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Abstract

This paper presents the design and application of fractional single-input-single-output (SISO) controllers to
a grinding mill circuit, which is a multiple-input-multiple-output (MIMO) process. Two kinds of controllers
are presented: fractional order proportional-integral (FOPI) controllers, and a combination of FOPI and
fractional order model reference adaptive controllers (FOMRAC). The parameters of the controller are tuned
using off-line particle swarm optimization. In the presence of disturbances and process noise, the SISO
fractional controllers achieve similar or better performance compared to Linear Model Predictive Control
(LMPC).

Keywords: Fractional Order Controllers, Model Reference Adaptive Control, Grinding Mill Circuit,
Particle Swarm Optimization, Process control, Comminution.

1. Introduction

Grinding mill circuits are difficult nonlinear processes to control because of the coupling and interaction
between process variables. In general, multivariate control techniques are used to solve this issue, such
as Model Predictive Control (MPC), [1, 2, 3, 4, 5, 6], inverse Nyquist array [7], extended horizon [8, 9],
pole placement [8, 9], multivariate model reference adaptive control [8, 9], direct Nyquist array [8, 9],
sequential loop closing [8, 9], and predictive multivariate neural control [10]. These multivariate techniques
can significantly improve process performance compared to decentralized SISO controllers [4, 11]. However,
because of the ease of implementation of SISO techniques in terms of tuning and maintenance, SISO control
techniques remain most prevalent in industrial grinding mill circuits [12].

A great percentage of industries still use proportional integral and derivative (PID) controllers (or only
PIs) in their milling circuits, usually because of the difficulty of implementing and maintaining advanced
process control, and also because there is a lack of sufficient dynamic and fundamental models for mineral
processing circuits [13]. On the other hand, PID controllers are simple, relatively easy to tune and can handle
many operating conditions relatively well. However, PID controllers usually cannot handle parameter vari-
ations, disturbances and noise in a robust manner, compared to multivariable techniques. Thus, obtaining
improvements in the behavior of milling circuits under these operating conditions, using SISO controllers,
could be a great intermediate step for industries where the implementation of advanced multivariable control
strategies is difficult.

The control of grinding processes is further complicated by the presence of unmodeled process dynamics,
time-varying parameters, large time delays, and noisy measurements. These issues, which are impediments
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for any control technique, are managed through adaptations in the control techniques [8, 9, 14, 15, 16, 17,
18, 19] to improve the grinding circuit’s performance.

It has been reported in some works that the use of fractional operators [20] as part of control strategies can
improve system robustness in the presence of disturbances, noisy environments, and time-varying parameters.
It has been also reported in Aguila-Camacho and Duarte-Mermoud [21] that their use can improve the
management of the control energy. Why these advantages are achievable is a research topic currently under
investigation, but it seems that the implicit memory incorporated in the definitions of fractional integral and
fractional derivative [20] is the key to answer this question. Several control techniques have been generalized
with the use of fractional operators: Fractional Order Proportional Integral control (FOPI) [22], Fractional
Order Model Reference Adaptive Control (FOMRAC) [23], and adaptive gain-order fractional order control
[24]. Although the application of these fractional control techniques is found mainly in SISO processes
[21, 25], some were proposed for MIMO processes [26, 27, 28, 29].

This work investigates the design and application of fractional order SISO controllers to a grinding mill
circuit, which is a MIMO process. Thus, the control techniques preserve their simplicity in terms of SISO
control, but are also capable of improving the robustness by means of the fractional operators in the presence
of disturbances, parameter variations and noisy measurements. As far as the authors are aware, the use of
fractional order controllers for grinding mill circuits has not been reported in literature, with the exception
of the use of fractional disturbance observers [17] together with classic PI controllers.

Two fractional order SISO control strategies are proposed in this paper for a single-stage grinding mill
circuit. The first control strategy, FOPI control, is a non-adaptive control strategy, and the second, FOPI
control combined with FOMRAC, is an adaptive control strategy.

The paper is organized as follows: Section 2 describes the grinding mill circuit and the correspond-
ing nonlinear model used for simulation; Section 3 introduces the design of the proposed SISO fractional
controllers and Section 4 the tuning of the SISO fractional controller parameters; Section 5 introduces an
LMPC, which is used to compare the behavior of the SISO fractional controllers; Section 6 presents the
results obtained from simulations; Section 7 presents the conclusions.

2. Grinding mill circuit

2.1. Process Description

A single-stage closed run-of-mine (ROM) ore milling circuit, as shown in Fig. 1, is considered in this
study. The circuit consists of a semiautogenous (SAG) mill with an end-discharge grate, a sump and a
hydrocyclone. The mill receives four streams as inputs: mined ore (MFO), water (MIW ) to assist with
material transport, steel balls (MFB) to assist with ore breakage, and underflow from the hydrocyclone.

The fraction of the mill filled with charge is denoted by LOAD. The ground ore in the mill mixes with
water to form a slurry. The slurry is discharged from the mill into the sump through an end-discharge grate.
The end-discharge grate limits the particle size of the discharged slurry. The slurry in the sump is diluted
with water (SFW ) and is pumped to the hydrocyclone for classification. The total volume of slurry in the
sump is denoted by SV OL. It is assumed the pump is fitted with a variable speed motor to manipulate the
cyclone feed flow-rate (CFF ). The cyclone feed density can be adjusted by the sump dilution water as long
as the sump does not overflow or run dry.

The hydrocyclone is responsible for the separation of the in-specification and out-of-specification ore
discharged from the sump. The lighter, smaller and in-specification particles in the slurry pass to the overflow
of the hydrocyclone, while the heavier, larger and out-of-specification particles pass to the underflow. The
underflow is passed to the mill for further grinding while the overflow flows to a downstream process. The
volumetric flow-rate of solids in the overflow is the throughput of the circuit and is equal to the volumetric
feed rate of ore at steady-state operation of the circuit. The quality of the circuit product is indicated by the
fraction of particles in the overflow smaller than specification size (PSE). The controlled and manipulated
variables mentioned in this section are shown in Table 1.

2



Mill Feed Ore
(MFO)

Mill Inlet Water
(MIW )

Mill Feed Balls
(MFB)

Mill Filling
(LOAD)

Mill

Mill Power
(Pmill)

Sump

Sump Feed
Water
(SFW )

Cyclone

Slurry
Volume
(SV OL)

Cyclone
Feed Flow
(CFF )

Cyclone Feed
Density
(CFD)

Particle Size
Estimate (PSE)

Figure 1: Single-stage closed run-of-mine ore milling circuit.

2.2. Model description

The continuous time dynamic phenomenological nonlinear population balance model validated by Le Roux
et al. [30] is used in this study to describe the circuit shown in Fig. 1. Each process unit in the circuit is
modelled separately. The model is suitable for control purposes as it uses as few parameters and states as

Table 1: Manipulated, Controlled and State Variables

Variable Value Unit
Manipulated Variables

CFF 374
[
m3/h

]
MFO 65.2 [t/h]
SFW 140.5

[
m3/h

]
MIW 4.64

[
m3/h

]
MFB 5.68 [t/h]

Controlled Variables
PSE 67 [% < 75µm]
LOAD 33 [%]
SV OL 11.8

[
m3
]

States

Xmw 4.63
[
m3
]

Xms 4.65
[
m3
]

Xmf 0.96
[
m3
]

Xmr 1.99
[
m3
]

Xmb 8.23
[
m3
]

Xsw 8.10
[
m3
]

Xss 3.70
[
m3
]

Xsf 0.76
[
m3
]
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Table 2: Description of subscripts.

Subscript Description
X�− m-mill; s-sump; c-cyclone
X−� w-water; s-solids; c-coarse; f-fines; r-rocks; b-balls
V−−� i-inflow; o-outflow; u-underflow

possible to produce reasonably accurate model responses.
The model divides the ore into three size classes: rocks, coarse ore and fine ore. Rocks are classified as

ore too large to pass through the mill discharge grate. Coarse ore can pass through the mill discharge grate
but is larger than the specification size. Fine ore also passes through the mill discharge grate but is within
specification size. The sum of coarse and fine ore is defined as solids. Although only three size classes are
used to describe the ore in the circuit, they are sufficient for the model to produce qualitatively accurate
responses [31].

The model defines fives states to describe the mill charge volumetric hold-ups: water (Xmw), solids
(Xms), fines (Xmf ), rocks (Xmr), and steel balls (Xmb). Because of the mill discharge grate, only three
states are necessary to describe the sump slurry volumetric hold-ups: water (Xsw), solids (Xss), and fines
(Xsf ).

For the population balance model equations, V denotes a flow-rate in m3/h and X denotes the states
of the model as volumes in m3. Table 2 provides a description of the subscripts for V and X. The first
subscript indicates the process unit considered (mill, sump or cyclone), the second subscript specifies which
state is considered (rocks, solids, coarse, fines, balls, or water), and in the case of flow-rates the final subscript
indicates an inflow, outflow or underflow. Only a brief overview of the model is presented here. A detailed
description of the model is provided in Le Roux et al. [30]. The model nomenclature can be seen in Table 3.

2.2.1. Mill model:

The population volume balance of mill hold-ups - water (Xmw), solids (Xms), fines (Xmf ), rocks (Xmr),
and steel balls (Xmb) - are defined in terms of the inflow, outflow and generation/consumption of each state:

Ẋmw = Vmwi + Vcwu − Vmwo (1a)

Ẋms = Vmsi + Vcsu − Vmso +RC (1b)

Ẋmf = Vmfi + Vcfu − Vmfo + FP (1c)

Ẋmr = Vmri −RC (1d)

Ẋmb = Vmbi −BC, (1e)

where Vmwi, Vmsi, Vmfi, Vmri and Vmbi (m3/h) are the flow-rates of water, solids, fines, rocks and balls into
the mill respectively, Vmwo, Vmso and Vmfo (m3/h) are the discharge flow-rates of water, solids and fines
respectively, RC, BC and FP (m3/h) are the rock consumption, ball consumption and fines production
respectively, and Vcwu, Vcsu and Vcfu (m3/h) are the cyclone water, solids and fines underflow flow-rates
respectively.

The flow of material into the mill is defined as:

Vmwi = MIW (2a)

Vmsi = (1− αr)MFO/ρS (2b)

Vmfi = αfMFO/ρS (2c)

Vmri = αrMFO/ρS (2d)

Vmbi = MFB/ρB , (2e)

where ρS (t/m3) is the ore density, ρB (t/m3) is the ball density, and parameters αf and αr represent the
fraction of fines and rocks in MFO respectively. Although MFO in an industrial plant can be controlled
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Table 3: Circuit parameter values. (Dimensionless parameters are shown without units.)

Parameter Value Description
Mill parameters

αf 0.055 Mass fraction of fines in the feed ore
αr 0.465 Mass fraction of rocks in the feed ore
αP 1 Fractional power reduction per fractional reduction of critical mill speed

αspeed 0.72 Fraction of critical mill speed
αϕf

0.01 Fractional change in kW/fines produced per change in fractional filling of mill
χP 0 Cross-term for maximum power draw
δPs 17.46 Power-change parameter for fraction solids in the mill
δPv 17.46 Power-change parameter for volume of mill filled
d0 88.0 Discharge rate [h−1]
εsv 0.6 Max fraction of solids by volume slurry at zero slurry flow

ϕPmax
0.57 Rheology factor for maximum mill power draw

φb 90 Steel abrasion factor [kWh/t]
φf 29.5 Power needed per ton of fines produced [kWh/t]
φr 6.72 Rock abrasion factor [kWh/t]
Pmax 1670 Maximum mill power draw [kW]
ρS 3.2 Density of ore [t/m3]
ρB 7.85 Density of balls [t/m3]
ρW 1 Density of water [t/m3]
vPmax 0.34 Fraction of mill volume filled for maximum power draw
vmill 59.12 Mill volume [m3]

Hydrocyclone parameters
αsu 0.9154 Parameter related to fraction solids in underflow
εc 126.93 Parameter related to coarse split [m3/h]
C1 0.6 Constant
C2 0.7 Constant
C3 4 Constant
C4 4 Constant
C5 0.6 Constant

fairly well, variations in feed size distribution (represented by αr and αf ) upset the equilibrium in a mill
considerably and impede maintaining a mill in the optimum operating region.

The mill discharge flow-rates are defined as:

Vmwo = ϕd0Xmw

(
Xmw

Xms +Xmw

)
(3a)

Vmso = ϕd0Xmw

(
Xms

Xms +Xmw

)
(3b)

Vmfo = ϕd0Xmw

(
Xmf

Xms +Xmw

)
, (3c)

where d0 (1/h) is the discharge rate, and ϕ is an empirical function called the rheology factor. The rheology
factor attempts to incorporate the effect of the fluidity and density of the slurry on the milling circuit’s
performance and is defined as:

ϕ =

[
max

(
0, 1−

(
1

εsv
− 1

)
Xms

Xmw

)]0.5
, (4)

where εsv is the maximum fraction of solids by volume of slurry at zero slurry flow. A rheology factor
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of unity corresponds to Xms

Xmw
= 0 indicating the slurry consists only of water. A rheology factor of zero

corresponds to Xms

Xmw
= εsv

1−εsv indicating the slurry is a non-flowing mud.
The general formulation of the breakage equations has its parallel in the cumulative breakage rates

expressions in Hinde and Kalala [32] and Amestica et al. [33]. The rock consumption (RC), ball consumption
(BC) and fines production (FP ) are defined as:

RC =
ϕPmillXmr

ρSφr (Xmr +Xms)
(5)

BC =
ϕPmillXmb

φb [ρS (Xmr +Xms) + ρBXmb]
(6)

FP =
Pmill

ρSφf
[
1 + αφf

(LOAD − vPmax
)
] , (7)

where φr and φb (kWh/t) are the abrasion rates of rocks and balls respectively, φf (kWh/t) is the energy
required per tonne of fines produced, vPmax

is the fraction of the mill filled at maximum power draw, αφf

accounts for the change in φf per change in mill filling, and Pmill is the mill power draw. The equilibrium of
the mill is not only upset through variations of the feed size distribution, but also variations in ore hardness.
This can be simulated through variation of parameters φf and φr.

The fraction of the mill filled with charge (LOAD) is defined as:

LOAD = (Xmw +Xms +Xmr +Xmb) /vmill, (8)

where vmill (m3) is the total volume of the mill.
The mill power draw is modelled as a quadratic function depending on the total mill charge and the

fluidity and density of the slurry in the mill:

Pmill = Pmax (αspeed)
αP
(
1− δPvZ2

x − 2χP δPvδPsZxZr − δPsZ2
r

)
, (9)

where Pmax (kW) is the maximum mill power draw, αspeed is the fraction of critical mill speed, αP is
the fractional power reduction per fractional reduction from critical mill speed, δPv is the power change
parameter for volume of mill filled, δPs is the power change parameter for the fraction of solids in the mill,
and χP is the cross term for maximum power draw. The parabolic shape of mill power draw as a function
of mill load is further discussed in Powell et al. [34].

The effect of the total charge on mill power is modelled by the empirical definition of Zx = LOAD
vPmax

−1, and

the effect of the solids content on the mill power is modelled by the empirical definition of Zr = ϕ
ϕPmax

− 1

where ϕPmax
is the rheology factor at maximum mill power draw.

2.2.2. Sump model:

The population volume balance of sump hold-ups - water (Xsw), solids (Xss), and fines (Xsf ) - are
defined as:

Ẋsw = Vmwo − Vswo + SFW (10a)

Ẋss = Vmso − Vsso (10b)

Ẋsf = Vmfo − Vsfo, (10c)

where Vswo, Vsso and Vsfo (m3/h) are the sump discharge flow-rates of water, solids and fines respectively.
It is assumed the slurry in the sump is fully mixed.

The discharge of each state from the sump through the variable speed pump is defined as:

Vswo = CFF
Xsw

Xsw +Xss
(11a)

Vsso = CFF
Xss

Xsw +Xss
(11b)

Vsfo = CFF
Xsf

Xsw +Xss
. (11c)
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The volume of the sump filled with slurry (SV OL) (m3) is:

SV OL = Xss +Xsw. (12)

2.2.3. Hydrocyclone model:

The nonlinear static cyclone model presented here aims to model the product size and density by taking
into account the slurry density, slurry viscosity, and the effects of angular velocity of the particle inside the
cyclone. The underflow of coarse material (Vccu) (m3/h) is modelled as:

Vccu = (Vsso − Vsfo)
(

1− C1 exp

(
−CFF
εc

))(
1−

(
Fi
C2

)C3
)(

1− PC4
i

)
, (13)

where Fi = Vsso

CFF is the fraction solids in the cyclone feed, Pi =
Vsfo

Vsso
is the fraction fines in the feed solids, εc

(m3/h) relates to the coarse split, C1 relates to the split at low-flows when the centrifugal force on particles
is relatively small, C2 normalizes the fraction solids in the feed according to the upper limit for the packing
fraction of solid particles, and C3 and C4 adjusts the sharpness of the dependency on Fi and Pi.

To determine the amount of water and fines accompanying the coarse underflow, the fraction of solids
in the underflow (Fu) must be determined. This is modelled as:

Fu = C5 − (C5 − Fi) exp (−Vccu/(αsuεc)), (14)

where C5 is the approximate maximum packing fraction, and αsu relates to the fraction solids in the
underflow.

The cyclone underflow flow-rates (as shown in (1)) are defined as:

Vcwu =
Vswo (Vccu − FuVccu)

FuVswo + FuVsfo − Vsfo
(15a)

Vcfu =
Vsfo (Vccu − FuVccu)

FuVswo + FuVsfo − Vsfo
(15b)

Vcsu = Vccu + Vcfu. (15c)

These equations follow from the assumption that the fines are not influenced by centrifugal forces. This
implies the ratio of fines to water in the overflow, underflow and feed is equal, and that the fraction of solids
in the underflow can be written as Fu = Vcsu

Vcsu+Vcwu
. Consequently, the cyclone water overflow flow-rate

(Vcwo), solids overflow flow-rate (Vcso) and fines overflow flow-rate (Vcfo) can be calculated using a flow
balance around the cyclone.

The product quality is defined as the fraction of fines to solids in the cyclone overflow, and is represented
by the particle size estimate (PSE):

PSE =
Vcfo
Vcso

. (16)

2.3. Representation of the plant model in nonlinear state space

The plant model can be represented in nonlinear state-space as:

ẋ(t) = f (t,x,u) (17a)

y(t) = g (t,x,u) , (17b)

where x, y and u represents the plant’s state, measured, and manipulated variables respectively. These are
given by:

x = [Xmw, Xms, Xmf , Xmr, Xmb, Xsw, Xss, Xsf ]
T

u = [CFF,MFO, SFW,MIW,MFB]
T

y = [PSE,LOAD,SV OL]
T
.

Function f is given by (1) and (10), and function g is given by (16), (8), and (12).
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2.4. Operating condition

The operating condition in Table 1 and the model parameter values in Table 3 were taken from controller
comparison study of Le Roux et al. [6]. The manipulated variables have the following limits:

ulower = [100 0 0 0 0]
uupper = [450 100 400 80 10]

(18)

where ulower represents the lower bound, and uupper represents the upper bound. Furthermore, the sump
has a maximum capacity of 16 m3.

3. SISO controllers design

This section presents the design of two SISO fractional control strategies for the grinding mill circuit.
Before starting with the controllers design, definitions of fractional integrals and fractional derivatives are
introduced.

3.1. Fractional integral and fractional derivative basics

In fractional calculus, the traditional definitions of the integral and derivative of a function are generalized
from integer orders to real orders. In the time domain, the fractional order derivative and fractional order
integral operators are defined by a convolution operation.

According to Kilbas et al. [20], the Riemann-Liouville fractional integral of order α ∈ R , with α ≥ 0, is
defined as:

Iαt0f (t) =
1

Γ (α)

t∫
t0

f (τ)

(t− τ)
1−α dτ, t > t0, (19)

where Γ (α) is the Gamma function [20].
Several definitions exist regarding the fractional derivative of order β ≥ 0, but the Caputo definition [20]

presented in (20) is the most used in engineering applications, and is the one used in this work:

CDβ
t0f (t) =

1

Γ (n− β)

t∫
t0

f (n) (τ)

(t− τ)
β−n+1

dτ, (20)

where n− 1 < β < n, n ∈ Z+. If β ∈ Z+, then n = β.
The Laplace transform of the Riemann-Liouville fractional integral corresponds to L

{
Iαt0f (t)

}
= s−αF (s),

while the Laplace transform of the Caputo fractional derivative is L
{
CDβ

t0f (t)
}

= sβF (s)−
n−1∑
k=0

sn−k−1 f (k) (0)

[35].

3.2. Design of SISO FOPI controllers

It has been reported in literature that the use of fractional order proportional-integral-derivative (FOPID)
controllers could make control systems perform better than PID controllers. The transfer function of a
FOPID controller is represented as:

Gc (s) = KP +
KI

sα
+KD sβ , (21)

where KP is the proportional gain, KI is the integral gain, KD is the derivative gain, and α, β ∈ (0, 2) are
the order of the integral and the order of the derivative, respectively, considered in this interval for stability
purposes [36]. When α = β = 1, then (21) represents the PID.

Advantages reported for FOPID controllers are summarized below [37].
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Figure 2: General diagram of SISO FOPI controllers configuration.

• Five degrees of freedom are available for the FOPID controller design, while three degrees of freedom
for the PID controller design. This implies that more design criteria can be satisfied using a FOPID
controller than using a PID controller.

• For higher order systems, the performance of PID controller deteriorates, whereas FOPID controller
can provide better results.

• For a system with long time delays, FOPID controllers can provide better results than PID controllers.

• A FOPID controller achieves better robust stability compared to a PID controller.

• FOPID controllers can perform better than PID controllers for systems with nonlinearities.

• The FOPID controllers can achieve better responses for non-minimum phase systems.

Although all these advantages have been reported in literature, it is not always the case that FOPID
controllers will perform better than PID controllers. The only way to know if it is better is to compare the
FOPID controller to its integer order counterpart during the design stage.

Having all these possible advantages in mind, the first control strategy proposed in this work is the use of
three SISO FOPI controllers (one per controlled variable). The method used for tuning the FOPI controller
parameters, namely the proportional gain, the integral gain and the order of the integral, is explained in
detail in Section 4.

Since the proposed controllers are SISO but the process is MIMO, with important interactions between
variables, the selection of the controlled-manipulated variable pairing to be used is of great importance. For
this particular circuit, it was found in [38] that the pairings CFF−PSE, MFO−LOAD and SFW−SV OL
are the most appropriate pairings as they can improve the robustness to feed disturbances compared to other
pairings.

Thus, this paper uses the mentioned pairs to implement SISO FOPI controllers. Fig. 2 shows a general
diagram of the controlled system. In what follows, the proposed SISO FOPI controllers are described, using
their equations in the time domain. Details for the implementation and tuning of these controllers are given
in Section 4.

3.2.1. PSE FOPI controller:

This controller calculates the resulting control signal through the following equation:

∆CFF (t) = KP1
e1 (t) +KI1 I

α1
t0 e1 (t) , (22)
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where e1 (t) = ∆PSESP (t)−∆PSE (t) is the control error, PSESP represents the set point for PSE, and
the term ∆ represents variations of each variable around the operating point. KP1 , KI1 and α1 correspond to
the proportional gain, the integral gain and the order of the integral of the PSE FOPI controller, respectively,
which are the three design parameters of this controller that need to be tuned.

3.2.2. LOAD FOPI controller:

For this FOPI controller, the control signal is:

∆MFO (t) = KP2
e2 (t) +KI2 I

α2
t0 e2 (t) , (23)

where e2 (t) = ∆LOADSP (t) − ∆LOAD (t) represents the control error and LOADSP represents the set
point for LOAD. The controller’s design parameters KP2

, KI2 and α2 correspond to the proportional gain,
integral gain and fractional order of the LOAD FOPI controller, respectively.

3.2.3. SVOL FOPI controller:

Finally, for the case of this controller, the control signal is:

∆SFW (t) = KP3
e3 (t) +KI3 I

α3
t0 e3 (t) , (24)

where e3 (t) = ∆SV OLSP (t) −∆SV OL (t) is the control error and SV OLSP represents the set point for
SV OL. KP3

, KI3 and α3 are the SVOL FOPI controller design parameters that need to be tuned.

3.2.4. Additional manipulated variables:

In the case of the two additional manipulated variables of this circuit, MFB and MIW , they are used
as in [6]:

• MFB is kept as a constant ratio of 16.7 of the volume of LOAD.

• MIW is kept as a constant ratio of 7% of MFO.

Thus, for the case of the SISO FOPI controllers, nine parameters need to be tuned: KP1
, KI1 , α1, KP2

,
KI2 , α2, KP3 , KI3 and α3.

3.3. Design of SISO FOPI-FOMRAC controllers

Adaptive controllers are used when the plant to be controlled is partially unknown. These controllers
do not need the knowledge of a complete model of the plant (structure and parameters) in order to achieve
control, which is a great advantage for practical applications. Therefore, adaptive controllers can achieve
better performance compared to non-adaptive strategies when parameter variations and disturbances are
present.

Model Reference Adaptive Control (MRAC) is one of the adaptive control techniques that can be found in
literature. A great summary of this control strategy for linear plants can be found in [39]. The main objective
of MRAC is that the output of a plant with unknown parameters follows asymptotically the output of a given
reference model, and to that extent different MRAC approaches can be used. The simpler approach is the
direct approach, where no identification of the plant parameters is attempted, but the controller parameters
are directly adjusted using an integer order differential equation along with the information available in the
control system.

Although the plant parameters can be unknown, some information/hypotheses about the plant are
needed in order to design the controller [39], otherwise some modifications need to be made in the control
scheme to deal with the additional uncertainty, which leads to more complex adaptive controllers. These
four basic hypothesis are [39]:

• The sign of the high frequency gain of the plant is known.

• The relative degree (difference between the order of the denominator and the order of the numerator
of the transfer function) of the plant is known.
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Figure 3: General diagram of SISO FOPI-FOMRAC controllers configuration.

• An upper bound on the order of the plant transfer function is known.

• The plant is minimum phase.

With the introduction of fractional operators in control systems, the idea of using MRAC together
with fractional operators was investigated [23]. Afterwards, many other works were published dealing with
this topic from both a theoretical [40] and a practical point of view [21, 25]. Some of the advantages of
using fractional operators in MRAC schemes are better management of noise [41], better behavior under
disturbances [21, 25, 42] and improvements in transient responses [21, 23].

Based on these reported advantages, the second control strategy proposed in this work correspond also
to three SISO controllers, but in this case a combination of FOPI and FOMRAC is used. A general diagram
of the SISO FOPI-FOMRAC controllers can be seen in Fig. 3.

Note that although the MRAC have been proposed for linear systems [39], in this work it will be applied
to a nonlinear system. For checking the four basic hypotheses previously mentioned and also for selecting
the amount of controller parameters to be used, the structure of a linearized model of the plant found in
Le Roux and Craig [31] is used in the design stage. However, for the controller parameters tuning stage
described in Section 4 and also for all the simulations presented in Section 6, the nonlinear model of the
grinding circuit is used.

3.3.1. PSE FOPI controller:

For the case of controlled variable PSE, the FOPI designed in Section 3.2.1 will be maintained. This
is because the relation between PSE and CFF can be approximated by a linearized model that is non-
minimum phase [17, 31]. Under these circumstances, the fourth basic hypothesis for implementing MRAC is
not fulfilled. Thus, the adaptive control scheme needs to be modified, leading to a more complex controller.
Since the aim of this work is to use controllers with simple structure, the FOPI controller (22) is kept for
PSE.

3.3.2. LOAD FOMRAC controller:

The relation between LOAD and MFO can be approximated by a first order transfer function [17, 31].
This fulfils the four basic hypothesis mentioned previously, thus a direct FOMRAC is proposed in this case,
using two adjustable parameters for the controller.

The control signal is generated as:

∆MFO (t) = θ1 (t) ∆LOAD (t) + θ2 (t) ∆LOADSP (t) , (25)

where θ1 (t) , θ2 (t) ∈ R are adjustable parameters, LOADSP (t) is the desired set point for the load in the
mill, and ∆ represents the variation of the corresponding variable around the operating point.

11



Adaptive laws for adjusting controller parameters θ1, θ2 are defined as:

CDβ1

t0 θ1 (t) = −γ1eLOAD
(t) ∆LOAD (t) , θ1 (t0) = θ10 (26a)

CDβ2

t0 θ2 (t) = −γ2eLOAD
(t) ∆LOADSP (t) , θ2 (t0) = θ20 . (26b)

where β1, β2 ∈ (0, 2) are the fractional orders of the adaptive laws and θ10 , θ20 are the initial values for the
estimated parameters. γ1, γ2 ∈ R+ are the adaptive gains, which are used to manipulate the convergence
speed of the parameters in the adaptive laws. In this work, adaptive gains are used as positive constants,
but in general it is possible to use either constant or time varying adaptive gains [39].

The error e
LOAD

(t) in (26) is defined as:

e
LOAD

(t) = ∆LOAD (t)−∆ymLOAD
(t) , (27)

where ∆ymLOAD
(t) is the output of an asymptotically stable and known reference model, when the reference

∆LOADSP is applied to its input. Thus:

∆ymLOAD
(t) =

amLOAD

s+ amLOAD

∆LOADSP (t) , amLOAD
> 0. (28)

As can be seen from (28), the reference model is defined by a first order transfer function, with a pole in
s = −amLOAD

, and unit gain. For this controller, parameters β1, β2, γ1, γ2, amLOAD
are design parameters

that need to be tuned according to some criteria.

3.3.3. SVOL FOMRAC controller:

The relation between SV OL and SFW can be approximated by an integrating transfer function [17, 31].
Thus, the four hypothesis mentioned early are fulfilled, and a direct FOMRAC can be proposed for this
variable as well, using two adjustable parameters.

The structure of this controller is the same as for the LOAD FOMRAC controller, thus only a summary
of the equations will be shown without explanations.

∆SFW (t) = θ3 (t) ∆SV OL (t) + θ4 (t) ∆SV OLSP (t) (29)

CDβ3

t0 θ3 (t) = −γ3eSV OL
(t) ∆SV OL (t) , θ3 (t0) = θ30 (30a)

(30b)

CDβ4

t0 θ4 (t) = −γ4eSV OL
(t) ∆SV OLSP (t) , θ4 (t0) = θ40 (30c)

e
SV OL

(t) = ∆SV OL (t)−∆ymSV OL
(t) (31)

∆ymSV OL
(t) =

amSV OL

s+ amSV OL

∆SV OLSP (t) , amSV OL
> 0. (32)

To summarize, the FOPI FOMRAC controller shown in Fig. 3 has 13 parameters to be tuned, which
correspond to KP1

, KI1 , α1, β1, γ1, β2, γ2, amLOAD
, β3, γ3, β4, γ4 and amSV OL

.

4. SISO controllers tuning

This section presents the procedure used for tuning the controller parameters. Off-line Particle Swarm
Optimization (PSO) is used to select the controller parameters. Before explaining the tuning process itself,
some details regarding the implementation of the controllers are given in order to facilitate the reproducibility
of the results.
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Figure 4: Block diagram for the implementation of FOPI controllers.

4.1. Numerical approximation for implementing fractional integrals and derivatives

One of the most common ways of implementing fractional integrals and derivatives in simulations and
practical applications is by means of numerical approximations of these operators. The idea is to obtain
integer-order transfer functions whose behavior approximates the fractional order Laplace operator:

C (s) = ksα. (33)

Oustaloup’s method [43] is one of the available frequency-domain methods for making this approximation,
which uses a recursive distribution of N poles and N zeros of the form:

C (s) = k
′
N∏
n=1

1 + s/ωzn
1 + s/ωpn

. (34)

The gain k
′

is adjusted so that if k = 1 then |C (s)| = 0 dB at 1 rad/s and ωzn, ωpn represent respectively
the zeros and poles of the approximation, which are placed inside a frequency interval [ωl, ωh] rad/s in which
the approximation is valid.

The Oustaloup’s method is incorporated in the NID block of the Ninteger Toolbox for Matlab/Simulink
[44] specified as the Crone approximation. In this block, if α < 0 is set, then the NID simulates a fractional
integral, otherwise if α > 0 the NID simulates a fractional derivative.

4.2. Implementation of the controllers

The implementation of the fractional order controllers proposed in this work is made using Matlab/Simulink,
along with the Ninteger Toolbox for Matlab/Simulink [44]. To ensure reproducibility of the results and fu-
ture applications of fractional controllers by other researchers, block diagrams are presented here to make
explicit the implementation of the two kind of controllers used in this work.

Fig. 4 shows the block diagram used to implement FOPI controllers. The diagram corresponds to the
implementation of the PSE FOPI controller (22), but it is the same structure for the LOAD FOPI and the
SVOL FOPI controllers. It can be seen from Fig. 4 that the implementation is very simple, and the internal
specifications of the NID block, which simulates a fractional integral in this case, are also shown.

Fig. 5, on the other hand, shows the block diagram used to implement FOMRAC controllers. The
diagram corresponds to the implementation of the LOAD FOMRAC controller (25)-(28), but it is the same
structure for SVOL FOMRAC controller. The NID specifications for the FOMRAC controller are the same
as for the FOPI controllers, shown in Fig. 4, except for the orders which in the case of Fig. 5 are −β1 and
−β2.

4.3. Particle Swarm Optimization basics

PSO is an heuristic global optimization technique that belongs to the category of swarm intelligence,
which is also a sub-category of Evolutionary Computation. This technique allows solving optimization
problems by using clusters or swarms of particles, simulating the behavior of social groups in nature (flocks,
banks, crowds, etc.) in its process of searching for a common benefit.
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Figure 5: Block diagram for the implementation of FOMRAC controllers.

The algorithm defines a population where every possible solution is represented by a particle. These
particles move in the search space iteratively according to certain rules, influenced by the particle that
had found the best global position, with respect to a predefined objective function (fitness function). The
evolution of the particles is given by:

vi (k + 1) = ω vi (k) + r1 (k) c1 [pi (k)− xi (k)] + r2 (k) c2 (g (k)− xi,d (k))
xi (k + 1) = xi (k) + vi (k + 1) ,

pi (k) =

{
pi (k − 1) if f (pi (k − 1)) ≤ f (xi (k))
xi (k) if f (pi (k − 1)) > f (xi (k))

g (k) = argmin {f (p1 (k)) , . . . , f (ps (k))}

(35)

where vi (k) and xi (k) represent the speed and the position of the i-th particle at the k-th iteration respec-
tively, and ω ∈ [0, 1] is the inertia weight, which serves to limit the particle velocity and consequently to
achieve convergence to an equilibrium point. c1 and c2 are the social and cognitive acceleration coefficients,
r1 (k) and r2 (k) are a pair of random numbers uniformly distributed in the interval [0, 1] and represents the
stochastic element of any swarm, f is the fitness function to be optimized, and s is the number of particles
in the swarm [45, 46].

As an heuristic technique, PSO has the advantage of being able to drive the most versatile of fitness
functions, and being able to use non-differentiable, nonlinear and /or discontinuous functions. Compared to
techniques such as genetic algorithms and differential evolution, PSO is a good alternative to solve global
optimization problems with multiple maximum/minimum, discontinuities and deterministic solutions in
non-polynomial time. This is reflected in the increase of successful applications based on PSO [47]. For
these reasons it is used in this work.

4.4. Tuning of SISO FOPI controller parameters using PSO

As explained in Section 3.2, the controller proposed in this case for the whole multivariable process
corresponds to three SISO FOPI controllers. This leads to nine design parameters to be tuned using the
optimization process, thus the parameter vector to be optimized by PSO is:

x = [KP1
KI1 α1 KP2

KI2 α2 KP3
KI3 α3] . (36)
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4.4.1. Cost function and weighting factors:

The cost function used in the optimization process was selected as:

J = w1

T∫
t0

e21 (t) dt+ w2

T∫
t0

e22 (t) dt+ w3

T∫
t0

e23 (t) dt+ w4

T∫
t0

[∆CFF (t)]
2
dt+

+w5

T∫
t0

[∆MFO (t)]
2
dt+ w6

T∫
t0

[∆SFW (t)]
2
dt

(37)

where e1 (t) = ∆PSESP (t) − ∆PSE (t), e2 (t) = ∆LOADSP (t) − ∆LOAD (t), e3 (t) = ∆SV OLSP (t) −
∆SV OL (t) and wi, i = 1, . . . , 6 are weighting factors to give more or less importance to every term in the
cost function.

The weighting factors were determined such that a 1% deviation from set-point for PSE will produce
an error in the cost function equal to a 5% deviation of LOAD from set-point and equal to a 20% change
in SV OL from set-point:

w1 (1%PSESP )
2

= w2 (5%LOADSP )
2

= w3 (20%SV OLSP )
2
.

For the operating condition shown in Table 1, and choosing w3 = 1, the controlled variable weighting factors
are:

w1 = 1.2407× 105 w2 = 2.0458× 104 w3 = 1. (38)

In the case of the manipulated variables, the weighting factors were determined such that 2% changes
of half the ranges of MFO, SFW , and CFF will produce the same error in the cost function. The
corresponding weighting factors were scaled to produce 1% of the error compared to the weighting factors
of the corresponding controller variables:

100 w5

(
2%MFOrange

2

)2

= w2 (5%LOADSP )
2

and

w4

(
2%CFFrange

2

)2

= w5

(
2%MFOrange

2

)2

= w6

(
2%SFWrange

2

)2

.

Therefore, the manipulated variable weighting factors are:

w4 = 0.0045 w5 = 0.0557 w6 = 0.0035. (39)

4.4.2. PSO specifications and results:

For the optimization process, the lower and upper bounds for the parameters were selected as:

xlower = [0 0 0 0 0 0 0 0 0]
xupper =

[
108 108 1.99 108 108 1.99 108 108 1.99

]
.

(40)

In the case of the fractional orders α1, α2 and α3, their upper limit was set to 1.99 in order to keep the
stability of the corresponding closed loops. According to Matignon [36], stability cannot be guaranteed for
any linear time invariant system if the fractional order is equal or higher than 2. For the case of the grinding
mill circuit, it is not possible to make a stability analysis at this moment, since the tools for stability analysis
of nonlinear fractional systems is limited. Thus, the upper limit of 1.99 is a conservative bound.

Regarding the upper bounds of the gains of the controllers, they were set to 108 in order to give a wide
searching space to the optimization process. An upper bound that guarantees stability cannot be provided
a-priori to the algorithm, since it will depend on the fractional orders used, which are also varied during the
optimization process.

Stability issues due to combinations of gains and orders are taken into consideration by the cost function.
If a combination of fractional orders and gains lead to instability of the circuit during the optimization
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process, the cost function returns a high value to guide the optimization process away from these solutions.
Given the lower and upper limits of the fractional orders used, the resulting controller could be either a
classic PI controller (α1 = α2 = α3 = 1) or a FOPI controller, depending on the parameter values which
produces the minimum of the cost function.

If the designer does not have a nonlinear model of the plant and/or does not want to use heuristic
methods like PSO for the tuning process, then some different tuning techniques could be used. One of the
most simple technique consists of using tuning rules like the ones presented in Bhaskaran et al. [48]. These
tuning rules allow obtaining FOPI parameters based in first order plus time delay approximations of the
plant around the operating point, which can be obtained using standard system identification techniques
[49]. It is similar to, for instance, using the well known Ziegler-Nichols rules for the classical PI controllers.
After obtaining the controller parameter values, a manual fine tuning can be done, as in many processes
with classical PI controllers.

With all the mentioned parameters already defined, the optimization process was carried out using the
Constrained Particle Swarm Optimization toolbox for Matlab [50]. Most of the PSO parameters were used
at their default values, except:

• Population size: 150.

• Number of generations: 350.

For every generation the milling circuit is simulated in a time window of 10 hours under ideal conditions
for every particle, that is, no disturbances or noise are present in the scheme. Table 1 contains the initial
conditions and limits of input and output variables, as well as the initial values of the states used in
simulations.

Step references are applied to the three inputs at t = 0, specifically PSESP = 68 %, LOADSP = 34 %
and SV OLSP = 14.8 m3. With the simulation results, cost function (37) is calculated for every particle, and
based on the corresponding results the algorithm generates the population to be used in the next generation.
The process continues until 350 generations are reached and the optimal x is found.

As a result of this optimization process, the resulting FOPI controller parameters are:

KP1
= 731.42 KP2

= 12835 KP3
= 23.97

KI1 = 64698 KI2 = 33818 KI3 = 5.12
α1 = 0.96 α2 = 0.98 α3 = 0.95

(41)

The parameter values in (41) will be used in the simulation studies presented in Section 6.

4.5. Tuning of SISO FOPI-FOMRAC controller parameters using PSO

In the case of FOPI-FOMRAC controller, PSO was also used to tune the parameters. The same exper-
iment used for the FOPI tuning was carried out for this controller, using the same specifications for PSO,
the same cost function (37), and the same weighting factors (38),(39).

For the FOPI-FOMRAC controller, the vector x to be optimized corresponds to:

x = [KP1
KI1 α1 β1 γ1 β2 γ2 amLOAD

β3 γ3 β4 γ4 amSV OL
] , (42)

and the upper and lower limits were set as:

xlower = [0 0 0 0 0 0 0 0 0 0 0 0 0]
xupper =

[
108 108 1.99 1.99 103 1.99 103 103 1.99 103 1.99 103 103

]
.

(43)

The limits used for the fractional orders were selected in order to guarantee stability of the scheme
[36, 40]. The upper limit of the adaptive gains was set to 103, since according to the experience obtained
from many previous analysis of fractional adaptive schemes, higher values usually do not improve the circuit
behavior. For the poles of the reference models, the upper limit was also set to 103, since with this value
the response speed is faster.
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Manually tuning the FOMRAC controllers could be hard to achieve, since more parameters need to be
adjusted than in the case of FOPI controllers. Nevertheless, if the designer does not have a nonlinear model
of the plant and/or does not want to use heuristic methods like PSO for adjusting the controller parameters,
a very conservative classical MRAC could be implemented. To that extent, adaptive gains equal to 1 can
be used in a first tuning attempt, along with orders equals to 1. Selection of the poles of the reference
models will depend on how fast the designer wants the control action to be, which depends on the control
objectives. Afterwards, a manual fine tuning could be done. Nevertheless, it must be mentioned that the
design of the FOMRAC, i.e. the number of controller parameters, the order of the reference model, and the
structure of the controller, will depend on the process to be controlled. Therefore, it could be even harder to
do a manual tuning if the process cannot be approximated by first-order-plus-time-delay transfer functions.

As a result of the optimization process, the FOPI-FOMRAC controller parameters are:

KP1
= 761.27 KI1 = 73667 α1 = 0.98

β1 = 0.89 γ1 = 99.94 β2 = 1.82 γ2 = 13.94 amLOAD
= 922.07

β3 = 1.1 γ3 = 0.1 β4 = 0.98 γ4 = 1.88 amSV OL
= 25.347

(44)

The parameter values in (44) will be used in the simulation study presented in Section 6.

5. LMPC Controller

The ability of the fractional order controllers to control the grinding mill circuit is compared to the
performance of an LMPC controller. LMPC is chosen as it can be considered to be the de-facto standard
for advanced process control implementations in industry [51, 52], and was successfully applied to control
grinding mill circuits both in simulation and practice [1, 2, 3, 53, 54]. The aim of the LMPC controller can
be described as:

min
uk,...,uk+Nc−1

J (uk, ..., uk+Nc−1, xk)

s.t. xk+1 = Axk +Buk
yk = Cxk +Duk
ul ≤ uk ≤ uu

(45)

where ul and uu represent the lower and upper limits of the manipulated variables u respectively. The
objective function J is defined as:

J(·) =
1

2

Np−1∑
i=0

(
ysp − yk+i|k

)T
Q
(
ysp − yk+i|k

)
+

1

2

Nc−1∑
i=0

(
∆uk+i|k

)T
R
(
∆uk+i|k

)
, (46)

where ysp is the controlled variable set-points, Np is the prediction horizon, Nc is the control horizon, and
Q and R are the controlled and manipulated variable weighting matrices respectively.

A continuous linear state-space representation with matrices A, B, C, and D of the plant model in (17)
is calculated where A = ∂f

∂x |x=x0, u=u0
, B = ∂f

∂u |x=x0, u=u0
, C = ∂g

∂x |x=x0, u=u0
, and D = ∂g

∂u |x=x0, u=u0
.

The linear state-space model of the plant is discretized using Euler’s Explicit integration rule to obtain the
discrete-time model. Full-state feedback is assumed. This is a significant assumption as the measurements
available in industrial grinding mill circuits are limited [55]. Although various state estimators have been
investigated for grinding mills [17, 56, 57, 58], it remains a challenge to estimate mill hold-ups [19, 59].

5.1. Prediction and Control Horizon

The prediction horizon should be long enough for sufficient dynamics of the process to be visible, but
short enough for the control action calculation not to be too computationally expensive. The control horizon
should be short enough such that the controller is not too aggressive, but long enough for a sufficient part
of the prediction horizon to contain control action [18]. To fulfill these requirements, Np is chosen as 36 (6
min), and Nc as 9 (1.5 min).
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5.2. Weighting matrices

The weighting matrix Q for the controlled variables and the weighting matrix R for the manipulated
are determined following the same basis used to select the weighting factors for the cost function in the
optimization process, specified in Section 4.4. Thus, the controlled variable weighting matrix is:

Q = diag
([

1.2407× 105, 2.0458× 104, 1
])
, (47)

and the manipulated variable weighting matrix is:

R = 10−3 diag([4.5, 5.57, 3.5]). (48)

6. Simulation and results

This section presents the simulation results obtained using the proposed controllers for the milling circuit,
under disturbances and process noise conditions2.

6.1. Simulation environment

The parameter values and the operating point can be seen in Tables 1 and 3, respectively. The grinding
mill circuit was simulated with the following general conditions:

1. Simulation time of 4 h and a sampling rate of 10 s.
2. A disturbance in the mill feed size distribution is simulated by increasing αr to 0.765 at t = 0.2 h, to

0.365 at t = 1.5 h, and back to 0.465 at t = 2.9 h.
3. A disturbance in the energy required to produce fine ore, which is similar to a change in the hardness

of the ore, is simulated by increasing φf to 32.5 kWh/t at t = 0.6 h, to 27.5 at t = 1.9 h, and back to
29.5 kWh/t at t = 3.2 h.

4. A disturbance in the energy required to break rocks into solids is simulated by decreasing φr to 5.72
kWh/t at t = 1.0 h, to 8.22 at t = 2.3 h, and back to 6.72 kWh/t at t = 3.6 h.

The parameter variations can be seen in Fig. 6.
In order to evaluate the noise rejection capabilities of the controllers, two different scenarios are simulated:

• In the first scenario, disturbances as specified above are applied to the circuit, but no process noise is
added.

• In the second scenario, disturbances as specified above are applied, and process noise is added to the
states (Xmw, Xms, Xmf , Xmr, Xmb, Xsw, Xss and Xsf ). The process noise follows a uniform random
distribution, with maximum and minimum values given by ±0.01x0, where x0 is the nominal value of
the corresponding state (1% of the state’s nominal value).

6.2. Performance functions to evaluate the grinding mill circuit behavior

In order to make more specific conclusions from the experiments, three performance functions are pro-
posed to evaluate the behavior of the grinding mill circuit from different perspectives.

1. The first performance function proposed is the Normalized Root Mean Square Error (NRMSE), which
is calculated for each controlled variable as:

NRMSE =

√
N∑

(y − ySP )
2

N
ymax − ymin

, (49)

where y is the controlled variable, ySP is the corresponding set point, N is the number of sample data,
and ymax and ymin are the maximum and minimum values of y, respectively. This performance index
checks how far the controlled variables are from their set points.

2The MATLAB simulation code is available from the authors on request.
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Figure 6: Variation of parameters αr, φf and φr.

2. The second performance index is the Normalized Root Mean Square Input (NRMSI), which is calcu-
lated for each manipulated variable as:

NRMSI =

√
N∑

(u− uOP )
2

N
umax − umin

, (50)

where u is the manipulated variable, uOP is the corresponding value of the manipulated variable in the
operating point, N is the number of sample data, and umax and umin are the maximum and minimum
values of u, respectively. This performance index checks how far from their operating point values the
manipulated variables need to move, in order to keep the controlled variables as close as possible to
their set points.

3. In grinding mill circuits, keeping PSE at its set point is of great importance, but reducing small
variations in this variable is also critical. That is why the third performance function proposed in this
paper is the variance of PSE, which will be referred to σPSE and calculated as:

σPSE =

N∑
|PSE − µ|2

N
, (51)

where N is the number of sample data, and µ is the mean value of PSE.

6.3. Results in the presence of external disturbances

Fig. 7 shows the behavior of the three controlled variables for the first simulation scenario. During this
time window, the external disturbances described above and showed in Fig. 6 are present in the grinding
mill circuit.

As seen from Figure 7, PSE has a similar behavior for the cases with FOPI and with FOPI+FOMRAC,
keeping the variable around its set point. The variations are not higher than 4 % for FOPI and FOPI+FOMRAC
controllers, while for LMPC they are not higher than 5 %. It can also be seen that fractional controllers
tend more quickly to return PSE to its set point after external disturbances appears, while LMPC has a
slower response.
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Figure 7: Behavior of the controlled variables when external disturbances are present in the single-stage closed grinding mill
circuit.

In the case of LOAD, variations around the set point are less than 1.5%, but it can be clearly seen
that the FOPI+FOMRAC controller is less affected by the external disturbances than the FOPI and LMPC
controllers.

The behavior of PSE and LOAD can be regarded as excellent results for the fractional controllers, since
these are SISO controllers and no attempt is made to decouple the variables.

Finally, in the case of SV OL, no significant differences can be seen between the three control strategies.
Variations of this controlled variable are not critical, as long as it remains between the corresponding limits.

Regarding the manipulated variables, Fig. 8 shows their evolution for this simulation scenario. As can
be seen from Fig. 8, the three control strategies keep the manipulated variables within their limits. No
significant differences can be seen between the three control strategies from Fig. 8. However, evaluation of
the performance function NRMSI is more revealing.

As seen in Fig. 8, the manipulated variables follow the same trend for all three controllers. However, the
response of the controlled variables in Fig. 7 for FOPI and FOPI+FOMRAC differ somewhat to the response
of the controlled variables for LMPC. For example, SV OL follows the same trend as CFF and SFW for
LMPC, but the negative of the trend of CFF and SFW for FOPI and FOPI+FOMRAC. Although not
visible in the graph, for the LMPC SFW starts to decrease before CFF starts to decrease. The opposite
occurs for the FOPI and FOPI+FOMRAC controllers where CFF reacts before SFW . Since the sump acts
as an integrator, the trend of SFW dominates if it reacts before CFF , but the negative of the trend of CFF
will dominate if it reacts before CFF . However, even with these differences in responses, if the vertical axis
scales of Fig. 7 are considered it can be seen that the three controllers are capable of maintaining the three
controlled variables very close to their desired setpoints.

Table 4 shows the values of the performance functions for the simulation already presented.
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Figure 8: Behavior of the manipulated variables when external disturbances are present in the single-stage closed grinding mill
circuit.

As can be seen from Table 4, the NRMSE of PSE is less for the fractional control strategies, which
is in accordance with the conclusions made from the plots. The same occurs for the NRMSE of LOAD,
where it can be seen that it is lower for the FOPI+FOMRAC controllers. Regarding the NRMSE of SV OL,
differences are not so abrupt between the three control strategies, although LMPC has the lower value in
this case.

In the case of the variance of PSE, it is higher for the LMPC controllers. Since PSE is the most
important variable in the circuit, the difference between the fractional controllers and the LMPC can be
seen as an improvement in the grinding mill circuit operation. Moreover, it was stated by Wei and Craig
[4] that the mineral recovery downstream improves as σPSE decreases, thus the results for σPSE in the case

Table 4: Values of performance functions for the case when external disturbances are present in the grinding mill circuit

FOPI FOPI+FOMRAC LMPC

NRMSE
PSE 0.0915 0.0831 0.2515
LOAD 0.1552 0.0249 0.2981
SV OL 0.2716 0.1951 0.1119

σPSE 0.0068 0.0056 0.0180

NRMSI
CFF 0.2544 0.2567 0.2518
MFO 0.2646 0.2593 0.2381
SFW 0.2548 0.2553 0.2451
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Figure 9: Behavior of the controlled variables when external disturbances and process noise are present in the single-stage
closed grinding mill circuit.

using the FOPI+FOMRAC can be interpreted as an improvement in the mineral recovery.
Regarding the NRMSI, it can be seen from Table 4 that it has similar magnitudes for the three control

strategies. Nevertheless, there are slight differences that could benefit LMPC in the comparison.

6.4. Results in the presence of external disturbances and process noise

The results obtained for the second scenario can be seen in Fig. 9 and Fig. 10. Table 5 shows the
corresponding values of the performance functions.

It can be seen from Fig. 9 that all the controlled variables are affected by the process noise, for the
three control strategies, although they remain close to their set points, which is an indication of satisfactory
operation. However, the fractional controllers are considerably less affected by the process noise than
LMPC, specially variables PSE and LOAD, which can be seen from Fig. 9 and supported by the NRMSE
performance function and σPSE in Table 5. This agrees with other results that have been cited in the
literature, where the capability of fractional controllers to handle the noise is one of their advantages.
Although no analytical results are available to support this behavior, it seems to be related with the memory
intrinsically incorporated by definition in fractional operators.

Regarding the manipulated variables, it can be seen from Fig. 10 that they are also affected by the
process noise. On the contrary to the case without process noise, where the NRMSI had similar values for
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Figure 10: Behavior of the manipulated variables when external disturbances and process noise are present in the single-stage
closed grinding mill circuit.

the three control strategies, in this case the difference in the NRMSI is more evident. The lowest NRMSI
values are achieved by the FOPI+FOMRAC controller.

In summary, for the external disturbances incorporated in the simulation, the fractional order SISO
controllers achieve similar and improved behavior to that achieved with LMPC. The fractional order SISO
controllers present an improved response when process noise is present in the system. The use of these
fractional order SISO controllers can be seen as a potential solution to improve milling circuit operation.

7. Conclusions

This paper presented the design and application of two kinds of fractional order SISO controllers to
a grinding mill circuit. The performance of the proposed control techniques was evaluated against the
performance of an LMPC controller, which is an advanced MIMO control technique. Simulations were
conducted when external disturbances and process noise were present in the circuit.

Results indicate that the fractional order SISO controllers achieve similar or better results compared to
LMPC in the presence of parametric disturbances and process noise.
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Table 5: Values of performance functions for the case when external disturbances and process noise are present in the grinding
mill circuit

FOPI FOPI+FOMRAC LMPC

NRMSE
PSE 0.0608 0.0625 0.1065
LOAD 0.0157 0.0036 0.1643
SV OL 0.1855 0.1337 0.1754

σPSE 0.0738 0.0780 0.1220

NRMSI
CFF 0.1194 0.1206 0.1674
MFO 0.0810 0.1362 0.2036
SFW 0.0717 0.0721 0.1533
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