum constraint appears for this state in
Table 4.

The DI control manipulated variable is updated every 10 seconds. The quicker sampling rate compared
to the NMPC is because of the fast sump dynamics.

Measurement noise with a normal distribution of A/ (0, 02) is added to the controlled and measured
variables listed in Table 5. The standard deviation is shown in Table 5 as a percentage of the initial
variable set-point. State noise is not added to the simulation environment. If state noise is added it
is necessary to differentiate between the cumulative effect of the state and measurement noise when
evaluating the controller and estimator performance. Since only the measurements are used by the
controller and estimator, the noise added to the measurements are regarded as sufficient to account
for model uncertainty. This also simplifies deductions that can be made from the results.

A particle filter with 1000 particles is used. The initial estimates of the mill states are randomly
selected from a region (+ 10%) around the actual initial state values. The a priori density function
p (zk|xk—1) is assumed to be normal with a standard deviation of 0.02. The likelihood function
P (yx|zk) is assumed to be normal with a standard deviation of 0.1.

6.1.1. Noise filters

The measurement noise added to the variables listed in Table 5 results in a deterioration of the sump
and mill state estimates. A Savitzky-Golay digital filter (Savitzky and Golay, 1964) was designed to filter
the noise of the measurements used for estimation. The filter smooths data by fitting successive sub-sets of
F' data samples with low-degree polynomials of order N by means of linear least squares. The filter returns
the filtered value at the centre of the frame. The advantage of this filter is that it does not introduce a
phase shift in the data. However, for a real-time application the filter design needs to be adapted to return
the filtered value at the end of the frame which corresponds to the most recent measurement. The following
filter design procedure was used:

(i)
(ii.)

For a frame size of F' samples, construct a vector z; = [-F + 1, —F +2,...,0]7.
For a polynomial of degree N construct the matrix J; j4+1 = 2] for i = 1...F and j = 1...N.

2MATLABTM ig a registered trademark of The Mathworks Inc.

Table 5: Plant measurement noise and parameter uncertainty as percentages of nominal values.

Var o Var o
LOAD 1% SVOL 0.5%
PSE 1% P 2%
THP 1% CFD 1.5%
Parm A Parm A

of 30% | ¢ 20%
fo 30% | o 20%
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(iii.) The filter coefficients C are calculated by solving C' = (J'J) ~1JT. Matrix C will be of size RVFDXF |

(iv.) The filtered data point Y (k) is produced by convolution of the unfiltered data string vy’ = {y(k — F +
1),...,y(k)} of F samples and the first row of filter coefficients: Y (k) = C1 ® v/'.

(v.) The approximate of the first order derivative Y(k) is produced by convolution of the unfiltered data
string y’ and the second row of filter coefficients Y(k) = Co @ /.

(vi.) For this application the data points y' are weighted so that the last data points count more to-
wards the polynomial fit than the first data points. The following weight matrix is used: W =

2 2
diag [O, (ﬁ) , (%) s e 1}. The filter coefficients are then given by C = (JWTJ)_1 JTW.

The noise on the measurements is considered as high frequency noise, whereas the dynamics of the
system are considered to fall within the low frequency range. The aim of the filter is to reduce the high
frequency noise while maintaining the dynamics of the system. Plant measurements were filtered before state
estimation with a Savitzky-Golay filter. The filter used a frame length of 37 samples to fit a second order
polynomial to the process data. The mill discharge flow-rate estimates in (48) were calculated algebraically
as shown in Section 5.1 using the filtered measurement data. The first order derivatives were set to zero
because the noise on the signals skews the calculated derivative values. Also, because the variables change
relatively slowly, the derivatives are expected to be negligibly small. Since the sump states are not estimated
with complete accuracy, uncertainty is propagated and may be accentuated through the algebraic calculation
of the inputs and outputs necessary for the particle filter to estimate the mill states. If the measurements
are not filtered to reduce the measurement noise, the accuracy of the algebraically calculated sump states,
and consequently, the mill state estimates reduces significantly.

6.1.2. Controller setup

NMPC - 1t is generally recommended to choose the prediction horizon (IV,) based on the longest settling
time between the manipulated and controlled variables (Seborg et al. (2004)). Assuming a sampling time of
1 min, this results in an impractical N, > 500 because of the PSFE-opeeq interaction. To yield a controller
that is feasible to implement a prediction horizon of N, = 18 (corresponding to 18 min) was chosen. A good
trade-off between controller aggression and computational expense was found tuning the control horizon to
N, = 3 (corresponding to 3 min).

From the bounds and set-points given in Table 4, the weights of the controller can be determined from
(29)-(31). Choosing g11 = 1, the matrices are

Q: =diag[l, 6.67, 0.022] (49)
Q. =diag[0.90, 0.40, 0.11, 410, 0.092, 27.4]

DI controller - The bounds for SVOL were chosen as {Smin, SLB, Sus, Smaz} = {2.5, 5, 15, 17.5}
m?3. The controller was tuned to K, = 10K;; = 20 and Kpy = 10K75 = 20.

6.2. Simulation Sets

The aim of the simulations is to test how well the proposed control-estimation configuration meet the
control objectives set in Section 4.1. Two simulation sets are used:

Simulation 1: Independent set-point tracking of PSE and THP.
Set-point changes are made to PSFE from 0.60 to 0.65 at ¢t = 1 h, to 0.625 at ¢t = 3 h and
to 0.65 at t = 5 h. THP is stepped from 20.9 m?/h to 22.2 m3/h at ¢t = 2 h, to 23.2 m3®/h
at t = 4 h, and to 22.7 m3/h at t = 6 h. The set-point for LOAD is kept at 0.31. A first
order transfer function with unity gain and a time constant of 3 min is used to filter set-point
changes. No parametric disturbances are applied in this simulation.

Simulation 2: Disturbance rejection.
Any industrial mill has to contend with disturbances to plant operation, of which the most im-
portant are disturbances to the feed ore size distribution and the ore hardness. The following
disturbances are applied to the plant:
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Figure 7: NMPC controlled variables for Simulation 1: fraction of mill filled (LOAD), product quality (PSE) and product
throughput (T'HP).

(Legend: Sim - simulation with full state feedback; Est - simulation with feedback through estimation; Setpoint - variable
set-point.)

(i.) A change in feed size distribution is simulated by applying ramp step-changes to ay
and o, at t = 1.5 h and ¢ = 3.5 h, and back to nominal at ¢ = 5.5 h.
(ii.) A change in feed ore hardness is simulated by applying ramp step-changes to ¢, and
¢fatt=2.5handt=4.5h, and back to nominal at ¢ = 6.5 h.
The disturbances are applied by stepping the parameters around their nominal values (as
given in Table 3). The size of the ramp step-changes are randomly selected from the uniform
distribution U (—A, A) where A represents the deviation from the nominal value of a param-
eter. The deviation as a percentage of the nominal parameter value is shown in Table 5. The
set-points for the circuit are kept constant at [LOAD, PSE, THP]* = [0.31,0.60,20.9].

In each simulation setup, the following two scenarios are simulated:

(i.) The first scenario assumes full state feedback to the controller with no measurement noise added to
the states.

(ii.) The second scenario adds noise to the measurements and uses the state estimation strategy described
in Section 5 for state feedback.

6.2.1. Simulation 1 Results: Set-point tracking

Results for Simulation 1 are shown in Figs. 7-9. The main controlled variables are shown in Fig. 7, the
circuit’s manipulated variables are shown in Fig. 8, and the particle filter estimates of the mill states and
the algebraic estimates of the sump states (see Sections 5.1-5.2) are shown in Fig. 9.

As expected, Figs. 7-8 show that for approximate steady-state conditions THP is equal to MFO/pg.
At t =4 h the step in THP causes apeeq to operate at its constraint. However, as seen on the left in Fig.
7, for the case with full state feedback the controller is still able to maintain the variables at set-point. At
t = 5 h the set-point change in PSFE is managed, but LOAD needs to deviate from set-point to allow the
increase in PSE. The deviation of LOAD from set-point is expected given the NMPC tuning described in
Section 4.2.3.

As shown in Fig. 9, the estimates of water and solids states for the mill and sump are accurate. The
fines estimates for the mill and sump are both fairly noisy, but the trends are reasonably well captured. The
estimate of X,,,; captures the correct trend, whereas the estimate of X,,, is the least accurate.
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Figure 8: Manipulated variables for Simulation 1: mill inlet water (MIW), mill feed ore (M FO), mill feed balls (M FB),
fraction of critical mill speed (ctspeeq), cyclone feed flow (CFF'), and sump feed water (SFW).
(Legend: Est - feedback through estimation; F'SF - full state feedback.)

th]

Figure 9: Mill state estimates from particle filter: water (Xmw), solids (Xms), fines (X, ¢), rocks (Xmr) and balls (Xppp).
Sump state estimates from algebraic filter: water (Xsw), solids (Xss) and fines (X,f).

(Legend: Sim - simulated value; PartFilt - Particle filter estimate; AlgF'ilt - Algebraic filter estimate.)

For full state feedback the simulated value and not the estimated value is fed back to the NMPC
controller. In the case of state estimation for state feedback, the deviation of the controlled variables
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from their set-points in Fig. 7 are a result of the effect of the measurement noise on the consequent state
estimation. The states estimated from noisy measurements cause an offset to the estimate of D in (28). In
an attempt to reduce the effect of the noise on the estimates, the mean of the past 18 model outputs and
plant measurements were used to calculate the vector D. Also, the elements in vector D were only applied
if its absolute value was larger than 1% of the set-point (i.e. if |D;| = | (91, — v1,) | < 0.1ysp, then D; = 0).

The simulation can be viewed as a case of disturbance rejection of LOAD as the desired operating point
of LOAD ensures the mill is not over-filled, nor under-filled. As shown by Van der Westhuizen and Powell
(2006), it is necessary in some cases to allow LOAD to deviate from its desired set-point to achieve a
particular PSFE or THP. As noted in Section 4.2.3, the weighting on LOAD is relaxed to allow it to vary
around its nominal condition.

Table 6 shows the mean, standard deviation and normalised root mean squared error (NRMSE) of the
controlled variables for the different set-points. In each case the time period of evaluation is only when
the set-point is at steady-state. It takes approximately 0.3 h for a set-point to settle at a new value. The
standard deviation is taken with respect to the set-point for the specific time interval. Although the mean
and standard deviation is calculated, the variation of the process signal around the set-point is not necessarily
Gaussian. The NMRSE was calculated as

1SSV = Agp)?
NRMSE = =
Asp N

where \gp is the desired set-point, Agp is the mean of the set-point over the period, \ is the process signal,
and N is the number of data points. Results for the case with full state feedback are good, as would be
expected. In the case of state estimation, set-points are achieved with a reasonable degree of accuracy as
shown by the mean value achieved over the periods of interest. It is only in the period 4.3 h to 6 h that
THP is below the desired set-point. For the case of state estimation, the NRMSE of LOAD and PSE is
roughly 2%, and the NRMSE for TH P around 4%.

Table 7 shows the time for the NMPC calculations and the particle filter calculations. The maximum
time for the NMPC to complete a calculation was approximately half a minute. The particle filter needed
less than 1 second to complete its calculations. Since the NMPC needs to produce a new input move every
minute, the time requirement for the NMPC calculation is easily met. The particle filter needs to provide
updates every 10 seconds, and can do so with relative ease. Calculations were completed in MATLAB
R2015a on a 64-bit computer with a 3 GHz Intel Core i7-3540M central processing unit and with 8 GB of
RAM.

6.2.2. Simulation 2 Results: Disturbance rejection

The parameter variations and the results for Simulation 2 are shown in Figs. 10-12. The implemented
parameter variations are shown in Fig. 10, the controlled variables in Fig. 11 and the manipulated variables
in Fig. 12.

Table 6: Error analysis of set-point changes to controlled variables with full state feedback (F'SF) and state estimation (Est).

Time [h] SP FSF Est
I o NRMSE | o NRMSE
LOAD 0-7 0.313 | 0.313 0.004 1.56 e-2 | 0.314 0.005 1.92 e-2
0-1 0.600 | 0.602 158 e4 2.74e4 | 0602 0.64e2 1.12¢-2
PSE 1.3-3 0650 | 0.650 5.42e4 8.63e4d | 0648 0.75e2 1.19¢e-2
33-5 0.625 | 0.625 4.65e4 T.45e4 | 0.626 1.31e2 2.11e-2
53-7 0.650 | 0.650 6.48 e-4 10.4e4 | 0.650 1.23e-2 1.89e-2
0-2 20.9 | 209 430e2 211e3 | 208 0.697 3.38 e-2
THP 23-4 222 |222 249e2 1.15e3 | 221 0943 4.26 e-2
43-6 232 |233 59le2 344e3 | 229 0.969 4.33 e-2
6.3-7 227 | 227 039e2 1.79e4 | 227 0.796 3.51 e-2
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Figure 10: Variation of ore feed size distribution (o, and ay) and ore hardness (¢ and ¢y).
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Figure 11: NMPC controlled variables for Simulation 2: fraction of mill filled (LOAD), product quality (PSE) and product
throughput (T'HP).

(Legend: Sim - simulation with full state feedback; Est - simulation with feedback through estimation; Setpoint - variable
set-point.)

Fig. 11 shows the response of the system to parameter variations. The decrease in hardness (¢, and ¢y)
at t = 2.5 h generally corresponds to an increase in PSFE and THP, and a decrease in LOAD. The softer
rock breaks more readily and therefore reduces the amount of grinding media available. Grinding media
refers to rocks and balls responsible for impact breakage. The controller compensates for this by increasing
MF B to increase the available grinding media. There is also a gradual decrease in CF'F' to keep PSFE at
set-point rather than allowing it to increase. Since the controller is not tuned to control LOAD very tightly,
a reasonable degree of variation is allowed to more tightly reject disturbances on PSE and THP. In the

Table 7: Mean and maximum calculation time for NMPC and Particle Filter.

" Max

. FSF | 0.231 0.522

NMPC min]  “p | 0302 0.545
Particle Filter [s] Est | 0.482 0.902
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Figure 12: Manipulated variables for Simulation 2: mill inlet water (MIW), mill feed ore (M FO), mill feed balls (M FB),
fraction of critical mill speed (ctspeeq), cyclone feed flow (CFF'), and sump feed water (SFW).
(Legend: FSF - full state feedback; Est - feedback through estimation.)

case of control with full state feedback, M FO in Fig. 12 increases slightly at ¢ = 1.5 h to compensate for
the slight decrease in the fraction of rock (o) entering the circuit.

At t = 4.5 h the ore becomes much harder (¢, and ¢y increase) and more energy is required to break
the ore. Since the harder ore means more rocks remain in the mill as grinding media, M F'B reduces. To
keep PSE at set-point, CFF gradually increases. Since it is required to keep TH P constant, M FO does
not change dramatically. Rather, agpeeq increases at t = 4.5 h, with a resulting increase in power, as more
power is necessary to increase the power necessary to break the harder ore. The variation of LOAD from
set-point is not of great concern as the controller was tuned such that LOAD can vary within reason to
allow PSE and THP to remain at set-point.

Although the disturbance term D in (28) does provide the ability to reject model-plant mismatch to
a certain extent, it does not fully reject the measurement noise propagated through the state estimates.
This is most evident in the variation seen in T H P. Although a disturbance observer would be preferable to
estimate the model-plant mismatch, the disturbances in this case are not observable from the available mill
measurements.

6.3. Discussion

The NMPC has 6 degrees of freedom to control LOAD, PSE and T HP. The coupling between variables
complicate the task of assigning optimal regions of operation for all manipulated variables. For example, as
shown by Craig et al. (1992a), it is not necessarily the absolute value of CFF that controls PSE, but rather
the relationship between C'F'D, as determined by Xg,,, and CFF that controls PSE. Furthermore, Craig
et al. (1992a) used MIW to extend the range of PSFE control in the case where CFF operated close to its
constraint. However, in Viklund et al. (2006) MIW is used to maintain the correct mill charge density to
ensure consistent TH P in the circuit. Viklund et al. (2006) also makes use of @speeq to ensure the correct
PSE at a constant THP. This is confirmed in Powell et al. (2009) where it is shown how agpeeq has a
significant impact on THP and PSFE for a specific LOAD. Therefore, because of the coupling between
variables, it is not necessarily the absolute values of variables that matter, but rather the relationship
between the variables. It is the task of the controller to manage the trade-off between manipulated variables
to best achieve the goals articulated in its objective function.
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7. Conclusion

This paper aims to achieve independent control of PSE and T'H P using non-linear model-based control.
Since the computational expense of NMPC hinders its industrial application, the controller should allow
sufficient time to solve the optimisation problem. To achieve these goals, a combination of an NMPC con-
troller and a DI controller is proposed as control architecture. The DI controller, with its low computational
cost, is responsible for the fast dynamics of the sump, whereas the NMPC, with its high computational cost,
is responsible for the slow dynamics of the circuit.

As shown in Fig. 7, the control architecture is able to achieve independent set-point tracking of PSE
and TP as long as the operating conditions of the plant do not exceed the constraints of the manipulated
variables. The DI controller operates at 10 s sampling intervals, whereas the NMPC controller operates at
1 min sampling intervals. Table 7 shows the NMPC controller has sufficient time to solve the optimisation
problem, which indicates computational cost should not impede application of the controller.

An estimation architecture is required for state feedback to the controller. To ensure industrial relevance,
the state estimator proposed in this paper only makes use of variables which can be practically measured.
The sump states are calculated algebraically, whereas the mill states are estimated by means of a particle
filter. Fig. 9 indicates the estimation scheme provides adequate estimates of the mill and sump states.
However, further research is required to improve estimation of the mill rock and ball volume.

Because the controller is model-based, compensation for model-plant mismatch is required. The feedback
term D in (28) allows a sufficient degree of model-plant mismatch rejection as shown in Fig. 11. The ability
to reject model-plant mismatch depends on the operating space defined by the bounds of the manipulated
variables.

In summary, the novel contribution of this work is the integration of a non-linear controller and state
estimator for a milling circuit that can independently regulate the product quality and throughput, and that
can reject process disturbances. The combination of the NMPC and DI controllers provides an option to
reduce the computational expense impeding industrial application of model-predictive control. Simulation
results show that the proposed approach has potential to successfully control an industrial run-of-mine ore
milling circuit as only variables that can practically be measured are used.
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