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Abstract 
The African naked mole-rats’ (Heterocephalus glaber) social and subterranean lifestyle 

generates a hypoxic niche. Under experimental conditions naked mole-rats tolerate hours of 

extreme hypoxia and survive 18 minutes of total oxygen deprivation (anoxia) without apparent 

injury. During anoxia the naked mole-rat switches to anaerobic metabolism fueled by fructose 

which is actively accumulated and metabolized to lactate in the brain. Global expression of the 

GLUT5 fructose transporter and high levels of ketohexokinase (KHK) were identified as 

molecular signatures of fructose metabolism. Fructose-driven glycolytic respiration in naked 

mole-rat tissues avoids feedback inhibition of glycolysis via phosphofructokinase, supporting 

viability. The metabolic rewiring of glycolysis can circumvent the normally lethal effects of 

oxygen-deprivation a mechanism that could be harnessed to minimize hypoxic damage in human 

disease.  

One Sentence Summary: Fructose can drive sufficient anaerobic glycolysis in hypoxic naked 

mole-rat tissues to preserve tissue physiology during oxygen deprivation 
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In all kingdoms of life, extremity drives adaptive change to enable species to exploit challenging 

environments. One challenge faced by subterranean mammals that inhabit confined spaces is an 

atmosphere low in oxygen (O2) and high in carbon dioxide (CO2). Here we studied adaptation to 

low O2/high CO2 using naked mole-rats (Heterocephalus glaber) (Fig.1A), as this eusocial 

rodent combines a subterranean lifestyle with large colony sizes of up to 280 members (1–3). 

Carbon dioxide levels in naked mole-rat burrows can be orders of magnitude higher than in 

surface air (7-10%) (4). Correspondingly, naked mole-rats only start to display behavioral 

avoidance, hyperventilation or tissue acidosis when CO2 levels reach 10% (fig. S1A-E). Even a 5 

hour exposure to 80% CO2 (20% O2) was not lethal for naked mole-rats (fig S1F). Oxygen levels 

are low in the burrows of subterranean mammals (as low as 6%) (5, 6) and the mass huddling 

behavior of naked mole-rats may exacerbate their exposure to hypoxic stress.  

To investigate the molecular mechanisms that allow naked mole-rats to overcome hypoxic stress 

we challenged them to controlled hypoxia using atmospheric chambers (Fig 1B,C), approved by 

local ethics committees. Remarkably, naked mole-rats tolerate a chronic hypoxic environment of 

5% O2 for 5 hours with no apparent ill effects, whereas mice (Mus musculus) died in less than 15 

min (Fig. 1B). We next exposed animals to 0% O2 in a chamber flushed with N2 (10 l/min). 

Respiration in mice ceased on average 45 ± 5 s after entering the chamber, and when re-exposed 

to normoxia 20 s later (n=4), none recovered (Fig. 1C). Like mice, naked mole-rats rapidly lost 

consciousness after exposure to 0% O2 (~30s), but unlike mice, continued to make sporadic 

breathing attempts for several minutes (mean 250 ± 2.2 s; n=4) (Fig. 1D). After respiration 

ceased naked mole-rats were left in 0% O2 for an additional minute. Surprisingly, all naked 

mole-rats (n=4) started breathing within seconds upon exposure to room air (Fig. 1C), and all re-

joined their colony with no sign of neurological or behavioral deficits. In further cohorts, naked 
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Figure 1 Extreme hypoxia and anoxia resistance in naked mole-rats (A) Mouse and naked mole-rat. (B,C) Time 
breathing in 5% O2 (cut-off time 300 mins), or in anoxia (0% O2, cut-off last breath): naked mole-rat always survived, 
mice did not (N=4-6 per group p<0.01; Fisher’s exact test); time breathing in 0% O2 was significantly different 
between species p<0.001; Student’s t-test. (D) Respiration and (E) heart rate during 18 min of 0% O2, (N=4 per 
species). (F) Survival plotted against duration of complete anoxia for mice and naked mole-rats (N=3-12 per species 
and time point). (G) Left ventricular developed pressure (LVDP) measured in isolated hearts following a 30 minute 
period of no flow induced hypoxia and compared to baseline values (A-C Student’s T-Test ; I. **p<0.01; 2-way ANOVA 
with Bonferroni post-hoc test n=3 per group mean ± s.e.m).
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mole-rats recovered from fixed 10 min (fig. S2A,B) and 18 min (Fig. 1D,E) exposures, but never 

from a 30 min exposure (Fig. 1F). Respiratory attempts stopped after ~7 min, but resumed after 

10 min (Fig. 1D). Remarkably, heart rate dropped within 2 min from a baseline of around 200 

beats per minute (bpm)(7) to a steady 50 bpm throughout anoxia (Fig. 1E). In mice, the heart rate 

rapidly and continuously declined until at ~ 6 mins the electrocardiogram (ECG) was 

undetectable (Fig. 1E). In anoxic conditions circulating hemoglobin, which shows a high avidity 

for O2 (22), could provide a minimal O2 supply to naked mole-rat organs. Naked mole-rat body 

temperature was maintained constant at 30oC during anoxia (fig S3B), the preferred body 

temperature of naked mole-rats which lack thermogenesis (8, 9). But, warming up naked mole-

rats to 37oC decreased maximum survival times to  6 mins (fig. S3C).   

Experiments with isolated hearts (Langendorff preparation) exposed to hypoxia (by stopping 

perfusion with oxygenated buffer for 30 mins) showed that left ventricular developed pressure 

(LVDP) recovered almost completely to pre-ischemic values in naked-mole-rat, but not in mouse 

hearts (Fig 1G, Table S1). The mouse LVDP never recovered to more than 65% of baseline even 

when examined at 30 oC. Thus, the ability of the naked mole-rat heart to continue beating under 

anoxia is supported by an intrinsic cardiac hypoxia resistance. Interestingly, both hypercapnia 

and hypoxia lead to pulmonary edema in mice, but not in naked mole-rats (fig. S4A,B) 

We postulated that naked mole-rat vital organs survive oxygen deprivation with metabolic 

suppression similar to hibernation, torpor or suspended animation-like states (10–12). Using gas 

chromatography-mass spectrometry (GC–MS) based metabolomics (13, 14) we measured 

quantitative changes in metabolite concentration during anoxia (calibrations in fig. S5) and 

compared normoxic baseline to 40 s and 10 mins (mouse) or 10 and 30 mins (naked mole-rat, 

only) of anoxia (Fig 2A). In contrast to mice, only minor changes in the succinate/fumarate ratio 
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Figure 2 Fructose and sucrose in anoxia exposed naked mole-rats (A) Experimental design (B,C) Metabolic 
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(15) were observed in naked mole-rat tissues during anoxia, a sign of mitochondrial shut-down 

(fig S6). GC-MS metabolomics can resolve hexoses which allowed us to observe a specific and 

striking increase in fructose and sucrose, in the liver, kidney and blood of naked mole-rats 10 

min into anoxia (Fig 2B,C,D; fig S7A,B). No statistically significant changes in the levels of 

these sugars were seen in mouse tissues during anoxia (Fig. 2D, fig S7). The unexpected 

appearance of high concentrations of fructose (up to 240µMin blood) and sucrose, a fructose-

glucose disaccharide, (up to 1.47 mM in blood at 30 mins, fig. S7), in anoxic tissues suggested 

that these sugars might fuel metabolism under hypoxic conditions. Fructose enters glycolytic 

metabolism after phosphorylation by ketohexokinase (KHK) and is converted to fructose-1-

phosphate (F1P). Fructolysis is prominent in kidney which expresses high levels of both the 

more fructose selective KHK-C isoform and the less efficient KHK-A isoform (18–21). 

Consistently, we detected high levels of F1P in the kidney, which were unaltered after anoxia in 

both species (Fig. 2D). However, F1P was undetectable in normoxic brains but appeared in 

significant amounts only in anoxic naked mole-rat brain indicating a switch to fructose 

metabolism (Fig. 2D). Surprisingly, naked mole-rats were hypoglycemic compared to mouse 

(mean blood glucose 63 ± 2 mg/dl versus 120 ± 6 mg/dl in mice; fig S8A (16)), but during 

anoxia glucose levels did not show consistent changes divergent from the mouse (fig S8). 

Furthermore, we did not observe major differences in glycogen stores between the two species 

(fig. S8). 

Fructose can enter cells via GLUT2 and GLUT5 which belong to the SLC2A transporter family 

(17, 18). The GLUT5 (SLC2A5) protein is a highly selective fructose transporter (19) 

predominantly expressed in the mouse intestine and kidney, but hardly present in brain and heart 

(18). Using quantitative real-time PCR, we found that naked mole-rat GLUT5 mRNA (Slc2a5, 
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fig. S9A) was expressed at high levels (>10 fold higher than mouse) in all tissues examined 

including brain, heart, liver and lung (Fig. 2E). GLUT5 protein levels analyzed with Western 

blotting were higher in naked mole-rat heart and brain tissue compared to mouse, and levels 

broadly reflected mRNA levels (Fig. 2F, fig. S9C). Thus naked mole-rat brain and cardiac tissue 

likely take-up fructose for glycolytic metabolism. Consistently, both KHK isoforms were 

dramatically upregulated in naked mole-rat heart, brain and liver tissue compared to the mouse 

(Fig. 2G, fig S9B). 

Brain tissue from naked mole-rats shows a remarkable, intrinsic tolerance to anoxia (20). We 

thus tested whether naked mole-rat brains can function by utilizing fructose-fueled glycolytic 

metabolism. We measured field excitatory post-synaptic potentials (fEPSPs) in hippocampal 

slices from mouse and naked mole-rat hippocampi (n=3 per species) before and 60 mins after 

replacement of 10mM glucose in the buffer with 10mM fructose (normoxic conditions). With 

fructose as the sole available sugar, fEPSP amplitude declined steadily, but at different rates in 

mouse and naked mole-rat slices (Fig. 3A). In mouse, fEPSPs were almost undetectable 60 mins 

after the glucose to fructose switch, but fEPSP amplitudes in naked mole-rat slices had stabilized 

to ~33% of control values. After slices were re-perfused with glucose containing buffer, mean 

fEPSP amplitudes returned to control levels in naked mole-rat slices, but only partially recovered 

in mouse slices (2-way ANOVA p<0.05) (Fig. 3A). We also asked if fructose could be used to 

fuel the isolated beating heart. Naked mole-rat or mouse hearts were perfused with Krebs-

Henseleit buffer containing glucose that was then switched to fructose for two periods of 60 min. 

Interestingly, the LVDP of the naked mole-rat hearts remained stable during both fructose 

switches, whereas in the mouse heart LVDP was reduced during both fructose exposures, the 

8



A

B

0

50

100

mouse
naked 
mole-rat

8 minfE
PS

P 
%

 c
on

tro
l

Fructose 10 mM

50

100

LV
D

P 
%

 b
as

el
in

e

Fructose 10 mM Fructose 10 mM

Baseline 20 min

mouse
naked mole-rat

* * * ** ********
*

Glucose Fructose Glucose Fructose
mouse naked mole-rat

Figure 3 Role of fructose in maintaining brain and heart function in naked mole-rats 
(A) Field excitatory post-synaptic potentials (fEPSP) were recorded in hippocampal brain slices.
fEPSP amplitude declined to zero when fructose replaced glucose in mouse slices, but were
maintained in naked mole-rat slices. Example traces shown on the left (scale bar 1 mV and 10
msec). A two-way repeated measures ANOVA with Bonferroni post-hoc test (**p<0.01)
revealed significant effects for species [F(1,4) = 19.8, p=0.0114] and time [F(99,396) = 43.43, p
<0.0001]. The interaction between group and time was also significant [F(99,396) = 6.16, p <
0.0001], n=3. (B) Left ventricular developed pressure (LVDP) was measured for isolated hearts
following glucose replacement with fructose. Note that naked mole-rat LVDP was maintained but 
mouse LVDP declined, especially after a second exposure to fructose, statistical significance
was calculated with a two-way ANOVA.

***

**

9



latter was significantly different from the naked mole-rat (Fig. 3B). Thus, fructose can replace 

glucose as an energy source in the naked mole-rat brain and heart. 

Glucose is metabolized via phosphofructokinase (PFK), a rate-limiting step subject to feedback 

inhibition via allosteric binding of ATP, low pH and downstream intermediates (21–23) (Fig. 

4A). Fructose phosphorylation via KHK could bypass the PFK regulatory block, allowing 

continued glycolytic flux independent of cellular energy status. We used metabolic flux analysis 

to measure the incorporation of fructose derived carbons into glycolytic intermediates in hypoxic 

brain slices. Acutely isolated brain slices were incubated in media in which glucose was rapidly 

replaced with the stable isotope 13C6-D-fructose (10mM) and kept at 32oC under conditions 

where oxygen levels were 5% (24). Metabolites were measured at 0, 5, 15, and 30 mins after the 

switch to 13C6-D-fructose. Similar metabolite pools were detected in both species suggesting that 

metabolism was at the same steady state in both species (fig. S10). We could measure significant 

incorporation of fructose-derived carbons in glycolytic intermediates in both species (Fig. 4A-

H), but the incorporation of fructose-derived carbons was both faster and larger in naked mole-

rat compared to mouse (between 2 and 5 fold), and this was true for intermediates like 

dihydroxyacetone phosphate (DHAP) and glycerol-3-phosphate (Glyc-3-P) (Fig. 4B,H), but also 

for glycolytic end-products like pyruvate and lactate (Fig. 4D,G). There was also increased 

fructose-derived carbon incorporation into citrate in the naked mole-rat (Fig. 4E).  

The naked mole-rat has evolved the ability to use fructose to fuel vital organs like heart and brain 

under near anaerobic conditions. This metabolic rewiring involves equipping metabolically 

active organs with transporters and enzymes that metabolize fructose to lactate using a pathway 

that bypasses metabolic block at PFK (Fig. 4A). Fructose and sucrose (the latter is degraded to 

hexose monomers) are both increased to very significant levels in naked mole-rat during anoxia. 
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Figure 4 Metabolic flux of fructose metabolites in the hypoxic brain. (A) Glycolysis 

pathway, glucose enters brain via GLUT1 and is converted via Phosphofructokinase PFK. 

Fructose, enters cells via GLUT5 and is phosphorylated by KHK to fructose-1-phosphate (F1P) 

at a much higher efficiency than by hexokinase (HK). F1P is directly metabolized into trioses via 

ALDOB or ALDOC bypassing feedback inhibition. Incorporation of 13C-fructose derived 

carbons was measured during acute hypoxia (~5% oxygen) at 0, 5, 15 and 30 minutes. Labelled 

quantities of the different metabolic intermediates (in blue) are shown; (B), Dihydroxyacetone 

phosphate (DHAP) (C) Phosphoglyceric acid (3PGA) (D), Pyruvate (E), Citrate (F), Succinate 

(G), Lactate (H), Glycerol-3-phosphate (Glyc-3-P). Glyceraldehyde-3-phosphate is abbreviated 

as GA3P. (n = 3; error bars are s.e.m.; *P < 0.05; **P < 0.01, ***P < 0.001 using a 2-WAY 

ANOVA with a Bonferonni post-hoc test). 
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The source of these sugars is unknown. Fructolysis in mammals is normally largely restricted to 

the liver and kidney (25). A switch to fructose metabolism under hypoxic stress has been 

associated with cancer malignancy, metabolic syndrome, and heart failure (26–29). It is thus 

important to understand how naked mole-rats utilize fructose metabolism with no apparent 

physiological drawbacks. Molecular insights into the rewired metabolism of the naked mole-rat 

may help in devising novel strategies to prevent hypoxic damage associated with ischemic heart 

disease and stroke.  
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Materials and Methods 
In vivo experiments 

All animal protocols were approved by the University of Illinois at Chicago Institutional 

Animal Care and Use Committee, the German federal authorities (State of Berlin), or the 

animal use and care committee of the University of Pretoria, Republic of South Africa.  

Animals were placed into a clear plastic chamber pre-filled with the desired gas mixture. 

Thereafter the chamber was infused continuously at 10 liters per minute. Using an Ocean 

Optics Foxy-PI200 probe, and an Ocean Optics sensor connected to a computer, we 

measured the fill time, which was, on average, 59.7 ± 2.3 seconds (standard error). 

Based on the data, we pre-filled the chamber for 120 seconds prior to introducing the 

animal. Each animal was video recorded for the collection of accurate timing data. 

ECGs were recorded non-invasively using the ECGenie recording enclosure (Mouse 

Specifics, Inc., Boston, MA, USA)(1). In brief, the ECGenie system comprises a platform 

with embedded paw-sized AgCl ECG electrodes connected to an amplifier (e-MOUSE). 

Signals were collected and analysed using PowerLab and LabChart (ADInstruments, 

version 7). A peak detection algorithm on LabChart enabled R-wave identification using 

Fourier analysis and linear time-invariant digital filtering of frequencies below 3 Hz and 

above 100 Hz to minimize environmental signal disturbances. Only data from continuous 

recordings were used in the analyses. The signals were digitized at a sampling rate of 

2 kHz. Baseline heart data were acquired on conscious animals after which animals were 

placed in an N2 filled chamber with a continuous stream of N2 gas. Shortly after N2 

exposure the animal became unconscious and ECG was recorded by placing each of the 
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front paws of the unconscious animal on a single electrode. Breaths were recorded 

visually and counted by an observer with a manual counter. 

Naked mole-rats were kept on a heated mat to maintain their body temperature at 30 or 

37. Body temperature was measured with a digital rectal probe (Fine Science Tools TR-

100).  

Pulmonary edema measurements were made as follows. Animals were exposed to a 

desired gas mixture for 15 minutes. Following exposure, the animal was immediately 

decapitated and the lungs removed and weighed. The lungs were then dried overnight and 

weighed again to generate a wet-to-dry weight ratio which was used as an assay of lung 

edema.  

Isolated heart 

Perfusion and ischemia induction in isolated heart preparations: 12 week old mice and 3 

to 11 year old naked mole rats were sacrificed by cervical dislocation or decapitation, 

respectively. Hearts were quickly removed and immersed in ice-cold modified Krebs-

Henseleit (KH) solution, containing: 111.8 mM NaCl; 24.7 mM NaHCO3; 4.7 mM KCl; 

2.1 mM MgSO4; 1.2 mM KH2PO4; 2.0 mM CaCl2; 0.06 mM EDTA; 11.1 mM glucose. 

The aorta was immediately cannulated for retrograde perfusion with KH solution at a 

constant pressure of 80 mmHg. The buffer solution was saturated with 95% O2 / 5 % 

CO2. To measure left ventricular developed pressure (LVDP), a balloon was placed into 

the left ventricle through the left articular appendage and inflated to maintain a constant 

end diastolic pressure of 5-10 mmHg. Measurements were performed at 30 °C or 37 °C 

as indicated. After an adjustment time of 30 min cardiac activity was stable (baseline) 
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and a global ischemia was induced by stopping the coronary flow for 30 min. The flow 

was set back to normal during the re-perfusion phase for 30 min. Recovery of cardiac 

function was calculated as left ventricular developed pressure (LVDP) post ischemia 

compared to baseline values. For fructose treatment, a second KH solution was 

substituted with 11.1 mM fructose instead of glucose and treated as described above with 

a 30 minute adjustment phase before switching to fructose buffer for 60 min. The flow 

was set back to glucose for 30 min and the last two steps were repeated. Heart rate, 

systolic pressure, and diastolic pressure were recorded throughout the entire 

measurement. 

Metabolites 

At each time point, animal tissues were removed and snap-frozen in liquid nitrogen. All 

tissues were powdered while frozen using a BioPulverizer (BioSpec Products, Cat. No. 

59012N). Powdered samples were resolved in ice-cold MCW 

(methanol:chloroform:water, 5:2:1), vortexed, and shaken for 45 minutes at 4°C. MilliQ 

water was then added (1/2 of initial MCW volume) to induce phase separation, vortexed, 

and shaken for 15 minutes at 4°C. Samples were centrifuged in a table top centrifuge at 

20,000 g for 10 minutes. The resulting polar and apolar phases were collected and 

subsequently dried in a rotational vacuum concentrator (Martin Christ, Speed Vac RVC 

2-33 CD, Cooling Trap alpha 2-4 LD plus) and then frozen at -20 °C until derivatization. 

Brain Slice labelling/harvest 

Mice and naked mole-rats were decapitated and the brains were rapidly removed into ice-

cold artificial cerebrospinal fluid (ACSF) containing (in mM): NaCl, 124; KCl, 3; 

KH2PO4, 1.2; NaHCO3, 26; MgSO4, 2.5; CaCl2, 3.4; Na-ascorbate, 2; and D-glucose, 
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10, gassed with 95% O2 and 5% CO2. The tissue was then sliced at 400 mm with a 

vibrotome. Slices were briefly washed in ACSF buffer containing no glucose. For 

labeling experiments 10mM glucose in the ACSF buffer was replaced with 10mM 13C6-

Fructose (Sigma-Aldrich). Slices were incubated for 0, 5, 15 and 30 mins at 32 degrees 

after which the brains were washed 2 times in label-free buffer (140 mM NaCl, 5 mM 

HEPES, pH7.4) and snap frozen. Frozen brain slices were powdered and 50mg of tissue 

was used for extraction.  The experiments were performed on three animals per species. 

Metabolomics sample preparation  

Metabolite extraction, derivatization, GC-MS analysis and measurement was performed 

as described with slight modifications (2). One milliliter ice-cold Methanol-chloroform-

water MCW (5:2:1) containing 2µg/ml cinnamic acid was added to 50mg of tissue and 

shaken for 30 min at 4°C to separate lipid and polar intermediates, after which 500uL of 

water was added to each sample, shaken for further 10 min and centrifuged at maximum 

speed for 10 min for phase separation. Polar phase was collected and dried under a 

vacuum.  

Derivatization was carried out by dissolving dry tissue extracts in 20 μl of methoxyamine 

hydrochloride solution (Sigma, 40 mg/ml in pyridine (Roth)) and incubated for 90 min at 

30°C with constant shaking followed by the addition of 80 μl of N-methyl-N-

[trimethylsilyl]trifluoroacetamide (MSTFA; Machery-Nagel, Dueren, Germany) and 

incubation at 37°C for 45 min. The extracts were centrifuged for 10 min at 10,000 × g, 

and aliquots of 30 μl were transferred into glass vials (Th. Geyer, Berlin, Germany) for 

gas chromatography-mass spectrometry (GC-MS) measurement. 

Retention index standards and quantification standards 
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Nine alkanes (n-decane, n-dodecane, n-pentadecane, n-octadecane, n-nonadecane, n-

docosane, n-octacosane, n-dotriacontane, and n-hexatriacontane) were dissolved in 

hexane, combined at a final concentration of 2 mg/ml and stored at 4°C. Retention index 

standard was added to the solvent (MSTFA) at a final concentration of 2% (v/v) during 

derivatization. 

The quantification mixture was composed of 63 compounds (stock concentration 1 

mg/ml, 20% MeOH). A dilution series from 1:1, 1:2, 1:5, 1:10, 1:20, 1:50, 1:100, and 

1:200 was prepared(2), portioned, dried under vacuum, and stored at -20°C. One set of 

quantification standards was prepared for GC-MS measurements and measured in 

technical replicates within the experiment (standards were available for 63/80 metabolites 

measured, including all key metabolites described in the results). 

GC-MS measurement 

Metabolite analysis was performed on a gas chromatography coupled to time of flight 

mass spectrometer (Pegasus III- TOF-MS-System, LECO Corp., St. Joseph, MI, USA), 

complemented with an auto-sampler (MultiPurpose Sampler 2 XL, Gerstel, Mülheim an 

der Ruhr, Germany). The samples and quantification standards were injected in splitless 

and split mode (split 1:5, injection volume 1 μl) in a temperature-controlled injector 

(CAS4, Gerstel) with a baffled glass liner (Gerstel). The following temperature program 

was applied during sample injection: initial temperature of 80°C for 30 s followed by a 

ramp with 12°C/min to 120°C and a second ramp with 7°C/min to 300°C and final hold 

for 2 min. Gas chromatographic separation was performed on an Agilent 6890 N 

(Agilent, Santa Clara, CA, USA), equipped with a VF-5 ms column of 30-m length, 250-

μm inner diameter, and 0.25-μm film thickness (Varian, Palo Alto, CA, USA). Helium 
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was used as carrier gas with a flow rate of 1.2 ml/min. Gas chromatography was 

performed with the following temperature gradient: 2-min heating at 70°C, first 

temperature gradient with 5°C/min up to 120°C and hold for 30 s; subsequently, a second 

temperature increase of 7°C/min up to 200°C and a third elevation of 12°C/min up to 

320°C with a hold time of 2 min. The spectra were recorded in a mass range of 60 to 600 

U with 20 spectra/s at a detector voltage of 1750 V. 

Data analysis 

Data analysis was performed using ChromaTOF Version 4.42 (LECO) and Maui-VIA 

software as described previously (2, 3). Calibration curves were determined for each 

intermediate by linear regression analysis of known quantities and the detected total peak 

areas of the top 5 most intense ions m/z from the quantification standards. Ions dependent 

on carbon-13 introduced intensity shift were complemented with their corresponding 

matches for the absolute quantification. Metabolite pool sizes have been calculated by 

assuming metabolic state and summarizing all quantities of the time-course pSIRM 

(pulsed stable isotope metabolomics) experiment. Only peak areas within the linear range 

of the calibration curve have been taken into account for the absolute quantification. The 

in-house-developed pSIRM-wizard enabled the quantification of 13C-label incorporation 

based on the exported data following the descriptions and equations previously described 

(2). The stable isotope incorporation was determined for a set of pre-defined metabolite-

specific fragments. Mass isotopomer distributions (MID) for each fragment were 

calculated and exported by MAUI-Via. The measurement of non-labeled standards 

facilitated the correction for natural carbon abundance. Standard MIDs were 

automatically extracted from measurements matching the concentration range of the 
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sample. The 13C6-fructose incorporation in CCM intermediates has been calculated 

carbon-position resolved by the application of the targeted approach (2). Labeled 

quantities were determined for each time point by multiplying the 13C-incorporation of 

each measurement with the absolute metabolite pool. Statistical analysis was performed 

using a two-way ANOVA followed by Bonferroni post-hoc tests. 

Sequence alignment 

The amino acid sequences of guinea pig (H0VRF2), mouse (Q9WV38), rat (P43427) and 

human (P22732) GLUT5 were downloaded from UniProt (4), while naked mole-rat 

(NMR, XP_004863723.1) sequences were retrieved from the RefSeq database(5). 

Multiple alignment of the GLUT5 protein sequences was performed using the MUSCLE 

software package with default parameters (6). 

Ketohexokinase splice variant assay  

The Khk splicing assay was adapted from previously published protocols (7). RNA 

isolated from naked mole-rat and mouse liver tissue was reverse-transcribed then 

amplified using a forward primer (mouse; 5′-GAAGCAGATCCTGTGCGTG-3′ and nmr; 

5′-GAAGCGGATTCTGTGCGTG-3′) that bound to shared Khk A/C exon 1 and a reverse 

primer (mouse; 5′-ATTGTGCTCCTCTATCCGC-3′ and nmr; 5′-

GCGTATAGAACAGCACAAT-3′) that bound to shared Khk A/C exon 5 sequences. The 

468-bp PCR products representing both Khk-A and Khk-C transcripts were then digested 

with HincII and run on a 1.5% agarose gel. The 468 bp represents the uncut Khk-A-

specific amplicon and the two lower bands at 294 bp and 174 bp represent HincII-cleaved 

Khk-C-specific amplicon. 
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qPCR 

Total RNA was isolated from tissues using TRIzol reagent (Life Technologies), 

according to the manufacturer's instructions. After DNase digest, 0.65 μg of total RNA 

was reverse transcribed with Supersript III reverse polymerase (Invitrogen) and analyzed 

using Universal Probe Library. Gene Expression Assays on the ABI 7900 system 

(Applied Biosystems). The following primers were used to quantify mouse Glut5 F: 5'-

AGAGCAACGATGGAGGAAAA-3' R: 5'-CCAGAGCAAGGACCAATGTC-3' and 

nmr Glut5 F: 5'-GTGCCCCAGCTCTTCATC-3' R:5'-GTTCCGAAAACCGAACAGC-

3', designed using the ProbeFinder Software with sequences retrieved for mouse 

(ENSMUST00000030826 ) and naked mole-rat (XM_004863666.1). To analyse KHK 

isoforms  the following primer pairs were designed for mouse Khk-A F: 5'-

TGGACTTACGATATGTGGTCCTT-3' R: 5'-GCCTCGTTGATGATGACTGTAG-3' 

and Khk-C F: 5'-GCGTGGATGTGTCTCAGGTG-3' R: TGTTGACGATGCAGCAAGA 

(reference sequence XM_006503749.1 and NM_008439.4, respectively.) and nmr Khk-A 

F: 5'-TCCGTGGACCTACGCTACTT-3' R: 5'-CTCGCTGATGATGACTGTGG-3' and 

nmr Khk-C F: 5'-CGTGGATGTGTCTCAGGTGT-3' and R: 5'-

AGATGTTGACGATGCAGCAG-3' (reference sequence XM_004839170.1 and 

XM_004839169.1, respectively). To calculate absolute numbers of  transcripts, plasmids 

were made containing the cDNA amplicon from each primer pair for mouse and nmr. The 

standard curve method with known doses of plasmid was used to quantitate mRNA 

transcripts by extrapolating a value by comparing unknowns to the standard curve of 

known transcript amounts. 

Immunoblotting 
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Tissues were lysed with RIPA buffer (50 mM Tris-HCL, pH 7.5, 150 mM NaCl, 1% 

Nonidet NP40, 0.5% sodium deoxycholate, 1% SDS) containing CHAPS (Sigma) and 

protein inhibitor cocktail (Roche) and protein concentration was determined using the 

Bradford reagent (BioRad). Thirty micrograms of proteins were separated by SDS-

PAGE, followed by Western blot analysis using rabbit Glut5 (SLC2A5) antibody (PA5-

42100, Thermofischer), mouse GAPDH antibody (6C5, Calbiochem) and mouse anti b 

actin (A1978, Sigma). Appropriate horseradish peroxidase-conjugated secondary 

antibodies were used for chemiluminescence (ECL, Millipore or Supra, Thermo scientific 

SuperSignal). 

Hippocampal Slice 

Experiments were performed with 2–4-month-old male C57Bl/6 mice and 1–4-year-old 

naked mole-rats. Maximum life span in naked mole-rats approaches 30 years; the animals 

used were considered to be adult, but not senescent. Animal protocols were approved by 

the University of Illinois at Chicago Institutional Animal Care and Use Committee. 

Transverse hippocampal slices were prepared in the conventional manner. Briefly, mice 

and naked mole-rats were decapitated and the brains were rapidly removed into ice-cold 

artificial cerebrospinal fluid (ACSF) containing (in mM): NaCl, 124; KCl, 3; KH2PO4, 

1.2; NaHCO3, 26; MgSO4, 2.5; CaCl2, 3.4; Na-ascorbate, 2; and D-glucose, 10, gassed 

with 95% O2 and 5% CO2. The tissue was then sliced at 400 µm on a tissue chopper. 

Slices were placed in an interface chamber and constantly perfused (1.0 ml/min) with 

ACSF at 34-35C degrees for 1 hour. One mouse and one naked mole-rat were used on 

each day and slices from each were maintained in parallel in the same chamber for 

experiments. Stimulation electrodes were placed in the stratum radiatum of subfield 
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CA1c to activate Schaffer-commissural fibers. Population recordings of synaptic field 

potentials (excitatory postsynaptic potentials or EPSPs) were made with micropipettes 

positioned in the stratum radiatum of CA1b. Evoked responses were digitized and 

analyzed online using custom software. Field EPSPs (fEPSPs) were evoked alternately in 

the mouse and naked mole-rats slices at 10 s intervals throughout experiments. Baseline 

stimulus intensity was set to evoke a half-maximal fEPSP in each slice. Baseline 

recordings were taken for at least 10 min before manipulations. Initial slope and peak 

amplitude were calculated for each fEPSP and normalized to the baseline average in each 

slice. For anoxic depolarization experiments, O2 to the recording chamber atmosphere 

and perfusion ACSF was replaced with N2.  For the fructose experiments, a stable 

baseline was established then the perfusion solution was switched from the standard 

ACSF to an identical ACSF that replaced 10mM D-glucose with 10mM D-fructose-1,6-

bisphospate trisodium salt hydrate (Sigma Aldrich). After one hour the perfusion medium 

was switched back to standard ACSF and slices were recorded for 30 minutes to analyze 

recovery. 

Blood glucose and tissue glycogen measurement 

A drop of blood was obtained from a mouse via a tail nick and a prick to the foot in the 

naked mole-rat. Blood glucose was measured using an Accu-Check blood glucose meter 

(Roche Diagnostics). Tissue glycogen was determined with a glycogen assay kit 

(Cayman Chemical) according to the manufacturer’s instructions. 
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Supplementary Figures 
 

 

 

Figure S1 Reduced physiological response to hypercapnia in naked mole-rats (A) 
Mice show robust avoidance of CO2 presented at concentrations shown. (B) Naked mole-
rats do not avoid CO2 gas until concentrations reach 10%. (C) CO2 presented at 5 and 
10% induces robust hyperventilation in mice. (D) Only CO2 concentrations of 10% and 
above induce hyperventilation in naked mole-rats. (E) A pH electrode was placed in the 
abdomen to measure systemic extracellular pH. Inhaled CO2 concentrations of 1% and 
above induce prominent tissue acidosis in mice but in naked mole-rats only CO2 
concentrations above 7.5% induced acidosis. (F) Time breathing in 80% CO2/20% O2 for 
naked mole-rats and mice (cut-off time 300 mins). Mice did not survive any procedure 
whereas naked mole-rats always survived. Data shown as mean  S.E.M. *p<0.05, 
**p<0.01, ***p<0.001 Student’s t–test, n=4-6. 
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Figure S2 Anoxia resistance in naked mole-rats after a 10 minute exposure 
(A) Respiration rate and (B) heart rate during 10 min of 0% O2 showed a pattern of 
drastic reduction followed by recovery in the naked mole-rat. Note heart rate recovered 
fater after exposure to room air than in the 18 min group (Fig 1D,E). 

Figure S3 Temperature dependence of anoxia resistance in naked mole-rats  
(A) Body temperature of mice during 10 mins of 5% O2 exposure. (B) Body temperature 
of naked mole-rats kept at 30 during 10 mins of anoxia exposure. (C) Survival curves of 
mice and naked mole-rats maintained at 30 or 37 in 0% O2. Naked mole-rats kept at 37 
all survived 6 mins of anoxia exposure (n=3) but not 10 mins anoxia exposure compared 
to naked mole-rats at 30 which survived up to 18 minutes anoxia (n=3). 
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Figure S4 Pulmonary edema in mice and naked mole-rats during hypoxia and 
hypercapnia. The percentage change in the wet to dry weight ratio (W/D) of lung tissue 
was measured to assess lung edema after exposure to increasing hypoxia or hypercapnia. 
(A) Exposure to less than 10% O2 produced severe pulmonary edema in mice but 
produced essentially no edema in naked mole-rats (n=3). (B) Concentrations of CO2 
greater than 10% also caused severe pulmonary edema in mice which was maximal 
above 20% CO2. No signs of edema were observed in naked-mole-rat lung at CO2 up to 
50% (n=3).  
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Figure S5 Calibration curves for absolute quantification of metabolites 
Quantification standards (black circles) used for calibration curves to measure samples 
(red circles) in absolute concentrations for fructose, sucrose and glucose in (A) blood (B) 
liver and brain and (C) kidney and muscle. Note that glucose in blood and liver samples 
fell outside of the quantifiable linear part of the calibration curve and therefore could not 
be accurately quantified in absolute amounts. 
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Figure S6 Suppression of mitochondrial metabolism in anoxia exposed naked mole-
rats. (A) Schematic of glycolysis and TCA cycle where in the absence of O2 succinate 
cannot be converted to fumarate. (B) Large increases in the succinate to fumarate ratio 
were observed in mouse liver, kidney blood and brain and these fold changes were 
significantly larger than those observed in naked mole-rat tissue after 10 min exposure to 
0% O2. Data shown as mean  S.E.M. **p<0.01 Student’s T–test, n=3.   
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Figure S7 Increases in fructose and sucrose in tissues of naked mole-rats during 
exposure to anoxia. Absolute concentrations of fructose and sucrose in the liver, kidney, 
blood, brain and muscle of mice and naked mole-rats in normoxia compared to (A) 40 s 
anoxia for mouse and 10 mins anoxia for naked mole-rats (live:live comparison) and (B) 
10 mins anoxia for mouse and 30 mins anoxia for naked mole-rat (dead:dead 
comparison). Data shown as mean  S.E.M. *p < 0.05; **p < 0.01, ***p < 0.001 using a 
2-WAY ANOVA with a Bonferoni post-hoc test, n=3. 
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Figure S8 Glucose concentration in mouse and naked mole-rat during anoxia 
exposure. (A) Blood glucose concentrations in mouse versus naked mole-rat. Data 
shown as mean  S.E.M. ***p<0.001 Student’s t–test, n=10. (B) Glycogen 
concentrations in liver, heart and brain in mice and naked mole-rats. Data shown as mean 
 S.E.M. **p<0.01 Student’s t–test, n=3-6. Changes in glucose in the kidney, brain and 
muscle, liver and blood in mice and naked mole-rats in normoxia compared to (C) 10 
mins anoxia for mice and naked mole-rats (D) 40 s anoxia for mouse and 10 mins anoxia 
for naked mole-rats (live:live comparison) and (E) 10 mins anoxia for mouse and 30 mins 
anoxia for naked mole-rat (dead:dead comparison). Absolute concentrations are shown 
for kidney, brain and muscle whereas intensities are shown for liver and blood where 
samples fell outside the linear part of the calibration curve and therefore could not be 
accurately estimated. Data shown as mean  S.E.M. *p < 0.05; **p < 0.01, ***p < 0.001 
using a 2-WAY ANOVA with a Bonferoni post-hoc test, n=3. 
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Figure S9 Multiple sequence alignment of the GLUT5 protein. (A) Alignments are 
shown from the guinea pig (CAVPO), mouse (MOUSE), rat (RAT), damaraland mole rat 
(FUKDA), naked mole-rat (HETGA), and human proteins (HUMAN).  Bars in blue 
indicate transmembrane domains, green bar indicates the suggested fructose binding site. 
Residues marked with black asterisks appear to be variants that are unique to naked mole-
rats. Red asterisks indicate amino acid variants that are naked mole-rat specific but are in 
regions where the residue is conserved amongst the other species. Black box outlines the 
conserved epitope of the GLUT5 antibody (B) KHK-A and KHK-C isoform expression 
in the liver (PCR followed by HincII digestion). Upper band is the uncut KHK-A 
isoform, lower bands are the cut KHK-C isoform. (C) GLUT5 protein in Hek293 cells, 
naked mole-rat and mouse liver and kidney. Naked mole-rat GLUT5 protein runs slightly 
lower than 55kD whereas mouse GLUT5 appears as a double band. Protein content was 
controlled for by blotting for b-actin (n=3).  
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Figure S10 Absolute metabolite pools in mouse and naked mole-rat brain slices 
determined by GC-MS analysis. DHAP; Dihydroxyacetone phosphate, 
Glyceraldehyde-3-phosphate, 3-PGA; 3-Phosphoglyceric acid. (n = 12; error bars are 
S.E.M.) 
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Table S1 

Comparison of heart parameters  in naked mole‐rat  vs. mouse  (Mm C57Bl/6) at 30° 

and 37°C 

HR  LVPsys  LVPdia  LVPdp 

NMR (30°C)  196.0±13.0 *  84.7±6.2  3.8±2.2  80.9±8.3 

Mm C57Bl/6 (30°C)  246.7±15.9  108.1±12.2  8.0±0.5  100.0±11.6 

Mm C57Bl/6 (37°C)  400.3±53.4  93.2±4.0  7.0±2.0  86.2±2.0 

Data are expressed as mean ± SEM. NMR: naked mole rat and C57/Bl6 mouse strain (measured at 30°C 

and  37°C);  HR:  heart  rate  in  bpm,  LVPsys:  left  ventricular  systolic  pressure  in  mmHg;  LVPdia,  left 

ventricular diastolic pressure  in mmHg; LVPdp:  left ventricular developed pressure  in mmHg. Statistical 

test: one‐way ANOVA with Tukey´s post‐hoc test; *= p<0.05. 
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Additional Data Table S1 
Excel Datasheet containing mean intensity values for metabolites measured. 
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