Chapter 8: Space outcomes
8.1 Conclusion

This project aimed to reacquaint humans and the natural world, specifically water. Water is our most important natural resource and is essential to human survival. But currently it is being abused and exploited all over the globe. The intent in this dissertation was to question current human interaction with water by understanding what our relationship to water was and locating an important point to intervene.

It was hypothesised that water infrastructure was the point where humans could have a direct relationship with this natural resource. This led to the investigation of historical water infrastructure and location of important elements that represented the past paradigm on site.

Regenerative theories were used as a starting point for this project, rather than the limited theories of sustainability which only correct the damage done by the past rather than extending possibilities for the future. The role that architectural design can play in enhancing our understanding of water was investigated by viewing the site as containing potential energy to create mutually beneficial exchanges between site, infrastructure and the user.

The site of Hartbeespoort Dam displayed the characteristics of a broken ecology that had been disconnected from humans. The existing crest gates formed an important infrastructural element on site and the arch representing a degenerative paradigm, as it stood for man's control over water. Through regenerative design emphasis was placed on the existing vermiculture activities on site. This fostered the creation of other closed loop systems that related to the vermiculture practices.

By introducing secondary programs such as a restaurant space, retail space and ablution space that all fed off the initial system of vermiculture it was possible to create a new public interface to Hartbeespoort Dam's water infrastructure as a regenerative monument.

The new regenerative architecture has created a change in condition in the way that people perceive infrastructure and therefore their relationship to water. By shifting the users' perceptions of the existing Arch, a new paradigm where humans value their natural resources and take care of them was
established. By doing this it has reacquainted man and the natural world through new public spaces related in different ways to water.

This new architectural regenerative infrastructure allows for the restoration of the destroyed and scarred landscape. It encourages economic and cultural growth in the area by creating jobs and sustainability, as well as improving the quality of the water. This has a direct influence on the agricultural land that this dam was originally built to serve. It creates a foothold for ecological networks to reclaim the space as it did before. The building is a facilitator for natural closed loop systems to occur between the site, infrastructure and the user.

Considering the principles of regenerative design, the building created exchanges that restore the natural landscape by equalising or balancing the potential energies on site. This led to a new paradigmatic relationship between humans and the natural world.

Edward Burtynsky (2006) stated “There is an importance to have a certain reverence [for] what nature is, because we are connected to it and we are part of it, and if we destroy nature, we destroy ourselves. Maybe the new landscape of our time... is the landscape that we change” (Arch-assoc, 2006).
Chapter 8: Space outcomes

ADDENDUM
Fig 9.1. Final work (Author, November 2016).
Fig 9.2. Final work (Author, November 2016).
Fig 9.3. Final work (Author, November 2016).
Fig 9.4. Final work (Author, November 2016).

© University of Pretoria
Fig 9.5. Final work (Author, November 2016).
Fig 9.6. Final work (Author, November 2016).

© University of Pretoria
Fig 9.7. Final work (Author, November 2016).
Celebrating the unseen
ryan taylor

Chapter 9: ADDENDUM

Fig 9.8. Final work (Author, November 2016).
Fig 9.9. Final work (Author, November 2016).
Celebrating the unseen
ryan taylor

Chapter 9: ADDENDUM

Fig 9.10. Final work (Author, November 2016).

© University of Pretoria
Fig 9.12. Final work (Author, November 2016).
9.2 FINAL MODEL

Fig 9.13. Final work (Author, November 2016).
Chapter 9: ADDENDUM

Fig 9.15: Final work (Author, November 2016).
Fig 9.16. Final work (Author, November 2016).
9.3 FINAL CRIT

Fig 9.17. Final crit (Author, November 2016).
REFERENCES
Fig 2.80 Resilient diagram (Metropolismag, 2016). ..65
Fig 2.81 Resilient diagram (Metropolismag, 2016). ..65
Fig 2.82 Resilient diagram (Metropolismag, 2016). ..65
Fig 3.1 Program flow through site (Adapted by Author 2016 from Buchner, 2013)68
Fig 3.2 Flow of exchanges between programs (Author, 2016). ...70
Fig 3.3 Exchanges between site, infrastructure and user (Author, 2016).71
Fig 3.4 Vermiculture turning of soil (Wormculture, 2015). ...72
Fig 3.5 Detailed flows of materials in system (Author, 2016). ..73
Fig 3.6 Existing activities on site (Author, 2016). ...74
Fig 3.7 Example of potable vermiculture system (Wormculture, 2015).75
Fig 3.8 Section diagram explaining system (Author, 2016). ..75
Fig 3.9 Outputs of vermiculture system (Wormculture, 2015).75
Fig 3.10 Existing activities on site (Author, 2016). ..75
Fig 3.11 Existing activities on site (Author, 2016). ..75
Fig 3.12 New vermiculture boxes (Author, 2016). ...76
Fig 3.13 Vision Perspective (Author, 2016). ..76
Fig 3.14 Inputs and outputs of vermiculture process (Author, 2016).77
Fig 3.15 Vermiculture space development (Author, 2016). ...78
Fig 3.16 Floating wetland and plan configuration (Adapted by Author image by Ghazal Jafari & Ali Fard, 2013). ...79
Fig 4.1 Resilient diagram (Metropolismag, 2016). ..86
Fig 4.2 Paradigms over time and there affect on natural resources. (Author, 2016).87
Fig 4.3 Linear diagram (Author, 2016). ...89
Fig 4.4 Regenerative diagram (Author, 2016). ...89
Fig 4.5 Regenerative diagram (Author, 2016). ...90
Fig 4.6 Regenerative diagram (Author, 2016). ...91
Fig 4.7 Framework for reverse degeneration (Boonzaaier, 2015: 48).94
Fig 4.9.1 Victory Arch (Author, 2016). ...96
Fig 4.9.2 The crest gates (Author, 2016). ..96
Fig 4.10 The Arch with new ideas of celebration of water (Author, May 2016).97
Fig 4.11 Finished Kraanspoor building (Archdaily, 2008). ...98
Fig 4.12 Historical Kraanspoor infrastructure (Archdaily, 2008).98
Fig 4.13 Section through Kraanspoor building (Archdaily, 2008). 2008.99
Fig 4.14 View from below the Kraanspoor building (Archdaily, 2008).99
Fig 4.15 New walk way along Kraanspoor building (Archdaily, 2008).99
Fig 4.16 View from water of Kraanspoor building sitting lightly above existing historical structure. Archdaily. 2008. ...99
Fig 4.17 Double glazing panels with louvres of Kraanspoor building (Archdaily, 2008).99
Fig 5.1 Stitching of site (Author, 2016). ...102
Fig 5.2 Site diagram and intentions (Author, 2016). ..103
Fig 5.3 Site Intentions (Author, 2016). ...104
Fig 5.4 Role players diagram (Author, 2016). ...105
Fig 5.5 Series of exchanges (Author, 2016). ..106
Fig 5.6 System bridge (Alexandra Vougia, a et al., 2016). ..107
Fig 5.7 Conceptual Diagram (Author, 2016). ..108
Fig 5.8 Conceptual vision (Author, April 2016). ..109
Fig 5.9 exchange of users (Archdaily, 2016). ...110
Fig 5.11 Solar screen (Archdaily, 2016). ...110
Fig 5.10 Plant screen being maintained (Archdaily, 2016). ..110
Fig 5.12 Plant screen being irrigated (Archdaily, 2016). ...110
Fig 5.13 free social space (Archdaily, 2016). ..111
Fig 5.11 Services and circulation of the facade of the building (Archdaily, 2016).111
Fig 5.14 expression of services (Archdaily, 2016). ..111
Fig 5.16 Ecological informants for concept crit (Author, May 2016).119
Fig 5.7 Site plan development (Author, March to April 2016).120
Fig 5.8. Vision Perspective of public space next to infrastructure (Author, May 2016). ..121
Fig 5.9. Form development (Author, April 2016). ...121
Fig 5.10. Axis of informants (Author, March 2016). ..121
Fig 5.11 Spacial requirements and view of building (Author, May 2016).122
Fig 5.12 Perspective over view (Author, June 2016). ...123
Fig 5.13 Final site (Author, June 2016). ...125
Fig 5.14 Plan development (Author, April to May 2016). ...126
Fig 5.15 Initial perspective of form (Author, May 2016). ...127
Fig 5.16 Perspective over different water conditions (Author, May 2016).128
Fig 5.17 Ground floor plan and first floor plan (Author, June 2016).129
Fig 5.18 Longitudinal section North to South (Author, June 2016).130
Fig 5.19 Longitudinal section West to East (Author, June 2016).131
Fig 5.20 Section development (Author, April to June 2016).132
Fig 5.21 Section development (Author, April to June 2016).133
Fig 5.22 Vermiculture Section (Author, April to June 2016).134
Fig 5.23 Longitudinal section (Author, August 2016). ..135
Fig 5.24 Haptic experience of exchanges (Author, June 2016).136
Fig 5.28. Point of view on site plan (Author, 2016). ...137
Fig 7.48 Water in public space (mindshapedbox, 2011). .. 202
Fig 7.49 Water in public space (90La, 2014). ... 202
Fig 7.50 Water in public space (Project for public spaces, 2016). 202
Fig 7.51 Water calculations yield (Author, September 2016). 203
Fig 7.52 Primary water demand (Author, September 2016). 204
Fig 7.53 Secondary water demand (Author, September 2016). 205
Fig 7.40 Water calculations budget. Author. September 2016. 206
Fig 7.54 Secondary water demand (Author, September 2016). 206
Fig 7.56 Water calculations result (Author, September 2016). 207
Fig 7.55 Water Catchment and use (Author, September 2016). 207
Fig 7.57 Water Filtration system (Author, September 2016). 207
Fig 7.58 Water System on site (Author, September 2016). 208
Fig 7.59 Water yield calculation (Author, September 2016). 209
Fig 7.60. Primary water demand calculation (Author, September 2016). 210
Fig 7.61 Secondary water demand calculation (Author, September 2016). 211
Fig 7.62 Water Budget calculation (Author, September 2016). 212
Fig 7.63 Food exchanges (Author, September 2016). 213
Fig 7.64. Biodigester (Crystaltank, 2016). ... 215
Fig 7.65 Vermiculture system (Author, September 2016). 216
Fig 7.66. Pelton wheel (learn engineering, September 2016). 218
Fig 7.67 Solar panels (Author, September 2016). ... 219
Fig 7.68. Overheating (Author. September 2016). .. 220
Fig 7.69. Cooling (Author. September 2016). .. 221
Fig 7.70. Under heated (Author. September 2016). .. 222
Fig 7.71. Heating systems (Author. September 2016). 223
Fig 7.72. Lighting requirements (Author, September 2016). 224
Fig 7.73. Lighting sketches (Author, September 2016). 225
Fig 7.74 Iteration 1 (Author, September 2016). ... 226
Fig 7.75 Iteration 1 results (Author, September 2016). 227
Fig 7.76. Iteration 2 (Author, September 2016). .. 228
Fig 7.77 Iteration 2 results (Author, September 2016). 229
Fig 7.78. Iteration 3 (Author, September 2016). .. 230
Fig 7.79 Iteration 3 results (Author, September 2016). 231
Fig 7.80 Iteration 4 (Author, September 2016). .. 232
Fig 7.81 Iteration 4 results (Author, September 2016). 233
Fig 7.82. Final iteration (Author, September 2016). .. 234
Fig 7.83. Final iteration results (Author, September 2016). 235
Fig 7.84. Final iteration results (Author, September 2016). 236
Fig 7.85. Final iteration results (Author, September 2016). 237
Fig 7.86 SBAT analysis (Author, September 2016). ... 238
Fig 8.1. New celebration of water (Author, September 2016). 243
Fig 9.1.- 9.17. Final work (Author, November 2016). .. 265

© University of Pretoria
10.2 References

• Dekay, M. O'brien, m. 2001: Gray City, Green City. New thinking and new settlement patterns can bring about urban sustainability, forum for Applied Research and Public Policy.

• Dynesius, Mats, and Nilsson, C. fragmenting and flow regulation of rivers systems in the Northern third of the world. Science 266 (November 4, 1994); 753-62.

• Dynesius, Mats, and Nilsson, C. fragmenting and flow regulation of rivers systems in the Northern third of the world. Science 266 (November 4, 1994); 753-62.

• Grant, G. 2012. Ecosystem Services Come to Town, Greening Cities by Working with Nature, London: John Wiley and Sons Ltd.

• Littman, J. 2009. Regenerative Architecture. Scholar Works at Umass Amherst 1.1: 11-14

• Manufactured Landscapes. 2006. [Film] Directed by Edward. Shanghai, China: Zeitgeist video.

• Permaculture research institute. 2016. How to build a worm tower. http://permaculturenews.org/2016/02/02/how-to-build-a-worm-tower/ [29 April 2016]

• Samiei, K. 2012. Vertical Greenery in Iran; Attitudes and Prospects. Case Study: City of Tehran. Biotope city journal, winter 2012:

• Tempelhoff, E. 2012. Miljoene, maar dam bly nog vuil. Beeld. [23 May 2016].

• The Burra Charter. 2013. The Australia ICOMOS Charter for Places of Cultural Significance: Australia ICOMOS Inc.

• The Transvaal Yacht Club has been operating at the dam since 1923. “History”. Transvaal Yacht Club. [23 May 2016].

