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Abstract 

The difficulty in modelling inflation and the significance in discovering the underlying 

data generating process of inflation is expressed in an ample literature regarding inflation 

forecasting. In this paper we evaluate nonlinear machine learning and econometric 

methodologies in forecasting the U.S. inflation based on autoregressive and structural 

models of the term structure. We employ two nonlinear methodologies: the econometric 

Least Absolute Shrinkage and Selection Operator (LASSO) and the machine learning 

Support Vector Regression (SVR) method.  The SVR has never been used before in 

inflation forecasting considering the term--spread as a regressor. In doing so, we use a 

long monthly dataset spanning the period 1871:1 – 2015:3 that covers the entire history 

of inflation in the U.S. economy. For comparison reasons we also use OLS regression 

models as benchmark. In order to evaluate the contribution of the term-spread in inflation 

forecasting in different time periods, we measure the out-of-sample forecasting 

performance of all models using rolling window regressions. Considering various 

forecasting horizons, the empirical evidence suggests that the structural models do not 

outperform the autoregressive ones, regardless of the model’s method.  Thus we conclude 

that the term-spread models are not more accurate than autoregressive ones in inflation 

forecasting.  
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1. Introduction  

“Inflation is hard to forecast”. With widespread empirical evidence, this statement of 

Stock and Watson (2003) is considered as a stylized fact in macroeconomics. Beyond 

academic interest, with the given commitment of the Federal Reserve (FED) to price 

stability, the creation of models that can describe correctly the underlying data generating 

mechanism of inflation is of outmost importance to policy authorities. In the voluminous 

relevant literature numerous approaches have been proposed: among others, household 

and professional surveys on inflation expectations, latent factor models, autoregressive 

models and structural models based on the New Keynesian Phillips curve and the term-

spread1.  

There is an extensive literature in forecasting inflation rates based on the term-spread. By 

rearranging the terms of the Fisher equation on real interest rates, Mishkin (1990a, b) and 

Jorion and Mishkin (1991) attempts to forecast the U.S. inflation, using the informational 

content of the interest rates. In this line of research the term-spread is decomposed into 

three components:  the expected real rate change, the expected inflation change, and the 

term premium. The goal is to link the variations in the term-spread to the variations in the 

expected inflation and ultimately to use the term-spread to forecast inflation. The 

empirical findings suggest that only the long term rates (interest rates longer than a year) 

contain valuable information on inflation expectations. Another view as to why the term-

spread can forecast inflation is exposited in Estrella and Mishkin (1997), and is related to 

the fact that the term-spread is an indicator of the stance of the monetary policy. Hence, a 

low spread reflects relatively restrictive monetary policy (because the spread is low when 

short-term interest rates are high relative to long-term interest rates), which in turn, 

implies that in response to the contractionary monetary policy, real activity will slow 

down and inflation will decrease. Stock and Watson (2003, 2008) test the ability of the 

term-spread in forecasting the U.S. inflation for a variety of forecasting horizons in an 

out-of-sample exercise. They conclude that the univariate autoregressive model 

outperforms a structural model based on the term structure in the post 1984 period. Ang 

                                                            
1 For a detailed exposition of the existing literature see Stock and Watson (2008, 2010).  
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et al., (2007) forecast CPI-all, CPI-core, CPI-ex housing and PCE inflation on a yearly 

forecasting horizon, using a no-arbitrage yield spread model. Evaluating constant and 

regime switching coefficients they examine two alternative forecasting periods, the 1985-

2002 and the 1995-2002. They conclude that no structural model outperforms the 

univariate ARMA(1,1) model in terms of out-of-sample forecasting accuracy.  

More recently, Berardi (2009) developed a structural model using yield spreads of real 

interest rates for various forecasting horizons up to 2-years ahead. The author concludes 

that no structural model outperforms an autoregressive one, regardless of the forecasting 

horizon. Rossi and Sehkposyan (2010) examine the 3-month Treasury bill as the short 

and the 1-year, the 5-year and the 10-year Constant Maturity Treasury bill as the long 

term end of the yield spread, covering the period 1960:1-2005:12. Evaluating regressions 

on rolling windows, the authors discover that the informational content of the term-

spread in forecasting the U.S. inflation varies over time. In the early windows of the 

sample the structural model outperforms the autoregressive one, while all predictive 

ability of the structural models disappears in the post-1984 period, the start of the Great 

Moderation period. Overall, considering the average performance on out-of-sample 

forecasting of all windows, Rossi and Sehkposyan (2010) conclude that models based on 

the term-spread do not outperform the autoregressive models. Summarizing the existing 

literature regarding U.S. inflation forecasting based on the term-spread, models based on 

the term structure outperform the autoregressive ones only sporadically, and in general all 

researchers conclude that the difference between long and short term interest rates are an 

inferior predictor to the historical values of inflation.  

An interesting issue emerges when reviewing the relevant literature is that the vast 

majority of U.S. inflation forecasting studies employ only linear models. Among the 

exceptions, Ascari and Marrocu (2003) develop a Self-Exciting Threshold Autoregressive 

(SETAR) model to forecast the U.S. inflation based on the non-accelerating-inflation-

rate-of-unemployment (NAIRU) Phillips curve assumption. They conclude that the 

SETAR model cannot outperform the RW model in out-of-sample forecasting. 

Marcellino (2008) forecasts the U.S. CPI-all index with Smooth Transition 

Autoregressions and Neural Networks on a rolling window and a recursive scheme. He 
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concludes that linear models outperformed nonlinear ones. Inoue and Killian (2008) 

consider CPI-all forecasts using various nonlinear factor models. The factors come from 

the extracted components of principal component analysis on a dataset of 30 economic 

indicators. Examining the period 1983:3-2008:9 they find that the bagging ridge 

regression methodology is the most accurate in terms of out-of-sample forecasting 

accuracy. More recently Koop and Korobilis (2012) uses dynamic model averaging 

(DMA) techniques applied to a time-varying predictive-regression framework with 

thirteen exogenous predictors, which also included term-spread. Using the GDP deflator 

and personal consumption expenditures based on the inflation rate, the study shows that 

the DMA method outperforms all the other competing models in forecasting inflation, 

with inflation expectations, three-month Treasury bill rate and housing starts being the 

best predictors. Manzan and Zerom (2015) provide some evidence of superior forecasting 

of core inflation for the US using quantile autoregressions, which in turn, are also 

corroborated by Korobilis (2015) by applying Bayesian model averaging on multivariate 

quantile regressions (which involves thirty-two exogenous predictors) to forecast US 

inflation. Small and large-scale time-varying vector autoregressions are also observed to 

forecast inflation accurately, relative to alternative forecasting models in Bekiros and 

Paccagnini (2013, forthcoming) and Koop and Korobilis (2013), respectively. However, 

using genetic programing methods Álvarez-Díaz and Gupta (2015) find it difficult to beat 

linear models in forecasting the U.S. CPI. To the best of our knowledge, there are no 

additional studies that employ nonlinear models and the term-spread in forecasting the 

U.S. inflation. 

In this paper we develop nonlinear econometric and machine learning models that exploit 

the informational content of the term-spread in forecasting. Within a rolling regressions 

framework for out-of-sample forecasting, we employ two alternative methodologies: a) 

the Least Absolute Shrinkage Selection Operator (LASSO); and b) a Support Vector 

Regression (SVR) methodology from the area of machine learning. The SVR has never 

been used before in inflation forecasting based on the term-spread. For comparison 

reasons we also provide a similar analysis using the linear OLS regression that has been 

the workhorse in the inflation forecasting literature. These techniques are used to forecast 

inflation both within an autoregressive and a structural model. We also use a long dataset 
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spanning the period 1871:1 – 2015:3. Finally, changes in the forecasting performance of 

all models over time are assessed with the Fluctuation test of Giacomini and Rossi 

(2010). 

2. Methodology and Data 

2.1 Support Vector Regression  

The Support Vector Regression is a direct extension of the classic Support Vector 

Machine algorithm. The specific machine learning methodology has attracted significant 

interest in forecasting economic and financial time series (Rubio et al., 2011; Härdle et 

al., 2009; Öğüt et al., 2012; Khandani et al., 2010; Plakandaras et al.,  2015). The 

algorithm proposed by Vapnik et al. (1992) and latter extended by Cortes and Vapnik 

(1995) originates from the field of statistical learning. When it comes to regression, the 

basic idea is to find a function that has at most a predetermined deviation from the actual 

values of the dataset. In other words, errors are not of interest as long as they don’t 

violate a predefined threshold ε; only errors higher than ε are penalized. The vectors that 

define the “error tolerance band” are identified through a minimization procedure and are 

called the Support Vectors (SV). 

One of the main advantages of SVR in comparison to other machine learning techniques 

is that it yields a convex minimization problem with a unique global minimum, avoiding 

local minima. The model is built in two steps: the training and the testing step. In the 

training step, the largest part of the dataset is used for the estimation of the Support 

Vectors that define the band. In the testing step, the generalization ability of the model is 

evaluated by checking the model’s performance in the small subset that was left aside 

during training. Using cross-validation techniques a universal and not sample-specific 

solution is achieved, avoiding overfitting of the model. 

For a training dataset ܦ ൌ ሾሺ࢞ଵ, ,ଵሻݕ ሺ࢞ଶ, ,ଶሻݕ … . ሺ࢞௡, ,௡ሻሿݕ ௜࢞ ∈ Թ௠, ௜ݕ ∈ Թ, ݅ ൌ 1,2, … . ݊, 

where ࢞௜ is a vector of independent variables and ݕ௜ is the dependent variable the linear 

regression function takes the form of	ݕ ൌ 	݂ሺ࢞ሻ ൌ ்࢞࢝ ൅ ܾ. This is achieved by solving: 
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min൭
1
2
ଶ‖࢝‖ ൅ ௜ߞ෍ሺܥ ൅ ௜ߞ

∗ሻ

௡

ఐୀଵ

൱																																										ሺ1ሻ 

subject toቐ
௜ݕ െ ሺ࢞࢝௜ ൅ ܾሻ ൑ ߝ ൅ ௜ߞ
ሺ࢞࢝௜ ൅ ܾሻ െ ௜ݕ ൑ ߝ ൅ ௜ߞ

∗

,௜ߞ ௜ߞ
∗ ൒ 0	

																																													 

where ε defines the width of the tolerance band, and ߞ௜, ߞ௜
∗	are slack variables controlled 

through a penalty parameter C (see Figure 1). All the points inside the tolerance band 

have	ߞ௜, ௜ߞ
∗ ൌ 0. System (1) describes a convex quadratic optimization problem with 

linear constraints and it has a unique solution. The first part of the objective function 

controls the generalization ability of the regression, by imposing the “flatness” of our 

model controlled through the Euclidean norm ‖࢝‖. The second part of the objective 

function controls the regression fit to the training data (by increasing C we penalize with 

a bigger weight any point outside the tolerance band i.e. with ߞ௜ ൒ 0 or ߞ௜
∗ ൒ 0). The key 

element in the SVR concept is to find the balance between the two parts in the objective 

function that are controlled by the ε and C parameters.  

 
Figure 1: Upper and lower threshold on error tolerance indicated with letter ε. The 
boundaries of the error tolerance band are defined by the Support Vectors (SVs) denoted 
with the black filled points. Forecasted values greater than ε get a penalty ζ according to 
their distance from the tolerance accepted band. 

Using the Lagrange multipliers in System (1) the solution is given by:  
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࢝  ൌ ∑ ሺܽ௜ െ ܽ௜
∗ሻ࢞௜

௡
௜ୀଵ 																																																			ሺ2ሻ     

and																																																						ݕ ൌ ∑ ሺܽ௜ െ ܽ௜
∗ሻ࢞௜

௡்࢞
௜ୀଵ 																																																			ሺ3ሻ 

with the coefficient ߙ௜, ܽ௜
∗ = 0 for all non SVs. Thus, the SVR model is defined solely by 

its SVs. 

The underlying data generating processes of real life phenomena are rarely linear. Thus 

formulating linear models to describe them often fail to describe correctly the data 

generating process. In order to tackle with this drawback, SVM/R are coupled with kernel 

functions. The so-called “kernel trick” follows the projection idea while ensuring 

minimum computational cost: the dataset is mapped in an inner product space, where the 

projection is performed using only dot products within the original space through 

“special” kernel functions, instead of explicitly computing the mapping of each data 

point. When the kernel function is non-linear, the produced SVR model is non-linear as 

well. In our empirical estimations we employed two alternative kernels: the linear and the 

radial basis function (RBF), with the latter being a purely nonlinear kernel. The 

mathematical representation of each kernel is: 

Linear  ܭଵሺ࢞ଵ, ଶሻ࢞ ൌ ଵ࢞
 ଶ (4)்࢞

RBF ܭଶሺ࢞ଵ, ଶሻ࢞ ൌ ݁ିఊ‖࢞భି࢞మ‖
మ (5) 

with factor γ representing the kernel parameter. 

2.2 Least Absolute Shrinkage and Selection Operator 

The Least Absolute Shrinkage and Selection Operator (LASSO) is a regularization and 

variable selection method proposed by Tibshirani (1996) that has been extensively 

studied in the forecasting literature (for a survey on LASSO applications the interested 

reader is referred to Bai and Ng, 2008). When using the typical OLS linear regression 

model 

࢟ ൌ  (6)                                                    ࢼࢄ
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one tries to estimate the values of vector of the coefficients ࢼ based on the minimum 

residual squared error and are the independent variables. LASSO applies one more 

restriction to the model, attempting not only to minimize the squared error of the 

residuals, but also to eliminate uninformative regressors through weighting. In order to 

find the optimal solution in this trade-off between parsimony and high forecasting ability, 

LASSO minimizes the following 

minఉ೚,ࢼ ቂ
ଵ

ଶ௡
∑ ൫ݕ௜ െ ࢏࢞

൯ࢼࢀ
ଶ
൅ ∑ߣ หߚ௝ห

௣
௝ୀଵ

௡
௜ୀଵ ቃ                          (7) 

where ࢏࢞ is a vector of p-values at observation i and  λ is a regularization parameter. The 

imposition of the regularization parameter λ defines the parsimony of the model, with the 

number of the nonzero elements in the coefficients’ vector decreasing as λ increases. The 

optimization problem can be solved with any quadratic programming optimization 

method. 

2.3  Description of the Fluctuation Test 

The Fluctuation test relies on the null hypothesis that the forecasting error of the 

structural model is equal to the autoregressive model and does not vary over time against 

the alternative that the two models exhibit different forecasting performance. With a 

rolling window estimation for the two models, we compare their out-of-sample 

forecasting error over time and extract asymptotic p-values for evaluating the null 

hypothesis. Starting from an autoregressive model for h periods ahead forecasting	࢚࢟ାࢎ ൌ

଴ߚ ൅ ࢚࢟ሻܮଶሺߚ ൅  with L representing the lag polynomial of the model, the relative ,ࢎା࢚ࣁ

Mean Square Forecasting Error (rMSFE) of the structural model ࢚࢟ାࢎ ൌ ଴ߚ ൅ ࢚࢞ሻܮଵሺߚ ൅

࢚࢟ሻܮଶሺߚ ൅   can be computed as ࢎା࢚ࣕ
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ܧܨܵܯݎ ൌ ଵ

௠
൬∑ ሺොࣕ࢐ାࢎ

૛௧ା೘
మ

௝ୀ௧ି೘
మ

െ ࢎା࢐ෝࣁ
૛ ሻ൰                                         (8) 

where m represents the length of the rolling window, ࢚ࣁାࢎ is the forecasting error of the 

autoregressive and ࢚ࣕାࢎ the forecasting error of the structural model. The Fluctuation test 

is a rescaled version of the rMSFE, as follows: 

௧,௠ܨ
ைைௌ ൌ ොିଵ݉ିଵߪ ଶ⁄ ቀ∑ ොࣕ࢐ାࢎ

૛௧ା௠/ଶ
௝ୀ௧ି௠/ଶ െ ∑ ࢎା࢐ෝࣁ

૛௧ା௠/ଶ
௝ୀ௧ି௠/ଶ ቁ                    (9) 

for ݐ ൌ ݉ ൅ ݄ ൅݉ 2,…⁄ , ܶ െ ݉ 2 ൅ 1⁄  where ߪොଶ is a Heteroskedasticy and 
Autocorrelation Consistent (HAC) estimator of the asymptotic variance ߪଶ ൌ
൫ܲିଵݎܽݒ ଶ⁄ ∑ ൫ොࣕ࢐

૛ െ ࢐ෝࣁ
૛൯்

௝ୀ௠ା௛ ൯, with ܲ ൌ ݊ െ݉. 

The null hypothesis of the test is that the forecasting performance of both models is the 

same at each point in time, that is: 

:଴ܪ ࢚൫ොࣕܧ
૛ െ ࢚ෝࣁ

૛൯ ൌ ݐ			,0 ൌ ݉ ൅ ݄,… , ܶ                                    (10) 

Critical p-values for various significance levels and various window and sample sizes are 

provided by Giacomini and Rossi (2010).  

2.4 The Data 

We compile monthly observations for the time period spanning January, 1871 to March, 

2015 for the CPI, the short and long-term interest rates. The CPI and the ten-year 

constant maturity Treasury bills rate are obtained from the data segment of Professor 

Robert J. Shiller’s personal webpage2. While, the short-term interest rate till 2013:12 

comes from the website of Professor Amit Goyal3, and then updated till 2015:3 from the 

FRED database of the Federal Reserve Bank of St. Louis. Note that, the short-term rate is 

measured by the three-month Treasury bill rate from 1920 onwards, and prior to that is 

based on an estimation, as in Goyal and Welch (2008), using the Commercial paper rates for 

New York City, which in turn, are obtained from the National Bureau of Economic Research 

                                                            
2 http://www.econ.yale.edu/~shiller/data.htm. 
3 http://www.hec.unil.ch/agoyal/. 
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(NBER) Macrohistory data base.  In Table 1 we report the descriptive statistics of the series 

for the natural-logarithms of the CPI and the Term-spread of the two interest rates. 

Table 1 Discriptive Statistics of the series 
 CPI Term-spread 
Mean 53.154 0.909 
Median 17.800 0.940 
St. Deviation 65.412 1.395 
Skewness 1.475 -0.625 
Kurtosis 3.778 5.236 
J-B test (p-value)         0.000***     0.000*** 

Note: *** denote rejection of the null hypothesis about normality according to the J-B 
test. 

According to the Jarque-Bera test (Jarque and Bera, 1987) the null hypothesis about 

normality is rejected at 1% level of significance. In what follows all values of the CPI 

refer to its natural logarithm. In Figures 1 to 4 we depict the evolution of these series. 

 
Figure 1: Monthly logarithmic CPI-all series. Grey areas denote NBER recessions. 
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Figure 2: Monthly short-term interest rate. Grey areas denote NBER recessions. 

 
Figure 3: Monthly long-term interest rate. Grey areas denote NBER recessions. 
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Figure 4: Monthly term-spread series. Grey areas denote NBER recessions. 

After the collapse of the Bretton Woods fixed exchange rate system the CPI exhibits a 

significant trend in the post -1971 period. From Figures 3 and 4 the two selected interest 

rates appear to follow a unit root process and are cointegrated4, while the term-spread 

(Figure 5) appears mean reverting. Since all variables appear to exhibit structural breaks 

we apply the Bai-Perron (2003) multiple structural breaks test in order to test the null 

hypothesis of no structural breaks against the alternative of the existence of a fixed 

number of structural breaks according to different information criteria (Table 2). 

  

                                                            
4 The results of the maximum likelihood cointegration test (Johansen, 1991) are available from the authors 
upon request. 
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Table 2: Bai-Perron Multiple Break test results 
Breaks Log-Likelihood Schwarz 

Criterion 
LWZ 

Criterion 
Panel A: CPI    

0 -9658.891 8.365 8.373 
1 -7977.967 6.425 6.449 
2 -7430.351 5.799 5.839 
3 -7313.307* 5.672 5.727* 
4 -7293.486 5.657* 5.729 
5 -7293.147 5.665 5.754 

Panel B: Term-Spread    
0 -3021.358 0.669 0.678 
1 -2623.713 0.217 0.241 
2 -2582.788 0.178 0.218 
3 -2490.788 0.080 0.136 
4 -2442.871* 0.033* 0.105* 
5 -2553.554 0.170 0.258 

Note: Selected number of breaks for each criterion are denoted with an *. 

As we observe from Table 2, both series present multiple structure breaks. According to 

the Schwarz Information Criterion (Schwarz, 1978) the CPI series has 4 structural breaks, 

while the Liu-Wu-Zidek (LWZ) criterion (Liu et al., 1997) and the log-likelihood detect 

3 structural breaks. In Panel B we report the results on the term-spread series. According 

to all three criteria the term-structure series has 4 structural breaks. The existence of a 

structural break renders common unit root tests such as the Augmented Dickey-Fuller 

(Dickey-Fuller, 1981), the Phillips-Perron (Phillips and Perron, 1988) and the 

Kwiatkowski–Phillips–Schmidt–Shin test (Kwiatkowski et al., 1992) irrelevant. 

Moreover, the existence of more than one structural break does not allow for the 

application of the commonly cited in literature Zivot-Andrews (Zivot and Andrews, 

1992) and Perron (Perron, 1997) unit root tests. Both these tests examine the null 

hypothesis of the existence of a unit root in the presence of only one unknown structural 

break, which is not suitable to our cause. Thus, we apply the recently proposed unit root 

test of Enders and Lee (2012).  

In contrast to Zivot-Andrews and Perron tests, the Enders and Lee (2012) test 

approximates the series with low frequency components of the Fourier expansion without 

the need to define the points of the breaks. Moreover, the test is able to capture unit root 
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processes in the presence of multiple linear and nonlinear forms of structural breaks. 

Following Enders and Lee (2012) we use a small number of frequency components to 

avoid over-fitting the series and allow the evolution of the nonlinear trend to be gradual. 

In Table 3 we report the Lagrange Multiplier (LM) test statistic of the unit root test for up 

to three frequency components.  

Table 3: LM statistics of the Enders and Lee Unit Root Test 
  Frequency Components Decision 
  1 2 3  

ln(CPI) 
Levels -0.593 -1.536 -1.714 I(1) 
First 

Differences 
-22.512*** -22.920*** -23.455*** I(0) 

Term-
spread 

Levels -8.366*** -8.706*** -8.975*** I(0) 

Note: *** denotes rejection of the null hypothesis about non-stationarity at 1% level of 
significance. 

As we observe from Table 3, the natural logs of CPI exhibits a unit root in levels but is 

stationary in first differences. In contrast the term-spread is stationary in levels. Thus in 

the empirical part of our analysis we use first differences of the natural logs of CPI (i.e., 

month-on-month inflation rate) and levels of the term-spread. 

3. Empirical Results 

Following Rossi and Sehkposyan (2010) we select the width of the rolling window for 

model estimation m=120 (which is equivalent to a 10 year period) sliding at one 

observation each time. The rolling window procedure is appropriate as: a) it ensures that 

intertemporal fluctuations in the forecasting performance of the models employed are 

revealed, b) we use only recent information that is most relevant to inflation forecasts 

and, c) using overlapping windows results in a smooth course over time. As with Stock 

and Watson (2003) we develop both an autoregressive and a structural model of each 

methodology. The lag order for both the autoregressive and the structural model is 

selected according to the Schwarz Information Criterion (Schwarz, 1978) in every 

window. We consider alternative forecasting horizons of 1, 3, 6, 12, 18 and 24 months 

ahead and evaluate the forecasting performance of each model according to the the Mean 

Absolute Percentage Error (MAPE) criterion, which is 
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100
݊

෍ฬ
ො௜ݕ െ ௜ݕ
௜ݕ

ฬ
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																																																ሺ11ሻ	

where ݕො௜  is the forecast of the actual inflation rate and n is the total number of the out-of-

sample observations. We use the MAPE instead of the MSE as our metric for forecast 

comparison across the models, since the latter is affected by the level of measurements. 

Our dataset spans a very long period with a non-constant mean with respect to time 

(see Figure 1). Since we employ a rolling window approach to our forecasts, any MSE-

based inference is rendered misleading. In Table 4 we report the MAPE calculated on the 

entire out-of-sample period for the RW, the OLS regression, the LASSO and the SVR 

model.  

Table 4 Forecasting results based on the MAPE criterion 
  Forecasting Horizon 

  1 3 6 12 18 24 

RW  0.619 1.514 2.630 4.503 6.227 7.714 

OLS 
AR 0.551* 0.575 0.580 0.582 0.600 0.593 

Term-Spread 0.560 0.581 0.586 0.595 0.611 0.599 

LASSO 
AR 0.552 0.577 0.580 0.581* 0.594* 0.589 

Term-Spread 0.559 0.574* 0.583 0.588 0.595 0.588 
SVR-

LINEAR 
AR 0.554 0.581 0.574* 0.587 0.595 0.586 

Term-Spread 0.560 0.579 0.579 0.593 0.599 0.587 
SVR-
RBF 

AR 0.574 0.604 0.591 0.603 0.599 0.585* 
Term-Spread 0.597 0.610 0.600 0.605 0.589 0.593 

Note: * denotes the smallest forecasting error on each forecasting horizon, while in bold 
cases where the structural model outperforms the autoregressive one. All numbers 
express percentages. 

As we observe from Table 4, all models outperform the RW in their respective forecast 

horizon and the structural models outperform the autoregressive ones only sporadically. 

More specifically, the structural OLS model does not outperform the autoregressive one 

in any forecasting horizon. When it comes to the LASSO, the structural model is more 

accurate only on the 3 and 24-months ahead forecasting horizon. The structural SVR 

model coupled with the linear kernel outperforms its respective autoregressive model 

only on the 3-months ahead forecasting horizon, while the structural SVR-RBF model 

outperforms the autoregressive one only on the 18-months ahead forecasting horizon. 

Considering the different forecasting horizons, the autoregressive OLS model produces 
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the lowest forecasting error in 1-month ahead forecasts, while in 3-monthls ahead the 

most accurate model is the structural LASSO. The autoregressive SVR-LINEAR model 

adheres more closely to inflation in 6-months ahead forecasting, while in 12 and 18-

months ahead the autoregressive LASSO outperforms all the alternative models. In 24-

months ahead forecasting the most accurate model is the autoregressive SVR-RBF.  

Nevertheless, the differences in the forecasting errors between the linear and the 

nonlinear methodologies in all forecasting horizons are very small. Thus we do not find 

evidence in favour of applying the complex nonlinear methodologies examined in this 

paper as alternatives to the simpler linear OLS regression. Finally, the use of the term-

spread as a potential regressor in forecasting the U.S. inflation does not improve the 

forecasting performance in comparison to the autoregressive models. 

Departing from comparisons on the entire out-of-sample forecasted dataset, we perform a 

point-to-point accuracy evaluation with the use of the Fluctuation test. With the specific 

test we may be able not to pinpoint periods where the term structure model is more 

accurate than the autoregressive one.In Figures 5-8 we present the results of the 

Fluctuation test for the OLS, the LASSO, the SVR-LINEAR and the SVR-RBF models 

respectively. 
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Figure 5: Fluctuation test results for the OLS models. The fluctuating line represents the 
values of the test statistic while the upper and lower straight lines represents the 90% 
confidence band of the null hypothesis that the forecasting accuracy of both models is 
equal. 

As we observe from Figure 5 the structural model outperforms the autoregressive with 

statistical significance scarcely. The structural OLS is more accurate than the 

autoregressive OLS model before 1900 in 1, 12 and 18-months ahead forecasting and the 

autoregressive model in 6-months ahead forecasting. Interestingly in the 24-months 

forecasting horizon the structural OLS outperforms the autoregressive model with 

statistical significance from the entire 1929 Great recession period and up to 1940, the 

beginning of WWII. In Figure 6 we report the Fluctuation test results for the LASSO 

models. 
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Figure 6: Fluctuation test results for the LASSO models. The fluctuating line represents 
the values of the test statistic while the upper and lower straight lines represents the 90% 
confidence band of the null hypothesis that the forecasting accuracy of both models is 
equal. 

The results of the Fluctuation test for the LASSO models (Figure 6) reveal that as with 

the OLS models we can only scarcely reject the null hypothesis of equal forecasting 

ability of the two models and for only a small number of rolling windows. We observe 

some instances where the autoregressive model is more accurate than the structural one 

with statistical significance and the 1929-1940 period where the structural model 

outperforms the autoregressive one. On all other instances the null hypothesis cannot be 

rejected. 



19 
 

 
Figure 7: Fluctuation test results for the SVR-LINEAR models. The fluctuating line 
represents the values of the test statistic while the upper and lower straight lines 
represents the 90% confidence band of the null hypothesis that the forecasting accuracy 
of both models is equal. 
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Figure 8: Fluctuation test results for the SVR-RBF models. The fluctuating line 
represents the values of the test statistic while the upper and lower straight lines 
represents the 90% confidence band of the null hypothesis that the forecasting accuracy 
of both models is equal. 

Apparently, the results of the Fluctuation test for the SVR-LINEAR (Figure 7) and the 

SVR-RBF (Figure 8) are very similar with the ones from the OLS and the LASSO 

models. We reject the null hypothesis of equal forecasting accuracy between the 

structural and the autoregressive models on a very small number of rolling windows. The 

only common observation between the OLS, LASSO and the SVR-LINEAR models is 

the period 1929-1940 in the 24-months ahead forecasting horizon, where the structural 

outperforms the autoregressive model in all methods. As we observe from Figure 9, 

during that period the FED lowers the short term interest rate close to zero, while the 

long-term interest rate is lowered in a smaller degree. Thus, the term-spread reflects 

almost explicitly the long term interest rate and thus the expectations of the market 

participants in the future rate of the U.S. inflation. Interestingly, we observe analogous 
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term-spread values in the post-2008 period (Figure 10), but the term-spread cannot 

capture the evolution of inflation more accurately than the autoregressive model. 

 
Figure 9: Interest rates evolution during the period 1929-1949. 

 
Figure 10: Interest rates evolution during the period 2008-2015. 
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Overall, the analysis of the Fluctuation test suggests that only in a few rolling windows 

we are able to forecast more accurate the evolution path of the U.S. inflation based on a 

term-structure model than an autoregressive one. Our analysis on different linear and 

nonlinear methodologies and forecasting horizons provides robustness to our results. 

4. Conclusions 

In this paper we attempt to forecast the U.S. inflation with a very long (covering nearly a 

century and half) monthly dataset by employing both classical econometric and machine 

learning methodologies. In doing so, we use the linear OLS, the nonlinear LASSO and 

the nonlinear SVR models in both an autoregressive and a structural forecasting setting. 

Our dataset spans the period from January 1871 to March 2015 in monthly frequency. 

The structural models exploit the informational content of the term-spread in forecasting 

inflation. In order to evaluate the contribution of the term-spread in forecasting over time 

we use a 10 year rolling window. Our empirical findings suggest that when we consider 

the entire out-of-sample period, all models outperform the RW model in terms of the 

MAPE criterion. The autoregressive and structural models exhibit similar forecasting 

performance, regardless of the forecasting methodology. This result is also validated and 

from point-to-point examination based on the Fluctuation test of Giacomini and Rossi 

(2010), with the exception of the period 1929-1940. Overall, we conclude that models 

based on the term-spread are not efficient in point-forecasting the U.S. inflation and that 

the linear models should be preferred over the more complex nonlinear ones. A future 

line of research would be to evaluate the forecasting ability of the nonlinear models in 

terms of density forecasts for inflation in comparison to the linear OLS models. 
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