Neglecting legumes has compromised human health and sustainable food production

Christine H. Foyer1,2*, Hon-Ming Lam3, Henry T. Nguyen4, Kadambot H. M. Siddique5, Rajeev Varshney6, Timothy D. Colmer2,5, Wallace Cowling5, Helen Bramley7, Trevor A. Mori8, Jonathan M. Hodgson8, James W. Cooper1, Anthony J. Miller9, Karl Kunert10, Juan Vorster10, Christopher Cullis11, Jocelyn A. Ozga12, Mark L. Wahlqvist13,14, Yan Liang15, Huixia Shou16, Kai Shi17, Jingquan Yu17, Nandor Fodor1, Brent N. Kaiser18, Fuk-Ling Wong3, Babu Valliyodan5, Michael J. Considine19

1Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK

2School of Plant Biology, Faculty of Science, The University of Western Australia, Australia, LB 5005 Perth WA 6001, Australia

3School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.

4Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri 65211, USA

5The UWA Institute of Agriculture, The University of Western Australia, Australia, LB 5005 Perth WA 6001, Australia

6International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru - 502 324, Greater Hyderabad, India

7Plant Breeding Institute, Faculty of Agriculture and Environment, The University of Sydney, Narrabri NSW 2390, Australia

8School of Medicine and Pharmacology, Royal Perth Hospital Unit, The University of Western Australia, Perth, Western Australia 6000, Australia

9Department of Metabolic Biology, John Innes Centre, Norwich Research Park NR4 7UH, UK

10Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa

11Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA

12Plant BioSystems Division, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5

13Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, PR China

14Monash Asia Institute, Monash University, Melbourne, Victoria 3800, Australia
Abstract

The United Nations declared 2016 as the International Year of Pulses (grain legumes) under the banner ‘nutritious seeds for a sustainable future’. A second green revolution is required to ensure food and nutritional security in the face of global climate change. Grain legumes provide an unparalleled solution to this problem because of their inherent capacity for symbiotic atmospheric nitrogen fixation, which provides economically sustainable advantages for farming. In addition, a legume-rich diet has health benefits for humans and livestock alike. However, grain legumes form only a minor part of most current human diets and legume crops are greatly under-utilized. Food security and soil fertility could be significantly improved by greater grain legume usage and increased improvement of a range of grain legumes. The current lack of coordinated focus on grain legumes has compromised human health, nutritional security and sustainable food production.

Introduction

Unlike other plants, legumes have mastered the art of symbiotic nitrogen fixation, leading to significant advantages for agricultural sustainability, both in developing and developed countries. Recent increases in grain legume yields are only between 0 and 1% per year (Fig. 1) and they contribute to only a small portion of staple food compared with cereals. The acreage and yield of corn is currently much higher than any of the grain legumes. A shift in land use toward grain legumes and away from livestock would substantially lower the carbon footprint for protein production destined for human consumption. There is significant untapped potential for genetic improvements in legumes. They could make a larger contribution to sustainable cropping systems.
through symbiotic nitrogen fixation, providing nitrogen to the legume crop as well as for subsequent crops. Consumption of grain legumes offers human health and nutritional benefits. A significant portion of the grain legume crop in Europe and countries such as Australia (e.g. lupins) is currently used for animal feed, and more than half of grain legume production worldwide is processed (e.g. oils). Grain legumes are an essential commodity in optimal human diets because their seed structure and composition confers a physiologically favourable matrix in the total diet. Here we discuss the benefits of legume crops to farming systems, identifying key issues to enable increased production, together with the importance of legume seeds and products to human health.

Figure 1. Increase in total world production (a) and yield (b) of dry grain legumes compared to cereals. Cereals include wheat, rice, barley, maize, rye, oats and millet, and grain legumes includes 11 of the 12 major categories of grain legume (including soybean) in FAO data: bambara bean; broad bean and faba bean; chickpea; cowpea; groundnut; lentil; lupin; string beans and miscellaneous grain legumes; pea; Phaseolus spp.; pigeon pea. All production values are dry clean weights, excluding pod weights. Production of string beans were neither dried nor shelled so data were excluded. Data for groundnuts in shells were converted using 70% in FAO data. Miscellaneous grain legumes include Dolichos spp. (lablab or hyacinth bean), Canavalia spp. (jack or sword bean), Psophocarpus tetragonolobus (winged bean), Cyamopsis tetragonoloba (guar bean), Sitzolobium spp. (velvet bean) and Pachyrhizus erosus (yam bean). Phaseolus spp. includes Phaseolus vulgaris (kidney, haricot, common bean), Phaseolus lunatus (lima, butter bean), Phaseolus angularis (adzuki bean), Phaseolus aureus (mungo bean, golden, green gram), Phaseolus mungo (black gram, urd), Phaseolus coccineus (scarlet runner bean), Phaseolus calcaratus (rice bean), Phaseolus aconitifolius (moth bean) and Phaseolus acutifolius (tepary bean). Data source: FAO, http://faostat3.fao.org/compare/E, accessed 05/01/2016.
Sustainable agriculture

The importance of legumes in sustainable cropping systems has been extensively documented. The area planted to grain legumes has gradually increased over the past 50 years, but it is still only a quarter of that planted to cereals (Supplementary Fig. 1). Moreover, while increases in cereal production during the past 50 years have been predominantly due to increases in yield, driven by changes in agronomic practices and new varieties, increases in grain legume production are mostly due to increases in the land area planted (Supplementary Fig. 2). For soybean and the major grain legumes such as chickpea, groundnut and lentil, yield has increased proportionately with land area planted. Year-on-year increases in soybean yields are slowing while area planted is increasing, suggesting that more marginal land is being planted and improvements in genetic potential are not keeping pace. In contrast, yields of faba bean and peas are increasing while the area harvested is decreasing (Supplementary Fig. 2), resulting in no net production increases in these two crops.

Figure 2. World grain legumes production in 2013.
a. 121 Mt of grain legumes (excluding soybean) were produced globally in 2013. Data comprises the grain legumes as cited in Fig. 1 plus string bean. Production of the 12 categories are presented in the inset of Fig. 2a as a stacked column graph by the ten net highest-producing countries: 1. bambara bean, 2. broad bean and faba bean, 3. chickpea, 4. cowpea, 5. groundnut, 6. lentil, 7. lupin, 8. miscellaneous grain legumes, 9. pea, 10. Phaseolus spp., 11. pigeonpea, 12. string bean. Of these, the top three grain legumes (excluding soybean) were groundnut (42.8 Mt), chickpea (13.3 Mt) and pea (11.5 Mt). Phaseolus spp. are a significant category of grain legumes by production (23.7 Mt).
b. Global soybean production. Global production was 278 million tons (Mt) in 2013, accounting for 70% of global grain legumes produced. The top five soybean producing countries were the USA (91.4 Mt), Brazil (81.7 Mt), Argentina (49.3 Mt), China (12.0 Mt) and India (11.9 Mt). Data source: FAO, www.faostat.fao.org, accessed 30/01/2016. The maps were generated using R ver. 3.1.3 (R Core Team 2015) with extension packages, rworldmap and RColorBrewer. Countries indicated in white are where data are unavailable.
Intercropping and rotation of grain legumes with cereals or other non-leguminous crops have many benefits, such as enhanced yield, increased nitrogen-use efficiency (NUE: Gw/Ns, mass grain dry yield/ mass nitrogen fertilizer applied), reduced occurrence of disease and, in some cases improved access to other essential elements such as phosphorus. The nitrogen-fixing ability of legumes affords complementarity through natural soil fertilisation. Grain legumes favour reduced greenhouse gas emissions in agricultural cropping systems. For example, greenhouse gas emissions declined by 56% on a per hectare basis when a lupin crop preceded wheat. A global analysis of historical data shows that cereals have greater NUE when a larger proportion of nitrogen inputs come from residues of a preceding legume crop with symbiotic nitrogen fixation, than when from synthetic fertilizer.

About 21 Mt nitrogen is fixed annually by the crop legume–rhizobia symbioses, returning 5-7 Mt of nitrogen to soils from ca. 190 million ha of grain legumes, saving US $8–12 billion (Box 1). Moreover, the protein content of cereal grains produced following a legume crop is increased and the soil structure and health are improved after growing legumes. Accordingly, nitrogen fixing legumes provide unparalleled opportunities for minimising future nitrogen fertiliser usage. The inclusion of grain legumes in cropping systems can enhance annual productivity as well as increase diversity in cropping systems, thereby reducing the reliance on a cereal monoculture. While legume crops can favour soil acidification due to an imbalance in cation over anion uptake, this can be managed by varying the legume species used in the crop rotations and by application of lime in the soil. However, the sustainable development of intensive agriculture is limited when grain legumes are intensively cultivated on the same farmland year after year for example, through the build-up of autotoxins that influence soil microbe communities. Taken together with the relatively low input cost compared to cereal crops, grain legume cultivation is a particularly promising means for resource poor farmers to increase their income. For example, a formal survey of farmers in Bangladesh indicated awareness of the economic advantages of using integrated crop management practices for chickpea.

Mitigating climate change

Future legume production will be influenced by climate change factors such as 1) increased atmospheric CO₂ levels favouring carbon gain because legumes use C₃ photosynthesis; 2) faster plant developmental rates due to the predicted higher temperatures, which would allow a shorter growing season and reduce exposure to drought that is often experienced at the end of the cropping season; 3) accelerated canopy decay due to extreme temperatures; 4) reduced photosynthetic efficiency, increased pod and flower abortion, and reduced production of reproductive structures due to more frequent droughts; 5) defective pollination due to high temperature-induced pollen sterility; and 6) reduced seed quality. Regional yield changes will depend on the local
manifestation of climate change (for example interactions between high CO\textsubscript{2}, temperature and drought) as well as other factors. The negative impacts of climate change have already affected soybean production13. Soybean yields in the USA between 1994 and 2013 declined by 2–4\% for every degree rise in temperature over the growing season resulting in losses of US$11 billion13. Rising global temperatures could therefore reduce the areas suitable for bean production14. Future climate conditions are predicted to be more favourable to common bean cultivation in the Northern Hemisphere than the Southern Hemisphere15; new grain legume growing areas should open up in Canada, northern Europe and Russia. For example, pea and faba bean are becoming increasingly important crops in Finland16. Predicted changes in climate should increase yields of dry pea, chickpea, broad bean, lentil, lupin and grasspea in developed countries such as Canada and France but yields will decrease in developing countries in the tropics and sub-tropics such as India, Pakistan and Ethiopia17.

The yield gap for legume crops in Africa is more than 300\%; cowpea yields being only 10–20\% of their genetic potential. Moreover, while legume cultivation is an integral part of the Indian agriculture, legume crop production has remained low and unstable, with a yield gap for soybean ranging from 850 to 1320 kg/ha, for groundnut 1180 to 2010 kg/ha, for pigeon pea 550 to 770 kg/ha and for chickpea 610 to 1150 kg/ha. Such data indicate that substantial productivity improvements might be gained through improved crop management practices18,19.

Symbiotic nitrogen fixation

The symbiotic relationship between legumes and nitrogen-fixing bacteria, which are housed in root nodules, benefits both partners20. The bacterial enzyme nitrogenase, which catalyses the fixation process, requires a highly reducing environment. A stable low oxygen environment is achieved within the nodules by the presence of an oxygen diffusion barrier21. A continual oxygen flux to support bacteroid respiration is facilitated by high concentrations of leghaemoglobin. The nodules deliver reduced nitrogen to the host plant either as amides or ureides depending on the legume species, in return for dicarboxylic acids. While the residual nitrogen present in most agricultural soils can have a negative impact on nodule formation and lifespan22, the sensitivity of this response varies between legume species and needs better characterization. Nitrate acts as a signalling molecule that negatively influences susceptibility to nodulation via nitrate-specific peptide signalling cascades23. Consequently, one of the challenges facing scientists seeking to expand legume productivity is to maximise symbiotic nitrogen fixation while allowing nitrogen acquisition from the soil. For beneficial nitrogen inputs from legumes as cover crops and as green manures24 a molecular understanding of the nitrogen sensing components that lead to repression of nodulation is essential. The families of membrane transporters that can double up as nitrogen sensors identified in non-legumes, also occur in legumes25,26.
Of the 400,000 plant species in existence today, only Actinorhizal plants and legumes have evolved nitrogen-fixing nodules. However, at least part of the genetic platform that facilitates the legume-rhizobia interaction is conserved with other symbioses27. Little is known about the drivers for nodulation, particularly amongst diverse soil rhizobial populations. The management of rhizobial populations under hostile soil conditions remains a challenge, particularly in new or expanded cropping areas28. Our current understanding of the factors that determine nodule lifespan is superficial. Nodule senescence is a complex, programmed process that is controlled by developmental factors and environmental triggers. Activation of the senescence program by environmental stress can lead to premature loss of nitrogen-fixing activity, increased proteolysis and ultimately the death of the infected cells29.

Global grain legume production in 2013 was 399 Mt, with soybean (278 Mt) contributing a significant portion to the agricultural exports of the Americas (Fig. 2). However, legume crop yields tend to vary more than cereal crops30 largely due to environmental constraints such as drought31,32, which limits symbiotic nitrogen fixation33,34. However, nitrogen fixation is extremely tolerant to soil drying in cowpea35. The incorporation of improved drought tolerance and nitrogen fixation traits into elite lines of grain legumes is anticipated to generate better yielding cultivars that can be grown on marginal land.

Technologies for legume Improvement

Gregor Mendel used a legume, the common garden pea, to demonstrate the ‘particulate nature of inheritance’ in 186536. Nevertheless, many grain legume breeding programs suffer from low genetic diversity and low rates of genetic progress. For example, several bottlenecks during and after domestication in chickpea have limited genetic diversity in the crop gene pool37. For soybean, five introductions accounted for 55\% of the pedigree in public soybean cultivars in the USA in the 1990s38. Innovative methods of crop breeding, based on the animal model39, may conserve genetic diversity while accelerating grain legume genetic improvement, and help to bridge the genetic gap between grain legumes and their wild and landrace relatives (Fig. 3). When combined with genomics-assisted breeding40, it should be possible to unlock valuable genes such as drought and heat stress tolerance in wild legumes, and move them efficiently into cultivated varieties41. Rapid introgression of important genes is a major challenge facing grain legume breeders. Grain legumes are a vital part of the response to the 2009 Declaration of the World Summit on Food Security, which requires a 70\% increase in agricultural output by 2050 to keep pace with population increase, while adapting to climate change through sustainable use of genetic resources for food and agriculture.
The importance of biodiversity in seed banks is widely recognized with much attention paid to rice and other cereal crops\(^{42}\). Large genetic and phenotypic variation exists in the world collections (Table 1, Fig. 4). It is therefore important to have a systematic inventory of legume germplasm centres and their collections. Most of the publicly available information can be found in GENESYS (Global Portal on Plant Genetic Resources; www.genesys-pgr.org). In addition to major CGIAR Institutes listed in Table 1, significant numbers of grain legume germplasm collections are conserved in various national genetic resource centres. Germplasm from China can be accessed via the Chinese Crop Germplasm Resources Information System (www.cgris.net/cgris_english.html) and the Crop Germplasm Resources Platform under the Ministry of Science and Technology, P.R. China, with some restrictions. The National Institute of Agrobiological Sciences (NIAS) Genebank (www.gene.affrc.go.jp/databases_en.php?section=plant) holds the largest germplasm database in Japan. The germplasm from India can be accessed through the National Bureau of Plant Genetic Resources (NBPGR) database (http://www.nbpgr.ernet.in/PGR_Databases.aspx). This germplasm list is not exhaustive because information is often hard to retrieve. Moreover, several accessions are duplicated across genetic resource centres. The format of the data should be standardized to facilitate easy access.
<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
<th>Number of accessions</th>
<th>Main holding institutes</th>
<th>Genome size (Mb)</th>
<th>No. of chromosomes (haploid)</th>
<th>Ploidy</th>
<th>Breeding System</th>
<th>De novo genome sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adzuki bean</td>
<td>Vigna angularis</td>
<td>9978</td>
<td>B (54%), N (24%), H (16%)</td>
<td>528</td>
<td>11</td>
<td>2</td>
<td>ib</td>
<td>V</td>
</tr>
<tr>
<td>Bambara beans</td>
<td>Vigna subterranea</td>
<td>2183</td>
<td>I (94%)</td>
<td>864</td>
<td>11</td>
<td>2</td>
<td>ib</td>
<td>Not available</td>
</tr>
<tr>
<td>Black gram</td>
<td>Vigna mungo</td>
<td>1668</td>
<td>N (51%), P (18%), K (13%)</td>
<td>528</td>
<td>11</td>
<td>2</td>
<td>ib</td>
<td>Not available</td>
</tr>
<tr>
<td>Mung bean</td>
<td>Vigna radiata</td>
<td>23658</td>
<td>B (28%), N (28%), G (18%), P (17%)</td>
<td>509</td>
<td>11</td>
<td>2</td>
<td>ib</td>
<td>S, V</td>
</tr>
<tr>
<td>Cowpea</td>
<td>Vigna unguiculata</td>
<td>42301</td>
<td>I (38%), P (20%)</td>
<td>576</td>
<td>11</td>
<td>2</td>
<td>ib</td>
<td>Q</td>
</tr>
<tr>
<td>Broad bean</td>
<td>Vicia faba</td>
<td>30073</td>
<td>M (33%), B (16%), A (12%)</td>
<td>12797</td>
<td>6</td>
<td>2</td>
<td>ob</td>
<td>Not available</td>
</tr>
<tr>
<td>Chickpea</td>
<td>Cicer arietinum</td>
<td>76221</td>
<td>F (27%), G (19%), M (19%), P (10%)</td>
<td>912</td>
<td>8</td>
<td>2</td>
<td>ib</td>
<td>S, T</td>
</tr>
<tr>
<td>Common bean</td>
<td>Phaseolus vulgaris</td>
<td>102732</td>
<td>C (30%), P (13%)</td>
<td>576</td>
<td>11</td>
<td>2</td>
<td>ib</td>
<td>S, Y</td>
</tr>
<tr>
<td>Tepary bean</td>
<td>Phaseolus acutifolius</td>
<td>1257</td>
<td>P (39%), C (26%), D (11%)</td>
<td>720</td>
<td>11</td>
<td>2</td>
<td>ib</td>
<td>Not available</td>
</tr>
<tr>
<td>Lima bean</td>
<td>Phaseolus lunatus</td>
<td>6420</td>
<td>C (47%), P (35%)</td>
<td>672</td>
<td>11</td>
<td>2</td>
<td>ib-ob</td>
<td>Not available</td>
</tr>
<tr>
<td>Grass pea</td>
<td>Lathyrus sativus</td>
<td>6728</td>
<td>M (38%), K (12%), O (12%)</td>
<td>8064</td>
<td>7</td>
<td>2</td>
<td>ib-ob</td>
<td>Not available</td>
</tr>
<tr>
<td>Hyacinth bean</td>
<td>Dolichos lablab</td>
<td>1292</td>
<td>N (33%), D (29%), P (13%), C (12%)</td>
<td>365</td>
<td>11</td>
<td>2</td>
<td>ib</td>
<td>Not available</td>
</tr>
<tr>
<td>Lablab bean</td>
<td>Lablab purpureus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentil</td>
<td>Lens culinaris</td>
<td>29430</td>
<td>M (42%), A (16%), P (11%)</td>
<td>4032</td>
<td>7</td>
<td>2</td>
<td>ib</td>
<td>R</td>
</tr>
<tr>
<td>Narrow-leafed lupin</td>
<td>Lupinus angustifolius</td>
<td>2956</td>
<td>K (28%), L (21%), E (10%), J (10%), P (10%)</td>
<td>893</td>
<td>20</td>
<td>2</td>
<td>ib</td>
<td>X</td>
</tr>
<tr>
<td>White lupin</td>
<td>Lupinus albus</td>
<td>4155</td>
<td>L (18%), K (12%), P (11%)</td>
<td>576</td>
<td>25</td>
<td>2</td>
<td>ib</td>
<td>Not available</td>
</tr>
<tr>
<td>Pea</td>
<td>Pisum sativum</td>
<td>54062</td>
<td>P (13%), A (11%), M (11%)</td>
<td>4685</td>
<td>7</td>
<td>2</td>
<td>ib</td>
<td>Not available</td>
</tr>
<tr>
<td>Peanut (groundnut)</td>
<td>Arachis hypogaea</td>
<td>47650</td>
<td>F (31%), G (29%), P (20%), B (17%)</td>
<td>2755</td>
<td>10</td>
<td>4</td>
<td>ib</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Pigeonpea</td>
<td></td>
<td>25514</td>
<td>F (52%), G (44%)</td>
<td></td>
<td>845</td>
<td>11</td>
<td>2</td>
<td>ib-ob</td>
</tr>
<tr>
<td>Soybean</td>
<td>Glycine max</td>
<td>93706</td>
<td>B (31%), P (23%), N (15%)</td>
<td></td>
<td>1085</td>
<td>20</td>
<td>2</td>
<td>ib</td>
</tr>
</tbody>
</table>

Footnotes:

- Total number of accessions is the sum of data from GENESYS-PGR, China, India (NBPRG), Japan and Australia. Data accessed 21 April 2016 through:

More information associated to Table 1 can be accessed via http://legumecrops.wildsoydb.org/. It is expected that there are several duplicated accessions across collections, and several accessions are located in non-listed institutions and not accounted for.

- % in brackets is the percentage of the total number of accessions held by the institute/system. Only institutes holding 10% or more of the total number of accessions were listed. Letters represent holding institutes are listed below. For institution “A” the number of *Vicia* accessions included both broad bean and vetch.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>China</td>
<td>Institute of Crop Sciences, Chinese Academy of Agricultural Sciences</td>
<td>http://www.cgris.net/cgris_english.html</td>
</tr>
<tr>
<td>C</td>
<td>Colombia</td>
<td>Centro Internacional de Agricultura Tropical</td>
<td>http://www.ciat.cgiar.org</td>
</tr>
<tr>
<td>D</td>
<td>Ethiopia</td>
<td>International Livestock Research Institute</td>
<td>http://www.ilri.cgiar.org</td>
</tr>
<tr>
<td>E</td>
<td>Germany</td>
<td>Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research</td>
<td>http://www.ipk-gatersleben.de</td>
</tr>
<tr>
<td>F</td>
<td>India</td>
<td>International Crop Research Institute for the Semi-Arid Tropics</td>
<td>http://www.icrisat.org</td>
</tr>
<tr>
<td>G</td>
<td>India</td>
<td>National Bureau of Plant Genetic Resources</td>
<td>http://www.nbprg.ernet.in</td>
</tr>
<tr>
<td>H</td>
<td>Japan</td>
<td>NIAS Genebank</td>
<td>https://www.genesys-pgr.org/wiews/PRT005</td>
</tr>
<tr>
<td>I</td>
<td>Nigeria</td>
<td>International Institute of Tropical Agriculture</td>
<td>http://www.iita.org</td>
</tr>
<tr>
<td>J</td>
<td>Portugal</td>
<td>Banco de Germoplasma – Departamento de Recursos Genéticos e Melhoramento, Estação Agronómica Nacional, Instituto Nacional de Investigação Agrária</td>
<td>http://www.vir.nw.ru</td>
</tr>
<tr>
<td>K</td>
<td>Russia</td>
<td>N.I. Vavilov Research Institute of Plant Industry</td>
<td>http://www.vira.ru</td>
</tr>
<tr>
<td>M</td>
<td>Syria</td>
<td>International Centre for Agricultural Research in Dry Areas</td>
<td>http://www.icarda.cgiar.org</td>
</tr>
<tr>
<td>N</td>
<td>Taiwan</td>
<td>Asian Vegetable Research and Development Center</td>
<td>http://www.avrdc.org</td>
</tr>
<tr>
<td>O</td>
<td>Ukraine</td>
<td>Ustymivka Experimental Station of Plant Production</td>
<td>https://www.genesys-pgr.org/wiews/UKR008</td>
</tr>
</tbody>
</table>

- Genome size is estimated from C-value [Bennett MD, Leitch IJ. Plant DNA C-values database (release 6.0, Dec. 2012) http://www.kew.org/cvalues/]

 - ib inbred, usually selfed, tolerant of inbreeding
 - ob outbred, suffers inbreeding depression
ib-ob-out-bred, usually nearer ib than ob

Major websites for de novo genome information (in alphabetical order):
Q http://cowpeagenomics.med.virginia.edu/CGKB
R http://knowpulse.usask.ca/portal/lentil-genome
S http://legumeinfo.org/genomes
T http://nipgr.res.in/CGAP/home.php
U http://peanutbase.org/home
V http://plantgenomics.snu.ac.kr/mediawiki-1.21.3/index.php/Main_Page
W http://soybase.org
Y https://phytozome.jgi.doe.gov/pz/portal.html

Box 1. The growing economic and environmental cost of nitrogen fertilization.

The relationship between the use of synthetic nitrogen fertilizers and global population growth belies the untapped potential of biological nitrogen fixation by grain legume crops. Some headline facts in this debate:

- Synthetic nitrogen fertilizers sustain 30-50% of present crop yields and will need to increase with further population growth\(^79\). Global ammonia capacity is projected to grow by 16% between 2014 and 2019, with total industrial nitrogen demand grow by 28% over this time, compared with a 6% increase across the fertilizer sector.
- Synthetic ammonia by the Haber-Bosch process presently consumes 1.5% of the global total primary energy consumption (at >200 Mt.yr\(^-1\), 41 GJ.t\(^-1\) ammonia, global energy consumption ca. 5.0\(x\)10\(^{16}\) GJ\(^78,80\)).
- The environmental impact of nitrogen fertilizers is manifold, including:
 - Loss of biodiversity through eutrophication. Remarkably, recent studies show biodiversity recovering with more environmentally stringent practices since the 1980s\(^81\).
 - Eutrophication also increases production of bacterial nitrous oxide (N\(_2\)O), which is one of the most toxic greenhouse gases\(^82\).
 - Production of N\(_2\)O and other reactive nitrogen by-products of fossil fuel combustion, including from ammonia synthesis. The average lifetime N\(_2\)O in the atmosphere is >100 years\(^82,84\). The global atmospheric N\(_2\)O concentration is now 18% higher than in pre-industrial times, and it is estimated that >30% of all atmospheric N\(_2\)O results from agriculture.
- The nitrogen-use efficiency of cereals decreased from ca. 80% to ca. 30% between 1961-2000\(^82,83\). More than 50% applied nitrogen fertilizer was lost from cereal crops between 1961-2010\(^5,85\), and in some cases >80% of applied nitrogen is lost through runoff.
Figure 4. Phenotypic variability in chickpea germplasm conserved at ICRISAT, India.

Figure 5. Major strategies in genomics-assisted crop improvement for grain legumes.

Large-scale germplasm stored in different genebanks can be characterised into smaller sets such as a core/mini-core germplasm set. Such small sets of germplasm can be characterised extensively for traits of interest. Subsequently, specialised genetic stocks such as a mini-core collection (diverse set), bi-parental and multi-parent mapping populations and mutant populations can be developed. Subjecting the populations to Whole Genome Sequencing (WGS)/Genotyping-By-Sequencing (GBS)/-array-based genotyping together with phenotyping for traits of interest can provide Quantitative Trait Loci (QTLs), Quantitative Trait Nucleotides (QTNs), superior alleles and haplotypes. In the end, modern breeding approaches such as Marker Assisted Selection (MAS), Marker-Assisted Backcrossing (MABC) and Genomic Selection (GS) can be deployed for integrating/accumulating superior alleles. QTNs can be edited through genome editing approach called Promotion of Alleles through Genome Editing (PAGE). Candidate genes identified by using –omics approaches can be deployed in genetic engineering approach. By using one or more of the approaches mentioned above, cultivars with improved yield and nutritional quality can be developed.
Whole genome sequencing is an affordable and powerful tool to delineate genomic information of core germplasm, and generate high resolution genetic maps for important agronomic traits, develop molecular markers for breeding and identify important genes for crop improvement. High-resolution genetic maps are available for 10 legumes with *de novo* sequence information and low-resolution maps available for all but Bambara bean, tepary bean, and lima bean. These resources will accelerate the development of genomics-assisted breeding strategies for legume crop improvement (Fig. 5).

Global cereal production has almost tripled over the past 50 years but grain legume production has only increased by about 60%. The relatively low rate of yield improvement in grain legumes versus cereals is at least partly explained by low genetic diversity in grain legume breeding programs. It is important to increase genetic diversity in elite breeding programs if we are to capitalize on biotechnology for legume yield improvement. Genomic selection relies on allelic diversity in the breeding population for complex traits, and may improve long-term genetic progress if accompanied by high effective population size with minimal inbreeding. Selection for complex traits was shown to be more efficient when based on genomic relationship information in animals. For grain legumes, many of which are self-pollinating crops, genomic selection offers the prospect of accelerating genetic progress for yield. Advanced phenotyping technologies are available to measure morphological and physiological traits. High-throughput image-based phenotyping platforms will make significant impact in plant phenomics. Accurate physiological phenotyping of specific and well defined traits will also contribute to improved breeding outcomes.

Bringing in orphans

Orphan crops are minor crops with regional importance that have been largely neglected by researchers and industry due to limited economic importance in the global market. However, many people, particularly in developing countries, rely on these crops not only as food and feed crops but also for their daily healthcare needs despite advancements in modern medicine. They often fill ecological niches, unoccupied by major crop plants, resulting in a greater genetic diversity and plasticity. Orphan food legumes such as cowpea, grass pea, the ‘dolichos’ bean, the tepary bean and the marama bean are usually grown in arid regions, often on marginal land unsuitable for major crop species. They have heat-and drought-tolerance traits, high nutritional value and are extensively used by subsistence farmers. Cowpea is particularly valuable to humans who have limited access to animal protein. The seeds have a high protein content of 25% of dry weight and the leaves are also consumed. The protein content of cowpea leaves consumed annually in Africa and Asia is equivalent to the amount in 5 million tons of dry cowpea seeds, which equates to about 30% of total food legume production in lowland tropics. The ‘dolichos’ bean, one of the most ancient legume crops among cultivated plants, is grown
as a multipurpose crop pulse, vegetable and forage. The bean is a major protein source in diets in the southern states of India. The Tepary bean originated from dry subtropical areas of Mexico and the south-western United States. Tepary bean is well adapted to drought and high-temperature stresses; the major drought stress adaptation mechanisms are deep rooting for more water uptake, small leaves for reduced water use and less stomatal conductance52. The oil-rich marama bean, a perennial legume of Southern Africa growing in the Kalahari Desert, can be more nutritious than soybean53. A major drawback of all these legume crops, or potential crops like marama bean, is inefficient harvesting techniques due to the shape and density of branches, being ground creepers occupying large areas with limited seed yield and low propagation rates. Therefore, the promise of orphan legume crops remains largely unexplored, even though they may represent a treasure trove of undiscovered and potentially unique traits due to their great genetic diversity.

Nutrition and health

Legumes are a crucial source of a variety of phytochemicals that are important for human health. These include protein, low glycaemic index carbohydrate, fibre, minerals, vitamins carotenoids and polyphenols54. Consequently, legumes hold a near-unique position among foodstuffs because of their health determinant properties (Fig. 6)55. Studies in China revealed that all-cause mortality was increased in individuals on a legume-free diet56. Moreover, the mortality hazard ratio declined by 8\% in older people globally for every 20 g increase in daily grain legume intake55.

![Figure 6. The human health benefits of grain legumes.](image_url)

- b. Lupin as an example of processed staple foods.
- c. Passion for Pulses78.
- d. Key benefits of dietary grain legumes on human health.
The first study to assess the link between the Mediterranean diet and health, which included a 20 g intake of legumes per day, found a 10% reduction in all-cause mortality57.

Legumes also contribute to reduced risk of mortality via benefits on major chronic diseases and their risk factors. These include cardiovascular disease, diabetes, cancer, obesity and gut health58. Observational studies have shown that legumes can reduce cardiovascular disease risk, and intervention studies suggest that this is mediated via improvements in blood pressure, lipid profile, inflammation, blood sugar metabolism and body weight54,59. Legumes also offer a food-based solution to decreasing risk of pre-diabetes60 and diabetes management as well as diabetes-associated complications, especially cardiovascular disease61. A meta-analysis of 11 studies showed that daily consumption of legumes for more than 4 weeks resulted in a significant reduction in fasting blood glucose and insulin62. The effects are more pronounced when legumes are consumed as part of a low glycaemic index diet. Since diabetes is a major risk factor for several cancers and neurodegeneration, the future health of ageing populations may be dependent on a food system that provides legumes in an affordable, palatable and sustainable way. A number of meta-analyses of observational studies have associated eating legumes with lower risk of several cancers including bowel cancer54. There is growing evidence that the human microbiome plays an important role in health outcomes including cardiovascular disease, obesity and colorectal cancer. Increasing evidence suggests that legumes can act as prebiotics that potentially alter bowel flora affecting production of gut hormones and consequently appetite54.

Human studies using lupin-enriched foods provide insights into possible mechanisms by which legumes contribute to cardio-metabolic health. Flour made from lupin seeds contains about 45% protein and 30% fibre. Lupin-enriched foods, such as bread, pasta and biscuits, are palatable and acceptable to consumers. In clinical trials, lupin flour-enriched bread reduced appetite and energy intake, suppressed plasma ghrelin, an orexigenic hormone that stimulates appetite, and reduced post-meal glucose and insulin responses63. Thus, bread with lupin-kernel flour has the potential to influence appetite, reduce energy intake and improve glucose control. Regular consumption of lupin-enriched bread by overweight men and women did not alter body weight or body composition, but did reduce blood pressure and improve measures of insulin resistance64,65.

The positive findings on insulin resistance in normoglycaemic overweight individuals suggest that lupin foods could benefit people with Type 2 diabetes. The acute effects of a lupin-based beverage on glucose and insulin responses in Type 2 diabetic subjects were determined in a randomised, controlled, cross-over trial, in which participants consumed a beverage containing glucose (control), or glucose plus lupin flour, or glucose plus fibre and protein from soya isolates66. Post-beverage glycaemic responses were significantly lower in participants following intake of the lupin beverage than the control beverage over a 4 h period following
consumption. These studies on lupin-enriched foods provide evidence that legumes have cardiovascular benefits, particularly in patients with diabetes who are at a significantly increased risk of cardiovascular disease. The legume intake needed for health benefits is not clear, but observational and intervention studies indicate that intakes averaging 15 to 30 g/day are likely to be beneficial.

Grain legumes such as cowpea have potential uses in the cosmetic, food, textile and pharmaceutical sectors because of their therapeutic properties. Cowpea is a source of vitamins and minerals such as folic acid, vitamins A and B, thiamine, niacin and the water-soluble vitamins riboflavin, pyridoxine and folic acid, as well as minerals such as calcium, zinc, potassium, iron and phosphorous and other trace elements. Cowpea proteins have high lysine contents and are potentially an excellent supplement for cereal-based diets. The marama bean serine protease inhibitor that prevents elastase activity provides a safe and natural tryptase and elastase inhibitor (United States Patent 5869063). Elastase is part of the chymotrypsin-like clan and an important role has been suggested for human elastase in various inflammatory disorders, including pulmonary emphysema, sepsis, arthritis, nephritis and certain skin diseases.

Conclusions and perspectives

The current use of nitrogen fertilisers in agriculture is ~110 million tonnes pa, with the majority directed to cereal production. Only 30-50% of applied nitrogen is used by the intended crop and excess nitrogen fertilization has negative impacts on climate change and biodiversity. Recent increasing nitrogen fertilizer costs have focused attention on improving efficiency in cropping systems and also created a notional “legume-envy”, culture. However, while attempts to create nitrogen-fixing cereals are underway, grain legumes currently receive less research and development attention. Addition of legumes to existing cropping systems also increases the diversity of such systems. The legume/rhizobia symbiosis has enormous largely untapped potential for sustainable agriculture, plant diversity and enhancement of primary production with reduced fertiliser use, benefits that may also extend to phosphorus-poor soils.

Grain legumes lag behind cereals in terms of area expansion and productivity gains, despite increasing global demand. This lag may be due in part to unstable grain legume prices due to high variability in their yields and high competition from high-yielding cereal crops. In addition, government price support policies often exist for cereals, particularly in developing countries, as well as inputs have been insufficient into grain legume breeding and agronomic technologies required to improve yields. Our current overreliance on a handful of major staple cereal crops has inherent agronomic, ecological, nutritional and economic risks and restricts the contributions made by under-utilized future crops such as grain legumes. The static or declining production...
trends especially in developing countries, despite increasing global demand, threatens current and future food security. The UN FAO international year of pulses (grain legumes) in 2016 provides an excellent opportunity to reflect on the status of global grain legume production, consumption and potential opportunities for future expansion. Legume crops will however only achieve a competitive advantage if their profitability to the farmer exceeds that of the dominant cereals. To hasten the adoption of grain legume production technology by resource-poor farmers in developing countries, on-farm, farmer-participatory adaptive research and developmental approaches are required, to a much greater extent than currently being implemented. The potential socio-economic gains through a boost in grain legume production and consumption are enormous. Hence, the increased public perception of the health and well-being advantages of a grain legume-rich diet may be an important driver of culture change with regard to the key role that grain legumes play in food security.

Acknowledgements

We thank World University Network (WUN) and research collaboration awards (UWA and the University of Leeds) for financial support. CHF thanks the Biotechnology and Biological Sciences Research Council (BBSRC UK (BB/M009130/1) and the European Union (KBBE-2012-6-311840; ECOSEED) for financial support. JWC thanks BBSRC (UK) and Wherry and Sons, (UK) for an industrial CASE studentship (BB/K501839/1). H-ML was supported by the Hong Kong RGC Collaborative Research Fund (CUHK3/CRF/11G), the Lo Kwee-Seong Biomedical Research Fund and Lee Hysan Foundation. Ka-Ming Fung, Qianwen Wang, Lydia Kit-Wah Siu, and Yihan Jiang of The Chinese University of Hong Kong assisted in the production of Fig. 2, Table 1 and the associated webpage, highlight and cover design. We thank Hari Upadhyaya for the images shown in Fig. 4. TAM and JMH thank the Western Australian Government, Department of Industry and Resources for financial support. The authors thank Bodhi’s Bakery, Fremantle, Western Australia, for baking the bread and biscuits and Belmar Foods, Balcatta, Western Australia, for manufacturing and providing the pasta. BNK and HB are supported by Australian Research Council (ARC), ITRH – Legumes for Sustainable Agriculture (IH140100013). MJC and CHF thank the ARC (DP150103211) for financial support. AJM is supported by grant funding (BB/JJ004553/1 and BB/L010305/1) from the BBSRC and the John Innes Foundation.

Author contributions

CHF co-created the network, discussed the idea, organised the content and edited the final article before submission, H-ML discussed and contributed to the content, prepared Fig. 2, Table 1 and the associated
webpage, highlight and cover design. RV provided information concerning genetics and breeding. HTN discussed and contributed to the content and coordinated the genetic and breeding topics including Figs and Table 1. KHMS co-created the network, discussed the idea, contributed to various sections, Figs and edited the final version. TDC discussed the content, contributed to the section on sustainable agriculture, contributed edits to several sections, and gave suggestion on Figs. WAC wrote parts of the text, contributed citations and edited Table 1 and Figs. HB discussed the content, prepared Fig. 1 and Supplementary Figs, and contributed to the sustainable agriculture section. TAM discussed the idea, provided Fig. 6 and contributed to the section on nutrition and health. JMH assisted in the production of Fig. 6 and contributed to the section on nutrition and health. JWC produced Fig. 3 and finalised the references. AJM contributed to the section on symbiotic nitrogen fixation. KK contributed to orphan legume section. JV contributed to orphan legume section. CC organized orphan legume section and reviewed final version. JAO discussed the idea and provided information concerning genetics and breeding. MLW contributed to the section on nutrition and health. YL discussed the idea and contributed to the section on sustainable agriculture. HS discussed the idea and helped to edit the content before submission. KS discussed the idea and helped to edit the content before submission. NF contributed to section on climate change. BNK contributed to sections focussed on legume nitrogen fixation and helped to edit the content before submission. F-LW produced Fig. 3 and highlight and cover design. BV contributed to abiotic stress information, citations and genomics-assisted breeding Fig. MC co-created the network, prepared Box 1, discussed the idea and edited the Figs before submission.

References

Supplementary Figure 1. Relationship between changes in production and world area harvested for different grain legumes over the past 50 years.

Increased production of grain legumes is associated with expansion of land area planted to the crops compared with cereals whose increased production is due to yield improvements while land area has remained the same. Data are for the legume and cereal species detailed in Fig. 1. Data source: FAO http://faostat3.fao.org/compare/E, accessed 05/01/2016.
Supplementary Figure 2. Relationship between changes in yield and world area harvested for different grain legumes over the past 50 years.
Most increases in yield are associated with expansion of land area planted to the crops. Data are for the legume and cereal species detailed in Fig. 1. Data source: http://faostat3.fao.org/compare/E, accessed 5/1/2016.