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Abstract

This work is concerned with the nonconforming finite approximations for the Stokes and

Navier-Stokes equations driven by slip boundary condition of “friction” type. It is well doc-

umented that if the velocity is approximated by the Crouzeix-Raviart element of order one,

while the discrete pressure is constant element wise the inequality of Korn doe not hold. Hence

we propose a new formulation taking into account the curvature and the contribution of tan-

gential velocity at the boundary. Using the maximal regularity of the weak solution, we derive

a priori error estimates for the velocity and pressure by taking advantage of the enrichment

mapping and the application of Babuska-Brezzi’s theory for mixed problems.
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1 Introduction: Model Stokes and Navier-Stokes problems

We consider steady flows of incompressible viscous fluid modeled by the Stokes system

−2ν divD(u) +∇p = f in Ω, (1.1)

divu = 0 in Ω , (1.2)

where Ω, the flow region is a bounded domain in R2. The motion of the incompressible fluid

is described by the velocity u(x) and pressure p(x). In (1.1) f is the external body force per

unit volume depending on x, and ν is the positive parameter representing the kinematic viscosity.

Equations (1.1) and (1.2) are supplemented by nonlinear slip boundary of friction type, which is the

main modeling assumption in this work. It should be pointed out that such boundary conditions

have already been considered in [1, 2, 3, 4, 5, 6, 7]. Hence we will just state the mathematical

equations governing this phenomenon as the physical merit of such models have been discussed

elsewhere (see particularly [6]). So, we assume that the boundary of Ω, say, ∂Ω is made of two

components S and Γ, and it is required that ∂Ω = S ∪ Γ, with S ∩ Γ = ∅. Next, we consider the

homogeneous Dirichlet condition on Γ, that is

u = 0 on Γ . (1.3)

1This work is dedicated to the memory of my late father Kamdem Sindjoun Joseph.
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We have chosen to work with a homogeneous condition on the velocity in order to avoid the

technical arguments linked to the Hopf lemma (see [8], Chapter 4, Lemma 2.3). On S, we recall

that the velocity is decomposed following its normal and tangential part as follows

u = un + uτ = (u · n)n+ (u · τ )τ , (1.4)

where n is the normal outward unit vector to S and τ is the tangent vector orthogonal to n. On

S, we first assume the impermeability condition

u · n = 0 on S . (1.5)

In addition to (1.5), we also impose on S, a nonlinear slip boundary condition of friction type. But

we first recall that the Cauchy stress tensor is T = −pI + 2νD(u), with the symmetric part of

the velocity gradient D(u) = 1
2 [∇u + (∇u)T ]. Thus on S, the traction force Tn is decomposed

as follows

Tn = (Tn · n)n+ (Tn · τ )τ

= (−p+ 2νn ·D(u)n)n+ 2ν(τ ·D(u)n)τ

= (Tn)n + (Tn)τ . (1.6)

Let g : S −→ (0,∞) be a non-negative function called threshold slip or barrier function, the

nonlinear slip boundary conditions of friction type is formulated as follows (see [1, 2, 3, 4, 5, 6, 7])

|(Tn)τ | < g ⇒ uτ = 0,

|(Tn)τ | ≥ g ⇒ uτ ̸= 0 , − (Tn)τ = g
uτ
|uτ |

 on S , (1.7)

where |v|2 = v · v is the Euclidean norm. Equation (1.7) expresses the fact that (Tn)τ and uτ

are parallel but opposite. On the other hand (1.7) is equivalent to (see [9])

−(Tn)τ ∈ g∂|uτ | on S, (1.8)

where ∂| · | is the sub-differential of the real-valued function | · |.
We recall that if X is a Hilbert space with x0 ∈ X , and y ∈ X ′, then

y ∈ ∂Ψ(x0) means that Ψ(x)−Ψ(x0) ≥ y · (x− x0) ∀x ∈ X . (1.9)

We will refer to boundary-value problem (1.1)–(1.7) as problem (P).

The Stokes system can be considered as a simplification of the Navier-Stokes system of equations,

where (1.2) is replaced by

−2ν divD(u) + (u · ∇)u+∇p = f in Ω, (1.10)

and (1.2), (1.3), (1.5) and (1.7) are unchanged. Here,

(u · ∇)u =

2∑
i=1

ui
∂u

∂xi

is the convection term. We will refer to boundary-value problem (1.2), (1.3), (1.5), (1.7) and (1.10),

as problem (F).

The main concern in this research is to analyze numerically problem (P) and problem (F)

using the nonconforming finite element method where the velocity is approximated by lowest order
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Crouzeix-Raviart element and the pressure with piecewise constant functions [10]. The a priori

error analysis of problem (P) has been proposed with discontinuous Galerkin method in [11],

while numerous studies using conforming approximation of the velocity have been contributed by

researchers, see among others [12, 13, 14, 15, 16, 17, 18].

The finite element method is now well adapted for approximating the solution of partial differen-

tial equations written in weak form (including variational inequalities, see [19, 20, 21, 22, 23, 24]),

and the search for efficient and simple non conforming finite element methods for Stokes, Navier-

Stokes equations driven by nonlinear slip boundary conditions has not yet been well explored by

researchers (except the early work of the author in [11]). At this point we should mention that some

of the major difficulties associated with problem (P) and problem (F) include; the incompress-

ibility condition and the related unknown pressure, the nonlinear slip boundary condition, and the

convection term for Navier-Stokes equations. It should be observed that for both problems, the

nonlinear slip boundary condition (1.7) is responsible for the inequality relation appearing in the

variational formulation, while the velocity u is related to the pressure via the incompressibility

condition, divu = 0. Thus the pressure is viewed as a Lagrange multiplier. Hence, both problems

can be formulated as a mixed variational problem, which can be shown to be equivalent to many

other variational problems [6, 7].

Recently, so much works have been done in the finite element community using discontinuous

Galerkin methods and nonconforming approaches, and comparison have been established with the

classical conforming approach [25]. It turns out that it is simpler to implement nonconforming ap-

proaches (probably because the basis functions have smaller support compared to the conforming

approximations), and the proof of inf-sup condition for mixed formulation is simpler when noncon-

forming methods are used. Hence, this work can be viewed as the continuation of a work started

in [11], in the sense that we show that Crouzeix-Raviart’s element can be used to approximate

successfully the velocity of the Stokes problems driven by nonlinear slip boundary conditions.

The mixed finite element approximation for variational inequalities presented in [23, 24] are moti-

vated by problems in plasticity, while the analysis in [12] uses the penalty approach in the Stokes

equations to circumvent the incompressibility constraint. Using a different type of slip boundary

condition R. Verfurth [26] has analyzed the problem by relaxing the constraint (1.5) at the expense

of an additional unknown. In [22] a solution technique and the convergence of an algorithm for solv-

ing the Stokes equations with leak and slip boundary conditions is presented, but the mathematical

analysis of the finite element method presented is not discussed. Our framework for analyzing the

finite element discretizations of problem (P) and problem (F) is based on a suitable extension

of the mixed finite theory of Babus̆ka-Brezzi [27], reminiscent of those used in, e.g., [23, 24] for the

analysis of problems in plasticity. We formulate and analyze the non conforming finite element ap-

proximations associated to problem (P) and problem (F) without penalization by considering

the mixed variational approach in which the velocity and pressure satisfy the Babus̆ka-Brezzi (BB)

condition [27]. The non conforming finite elements approximations are constructed on a regular

decomposition of the domain [28].

The rest of our work is organised follows. In Section 2, we reformulate problem (P) and problem

(F) in terms of variational inequalities and indicate how their solvability are obtained. We also

introduce some notations pertaining to the nonconforming approximations and formulate the dis-

crete problems based on Crouziex-Raviart’s approximations. In Section 3, we discuss the a priori

error related to problem (P), while in Section 4, we discuss the a priori error associated with

problem (F). Some conclusions and future research are drawn in Section 5 .
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2 Nonlinear slip boundary conditions/ Nonconforming fi-

nite element approximations

This section introduces notation on variational inequality. We also formulate two finite element

approximations

2.1 Notation/preliminaries

We adopt the standard definitions [29] for the Sobolev spaces Hs(D) and their associated inner

products (·, ·)s,D, norms ∥ · ∥s,D, and semi-norms | · |s,D for s ≥ 0. The space H0(D) coincides

with L2(D), for which the norm and inner product are denoted as ∥ · ∥D and (·, ·)D, respectively.

If D = Ω, we drop D.

Throughout this work, boldface characters denote vector quantities, and H1(Ω) = H1(Ω)2 and

L2(Ω) = L2(Ω)2. The following functional spaces will be helpful in the analysis of various weak

formulations that we will introduce later.

V = {v ∈H1(Ω) : v|Γ = 0 , v · n|S = 0},
M = L2

0 = {p ∈ L2(Ω) : (p, 1) = 0},
V div = {v ∈H1(Ω) : div v|Ω = 0 , v|Γ = 0 , v · n|S = 0}.

(2.1)

It can be shown at least formally that problem (1.1)–(1.7) is equivalent to:Find u ∈ V div, such that for all v ∈ V div,

2ν(D(u),D(v − u)) + (g, |vτ | − |uτ |)S ≥ (f ,v − u).
(2.2)

It is well documented in the literature (see [30, 31]) that if the velocity is approximated with

P1 non-conforming element, the quadratic form (D(v),D(v)) is not positive definite. Hence,

an alternative formulation is needed. One approach to overcome the difficulty highlighted is to

proceed as in discontinuous Galerkin discretization, which amounts to add stabilization like terms

(see [11, 32]). In [11], symmetric and non-symmetric interior penalty Galerkin approaches are

considered and convergence is demonstrated. Whereas in [32] the over stabilized formulation is

analyzed. In this work we want to take advantage of the decomposition of (Tn)τ = 2ν(τ ·D(u)n)τ

on S and propose a new formulation based on the gradient of the velocity field. For that purpose,

we need to introduce some notations to describe the boundary conditions on S. Let ψ : S → R2

be a regular curve parameterized by its arc length s. The functions x(s), y(s) are assumed to be

in C2(S). Here and henceforth, a superscript prime denotes the derivative with respect to s. The

function (x′(s), y′(s)) = ψ′(s) is called the tangent vector of the curve ψ at s, and denoted by τ .

It is assumed that the length of τ is one. Since the curve is assumed to be regular, the tangent

vector is defined at each point along the curve. The length of ψ
′′
(s) is called principal curvature

of ψ at s and denoted by κ(s). A unit vector n in the direction of ψ
′′
(s) is taken by requiring it

to form with the tangent vector t an orthonormal basis at each point on the curve, and to satisfy

the equation

τ ′ = ψ
′′
(s) = κ(s)n. (2.3)

Conventionally, we choose the direction n towards the convex side of the curve ψ at s. Moreover,

by differentiating the equation τ · τ = 1, one obtains τ ′ · τ = 0, so that ψ
′′
(s) is normal to ψ′(s),

that is n · τ = 0. The vector n is called the normal vector at s. In this work, we need a relation
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between (Tn)τ and uτ . For that purpose we follow P. Grisvard [33] (Chapter 3). We consider a

smooth vector field v so that v and ∇v are defined on S. With the vectors n and τ introduced

above, one has the following decomposition on S

v = vn + vτ = (v · n)n+ (v · τ )τ .

In what follows ∂/∂n, denotes differentiation in the direction of n. The gradient of v on S is then

given by

∇v =
∂v

∂s
τT +

∂v

∂n
nT

=
∂

∂s
((v · n)n+ (v · τ )τ ) τT +

∂

∂n
((v · n)n+ (v · τ)τ)nT

=

(
∂(v · n)
∂s

n+ (v · n)∂n
∂s

+
∂(v · τ )
∂s

τ + (v · τ)∂τ
∂s

)
τT

+

(
∂(v · n)
∂n

n+ (v · n)∂n
∂n

+
∂(v · τ)
∂n

τ + (v · τ)∂τ
∂n

)
nT . (2.4)

Hence from nτT = 0, nnT = ττT = 1, and ∂τ
∂n · τ = 0 one obtains

(∇v)n =
∂(v · n)
∂n

n+ (v · n)∂n
∂n

+
∂(v · τ )
∂n

τ + (v · τ )∂τ
∂n

,

τ · (∇v)n = (v · n)
(
∂n

∂n

)
· τ +

∂(v · τ )
∂n

. (2.5)

Next, from (2.4) one has

(∇v)T = τ

(
∂(v · n)
∂s

nT + (v · n)
(
∂n

∂s

)T

+
∂(v · τ )
∂s

τT + (v · τ )
(
∂τ

∂s

)T
)

+n

(
∂(v · n)
∂n

nT + (v · n)
(
∂n

∂n

)T

+
∂(v · τ )
∂n

τ
T + (v · τ )

(
∂τ

∂n

)T
)
.

Note that {n, τ} is an ortho-normal basis, ∂n
∂n · n = 0, and ∂n

∂s · n = 0. Hence

(∇v)Tn = τ

(
∂(v · n)
∂s

+ (v · τ )
(
∂τ

∂s

)T

n

)
+ n

(
∂(v · n)
∂n

+ (v · τ )
(
∂τ

∂n

)T

n

)

τ · (∇v)Tn =
∂(v · n)
∂s

+ (v · τ )
(
∂τ

∂s

)T

n. (2.6)

From (2.5) and (2.6), one deduces that

2(D(v)n)τ = (τ · (∇v)n) τ +
(
τ · (∇v)Tn

)
τ

=

(
(v · n)

(
∂n

∂n

)
· τ +

∂(v · τ)
∂n

)
τ +

(
∂(v · n)
∂s

+ (v · τ )
(
∂τ

∂s

)T

n

)
τ . (2.7)

Now, replacing v by u in (2.7), and using (1.5), one obtains

2ν(D(u)n)τ = ν
∂(u · τ)
∂n

τ + νκuτ , (2.8)

with uτ = (u · τ )τ and κ being the principal curvature introduced in (2.3).

Apart from the smoothness on S, we make two additional assumptions regarding the shape of Ω;
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(a) There are constants κ0, κ1 such that

0 < κ1 ≤ κ(x) ≤ κ0 for all x ∈ S. (2.9)

(b) Γ has a positive measure, that is |Γ| > 0.

Next, the vector-valued Laplace operator of a vector field u = (u1, u2) is given as follows

△u+∇(divu) = 2 divD(u). (2.10)

2.2 Stokes system

In this subsection, we use the decompositions (2.8), and (2.10) to define a weak solution u to the

problem (1.1),...,(1.7).

First from (2.10) and (1.2), (1.1) becomes

−ν△u+∇p = f in Ω. (2.11)

Let v ∈ V div, and u ∈ V div solution of (1.1)–(1.7). We multiply (2.11) by v − u, integrate over

Ω, use Green’s formula, (2.5), (2.8) to obtain

ν

∫
Ω

∇u · ∇(v − u) =

∫
Ω

f · (v − u) + ν

∫
S

(∇un)τ · (vτ − uτ )

=

∫
Ω

f · (v − u) + ν

∫
S

τ (τ · ∇un) · (vτ − uτ )

=

∫
Ω

f · (v − u) + ν

∫
S

τ

(
∂u · τ
∂n

)
· (vτ − uτ )

=

∫
Ω

f · (v − u) + 2ν

∫
S

(D(u)n)τ · (vτ − uτ )− ν

∫
S

κuτ · (vτ − uτ )

which is re-written (see (1.6) ) as: for all v ∈ V div,

ν

∫
Ω

∇u · ∇(v − u) + ν

∫
S

κuτ · (vτ − uτ ) =

∫
Ω

f · (v − u)

+

∫
S

(Tn)τ · (vτ − uτ ). (2.12)

We recall that (1.8) is by definition equivalent to

g|uτ | − g|vτ | ≤ (Tn)τ · (vτ − uτ ) on S. (2.13)

At this juncture, we define the following functionals

a : H1(Ω)×H1(Ω) −→ R
(v,u) −→ a(v,u) = ν(∇v,∇u) + ν(κuτ ,vτ )S

b : H1(Ω)×M −→ R
(v, q) −→ b(v, q) = −(div v, q) ,

j : H1(Ω) −→ R
v −→ j(v) = (g, |vτ |)S ,

ℓ : H1(Ω) −→ R
v −→ ℓ(v) = (f ,v).

(2.14)
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Thus (2.12) and (2.13) leads toFind u ∈ V div such that for all v ∈ V div,

a(u,v − u) + j(v)− j(u) ≥ ℓ(v − u).
(2.15)

One can also observe that u is the solution of the optimization problem:
Find u ∈ V div that satisfies,

J(u) ≤ J(v) for all v ∈ V div,

with J(v) =
1

2
a(v,v) + j(v)− ℓ(v).

(2.16)

Another equivalent model is the one involving the velocity and pressure, and reads
Problem (P).

Find (u, p) ∈ V ×M, such that for all (v, q) ∈ V ×M,

a(u,v − u) + b(v − u, p) + j(v)− j(u) ≥ ℓ(v − u),

b(u, q) = 0 .

(2.17)

Since the pressure p is the Lagrange multiplier associated with the linear constraint (2.17)2, it

follows that the system (2.17) is a mixed problem. At this stage let us point out that from a

numerical point of view, the solution of (2.15), or (2.16) is hard to obtain because of the difficulty

to define an internal approximation of V div (see [27]). Hence the mixed formulation (2.17) is

introduced in order to relax the divergence free constraint in the space V div. In [16, 17], a three

fields formulation is proposed, taking the tangential part of the traction force (Tn)τ as unknown

and exploiting the convex duality relation (1.8). Existence and uniqueness of solution of problem

(2.17) has been investigated by H. Fujita in [2, 3, 4], (see also [23, 24]). It basically entails

showing that:

(a) the bilinear and linear forms a(·, ·), b(·, ·) and ℓ are continuous on V ;

(b) j is convex and lower semi-continuous on V ;

(c) there exists a constant α > 0 such that

a(v,v) ≥ α∥v∥21 for all v ∈ V div , (2.18)

with V div = {w ∈ V : b(w, q) = 0 for all q ∈M} = {v ∈ V : div v = 0}.

(d) there exists a constant β > 0 such that

β∥q∥ ≤ sup
v∈V

b(v, q)

∥v∥1
for all v ∈ V . (2.19)

We then state that

Proposition 2.1 If f is an element of L2(Ω), and g ∈ L∞(S), then the variational problem (2.17)

has a unique solution (u, p) ∈ V ×M , and the following estimates hold

∥u∥1 ≤ c

ν
∥f∥ , ∥p∥ ≤ c∥f∥+ cκ0

ν
∥f∥ . (2.20)
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Moreover if S is of class C3 and Γ of class C2, with g ∈ H1(S) ∩ L∞(S), then Saito in [5] has

shown that (u, p) ∈H2(Ω)×H1(Ω), and enjoys the a priori estimate

∥u∥2 + ∥p∥1 ≤ c(Ω, ν)(∥f∥+ ∥g∥1,S) . (2.21)

The solution (u, p) of (2.17) is also determined by the following problem [19]: there exists a unique

α ∈ Λ such that 
a(u,v) + b(v, p) + (gα,vτ )S = ℓ(v) for all v ∈ V ,

b(u, q) = 0 for all q ∈ L2(Ω) ,

α · uτ = |uτ | a.e on S,

(2.22)

with

Λ = {α ∈ L2(S); |α| ≤ 1 a.e. on S}.

The pressure p is constructed as in [6], while the a priori inequality (2.20) is obtained by using

(2.18) and (2.19) (see [8] for similar results).

2.3 Navier-Stokes system

To present the weak formulation associated with (1.2), (1.3), (1.5), (1.7) and (1.10), we first see

from (2.10) and (1.2) that (1.10) is equivalent to

−ν△u+ (u · ∇)u+∇p = f in Ω. (2.23)

Next, we introduce the trilinear form d(·, ·, ·) given by

d : H1(Ω)×H1(Ω)×H1(Ω) −→ R , d(u,v,w) =

∫
Ω

(u · ∇)v ·w dx .

The trilinear form d is continuous in the sense that there exists a positive constant c depending

on Ω such that

for all (u,v,w) ∈ V 3 , d(u,v,w) ≤ c∥∇u∥∥∇v∥∥∇w∥ , (2.24)

moreover the following properties hold [34]:

d(u,v,w) = −d(u,w,v) for all (u,v,w) ∈ V div × V × V , (2.25)

d(u,v,v) = 0 for all (u,v) ∈ V div × V . (2.26)

The mixed variational inequality associated to (1.2), (1.3), (1.5), (1.7) and (2.23) can be stated as

follows: 

Problem(F)

Find (u, p) ∈ V ×M, that such that,

a(u,v − u) + d(u,u,v − u) + b(v − u, p) + j(v)− j(u) ≥ ℓ(v − u),

b(u, q) = 0 ,

for all (v, q) ∈ V ×M .

(2.27)

The solvability of problem (F) is obtained by combining; Galerkin’s approximation, monotone

operator theory, compactness arguments. In fact one claims that
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Theorem 2.1 Let (f , g) ∈ L2(Ω)× L∞(S), with ν taken such that

ν − c

ν
∥f∥ ≥ 0, (2.28)

where c is a generic positive constant depending only of Ω. Then problem (2.27) is uniquely solvable

and the following hold

∥∇u∥ ≤ c

ν
∥f∥,

∥p∥ ≤ c∥f∥+ νc∥f∥+ cνκ0∥f∥+
c

ν2
∥f∥2 .

Proof. The solution (u, p) solution of problem (F) is constructed in several steps.

step 1: Regularization

Since the functional j is non differentiable at zero, we approximate it by jε with

jε(v) =
(
g,
√
|vτ |2 + ε2

)
S
.

The functional Jε is convex, lower semi-continuous and Gateaux-derivative with

⟨j′ε(u),v⟩ =

∫
S

g
uτ · vτ√
|uτ |2 + ε2

,

(2.29)

j(2)ε (u)(v,w) =

∫
S

g
(vτ ·wτ )(|uτ |2 + ε2)− (uτ ·wτ )(uτ · vτ )

(|uτ |2 + ε2)3/2
.

Observe that j(2) is symmetric

for all v,w ∈H1(Ω) , j(2)ε (u)(v,w) = j(2)ε (u)(w,v) ,

and positive definite: for all v ∈H1(Ω)

j(2)ε (u)(v,v) =

∫
S

g
|vτ |2(|uτ |2 + ε2)− (uτ · vτ )(uτ · vτ )

(|uτ |2 + ε2)3/2

≥
∫
S

g
|vτ |2(|uτ |2 + ε2)− |uτ |2|vτ |2

(|uτ |2 + ε2)3/2

=

∫
S

g
ε2|vτ |2

(|uτ |2 + ε2)3/2
> 0 . (2.30)

The regularized problem reads:
Find uε ∈ V div, that such that,

a(uε,v − uε) + d(uε,uε,v − uε) + jε(v)− jε(uε) ≥ ℓ(v − uε),

for all v ∈ V div .

(2.31)

Using some classical arguments in [9] (see page 157–158), it turn out that the problem (2.31) is

equivalent to 
Find uε ∈ V div, that such that,

a(uε,v) + d(uε,uε,v) + ⟨j′ε(uε),v⟩ = ℓ(v),

for all v ∈ V div .

(2.32)
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step 2. Galerkin approximation.

We recall since V div is a separable Hilbert space, one can find {ϕi}∞i=1 an orthonormal basis of

V div, with

W n = {ϕ1,ϕ2, ...,ϕn}, W n = V div.

Then one considers the Galerkin problem;
Find un

ε ∈W n, that such that,

a(un
ε ,v) + d(un

ε ,u
n
ε ,v) + ⟨j′ε(un

ε ),v⟩ = ℓ(v),

for all v ∈W n .

(2.33)

To study (2.33) it is convenient to introduce the mapping u 7→ Φ(u) defined by

(Φ(u)|v) = a(u,v) + d(u,u,v) + ⟨j′ε(u),v⟩. (2.34)

Then Φ maps W n into W n with the H1(Ω)-norm, and is bounded on all bounded subsets of

H1(Ω); Indeed for u,v ∈W n,

(Φ(u)|v) ≤ ν∥∇u∥∥∇v∥+ νκ0∥uτ ∥S∥vτ ∥S + c∥u∥∥∇u∥∥∇v∥+ 1

ε

∫
S

guτ · vτ

≤ ν∥∇u∥∥∇v∥+ νcκ0∥∇u∥∥∇v∥+ c∥∇u∥2∥∇v∥+
c

ε
∥g∥L∞(S)∥∇u∥∥∇v∥,

from which we deduce that

∥Φ(u)∥1 ≤ ν∥u∥1 + νcκ0∥u∥1 + c∥u∥21 +
c

ε
∥g∥L∞(S)∥u∥1 . (2.35)

The discrete system (2.33) is a nonlinear problem in which one of the nonlinearity is of mono-

tone type. Hence for its solvability, one should prove that: Φ is monotone, coercive, and hemi-

continuous.

Observe that if un
ε is the solution of (2.33), then for v = un

ε one has

a(un
ε ,u

n
ε ) + d(un

ε ,u
n
ε ,u

n
ε ) + ⟨j′ε(un

ε ),u
n
ε ⟩ = ℓ(un

ε ),

which from the fact that j′ε is monotone, and d(un
ε ,u

n
ε ,u

n
ε ) = 0 leads to

ν∥∇un
ε ∥2 + νκ1∥un

ε,τ ∥2S ≤ ∥f∥∥un
ε ∥ ≤ c∥f∥

2

2ν
+
ν

2
∥∇un

ε ∥2.

Thus

∥∇un
ε ∥ ≤ c

ν
∥f∥ . (2.36)

• Φ is monotone. Indeed for u1,u2 ∈W n such that (2.36) holds. Then

(Φ(u1)− Φ(u2)|u1 − u2)

= a(u1 − u2,u1 − u2) + d(u1,u1,u1 − u2)− d(u2,u2,u1 − u2)

+⟨j′ε(u1),u1 − u2⟩ − ⟨j′ε(u2),u1 − u2⟩

= a(u1 − u2,u1 − u2) + d(u1 − u2,u2,u1 − u2) + ⟨j′ε(u1)− j′ε(u2),u1 − u2⟩

= a(u1 − u2,u1 − u2) + d(u1 − u2,u2,u1 − u2) +

∫ 1

0

j(2)ε (u2 + θ(u1 − u2)) · (u1 − u2,u1 − u2)dθ

≥ ν∥∇(u1 − u2)∥2 − c∥∇(u1 − u2)∥2∥∇u2∥+
∫ 1

0

j(2)ε (u2 + θ(u1 − u2)) · (u1 − u2,u1 − u2)dθ

≥
(
ν − c

ν
∥f∥

)
∥∇(u1 − u2)∥2 +

∫ 1

0

j(2)ε (u2 + θ(u1 − u2)) · (u1 − u2,u1 − u2)︸ ︷︷ ︸
≥0 , see (2.30)

dθ . (2.37)
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Thus Φ is monotone thanks to (2.28).

• Φ is coercive, that is

lim
∥u∥1→∞

[
1

∥u∥1
(Φ(u)|u)

]
= ∞ .

Observing that d(u,u,u) = 0 and ⟨j′ε(u),u⟩ ≥ 0, One has

(Φ(u)|u) = a(u,u) + d(u,u,u) + ⟨j′ε(u),u⟩

= a(u,u) + ⟨j′ε(u),u⟩

≥ ν∥∇u∥2 + νκ1∥uτ ∥2S > ν∥∇u∥2.

Hence Φ is coercive.

• Φ is hemi-continuous, that is for u,v in W n

t→ (Φ(u+ tv)|v) is continuous .

Let t1, t2 in R, then

(Φ(u+ t1v)− Φ(u+ t2v)|v)

= (t1 − t2)a(v,v) + (t1 − t2)d(v,u+ t1v,v) + ⟨j′ε(u+ t1v)− j′ε(u+ t2v),v⟩

= (t1 − t2)a(v,v) + (t1 − t2)d(v,u+ t1v,v) + (t1 − t2)

∫ 1

0

j(2)ε (u− t2v − θ(t2 − t1)v)(v,v)dθ

= (t1 − t2)

[
a(v,v) + d(v,u+ t1v,v) +

∫ 1

0

j(2)ε (u− t2v − θ(t2 − t1)v)(v,v)dθ

]
. (2.38)

Since v,u are fixed, it follows from (2.29) that the right hand side term in (2.38) tends to zero

with t1 − t2.

We conclude that (2.33) has only one solution.

step 4: a priori estimates and passage to the limit.

We recall that the inequality (2.36)

∥∇un
ε ∥ ≤ c

ν
∥f∥ .

We then deduce that un
ε is bounded in H1(Ω) by a constant c independent of n and ε. Now

owing to the imbedding of H1(Ω) into L4(Ω), there exists a subsequence, still denoted by (un
ε )n

for convenience, which converges to un
ε weakly in H1(Ω) and strongly in L4(Ω).

With equation (2.31) written in W n, passing to the limit on n is obvious for linear expression,

while for the nonlinear expression (un
ε · ∇)un

ε we will use the strong convergence in L4(Ω). We

also recall that since jε is convex, and l.s.c

un
ε → uε weakly in V div, implies that Jε(uε) ≤ lim

n→∞
inf Jε(u

n
ε ) .

Thus the regularized velocity uε satisfying (2.31) is constructed. As far as the regularized pressure

pε is concerned, we follow [8] and let

v ∈ V → H(uε)v = a(uε,v) + d(uε,uε,v) + ⟨j′ε(uε),v⟩ − ℓ(v) .

H(uε)(·) is a linear and continuous application that vanishes on Vdiv if uε the regularized pressure

given by a(uε,v) + d(uε,uε,v) + ⟨j′ε(uε),v⟩ = ℓ(v),

for all v ∈ V div .
(2.39)

11



Hence there is pε ∈M such that
a(uε,v) + d(uε,uε,v) + b(v, pε) + ⟨j′ε(uε),v⟩ = ℓ(v),

b(uε, q) = 0 ,

for all (v, q) ∈ V ×M ,

(2.40)

which is equivalent to
for all (v, q) ∈ V×M,

a(uε,v − uε) + b(v − uε, pε) + d(uε,uε,v − uε) + j(v)− j(uε) ≥ ℓ(v − uε),

b(uε, q) = 0 .

(2.41)

In order to pass to the limit in (2.40) we need first some a priori estimates on uε and pε.

From the estimate (2.36), we deduce that

∥∇uε∥ ≤ c

ν
∥f∥ . (2.42)

We next derive a priori estimate for the pressure. For that purpose, we replace v − uε in (2.41)

by ±w ∈ V with w|S = 0. One obtains

b(w, pε) = ℓ(w)− a(uε,w)− d(uε,uε,w) . (2.43)

The compatibility condition between V andM together with (2.43) and Cauchy-Shwarz’s inequal-

ity and (2.42) lead to

β∥pε∥ ≤ sup
w∈V ,w|S=0

b(w, pε)

∥w∥1

= sup
w∈V ,w|S=0

ℓ(w)− a(uε,w)− d(uε,uε,w)

∥w∥1

≤ ∥f∥+ ν∥∇uε∥+ νκ0∥∇uε∥+ c∥∇uε∥2

≤ ∥f∥+ νc∥f∥+ cνκ0∥f∥+
c

ν2
∥f∥2 . (2.44)

Since the bounds in (2.42) and (2.44) are independent of ε, we can repeat the analysis when passing

to the limit with n here, and we conclude the existence of (u, p) ∈ V×M such that
for all v, q ∈ V×M,

a(u,v − u) + b(v − u, p) + d(u,u,v − u) + j(v)− j(u) ≥ ℓ(v − u),

b(u, q) = 0 .

(2.45)

Moreover we have

∥∇u∥ ≤ c

ν
∥f∥,

∥p∥ ≤ c∥f∥+ νc∥f∥+ cνκ0∥f∥+
c

ν2
∥f∥2 .

step 6. Uniqueness

Let u1 and u2 solutions of (2.33). Using (2.26), (2.24), the coercivity of a(·, ·), and the inequality
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(2.42) one obtains

νc∥u1 − u2∥21 ≤ a(u1 − u2,u1 − u2)

= a(u1,u1 − u2)− a(u2,u1 − u2)

≤ d(u1,u1,u2 − u1)− d(u2,u2,u2 − u1)

= d(u1,u1,u2 − u1)− d(u2,u1,u2 − u1)

= d(u1 − u2,u1,u2 − u1)

≤ c0∥u1 − u2∥21∥u1∥1 ≤ c0
ν
∥f∥∥u1 − u2∥21.

Hence assuming (2.28), one sees that u1 = u2.

So the proof is complete �
The explicit dependence with respect to ν of the constant appearing in (2.42) is crucial of deter-

mining the condition for the uniqueness of solution.

Now, about the regularity of the weak solution of Problem (F) constructed in Theorem 2.1, we

follow Saito [5], and claim that

Proposition 2.2 If S is of class C3 and Γ of class C2, with g ∈ L∞(S) ∩ H1(S), and assuming

(2.28), then (u, p) ∈H2(Ω)×H1(Ω), and enjoys the a priori estimate

∥u∥2 + ∥p∥1 ≤ c(Ω, ν)(∥f∥+ ∥g∥1,S) . (2.46)

The solution (u, p) of (2.27) is also determined by the following problem [19]: there exists a unique

α ∈ Λ such that
a(u,v) + d(u,u,v) + b(v, p) + (gα,vτ )S = ℓ(v) for all v ∈ V ,

b(u, q) = 0 for all q ∈ L2(Ω) ,

α · uτ = |uτ | a.e on S,

(2.47)

with

Λ = {α ∈ L2(S); |α| ≤ 1 a.e. on S}.

2.4 Non conforming approximation: Some preliminaries

In this work, we will consider both finite element approximations associated with (2.17) and (2.27),

and our aim is to study their convergence.

To start with, the domain Ω is a polygon and Γ ∩ S ̸= ∅. It should be made clear that the

regularity result about the solution (u, p) obtained by Saito [5] has not yet been shown in this

situation. Hence in Proposition 3.2, Proposition 3.3 and Proposition 4.2 we assume that (u, p)

belong to H2(Ω)×H1(Ω).

Because on the assumption on Ω, its closure Ω is completely recovered by a finite number of closed

triangles with disjoint interiors, that is

Ω =

N∪
i=1

Ki .

We denote by T the triangulation described and enforce that two elements of T are either disjoints,

or share exactly one common vertex or edge. We denote by hK the diameter of K ∈ T , and ρK

the diameter of the circle inscribed in K, and finally let

h = max{hK , K ∈ T } .
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We also assume that the triangulation T is regular (also called non-degenerate) in the sense of

Ciarlet [28]; that is, there exists a constant σ, independent of h and K, such that

for all K ∈ T ,
hK
ρK

= σK ≤ σ .

For the sake of convenience, one introduces the broken Sobolev space (let m be a natural number)

Hm(Ω; T ) = {v ∈ L2(Ω); v|K ∈ Hm(K), for all K ∈ T }.

Eh is the set of all edges e of elements K of T , its subset of all elements that are not contained in ∂Ω

is denoted by E0
h, and its subset of all boundary elements is denoted by Eb

h = Eh\E0
h. Es

h is the set of

boundary elements that are on S. For each e ∈ Eh, be is the midpoint of e. Finally, let Nh be the

set of vertices of the element of T , and N 0
h the subset of those that are inside Ω and N b

h = Nh\N 0
h

denote the set of vertices of T on the boundary. In the analysis of the problem, we will require

jump, and average value of quantities. So let K+ and K− be two adjacent elements of T , and

e = ∂K+ ∩ ∂K−. For scalar, vector, and matrix-valued functions q ∈ H1(Ω, T ), v ∈ H1(Ω, T ),

and τ ∈ [H1(Ω, T )]2×2, we define the following averages operator at the edge e = ∂K+ ∩ ∂K− :

{q} =
1

2
(q+ + q−) , {v} =

1

2
(v+ + v−) , {τ} =

1

2
(τ+ + τ−) .

Similarly, the jumps at the edge e = ∂K+ ∩ ∂K− are given by

[q] = q+nK+ + q−nK− , [v] = v+ · nK+ + v− · nK− , [v] = v+ ⊗ nK+ + v− ⊗ nK− ,

and

[τ ] = τ+ + τ− ,

where for two vectors in Cartesian coordinates a = (ai), and b = (bj), we have a⊗ b = aibj . If e

is an edge of element K that lies on ∂Ω, then the averages and jumps are defined by

{q} = q , {v} = v , {τ} = τ ,

and

[q] = qn , [v] = v · n , [v] = v ⊗ n , [τ ] = τn ,

where n denotes the unit outward normal vector to ∂Ω. For each K ∈ T , and for each nonnegative

integer k, Pk(K) is the space of restrictions to K of polynomials with 2 variables with degree less

than or equal to k.

In all that follows, c is a generic constant independent of h. The discrete space of pressure Mh

consists of piecewise constant functions, namely

Mh = {qh ∈M : ∀K ∈ T , qh|K ∈ P0(K)}. (2.48)

Its local interpolation operator is the orthogonal projection operator Πh
K from M onto Mh associ-

ated with the scalar product of L2(Ω). That is

for all (K, q, qh) ∈ T ×M ×Mh,

∫
K

qh(Π
h
Kq − q) = 0 . (2.49)

Assuming that T is a regular family of triangulations, and for any real number s ∈ [0, 1], there

exists a constant c, independent of h such that [35]:

for all q ∈ Hs(Ω) ∩M, ∥q −Πh
Kq∥K ≤ chsK |q|s,K . (2.50)
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The global interpolation operator for the pressure is Πh :M −→Mh and defined as follows

(Πhq)|K = Πh
KqK for all (K, q) ∈ T ×M ,

with qK the restriction of q on K. For approximating the velocity, one considers the element known

in the mathematical circle as Crouzeix-Raviart elements [10]

Vh = {vh ∈ L2(Ω) : ∀K ∈ T , vh|K ∈ P1(K), ∀e ∈ E0
h, vh is continuous at be}.

Its degree of freedom are located at be for all e ∈ Eh, and its interpolation operator is the Crouzeix-

Raviart interpolant IhK :H1(K) 7−→ Vh given as follows

(IhKv)(be) =
1

he

∫
e

vds for all (v, e) ∈H1(K)× EK , (2.51)

where EK is the set of three edges of K, and he is the length of e. By the midpoint rule, one can

also define IhK with the equivalent condition∫
e

IhKvds =

∫
e

vds for all e ∈ EK .

The following interpolation error are valid for IhK (see [10])

for all (v,K) ∈H1(K)× T , ∥v − IhKv∥K + hK |v − IhKv|K ≤ chK |v|1,K ,

(2.52)

for all (v,K) ∈H2(K)× T , ∥v − IhKv∥K + hK |v − IhKv|K ≤ ch2K |v|2,K .

The global interpolation operator for the velocity Ih : V −→ V h is defined as follows

(Ihv)|K = IhKvK for all (K,v) ∈ T × V ,

with vK the restriction of v on K. Finally to approximate the space V , we set

V h = {vh ∈ Vh : ∀e ∈ Eb
h, vh|Γ∩e(be) = 0, vh · n|S∩e(be) = 0}. (2.53)

We also note due to the midpoint rule that

v ∈ V h implies

∫
e

[v]ds = 0 ∀e ∈ Eh . (2.54)

We equip V h with the broken semi-norm

|||v|||2 =
∑
K∈T

|v|21,K . (2.55)

The continuity requirement at the center of each element of E0
h, together with the boundary con-

ditions imply that this is a norm on V h. It should be noted that Poincaré-Friedrichs inequality is

valid in V h, and reads (see [30, 31, 36]): there exists a constant c independent of the triangulation

T such

for all vh ∈ V h,

∫
Ω

|vh|2dx ≤ c
∑
K∈T

∫
K

|∇vh|2dx . (2.56)

Because we are dealing with second order operator in space, the following integration by parts

formula (obtained by re-arranging terms) will be useful: for v ∈ H2(Ω; T ) and w ∈ H1(Ω; T ), it

holds that ∑
K

∫
K

(∇v : ∇w +△v ·w) dx =
∑
e∈Eh

∫
e

{∇v} : [w] ds

+
∑
e∈E0

h

∫
e

[∇v] · {w} ds. (2.57)
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3 Stokes system: A Priori Error Estimate

In Subsection 3.1, we formulate the finite element problem associated with (2.17), and quickly

indicate how its solvability is obtained. We also introduce an equivalent three field formulation

following Proposition 2.1. Subsection 3.2, and Subsection 3.3 are concerned about the derivation

of the a priori error estimate for the velocity and pressure respectively, and constitute the main

contributions of this section.

3.1 Some preliminaries

With the space V h, Mh in place, we then approximate (2.17) as follows:

Problem(Ph)

Find (uh, ph) ∈ Vh ×Mh such that

ah(uh,vh − uh) + bh(vh − uh, ph) + jh(vh)− jh(uh) ≥ ℓh(vh − uh) ,

bh(uh, qh) = 0 ,

for all (qh,vh) ∈Mh × V h,

(3.1)

with;

ah(v,w) = ν
∑
K∈T

∫
K

∇hv : ∇hwdx+ ν
∑
e∈Es

h

(κvτ ,wτ )e, ℓh(v) =
∑
K∈T

∫
K

f · vdx ,

(3.2)

bh(v, q) = −
∑
K

∫
K

q divh vdx , jh(v) =
∑
e∈Es

h

∫
e

g|vτ |ds ,

where ∇h is the element-wise gradient, while divh is the divergence evaluated element-wise. One

sees that the bilinear form ah(·, ·) coincides with a(·, ·) onH1(Ω)×H1(Ω), but differ on V h×V h.

The same conclusion can be drawn about bh(·, ·) and b(·, ·). It follows from abstract approximation

theory of mixed variational problems (see for instance [8, 23, 24, 27]) that reasonable error estimates

can be obtained for problem (3.1) if the bilinear form ah(·, ·) is V h elliptic, the bilinear form bh(·, ·)
is inf-sup stable, both uniform with respect to h, and jh(·) is lower semi-continuous on V h.

Crouzeix and Raviart [10] have shown that with the spaces V h andMh introduced, the bilinear form

bh(·, ·) is inf-sup stable in the sense that there exists a constant β1 independent of the triangulation

T such that

for all qh ∈Mh, β1∥qh∥ ≤ sup
vh∈V h

bh(vh, qh)

|||vh|||
. (3.3)

Remark 3.1 (a) It is worth mentioning at this point that B. Lamichhane in [37] has shown that

(3.3) holds if the pressure is discretized by piece-wise linear function, and V h is as defined.

(b) The discrete kernel of the bilinear form bh(·, ·) is defined as follows

Zh = {vh ∈ V h : for all qh ∈Mh, bh(vh, qh) = 0},

and characterized by

Zh = {v ∈ V h : for all e ∈ E0
h, [v]e = 0 }. (3.4)
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Thus, one observes that if (uh, ph) ∈ V h×Mh is the solution of Problem (Ph), then divuh =

0 on each element K ∈ T .

From the definition of both ah(·, ·), and the mesh dependent norm ||| · |||, it holds that

for all vh ∈ V h, ah(vh,vh) = ν|||vh|||2 + ν∥κ1/2vh,τ ∥2S ≥ ν|||vh|||2,

from which we deduce that ah(·, ·) is V h-elliptic, which together with the continuity of ah(·, ·),
(3.3), the convexity and lower semi continuity of jh in V h, the continuity of ℓh(·) in V h, one

claims the following

Proposition 3.1 If f is an element of L2(Ω), and g ∈ L∞(S), then the variational problem (3.1)

has a unique solution (uh, ph) ∈ V h ×Mh, which satisfies the estimate

|||uh||| ≤
c

ν
∥f∥ ∥ph∥ ≤ c∥f∥+ cκ0

ν
∥f∥ . (3.5)

The bounds (3.5) are obtained by direct application of the coercivity of ah(·, ·) and inf-sup condi-

tion on bh(·, ·).
Before we present the a priori error estimate for the velocity, we introduce the following interpola-

tion which will play a crucial role in this study. Let (u, p) the unique solution of (2.17), then there

exist a unique couple (Kh, Jh),

(Kh, Jh) : V ×M → V h ×Mh

such that 
for all (vh, qh) ∈ V h ×Mh,

ah(Khu− u,vh) + bh(vh, Jhp− p) = 0,

bh(Khu, qh) = 0 .

(3.6)

Furthermore the following properties are valid

1

h
∥u−Khu∥+ |||u−Khu||| ≤ ch∥u∥2 , ∥Jhp− p∥ ≤ ch∥p∥1 . (3.7)

It should be noted that the existence of (Kh, Jh) is due thanks to the properties of ah(·, ·) and

bh(·, ·), while the error estimate (3.7) are derived with the help of the triangle inequality, (2.52),

(2.50), and the properties of ah(·, ·) and bh(·, ·).

3.2 A Priori Error on the velocity

The convergence result for the velocity can be stated as follows.

Proposition 3.2 Let (f , g) ∈ L2(Ω) × L∞(S) ∩ H1(S). Let (u, p) and (uh, ph) be solutions of
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(2.17) and (3.1) respectively. If (u, p) belong to H2(Ω)×H1(Ω), then

|||u− uh||| ≤ c|||Khu− u|||+ c

∑
e∈Es

h

(1 + h2e)∥g∥21,e

1/4∑
e∈Es

h

∥(Khu)τ − uτ ∥2e

1/4

+ch

(
∥u∥22 + ∥p∥21 +

∑
e∈Eh

∥κ∥21,e

)1/2

+ch1/2

h
∑

e∈Es
h

∥g∥21,e

1/2

+

∑
e∈Es

h

(h2e + 1)∥g∥21,e

1/2
 .

where c is a positive constant independent of h.

Remark 3.2 The analysis here is based on the assumption that (u, p) ∈ H2(Ω) × H1(Ω). The

proof uses Babuska-Brezzi’s conditions for stability or convergence of mixed problems, but the new

twist in our analysis is the introduction of the enrichment map (initially defined by S.C. Brenner

in [38]) to put together the continuous and finite element problems. The error estimate obtained is

not optimal with respect to the polynomial approximating the velocity, and this lack of optimality is

not surprising for this kind of problem (see [19, 20, 28]). It should be pointed out that the lack of

consistency of the discrete problem (3.1), combined with the fact that V h is not a subset of V , and

the presence of non-differentiable functional jh(·) in the variational formulation make the analysis

of the error not a trivial task. Also of great importance in the analysis below is the utilization of

equivalent formulation (2.22).

Proof of Proposition 3.2. It is divided in many steps.

Step 1: Some preliminaries

We first introduce/recall the following trace and inverse inequalities (see [39]):

for all (v,K) ∈H1(K)× T , ∥v∥e ≤ c
(
h−1/2
e ∥v∥K + h1/2e |v|1,K

)
, (3.8)

for all vh ∈ V h ,
∑
e∈Eh

1

he
∥[vh]∥2e ≤ c|||vh|||2, (3.9)

for all (vh,K) ∈ V h × T , ∥vh∥e ≤ ch−1/2
e ∥vh∥K , (3.10)

for all (vh,K) ∈ V h × T , |vh|1,K ≤ ch−1
K ∥vh∥K . (3.11)

We will require the conforming finite element space V c
h given by

V c
h = V h ∩ V . (3.12)

We consider the smoothing map Eh : V h −→ V c
h introduced first by S.C Brenner [38], defined as

follows: For vh ∈ V h, we take Ehvh such that;
Ehvh(a) = 0 , for all vertices a ∈ N b

h ∩ Γ,

(Ehvh) · n|a = 0 for all vertices a ∈ N b
h ∩ S,

(Ehvh) · τ |a = vh · τ |a for all vertices a ∈ N b
h ∩ S,

(3.13)

Next

(Ehvh)(a) =
1

|Ta|
∑

K∈Ta

vh(a), for all vertices a ∈ N 0
h , (3.14)
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where Ta is the set of triangles in T that share the vertex a, and |Ta| is the number of elements

of Ta.

Remark 3.3 We observe from the definitions of both V h and Eh that Ehvh belongs to V c
h.

The following error estimates on Eh are important in our analysis ([38]).

for all vh ∈ V h ,
∑
K∈T

h−2
K ∥Ehvh − vh∥2L2(K) ≤ c

∑
e∈Eh

1

he
∥[vh]∥2L2(e), (3.15)

for all vh ∈ V h ,
∑
K∈T

|Ehvh − vh|21,K ≤ c
∑
e∈Eh

1

he
∥[vh]∥2L2(e), (3.16)

for all vh ∈ V h , |Ehvh|21 ≤ c
∑
e∈Eh

1

he
∥[vh]∥2L2(e). (3.17)

The following Sobolev inequality will be useful [40]

Lemma 3.1 Let I ⊂ R, a bounded open subset, for any v ∈ H1(I), then

∥v∥L∞(I) ≤
[
|I|+ |I|−1

]1/2 ∥v∥1,I .

Step 2: Use of incompressibility condition .

From the second equations of (3.1) and (2.17), we deduce that

for all qh ∈Mh , bh(u− uh, qh) = 0. (3.18)

Step 3: Use of coercivity condition on ah(·, ·) .
We note that V h is not a subset of V , but by construction (see (3.12)) V c

h is a subspace of V .

From the coercivity of ah(·, ·) and the first equation in (3.1), it holds that

ν|||uh −Khu|||2 ≤ ah(uh −Khu,uh −Khu)

= ah(uh,uh −Khu)− ah(Khu,uh −Khu)

≤ bh(Khu− uh, ph) + jh(Khu)− jh(uh)− ℓh(Khu− uh)− ah(Khu,uh −Khu)

= bh(Khu− uh, ph)− ℓ(Khu− uh − Eh(Khu− uh))− ah(Khu− u,uh −Khu)

−ah(u,uh −Khu) + jh(Khu)− jh(uh)− ℓ(Eh(Khu− uh)). (3.19)

Using (3.18), the second equations in (3.6) and (2.17), we deduce that

for all qh ∈Mh , bh(Khu− uh, qh) = bh(Khu− u, qh) + bh(u− uh, qh) = 0 . (3.20)

Hence (3.19) is reduced to

ν|||uh −Khu|||2 ≤ −ℓ(Khu− uh − Eh(Khu− uh))− ah(Khu− u,uh −Khu)

−ah(u,uh −Khu) + jh(Khu)− jh(uh)− ℓ(Eh(Khu− uh)). (3.21)

We take vh = uh −Khu in (3.6) together with (3.20) we find

−ah(Khu− u,uh −Khu) = bh(uh −Khu, Jhp− p) = bh(Khu− uh, p) . (3.22)
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Hence (3.21) becomes

ν|||uh −Khu|||2 ≤ −ℓ(Khu− uh − Eh(Khu− uh)) + bh(Khu− uh, p)

−ah(u,uh −Khu) + jh(Khu)− jh(uh)− ℓ(Eh(Khu− uh)). (3.23)

Now in the first equation of (2.22), setting v = Eh(Khu− uh) ∈ V c
h ⊂ V , we find that

ℓh(Eh(Khu−uh)) = a(u, Eh(Khu−uh))+b(Eh(Khu−uh), p)+

∫
S

gα ·(Eτ ,h(Khu−uh)), (3.24)

with the notation Eτ ,hvh = (Ehvh)τ . Inserting (3.24) in (3.23), it holds that

ν|||uh −Khu|||2

≤ −ℓ(Khu− uh − Eh(Khu− uh)) + bh(Khu− uh − Eh(Khu− uh), p) + ah(u,Khu− uh − Eh(Khu− uh))

+jh(Khu)− jh(uh)−
∫
S

gα · (Khu− uh)τ −
∫
S

gα · (Eh(Khu− uh)− (Khu− uh))τ (3.25)

We now want to estimate the expressions appearing on the right hand side of (3.25).

First, using the triangle inequality, the Cauchy-Shwarz inequality and the trace’s inequality, we

have

jh(Khu)− jh(uh)−
∫
S

gα · (Khu− uh)τ

=
∑
e∈Es

h

∫
e

g (|(Khu)τ | − |(uh)τ | −α · (Khu)τ +α · (uh)τ )

≤
∑
e∈Es

h

∫
e

g (|(Khu)τ | − |(uh)τ | −α · (Khu)τ + |(uh)τ |) (using |α| ≤ 1)

=
∑
e∈Es

h

∫
e

g (|(Khu)τ | −α · (Khu)τ )

=
∑
e∈Es

h

∫
e

g (|(Khu)τ | − |uτ |+α · uτ −α · (Khu)τ ) (using α · uτ = |uτ |)

≤
∑
e∈Es

h

∫
e

g|(Khu)τ − uτ |+
∑
e∈Es

h

∫
e

gα · (uτ − (Khu)τ )

≤ 2
∑
e∈Es

h

∫
e

g|(Khu)τ − uτ |

≤ 2
∑
e∈Es

h

∥g∥L∞(e)h
1/2
e ∥(Khu)τ − uτ ∥e

≤ c

∑
e∈Es

h

(1 + h2e)∥g∥21,e

1/2∑
e∈Es

h

∥(Khu)τ − uτ ∥2e

1/2

, (3.26)

where we have used Lemma 3.1 . We let

wh = Khu− uh − Eh(Khu− uh),

and we would like to estimate −(gα,wτ ,h)S . For that purpose, the mean of a function ϕ over the

edge e is

Π0
eϕ =

1

he

∫
e

ϕ ds .
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From linearity we find that

−(gα,wτ ,h)S = −
∑
e∈Es

h

∫
e

(gα,wτ ,h)e

=
∑
e∈Es

h

[∫
e

(Π0
eg − g)α ·wτ ,h −

∫
e

Π0
egα ·wτ ,h

]
. (3.27)

The following approximation result is important (see [40]).

Lemma 3.2 ( Poincare-Wirtinger’s inequality). Let I ⊂ R be a bounded open subset, then

∥ϕ−Π0
Iϕ∥L∞(I) ≤ |I|1/2∥ϕ′∥L2(I) for all ϕ ∈ H1(I) .

The first term on the right hand side of (3.27) is treated with the help of Cauchy-Schwarz inequality,

Holder inequality, Lemma 3.2, (3.10), (3.15) and (3.9) as follows∑
e∈Es

h

∫
e

(Π0
eg − g)α ·wτ ,h ≤

∑
e∈Es

h

∥Π0
eg − g∥L∞(e)∥α∥e∥wτ ,h∥e

≤
∑
e∈Es

h

∥Π0
eg − g∥L∞(e)h

1/2
e ∥wτ ,h∥e

≤
∑
e∈Es

h

he∥g∥1,e∥wτ ,h∥e

≤

∑
e∈Es

h

∥g∥21,e

1/2∑
e∈Es

h

h2e∥wτ ,h∥2e

1/2

≤ c

∑
e∈Es

h

∥g∥21,e

1/2(∑
K∈T

∥wh∥2K

)1/2

h1/2

≤ c

∑
e∈Es

h

∥g∥21,e

1/2(∑
e∈Eh

1

he
∥[Khu− uh]∥2e

)1/2

h3/2

≤ ch3/2

∑
e∈Es

h

∥g∥21,e

1/2

|||Khu− uh||| . (3.28)

Following the way we have obtained (3.28), and having in mind Lemma 3.1, we obtain

−
∑
e∈Es

h

∫
e

Π0
egα ·wτ ,h ≤

∑
e∈Es

h

∥g∥L∞(e)∥α∥e∥wτ ,h∥e

≤
∑
e∈Es

h

(h2e + 1)1/2∥g∥1,e∥wτ ,h∥e

≤ ch1/2

∑
e∈Es

h

(h2e + 1)∥g∥21,e

1/2

|||Khu− uh||| . (3.29)
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Returning to (3.27) with (3.29) and (3.28), we find

−(gα,wτ ,h)S

≤ ch1/2

h
∑

e∈Es
h

∥g∥21,e

1/2

+

∑
e∈Es

h

(h2e + 1)∥g∥21,e

1/2
 |||Khu− uh||| . (3.30)

The term −ℓ(wh)+bh(wh, p)+ah(u,wh) is first re-written using (2.57), and the fact that u ∈H2,

( implies [∇u] = 0, {∇u} = ∇u) as follows

ah(u,wh) = ν
∑
K

∫
K

∇hu : ∇wh + ν
∑
e∈Es

h

∫
e

κuτ ·wτ ,h

= −ν
∑
K

∫
K

△u ·wh + ν
∑
e∈Eh

∫
e

{∇u} : [wh] + ν
∑
e∈E0

h

∫
e

[∇u] · {wh}+ ν
∑
e∈Es

h

∫
e

κuτ ·wτ ,h

= −ν
∑
K

∫
K

△u ·wh + ν
∑
e∈Eh

∫
e

∇u : [wh] + ν
∑
e∈Es

h

∫
e

κuτ ·wτ ,h

= −2ν
∑
K

∫
K

divD(u) ·wh + ν
∑
e∈Eh

∫
e

∇u : [wh] + ν
∑
e∈Es

h

∫
e

κuτ ·wτ ,h , (3.31)

where (2.10) has been used. Again from the integration by parts (2.57) and taking p ∈ H1, we

find (having in mind [p] = 0, {p} = p) that

bh(wh, p) = −
∑
K

∫
K

pdivwh

=
∑
K

∫
K

∇p ·wh −
∑
e∈Eh

∫
e

{p}[wh]−
∑
e∈E0

h

∫
e

[p] · {wh}

=
∑
K

∫
K

∇p ·wh −
∑
e∈Eh

∫
e

p[wh] . (3.32)

Now, putting together (3.31) and (3.32) and using (1.1), one obtains

−ℓ(wh) + bh(wh, p) + ah(u,wh)

=
∑
e∈Eh

∫
e

(−pI + ν∇u) : [wh] + ν
∑
e∈Es

h

∫
e

κuτ ·wτ ,h

=
∑
e∈Eh

∫
e

(ν(∇u−Π0
e∇u)− (p−Π0

ep)I) : [wh]dx+ ν
∑
e∈Es

h

∫
e

(κ−Π0
eκ)wτ ,h · uτ

+ν
∑
e∈Es

h

∫
e

Π0
eκwτ ,h · (uτ −Π0

euτ ) . (3.33)

We now treat each term on the right side of (3.33). It then follows from Cauchy-Schwarz inequality,

(3.9), (3.10), (3.15), (3.16), and the approximation estimate that∑
e∈Eh

∫
e

(ν(∇u−Π0
e∇u)− (p−Π0

ep)I) : [wh]dx

=
∑
e∈Eh

∫
e

(ν(∇u−Π0
e∇u) : [wh]dx−

∑
e∈Eh

∫
e

(p−Π0
ep)I) : [wh]dx

≤

(∑
e∈Eh

νhe∥∇u−Π0
e∇u∥2e

)1/2(∑
e∈Eh

1

he
∥[wh]∥2e

)1/2

+

(∑
e∈Eh

he∥p−Π0
ep∥2e

)1/2(∑
e∈Eh

1

he
∥[wh]∥2e

)1/2

≤ ch(∥u∥2 + ∥p∥1)|||Khu− uh||| . (3.34)
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To bound the second term in the right hand side of (3.33), we use Cauchy-Schwarz inequality,

Lemma 3.2, (3.10), (3.15), (3.9) as follows∑
e∈Es

h

∫
e

(κ−Π0
eκ)wτ ,h · uτ

≤
∑
e∈Es

h

∥κ−Π0
eκ∥L∞(e)∥wτ ,h∥e∥uτ ∥e

≤
∑
e∈Es

h

h1/2e ∥wτ ,h∥e∥κ∥1,e∥uτ ∥e

≤

∑
e∈Es

h

he∥wτ ,h∥2e

1/2(∑
e∈Eh

∥κ∥21,e∥uτ ∥2e

)1/2

≤ c

(∑
K∈T

∥wh∥2K

)1/2(∑
e∈Eh

∥κ∥21,e∥uτ ∥2e

)1/2

≤ ch

(∑
e∈Eh

1

he
∥[Khu− uh]∥2e

)1/2(∑
e∈Eh

∥κ∥21,e∥uτ ∥2e

)1/2

≤ ch

(∑
e∈Eh

∥κ∥21,e∥uτ ∥2e

)1/2

|||Khu− uh||| . (3.35)

Finally, from the Cauchy-Schwarz inequality, Holder inequality, Lemma 3.1, (3.10), (3.15), (3.9)

and approximation result, we get∑
e∈Es

h

∫
e

Π0
eκwτ ,h · (uτ −Π0

euτ ) ≤
∑
e∈Es

h

∥κ∥L∞(e)∥wτ ,h∥e∥uτ −Π0
euτ ∥e

≤
∑
e∈Es

h

(he + h−1
e )1/2∥κ∥1,e∥wτ ,h∥e∥uτ −Π0

euτ ∥e

≤

∑
e∈Es

h

1

he
∥wτ ,h∥2e

1/2∑
e∈Es

h

(h2e + 1)∥κ∥21,e∥uτ −Π0
euτ ∥2e

1/2

≤ c

(∑
K∈T

h−2
K ∥wh∥2K

)1/2
∑

e∈Es
h

(h2e + 1)∥κ∥21,e∥uτ −Π0
euτ ∥2e

1/2

≤ c

∑
e∈Es

h

(h2e + 1)∥κ∥21,e∥uτ −Π0
euτ ∥2e

1/2(∑
e∈Eh

1

he
∥[Khu− uh]∥2e

)1/2

≤ ch

∑
e∈Es

h

∥κ∥21,e

1/2

∥u∥2|||Khu− uh||| . (3.36)

Putting (3.36), (3.35) and (3.34) in (3.33) we find

−ℓ(wh) + bh(wh, p) + ah(u,wh)

≤ ch

∥u∥2 + ∥p∥1 + ∥u∥2

∑
e∈Es

h

∥κ∥21,e

1/2
 |||Khu− uh||| . (3.37)
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Returning to (3.25) with (3.26), (3.30), (3.37) and using Cauchy-Schwarz and Young’s inequalities

we find

|||uh −Khu|||2 ≤ c|||Khu− u|||2 + c

∑
e∈Es

h

(1 + h2e)∥g∥21,e

1/2∑
e∈Es

h

∥(Khu)τ − uτ ∥2e

1/2

+ch2

(
∥u∥22 + ∥p∥21 +

∑
e∈Eh

∥κ∥21,e

)

+ch

h
∑

e∈Es
h

∥g∥21,e

1/2

+

∑
e∈Es

h

(h2e + 1)∥g∥21,e

1/2

2

. (3.38)

The error estimate announced is therefore obtained from (3.38) after application of the triangle

inequality. �

3.3 A priori error on the pressure

To estimate the error on the pressure, we proceed as in [10] (see Th. 6, pp 66). We note that Π0
Ka

is the mean over K while Π0
ea is the mean over e.

We claim that

Proposition 3.3 Let (f , g) ∈ L2(Ω) × L∞(S) ∩ H1(S). Let (u, p) and (uh, ph) be solutions of

(2.17) and (3.1) respectively. If (u, p) belong to H2(Ω)×H1(Ω), then

∥p− ph∥ ≤ c

(∑
K∈T

∥p−Π0
Kp∥2L2(K)

)1/2

+ c|||u− uh|||+ ν

(∑
e∈Eh

he∥∇u−Π0
e∇u∥2e

)1/2

+

(∑
e∈Eh

he∥p−Π0
ep∥2e

)1/2

.

where c ≡ c(Ω) is a positive constant independent of h.

proof. We recall (uh, ph) is defined via (3.1), that is
ah(uh,vh − uh) + bh(vh − uh, ph) + jh(vh)− jh(uh) ≥ ℓh(vh − uh) ,

bh(uh, qh) = 0 ,

for all (qh,vh) ∈Mh × V h.

(3.39)

We take vh − uh = ±wh with wh|S = 0 in the first equation of (3.39). This gives

ah(uh,wh) + bh(wh, ph) = ℓh(wh),

which is rewritten thanks to the linearity,

bh(wh, ph) = −ah(uh,wh) + ℓh(wh)

= −ah(u,wh) + ℓh(wh) + ah(u− uh,wh). (3.40)
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Thus we need to treat−ah(u,wh)+ℓh(wh). For that purpose, we recall that since (u, p) ∈H2×H1,

[∇u] = 0, [p] = 0, {∇u} = ∇u and {p} = p. Hence using (2.57) and (2.11)

−ah(u,wh) + ℓh(wh) = −ν
∑
K

∫
K

∇u : ∇wh +
∑
K

∫
K

f ·wh

= ν
∑
K

∫
K

△u ·wh − ν
∑
e∈Eh

∫
e

{∇u} : [wh]− ν
∑
e∈E0

h

∫
e

[∇u] · {wh}+
∑
K

∫
K

f ·wh

= ν
∑
K

∫
K

△u ·wh − ν
∑
e∈Eh

∫
e

∇u : [wh] +
∑
K

∫
K

f ·wh

=
∑
K

∫
K

∇p ·wh − ν
∑
e∈Eh

∫
e

∇u : [wh]

= −
∑
K

∫
K

p divwh +
∑
e∈Eh

∫
e

{p}[wh] +
∑
e∈E0

h

∫
e

[p] · {wh} − ν
∑
e∈Eh

∫
e

∇u : [wh]

= bh(wh, p)−
∑
e∈Eh

∫
e

(ν∇u− pI) : [wh]. (3.41)

Inserting (3.41) in (3.40), and using (2.54) gives

bh(wh, ph) = bh(wh, p)−
∑
e∈Eh

∫
e

(ν∇u− pI) : [wh] + ah(u− uh,wh)

= bh(wh, p−Πhp) + bh(wh,Πhp)−
∑
e∈Eh

∫
e

(ν∇u− pI) : [wh] + ah(u− uh,wh)

= bh(wh, p−Πhp) + bh(wh,Πhp)− ν
∑
e∈Eh

∫
e

(∇u−Π0
e∇u) : [wh] +

∑
e∈Eh

∫
e

(p−Π0p)I : [wh]

+ah(u− uh,wh),

which is re-written as follows

bh(wh, ph −Πhp) = bh(wh, p−Πhp)− ν
∑
e∈Eh

∫
e

(∇u−Π0
e∇u) : [wh] +

∑
e∈Eh

∫
e

(p−Π0p)I : [wh]

+ah(u− uh,wh). (3.42)

Next, we recall that since (ph − Πhp, 1) = 0, and (V h,Mh) is inf-sup stable, one can find wh ∈
V h ∩ {wh|S = 0} such that divhwh = ph −Πh

Kp on K,

|||wh||| ≤ c∥ph −Πhp∥.
(3.43)
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Putting together (3.42) and (3.43), one finds

∥ph −Πhp∥2 =
∑
K

∥ph −Πh
Kp∥2L2(K)

=
∑
K∈T

∫
K

(ph −Πh
Kp) divwh

= −bh(wh, ph −Πhp)

= −bh(wh, p−Πh)− ah(u− uh,wh) + ν
∑
e∈Eh

∫
e

(∇u−Π0
e∇u) : [wh]

−
∑
e∈Eh

∫
e

(p−Π0
ep)I : [wh]

≤ c|||wh||| ∥p−Πhp∥+ c|||u− uh||| |||wh|||+ ν

[∑
e∈Eh

he∥∇u−Π0
e∇u∥2e

]1/2 [∑
e∈Eh

1

he
∥[wh]∥2e

]1/2

+

[∑
e∈Eh

he∥p−Π0
ep∥2e

]1/2 [∑
e∈Eh

1

he
∥[wh]∥2e

]1/2
≤ c∥ph −Πhp∥ ∥p−Πhp∥+ C|||u− uh||| ∥ph −Πhp∥

+ν

[∑
e∈Eh

he∥∇u−Π0
e∇u∥2e

]1/2
∥ph −Πhp∥+

[∑
e∈Eh

he∥p−Π0
ep∥2e

]1/2
∥ph −Πhp∥

That is

∥ph −Πhp∥ ≤ c∥p−Πhp∥+ c|||u− uh|||+ ν

[∑
e∈Eh

he∥∇u−Π0
e∇u∥2e

]1/2

+

[∑
e∈Eh

he∥p−Π0
ep∥2e

]1/2
. (3.44)

So, the desired result is obtained by combining (3.44) and the triangle’s inequality. �

4 Navier-Stokes system: A Priori Error Estimate

4.1 Some preliminaries

We define the trilinear form dh(·, ·, ·) as

dh(u,v,w) =
∑
K

∫
K

(u · ∇)v ·wdx.

The finite element solution associated to Problem (F) is defined as follows

Problem(Fh)

Find (uh, ph) ∈ V h ×Mh that satisfies,

ah(uh,vh − uh) + dh(uh,uh,vh − uh) + bh(vh − uh, ph)

+jh(vh)− jh(uh) ≥ ℓh(vh − uh),

bh(uh, qh) = 0 ,

for all (vh, qh) ∈ V h ×Mh .

(4.1)
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The solvability of (4.1) is obtained by following the same steps as in the proof of Proposition 2.2,

and the analogue of Proposition 2.2 can be stated as follows

Proposition 4.1 Let (f , g) ∈ L2(Ω) × L∞(S). Then problem (4.1) has at least one solution

(uh, ph) ∈ V h ×Mh, and the following a priori estimates hold

|||uh||| ≤ c

ν
∥f∥ , ∥ph∥ ≤ (1 + κ0)c∥f∥+

c

ν2
∥f∥2. (4.2)

If moreover the viscosity ν is taken in such a way that (2.28) holds, then the solution is unique.

The proof of (4.2) is done as in the continuous case, hence will not be repeated here.

4.2 A priori error on the velocity

The main result of the paragraph can be stated as follows

Proposition 4.2 Let (f , g) ∈ L2(Ω) × L∞(S) ∩H1(S). Assume that (2.28) holds. Let (u, p) be

the solution of (2.27). Let (uh, ph) be solution of (3.1). If (u, p) belong to H2(Ω)×H1(Ω), then

|||uh − u||| ≤ c

∑
e∈Es

h

(1 + h2e)∥g∥21,e

1/4 ∑
e∈Es

h

∥(Khu)τ − uτ ∥2e

1/4

+ c|||u−Khu|||

+ch1/2

h
∑

e∈Es
h

∥g∥21,e

1/2

+

∑
e∈Es

h

(h2e + 1)∥g∥21,e

1/2


+ch

∥u∥2 + ∥p∥1 + ∥u∥2

∑
e∈Es

h

∥κ∥21,e

1/2
 ,

where c is a positive constant independent of h.

Proof. We proceed as in the proof of Proposition 3.2

The first step in the proof is unchanged. Hence (3.18) is valid here.

Step 2: Use of coercivity condition on ah(·, ·) .
From the coercivity of ah(·, ·) and the first equation in (4.1), and (3.20), and (3.22) we obtain

ν|||uh −Khu|||2 ≤ ah(uh −Khu,uh −Khu)

= ah(uh,uh −Khu)− ah(vh,uh −Khu)

≤ dh(uh,uh,Khu− uh) + jh(Khu)− jh(uh)− ℓh(Khu− uh)− ah(Khu,uh −Khu)

= dh(uh,uh,Khu− uh)− ℓ(Khu− uh − Eh(Khu− uh))− ah(Khu− u,uh −Khu)

−ah(u,uh −Khu) + jh(Khu)− jh(uh)− ℓ(Eh(Khu− uh))

= −ℓ(Khu− uh − Eh(Khu− uh)) + bh(Khu− uh, p) + dh(uh,uh,Khu− uh)

−ah(u,uh −Khu) + jh(Khu)− jh(uh)− ℓ(Eh(Khu− uh)) . (4.3)
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Now in the first equation of (2.47), letting v = Eh(Khu− uh) ∈ V c
h ⊂ V , we obtain that

ℓ(Eh(Khu− uh)) = a(u, Eh(Khu− uh)) + d(u,u, Eh(Khu− uh)) + b(Eh(Khu− uh), p)

+(gα, Eτ ,h(Khu− uh))S . (4.4)

Inserting (4.4) in (4.3), one obtains

ν|||uh −Khu|||2

≤ −ℓ(Khu− uh − Eh(Khu− uh)) + bh(Khu− uh − Eh(Khu− uh), p) + d(u,u,Khu− uh − Eh(Khu− uh))

+ah(u,Khu− uh − Eh(Khu− uh))− (gα, Eτ ,h(Khu− uh)− (Khu− uh)τ )S

+d(u,u,uh −Khu)− dh(uh,uh,uh −Khu) + jh(Khu)− jh(uh)− (gα, (Khu− uh)τ )S . (4.5)

We now want to estimate terms on the right hand side of (4.5). First, we have established that

(see (3.26), (3.30))

jh(Khu)− jh(uh)− (gα, (Khu− uh)τ )S

≤ c

∑
e∈Es

h

(1 + h2e)∥g∥21,e

1/2 ∑
e∈Es

h

∥(Khu)τ − uτ ∥2e

1/2

,

and (4.6)

−(gα, Eτ ,h(Khu− uh)− (Khu− uh)τ )S

≤ ch1/2

h
∑

e∈Es
h

∥g∥21,e

1/2

+

∑
e∈Es

h

(h2e + 1)∥g∥21,e

1/2
 |||Khu− uh||| .

From the properties of d(·, ·) together with (2.1) and (4.2), one has

d(u,u,uh −Khu)− dh(uh,uh,uh −Khu)

= d(u,u−Khu,uh −Khu) + d(u−Khu,uh,uh −Khu) + d(Khu− uh,uh,uh −Khu)

≤ c∥∇u∥ |||u−Khu||| |||uh −Khu|||+ c|||u−Khu||| |||uh −Khu|||∥∇uh∥

+c|||Khu− uh|||2∥∇uh∥

≤ c

ν
∥f∥|||u−Khu||| |||uh −Khu|||+

c

ν
∥f∥ |||Khu− uh|||2 . (4.7)

Thirdly knowing that (u, p) ∈H2 ×H1 and following the way we have derived (3.37), we deduce

that

−ℓ(Khu− uh − Eh(Khu− uh)) + bh(Khu− uh − Eh(Khu− uh), p) + d(u,u,Khu− uh − Eh(Khu− uh))

+ah(u,Khu− uh − Eh(Khu− uh))

=
∑
e∈Eh

∫
e

[Khu− uh − Eh(Khu− uh)] : (ν∇u− pI)dx+ ν
∑
e∈Es

h

∫
e

κ(Khu− uh − Eh(Khu− uh))τ · uτ

≤ ch

∥u∥2 + ∥p∥1 + ∥u∥2

∑
e∈Es

h

∥κ∥21,e

1/2
 |||Khu− uh||| . (4.8)
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Returning to (4.5) with (4.8), (4.7), (4.6) we find(
ν − c

ν
∥f∥

)
|||uh −Khu|||2

≤ c

∑
e∈Es

h

(1 + h2e)∥g∥21,e

1/2 ∑
e∈Es

h

∥(Khu)τ − uτ ∥2e

1/2

+
c

ν
∥f∥|||u−Khu||| |||uh −Khu|||

+ch1/2

h
∑

e∈Es
h

∥g∥21,e

1/2

+

∑
e∈Es

h

(h2e + 1)∥g∥21,e

1/2
 |||Khu− uh|||

+ch

∥u∥2 + ∥p∥1 + ∥u∥2

∑
e∈Es

h

∥κ∥21,e

1/2
 |||Khu− uh|||. (4.9)

Clearly, taking into account (2.28), and using Young’s inequality, (4.9) gives

|||uh −Khu|||2 ≤ c

∑
e∈Es

h

(1 + h2e)∥g∥21,e

1/2 ∑
e∈Es

h

∥(Khu)τ − uτ ∥2e

1/2

+ c|||u−Khu|||2

+ch

h
∑

e∈Es
h

∥g∥21,e

1/2

+

∑
e∈Es

h

(h2e + 1)∥g∥21,e

1/2

2

+ch2

∥u∥2 + ∥p∥1 + ∥u∥2

∑
e∈Es

h

∥κ∥21,e

1/2


2

. (4.10)

with c a positive constant independent of h. We then deduce the result by application of the

triangle inequality.

Remark 4.1 the error on the pressure is obtained as in Proposition 4.2.

5 Conclusion

In this work, we have established suboptimal a priori estimates for non conforming approximations

of the steady incompressible Stokes and Navier-Stokes equations in two dimensions driven by

nonlinear slip boundary condition of friction type. We have assumed maximal regularity of the

solution and take advantage of the fact that the threshold function g belong to L∞(S) ∩H1(S),

which has allowed us to use sharp estimates. To our knowledge, this is the first analysis of non

conforming finite element method using the Crouzeix-Raviart element for the velocity and constant

pressure for this type of problems. Our future goals are to study the error estimates with minimal

regularity of the solution, efficient solution procedures for their implementation.
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