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Introduction Segnon/Lux/Gupta

1 Introduction

Since the market for European Union Allowances (EUAs) had been launched on January 1, 2005,
a large number of studies have investigated the relationship between EUA spot prices and energy
prices, such as oil, gas, and coal (cf. Hammoudeh et al., 2014a,b), and extreme weather events (cf.
Mansanet-Bataller et al., 2007), economic activity (cf. Chevalier, 2009) and institutional changes
such as the revelation of information on emissions caps (cf. Alberola et al., 2008). All these stud-
ies shed light on the different factors that may affect the short-term demand for EUAs. However,
little attention has been paid to modeling and forecasting EUA spot price volatility, which with
the development of derivative markets appears to be of particular importance for investors and
energy companies. Daskalakis et al. (2009) utilize a geometric Brownian motion with an addi-
tional jump component to describe the random behavior of the carbon dioxide (CO,) emission
spot price. They find that the jump-diffusion model properly reproduces the non-stationarity and
abrupt discontinuous shifts observed in CO; price levels. Benz and Triick (2009) use a Markov-
switching model, and a standard GARCH(1,1) model to analyze the heteroskedastic behavior
of carbon dioxide emission allowance return series, while Paolella and Taschini (2008) employ
an AR(1)-GARCH(1,1) model with different innovations (Student’s-t, symmetric and asymmet-
ric stable, and the generalized asymmetric t-distributions). Benz and Triick (2009) evaluate and
compare the one-day ahead forecasting performance of their models via the mean squared error
(MSE), the mean absolute error (MAE) and the Kolmogorov-Smirnov and Kupiec tests. They
find that both, the Markov-switching and the standard GARCH(1,1) models, perform well and
dominate over models with constant variance. Paolella and Taschini (2008) also find that the
GARCH model with different distributional assumptions for the innovation provides accurate
one-day ahead out-of-sample value-at-risk forecasts. Recently, Benschop and Cabrera (2014)
question the performance of the standard GARCH(1,1) due to the fact that structural breaks may
occur in the market for European Union Allowances, and the standard GARCH(1,1) under such
circumstances would not be able to properly capture the heteroskedastic behavior of the CO,
emission allowance return series. These authors propose regime switching GARCH models that
might be appropriate for covering infrequent structural changes in the data and compare their
one-day ahead forecasting performance to those of the standard GARCH and simple AR models.
Using MSE and MAE as criteria and Kolmogorov-Smirnov tests for performance evaluation they
find that the Markov-switching GARCH models outperform both the simple Markov-switching
and simple GARCH models.

In this paper, we propose a completely different approach for modeling and forecasting CO,
price volatility. This new approach is based on multifractal processes that have first been devel-
oped in the theory of turbulent flows (e.g. Mandelbrot, 1974) and have been adapted to model
financial volatility by Calvet and Fisher (2001, 2004). The robustness and the capacity of the pro-
cess to dominate GARCH-type models in terms of forecasting volatility of various financial time
series has been demonstrated in Calvet and Fisher (2004), Lux (2008), Lux and Morales-Arias
(2010), Lux et al. (2014), and Lux et al. (2015). The attractiveness of the multifractal model
stems from the fact that it provides a simple uniform framework for both long-term persistence
in the volatility process and structural breaks through regime switching.

Previous studies of carbon dioxid emission allowances have concentrated on the comparison
of one-day ahead forecasting performance of volatility models with constant and conditional
variances. However, volatility forecasts for longer horizons are vital inputs for option pricing
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and risk management decisions. We, therefore, will compare the forecasting ability of the new
Markov-switching multifractal (MSM) model with those of the standard generalized autoregres-
sive conditional heteroskedasticity (GARCH), fractionally integrated GARCH (FIGARCH) and
the two-state Markov-switching GARCH (MS-GARCH) at short and long horizons, thereby fill-
ing these gaps in the existing literature.

The rest of the paper is organized as follows. Section 2 presents the CO, prices and their
descriptive statistics. The volatility models are described in Section 3. In Section 4 we provide
the results of the empirical application and finally, Section 5 concludes.

2 Data

We use daily carbon dioxide (CO,) allowance prices (in €) that are obtained from the European
Energy Exchange (EEX) through Thomson Reuters DataStream. The data set covers the price
observations from January 16, 2009 to January 20, 2015. During this time the carbon prices
have fluctuated between 2.68 € and 16.84 € per tone of CO; (tCO,). The starting point of our
data set can be explained by the fact that the carbon price after October 2006 plunged to around
€ 0.01/tCO; as of March 11, 2008. A few potential reasons for this drop can be found in Yun
and Baker (2009). Including this episode would presumably mean that we would have to cope
with non-stationary dynamics within some subset of our time series and so we decided to confine
ourselves to the post-2008 era over which no such collapse has been observed any more. The
end-point of the sample is purely driven by data availability at the time of writing this paper. We
compute the percent continuously compounded returns 7, as

ry = 100« [In(p,) = In(p;-1)], ey

where p; denotes the carbon dioxide price at period ¢.

Fig. 1 depicts the time evolution of CO, allowance prices, and their log-returns and squared
returns. The descriptive statistics of the log-returns, absolute and squared returns are reported
in Table 1. Our data exhibit negative skewness and excess kurtosis. These results show that
the computed log-returns do not follow a Normal distribution. This observation is confirmed by
the Jarque-Bera test, which rejects the null hypothesis of Normally distributed log-returns at any
level of significance. The augmented Dickey-Fuller (ADF) unit-root test of Dickey and Fuller
(1979) indicates the stationarity of CO; log-returns. The Hurst indices reported in Table 1 are
computed via Detrended Fluctuation Analysis (DFA) (cf. Weron, 2002). The Hurst indices are
standard measures of long-term dependence. The values for log-returns are close to 0.5, implying
absence of long memory features in CO, price returns. For absolute and squared returns the Hurst
index values are significantly above 0.5, indicating the presence of long memory in CO, price
volatility. We also compute the so-called Hill estimator for the tail index (cf. Hill, 1975) in order
to quantify the decay of the unconditional distribution of CO, price returns in its extremal region.
The estimate for the tail index (cf. Table 1) is in the vicinity of 3 and this result is in harmony
with typical findings for financial assets, cf. Lux and Ausloos (2002). Again, this is a clear
indication of non-Normality as the slow decay of the distribution of returns implies that large
price changes occur with much higher probability than under a Gaussian shape.

Fig. 2 shows the autocorrelation functions for log-returns, absolute and squared log-returns.
We observe that the absolute and squared log-returns are highly correlated, and this observation
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is in conformity with the Ljung-Box statistics, Q(10) and Q(20). However, the Ljung-Box tests
also reject the null hypothesis of no serial correlation for raw log-returns at the 5% significance
level. This indicates the presence of some serial dependence and predictability in the returns of
CO, allowances. Overall, the carbon dioxide emission allowances, therefore, share the typical
salient features of financial assets that are captured by the catchwords "fat tails" and "clustered
volatility", but show some deviation from the "efficiency" of stock or foreign exchange markets
(their complete lack of predictability). Hence, the data document a far reaching "financialisation"
of the market for emission allowances, which, however, seems not deep and liquid enough to re-
move all predictable patterns like in archetypical stock markets of developed countries. Note that
financialisation implies that large changes of the prices and waves of high and low fluctuations
might be caused by the trading process and might not necessarily reflect exogenous sources of
uncertainty.

Finally, we apply the modified iterated cumulative sum of squares (ICSS) algorithm ° to test
whether multiple breaks occur in the second moment at the 5% significance level. We obtain two
break points that occur on March 24, 2009 and November 16, 2011, respectively. These break
points motivate the use of Markov-switching models that can take into account such structural
changes. In the multifractal model, such structural changes might be covered by its very principle
of construction.

3 Model Framework

In this section we briefly present the volatility models used for forecasting CO, price volatility.
In these models returns are formalized as

Iy = iy + 0ey, 2)

where r; is computed as in eq. (1), i, = E,_{[r;] is the conditional mean of the return series,
o, is the volatility process and e, is standard Normally distributed. Defining x, = r; — y,, the
centered returns are given by

Xy = 0 €;. (3)

Here we assume that g, follows an AR(1) process and consider the standard GARCH, the
FIGARCH and Markov switching GARCH (MS-GARCH) models and the Markov switching
multifractal (MSM) model for describing o.

3.1 GARCH-type Models

Since its introduction by Engle (1982), the autoregressive conditional heteroskedasticity (ARCH)
model and its subsequent generalized versions have become the major paradigm for modeling
volatility due to their ability to capture the most important stylized facts (e.g. clustering effects,
nonlinearity, long-memory and short-memory effects, asymmetric leverage effects) observed in
all measures of volatility (e.g. absolute log-returns, squared log-returns, etc...). In the following
we present three different GARCH models.

SWe refer the reader to Sansé et al. (2004) for more details
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3.1.1 The GARCH Model

The simplest GARCH(1,1) models the conditional variance as

2 2 2
o] = w+ax; | +po;, 4)

where w > 0, @ > 0, 8 > 0 and @ + 8 < 1. The nonnegativity constraints on w, @ and 8
guarantee the positivity of o2 (cf. Bollerslev, 1986).
h-step ahead forecasts from GARCH(1,1) are obtained recursively as

6-t2+h =w+t ((l +18) 6_t2+h—1
=67+ (a+p) (67, - 07) Q)

=67+ (a+p)" (67, - 77).

2 - wl-a- ﬁ)‘l is the unconditional variance. As i — oo, it is clear that the

where &
volatility forecast in eq. (5) approaches the unconditional variance &% and (@ + ) dictates the

speed of the mean reversion.

3.1.2 The Fractionally Integrated GARCH Model

The FIGARCH model developed by Baillie et al. (1996) consists in introducing fractional differ-
ences in the GARCH process and thereby allows the model to reproduce the long-term depen-
dence of financial returns volatility as documented in the high Hurst coefficients of absolute and
squared returns. This means that these volatility measures are characterized by a slowly decaying
autocorrelation function rather than an exponentially decaying one (as imposed, for instance, by
the baseline GARCH approach). The conditional variance in the FIGARCH(1,d,1) model can be
formalized as

o7 = w+[1-BL) - pL)(1 - L)*] 5 + ot (©6)

-1

where w > 0, ¢ < 1,8 < 1,0 < d < 1. L denotes the lag operator and d is the parameter of
fractional differentiation. The parameters have to fulfill the following conditions:

2—-d
ﬂ—ds¢_(3 ) (7
and L4
dP_( ;)]Sﬁw—ﬁ+¢l ®)
We can rewrite eq. (6) as follows
of =wl =B +[1- (1 -pewL)1l - L)?] )

= w(l =) +nL)x,

wheren(L):7]1L+n2L2+...,nj20f0rj= 1,2,....
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n(L) can be computed from the recursions:

~

m= ¢-p+d,
(10)

nj= P+ [(j-1-4)j" = d|nm

where n1; = ;4 ( j—1- cf) j~! are the coeficients in the MacLaurin series expansion of the
fractional differencing operator (1 — L)?. The FIGARCH model reduces to the GARCH model
when d = 0.

From egq. (9) one can easily derive the one-step ahead forecast of o2

2 _
t+1 —

& w1 =B+ +pa + (11)

Using recursive substitution described above the h-step ahead forecasts of the FI-
GARCH(1,d,1) model are obtained as

h-1 0
=0 =B+ 3 ok, + Y me (12)
i=1 7=0

Long-term dependence shows up in the fact, that, in principle, all available past data should
be used in the construction of forecasts of future volatility (while in GARCH, its short-term
dependence makes it sufficient to use the filtered realization of the conditional variance, o, at
the forecast origin, time 7).

3.1.3 The Markov-Switching GARCH Model

Following Klaassen (2002) the conditional variance in the two state Markov-switching
GARCH(1,1) model can be formalized as

o (0l = ws, + @y + BBt [0 {11816 (13)

where 0, is the regime path (6;-1,0,-2,...), 8; € {1,2} is the variance regime at time ¢ and
follows a first-order Markov process, and w;, > 0, @s,, 85, = 0. The expectation on the right-
hand-side is across the regime path 8, conditional on information J,_; = (x,_1, X.2,...) and
Or.

Volatility forecasts are obtained as:

2
62 = Z Pr (8 = 19 572, (14)
i=1

where Pr (6., = i|J,) denotes the conditional probability of regime i at & periods ahead and
h—step ahead volatility forecast in regime { made at time ¢ can be computed recursively

A 2(i)
O-z,t+h

=+ (a'(i) + ﬂ(i)) E (0’2@ 1|6t+h) . (15)

t,t+h—

As with the standard GARCH(1,1) and FIGARCH(1,d,1), the MS-GARCH(1,1) is also esti-
mated via the maximum likelihood approach as it is customary in applied finance.
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3.2 The Markov-Switching Multifractal Model

Unlike the GARCH-type models, the recently developed Markov-switching multifractal (MSM)
models are characterized by a multiplicative structure of the volatility process. In the MSM
framework instantaneous volatility is modeled as a product of k volatility components or mul-
tipliers M,l, M,z, e, M,k and a positive scale factor o2 (cf. Calvet and Fisher, 2001, 2004; Lux,
2008). Formally, we have

k
ot = [ [ M. (16)
i=1

The multipliers or volatility components are assumed to be independent of each other at any
time and satisfy It [M;] = 1. Each multiplier M! is renewed at time ¢ with probability y; depend-
ing on its rank within the hierarchy of multipliers and remains unchanged with probability 1 —y;.
A formula for the transition probabilities, y;, that guarantee the convergence of the discrete-time
MSM to a Poisson multifractal process in the continuous-time limit has been developed in Calvet
and Fisher (2001). In this study we are not interested in the continuous-time limit, and therefore,
we prefer to utilize the pre-specified transition probabilities proposed by Lux (2008) that are
expressed as

y; =27 (17)

as this allows to reduce the number of parameters that need to be estimated. Note that this
structure defines a Markov process with a large number of regimes that governs the volatility dy-
namics. The model avoids the curse of dimensionality of large Markov models via its systematic
hierarchical arrangement of transition probabilities across states that in the specification of egq.
(17) does not require any parameters to be estimated. The hierarchical structure with a spectrum
of low and high frequencies of renewal of components by its very nature causes temporal de-
pendence of the volatility process that indeed mimics a hyperbolic decay of the autocorrelation
over a finite interval, i.e. up to time horizons ~ 2¥. With k large this becomes observationally
undistinguishable from "true" long-term dependence. In this way, regime-switching and long-
term dependence are intrinsically combined by the very construction of the multifractal model.
To fully specify the MSM model we assume that the random multipliers follow a Lognormal®
distribution with parameters A and v, i.e.,

M} ~ LN(=2,v). (18)

Normalization of the distribution of the multipliers guarantees |£ [Mﬁ] = 1 which leads to

1
exp (—/l+ Evz) =1. (19)

From eg. (19) it is obvious that the shape parameter v can be expressed as: v = V21. With
this restriction the Lognormal distribution of multipliers is fully defined by the scale parameter A
and the number of parameters to be estimated in the Lognormal MSM (LMSM) reduces to two,
namely A and 0. We estimate these for all specifications k = 2, ..., 20 using the GMM approach

9Qther distributional assumptions such as Binomial, Gamma can be used as well, but have been found to make little
difference in previous literature, cf. Liu et al. (2007), Lux (2008).
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proposed by Lux (2008). We then choose the specification with the lowest GMM criterion as our
preferred model for the subsequent forecasting exercise. Note that higher k increases the number
of regimes (which is 2¥), and generates proximity to long memory over a longer number of lags,
but comes at no additional computational cost in our approach. The pertinent moments used for
the estimation can be found in Lux (2008). Note that maximum likelihood would be possible
only for MSM models with a finite, discrete support of the multipliers, and computationally
feasible only for a limited number of hierarchical components up to about 8.

Based on the LMSM model we adopt the standard approach for best linear forecasts outlined in
Brockwell and Davis (1991) together with the generalized Levinson-Durbin algorithm proposed
by Brockwell and Dahlhaus (2004) to conduct the recursive out-of-sample forecasting. This
forecasting procedure can be summarized in two steps.

1. In the first step: We compute the following zero-mean time series

Z=x'-E [xf] = x> -0, (20)
where & is the estimate of the scale factor o-.

2. In the second step: Assuming that the CO, price volatility data follow the stationary pro-
cess {Z,} defined in the first step, s-step best linear forecasts are given by

n

5 h h
Zuin= ) W01 =¥V, (1)
i=1
’
where the vectors of weights ¥ = (lﬁiﬁ), lﬁﬁfé) e 5{3) are solutions of

" = (22)

with yZ = (y(h),y(h + 1),...,y(n+ h — 1))’ being the auto-covariances for the data gener-

ating process of Z, at lags i and beyond, and T, = [y(i — j)] ,, the pertinent variance-

ij=1,..
covariance matrix. The pertinent auto-covariances for the multifractal model are available
in Lux (2008). Note that this approach provides only the best linear forecasts, but in con-
trast to the GARCH family the overall best nonlinear forecasts are not available to us as

we estimate the MSM parameters via GMM.

4 Empirical Applications

4.1 Forecasting Methodology

To analyze the predictive ability of our models we adopt both the recursive and rolling forecasting
schemes. We split our data set containing carbon price observations from January 16, 2009 to
January 20, 2015 into two subsets. The first one covers the period from January 16, 2009 to
November 16, 2012 and is used as in-sample data for model estimation. The second one contains
carbon prices from November 19, 2012 to January 20, 2015 and serves as out-of-sample data
that we use for forecast evaluation. Note that this division corresponds to the time before and
after the second breakpoint indicated by the ICSS algorithm in Table 2. For the recursive scheme
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the estimation period is expanded forward by adding one observation day by day, so that the size
of the data set used for the estimation increases over the out-of-sample period. This forecasting
scheme should allow to more precisely estimate the parameters the more data become available.
In the rolling scheme the estimation period is rolled forward by adding one observation and
removing one day by day, so that the size of the estimation data sample remains fixed over the
out-of-sample period. Forecasts are computed for horizons of various lengths: 1, 5, 10, 15, 20,
25, and 30 days. If the breakpoint identified by the ICSS would indicate a complete structural
change of the dynamics, the forecasts computed for the out-of-sample period should at least
initially not have much value beyond a naive forecast of future volatility. However, we do not
observe much difference in the behavior of our forecasts so that the test might indeed rather have
detected built-in regime changes like in the MS-GARCH or MSM models.

4.2 Forecast Evaluation Criteria

We evaluate the forecasting performance of our models via three loss functions, namely the mean

squared error (MSE), the mean absolute error (MAE) and the value-at-risk (VaR)-based loss

function proposed by Gonzélez-Rivera et al. (2004) that represents the goodness-of-fit measure

for the use of a volatility forecast in risk management, and the predictive ability test of Hansen

(2005) to test the performance of each model under these criteria against all its competitors.
The three different loss functions are given by

T
MSE=T") (0%, -2,) . (23)
i=1
T
MAE=T"' 3|0}, -2 |, (24)
i=1
MVaR(a) = T~ Z = 12,)) (%1 = VaR?,,). 25)

i=1

where o- , denotes the volatility forecast obtained using a GARCH-type model or MSM
model, o 1s the daily actual volatility that is approx1mated by the daily squared returns, 7" de-
> t 1~ =1(x41 < VaRt+1) VaRt+1 - Fr+1(a/)0-f’f+1
is the conditional value-at-risk, and F;,(.) is the forecast cumulative distribution of the standard-
ized returns. As with MSE and MAE, a smaller value for the MVaR () hints at a good predictive
performance. VaR forecasts provide an assessment of the loss that occurs in the @ percent worst

notes the number of out-of-sample observations, /

cases, and are used to determine the necessary level of underlying equity for risky assets to cover
the risk of extreme market movement. The asymmetry of (25) covers the objective of avoiding
type I-errors (failing to forecast a large negative change) to be more important than issuing an
erroneous warning signal.

We note that the VaR-based loss function defined in eq. (25) is not differentiable due to the
presence of the indicator function. The non-differentiability of MVaR(a) may cause a problem in
the implementation of the superior predictive ability (SPA) test of Hansen (2005) that is based on
the framework of White (2000). To obtain consistent results we also use a smooth approximation’

7 As mentioned by Granger (1999) the issue associated with the non-differentiability may be just a technicality due to
the fact that it should always be possible to find a smooth function which is arbitrarily close to the non-smooth one.

10
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to MVaR(«a), denoted as MSVaR (), that is differentiable and given by

T
MSVaR(a) = T Z | = g (w1, VarS,, )| (301 — VarS,,). (26)
i=1

2,(,2) = [1 +exp((y —2))]!. The parameter, v > 0, governs the smoothness and for a higher
value of v MSVaR(«a) gets closer to MVaR(a).

The three loss functions we use in this paper are well known in the literature and each of them
can be used depending on the context and the objective of the users. To draw meaningful infer-
ences about the relative forecasting performance of our volatility models, we apply the superior
predictive ability (SPA) test of Hansen (2005). In the next Section we briefly describe the SPA
test.

4.3 Superior Predictive Ability Test

The superior predictive ability (SPA) test proposed by Hansen (2005) allows to compare the
relative performance of a particular model with its competitors via a pre-specified loss function.
The test is a modification of the reality check test of White (2000). The null hypothesis that the
benchmark model is not outperformed by any of the other competitive models is expressed as

follows
H, : »,HllaXKE [d] <0, 27
where d; = (d;;, ..., dx,) is a vector of relative performances, d;, that are computed as d;; =

Lﬂ) - Lﬁ"zl. K is the number of the competitive models,  denotes the forecasting horizon and Lgoh)
and LE'Z are the loss functions at time ¢ for a benchmark model M( and for its competitor models,
M;

The associated test statistic is given by

i-1...x)» TESpeECtively.

Td
SPA = max VTd

i=1,...K —’
| lim Var( VTa)

where d = T™! Z d;. A stationary bootstrap procedure is used to obtain the p-values of the
SPA. We refer the reader to Hansen (2005) for more details on technical issues. However, some

(28)

remarks are in order on the framework of the SPA test concerning (i) the differentiability of the
loss function used, (ii) the influence of the parameter estimation error, (iii) the impact of the
relationships between models under comparison and (iv) the forecasting schemes used.
According to Theorem 2.3 in White (2000), the loss function under consideration must be
differentiable, as in West (1996), Assumption 1, and either the same loss function has to be
used for the estimation and prediction or (7/R)log logR — 0 as N — oo in order for the
impact of parameter estimation to vanish.® As a result, the test cannot be immediately applied
to non-smooth functions. However, as shown by White (2000) the asymptotic Normality of the

8Forecasts are to be produced for T periods, indexed from R through N (N is the total number of observations).

11
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least absolute deviations estimator can be derived under conditions that allow to obtain results
analogous to White’s Theorem 2.3. Furthermore, it is important to note that non-differentiable
loss functions can be used in the case they do not depend on parameter estimation. Sullivan and
White (1999) used loss functions that depend on estimated parameters via an indicator function.
The results of the stationary bootstrap reality check for their Monte Carlo experiments were in
harmony with the desired limiting distribution and provide support to the conjecture that the test
can be applied to non-differentiable functions as well.

Another restriction in the White’s test framework is concerned with the nestedness of the
models under comparison. In fact, the variance-covariance matrix of the limiting distribution
must be positive semi-definite. This requirement is fulfilled if and only if at least one of the
alternative models is nonnested with respect to the benchmark model. Our inclusion of the
multifractal model guarantees that this condition is fulfilled as it is not nested in any GARCH-
type model and vice versa.

We also note that the choice of the forecasting schemes has an impact on the limiting dis-
tribution. In fact, this has already been studied in detail in West and McCracken (1998) and
McCracken (2000) who demonstrate how the parameter estimation uncertainty according to the
choice of the forecasting schemes may have different impact on the variance-covariance of the
limiting distribution. Hansen (2005) notes that a comparison of nested models that are estimated
recursively may cause problems due to the violation of the assumption of stationarity. Hence,
only rolling and fixed forecasting schemes are accommodated in his framework. In this paper we
implement both recursive and rolling schemes because we want to know whether the violation
of the stationarity condition may affect the SPA test results.

4.4 Estimating and Forecasting Results

The GARCH(1,1), the two-state Markov-switching GARCH(1,1) and the FIGARCH(1,d,1) are
estimated via the maximum likelihood method and the results are reported in Table 3. The
parameters S (that quantifies the effect of past volatility on current one) and « (that measures the
effect of past squared innovations on current volatility) in the GARCH(1,1), MS-GARCH(1,1)
and FIGARCH(1,d,1) models are well estimated and significant at the 1% level. The estimate
of d in the FIGARCH(1,d,1) is also significant at the 1% level and indicates strong evidence
of long memory in the conditional variance of CO, returns. The estimates of the transition
probability of staying in regime 1 is 0.966, while that for regime 2 is 0.654. This indicates that a
regime change from 2 to 1 happens more frequently than from 1 to 2, as can be seen in the time-
varying probabilities of both states displayed in Fig. 4. Note that the major difference between
the regimes is in the constants w"’ and w® while the coefficients for the volatility dynamics are
relatively close to each other. Hence, the MS-GARCH model detects mainly differences between
periods of generally high or low volatility while it implies almost the same structure of temporal
dependence in both regimes. Finally, the estimates of the Lognormal parameter (1) and the scale
parameter in the MSM model are 1.171 and 3.328, respectively. While the second parameter just
reflects the average rate of change, the parameter A regulates the temporal dependency and is in
line with typical findings for financial data.

Table 4 reports MSE, MAE, MVaR(5%) and MSVaR(5%) of volatility forecasts for our four
volatility models used in this analysis and the superior predictive ability (SPA) test results. Note
that MSE, MAE and MVaR(5%) for all four models are computed relative to the MSE, MAE and
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MVaR(5%) of a constant forecast using historical volatility as estimated from the in-sample series
and a value smaller than 1 would, thus, indicate that the model under consideration improves
upon historical volatility under the respective criterion. Based on the MSE only the MSM model
improves upon historical volatility at all forecast horizons. FIGARCH does so only at short
horizons, and GARCH and MS-GARCH have average squared errors that are higher than those
of historical volatility. The MSM is the best model and also improves on historical volatility at
longer horizons (10 days and beyond) for the MSE criterion.

For MAE, all models have relative performance inferior to historical volatility, but MSM has
the least deterioration. Under the MVaR(5%) criterion, and except for the MS-GARCH model
at longer forecasting horizons (20 days and beyond), all volatility models dominate the historical
volatility model with GARCH ahead of FIGARCH and MSM. Surprisingly weak is the forecast-
ing performance of the MS-GARCH compared to the standard GARCH and FIGARCH models.
The standard GARCH and FIGARCH models perform well and provide better average MVaR
results than the MS-GARCH for longer horizons, 5 days and beyond. While the new MSM
model has somewhat inferior statistics under the MVaR criterion than GARCH and FIGARCH,
we will see below that the differences between GARCH, FIGARCH and MSM under the MVaR
criterion appear insignificant for almost all time horizons under various backtesting procedures.
As for the smooth MSVaR criterion, practically no differences are detected compared to the
non-differentiable MVaR.

To see whether the recursive forecasting scheme affects the SPA results we also implement
the rolling scheme that may also be more robust to structural changes in the data and is more
appropriate to the test framework. The SPA results are reported in Table 5 (here we only display
the probabilities of the SPA test statistics). The SPA test results are almost identical to those
reported in Table 4 suggesting that the use of a recursive or rolling forecast scheme in this study
does hardly affect any of our results.

For the SPA test we have used both the differentiable and non-differentiable VaR-based loss
function. As can be seen in Table 6 the differences between both loss functions indeed are very
small for all values of v and completely disappear as the smoothness parameter v increases. For
v = 5 the difference is less than or equal to 0.001. However, to obtain consistent results for
the SPA test we utilize the differentiable VaR-based loss function with v set to 35. The results
of the SPA test are practically identical with those obtained by using the non-differentiable loss
function, cf. Table 4.

Overall, for MSE and MVaR, the performance differences are not that pronounced to indicate
clear superiority of one of our models. Only MS-GARCH is clearly outperformed at usual levels
of significance. However, for both MSE and MAE, MSM is the only one that cannot be outper-
formed at any forecast horizon (except for 1-day forecasts under MAE) at all traditional levels
of confidence. Also, for MVaR and MSVaR it can only be outperformed at the 10-day horizon at
a confidence level of 5%, and the 10 to 20 day horizons at confidence level of 10%. Across all
criteria, it is, thus, the model with the highest rate of non-rejection of superior predictive ability
test.

To access the performance of our volatility models in terms of forecasting value-at-risk at short
and long horizons from another angle we additionally apply two backtesting procedures. The first
one is the likelihood ratio test of Christoffersen (1998) that is based on the violations of the VaR
forecasts and a Markov chain approach. This approach is well-known in the literature and the
most used in practice. The idea of Christoffersen (1998) is that a model of VaR calculation is valid
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if (1) the expected frequency of observed VaR forecast violations is equal to the nominal coverage
rate @, and (2) the VaR forecast violations are distributed independently. The second one is the
duration-based backtesting approach proposed by Christoffersen and Pelletier (2004). Unlike the
first approach the duration-based test is constructed by exploiting the statistical properties of the
durations between consecutive violations. In fact, if VaR forecasts are valid, then, the duration
between two consecutive violations must have a geometric distribution with a success probability
that is equal to the coverage rate.

The test statistics and the p-values of both tests are reported in Tables 7 and 8 for the 1-day
and 5-day horizons. The value of LR-UC is identical for all models. This is due to the fact
that all our models lead to the same number of violations, even though they do not occur at
the same times. The unconditional probability of violation is neither significantly higher nor
smaller than 5%. This means that all our volatility models from this perspective perform equally
well in estimating the level of market risk. We observe that the LR-IND and LR-CC tests of
Christoffersen (1998) accept the null of independence and conditional coverage for almost all the
volatility models used in this study except, in fact, for independence in the case of MSM at the
5-day horizons. These results have been confirmed for the standard GARCH, the MS-GARCH
and the MSM but not for the FIGARCH model when applying the duration-based backtesting
tests of Christoffersen and Pelletier (2004) to 1-period VaR forecasts. At the 5 days forecasting
horizon all the models provide good performance. Surprisingly, we observe that the GARCH
model also provides accurate VaR forecasts although there have been found structural breaks in
the data. The structural similarity of all VaR forecasts can be contemplated in Fig. 5.

To gain insights as to whether forecasts from our competing volatility models may be com-
bined to produce a new predictor that is more accurate than the individual forecasts we apply
the forecast encompassing tests developed by Harvey et al. (1998) for non-nested models and its
adjusted version proposed by Clark and West (2007) for nested ones. The results of both tests
are reported in Table 9. In Table 9 the null hypothesis that forecasts from MSM do encompass
those of the GARCH, FIGARCH and MS-GARCH models cannot be rejected at any standard
confidence level for all three competing models with the only exception of FIGARCH at the
1-day horizon at a confidence level of 10 percent. This indicates that at the 1-day horizon the
FIGARCH model should contribute useful information to the MSM forecasts while this is not
obvious for the other models and forecast horizons.

The results of encompassing tests motivate us to explore the predictive capacity of combined
forecasts from (FI)GARCH and MSM in a linear way in the hope of generating superior predic-
tions (cf. Granger and Terdsvirta, 1999; Aiolfi and Timmermann, 2006). The new predictions f,, ;
are obtained by

Joi = A = f1s +Sha (29)

where fi, and f>, are the single forecasts from the model 1 and model 2, respectively. ¢ is the
optimal weight of model 2 that is obtained from the following regression

Sii=sE—&) e, (30)

where £, denotes the forecasting error from the model 1, that is MSM in this study and &, is
that from (FI)GARCH, and ¢ an iid Normally distributed error term.

The SPA test results obtained by testing the new forecasts against all previous single models
are presented in Table 4. The results show that for the MSE criterion, the null hypothesis that the
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combined forecast cannot be outperformed is never rejected at any confidence level. The same
applies to the MAE criterion in almost all cases, but in both cases the forecast combinations
with ex-post optimal weights do hardly improve upon the best single model, MSM. For the
MVaR criterion, the linear combinations of both models provide average MVaRs that are in the
most cases worse than those of their best ingredient, GARCH and MSM. However, the null
hypothesis that the combined forecasts cannot be outperformed by the single models is again
not rejected at the 5 % confidence level, except for the forecast combination from FIGARCH
and MSM at the 10-day horizon. Note, however, that the optimal forecasts according to egs.
(29) and (30) have implicitly been calculated under an MSE criterion, so they need not be the
optimal combinations for other criteria. Since we observe results for the MSE and MAE of the
combined forecasts that are hardly different from the previous results for MSM as the single
forecast model, this backtesting of optimal forecast combinations confirms the tendency of the
test do not reject encompassing of the GARCH-type models by MSM. If MSM encompasses
these alternative forecast, the forecast combination should not be superior which is indeed what
we mostly observe.

5 Conclusion

This paper proposes a Markov-switching multifractal (MSM) model for modeling and forecast-
ing carbon dioxide emission allowance spot price volatility. We have compared its forecasting
ability with that of the standard GARCH, FIGARCH, and Markov-switching GARCH at shorter
and longer forecasting horizons. The forecasting results indicate that the MSM model cannot be
outperformed by its competitors across the vast majority of all performance criteria and forecast
horizons. For MSE and MAE it provides the lowest average errors while for MVaR GARCH
and FIGARCH have lower losses, but not to a significant extent. Various backtesting approaches
for value-at-risk assessment also indicate that there are no significant differences between the
candidate models in this respect. This result highlights the ability of the MSM processes to pro-
vide accurate volatility forecasts, especially at longer forecasting horizons. The MSM processes,
therefore, seem to be at least as well suited as (FI)GARCH models for modeling of the spot price
volatility of the European Union emission allowances market. Since GARCH and MSM are
based on very different modeling concepts, they might capture different facets of the volatility
process. Exploring the relationships between forecasts from different models, we find that MSM
in the most cases encompasses GARCH and FIGARCH (except at 1-day horizon for FIGARCH).
In line with this finding, combined forecasts using ex-post determined optimal weights do hardly
improve upon forecasts based only on MSM.
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Table 1: Descriptive statistics of the data

Log-returns Absolute returns  Squared returs

1567 observations (from January 16, 2009 to January 20, 2015)
Minimum -44.655 0 0
Maximum 21.060 44.655 1.994E+3
Mean -0.035 2.134 11.111
Standard deviation 3.334 2.561 57.051
Skewness -1.310 4.821 27.741
Kurtosis 27.299 57.837 938.163
Hurst index 0.468 0.903"** 0.928"*
Hill tail index at 5% tail ~ 3.264 [3.102 3.426]
Q(10) 63.992 636.600 50.968
Q(20) 84.744 1.180E+3 138.300
JB 3.900E+4
ADF -37.274

Note: *** indicates 1% significance of Hurst coeflicients based on the simulated boundary values of Weron (2002) for Wiener Brownian
motion. For the tail index estimates, the brackets contain the 95% percent confidence intervals of the point estimate based upon the
limiting distribution of the estimator.

Table 2: Structural breaks

Series Break points Period of time Standard deviation
January 16, 2009 to March 24, 2009 4.844
CO2 return 2 March 25, 2009 to November 16, 2011 2.019
November 17, 2011 to January 20, 2015 4.057

Break points are identified by using the modified ICSS algorithm proposed by Sansé et al. (2004). The structural breaks happened on
March 24, 2009 and November 16, 2011. The estimated break dates are indicated by the arrows in Fig. 1.
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Table 3: Parameter estimates using the complete data

Parameters GARCH MS-GARCH FIGARCH MSM
Regimes 1 2
w 0.002"* 0.032* 0.170 0.003
(0.000) (0.015) 0.219) (0.002)
a 0.116"* 0.046™  0.161°*
(0.018) (0.009) (0.083)
B 0.864"* 0.930"*  0.961"* 0.318"
(0.020) (0.013) (0.016) (0.153)
Dii 0.966™*  0.654"*
(0.013) (0.152)
) 0.030
(0.115)
d 0.395"*
(0.075)
1171
o 3.328"
Diagnostic
Log(L) -3.764E+3 -3.675E+3 -3.757E+3 -
AIC 7.535E+3 7.365E+3 7.522E+3 -
BIC 7.551E+3 7.408E+3 7.543E+3 -

Note: The numbers in parentheses are standard errors of the estimations. Log(L) is the logarithm of the maximum likelihood function.
AIC and BIC are the Akaike and Bayesian information criterion, respectively. *** indicate that the parameters are significant at the 1%
level. The optimum objective function in the GMM procedures is obtained for k = 20 (volatility components in the MSM model).
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Figure 1: Plot of prices, returns and volatility.
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Table 4: Recursive forecast scheme: MSE, MAE, MVaR(5%) and SPA test results using carbon
dioxide prices from January 16, 2009 to November 16, 2012 as in-sample period and
carbon prices from November 19, 2012 to January 20, 2015 as out-of-sample period.

Forecast horizons

1 5 10 15 20 25 30
MSE
GARCH 1021 1022 1010 1.027 1.047 1.049  1.029
(0.063) (0.097) (0.150) (0.075) (0.045) (0.050) (0.184)
MS-GARCH 1.007 1.025 1036 1.106 1293 2168  12.605
(0.088) (0.046) (0.010) (0.000) (0.000) (0.025) (0.074)
FIGARCH 0999 1035 0995 0995 1011 1.005  1.001
(0.305) (0.092) (0.352) (0.331) (0.104) (0.123) (0.571)
MSM 0985 0987 0982 0987 0992 0991 0991
(0.827) (1.000) (0.884) (0.669) (1.000) (1.000) (0.960)
GARCH+MSM 0984 0987 0982 0987 0992 0991  0.990
(0.960) (0.551) (0.988) (0.959) (0.608) (0.562) (0.998)
FIGARCH+MSM 0979 0983 0982 098 0991 0991  0.991
(0.816) (0.788) (0.980) (0.993) (0.664) (0.534) (0.994)
MAE
GARCH 1166 1209 1.198 1240 1259 1295  1.284
(0.029) (0.026) (0.039) (0.034) (0.024) (0.011) (0.015)
MS-GARCH 1160 1291 1447 1792 2381 3472 5542
(0.005) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
FIGARCH 0993 1178 1138 1.170 1.180 1.179  1.182
(1.000) (0.083) (0.149) (0.082) (0.046) (0.044) (0.041)
MSM 1.077 1112 1110 1122 1120 1.125  1.129
(0.011) (1.000) (0.851) (1.000) (1.000) (1.000) (1.000)
GARCH+MSM 1069 1110 1116 1126 1114 1.119  1.144
(0.012) (0.839) (0.294) (0.110) (1.000) (1.000) (0.062)
FIGARCH+MSM 1013  1.101  1.110 1132 1108 1123  1.131
(0.153) (0.795) (0.810) (0.104) (1.000) (1.000) (0.057)
MVaR(5%)
GARCH 0926 0924 0910 0914 0922 0965  0.946
(0.908) (0.941) (0.639) (0.636) (1.000) (0.673) (0.851)
MS-GARCH 0936 0948 0952 0997 1.062 1.162 1274
(0.433) (0.094) (0.001) (0.000) (0.000) (0.000) (0.000)
FIGARCH 0980 0940 0914 0921 0959 0969  0.964
(0.089) (0.277) (0.361) (0.364) (0.102) (0.389) (0.149)
MSM 0939 0944 0943 0954 0965 0982  0.981
(0.315) (0.241) (0.012) (0.059) (0.081) (0.150) (0.106)
GARCH+MSM 0949 0947 0933 0951 0973 098 0975
(0.063) (0.107) (0.052) (0.064) (0.058) (0.160) (0.176)
FIGARCH+MSM  0.944 0953 0938 0946 0971 0983 0981
(0.348) (0.191) (0.020) (0.056) (0.098) (0.186) (0.179)
MSVaR(5%) with v = 35
GARCH 0926 0924 0910 0914 0922 0965  0.946
(0.909) (0.942) (0.640) (0.638) (1.000) (0.673) (0.851)
MS-GARCH 0936 0948 0952 0997 1.062 1.162 1274
(0.431) (0.094) (0.001) (0.000) (0.000) (0.000) (0.000)
FIGARCH 0.980 0940 0914 0921 0959 0969  0.964
(0.089) (0.275) (0.360) (0.362) (0.102) (0.390) (0.149)
MSM 0939 0944 0944 0954 0965 0982  0.98I
(0.313) (0.239) (0.011) (0.059) (0.081) (0.150) (0.106)

Note: MSE, MAE, and MVaR(5%) and MSVaR(5%) for all four models are computed relative to the MSE, MAE, MVaR(5%) and
MSVaR(5%) of a constant forecast using historical volatility as estimated from the in-sample series. The entries in parentheses are the
p-values of the SPA test of Hansen (2005) for the pertinent model and criterion. The null hypothesis is that a benchmark model cannot
be outperformed by other candidate models. The values in bold face represent the p-values that are greater than or equal to the 10%
confidence level under a pre-specified loss function. The combine@ (fprecast are computed using the optimal ex-post weights defined in

egs. (29) and (30).
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Table 5: Rolling forecast scheme: SPA test results using carbon dioxide prices from January 16,
2009 to November 16, 2012 as in-sample period and carbon prices from November 19,
2012 to January 20, 2015 as out-of-sample period.

Forecast horizons

1 5 10 15 20 25 30

MSE

GARCH 0.053 0078 0135 0094 0035 0047 0153

MS-GARCH ~ 0.093 0016 0000 0002 0010 0020 0.036

FIGARCH 0.294 0089 0345 0248 0.055 0.078 0.295

MSM 0.840 1.000 0.887 0.752 1.000 1.000  0.890
MAE

GARCH 0.033 0021 0028 0024 0014 0004 0.008

MS-GARCH 0011 0000 0000 0.000 0.000 0.000 0.002

FIGARCH 1.000 0081 0112 0051 0020 0011  0.009

MSM 0.066 1.000 0.888 1.000 1.000 1.000  1.000

MVaR(5%)

GARCH 0734 0841 0747 0736 0814 0.677 0.808

MS-GARCH 0445 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0022 0170 0338 0365 0.128 0.686 0.327

MSM 0.584 0393 0098 0085 0303 0387 0.329

Note: The entries are the p-values of the SPA test of Hansen (2005) for the pertinent model and criteria. The null hypothesis is that a
benchmark model cannot be outperformed by other candidate models. The values in bold face represent the p-values that are greater than
or equal to the 10% confidence level under a pre-specified loss function.

Table 6: MSVaR(5%) using a smooth function

Recursive forecasting scheme

Forecast horizons

1 5 10 15 20 25 30
Smoothing coefficient v = 5
GARCH 0926 0923 0908 0914 0921 0964 0.946
MS-GARCH 0936 0947  0.951 0.997 1.063 1.163 1.276
FIGARCH 0.980 0939 0913 0920 0.960 0.969  0.964
MSM 0940 0945 0943 0955 0.966 0982  0.982
Smoothing coefficient v = 10
GARCH 0.927 0924 0909 0914 0922 0965 0.946
MS-GARCH 0936 0948 0951 0997 1.062 1.162 1274
FIGARCH 0.980 0940 0914 0921 0960 0969  0.964
MSM 0.939 0945 0943 0954 0965 0982  0.982
Smoothing coefficient v = 35
GARCH 0926 0924 0910 0914 0922 0965 0.946
MS-GARCH 0936 0948 0.952  0.997 1.062  1.162 1.274
FIGARCH 0.980 0940 0914 0921 0959 0969  0.964
MSM 0939 0944 0944 0954 0965 0982  0.98]
Smoothing coefficient v = 95
GARCH 0926 0924 0910 0914 0922 0965 0.946
MS-GARCH 0936 0948 0952 0997 1.062 1.16 1.274
FIGARCH 0.980 0940 0914 0921 0959 0969  0.964
MSM 0939 0944 0944 0954 0965 0982  0.981

Note: v is the smooth parameter. For v > 10 the differences between the non-differentiable and differentiable functions are vanishing.
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Table 7: Backtesting tests of 5% VaR forecasts for CO, returns at the forecasting horizon, 7 = 1.

GARCH MS-GARCH FIGARCH MSM
EFV 0.048 0.048 0.048 0.048
LR tests of Christoffersen (1998)

LR-UC 0.029 0.029 0.029 0.029
(0.866) (0.866) (0.866) (0.866)

LR-IND 0416 0416 1.985 0.416
(0.519) (0.519) (0.159) (0.519)

LR-CC 0.444 0.444 2.014 0.444
(0.801) (0.801) (0.365) (0.801)

LR tests of Christoffersen and Pelletier (2004)

LR-CC 1.670 0.131 10.461 1.462
(0.434) (0.937) (0.005) (0.482)

LR-IND 1.540 <0.001 10.330 1.331
(0.215) (0.993) (0.001) (0.249)

Note: EFV denotes the ratio of VaR violations to the sample size (T=538) observed for the CO, returns. LR-UC, LR-IND and LR-CC
denote the unconditional coverage, independence and conditional coverage test statistics, respectively. While the LR test in Christoffersen
(1998) is based on the violation process and a Markov chain approach, the test developed by Christoffersen and Pelletier (2004) is
constructed based on the durations between violations. The values in bold face are the p-values that are greater than or equal to the 5%

confidence level.

Table 8: Backtesting tests of 5% VaR forecasts for CO, returns at the forecasting horizon, i = 5.

GARCH MS-GARCH FIGARCH MSM
EFV 0.048 0.048 0.048 0.048
LR tests of Christoffersen (1998)

LR-UC 0.029 0.029 0.029 0.029
(0.866) (0.866) (0.866) (0.866)

LR-IND 1.985 1.985 0.416 4413
(0.159) (0.159) (0.519) (0.036)

LR-CC 2.014 2.014 0.444 4.442
(0.365) (0.365) (0.801) (0.109)

LR tests of Christoffersen and Pelletier (2004)

LR-CC 0.205 1.704 0.331 3.492
(0.903) (0.427) (0.848) (0.175)

LR-IND 0.075 1.573 0.200 3.361
(0.785) (0.210) (0.655) (0.067)

Note: EFV denotes the ratio of VaR violations to the sample size (T=538) observed for the CO, returns. LR-UC, LR-IND and LR-CC
denote the unconditional coverage, independence and conditional coverage test statistics, respectively. While the LR test in Christoffersen
(1998) is based on the violation process and a Markov chain approach, the test developed by Christoffersen and Pelletier (2004) is
constructed based on the durations between violations. The values in bold face are the p-values that are greater than or equal to the 5%

confidence level.
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Table 9: Encompassing tests for non-nested models

Model 1 vs. Model 2
MSM vs. GARCH

ENC-T  -0.880  -0.236 0.777 0.109 -0.223  -0.194 0.325
(0.810) (0.593) (0.219) (0.457) (0.588) 0.577) (0.373)

S -0.203  -0.059 0.149 0.045 -0.071 -0.065 0.145
[0.269] [0.242] [0217] [0.204] [0.196] [0.189] [0.186]

MSM vs. MS-GARCH

ENC-T -1.172 -0975 -0.795 -0.710  -0.985 -1.252  -1.450
(0.879) (0.835) (0.787) (0.761) (0.837) (0.894) (0.926)

S -0496  -0503  -0.217  -0.180  -0.128  -0.054  -0.009
[0.405] [0.313] [0.220] [0.144] [0.088] [0.042] [0.012]

MSM vs. FIGARCH

ENC-T 1.323 -0.989 1.181 0.338 -0409  -0.153 0.045
(0.093) (0.838) (0.119) (0.368) (0.659) (0.561) (0.482)

I 0.366 -0.360 0.160 0.222 -0.258  -0.084 0.036
[0.195] [0.256] [0.308] [0.347] [0.378] [0.403] [0.425]

Note: we test the null hypothesis that forecasts from model 1 encompass those of model 2 and ENC-T denotes the associated test statistics.
The values in parentheses are the p-values of the tests. s are the estimates of the slope parameter ¢ in the forecast encompassing regression
eq. (30). The values in square brackets are the standard errors of the estimation.
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Figure 2: Plot of autocorrelation functions
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Figure 3: CO; returns and three-standard-deviation bands for the regimes defined by the struc-
tural breaks identified by the modified ICSS algorithm.
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Figure 4: Estimated probabilities of MS-GARCH(1,1) of being in regime 1 (upper panel) and log

returns (lower panel)
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Figure 5: CO, returns with 5% VaR forecasts from GARCH, MS-GARCH, FIGARCH and MSM
at the forecasting horizon, h=5
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