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“Anyone who stops learning is old, whether at twenty or eighty. Anyone who keeps learning
stays young. The greatest thing in life is to keep your mind young.”

Henry Ford
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FINITE ELEMENT MODELLING OF CREEP FOR AN INDUSTRIAL
APPLICATION

by Gareth Howard

Thermal power stations operate at elevated temperatures and pressures in order to at-
tain maximum available steam energy. At these high temperatures creep becomes a
dominant mechanism that needs to be considered. However, for many components,
the locations where peak stresses occur are unreachable to apply the commonly used
Non-Destructive Testing (NDT) techniques. This encourages the use of Finite Element
Analysis (FEA) to better predict the creep state in these complex components.

Commonly, creep damage models are used in conjunction with accelerated creep tests
to develop material models that can be implemented into a FEA to determine failure.
These approaches are often infeasible for industrial decision-making, leaving a gap for
more accessible commercially available models to be developed. This paper focuses
on using openly available creep data from the Japanese National Institute for Material
Science (NIMS). A creep strain model capable of modelling only the primary and sec-
ondary creep regimes was then chosen from the ANSYS database to fit this data. In
order to fully characterise the experimental data a multi-creep-model approach was
adopted that uses a family of creep models, instead of a single creep material model,
to characterise the probable range of responses. This methodology was applied to
an industrial application, namely an Intermediate Pressure (IP) valve operating under
creep-prone conditions. The multi-creep-model approach was incorporated into FEA
to analyse the variation in stress distributions. It was interesting to see that a variation
of 153% in the creep strain models only resulted in a 21% variation in the relaxed stress.
Worst case scenario life time calculations were then conducted using both a time-based
Larson-Miller approach and a strain-based ASME code approach. Both sets of results
showed that, for the specific component of interest, creep rupture lifetimes were in ex-
cess of 3000 years. It was therefore noted that, for the IP valve of interest, the operating
temperature and pressure combination were such that no worrisome creep damage oc-
curred. In conclusion, for the specific component analysed, the operating conditions
are such that creep based failure will not occur.

Keywords: Creep, Finite Element Analysis, NIMS experimental data
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Chapter 1

Introduction

1.1 Background

Due to increasing energy demands worldwide, power stations have come under ex-
treme pressure. This has led to an ongoing effort to extend the design life of compo-
nents in South African power stations. Many of these power stations have deteriorated
markedly with age, and as a consequence the structural loads on components which
are subjected to these extended lives may be such that failure is imminent. For this rea-
son the industry needs more accurate methods of modelling materials and predicting
remaining useful life.

A representation of the power cycle and the arrangement of major components in
steam power plants is shown in Figure 1.1. This schematic shows the general layout
of the steam turbines, and is by no means a detailed layout of components. The steam
turbines used for power generation usually consist of a high pressure (HP), interme-
diate pressure (IP), and low pressure (LP) section. Steam is heated to the prescribed
temperature and pressure by the boiler, and passed into the inlet of the HP turbine
to expand through a series of stages, increasing in blade height, to the exhaust of the
turbine. Each stage consists of a row of stationary blades fixed to the casing, as well as
a row of rotating blades attached to the turbine rotor shaft. After the steam exits the
HP turbine it is typically passed through the boiler for a reheat to increase temperature
and pressure before entering the IP turbine. Between the turbine sections are valves
which control the flow of steam into and between turbine sections. Lastly the steam
passes through the LP turbine and exhausts to a condenser. A series of pumps allows
the condensed water to be passed back to the boiler where the closed cycle process is
repeated [1].

The efficiency of the thermal power systems, specifically the steam turbines, is directly
related to the inlet conditions of the steam. Increasing the pressure and temperature of
the inlet steam leads to improved cycle efficiency. These high operating temperatures
however lead to challenges in the design and maintenance of components that are sus-
ceptible to creep, which is the irreversible deformation of material at high temperatures
[2]. The accurate prediction of the creep state of a material is thus of the utmost impor-
tance in making informed predictions on the remaining useful life of components.
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Figure 1.1: Simple schematic of steam turbine layout

1.2 Definition of creep

Creep is defined as time-dependent irreversible deformation at elevated temperatures
[2]. Most metals experience creep at temperatures elevated to approximately 40% of
their melting point temperature in K. Due to the fact that creep involves thermally
activated processes, which are generally time-dependent, creep strain and eventual
creep fracture can occur at stresses well below the macroscopic yield strength of the
material. In addition creep has no lower yield point below which permanent plastic
deformation will not occur. Creep is therefore assumed to be active when any non-zero
stress is present in the material.

Creep is generally considered to occur in three stages, namely primary creep, sec-
ondary or steady-state creep, and tertiary creep, as depicted in Figure 1.2. Primary
creep is characterised by a transient response in which strain rate ε̇ = dε/dt decreases
with time. This decreasing strain rate is believed to be due to a changing microstruc-
ture, causing increasing resistance to dislocation movement. Secondary creep, which
comprises most of the part’s life, is characterised by approximately linearly increas-
ing strain and is hence also referred to as steady-state creep. During secondary creep
there is an approximate balance between dislocation increase due to strain hardening
and dislocation annihilation due to recovery, hence the approximately steady creep
strain rate. Lastly, tertiary creep is characterised by exponentially increasing strain un-
til eventual rupture occurs. The onset of tertiary creep is usually macroscopically char-
acterized by the onset of necking and damage, and hence tertiary creep is short lived.
Additionally, an instantaneous strain ε0 is usually present due to the initial loading
conditions. This strain is mostly elastic, however it can contain plastic strain depend-
ing on the magnitude of the applied loading.

The change in the microstructure throughout the creep life of a component can be seen
in Figure 1.3, which shows the development of voids, which eventually form cracks
that can lead to failure. Initially, creep loading causes voids to form. These voids
slowly align and over time form microcracks in the microstructure. These microcracks
grow and lead to the formation of macrocracks, which can lead to eventual failure of a
component.
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Figure 1.2: Typical creep curve showing three stages of creep, adapted from [2]

(a) (b) (c) (d)

Figure 1.3: Void development over time showing (a) Isolated voids, (b) Orientated voids, (c) Micro-
cracks, and (d) Macro-cracks, adapted from [3]

1.3 Motivation

At the high operating temperatures experienced in thermal power plants creep be-
comes an important mechanism to consider. Engineers therefore need to make accu-
rate and reliable predictions of the creep state of components.

The creep state of a component is usually monitored on site by means of replica metal-
lography. This method consists of taking surface replicas of the component of interest,
viweing these replicas under a microscope, and counting the voids [4]. Estimations on
the extent of creep life damage can then be made by determining the voids/unit area.
Although replicas can give an accurate estimate of the creep state in a component, the
areas where failure is expected to occur are often unreachable to make use of replica
metallography. Furthermore, many components are located such that inspection re-
quires major downtime to the plant, leading to unnecessary production losses.

This encourages the use of Finite Element Analysis (FEA) to model components, and
make accurate and reliable predictions on the remaining useful life of said components.
By using FEA software, engineers can use built in creep material models to determine
the creep state of components after time at exposed loads.
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1.4 Objectives

With the above in mind, four objectives were identified for this study. These are:

1. To make use of available experimental creep data to fit creep material models.

2. To determine an adequate creep material model for use in an FEA package.

3. To develop a working Finite Element (FE) model that reliably estimates the creep
state in a specific component.

4. To develop a methodology for quantifying the creep life of components through
the use of FEA.

1.5 Approach

This research was conducted in conjunction with an industry sponsor, and thus certain
industry specifications were given. These were:

1. The ANSYS FEA package must be used due to the industry use of this package.

2. The component to be modelled is an IP valve made from a 1Cr-1Mo-0.25V cast
alloy steel.

With the above two specifications, the four predefined objectives can be approached
in a more efficient manner. Each of the four objectives were approached in a different
manner, listed as follows:

1. Due to the time constraints associated with a Masters degree, long term creep
tests were not conducted. Instead, openly available creep data was used to de-
velop the required creep material models.

2. Since the study is restricted to the use of ANSYS FEA software, research was
conducted on the available creep models. Analysis of the data alongside a small
numerical study is used to determine an adequate creep material model.

3. In order to develop a working FE model an in depth study was done to ensure a
converged and verified result was obtained.

4. In order to quantify the creep state of the specific valve of interest two method-
ologies are proposed to determine the remaining useful life. These included time
based and strain based lifetime calculations.

1.6 Thesis overview

The work conducted in this thesis is split into six main chapters.

Chapter 2 focuses on the relevant literature and theory required for the development
of the work throughout the remainder of the thesis. Creep is first discussed from a
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microstructural stand point. The mathematical modelling of creep is then presented,
and from that, its application to Finite Element Methods (FEM).

Chapter 3 is the first of the application based chapters, and develops the creep strain
material model required in ANSYS. The chapter focuses on the use of optimisation to
fit a selected creep strain model to the available creep data. This involved the devel-
opment of a new methodology that utilises multiple models, as opposed to a single
model to characterise the creep strain data.

Chapter 4 develops the working FE model required throughout the remainder of the
research. A study is done to ensure that a converged solution is obtained. This entailed
the use of a static model to determine correct boundary conditions and mesh proper-
ties. Thick wall theory was then used to verify the FEA results.

In Chapter 5 the results from both Chapter 3 and Chapter 4 are used to develop a steady
state FE creep model. A multi-model approach is utilised, and the results for each of
the numerical tests are shown and compared. Chapter 6 then develops a methodology
for calculating creep life based on the results from Chapter 5. This is done through the
use of time-based and strain-based calculations.

Lastly, Chapter 7 concludes on the entirety of the work done throughout the thesis. The
main outcomes are highlighted, and some recommendations for future work proposed.



6

Chapter 2

Literature

In Chapter 1 it was shown that due to the high operating temperatures in thermal
power stations, creep is a problem that cannot be avoided. The aim of this research is
to better understand creep on a continuum level, and to create a working FE model.
However, before looking at creep from a macroscopic continuum level, one needs a
better understanding of creep on a micro-structural level. With this knowledge we can
begin to better understand the mathematical models defining material creep, and their
use in FE applications.

This chapter focuses on the relevant literature required for understanding and mod-
elling creep. First, creep is discussed from a micro-structural point of view. Consti-
tutive creep models are then discussed, and their applications to FEA. A complete
discussion of the applications of these models to FEA is reviewed, including discus-
sions on previous work, creep capabilities of commercial FE code, and optimisation
techniques used to fit material models.

2.1 High temperature deformation of metals

Creep in metals is a phenomenon that occurs at elevated temperatures. On a micro-
structural level, creep is defined as the irreversible strain occurring when there is suf-
ficient energy in the system to cause thermal activation of slip processes [5]. In metals
this occurs in components that are subjected to stress over time at elevated tempera-
tures. An important note here is that creep is a time-dependent process, a manifesta-
tion of the anelastic behaviour of materials at high temperatures. Commonly, elasticity
theory assumes that elastic strain is a function of only stress (εel = f(σ)). Anelasticity
refers to the time dependency of strain, a common phenomenon of metals at higher
temperatures. That is, elastic strain is a function of both stress and time (εel = f(σ, t))
[5].

Figure 2.1 demonstrates this time-dependent behaviour of metals at higher tempera-
tures. It can be seen that upon unloading there is an instantaneous decrease in strain
equal in magnitude to the instantaneous strain which occurred at time zero. However,
there is also an additional recovery which is equal in magnitude to the anelastic strain
accumulated over time. A final unrecoverable strain is left, equal to the irreversible
creep strain accumulated up until the time of unloading.

The high temperatures associated with creep result in increased atom mobility. This is
analogous to the increased mobility of atoms in steam, in comparison to their state as
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Figure 2.1: Example of material anelastic behaviour, adapted from [5]

a liquid. At these elevated temperatures there is more thermal energy present in the
system, meaning that less mechanical energy, in the form of applied stress, is required
to deform the material. In the absence of creep, the deformation mechanisms are slip
and twinning [6]. However, at elevated temperatures there are additional deformation
mechanisms that become more significant, the most important of which are discussed
in the following subsection.

2.2 Creep deformation mechanisms

This subsection will discuss three of the most dominant creep deformation mecha-
nisms, namely grain boundary sliding (GBS), intergranular diffusion creep, and dislo-
cation creep [7].

2.2.1 Grain boundary sliding

As the name implies, GBS is the movement of grains relative to one another [5]. A
study done by Ando et al. [8] shows a sample surface that was scribed with a mesh.
After deformation the effect of GBS could be clearly seen by the misalignment along
the grain boundaries (GB), as depicted in Figure 2.2. Research has shown that although
the total accumulated creep due to GBS is small, it is a requirement for initiating cracks
along the grain boundary. Due to the fact that the amount of GBS is dependent on
the total GB area, a microstructure with larger grains will be less susceptible to grain
boundary sliding. Manufacturers in the turbine blade industry often use this fact to
their advantage by growing long columnar grain structures, or even eliminating grain
boundaries completely by using single crystals [9].

2.2.2 Intergranular diffusion creep

At higher temperatures the mobility of atoms increases due to the increase in system
energy. Therefore it is expected that diffusion-controlled processes become significant
at the higher temperatures present during creep deformation [5]. Intergranular diffu-
sion creep is unique in the sense that it is not dependent on the slip of dislocations, as is
the case in slip and twinning, but rather occurs through diffusion of vacancies between
grain boundaries. This mechanism occurs mainly at high temperatures, where many
vacancies are present. Such diffusional creep is believed to occur through the move-
ment of atomic vacancies from boundaries under tension to those under compression,
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GB

Figure 2.2: Illustration of grain boundary sliding, adapted from [8]

with the corresponding movement of atoms in the opposite direction [10]. The move-
ment of these atoms is seen as material movement, resulting in a strain in the direction
of the applied stress. Diffusional creep can be classified into either Nabarro-Herring
or Coble creep. In Nabarro-Herring creep the atoms are thought to move through the
grain itself, which results in the strain rate formulation given by

ε̇cr =
7σb3DV

d2kT
, (2.1)

where creep strain rate ε̇cr is written as a function of the applied stress σ, Burgers vec-
tor b, volume diffusivity through grain interior DV , grain size d, Boltzmann’s constant
k, and temperature T [10].

The stress range where Nabarro-Herring creep is present is given by σ/G < 10−4,
where G is the shear modulus of the material. It has since been proposed by Coble
[11] that at lower temperatures the diffusion of vacancies will not occur through the
grain itself, but rather along the grain boundaries. A modified creep strain rate equa-
tion for Coble creep is given by

ε̇cr =
50σb4DGB

d3kT
, (2.2)

where DGB is the grain boundary diffusivity [10].

It is worth noting from Equation 2.1 and Equation 2.2 that larger grains result in lower
creep strain rates, with Coble creep showing a higher sensitivity to grain size than
Nabarro-Herring creep. The movement of vacancies in both Nabarro-Herring and
Coble creep are shown schematically in Figure 2.3.
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(a) Nabarro-Herring (b) Coble

Figure 2.3: Movement of vacancies in diffusional creep for (a) Nabarro-Herring creep through the grain,
and (b) Coble creep along the grain boundaries

2.2.3 Dislocation creep

At relatively higher stresses, creep deformation is believed to be controlled by diffu-
sion movement of dislocations, known as dislocation creep [9]. In this mechanism it
has been proposed that dislocation creep is controlled by climb and glide of edge dislo-
cations. Dislocation climb occurs by making use of available vacancies to “climb” and
overcome an obstacle. Dislocation glide mechanisms however occur at much higher
stresses where the applied stress and thermal energy available is sufficient to overcome
an obstacle without climb processes from vacancies [9]. Due to the fact that the stresses
and strain rates associated with dislocation creep are so high, it usually falls outside
the scope of creep deformation and rather belongs to regimes such as hot working.

2.2.4 Creep deformation maps

To distinguish between different deformation mechanisms involved in creep defor-
mation processes, Ashby [12] developed deformation-mechanism maps. These maps
document which plastic deformation mechanisms are active under different combina-
tions of stress and temperature. Each mechanism appears on the map as a field and one
can therefore determine the dominant deformation mechanism, and thus the resulting
strain rate under specified conditions. These maps are developed for specific materials
of specific grain sizes and thus care must be taken to use the correct deformation-
mechanism map. An example of such a deformation-mechanism map can be seen in
Figure 2.4 where stress normalised by the shear modulus G is plotted against temper-
ature normalised by melting temperature Tm. In this map clear distinction is made
between the different deformation mechanisms listed thus far.

Another point worth noting is that creep deformation mechanisms do not remain con-
stant throughout the life of a specimen. A study done by Wilshire and Battenbough
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Figure 2.4: Example of deformation-mechanism map [12, 13]

[14] on a fine grained copper specimen found that there was an abrupt change in min-
imum creep rate gradient as stress varies. This is believed to be due to a change in
the dominant creep deformation mechanism. The results of this study are shown in
Figure 2.5. Notice that creep strain accumulates in the material at stresses well below
the yield stress of the material, verifying that creep strain does in fact accumulate at all
non-zero stresses.

Figure 2.5: Secondary creep strain as a function of applied stress for a fine grained copper specimen [14]

From the above it is apparent that indication of the dominant deformation mecha-
nism in creep deformation is hard to predict. Without the availability of deformation-
mechanism maps this task becomes further complicated. This therefore encourages the
use of other methods to predict creep deformation.
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2.3 Creep damage detection

Quantifying the actual amount of creep strain a component has accumulated over its
service life is not only of interest to predicting service life, but also of interest for veri-
fication of FE models. The most common non-destructive testing (NDT) method used
for assessment of accumulated creep strain is replica metallography. Recently though,
drawbacks to the use of microstructural replicas has prompted engineers to investigate
other methods such as ultrasonic and electromagnetic methods, hardness measure-
ments and nuclear techniques [4]. The following subsection briefly discusses possible
NDT methods for the detection of creep damage. A comprehensive explanation of the
theoretical background of the methods falls outside the scope of this thesis and thus is
not included here.

2.3.1 Replica metallography

Replication, also called replica metallography, is the most common method used in the
assessment of accumulated creep strain of components. A film is applied to a polished
surface and lifted to obtain a mirror of the surface [4]. This replica is then analysed un-
der a microscope, where creep damage is quantified by voids per unit area. Figure 2.6
shows an example of a replica for 1Cr-0.5Mo steel.

Figure 2.6: Example replica from 1Cr-0.5Mo steel after 168000 h service at 803 K [15]

As one would expect, the drawback to replication methodologies for creep evaluation
is that replicas can only be taken during maintenance periods at locations that are eas-
ily accessible. Additionally, replication methods cannot be used to detect subsurface
defects and thus could lead to potential misdiagnosis. A common assumption made
is that voids can be detected from relatively early stages of creep; however some stud-
ies have shown that in certain cases cavities are only detectable on the surface shortly
before fracture [4], thus making replica metallography techniques unreliable for early
detection and quantification of creep strain.

2.3.2 Ultrasonics

Ultrasonic techniques are capable of both internal and surface flaw detection, making
these methods capable of volumetric creep inspection [16]. It is however noted that a
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considerable drawback to the use of ultrasonics techniques is that they should be car-
ried out at room temperature, which is an obvious problem when dealing with creep.
In general, the determination of a flaw using ultrasonics is measured from the echo of
an outgoing pulse. Figure 2.7 demonstrates how the presence of a flaw will cause a
difference in the wave echo.

Figure 2.7: Schematic diagram of ultrasonic flaw detection [16]

2.3.3 Magnetic methods

For obvious reasons, magnetic methods are limited to ferromagnetic materials and thus
cannot be used for creep detection in materials such as plastic. In principle, magnetic
methods work by generating a magnetic flux in the part to be examined. A disconti-
nuity in the flux lines will cause a flux leakage, attracting iron particles to the crack
location [16]. Surface cracks are then visible as collections of iron particles. Magnetic
methods are therefore only suitable for detection of surface and near surface flaws. A
schematic of the process of magnetic flaw detection is shown in Figure 2.8.

Figure 2.8: Flaw detection using magnetic methods [16]

2.3.4 Hardness measurements

The microstructural changes of a specimen throughout its creep life affect all materials
differently. Studies have shown that in Cr-Mo steels (a common power plant material
and the subject of this study) the Vickers hardness decreases approximately linearly
between 20% and 90% of component creep life, followed by a sudden drop at rup-
ture [4]. It has therefore been proposed that creep can be observed and evaluated by
monitoring the change in hardness of a component. However, due to large inaccura-
cies caused by specimen preparation, site conditions and surface microstructures, this
method is not widely used.
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2.3.5 Strain measurement

Perhaps the most obvious method is that of strain measurement. Measuring the strain
of specific components allows for live time monitoring of the creep condition of said
components. These measurements can be used to predict the creep damage of other
specimens under similar operating conditions. Various methods are available for strain
measurement, with strain gauges being the most accurate method. However, strain
gauges are often not suitable for prolonged life at the operating conditions where creep
is of concern [4]. A much simpler, and obviously less accurate, method employs the
use of markers such as projections or pipes attached to the specimen of interest. The
movement of these markers can then be monitored over time.

Component life is then assessed by comparing strain to creep strain limits given by
engineering codes, for example [17, 18].

2.4 Creep life prediction

In engineering design it is important to ensure that failure does not occur by either rup-
ture or excessive deformation. At elevated temperatures this is achieved by designing
such that the allowable stress does not exceed the rupture stress, which is commonly
estimated with a 105 - 205 h design life at the required operating temperature [19, 20].

Ideally, one would like to base life calculations and failure predictions on long term
creep data. The Japanese National Institute for Materials Science (NIMS) has such long
term data openly available to the public. However, in cases where such data is not
available, the long term creep properties need to be predicted from relatively short du-
ration tests. The problem with accelerated creep tests is that, due to their associated
higher temperatures and stresses, there are different deformation mechanisms present.
Many parameters have however been developed that are independent of the creep de-
formation mechanism, with the Larson-Miller parameter being one of the most com-
mon ones.

The Larson-Miller (L-M) parameter is a time-temperature parameter that is used to ex-
trapolate long term rupture properties from short duration creep rupture tests. The
successful use of the L-M method is based on the argument that for a specific stress
there is a single temperature-time compensated parameter. The L-M parameter is
given by [21],

PLM = f(σ) = T (log tf + C), (2.3)

where the L-M parameter PLM is written in terms of the temperature T , the failure time
tf , and a constant C. When formulating the L-M parameter, the failure time tf could
be defined as either the time to actual material rupture tr, or alternatively, as the time
to reach a specific amount of strain, for example the time to the onset of tertiary creep
tter [22]. The premise of this methodology is that the time-temperature parameter can
be plotted against stress, and a polynomial of sufficient order fitted through this data.
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This polynomial can then be used to make inferences for other arbitrary temperature
and stress combinations. The form of this polynomial is usually given by [10],

f(σ) = c0 + c1 log(T ) + c2 log(σ)2 + c3 log(σ)3 + c4 log(σ)4. (2.4)

Other time-temperature parameters, such as the Orr-Sherby-Dorn parameter or Manson-
Haferd parameter, also exist [23]. These parameters have their own time-temperature
relations. The L-M parameter is however the simplest of the methods.

2.5 Creep resistant materials

The importance of considering creep during the design of components subjected to
loads at elevated temperatures is clear. More specifically, components in power plants
need to be designed with creep in mind. The efficiency of steam turbines is directly
related to the inlet temperature and pressure of the steam, and can be increased by
raising this inlet temperature and pressure. It is for this reason that creep resistant
steels are extremely important in power stations.

Creep resistant steels are those which are designed to withstand loads at high tem-
peratures, for prolonged periods of time. Boilers and boiler pipes, turbine blades and
casings, as well as casing bolts are all examples of components which are susceptible
to creep in power plants [24]. As a result of the long life times required by such compo-
nents, the selection of proper creep resistant steels is important to ensure failure does
not occur during operating life.

In the early 1900s the use of non-alloyed steels allowed inlet conditions of approxi-
mately 1.5 MPa and 350◦C in turbines. At the beginning of the 1920s the design of low
alloyed steels developed increasing interest, with these steels allowing for inlet condi-
tions of around 3.5 MPa and 450◦C [25]. The high creep resistance of these low alloyed
steels is due to the precipitation and solid solution strengthening resulting from the
addition of alloying elements of Cr, Mo, V, Nb, Ti and B. Various steel versions have
been developed over the years, with the 1Cr-Mo-V being the most commonly used
in the manufacturing of turbine rotors, casings, valves and bolts [23, 25]. Figure 2.9
shows the maximum operating temperatures of some of the creep resistant steels de-
veloped to date. It can be seen that the maximum operating temperatures vary quite
significantly for the different materials. Caution must thus be exercised when selecting
a grade of steel for a component.

The 1CrMoV alloy is the most widely used creep resistant steel and finds widely ac-
cepted use in the power generation sector, specifically in steam turbines. This alloy is
commonly used for components such as HP and IP turbines, where service temper-
atures can reach up to 565◦C [25]. Various chemical compositions of the alloy exist
depending on the size and location of the part. Typically these chemical compositions
are roughly 0.2-0.3%C, 1-1.5%Cr, 0.7-1.25%Mo, 0.25-0.35%V and 0.5-0.75%Ni [23].

Developments in creep resistant steels have allowed for increases in inlet steam prop-
erties to approximately 30 MPa and 620◦C in [25]. Figure 2.9 shows that the various
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Figure 2.9: Maximum operating temperature (◦C) of various creep resistant steels, based on 105 h aver-
age stress rupture strength of 100MPa [26]

creep resistant steels available have a wide range of maximum operating temperatures.
Choice of the correct steel for use in the correct component is therefore of the utmost
importance. Table 2.1 shows the creep resistant steels commonly used in the different
components of a steam turbine plant.

Table 2.1: Steam turbine components requiring creep resistant materials [24]

Inlet steam conditions
Component 18MPa, 540◦C 24MPa, 565◦C 30MPa, 600◦C
Rotor 1CrMoV, 2CrNiMoWV 1CrMoV, 2CrNiMoWV 10CrMoVNb

Blades 12CrMoV 12CrMoVNb, Alloy-80A 11CrMoVNb, Alloy-80A

Casings 2 1
4

CrMo, 1
2

CrMoV, 1CrMoV 1
2

CrMoV, 1CrMoV, 9CrMoVNb 9CrMoVNb

Casing bolts 1CrMoVTiB, 12CrMoVNb 1CrMoVTiB, 12CrMoVNb, Alloy-80A 11CrMoVNb, Alloy-80A

Piping 2 1
4

CrMo, 1
2

CrMoV, 1CrMoV 1
2

CrMoV, 1CrMoV, 9CrMoVNb 9CrMoVNb

2.6 Mathematical models

2.6.1 Constitutive creep models

Constitutive equations characterise the response of materials to applied loading, ma-
terial state, and environmental conditions. These material models are necessary in-
puts to analysis, including FEA. In the simulation of the long term creep behaviour
of structures operating at elevated temperatures, we make use of constitutive models
for both the creep strain and the creep strain rate. Creep strain constitutive models
relate the creep strain εcr to time t, operating temperature T, and local stress σ in the
form εcr = f(t, T, σ). Creep strain rate models can also include the creep strain as a
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variable, ε̇cr = f(ε, t, T, σ) [27]. Various constitutive models are available to represent
the creep behaviour of engineering materials at elevated temperatures, in which each
regime (primary, secondary and tertiary) is usually modelled separately. Total creep
strain can then be modelled with a weighted addition of various models, in order to
obtain a fully defined creep curve. The purpose of this section is not to give an exhaus-
tive breakdown of all creep constitutive models that are available, but rather to touch
on the more common models and demonstrate the basics behind the formulations of
such models.

A summary of some of the most common primary creep models is given in Table 2.2.
All of these models have the capability of representing the decreasing creep strain rate
that occurs in the primary creep regime over time t. The rate of this decrease and mag-
nitude of the accumulated creep strain is adjusted by the constants A, B and c. An
interesting fact regarding the primary creep models is that they all, barring the expo-
nential model, have the ability to model secondary creep as well. In the special case
in which the deformation mechanism does not change between the primary and sec-
ondary creep regimes this could prove to be useful.

Table 2.2: Constitutive models for primary creep [27]

Model Constitutive equation
Logarithmic [28] ε = A log(1 +Bt)
Power [29] ε = Atc

Exponential [30] ε = A[1− exp(−Bt)]
Hyperbolic sine [31] ε = A sinh(Btc)

In a similar fashion the steady state creep rate ε̇min of secondary creep can also be repre-
sented by power, exponential or hyperbolic sine functions of stress. The classical form
of these equations is tabulated in Table 2.3.

Table 2.3: Constitutive models for secondary creep [27]

Model Constitutive equation
Power [32] ε̇min = Aσn

Exponential [33] ε̇min = A exp(Bσ)
Hyperbolic sine [33] ε̇min = A sinh(Bσ)

Tertiary creep models are rare due to this regime’s association with failure. However,
when necessary, a damage parameter is often used in conjunction with power or expo-
nential functions (i.e.: [34, 35, 36]) to model this often short lived regime. These models
will be discussed further in Section 2.7.

It is worth noting that there is not one single creep model that is best suited for all
creep problems, rather a model is chosen that best fits the available data. Due to the
long time frames associated with creep, it is often hard to obtain usable creep data. In
order to obtain correct estimations for constitutive creep model coefficients the analyst



2.6. Mathematical models 17

will often need to do a considerable amount of work with the use of justified assump-
tions.

Commonly, an engineer will make use of the simplest creep model and add com-
plexity to the model as necessary. One of the most common models used is the sec-
ondary power law creep model. This model however does not account for changes
in dominant deformation mechanism that are accompanied by a varying stress (i.e.:
Figure 2.5). In these scenarios a solution would be to use a switching creep model, in
which the model parameters are varied according to the current conditions. This is
represented by [23],

ε̇min =

{
A1σ

n1 , if σ ≤ σ∗

A2σ
n2 , if σ > σ∗,

(2.5)

where σ is the stress and σ∗ is the switching condition. This formulation can be modi-
fied to a more physical model, in which the deformation mechanism gradually changes
as the stress approaches the switching stress. This is represented by [23],

ε̇min = A1σ
n1 + A2σ

n2 . (2.6)

A comparison of these approaches is shown in Figure 2.10. Here it can be clearly seen
that a switching model results in an abrupt change in stress exponent n, which is seen
as the gradient of the curve. The smooth switching model more closely represents
what one would expect to see during a deformation mechanism change.
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Figure 2.10: Comparison of power law creep models given in Equations 2.5 and 2.6

2.6.2 Reduced normalised models

The Larson-Miller, Sherby-Dorn and Manson-Haferd parameters have shown good re-
sults for design purposes when attempting to approximate creep life. Wilshire and
Scharning [37] have however proposed a different method of predicting the long term



2.6. Mathematical models 18

creep data from available experimental creep data. The authors proposed that the be-
haviour patterns of a material could be defined in terms of just a few standard param-
eters, which can be simply monitored and measured. In order to do this the authors
made use of the available NIMS creep data for 1Cr-1Mo-0.25V steel forgings [38], and
attempted to characterize the experimental data with three “master curves”.

The first master curve attempts to predict the long term stress rupture data. In order to
create a master curve for all available data, the stress σ was normalised by the correct
ultimate tensile strength σUTS and the activation energy Q normalised to a single value
of Q∗ = 300kJmol−1, which is the expected value for alloy steels. The master curve is
given by [37],

σ/σUTS = e−k1[tf e
−Q∗/RT ]u , (2.7)

where tr is the time to fracture, and k1 and u are constants determined for different
levels of applied stress.

Similar master curves were developed for the prediction of the steady state creep strain
rate ε̇min and time to specific strain tε. These are given by [37],

σ/σUTS = e−k2[ε̇mine
−Q∗/RT ]v , (2.8)

σ/σUTS = e−k3[tεe
−Q∗/RT ]w , (2.9)

where k2, k3, v and w are again constants that are to be determined.

As an example consider the application of Equation 2.9 shown in Figure 2.11. Here it
can be seen that when the correct constants are determined, the master curves can be
derived with good correlation to the experimental data.

Figure 2.11: Master curves describing the time to specific strain values [37]
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From the results it can be seen that the creep data is characterised relatively well. These
three master curves, denoted as the Wilshire curves, have shown promise for other al-
loys such as 1Cr-0.5Mo, 2.25Cr-1Mo and 9Cr steels [39]. These equations therefore offer
an alternative approach to calculation of creep and creep fracture. These equations can
be implemented into commercial FE code with the use of user programmed subrou-
tines. This is however outside the scope of this thesis, and will not be investigated
further.

2.7 FE modelling of creep

2.7.1 Previous work

The use of Finite Element (FE) software to model the behaviour of materials at higher
temperatures allows engineers to make informed decisions on the remaining useful
life of components, as well as analyse failures to improve future designs. Effectively
modelling creep using Finite Element Analysis (FEA) allows engineers to obtain time-
efficient results of accumulated creep strain and stress distributions within compo-
nents, eliminating the need for the costly and time consuming methods outlined in
Section 2.3.

To date, many authors have done work in developing FE creep models, most of which
incorporate a damage model to account for the tertiary creep regime that leads to even-
tual failure. The majority of these damage models make use of a scalar creep damage
parameter ω which varies between ω = 0 (no damage) and ω = 1 (fully damaged)
[34, 35, 36, 40]. Becker et al. [35] defined the evolution of this damage parameter with
the time rate formula given by [35],

dω

dt
= A

σχr
(1 + φ)(1− ω)φ

tm, (2.10)

where A, χ, φ and m are model coefficients that need to be determined, and σr is the
rupture stress.

The damage parameter is then used to calculate the updated creep strain at each time
step. The uniaxial form of this strain update is given by [35],

dεcr
dt

= B

(
σ

1− ω

)n
tm, (2.11)

where B and n are again model coefficients that need to be determined. Note the
resemblence of Equation 2.11 to the simple power law model for both the primary
(εcr = Atc from Table 2.2) and secondary (ε̇cr = Aσn from Table 2.3 ) creep regimes.
This model is capable of capturing a primary and secondary creep response with the
multiplicative power law, as well as tertiary creep with its damage accumulation pa-
rameter.

The results from these damage models have shown good correlation with experimen-
tal data. The benefit to using the damage parameter ω is that the time to failure can
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be analysed by the time for ω to reach some upper threshold. Figure 2.12 shows an
example from a study done on a notched bar at elevated temperatures where the dis-
tribution of the damage parameter ω is shown [34]. Analyses like this make it possible
to determine at what time the damage parameter reaches a critical value, and where
this occurs.

Figure 2.12: Distribution of damage parameter ω from FE study of a notched bar[34]

Such damage models are rarely included in commercial FEA code, and users need to
make use of either in-house FE code, or user subroutines to explicitly calculate dam-
age parameters and input them back into creep strain calculations. Most commercial
codes do offer this functionality, however users have to be very knowledgeable in the
software to obtain accurate, converged results. This is however outside the scope of
this work, and only the built in commercial code models will be investigated.

The ANSYS FEA package, for example, does not make use of these damage models.
Rather, creep is included in a problem through the use of creep strain material models.
Ellis and Zielke [41] have shown that, through the use of optimisation, these models
can be used to accurately predict the creep behaviour of materials. Figure 2.13 shows
the comparison of one of these creep strain models to a set of experimental creep data.
It can be seen that the model is able to accurately predict the creep strain data for a
variety of stresses.

Figure 2.13: Comparison of ANSYS creep strain model to experimental data at 823 K and varying
stresses [41]
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2.7.2 ANSYS FE code

Thus far it has been shown that there are various methods available to model creep.
The use of creep constitutive models with some sort of damage parameter has proved
to be a popular technique from literature. This Section will discuss the modelling of
creep using commercial FEA code, where the use of pre-developed models becomes
more appealing. FE codes such as NASTRAN and ABAQUS are some examples of the
available software. However, predefined outcomes for this thesis require the use of
ANSYS, and hence only the use of ANSYS FEA software will be discussed.

As mentioned, ANSYS makes use of strain based creep material models, as opposed to
the damage based creep models. These strain based material models make use of the
additive strain decomposition when calculating elastic, plastic and creep strain. This
additive law is given by [42],

ε̇tot = ε̇el + ε̇pl + ε̇cr, (2.12)

where each strain component is calculated separately. The stress-strain relationship is
then given by [42],

σ̇ = D : ε̇el, (2.13)

where D is the elasticity matrix. An important note is that the elastic, plastic and creep
strains are calculated independently, and do not affect each other in any way. The creep
strain rate is therefore explicitly defined as ε̇cr = f(t, T, σ, ε), or creep strain models as
εcr = f(t, T, σ), where the specific form is dependent on the material being modelled,
as well as the available experimental data.

ANSYS has 13 available creep models that are capable of modelling either primary
creep, secondary creep, or both primary and secondary creep. ANSYS does not at-
tempt to model tertiary creep due to its association with failure. The tertiary creep
regime is also associated with large strains, and hence large element distortions. This
leads to additional convergence issues, further complicating the analysis.

Before presenting the 13 creep models available in ANSYS it is worth discussing some
common features amongst all the models. Due to the fact that creep effects are ther-
mally activated, the temperature dependence of the process is usually represented
through the Arrhenius law, represented by [43],

ε̇cr ∝ exp

(
− Q

RT

)
, (2.14)

where Q is the activation energy for creep, R is the universal gas constant, and T is the
absolute temperature. Similarly, the stress dependency of the creep process is repre-
sented with a power law relation of the form given by,

ε̇cr ∝ σn, (2.15)

where n is known as the stress sensitivity exponent, and needs to be determined from
experimental data. When considering primary creep, ANSYS makes use of either a
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time-hardening or strain-hardening model to account for the decreasing creep strain
rate. The time-hardening and strain-hardening are given respectively by,

ε̇cr ∝ tm1 , (2.16)
ε̇cr ∝ εm2 , (2.17)

where m1 and m2 are again sensitivity exponents that need to be determined. Note
that in order to model a decreasing creep strain rate these sensitivity exponents need
to be negative.

With the above background, consider the 13 available creep models listed in Table 2.4,
where x1, x2, . . . , x12 are model coefficients that need to be determined by the user. It
can be seen that the models presented here have several similarities to the constitutive
models presented in Section 2.6.1. Also shown is the specific creep regime represented
by the model. Here it can be seen that the primary creep models all contain a time-
dependent term which is used to model the decreasing strain rate over time.

When picking the correct ANSYS model many factors have to be considered. Perhaps
the most influential factor when deciding on an adequate model is the form of experi-
mental data available for use to determine the required model coefficients. The ANSYS
creep models in Table 2.4 are discussed in more detail in the following subsections.

Strain hardening (ε̇cr = x1σ
x2εx3e−x4/T ) The strain hardening model contains both Nor-

ton’s law (power law) and a strain hardening term. In order for the model to capture
the decreasing strain rate of the primary regime, the constant x3 is usually negative.
Also to be noted is that the model can capture some of the secondary regime because
as time increases the creep strain rate approaches a constant value. The constant x4 is
used to model the temperature dependency of the problem.

Creep strain rate is written implicitly as a function of creep strain. The creep strain rate
is therefore dependent on the strain history and thus use of this model would usually
require one to have creep strain and creep strain rate experimental data available. This
is rarely the case, limiting the use of this model to special cases where specialised ex-
perimental tests are conducted that allow one to record strain as well as strain rate.

Time hardening (ε̇cr = x1σ
x2tx3e−x4/T ) The time hardening model contains the Ar-

rhenius equation, Norton’s law, and a time hardening term. Again the constant x3 is
usually negative to model the decreasing strain rate with time, with a value between
-0.5 and -1.0. The time hardening model can also model a significant portion of the
secondary creep regime for the same reasons as above. The constant x4 is again used
to model the temperature dependency of the problem.

The time hardening model is a lot more flexible in terms of required experimental data.
Only creep strain rate data over time is required to fit the required model coefficients.
Additionally this model can be integrated with respect to time, to require only creep
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Table 2.4: Summary of available ANSYS creep models [42]

Name Equation Regime
1 Strain hardening ε̇cr = x1σ

x2εx3cr e
−x4/T Primary

2 Time hardening ε̇cr = x1σ
x2tx3e−x4/T Primary

3 Generalised
exponential

ε̇cr = x1σ
x2re−r/T

r = x5σ
x3e−x4/T

Primary

4 Generalised
Graham ε̇cr = x1σ

x2 (tx3 + x4t
x5 + x6t

x7) e−x8/T Primary

5 Generalised
Blackburn

ε̇cr = f(1− e−rt) + gt

f = x1e
x2σ, r = x3(σ/x4)

x5 , g = x6e
x7σ

Primary

6 Modified time
hardening εcr = x1σ

x2tx3+1e−x4/T/(x3 + 1) Primary

7 Modified strain
hardening ε̇cr = (x1σ

x2 [(x3 + 1)εcr]
x3)1/(x3+1) e−x4/T Primary

8 Generalised
Garofalo ε̇cr = x1 [sinh(x2σ)]x3 e−x4/T Secondary

9 Exponential form ε̇cr = x1e
σ/x2e−x3/T Secondary

10 Norton ε̇cr = x1σ
x2e−x3/T Secondary

11
Combined time
hardening εcr = x1σ

x2tx3+1e−x4/T/(x3 + 1) + x5σ
x6te−x7/T Both

12
Rational
polynomial

ε̇cr = x1
∂εc
∂t

εc =
cpt

1 + pt
+ ε̇mt

ε̇m = x210x3σσx4

c = x7ε̇
x8
mσ

x9 , p = x10ε̇
x11
m σx12

Both

13
Generalised time
hardening

ε̇cr = ftre−x6/T

f = x1σ + x2σ
2 + x3σ

3

r = x4 + x5σ

Primary

strain over time experimental data.

Generalised exponential (ε̇cr = x1σ
x2re−r/T ) The generalised exponential law is one

of the variations of a time hardening creep law. Here the decreasing strain rate is mod-
elled with an exponential term that decreases as time increases. The rate at which this
decrease occurs depends on the coefficients chosen. The constant x4 is again used to
model the temperature dependency of the problem.

When looking at the function r = x5σ
x3e−x4/T , it is seen that stress appears in the ex-

ponential term. This therefore requires that the coefficient x5 be chosen such that the
exponential power is close to unity to avoid overtaking effects of this term. This is
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possible for cases where the stress range is small. However, for cases where the stress
range of interest is large, this coefficient will be unable to reduce the exponential power
to unity over the entire stress range.

Generalised Graham (ε̇cr = x1σ
x2 (tx3 + x4t

x5 + x6t
x7) e−x8/T ) The generalised Graham

model is another variant of the time hardening model. The decreasing strain rate is
modelled with negative coefficients for x3, x5 and x7. Here the constant x8 is used to
model the temperature dependency of the problem.

The multiple time exponents in this model will allow for more flexibility in modelling
the decaying strain rate of the primary regime. This model will therefore be useful
for primary regimes that have a significantly complex primary creep regime, where a
single time exponent cannot accurately capture the decaying strain rate.

Generalised Blackburn (ε̇cr = f(1 − e−rt) + gt) Similarly to the generalised exponen-
tial model, the generalised Blackburn model is a variant of the time hardening model
that uses an exponential function to model the decreasing strain rate. This model does
not not have a term that can be used to model temperature dependency of the problem.

Similar to the generalised exponential model, the functions f , r and g require the coef-
ficients to attain values such that unity is obtained when multiplying with stress. This
therefore means the model is limited to small stress ranges, as large stress ranges will
lead to overpowering terms.

Modified time hardening (εcr = x1σ
x2tx3+1e−x4/T/(x3+1)) Upon close inspection of the

modified time hardening model it can be seen that the model is simply the integrated
form of the original time hardening model. The model therefore has creep strain as the
subject of the equation, as opposed to creep strain rate in the time hardening model.
The constant x4 is again used to model the temperature dependency of the problem.

Modified strain hardening (ε̇cr = (x1σ
x2 [(x3 + 1)εcr]

x3)1/(x3+1) e−x4/T ) The modified
strain hardening model is a variant of the original strain hardening model. The con-
stant x3 is again usually negative to modelling the strain hardening that takes place as
time increases. Once again, the constant x4 is used to model the temperature depen-
dency of the problem. Due to the model’s similarity to the original strain hardening
model, it suffers from the same drawbacks as previously noted.

Generalised Garofalo (ε̇cr = x1 [sinh(x2σ)]x3 e−x4/T ) The generalised Garofalo model
does not include any time or strain hardening dependence and thus is used to model
the secondary creep regime where the strain rate is approximately constant. The con-
stant x4 is used to model the temperature dependency of the problem.

The hyperbolic sine term should be kept close to unity to avoid dominating explosive
affects. This means that the stress range of interest is limited, with large stress ranges
leading to either under or overestimating creep strain rate.
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Exponential form (ε̇cr = x1e
σ/x2e−x3/T ) The exponential form model is another model

that doesn’t include any time or strain hardening dependence and thus is used to
model the approximate constant steady state creep strain rate in the secondary regime.
Here the constant x3 is used to model the temperature dependency of the problem.

In order to avoid dominating exponential affects, the exponential term should be kept
close to unity. For the same reasons as previously discussed, the model should be used
for small stress ranges of interest.

Norton (ε̇cr = x1σ
x2e−x3/T ) The Norton model is the last model used to model the

approximately constant steady state creep strain rate in the secondary regime. This
model is probably considered the simplest of all secondary models, where the con-
stant x2 is the stress sensitivity parameter discussed in previous sections. The constant
x3 is again used to model the temperature dependency of the problem. The Norton
model is possibly the most widely used secondary creep model, and sees common use
in most theoretical creep life and design calculations.

Combined time hardening (εcr = x1σ
x2tx3+1e−x4/T/(x3 + 1) + x5σ

x6te−x7/T ) The com-
bined time hardening law is the first law that is capable of modelling both the primary
and secondary creep regimes. It can be seen that the model incorporates both a time
hardening and Norton model. As time increases the time hardening component de-
cays away, leaving Norton’s model for the secondary creep regime.

Theoretically this is the most promising model, being able to capture both primary and
secondary effects. The inclusion of both primary and secondary models allows one to
more accurately capture the creep curve where primary or secondary models alone are
unable to do so.

Rational polynomial (ε̇cr = x1
∂εc
∂t

) The rational polynomial model is possibly the most
complex of all the models discussed. It is the second and last model that can be used
to model both the primary and secondary creep regimes. Its over complexity is often
its downfall, with the complexity allowing almost any curve to be approximated. For
this reason the model is usually limited to metals in the nuclear industry, where other
models are unable to capture the complexities of the creep curves.

Generalised time hardening (ε̇cr = ftre−x6/T ) The generalised time hardening model
is a variation of the original time hardening model which can be used to model the
primary creep regime. The exponential constant for time is again usually negative to
model decreasing strain rate with time. Here, the constant x6 is used to model the
temperature dependency of the problem. It is noted from the equation that there is no
coefficient for the stress sensitivity exponent, which can lead to problems in accurately
modelling the stress dependency of the creep curve. This model should therefore be
used in cases where a low stress sensitivity is present.
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2.8 Determination of model parameters

Modelling of creep requires the determination of model coefficients for the chosen
model. Depending on the complexity of the model chosen, and the available exper-
imental data, these coefficients can either be determined directly from the experimen-
tal data with analytical methods, or through the use of optimisation algorithms. The
following subsections will discuss the use of optimisation to determine these model
parameters. The theory reported in this section is heavily based on the optimisation
theory presented by Arora [44].

Optimisation is defined as a mathematical technique of finding a maximum or min-
imum value of a function of several variables subject to a set of constraints. When
attempting to fit a curve through a set of data points this function is usually written in
the form of a cost function, which is the difference between the function approxima-
tion and the experimental data points. This cost function is then iteratively decreased
in order to find a minimum.

The most commonly used cost function is the Least Squares Error (LSE) which can be
described by Equation 2.18,

LSE =
N∑
i=1

(datai − f(xi))
2 , (2.18)

where the square difference between the ith experimental data point and the function
approximation at this point is summed over all N experimental data points. The set of
coefficients that results in a minimised LSE is then considered the converged solution
x∗. This is demonstrated in Figure 2.14 where the function y = mx is fitted through the
experimental data by minimising the LSE.
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Figure 2.14: Regression line through experimental data using LSE cost function

Consider a plot of the LSE for this sample problem shown in Figure 2.15. Here it can
clearly be seen that the converged solution of m = 1.0732 is located at the minimum of
the LSE.
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Figure 2.15: LSE for sample problem

The following subsections will discuss a few of the key points outlining the optimisa-
tion procedure. It should be noted that the purpose of these sections is not to give a
detailed overview of optimisation, but rather to touch on a few of the key concepts.

2.8.1 Search methods

Search methods broadly refer to the methods used to locate a local minimum for the
cost function. Two of the most common methods will be discussed here, namely gradi-
ent based search methods and direct search methods.

Gradient based search methods make use of the cost function gradient to search for a
minimum. These gradients can either be calculated analytically, or approximated us-
ing methods, such as forward difference or central difference approximations. Due to
these methods’ dependence on function gradients, it is a requirement that the function
is smooth and at least twice continuously differentiable around the feasible domain.

Direct search methods on the other hand do not make use of gradients in searching for
a minimum. These methods only make use of function values in the search process,
and are therefore significantly cheaper computationally. Additionally, these methods
require less information, and can therefore be quickly implemented in scenarios where
there is not much experimental data available.

2.8.2 Problem constraints

Problem constraints refer to the constraints on the function variables that need to be
solved. These constraints can be in the form of either inequalities, which set limits on
the maximum or minimum values of coefficients, or equality constraints which fix co-
efficient values to specific user requirements. These constraints effectively reduce the
size of the design space to a space containing only predefined feasible solutions.
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Unconstrained optimisation algorithms on the other hand refer to the complete free-
dom of variable solutions. Variables are not constrained in any way, resulting in an
infinitely wide design space.

2.8.3 Stop criterion

The stopping criterion is the tolerance set by the user to terminate the optimisation
algorithm at a local or global minimum. The most common tolerance is the tolerance
on the change in function value or function gradient value. It is assumed that once this
change is less than a specified tolerance, the optimisation algorithm reached either a
local or global minimum.

Care must be taken to ensure that optimisation algorithms have converged at a global
minimum and not a local minimum. A global minimum is defined when f(x∗) <
f(x) for any point in the feasible domain. A local minimum on the other hand is
defined when f(x∗) < f(x) for any point in a small vicinity of x∗. This is depicted in
Figure 2.16.

Figure 2.16: Illustration of local and global function properties, adapted from [44]
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Chapter 3

Creep model characterisation

The accuracy of FE creep models depends on the accuracy of the chosen creep model. It
has been seen that there are various methods in place to model creep using FE methods.
ANSYS makes use of strain based creep models to calculate updated displacements
and stresses over time. This chapter will focus on the use of optimisation techniques
to obtain the creep material models capable of representing the available experimental
data.

3.1 Experimental data

3.1.1 The problem

The time scales associated with creep can be in excess of 100kh (>10 years), making
creep experiments extremely long. This inevitably means that long term experimen-
tal creep results are extremely rare and hard to come by. This problem is commonly
solved by the use of accelerated creep tests. However, the results from these tests re-
quire extrapolation techniques such as the Larson-Miller calculations briefly described
in the literature overview. In order to create accurate constitutive creep models, long
term creep data is required. For this reason the author has decided to use the openly
available creep data supplied by the Japanese National Institute for Material Science
(NIMS). More specifically, the NIMS data base for 1Cr-1Mo-0.25V cast alloy steel will
be used. This is a commonly used steel in the manufacturing of turbine casings and
valves, and is the material specification of the component being analysed in this re-
search.

The NIMS data base is one of the largest in the world, with the launch of 100kh creep
rupture tests in 1966. Access to this experimental creep data allows for the use of creep
models which require long term creep data, allowing for a wider variety of models to
be used.

3.1.2 NIMS creep database

Variations between casting processes result in a variation of material properties. This is
due to the different tempering rates which, in short, result in different grain sizes. This
can lead to different material properties for “paper equivalent” materials ordered from
different manufacturers. Additionally, when casting large parts, different areas of the
part are exposed to different cooling and tempering rates, leading to a natural material
property variation through the part. In order to take this into account the experimental
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data from NIMS is presented for nine different castings, all having undergone differ-
ent tempering processes. These casting specifications can be found in Appendix A. For
the purpose of further discussion one needs only consider the names of these castings,
which are VbA, VbB, VbD, VbF, VbG, VbH, VbJ, VbM and VbN.

Consider the IP valve of interest, shown in Figure 3.1. It can be seen that the compo-
nent has dimensions greater than 1 m, with an average wall thickness of approximately
80 mm. It is therefore not hard to imagine that an alloy steel component of these large
dimensions will experience different cooling and tempering rates throughout the cast-
ing process.

>1m

>1m

Figure 3.1: Photo of IP valve of interest

In order to fit constitutive creep models (εcr = f(t, T, σ), ε̇cr = f(ε, t, T, σ)), it is neces-
sary to arrange the experimental data in a similar form. For this reason, creep rupture
data is of no use when attempting to generate creep constitutive models. An example
of the creep data presented for a single casting is shown in Table 3.1. Each casting has
experimental data for a variety of temperature and stress combinations. The time to
reach a set of pre-specified creep strains (0.5%, 1%, 2% and 5%) is then recorded for
each of these combinations. Along with time to specific strains, data for instantaneous
strain ε0, time to tertiary creep tter, minimum creep strain rate ε̇min, and time to rupture
tr is also given. A schematic showing how each of these properties are determined is
shown in Figure 3.2. It can be seen that all properties are as previously defined, with
the time to tertiary creep determined by the intersection with the 0.2% minimum creep
offset.

As was noted in the section on constitutive models for creep, the different creep regimes
are modelled with different equations, with tertiary creep often not modelled in FEA
packages. It is therefore necessary to determine which experimental data is in the ter-
tiary creep regime, and omit these points from the experimental data which will be
used to fit the models. From the data it can be seen that the time to 5% strain t5% is
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Figure 3.2: Schematic of creep curve showing how various properties are determined [45]

approximately equal to the time to fracture tf for all cases. Additionally, there are data
points for which the time to total strain is greater than the time to tertiary creep (t% >
tter). With all of these data points omitted from the usable set, data points falling into
either the primary or secondary creep regime are left. These are shown highlighted in
Table 3.1.

Table 3.1: Extract for casting VbA from NIMS data sheet [46]. Primary and secondary creep data is
shown with highlighted cells.

T
(K)

σ
(MPa)

ε0
(%)

Time to total strain, t% (hrs) Time to
tertiary

creep, tter
(hrs)

ε̇min
(%/hr)

Time to
rupture,

tr
(hrs)

0.50% 1.00% 2.00% 5.00%

723
412 0.257 5890 15600 19400 NA 15100 2.6E-05 19841.6

373 0.238 24400 36500 40500 NA 30000 6.1E-06 40712.2

333 0.199 46300 68900 80400 85300 53000 2.9E-06 85835.9

773
294 0.193 1400 2120 2680 3180 1580 1.1E-04 3373.0

265 0.175 1870 2890 3870 4850 1780 5.9E-05 5283.2

235 0.145 6700 28600 NA NA 43800 2.1 E-05 44004.8

196 0.114 6980 16700 33100 59100 37200 5.4 E-05 60844.8

823
235 0.150 106 201 324 457 168 2.2 E-03 524.0

196 0.122 500 1720 4250 NA 5040 3.8 E-04 5425.0

196 0.138 373 1510 NA NA NA NA NA

Note that the creep strain at zero time is exactly zero, and any instantaneous strain is
due to the initial application of the load. The data supplied by NIMS does not make
any distinction between the different strains in the specimen (e.g. elastic, plastic and
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creep), and thus the reported strains are total strains εtot. Constitutive creep mod-
els normally do not include any contributions for this initial instantaneous creep, and
model only creep strain. Therefore the total strains reported in the NIMS data have to
be adjusted by instantaneous strains for each specific temperature and stress combina-
tion. An example of processed data is tabulated in Table 3.2 for casting VbA at 723 K,
where εcr is the corrected creep strain. It can be seen that the data is now in the desired
form of εcr = f(t, T, σ).

Table 3.2: Pre-processed extract for casting VbA at 723 K

εtot (%) ε0 (%) εcr (%) t (hrs) T (K) σ (MPa)
0.50 0.257 0.243 5890 723 412
0.50 0.238 0.262 24400 723 373
0.50 0.199 0.301 46300 723 333

The preprocessed data shown in Table 3.2 is now in a form that represents the constitu-
tive creep equations presented in Chapter 2. Note that for the remainder of this thesis
there will be no differentiation between total strain εtot, and creep strain εcr. The creep
strain will therefore be denoted by strain ε, unless otherwise stated. The following sec-
tions of this chapter will focus on model choice, and parameter determination for said
model.

3.2 Model selection

ANSYS is the chosen FEA package for this research, and thus the creep model to be
used is limited to the 13 models listed in Table 2.4. Figure 3.3 shows the NIMS ex-
perimental data for multiple castings at 823 K and 196 MPa. Looking at the data it is
immediately clear that there is significant variation amongst the castings, a factor that
will undoubtedly affect the confidence of the creep model prediction.
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Figure 3.3: Scatter plot of NIMS experimental creep data for multiple castings at 823 K and 196 MPa
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Ignoring the variation amongst castings, a creep model is still required. From the data
it is evident that the model is not primary creep dominant, and thus the primary only
creep models can be eliminated from the selection list. This leaves the option of a sec-
ondary creep model, or a model capable of modelling both primary and secondary
creep. Figure 3.4 shows an initial fit of two models against the NIMS experimental
data for a fixed temperature and stress. These models are the Norton secondary creep
model and the combined time hardening (CTH) creep model, capable of representing
both primary and secondary creep. From this initial fit it is clear that the amount of
primary creep is not negligible, and hence a secondary creep model is perhaps not the
correct model choice. The CTH model on the other hand has the added benefit of being
able to capture this initial primary creep.
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Figure 3.4: Initial estimate of model fits for all castings at fixed temperature T = 823 K and stress
σ = 196 MPa

The CTH model is clearly the simplest of the two available primary and secondary
models (Table 2.4), and is hence the chosen model for this data set. For fluidity the
CTH model is repeated here, given by,

ε =
x1σ

x2tx3+1 exp
(
−x4

T

)
x3 + 1

+ x5σ
x6t exp

(
−x7
T

)
. (3.1)

Note that, for the fixed temperature and stress data shown above, the confidence in
the CTH model prediction is limited by the data scatter. However, the CTH model is
the only model, of the 13 available, that is capable of capturing the general form of the
data and is therefore the obvious choice for this data set.

Before continuing, consider the units associated with the CTH model. Creep strain,
a unitless parameter, is calculated from stress (MPa), time (sec) and temperature (K).
Due to the large magnitude of these variables it is expected that the magnitude of the
scaling factors x1 and x5 will be extremely small. Additionally, coefficients x4 and x7
are expected to be large, of magnitude order 104, due to their Arrhenius temperature
association. In order to avoid convergence issues in the optimisation algorithm, the
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CTH model of Equation 3.1 is scaled to ensure parameters of similar order of magni-
tude are obtained. This scaled CTH model is given by,

ε =
χ1σ

χ2tχ3+1 exp
(
−χ4

T

)
χ3 + 1

+ χ5σ
χ6t exp

(
−χ7

T

)
, (3.2)

where χ1, χ2, ..., χ7 are the scaled parameters. These are scaled such that x1 = 10χ1 ,
x2 = χ2, x3 = χ3, x4 = 104χ4, x5 = 10χ5 , x6 = χ6 and x7 = 104χ7.

Consider the results from Figure 3.4 which shows a fit for a fixed temperature and
stress (ε = f(t)). This type of model is discouraged for two reasons:

1. The large scatter in the data leads to little confidence in predictions.

2. The form of the model (ε = f(t)) makes modelling for arbitrary temperatures and
stresses inaccurate.

A possible alternative is to fit each casting separately, allowing for optimal results for
each specific casting. By utilising this approach the engineer is no longer assuming
each casting is the same material, but rather treating each casting as a separate mate-
rial, which is more accurate due to the variations in microstructes. This approach then
allows for the temperature and stress dimensionality to be added into the optimisa-
tion problem, making modelling for arbitrary conditions more accurate. A “family”
of creep models can then be used as input to Finite Element (FE) simulations, and the
resulting variation analysed to identify worst case scenarios.

3.3 Problem formulation

By modelling each casting separately and including the temperature and stress dimen-
sions in the optimisation problem, the scaled CTH model in Equation 3.2 models strain
as a function of time, temperature and stress (ε = f(t, T, σ)). The coefficients for this
model can be solved for by modelling the LSE in a minimisation problem given by,

f =
n∑
i=1

10χ1σχ2

i t
χ3+1
i exp

(
−104χ4

Ti

)
χ3 + 1

+ 10χ5σχ6

i ti exp

(
−104χ7

Ti

)
− εdata,i

100

2

, (3.3)

where n is the number of experimental data points available, and εdata,i is the i-th ex-
perimental data point. The LSE error cost function f is then minimised through the
use of a multi-start unconstrained optimisation algorithm.

Due to the non-linear nature of the cost function, a downhill simplex method was used
in the optimisation algorithm. The downhill simplex method, also called the Nelder-
Mead method, requires only function evaluations and no derivatives [47]. Figure 3.5
demonstrates the procedure associated with the simplex method. The method works
by constructing a simplex, which is a geometrical figure inN dimensions, consisting of
N+1 points (or vertices). In two dimensions this results in a simplex which is a triangle,
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and so on. The method calculates the function value at each of the simplex points to
determine the maximum function value. Convergence to at least a local minimum is
achieved by taking a series of steps, called reflections, that move the point with the
largest function value through the opposite face of the simplex. When the method
reaches a local minimum it contracts itself in all directions until it converges to a result
within the user defined convergence criterion.

Figure 3.5: Schematic of downhill simplex method [48]

Due to the fact that the downhill simplex method easily converges to local minima, the
problem is termed illposed. In order to try and locate a global minimum, a multi-start
process is utilised in which multiple random starting points are used and the best so-
lution saved.

From the NIMS experimental data in Figure 3.3 it can be seen that although the amount
of primary creep is not negligible, the time associated with primary creep is. This
means that majority of the experimental data is associated with the secondary creep
regime. Looking at the CTH model it can be seen that four coefficients are associated
with primary creep, where little data is available, and three associated with secondary
creep, where majority of the data lies. Therefore, in order to limit the uncertainty asso-
ciated with the coefficients that are solved, a three step process is adopted. This three
step process is summarised by:

1. Make an initial guess of the secondary creep coefficients based on available data.

2. Formulate the LSE cost function for a simplified CTH model in which the sec-
ondary creep coefficients (χ5, χ6 and χ7) are solved for.

3. Formulate the LSE cost function for the full original CTH model in which all
coefficients are solved for with a bias to the solution obtained in step 2.

This three step process is discussed in more detail in the following three subsections.

3.3.1 Initial guess

Optimisation algorithms usually require an initial guess of the coefficients to be made.
The closer this initial guess is to the solution, the faster convergence will occur. Due to
the fact that few of the coefficients have known values, it is very difficult to determine
adequate orders of magnitude for the initial guess. Coefficients χ4 and χ7 are expected
to be large due to the Arrhenius temperature association, setting them close to the order
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of unity (recall the 104 scaling). An initial guess for χ6, the secondary stress exponent,
can be obtained by considering the simple Power law creep model (ε̇min = Aσn). By
using the available minimum strain rate data it is possible to get an approximation for
χ6 by determining the gradient of the log(σ)− log(ε̇min) experimental data. The results
from this analysis are shown in Figure 3.6 for casting VbB. It can be seen that the stress
exponent χ6 is approximately of order magnitude 10.
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Figure 3.6: Casting VbB curve fit results for power law creep model

The uncertainty associated with the remaining coefficients meant that a trial and error
procedure needed to be followed. It was determined that numbers of magnitude or-
der 10 for these remaining coefficients resulted in the best results. Using these random
numbers in conjunction with the initial guesses for χ4, χ6 and χ7 it was possible to
generate a complete set of random starting points with the correct order of magnitude.
In order to avoid the solution converging to the same local minimum with each restart
the initial guess was randomised for each restart. However the magnitude order for
the initial guess remained the same.

3.3.2 Simplified CTH model

The use of a simplified CTH model can be utilised to first determine the secondary
model coefficients for the full CTH model. From the experimental data it appears that
the data is analogous to a straight line with a y-intercept greater than zero. By omit-
ting the time exponent from the CTH model of Equation 3.1 it is possible to obtain a
secondary model which incorporates a constant primary creep offset. This therefore
models an instantaneous primary creep, with a constant secondary creep. This simpli-
fied model is given by,

ε = 10χ1σχ2 exp

(
−104χ4

T

)
+ 10χ5σχ6t exp

(
−104χ7

T

)
, (3.4)

where the exponential time coefficient χ3 is omitted, with the primary term now solely
representing the magnitude of primary creep. This is analogous to a straight line with
a y-intercept, as shown in Figure 3.7a. This model can be used in a LSE formulation
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similar to Equation 3.3 and solved for to obtain a good estimate of the secondary creep
coefficients χ5, χ6 and χ7. A summary of the two step process is given in Figure 3.7,
where it is seen that the simplified CTH model provides a reliable estimate for the full
CTH model.

Simplified secondary model
Exp. data

(a)

Simplified secondary model
Full CTH model
Exp. data

(b)

Figure 3.7: Multi-step optimisation process showing (a) use of simplified CTH to determine secondary
coefficients, and (b) use of full CTH model to obtain better fit

3.3.3 Full CTH model

The multi-start unconstrained simplex optimisation strategy is applied to the simpli-
fied CTH, a good estimate of the secondary creep model coefficients are obtained. By
biasing the coefficient results of the full CTH model to these results it is possible to
optimise the full CTH model coefficients, and obtain a model capable of modelling
both primary and secondary creep. In order to do this the use of regularisation is
considered, where an extra term is added to the initial least squares residual objective
function which penalises deviations of the coefficients from a chosen solution. The
penalty term P is given by,

P = w
( x

x∗ − 1
)2
, (3.5)

where P is written in terms of the weighting vector w, the preferred solution x∗, and
the current solution x. The preferred solution here refers to the solution obtained from
optimisation of the simplified CTH model. This means that any deviations away from
the coefficients determined from this simplified model are penalised, biasing the result
to the coefficients previously determined.

Adding the penalty function from Equation 3.5 to Equation 3.3, a new objective func-
tion is formulated which will allow one to solve the full CTH model coefficients, but
with a solution biased to that obtained from solving the simplified model of Equa-
tion 3.4. This new objective function f is given by,
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f =
n∑
i=1

10χ1σχ2

i t
χ3+1
i exp

(
−104χ4

Ti

)
χ3 + 1

+ 10χ5σχ6

i ti exp

(
−104χ7

Ti

)
− εdata,i

100

2

+ w
( x

x∗ − 1
)2
.

(3.6)

Again one must implement multi-start technique to try and converge to a global mini-
mum.

Although minimisation of the above objective function is unconstrained, one can choose
to constrain the sign of specific coefficients with the use of absolute values. This is in or-
der to force the coefficient solutions to be physically possible. For example, it is known
that the stress sensitivity exponents are required to be positive. Additionally, in order
for the creep model to predict an expected creep curve the coefficients χ1, χ3 and χ5

are required to be negative, with all other coefficients positive. With this in mind, the
objective function of Equation 3.6 is therefore modified to obtain,

f =
n∑
i=1

10−|χ1|σ
|χ2|
i t

−|χ3|+1
i exp

(
−104|χ4|

Ti

)
−|χ3|+ 1

+ 10−|χ5|σ
|χ6|
i ti exp

(
−104|χ7|

Ti

)
− εdata,i

100

2

+ w
( x

x∗ − 1
)2
,

(3.7)
which constrains the signs of the coefficients.

3.4 Preliminary results

The results of the best converged coefficients for the simplified combined time hard-
ening model are tabulated in Table 3.3. The best solution was determined from that
with the lowest mean percentage error, Ē, between the model and experimental data.
Due to the fact that the model is primarily based on a secondary model, one would like
to focus on the converged secondary constants, namely χ5, χ6 and χ7. It is interesting
to note that there is a large variation in the secondary stress sensitivity exponent χ6,
which strongly controls the gradient of the secondary component of the curve. This
again shows the large variation amongst the castings.

Considering the results reported in Table 3.3 it is clear that the results for casting VbA
and VbF are significantly different to the others. Upon inspection of the experimental
data for these castings it is seen that these castings do not show the same stress re-
lationship as the other castings. This is shown in Figure 3.8 where the experimental
data appears to be insensitive to stress variations. This could be due to differences in
testing conditions or the microstructure of the castings. The CTH model is incapable
of modelling this small sensitivity to stress, and therefore these castings have to be
omitted from the data set. Similar results are seen for casting VbH. It can therefore
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Table 3.3: Converged coefficient results for simplified CTH model (Equation 3.4)

Casting Ē χ1 χ2 χ4 χ5 χ6 χ7

VbA 0.1729 5.03 2.39 0.7066 0.01 1.54 2.3713
VbB 0.1126 0.11 1.40 1.0992 7.60 8.84 4.1356
VbD 0.1492 4.94 2.40 0.6629 6.96 8.64 4.1193
VbF 0.1787 5.35 2.33 0.5940 0.27 0.98 2.1041
VbG 0.1106 3.00 2.61 1.0816 7.52 10.27 4.7293
VbH 0.0667 1.55 1.54 0.8357 8.41 7.59 3.7090
VbJ 0.0695 5.20 2.42 0.6722 7.60 9.82 4.5720

VbM 0.1105 4.99 2.51 0.6627 8.46 12.26 5.4548
VbN 0.1322 5.00 2.46 0.6459 8.77 11.23 4.9545

be concluded that the CTH model is incapable of modelling the response for castings
VbA, VbF and VbH, and they can therefore be removed from the experimental data set
for all future analysis.
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Figure 3.8: Simplified CTH model results for casting VbF creep strain results which appear to be insen-
sitive to stress at (a) 773 K and (b) 823 K

Figure 3.9 shows the results for castings which yielded sensible coefficient solutions.
The graphs depict the NIMS data as experimental data points, as well as the model
approximations at the given stress and temperature. It can be seen that a good approx-
imation to the data is achieved, with an offset accounting for the amount of primary
creep.

From the results it is possible to choose a set of model coefficients x∗ that represent a
preferred solution, where the preferred solution refers to a solution that the user feels
is a good representation of the global minimum. This preferred solution is chosen to
give an average representation of the simplified CTH model results, and is used to bias
the results of the full CTH model. This means that the user is “driving” the solution
close to the preferred solution, and thus avoiding other minimums that are not a good
representation of the active creep deformation mechanisms. There is no exact science
to this process and the results are based mainly on trial and error, and experimentation
with various combinations of coefficients. With this in mind the preferred solution x∗

and weighting vector w are tabulated in Table 3.4, where the values were chosen to
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Figure 3.9: Simplified CTH model results for (a) casting VbD at 823 K, (b) casting VbG at 823 K, (c)
casting VbJ at 823 K and (d) casting VbN at 823 K

give the best seen average representation of the results from Table 3.3. Note that no
weighting is applied to coefficient χ3 due to the fact that no information is available for
it. Coefficients χ1 and χ5 were set based on user preference as these are simply constant
multiples in the equations.

Table 3.4: Preferred solution and weighting vector for penalty function

χ1 χ2 χ3 χ4 χ5 χ6 χ7

x∗ 6 2 -0.9 0.85 8 10 4.50
w 1 1 0 1 1 1 1

Optimising the full combined time hardening model results in the coefficients tabu-
lated in Table 3.5. Notice that casting VbA, VbF and VbH has been excluded in these
results. The average error over the range of castings is approximately 0.15% in the
creep strain, which instils confidence in the results.

The results for castings VbB and VbD are shown in Figure 3.10 and Figure 3.11 respec-
tively. It can be seen from the results in Tables 3.3 and 3.5 that the gradient for the
secondary creep stage (χ6) remains relatively constant for both the simplified and full
model. This is due to the regularisation that was used to penalise deviations away
from the preferred solution. Note however that the full CTH model captures the pri-
mary creep response of the material. This is highlighted in Figure 3.10 for casting VbB.
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Table 3.5: Converged coefficient results for full CTH model (Equation 3.2)

Casting Ē χ1 χ2 χ3 χ4 χ5 χ6 χ7

VbB 0.1039 2.38 1.76 -0.882 1.1345 7.25 8.42 4.0234
VbD 0.1330 4.47 1.45 -0.935 0.5805 5.60 8.07 4.1285
VbG 0.3137 2.81 1.54 -0.932 0.9154 6.34 9.97 4.8262
VbJ 0.0646 5.34 2.15 -0.905 0.7950 7.57 9.92 4.6272

VbM 0.1223 0.05 1.32 -0.910 1.3416 9.95 13.21 5.6011
VbN 0.2653 3.43 1.67 -0.814 0.9177 11.92 12.99 5.1573
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Figure 3.10: CTH model results for casting VbB at (a) 773 K, (b) zoomed primary creep area at 773 K, (c)
823 K, and (d) zoomed primary creep area at 823 K
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Figure 3.11: CTH model results for casting VbD at (a) 773 K and (b) 823 K
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A more complete set of results for all castings is reported in Appendix B, where the
results for both simplified and full CTH models are documented for the entire temper-
ature range. A point worth highlighting at this point is that the creep models shown
thus far are multidimensional. This means that only one model is used for each casting
to capture the entire temperature and stress range. These multidimensional models are
useful in that they can be used to model for arbitrary temperature and stress combi-
nations. This multidimensionality is better seen when looking at the models on a log
time scale. The results for casting VbD at 773 K are presented on a log time scale in Fig-
ure 3.12 where the stress multidimensionality is made more clear. Note that the same
model captures a variety of stresses accurately. In a similar manner the model captures
the data over the entire temperature range. The model is therefore a four dimensional
model of creep strain, time, temperature and stress.
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Figure 3.12: CTH model approximation for casting VbD at 773 K and multiple stresses

Lastly, consider Figure 3.13 which shows all of the creep models along with the entire
NIMS creep dataset. It can be seen that by utilising all of the models it is possible to
capture the entirety of the data set. The benefit of this approach is that no two models
in the family of creep models are parallel to each other. This means that a variety of
primary creep transients and secondary creep rates are modelled.

3.5 Stochastic analysis

Thus far it has been shown that by fitting each casting separately it is possible to gener-
ate a family of creep curves that captures the entire data set. In order to obtain a more
complete view of the data set, a stochastic approach is proposed where random creep
models are generated. In order to generate these random models it was proposed that
additional data should be generated. New random models can then be determined
from this new additional data. It is however required that this data have the same
form as the available experimental data, meaning the original and additional random
data sets should have similar distributions.
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Figure 3.13: Family of creep models for all castings at (a) 823 K and 235 MPa, (b) 773 K and 294 MPa, (c)
723 K and 373 MPa, and (d) 723 K and 412 MPa,

This methodology requires one to fit a multimodal PDF to the experimental data, and
sample random data from this distribution. Random creep models can then be deter-
mined by applying the above mentioned optimisation algorithm to the new random
data. This PDF is given by the multimodal Gaussian distribution in Equation 3.8 [49],

p(x) =
1

N
ΣN
n=1

1

(2πh2)1/2
exp

{
−||x− xn||

2

2h2

}
, (3.8)

whereN is the total number of data points and h is the standard deviation of the points
being fitted. One can then use the cumulative probability distribution to sample a set
of new data for use in the existing optimisation algorithms. Note that in this process
each dataset is broken up into its representative 0.5%, 1% and 2% creep strain subsets
from which the PDF of each of the subsets is determined from Equation 3.8 separately.
A summary of this methodology is explained in the flow diagram in Figure 3.14. It
can be seen that new random data has been generated that has the same form as the
original data, better resembling experimental data that would commonly be available.
Note that the flow diagram shows the process for a single subset of the data, with the
creep strain not explicitly shown. The random data set is then generated by sampling
from each PDF separately. The steps associated with this are summarised by:

1. Fit a multimodal PDF to the experimental data. Note that the data is normalised
with respect to time.

2. Calculate the cumulative probability distribution of the PDF.
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3. Random numbers between 0 and 1 are generated, and the corresponding nor-
malised time determined from these points.

4. Use sampled data as random data resembling the PDF of the original data.
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Figure 3.14: Flow diagram of multimodal PDF sampling methodology. Step 1: Fit PDF, Step 2: Cumula-
tive frequency, Step 3: Sample from cumulative frequency, and Step 4: Sampled data used as additional

random data.

Using this method an additional five creep models were generated using the optimi-
sation methodology previously described. A complete set of results, including both
the original casting models and random models, is shown in Figure 3.15. It can be
seen that a more complete representation of the data is now achieved, where the data
refers only to the original creep data and not the randomly generated data. The benefit
of using the stochastic methodology outlined in this section is that the random mod-
els generated are not necessarily constrained to the upper and lower bounds of the
original models. Instead, they add additional variation to the total model set, each
representing different transients and minimum creep gradients. A “fuller” view of the
data region is therefore achieved.

The converged coefficient results for these five random models are summarised in Ta-
ble 3.6. It can be seen that these coefficients show resemblance to the original coeffi-
cients obtained, meaning that similar deformation mechanisms are represented with
the random models.
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Figure 3.15: Complete set of creep models for all castings at (a) 823 K and 235 MPa, (b) 773 K and 294
MPa, (c) 723 K and 373 MPa, and (d) 723 K and 412 MPa,

Table 3.6: Converged random data coefficient results for full CTH model (Equation 3.2)

Description χ1 χ2 χ3 χ4 χ5 χ6 χ7

Set 1 4.92 1.98 -0.901 0.8105 6.84 10.34 4.9018
Set 2 3.65 2.11 -0.891 1.0050 7.13 9.44 4.5061
Set 3 4.41 1.80 -0.889 0.8401 8.15 11.16 5.0148
Set 4 2.96 2.14 -0.942 1.1099 8.99 12.01 5.2647
Set 5 4.11 1.67 -0.850 0.8101 6.07 9.06 4.5049

3.6 Discussion of results

Looking at the experimental data and creep model results it is clear that, due to the
spread in experimental data, it is not feasible to use a single model through the data.
Rather, a family of creep models should be used to capture the entirety of the data set.
The single fit models, as shown in Figure 3.4, utilised a creep model that was only a
function of time t. Using the multiple model approach and fitting each casting sep-
arately allowed for the temperature T and stress σ dimensions to be added into the
model, making for a more robust model.

Lastly, consider Figure 3.16 which shows the 95% confidence intervals for casting VbJ
at 823 K and 235 MPa. It can be seen that there is high confidence during the secondary
creep regime where more experimental data is available. However, during the initial
stages (primary creep) the confidence bands widen, representing the decrease in con-
fidence during this time. This is due to the fact that little to no data is available at the
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small times associated with primary creep. These wide confidence bands indicate that
caution should be used when making model predictions in these regions, and are by
no means a representation of the actual creep model which is expected. Note the use
of the log time scale once again, to aid in clarity of the results.
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Figure 3.16: 95% Confidence band for casting VbJ at 823 K and 235MPa

3.7 Concluding remarks

This chapter has shown that, by using a simple unconstrained optimisation algorithm,
the openly available NIMS creep data can be used to fit creep material models that can
be implemented into ANSYS.

It was shown that a simple secondary creep model is not capable of capturing an al-
most instantaneous primary creep. The CTH model implemented has separate terms
for both primary and secondary creep, which allows the model to capture this initial
instantaneous primary creep, as well as the change in deformation mechanisms be-
tween creep regime changes.

Finally, and possibly the most significant output of the chapter, it was shown that by
using a multiple model approach the entirety of the data set can be more accurately
captured. By implementing this approach the creep models are able to capture the
inherent natural variation of material properties through large components. Addition-
ally, a stochastic approach was followed to generate random creep models, giving a
more rounded fit to the data.
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Chapter 4

Initial FE modelling and elastic analysis

Complicated time-dependent models can take anywhere from a few hours to a few
days to solve. As a result, checking model accuracy and convergence criterion with
a full time-dependent model is very inefficient and can take several weeks or more
to complete. The elastic model can often be used as a tool to quickly asses the af-
fect that changes in the model will have on the desired outputs before running a full
time-dependent analysis. In this case the elastic model refers to the time-independent
model in which loads and boundary conditions are applied statically. A full elastic
model analysis is thus required before full time-dependent creep models are run. This
chapter highlights the elastic model analysis that was conducted to ensure accurate
and efficient use of the full time-dependent model.

4.1 Modelling geometry

Before one can begin to set up a FE model, an accurate geometry model is required.
Depending on the type of analysis, it is up to the engineers discretion as to how ac-
curate the model needs to be. Modelling of all small entities such as fillets, O-Ring
grooves and bolt holes leads to an increase in mesh density due to all the small geo-
metric elements that need to be captured. In circumstances where these small entities
do not have an affect on the structural integrity around the area of concern they can be
removed in order to achieve a better mesh count.

Due to the complex nature of IP valve operations, it is to be expected that the valve
casing will have many small geometric entities to account for correct seating and lubri-
cation of components, as well as firm and solid fixing of mounts to connecting entities.
In order to simplify the model and decrease solving time these small entities were ig-
nored. This meant that all small radii, seating/sealing steps and bolt holes were omit-
ted from the simplified geometry, with the exception of those close to the high stress
areas at the inlet and outlet flanges. A comprehensive study was conducted to ensure
that the results obtained from the simplified geometry did not differ significantly from
those of the original body.

Due to copyright issues, a complete drawing of the IP valve to be modelled cannot be
included. However, a dimensionless cross section of the part showing all major com-
ponent details is shown in Figure 4.1.
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Figure 4.1: Sketch of IP valve

4.2 Problem definition

4.2.1 Component operating conditions

Close representation of the operating conditions are required in order to generate ac-
curate results. Before further discussing the operating conditions of the component,
consider a representation of the hydraulic component assembly shown in Figure 4.2.
The hydraulics move along a centre shaft (not shown in the figure) and are held in
place by the control side assembly (left) and axially located by a hydraulic cap (right).
Also shown is the high stress area noted from a previous confidential study conducted
by the OEM.

Outlet

Intlet

High stress area

Valve body
Assembly components

Figure 4.2: Representation of IP valve assembly
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During steady state operating conditions the valve operates completely open with neg-
ligible pressure or temperature drop from inlet to outlet. Due to the high operating
temperatures the entire valve body is insulated with fibreglass blankets to ensure min-
imal heat loss to the environment. For this reason it is assumed that there is zero
temperature differential through the body material. The pressure P and temperature
T are therefore assumed constant throughout the whole body at steady state operating
conditions of P = 3.2 MPa and T = 510 ° C respectively.

On plant the valve is connected via a welded pipe to the inlet steam, and bolted via a
flange connection at the outlet. These connections are designed such that during steady
state operating conditions there are negligible reaction forces at these connections. The
hydraulic control side is located left of the body (as depicted in the assembly sketch),
with a hydraulic cap on the right side of the body, locating the shaft axially. Further-
more, the valve body is supported by the turbine floor, but is allowed to move laterally
along the floor to accommodate expansion and contraction of other components on the
turbine floor.

4.2.2 Material properties

The FE equations that are solved require accurate material properties if realistic re-
sults are to be obtained from the analysis. Due to the high operating temperatures,
the IP valve is cast from the creep resistant 1Cr-1Mo-0.25V alloy steel. The tempera-
ture dependent material properties are tabulated in Table 4.1, where RT refers to room
temperature of 20°C and CTE refers to the coefficient of thermal expansion. Steel is
incompressible and thus has constant density over the temperature range of interest.
Additionally, the change in Poisson ration has been assumed negligible over the tem-
perature range.

Table 4.1: Temperature dependent material properties for 1Cr-1Mo-0.25V alloy steel

Temperature °C
Symbol Unit RT 100 200 300 400 500 550

Density ρ kg/m3 7840
Young’s modulus E GPa 206 205 201 193 181 164 155
Poisson’s ratio ν - 0.3
CTE α 10−6/K - 12.2 12.9 13.4 13.9 14.3 14.5

4.2.3 FE model boundary conditions

First consider the support boundary conditions at the inlet and outlet of the valve.
Frictionless roller supports were applied at these locations to simulate the removal of
material. Additionally, frictionless roller supports were applied on the left side of the
valve where the hydraulic controls would be located. These roller supports could be
replaced with a mean pressure derived from closed cap conditions. Both scenarios
are equally correct, with the choice of roller supports based solely on user preference.
These three boundary conditions are depicted in Figure 4.3.
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With respect to the loading conditions, it was mentioned above that the valve operates
at a constant pressure and temperature of 3.2MPa and 510°C respectively. The internal
pressure was applied to all internal faces as shown in Figure 4.3. Note the location of
the seal preventing the pressure boundary condition acting past its’ location. Due to
the constant temperature throughout the entire body, the thermal boundary condition
of 510°C was applied to every node in the system.

Frictionless rollers
Internal pressure

Seal

Figure 4.3: Schematic of pressure and frictionless support boundary conditions

Finally, consider the hydraulic cap located on the right of the body. It is clear that re-
moving this cap without applying the correct boundary conditions will affect the high
stress area noted from Figure 4.1. For this reason it is required to model the hydraulic
cap in the assembly using contact between the cap and valve body. Consider the bolt
layout in Figure 4.4a which shows the layout of bolts that connect the hydraulic cap
to the valve body. Bolted connections are known to exert a pressure along a pressure
cone rather than directly along its area of contact [50]. This so called pressure zone is
depicted in Figure 4.4b.

(a) Bolt layout (b) Pressure cone

Figure 4.4: Schematics showing (a) Bolt layout for hydraulic cap attachment and (b) Pressure cone
caused by bolt fasteners (adapted from [50])
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The hydraulic cap adds significant stiffness to the valve assembly, and hence a com-
bination of bonded, frictionless and frictional contact is required to accurately model
the contact between the valve body and said cap. By considering the pressure cone
from Figure 4.4b, it can be assumed that the effective bolt area extends through the
entire tangential area of the bolts. This connection is modelled using a bonded con-
tact between the two bodies. The areas directly above and below the bolts are then
modelled with frictionless contact. The remaining area of contact between the cap and
body is modelled with a frictional contact. The coefficient of static friction µs = 0.5 is
assumed from the static coefficient of friction between two steel bodies. A summary of
the contact conditions are shown in Figure 4.5. The ANSYS implementation of these
three contact regions is shown in Figure 4.6.

Frictionless

Bonded

Frictional

Figure 4.5: Schematic of contact between hydraulic cap and valve body

(a) (b) (c)

Figure 4.6: Hydraulic cap contact regions for (a) Frictionless contact, (b) Bonded contact, and (c) Fric-
tional contact

4.2.4 Mesh convergence

By representing a body volume by a set of discrete elements one is inherently intro-
ducing errors into the model. For this reason mesh convergence is an essential part of
any FEA project. Mesh convergence refers to the process of iteratively increasing the
mesh density and determining resulting effect on the required outputs. As one would
expect, larger mesh densities result in longer solving times due to the increased num-
ber of equations that need to be solved. The aim of a mesh convergence study is to
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obtain a mesh density that results in a solution that is not affected by further refining
the mesh. This is, of course, to a certain extent up to engineering judgement, and the
engineer needs to make a decision on whether the increased solution accuracy is worth
the additional solving time.

By reducing the element size in the component it is possible to monitor the effect of
mesh size on the final stress solution. More specifically, the peak stress at the area of
interest is monitored. This peak stress location is the inner radius of the outlet flange,
as depicted earlier in Figure 4.2. The value of this peak stress is plotted against the
number of nodes in Figure 4.7 where it can be seen that increasing the mesh size past
approximately 800 000 nodes has little to no effect on the peak stress. Assuming that
the result for the finest mesh is the exact solution, it can be seen that the solution con-
verges to a result that varies by less than 2%. It can therefore be said that the final stress
solution is converged.
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Figure 4.7: Mesh convergence for full model using uniform mesh

4.3 Model simplification

Thus far the elastic model has incorporated the modelling of contact between the
valve body and the hydraulic cap (Figure 4.2). Contact models are highly non-linear
and hence require multiple iterations to solve. Due to the high coefficient of friction
(µ = 0.5) between the components, the model is highly non-linear and takes 11 iter-
ations to solve. When considering the time-dependent model, which in itself is ex-
pected to take more than 50 iterations to solve, a highly non-linear model will result
in extremely long solving times. By incorporating these contact non-linearities into the
model the solving time is expected to increase approximately ten fold (from approxi-
mately 50 to 550 iterations).

With the above in mind it is clear that further simplification of the model is required if
the solving time for the time-dependent model is to be reduced. Possibly, the largest
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time savings can be achieved by eliminating the contact non-linearities. However, sim-
ply omitting this contact and fixing the two bodies will result in an overly stiff model
due to the lost flexibility between the two bodies. In order to account for this loss in
flexibility the hydraulic cap stiffness can be reduced to add a certain amount of com-
pliance between the two bodies, the amount of which depends on the reduction in
stiffness.

By reducing the hydraulic cap stiffness, a simulated contact is created from the added
cap compliance. This resultant hybrid model is now linear, requiring only a single it-
eration to solve. Two steps, the results of which are reported thereafter, are required
when attempting to simulate the non-linear body contact with a hybrid model of re-
duced cap stiffness:

1. The model boundary conditions have changed and thus a new mesh convergence
study needs to be conducted

2. The correct cap stiffness needs to be determined to simulate the correct amount
of contact

In a similar manner to before, mesh density is increased uniformly throughout the
component and the peak stress at the area of interest monitored. The results of this
mesh convergence study are depicted in Figure 4.8 where it can again be seen that a
converged mesh is achieved. By assuming the result for the finest mesh is the exact
solution, it can be seen that the stress converges to within 2% of the exact solution.
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Figure 4.8: Mesh convergence for hybrid cap model using uniform mesh

Along with a mesh convergence study, a mesh refinement was also conducted whereby
the mesh density was refined in the area of interest and coarsened far away from this
area. This newly designed mesh has the added benefit of a smaller node count, aiding
in solution time, but with a similar accuracy. A comparison of the results from the orig-
inal and designed mesh are tabulated in Table 4.2. Note that the 2% is not achieved,
however, the added reduction in solving time outweighs the slight loss in accuracy.
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Table 4.2: Comparison of results for uniform and designed mesh of hybrid model

Mesh type Node count (105) Peak stress (MPa) Absolute error (%)
Uniform 42.11 56.84 0.92
Designed 20.50 55.91 2.55

The mesh comparison results reported in Table4.2 are a perfect example of how engi-
neering judgement needs to be used when using FE software. Although the designed
mesh yielded a larger error, the approximate 50% reduction in the node count results
in a solution time which is considerably reduced. This designed mesh along with the
hybrid cap implementation will result in extreme time savings, in total reducing the
solving time by more than a factor of ten.

Figure 4.9 shows the final mesh of the valve, where important aspects such as the
refined area, mesh continuity across the hybrid cap, and minimum element criterion
through thin sections can be seen. This is shown in more detail in Figure 4.10.

Figure 4.9: Mesh of entire valve body

Finally, the correct cap stiffness has to be selected in order to simulate the right amount
of contact. Reducing the cap stiffness introduces more compliance between the two
bodies, simulating a reduction in the coefficient of friction between the bodies. Simi-
larly, increasing the stiffness leads to less compliance and a higher simulated coefficient
of friction.

By systematically altering the cap stiffness and again monitoring the peak stress, the
correct stiffness can be chosen to achieve a simulated coefficient of friction of µ = 0.5
[51] between the bodies. Figure 4.11 shows the results of this stiffness study. From the
results it is clear that a higher stiffness results in a higher stress, which is clear evidence
of less compliance (more friction) between the two bodies. Using linear interpolation it
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(a) (b) (c)

Figure 4.10: Geometry mesh showing (a) Refined mesh at area of interest, (b) Uniform mesh between
valve body and cap, and (c) Minimum of two elements through thickness of thin sections

was determined that a cap stiffness of 81 GPa results in the correct compliance between
the two bodies, resulting in, for all intents and purposes, the exact same stress results.
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Figure 4.11: Maximum Von-Mises stress at critical flange location for a variation of hybrid cap Young’s
Modulus

4.4 Model verification

Before one can trust the results from an FEA the model must be verified against an-
alytical calculations and, where possible, validated against experimental results. The
processes followed in order to ensure that a valid FE model is used are discussed in
the following Section.

4.4.1 Boundary condition verification

At this point it is worth noting that boundary conditions applied to a FE model are of-
ten not an exact representation of the actual conditions encountered in practice. How-
ever, they are close enough that the small errors introduced are negligible. The friction-
less roller supports applied to the valve are assumed to be more restrictive than con-
ditions that would actually be encountered in practice, meaning that artificial forces
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are being applied at these supports. However, before adding more complexity to the
model it is worth checking that the reaction forces developed at these constraints are
close to the expected values.

The valve studied in this thesis is analogous to a pipe with an internal pressure. With
this in mind, it is necessary to determine whether the correct axial loads are present in
the body by checking that the sum of forces from the internal pressure is equal to the
sum of forces normal to the frictionless roller supports. This is checked by ensuring
the following criterion, given by Equation 4.1,

FPi − FR = 0, (4.1)

where FPi are the axial forces caused by the internal pressure Pi, and FR are the axial
reaction forces at the roller supports. The axial forces due to the internal pressure are
calculated from the pressure exerted on the internal axial area where the roller sup-
ports act. A detailed explanation and set of calculations for these forces are given in
Appendix C

The results of from the above test are summarised in Table 4.3 where it can be seen that
the largest error of 6.6% occurs at the control side where roller supports were used.
This error is sufficiently small to be neglected. One can assume this is due to discrep-
ancies in the calculation simplifications made, as well as the inherent FE error present
from modelling a continuous body with discrete elements.

Table 4.3: Summary of boundary condition validation results

Support FPi (kN) FR (kN ) % Error
Steam inlet 555.2 555.2 0.0

Steam outlet 579.1 579.1 0.0
Control side 1376.3 1285.5 6.6

It is realised that the assumption of frictionless roller supports at the steam inlet and
outlet is incorrect, adding artificial displacement restrictions. However, from the re-
sults it is clear that the errors introduced are so small that they cannot be seen.

4.4.2 Results verification

Due to the complex geometry of the valve being analysed it is unlikely that analytical
models will exist that accurately describe its stress state. However, there are parts of
the valve body that resemble simple geometries for which analytical models do exist.
More specifically the inlet and outlet flanges resemble thick walled pipes with an in-
ner pressure applied to them. Consider the geometry schematic in Figure 4.12 which
highlights the parts on the valve that resemble thick walled pipes. Also shown are two
points A and B which will be the locations that are verified against the analytical mod-
els.
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Figure 4.12: Locations of valve body representing thick wall pipes

Consider the axial stress σa, hoop stress σh and radial stress σr in a thick wall cylin-
der. Thick wall theory states that these three stresses are calculated according to Equa-
tions 4.2 through 4.4 [52],

σa =
Pir

2
i

r2o − r2i
, (4.2)

σh =
Pir

2
i

r2o − r2i

(
1− r2o

r2

)
, (4.3)

σr =
Pir

2
i

r2o − r2i

(
1 +

r2o
r2

)
, (4.4)

where ri is the inner radius, ro the outer radius, and r the radius to the point in the wall
where the stress is required. Note that the location of the verification points is on the
inner radius, meaning that r = ri.

The dimensions at both points A and B are summarised in Table 4.4. Note that the
inlet and output pipes are not exactly cylindrical, and hence average dimensions were
taken close to the point of interest.

Table 4.4: Dimensions at locations A and B

Pi (MPa) ri (mm) ro (mm)
A 3.2 260 315
B 240 300

Substituting the dimension values from Table 4.4 into Equations 4.2 to 4.4, and com-
paring with the results from the FE model shows that a general good agreement is
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achieved. The results from this analysis are tabulated in Table 4.5. These errors are
due to the fact that the body is not a perfect cylinder at the points of interest. Addi-
tionally, the surrounding complex geometry affects the stiffness in the assumed thick
walled pipes. Note that the results for point A differ from the theoretical values more
than point B. This is due to the fact that the cylinder assumption is more incorrect near
point A than it is at point B.

Table 4.5: Dimensions at locations A and B

Theoretical (MPa) FEA (MPa) % Error

A
σa 5.69 4.76 16.34
σh 14.58 12.01 17.63
σr -3.2 -3.18 0.63

B
σa 6.84 6.24 8.78
σh 16.88 16.09 4.68
σr -3.2 -3.18 0.63

The axial stress results documented above add extra confidence in the frictionless roller
supports applied at the inlet and outlet. There is an almost exact correspondence be-
tween the theoretical and FEA results, meaning that the boundary conditions are not
resisting the development of an axial load in these locations.

From the results above it can be concluded that the FEA model corresponds well with
expected stress values. The small differences that were noted can be assumed to a
more complex geometry than assumed in the theoretical calculations, and not due to
an error made in the FE model. With this in mind it can be concluded that the FE model
is verified, and the stress distribution throughout the component correct.

4.5 Concluding remarks

This chapter presented the use of an elastic model to quickly determine that conver-
gence criterion were reached. From the studies presented above it can be concluded
that a converged elastic model has been achieved. Geometry simplifications were used
to decrease mesh size and reduce solving time. The resultant geometry resembles the
structural characteristics of the valve, with unnecessary details omitted. The model
uses a designed mesh which is refined around the area of interest, reducing the node
count with an acceptable error of 2.55%. Lastly, a hybrid cap was introduced into the
model. This hybrid cap linearised the model by getting rid of contact between the two
bodies. The reduced stiffness of the cap allows for a certain compliance between the
bodies without the need to solve highly non-linear equations.

The final reduced model resulted in solving times that were dramatically decreased
from the initial full elastic model. With this in mind it can be concluded that the elastic
model developed here will result in converged creep results that are both accurate and
efficient.
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Chapter 5

Steady state FE creep model

From Chapter 3 a methodology was presented that generates a family of creep curves
through fitting each of the castings. This methodology was taken a step further, and
a stochastic element introduced into the family of creep curves through the use of a
multimodal PDF. In Chapter 4 an elastic model was then developed in order to ensure
a converged FE solution was obtained. This chapter makes use of both these results to
create a steady state FE creep model, where steady state refers to constant loads over
time. Results from the implementation of the family of creep curves are reported, and
the use of such a model in industry discussed.

5.1 Material model implementation

The creep material model is used in the ANSYS FE code to calculate the creep strain
component of the total strain. The total strain is then calculated according to the sum-
mation law (Equation 2.12). By Implementing a family of creep curves it is possible
to capture the spread of the data and determine worst case scenarios. As has already
been made clear, the CTH creep model will be used throughout this study. The original
CTH model, repeated here for consistency, is given by Equation 3.1,

εcr =
x1σ

x2tx3+1 exp
(
−x4

T

)
x3 + 1

+ x5σ
x6t exp

(
−x7
T

)
, (3.1)

where the original unscaled coefficients (x1, x2, ..., x7) are used, as opposed to the scaled
coefficients (χ1, χ2, ..., χ7). The coefficients therefore represent the exact coefficients
used in ANSYS. A summary of these coefficients for the original castings is reported
in Table 5.1. Note that from the optimisation only six of the nine castings resulted in
usable castings.

Table 5.1: Summary of original casting CTH model coefficients used in steady state FE creep model

Casting x1 x2 x3 x4 x5 x6 x7
VbB 4.16× 10−3 1,76 -0,882 11345 5.68× 10−8 8,42 40234
VbD 3.40× 10−5 1,45 -0,935 5805 2.49× 10−6 8,07 41285
VbG 1.57× 10−3 1,54 -0,932 9154 4.59× 10−7 9,97 48262
VbJ 4.55× 10−6 2,15 -0,905 7950 2.72× 10−8 9,92 46272

VbM 8.91× 10−1 1,32 -0,910 13416 1.13× 10−10 13,21 56011
VbN 3.69× 10−4 1,67 -0,814 9177 1.22× 10−12 12,99 51573
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In order to get a more stochastic view of the experimental data, random creep curves
were generated using the methods discussed in Section 3.5. The coefficient results from
this analysis are summarised in Table 5.2.

Table 5.2: Summary of random CTH model coefficients used in steady state FE creep model

Description x1 x2 x3 x4 x5 x6 x7
Set 1 1.20× 10−5 1.98 -0.901 0.8105 1.45× 10−7 10.34 4.9018
Set 2 2.24× 10−4 2.11 -0.891 1.0050 7.41× 10−8 9.44 4.5061
Set 3 3.89× 10−5 1.80 -0.889 0.8401 7.08× 10−9 11.16 5.0148
Set 4 1.10× 10−3 2.14 -0.942 1.1099 1.02× 10−9 12.01 5.2647
Set 5 7.76× 10−5 1.67 -0.850 0.8101 8.51× 10−7 9.06 4.5049

By implementing the above CTH models into an ANSYS steady state creep analysis
one is able to obtain the creep state in the valve body. Before looking at the results, two
key points should be noted:

1. The model was run at steady state conditions. This means it was assumed the
valve operates at constant pressure with no temperature gradient through the
material (i.e.: No start up or shut down simulated).

2. The ANSYS creep model is not a damage-based model, but rather a strain based
material model. This means that tertiary creep is not simulated and the model
will theoretically carry on a secondary creep path as time t approaches infinity.
This is discussed in more detail in Chapter 6.

5.2 Results

Before displaying the entire set of results, first consider the results for a single cast-
ing. The peak Von-Mises creep strain accumulation for casting VbN is plotted over a
100 kh period in Figure 5.1. The peak Von-Mises creep strain distribution at selected
time points is shown in Figure 5.2 thereafter. Note that creep strain does not occur
instantaneously under load, as does elastic and plastic strain. Rather the creep strain
develops slowly over time according to the creep material model used.

In a similar manner the peak Von-Mises stress for casting VbN is plotted over a 100 kh
period in Figure 5.3. Note that the stress relaxes over time, and reaches an almost
constant value at approximately 20 kh. The relaxation of the peak Von-Mises stress
distribution is shown in Figure 5.4. Again, four selected time points are chosen which
highlight important changes in the stress distribution. Notice that at time zero the
stress distribution is equivalent to the static model stress distribution. This is due to
the fact that no creep has occurred.

From the initial results for casting VbN it is clear that the majority of stress relaxation
occurs in the initial stages of creep exposure, and the stress remains relatively constant
thereafter. In the initial 5 kh period for casting VbN the stress relaxes by 21.5%, there-
after the stress only relaxes a further 7.3% between 5 kh and 100 kh.
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Figure 5.1: Critical Von-Mises creep strain accumulation for casting VbN
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Figure 5.2: Evolution of the peak Von-Mises creep strain distribution over time for (a) t = 0 h, (b) t = 0.5 h,
(c) t = 1 kh, and (d) t = 100 kh
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Figure 5.3: Critical Von-Mises stress relaxation for casting VbN
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Figure 5.4: Relaxation of peak Von-Mises stress distribution over time for (a) t = 0 h, (b) t = 0.5 h,
(c) t = 1 kh, and (d) t = 100 kh
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From this initial analysis on casting VbN it can be hypothesised that the majority of
stress relaxation is related to the primary creep regime, whereas the secondary creep
regime is not necessarily responsible for major stress relaxation. The validity of this
statement can be checked by considering the results from the rest of the original cast-
ings, as well as the probabilistic models created.

Figure 5.5 plots the accumulation of the peak Von-Mises creep strain over time for
all the original castings of Table 5.1. From the results it is immediately clear that the
accumulated creep strain is extremely sensitive to the CTH model coefficients. This is
the inherent uncertainty which is introduced by the initial scatter in the experimental
creep data.
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Figure 5.5: Accumulation of peak Von-Mises creep strain for original castings (Note that 10 ×
104 h = 100 kh)

The relaxed stress curves for all castings are shown in Figure 5.6. From these results it
can be seen that the relaxed stress curves for all the castings do not differ significantly.
The reason for this is believed to be the result of the non-linear interaction between
stress and strain in the CTH model. It can be seen from the results that although the
accumulated creep strains vary quite drastically, by 153%, the final relaxed stresses for
the original castings differ by no more than 20%. This result is encouraging and shows
that although there is wide scatter in the experimental creep data, and hence the pre-
dicted creep strain, the final relaxed stress is relatively constant for the various creep
models.

Before continuing it is necessary to ask the question, why is a long term steady state FE
creep model required? If the relaxed stress remains constant past approximately 5 kh,
is it possible to predict the creep strain using this relaxed stress? The FE model is then
only required to determine the relaxed stress in the initial period, and the creep strain
is extrapolated thereafter.

A small study done, again using casting VbN, showed that by assuming a constant
stress after 5 kh, 10 kh and 20 kh, the creep strain could be almost exactly predicted.
The results for each of these approximations in comparison to the actual model are re-
ported in Table 5.3. Note that as we use a more accurate relaxed stress, which is a stress
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Figure 5.6: Relaxation of peak Von-Mises stress for original castings for (a) entire stress relaxtion over
100 kh, and (b) initial relaxation over 20 kh

at a larger time period, the error gets smaller. However, the error for all three approx-
imations is less than 5%, and it can therefore be assumed that a 5 kh approximation is
sufficient. The results from this study are shown in Figure 5.7. Note that although an
error is introduced into the result, the approximation is conservative.

Table 5.3: Summary of extrapolation errors made for a variety of approximation times

Approximation
time 100 kh creep strain % Error

5 kh 0.02329 3.14
10 kh 0.02313 2.43
20 kh 0.02297 1.72
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Figure 5.7: Comparison of extrapolation results for casting VbN creep strain at multiple approximation
times for (a) the entire 100 kh range, and (b) final results at 100 kh

From this analysis it can be concluded that it is not necessary to run a steady state creep
model to 100 kh. Rather, it can be run up to 5 kh to determine the relaxed stress, and
the creep strain extrapolated thereafter using this assumed constant relaxed stress.

With the above results in mind, the random creep models generated were run for 5 kh
and the accumulated creep strain predicted up to 100 kh. The peak creep strain and
stress results for all models, original and random, are shown in Figure 5.8. From the
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results it can again be seen that although there is a large variation amongst the input
creep curves, there is, in comparison, a very small difference between the the relaxed
stress. More specifically, the relaxed stresses differ by no more than 21% for variations
of up to 153% in the creep strain models.
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Figure 5.8: Complete set of results for both original and random castings for (a) peak Von-Mises creep
strain, and (b) peak Von-Mises stress

5.3 Discussion of results

This chapter has presented the results from a steady state FE creep analysis using the
CTH creep models that were developed in Chapter 3, and the FE model from Chap-
ter 4. The original scatter in the experimental data, due to a combination of different
casting microstructures and normal creep data scatter, leads to a large variation in the
accumulated creep strain. However, although the accumulated creep strain over time
varies by up to 152.6% amongst the castings, the non-linear interaction between stress
and strain leads to relaxed stresses that vary by no more than 21.1%.

Additionally, it was hypothesised that the initial stress relaxation is related to the pri-
mary creep regime, whilst the almost steady state stress thereafter is related to the sec-
ondary creep regime. From looking at the complete set of results it can be concluded
that this is in fact true, and the initial stress relaxation is related to the primary creep
regime. The time frame associated with this relationship is probably of more impor-
tance than the relationship itself. The time frame means that the relaxed stress can be
assumed constant after a relatively short period of time. In this case, the relaxed stress
can be assumed constant after only 5 kh. The accumulated creep strain can then be
calculated analytically from the creep material model used, meaning that long term
FE creep models are not necessary. This greatly reduces the time required for single
runs, promoting the use of multiple creep models to get a stochastic view of all possi-
ble stress scenarios.

When running a single model the that fits experimental data in an average sense, the
engineer is inherently introducing errors into their analysis. When material scatter is
severe, as is usually the case with creep, these errors are magnified. However, by util-
ising the above results, one is capable of running multiple models over reduced time



5.3. Discussion of results 66

periods, thus making use of models that capture the entire set.

The next chapter will discuss the use of the above results in making remaining useful
life predictions, using both time-based and strain-based formulae.
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Chapter 6

Failure prediction

One of the objectives of this study is to develop a methodology to quantify the creep
life of components through the use of FEA. This chapter will discuss two methods for
estimating creep life, namely time-based and strain-based methodologies. The results
from Chapter 5 will be heavily relied upon for both of these methodologies. It should
however be noted that the operating conditions of the IP valve are outside the range
of the experimental data, and thus there will be an inherent error introduced into the
failure predictions.

6.1 Time-based analysis

When calculating component creep life the engineer will commonly make use of the
time-temperature parameters discussed in Section 2.4. These parameters make use of
creep rupture data for a variety of temperature and stress combinations, which are
commonly elevated to higher values to accelerate the creep tests. The benefit of using
the time-temperature parameters is that they are deformation mechanism indepen-
dent, and are therefore not affected by the different deformation mechanisms present
at these elevated temperatures and stresses.

An extract of a rupture data set from the NIMS database is given in Table 6.1, where the
rupture data for casting VbD is tabulated for 773 K and 823 K. Note the increasing rup-
ture times, from small times of approximately 24 h, to longer times of approximately
100 kh. The variation in temperature and stress combinations therefore results in a
mixture of accelerated and long term creep tests.

Table 6.1: Extract of NIMS creep rupture data for casting VbD at a variety of temperature and stress
combinations [46]

T (K) σ (MPa) tr (h) T (K) σ (MPa) tr (h)

773

412 23.6

823

294 64.0
373 170.0 235 1414.0
294 2992.8 196 5742.5
265 12130.7 176 12195.9
235 22533.5 157 19216.8
196 111232.9 137 40616.6

The form of the NIMS rupture data encourages the use of the Larson-Miller (L-M)
parameter, which is one of the time-temperature parameters used in the calculation of
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creep lifetime. The L-M parameter PLM is given as a function of the temperature T and
time to failure tf ,

PLM = f(σ) = T (log tf + C), (2.3)

where C is a constant [21]. C is reported to be approximately 20 [53, 54], and this is the
value that has been chosen for these calculations.

When formulating the L-M parameter, the failure time tf can be defined as either the
time to actual component rupture tr, or the time to a specific predefined strain, such as
the time to tertiary creep tter [22]. The latter is the more conservative assumption, and
would be preferred in an industrial application. Both formulations of the failure time
tf will be investigated here.

As discussed in Section 2.4, the L-M parameter can be plotted against stress, with a
polynomial of sufficient order fitted through the data. This polynomial is then used
to make failure time estimations at different temperature and stress combinations. For
this data set it was determined that a simple logarithmic polynomial is sufficient to
capture the data. This polynomial is given by,

σ = A+B log(PLM), (6.1)

where A and B are constants that need to be determined.

Equation 6.1 is fitted to both the creep rupture and time to tertiary creep NIMS data,

σr = 13901.74 − 3192.86 log(PLM), (6.2)
σter = 14575.22 − 3352.88 log(PLM). (6.3)

The results for each fit are shown in Figure 6.1.
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Figure 6.1: Plot of stress vs L-M parameter using NIMS creep rupture data [46]

In order to demonstrate the application of a time based failure analysis, consider the
worst case scenario results from Chapter 5. By using the worst case scenario relaxed
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stress the engineer is making a conservative calculation, assuming that the microstruc-
ture at the location of the peak stress is such that the largest relaxed stress will occur
there. From Chapter 5 the worst case relaxed stress is 50.09 MPa. Lifetime calculations
were carried out through manipulation of the L-M parameter, allowing one to estimate
creep life for arbitrary temperature and stress combinations. A sample lifetime calcu-
lation showing this is given in Appendix D.

The results from using both the rupture and tertiary creep formulation are summarised
in Table 6.2. From the results it is clear that at these low stresses failure will not occur
due to creep alone. Additionally, as expected, the tertiary creep formulation is more
conservative. This is due to the fact that failure is associated with the onset of tertiary
creep as opposed to actual material rupture.

Table 6.2: Life time results for worst case scenario relaxed stress

Problem formulation Stress (MPa) PLM tr (h) tr (years)
Rupture 50.09 21793.17 68.06× 106 7764

Tertiary creep 21485.00 27.50× 106 3137

It should be noted from the results that very small differences in the L-M parameter
result in large differences in the predicted time to failure. This is due to the sensitivity
and uncertainty in the L-M parameter formulation. However, by utilising the tertiary
creep formulation the user is automatically adding a safety factor to the analysis that
accounts for this uncertainty in the L-M formulation.

In a similar manner, one can predict the stress at which failure will occur at 100 kh,
200 kh and 300 kh, at the operating temperature of 783 K. These stresses are reported in
Table 6.3, where the tertiary creep L-M formulation has been used for conservatism. It
can be seen that these stresses are significantly higher than the relaxed stresses obtained
in Chapter 5.

Table 6.3: Maximum relaxed stress calculated for specified required lifetimes

Required lifetime, tr (103 h) PLM Stress (MPa)
100 19575 185.66
200 19811 168.21
300 19949 158.10

Assuming a worst case scenario, in which no stress relaxation occurs, it is possible to
estimate the operating pressure at which these reported failure stresses will occur. Due
to the 1:1 (stress:pressure) scaling of the linear static model from Chapter 4 it is possible
to estimate the required operating pressure for failure at any of the above lifetimes.
This is accomplished by utilising the operating pressure of 3.2 MPa and resultant static
model stress of 55.35 MPa as follows for a 200 kh lifetime,
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P200 kh

3.2
=
σ200 kh

55.35

P200 kh = 3.2

(
168.21

55.35

)
= 9.73 MPa. (6.4)

Commonly, in pressure vessel analysis, the linearised membrane stress is considered
as opposed to the peak stress. Peak stresses are known to cause localised yielding in
pressure vessels. This stress usually then redistributes to the surroundings, and hence
does not cause failure. the linearised membrane stress is therefore a better representa-
tion of the likelihood of global failure, and should be used when peak stresses warrant
concern. However, using the peak stresses is conservative in life estimation.

6.2 Strain-based analysis

An alternative method of determining creep life is by a strain based analysis. The
premise of this analysis is to ensure that the inelastic strain does not exceed the limits
defined in codes such as the German Technical Guidelines for Steam Boilers [18], or the
ASME Limits for inelastic strains [17]. This section will focus on the later, which states
that limits for the principal strains defined in each direction are as follows [17]:

• 1% inelastic strain averaged over the wall thickness

• 2% inelastic strain determined at the surface and with a linear distribution of
strain through the wall thickness

• 5% inelastic strain, local on any arbitrary spot

The variation in accumulated creep strains, due to the nature of the multi-model ap-
proach utilised, will inherently result in a variation in predicted lifetimes using a strain-
based approach. Therefore, a worst case scenario will again have to be used in deter-
mining the time to the above strain limits. From the results presented in Chapter 5 it is
seen that casting VbN results in the maximum accumulated creep strain.

Using the extrapolation technique developed in Chapter 5 it is possible to determine
the creep strain analytically using the CTH model for any given strain. For consistency,
consider the CTH model for casting VbN given by,

εcr =
3.69× 10−4σ1.67t0.186 exp

(
−9177

T

)
0.186

+ 1.22× 10−12σ12.99t exp

(
−51573

T

)
, (6.5)

where the model coefficients x1, x2, ..., x7 are explicitly given in the equation. The creep
strain can now be calculated for any arbitrary time t, stress σ and temperature T .
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It should be noted that the CTH model is a combined primary and secondary creep
model, and does not consider tertiary creep. The model will therefore continue in-
finitely without the exponential increase in creep strain, considered as tertiary creep.
The user must thus exercise caution when predicting creep strains at long times with
this model. In order to avoid this problem the user could consider the worst case time
to tertiary creep calculated in Section 6.1, and assume the CTH model can not accu-
rately predict the creep strain past this time tter. From Table 6.2 this time is 27.50×106 h.

The resultant accumulated creep strain extrapolated from the VbN casting is 0.1% at
27.50 × 106 h. This is only a small fraction of the surface strain limit of 2% inelastic
strain defined by ASME [17]. This result confirms the findings from the time-based
analysis, strengthening the argument that failure will not occur due to creep alone in
the IP valve of interest.

6.3 Concluding remarks

The two approaches utilised prove that, under the specific set of operating conditions,
the IP valve of interest is in no danger of failing due to creep alone. The time-based
analysis showed that the low pressures result in a stress small enough that neither
rupture or tertiary creep will occur in the foreseeable future. Similarly, the strain based
analysis resulted in creep strains well below the ASME specifications [17]. The extrap-
olation time was limited to the predicted time to tertiary creep from the time-based
analysis. This is due to the fact that the CTH model does not account for tertiary creep.

It should be noted that the two methods discussed in this chapter both include con-
siderable uncertainty. They should therefore always be used with very conservative
assumptions. Further, it is recommended that both tests should be applied, and the
more conservative estimate should be taken.
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Chapter 7

Conclusions and recommendations

The aim of this thesis was to make use of the available NIMS creep data for a 1Cr-1Mo-
0.25V cast alloy steel, and develop a methodology that quantifies the creep state of
components through the use of FEA. This thesis specifically focused on the application
of this to an IP valve currently in operation in a South African power plant.

By making use of the NIMS creep data it was seen that a single creep model approach
was infeasible. Variation in the data meant that a single model was not able to ad-
equately characterise the data, resulting in little confidence in predictions. A multi-
creep-model approach was therefore utilised to accurately capture the entirety of the
data set. This method made use of an unconstrained optimisation algorithm to de-
termine the CTH creep model coefficients for each casting separately. These models,
along with five randomly generated models, were used to represent the entirety of the
NIMS data set.

A static FE model was then utilised to ensure that the correct boundary conditions
and mesh controls were applied. The complex nature of the geometry meant that few
analytical calculations could be done to verify the FE results. However, by making
adequate thick wall assumptions it was possible to verify the solution in specific loca-
tions. With a converged and verified model it was then possible to run a steady state
FE creep model, incorporating the 11 creep models that were optimised.

A steady state model was considered, in which the temperature and pressure remained
constant over time. By implementing the multi-creep-model approach into the ANSYS
FEA software it was seen that large variations in creep strain models resulted in a, rel-
atively speaking, narrow banded relaxed stress. Quantitatively, a variation of 153%
in the creep strain only resulted in a 21% variation in the relaxed stress. Additionally
it was shown that long term 100 kh FE simulations are not required to obtain useful
results. It was shown that using a 5 kh FE simulation it is possible to accurately extrap-
olate both creep strain and relaxed stress results to longer times. These results were
then used to make lifetime predictions for a worst case scenario, using both a time-
based and strain-based approach. The results from this analysis showed that, due to
the low operating pressures in the IP valve, the component would not fail due to creep,
and in fact has an almost infinite creep life.

It should however be noted that the ANSYS creep model used in this research is only
capable of modelling primary and secondary creep, and does not consider tertiary
creep. The engineer is therefore required to make an offline decision on the extent to
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which the model can be used. One possible method, introduced in Chapter 6, was the
use of a tertiary based L-M formulation. This will allow the engineer to make estima-
tions as to the time to tertiary creep, which can be used as a cut-off time for the FE
model. However, it is recommended that future work investigates the use of an offline
strain-based tertiary creep model, which can be used to alert the user that the FE model
is no longer accurate.

Further improvements could be made to the results by incorporating a transient ther-
mal analysis into the model. This study only considered a steady state situation, in
which the temperature was considered constant with a zero differential through the
material. More accurate results could therefore be achieved by including the transient
start up and shut down periods, in which temperature differentials are present through
the thickness of the component. These results could then be utilised in a life fraction
calculation, where these transient conditions are all considered.

In concluding it can be said that through the use of the multi-creep-model approach
introduced here, the engineer is able to more accurately characterise a creep data set.
Large components, such as the IP valve analysed here, will inherently have a variation
of microstructures through its volume. By utilising the multi-creep-model approach
the engineer is including this microstructure uncertainty into their analysis, thus re-
ducing the uncertainty in FE based life calculations. The narrow banded relaxed stress
solution means that worst case scenario lifetime calculations can then be made through
the use of either time-based or strain-based methods. The accuracy of these results is
however limited by the steady state assumption made at the start of this investigation.
An improvement in the results could be obtained by incorporating the thermal tran-
sients into the model, with an improved offline tertiary creep model.
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Appendix A

NIMS casting specifications

This appendix summarises the specifications of the various NIMS castings used through-
out the report. Table A.1 summarises the most important of the casting details. It is
important to note that the different deoxidation processes and thermal histories results
in a variation of grain sizes. Note that a mixture of water blast cooling (WBC), blast
cooling (BC) and air cooling (AC) are made use of.

Table A.1: Summary of important details for 1Cr-1Mo-0.25V steel castings [46]

NIMS
reference

code
Deoxidation Thermal history

Austenite
grain size
number

Rockwell
hardness

(HRB)
VbA

Ca-Si
killed

1050°C/15h WBC
730°C/15h AC

5.9 96
VbF 6.2 98
VbH 6.1 101
VbB

Si killed
650°C/10h→ 720°C/20h FC

1050°C/15h BC
720°C/20h FC

6.3 98
VbG 5.9 97
VbM 5.9 97
VbD

Ti killed
1025°C/8h AC
690°C/15h FC

7.3 98
VbJ 7.1 99
VbN 8 97

Finally, the chemical composition of the various castings is listed in Table A.2.

Table A.2: Chemical composition of 1Cr-1Mo-0.25V steel castings [46]

Ref. Chemical composition (mass percent)
C Si Mn P S Ni Cr Mo Cu V Al N

VbA 0,17 0,39 0,60 0,022 0,020 0,11 1,31 1,02 0,11 0,28 0,004 0,0078
VbB 0,16 0,47 0,62 0,010 0,010 0,19 1,01 0,92 0,15 0,24 0,003 0,0111
VbD 0,14 0,34 0,73 0,010 0,009 0,13 1,06 0,96 0,08 0,23 0,003 0,0102
VbF 0,18 0,37 0,66 0,018 0,017 0,10 1,07 1,03 0,12 0,30 0,020 0,0081
VbG 0,16 0,47 0,62 0,010 0,010 0,19 1,00 0,92 0,15 0,24 0,002 0,0104
VbH 0,18 0,37 0,61 0,019 0,018 0,11 1,09 1,12 0,07 0,28 0,016 0,0064
VbJ 0,16 0,52 0,79 0,010 0,008 0,13 1,16 0,97 0,11 0,23 0,003 0,0106

VbM 0,18 0,39 0,63 0,012 0,012 0,23 1,22 0,89 0,17 0,23 0,002 0,0103
VbN 0,15 0,52 0,78 0,010 0,009 0,12 1,17 0,98 0,08 0,23 0,003 0,0106
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Appendix B

Creep model optimisation results

A summary of the optimisation results from Chapter 3 is included in this appendix.
These results are shown in Figures B.1 to B.6. Each Figure includes the results for tem-
peratures of (a) 723 K, (b) 773 K, and (c) 823 K. Note the scalar offset of the models
which is to account for the amount of primary creep, which is assumed to occur in-
stantaneously. It can be seen from the results that, in general, the fit for 723 K is less
accurate than the other temperatures. This is due to the limited data available at this
temperature.

A summary of the full CTH model results are shown in Figures B.7 to B.12 thereafter.
It can be seen that the full CTH model better represents the transient primary creep
regime. An important note regarding the models is that each casting is modelled by
only one model for all temperature and stress combinations.
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Figure B.1: Summary of simplified CTH model results for casting VbB at (a) 723 K, (b) 773 K,
and (c) 823 K



Appendix B. Creep model optimisation results 80

0 1000 2000 3000 4000 5000 6000 7000
Time (hrs)

0

0.1

0.2

0.3

0.4

0.5

C
re

ep
 s

tr
ai

n 
(%

)

Exp. 333MPa
Fit 333MPa
Exp. 373MPa
Fit 373MPa

(a)

0 2 4 6 8 10 12
Time (hrs) ×104

0

0.5

1

1.5

2

C
re

ep
 s

tr
ai

n 
(%

)

Exp. 196MPa
Fit 196MPa
Exp. 235MPa
Fit 235MPa
Exp. 265MPa
Fit 265MPa
Exp. 294MPa
Fit 294MPa

(b)

0 500 1000 1500
Time (hrs)

0

0.5

1

1.5

C
re

ep
 s

tr
ai

n 
(%

)

Exp. 196MPa
Fit 196MPa
Exp. 235MPa
Fit 235MPa

(c)

Figure B.2: Summary of simplified CTH model results for casting VbD at (a) 723 K, (b) 773 K,
and (c) 823 K
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Figure B.3: Summary of simplified CTH model results for casting VbG at (a) 723 K, (b) 773 K,
and (c) 823 K
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Figure B.4: Summary of simplified CTH model results for casting VbJ at (a) 723 K, (b) 773 K,
and (c) 823 K
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Figure B.5: Summary of simplified CTH model results for casting VbM at (a) 723 K, (b) 773 K,
and (c) 823 K
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Figure B.6: Summary of simplified CTH model results for casting VbN at (a) 723 K, (b) 773 K,
and (c) 823 K
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Figure B.7: Summary of full CTH model results for casting VbB at (a) 723 K, (b) 773 K, and (c) 823 K
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Figure B.8: Summary of full CTH model results for casting VbD at (a) 723 K, (b) 773 K, and (c) 823 K

0 0.5 1 1.5 2
Time (hrs) ×104

0

0.2

0.4

0.6

C
re

ep
 s

tr
ai

n 
(%

)

Exp. 333MPa
Fit 333MPa
Exp. 373MPa
Fit 373MPa
Exp. 412MPa
Fit 412MPa

(a)

0 0.5 1 1.5 2 2.5 3
Time (hrs) ×104

0

0.5

1

1.5

C
re

ep
 s

tr
ai

n 
(%

)

Exp. 235MPa
Fit 235MPa
Exp. 265MPa
Fit 265MPa
Exp. 294MPa
Fit 294MPa

(b)

0 1000 2000 3000 4000 5000
Time (hrs)

0

0.5

1

1.5

C
re

ep
 s

tr
ai

n 
(%

)

Exp. 196MPa
Fit 196MPa
Exp. 235MPa
Fit 235MPa

(c)

Figure B.9: Summary of full CTH model results for casting VbG at (a) 723 K, (b) 773 K, and (c) 823 K
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Figure B.10: Summary of full CTH model results for casting VbJ at (a) 723 K, (b) 773 K, and (c) 823 K
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Figure B.11: Summary of full CTH model results for casting VbM at (a) 723 K, (b) 773 K, and (c) 823 K
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Figure B.12: Summary of full CTH model results for casting VbN at (a) 723 K, (b) 773 K, and (c) 823 K
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Appendix C

Validation of boundary conditions

Consider the simplified sketch of the steam inlet in Figure C.1 in which the internal
pressure, Pi, and the reaction forces, FR, are shown. To ensure the correct axial forces
are generated it is necessary for the force caused by the internal pressure to be equiva-
lent to the reaction forces at the frictionless boundary conditions.

Pi

FR

FR

Di

Figure C.1: Simplified sketch of steam inlet

The force caused by the internal pressure, FPi , is derived from σ = F/A as follows,

FPi = PiA (C.1)

= Pi

(π
4
D2
i

)
,

whereDi is the internal diameter which the force would act on to cause an axial load in
the pipe. In order to validate the FE boundary conditions it is necessary to ensure that
the reaction forces calculated from the FE solution are equivalent to FPi from Equa-
tion C.1. A summary of the results from these calculations is given in Table C.1.

Table C.1: Boundary condition validation results

Support Pi
(MPa)

Di

(mm)
FPi

(kN)
FR

(kN ) % Error

Steam inlet
3.2

470 555.2 555.2 0.0
Steam outlet 480 579.1 579.1 0.00
Control side 740 1376.3 1285.5 6.6



Appendix C. Validation of boundary conditions 87

It can be seen from the results tabulated above that the largest discrepancy is 6.6%.
This discrepancy can be assumed due a combination of the simplifications in the cal-
culations done, and the complexity of the geometry at the control side. It can therefore
be concluded that the frictionless roller supports have been validated, with negligible
errors in the force balance results.
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Appendix D

Failure analysis

The L-M parameter enables the engineer to estimate creep life for arbitrary temper-
ature and stress combinations. By fitting a best fit polynomial through the available
rupture data, it is possible to determine the L-M parameter for an arbitrary stress. Ma-
nipulation of the L-M formulation then allows the creep life to be estimated. Consider
the polynomial fit through the NIMS rupture data in Figure 6.1. The polynomial for
the rupture data formulation was given by,

σrup = 13901.74 − 3192.86 log(PLM). (D.1)

The L-M parameter PLM can be obtained by manipulating Equation D.1 such that PLM
is the subject of the formula. This manipulated polynomial is given by,

PLM = 10
13901.71−σrup

3192.86 . (D.2)

Consider the worst case scenario in which the relaxed stress is 50.09 MPa. The L-M
parameter is calculated using Equation D.2 as,

PLM = 10
13901.71−50.09

3192.86

= 21792.70. (D.3)

Manipulation of the original L-M formulation will allow for the creep life to be calcu-
lated. This is given by,

PLM = T (log tr + 20)

tr = 10
PLM
T
−20. (D.4)

Lastly, by substituting the operating temperature of T = 783 K and the L-M parameter
previously calculated into Equation D.4 it is possible to estimate the creep life. This
results in,

tr = 10
21792.70

783
−20

= 67969.11 kh. (D.5)
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Note that this is an extremely high lifetime, equivalent to more than 7000 years. This
result proves that, at the operating temperature and pressure, the IP valve will not fail
due to creep alone.
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