The Utilization of the Protein of Somerset Beans by Rats and Sheep.

By 1). B. SMUTS and J. S. ('. MARAIS, Section of Nutrition. Onderstepoort; and J. (. BONSMA. Division of Animal and (rop Production, Pretoria.

Experience and practical results have demonstrated bevond doubr that the future of Animal Production in South Africa is largely predetermined by the amount and type of available nutritious feeds during those seasons of the vear, when the natural flora has deteriorated to such an extent that it becomes nutritionally inadequate to maintain animals subsisting solely on it. The problem of mational importance arising from this complex situation, resolves itself, therefore, primarily into devising means and ways by whirh adequate amounts of feed can be ensured during those periods when supplementary feeding becomes absolutely essential. Unfortumately climatic conditions prevailing in the larger portions of the animal production areas do not farour extensive production of home-grown todder during winter. Exrept in rare and fortunate cases where irrigation may be executed farmers have to rely almosi exclusively for winter feeding on surh amounts of feed which and be conserved during, and caried over form the preceding summer. This highly essential practice of food fonservation is, howerer, not yet fully appreciated in practice, so that in many instances either no eftort is made to conserve ferd or inadequate amounts are conselved which becomes exhansted earty in winter. This precarious position coupled with umreliable summer raintall conditions. as well as the great bulk of plant material required to ensure adequate reservation of feed during winter make it highly rebatable whether it would not be far wore practical and eronomical to adopt the primeiple of concentrate supplementation. In fact, it has heen shown in a previous pmblication that our national feech namely. maize, is particulaly suitable for such a purpere and when the condition arises it may be sorentifically supplemented with other arailable protein feeds to make a complete balanced ration for any specific animal function. Howerer. at present every progressive farmer is endeavouring in his own way to combat this evil of winter feeding, and a variety of individual methods are in existence.

During the summer months of 1938 one of the authors (J.C.B.) visited several cattle ranches in the Northern Transvaal. On one of these ranches at Bandolierskop, he was struck by the abundant vegetative growth of a type of velvet bean.

He was informed that these beans came from Southern Rhodesia and that the seed was mixed with sunflower seed; the result was that the vines which often attain a length of 20 yards or more grew over the sunflower stems. (Figure 1.)

These beans were later identified as a velvet bean (Stizolobeum) called Somerset beans.

According to information obtained from Mr. D. E. McLoughlin, Agriculturist, Southern Rhodesia, this variety of velvet bean was introduced from India in 1926, and it soon proved to be superior to any which had previously been grown in the Colony.

In trials at the Salisbury Agricultural Experiment Station during 1927-1929 the following yields were obtained per acre, viz., green fodder $25,497 \mathrm{lb} .$, hay $4,793 \mathrm{lb}$. , seed $2,690 \mathrm{lb}$. The Experiment Farm, University of Pretoria, obtained a yield of $4,301.8 \mathrm{lb}$. of hay per acre in the first trial in 1939. A farmer in Northern Transvaal reported a yield of over $4,000 \mathrm{lb}$. of seed per acre.

It appears that in Southern Rhodesia the Somerset variety is practically the only variety of velvet bean grown in the colony, where it is used chiefly as a hay or silage crop.

In the Northern Transvaal, farmers allow the crop to mature. The whole plant is then ground, in a hammermill and molasses added. This feed is well liked by cattle and very good results have been observed when the hammermilled Somerset beans sprayed with molasses have been fed to cattle.

Because of this apparent nutritive value and the high yields of hay and beans, it was decided to undertake certain protein studies on these beans.

Description.

It would be of interest to describe the Somerset bean briefly and to mention important facts of practical interest to the grower or farmer.

The Somerset bean is a vigorously growing annual, which requires a long growing season.

Under favourable conditions the vines may attain a length of 20 yards or more.

The leaves are trifoliate, the leaflets are entirely ovate, with laterals oblique, acuminate and pubescent on the lower side. (Figure 2.)

The flowers, which are papilionaceous, are dark purple, 15 to 30 being produced on a long pendent branched raceme in groups of 3-5 on short lateral branchlets. (Figure 3.)

There are from 10 to 30 pods on a lateral branch; the former are pubescent when immature. (Figure 4.)

The mature pods are smooth, $5 \frac{1}{2}$ inches long, with one twist; they are longitudinally ridged. There are usually from 5 to 8 oval, smooth, black marbled seeds in each pod. (Figure 5.)

Planting.

As the Somerset bean requires a long growing season, planting should take place early in the spring. The mealie planter can be used but the holes in the discs should be made larger in order to enable the beans to pass through.

This crop is usually planted $3-4$ inches deep in rows $36-40$ inches apart with 18 inches between plants in the rows.

A supporting crop, such as sunflowers, increases the yield of seed of Somerset beans. The sunflowers should be sown in the same rows as the beans and about 3-4 feet apart.

Harvesting.

If the crop is harvested with the object of grinding the whole plant in a hammermill, it should be allowed to mature. Harvesting is carried out by chopping off the plants with a native hoe.

When required for silage, planting should take place later, and the crop should be cut when the pods are 1 to 1_{2}^{1} inches long.

A mixture of 2 parts of maize or wintersome to one of velvet beans makes excellent silage.

Fig. 1.

Fig. 2.
D. B. SMUTS, J. S. C. MARAIS AND J. C. BONSMA.

Fig. 3.

Fig. 4.

Fig 5.

The popularity of this crop in Southern Rhodesia and in the Northern Transvaal is due mainly to its ability to thrive under great variation in climatic conditions, also the crop does well on comparatively poor soils. However adverse the climatic conditions may be it seldom fails to yield a crop.

This crop is relatively immune to fungoid disease, is attacked by few insects and is nematode resistant.

Experimental.

The biological ralue of Somerset bean proteins was determined alone and supplemented by cystine at an 8 per cent. level on rats. These rats were selected according to the usual procedure for the determination of the biological values. They were subjected to a nitrogen free period for the estimation of the body's contribution of nitrogen in the faeces and urine and thereafter put on the protein rations for a preliminary period followed by the usual collection period of 8 days. The composition of the rations is given in Table 1.

Young Merino wethers accustomed to the metabolism crates were utilized to determine the biological value of the Somerset beans. Two periods, one in which Somerset beans alone were fed and the other in which it was supplemented by maize at the same level of nitrogen intake, were run on these immature sheep. A third period in which grazing cut at Ermelo during April was supplemented by Somerset beans, was conducted on mature sheep.

Experimentay Resuits.

In Table 2 are given the detailed results relevant to the calculation of the biological value of Somerset beans on rats. It is at once evident from this table that a large proportion of the nitrogen contained in the above bean is excreted as undigested waste in the faeces. However, the average apparent digestibility of 57 is not a true index of the digestibility of Somerset bean nitrogen since the nitrogen derived from the body and excreted in the faeces is included in the calculation. If the metabolic fecal nitrogen is deducted, then the true digestibility as shown in the table is enhanced and becomes 76. The utilization of the absorbed nitrogen as represented by an average biological value of 37 is indeed low, and indicates that the quality of the protein of this bean is exceptionally poor for maintenance and growth of rats. It is thus evident that certain of the essential amino acids are definitely missing from the annino acid complex ronstituting the protein molecule of this bean.

Working on this hypothesis, it was decided on the ground of our previous experience with plant proteins to supplement the protein of Somerset beans with 0.2 per cent. of cystine. The results obtained with this supplementation are reproduced in Table 3. From this data it appears as if the apparent digestibility is lowered by the inclusion of this minute amount of cystine. That such should be the case is hardly conceivable, unless the effect of the cystine ingestion
is to stimulate the metabolic fecal nitrogen enhancing the total fecal nitrogen excretion. Howerer, of more importance is the fart that the iuclusion of (ratine makes the aboober nitrogen hetter utilizable by 15 per cent. Somerset beans alone as shown in Tahle $\underset{\sim}{\sim}$ gives a hiological value of 35 whereas after supplementation with cystine the biological value is increased to 54 . This data definitely confioms an existing deficiency of the indispensable amino acisl rystine in the proterin of this bean.

In 'Tahle 4 are remodured $j n$ tabular form the results in connection with the sheep metaholism experiments. In the first series the biological value of Somerset beans was dotermined at an approximate level of \bar{T} per cent. protein. The apparent digestibility of 48 as ohtained per sheep agrees fairly well with that obtained for rats when rystine supplementation was execoted. The true digestibility of 87 is, howerer, slightly better than 38 , botained for rats. Withont cratine supplementation the apparent ligestibilit. with rats is approximately 10 per ernt. higher, while the difference in true digestibility remains more or less of the same manitude. The areage biological value obtained umber these comblions is öd. 'This ralue is decidedly revy low for srowing shem at this level of protein ferding. Tuldeing from this result it would appear as if this particular protein is also deficient in some or other indispensable amino acid for the growth requirements of shepp. Thus far it has heen assumed ou purely thencetical irvouds (Rimington and Bekker) that rystine can be synthesized hy sheep. This assmption has no experimental basis and is chiefty baserl an erstine rontent of wool in comparison with that of graziug. Smuts and Marais have definitely shown that the biological ralue of lucerne supplementen by cystine is not enhanced above that of hocerne. Howerer, the rondition may he quite different in jespect to the growing sheep. which may, like rats, require additional eystine above that supplied by lucerne for tissue syutheris.

From the second series of matathons tests in which half of the Somerset bean protein was displaced by that of maize potein, it would appear as if supplementation has athally taken phace. If, howerer, the hiological value of maize at this level of intake is the same as that for rats, namely (iz, then one would expect a bological ralue for the mixed protein's of 60 . This ralue is only 2 per cent. bower than the determined valut of (i), and camot therefore be considered statistically significant. Superficially it would appear as if maize which is known to supplement eystine deficient protein (Smuts and Marais) does not exert this elfect with Somerset beans, which may lead one to suspect that either the cystine requirements of sheep are rery low and that it is not the limiting amino acid for sheep in Sonerset beans, or that sheep can artually suthesize this amino acid. However, it is hoped these points will be settled in the following publication.

In the last series of results, : ${ }^{2} 0$ grams of A pril grazing was supplemented by 100 grams of Somerset heans. Both the apparent digestibility and true digestibility are increaser unter these conditons. The biological ralue of 59 is fairly qood at this leve? of protein intake for orowing sheep.

If the Smuts and Marais formula for the estimation of the protein requirements of sheep, namely $P=\cdot 74 W \cdot 734$ is utilized, it is found that a 100 lb . sheep requires $13 \cdot 0$ grams utilizable protein for maintenance. To satisfy this need by the feeding of Somerset beans it would require 194 grams or 7 oz . of the latter beans. On the other hand, if the general formula of Smuts, namely $\mathrm{P}=\cdot 88 \mathrm{~W} \cdot 734$ applicable to all species be applied to determine the maintenance requirement of steers, it is found that a $1,000 \mathrm{lb}$. steer would require 82 grams utilizable protein. In order to satisfy this need through the feeding of Somerset beans, 1,254 grams or approximately $2 \cdot 7 \mathrm{lb}$. are to be fed. From the data on the grazing supplemented by Somerset beans it is evident that considerably less is necessary to satisfy the maintenance protein needs of both sheep and cattle.

It must be understood that the requirements as calculated above is only in respect to the protein requirements of the respective species. There is little doubt that the energy contained in the above quantities will considerably augment the depleted energy in the grazing and may even help to satisfy the needs of this element in a substantial way, and may, together with the protein, be the cause of the excellent practical results obtained on it.

Concil sion.

By meaus of carefully controlled metabolism experiments it was shown that the biological value for Somerset beans with rats is 37 , and that this value is siguificantly euhanced by the inclusion of $0 \cdot 2$ per cent. cystine.

The same product when tested out with sheep gave a biological value of 52 , and when supplemented in equal proportions, with maize, a value of 62. Wheu April grazing is supplemented by Somerset beans the average biological value obtained is 59 .

Table 1.
Composition of Rations.

	A.	!	
		B.	(1.\%
Somerset beans.	$30 \cdot 1$	-	$30 \cdot 1$
Butterfat.	$8 \cdot 0$	$8 \cdot 0$	$8 \cdot 0$
Cystine.	-	-	$0 \cdot 2$
Codliver oil.	$2 \cdot 0$	$2 \cdot 0$	$2 \cdot 0$
Harris yeast.	$2 \cdot 0$	$2 \cdot 0$	$2 \cdot 0$
Sucrose	$10 \cdot 0$	$10 \cdot 0$	$10 \cdot 0$
Salt mixture (Hubbel)	$2 \cdot 0$	$2 \cdot 0$	$2 \cdot 0$
NaCl	$1 \cdot 0$	$1 \cdot 0$	$1 \cdot 0$
Starch dextrinized.	$44 \cdot 9$	$69 \cdot 2$	$69 \cdot 2$
Whole egg (ether extracted)	-	$3 \cdot 8$	-
Agar......	-	$2 \cdot 0$	-
	$100 \cdot 0$	$100 \cdot 0$	-
Percentage N .	$1 \cdot 56$	$0 \cdot 64$	$1 \cdot 50$

'lable 2.

'Jable 3.

luat No.	Sox.	$\begin{aligned} & \text { Initial } \\ & \text { Wgt. } \end{aligned}$	$\begin{aligned} & \text { Final } \\ & \text { Wgt. } \end{aligned}$	$\begin{aligned} & \text { Aver:- } \\ & \text { age } \\ & \text { Wgt. } \end{aligned}$	Daily food lntake.	Daily N H1- take.	1)aily Paecal Intake.	Metaholie N.			$\begin{gathered} \text { Absor- } \\ \text { bent } \\ \text { Nitro- } \\ \text { gen. } \end{gathered}$	Daily Lrinary N .	Endogenous N.		Food N in Irine.	$\begin{aligned} & \text { Re. } \\ & \text { taim- } \\ & \text { ed } \\ & \text { Nitro } \\ & \text { gen. } \end{aligned}$	Bio. logical Value.	True Diges-tibility.	Apparent Jiges-tibility.	
									$\begin{aligned} & \text { Per } \\ & \text { Day. } \end{aligned}$				Per 100 Gram Wgts.	Per 1)ay.						
		Om.	Cm.	Om.	Gm.	\isa.	Mgm.													
1	----	\| ロ		117	119	$8 \cdot 1$	--	$39 \cdot 0$	3-95	---		...	$19 \cdot 7$	$16 \cdot 6$	--		--	-	-- -	-
2	- -	125	12.5	12.5	$9 \cdot 8$		$38 \cdot 4$	3.93	\cdots	-	- -	$24 \cdot 6$	$19 \cdot 7$	-	-		--		---	
3	-	131	127	129)	$7 \cdot 9$	--	$34 \cdot 0$	$4 \cdot 30$	\cdots	-	.	$27 \cdot 9$	21.6		- -	-	- .	\cdots	-	
4	-	124	120	122	$7 \cdot 6$...	$29 \cdot 6$	$3 \cdot 89$	\cdots	-	--	$23 \cdot 6$	19.3	---	--	--	- -	- -	-	
5	-	I 24	126	1.25	11.8	--.	$45 \cdot 6$	$3 \cdot 86$	\cdots	-	-	$26 \cdot 8$	$27 \cdot 4$	- -	-		-		-	
6	-	130	126	128	$10 \cdot 3$	-	$43 \cdot 0$	4.08	-	-	-	$26 \cdot 0$	$20 \cdot 3$	-	-	\cdots	-	-	-	

$\begin{aligned} & \text { Animal } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Aver- } \\ & \text { age } \\ & \text { ant. } \end{aligned}$	Food Consumption.			$\begin{array}{\|c\|} \hline \text { Dry. } \\ \text { Matter } \\ \text { Intake. } \\ \hline \end{array}$	Nitro-gen Intake.	N in Faeces.	Meta- bolic Faecal N. \ddagger	Absorbed N.	$\mathrm{N} \text { in }$Urine.	Endogenous N.*	Food N Retained.	Biological Value.	$\left\lvert\, \begin{gathered} \mathrm{N} \\ \text { Balance. } \end{gathered}\right.$		True Digesti bility
		Wheat Straw	Somer set Beans	Starch.												
	Kgm.	Gm.	Gm.	Gm.	Gram.		Gram.	Per cent.	Per cent							
1	27	300	100	100	460	$5 \cdot 73$	$2 \cdot 80$	2.30	$5 \cdot 23$	$3 \cdot 31$		$2 \cdot 75$	53	-0.39	52	91
2	27	300	100	100	460	$5 \cdot 73$	$3 \cdot 12$	$2 \cdot 30$	$4 \cdot 91$	$3 \cdot 24$	$0 \cdot 83$	$2 \cdot 50$	51	$\rightarrow 0.63$	46	86
3	26	300	100	100	460	$5 \cdot 73$	$3 \cdot 21$	$2 \cdot 30$	$4 \cdot 62$	$3 \cdot 08$	$0 \cdot 81$	$2 \cdot 35$	51	-0.56	44	81
4	26	300	63	13	346	$4 \cdot 15$	$2 \cdot 14$	1.73	$3 \cdot 74$	$2 \cdot 66$	0.81	1.99	53	-0.65	48	90
5	26	300	100	63	418	$5 \cdot 73$	$2 \cdot 95$	$2 \cdot 09$	$4 \cdot 87$	$3 \cdot 25$	0.81	$2 \cdot 43$	50	--0.47	49	85
												Average	52	一	48	87

Maize.																
1	27	300	50	125	437	$5 \cdot 65$	$2 \cdot 51$	$2 \cdot 19$	$5 \cdot 33$	3.08	$0 \cdot 83$	$3 \cdot 08$	59	$+0.06$	56	94
2	27	300	50	125	437	$5 \cdot 65$	$2 \cdot 63$	$2 \cdot 19$	$5 \cdot 21$	$2 \cdot 74$	$0 \cdot 83$	$3 \cdot 30$	63	$+0 \cdot 28$	53	92
3	26	300	50	125	437	$5 \cdot 65$	$2 \cdot 62$	2.19	$5 \cdot 22$	2.74	$0 \cdot 81$	$3 \cdot 29$	63	$+0.29$	53	92
4	26	300	50	125	437	$5 \cdot 65$	$2 \cdot 48$	$2 \cdot 19$	$5 \cdot 36$	$2 \cdot 77$	0.81	$3 \cdot 40$	63	$+0.40$	56	95
5	26	300	50	125	437	$5 \cdot 65$	$3 \cdot 17$	$2 \cdot 19$	$4 \cdot 67$	$2 \cdot 66$	0.81	$2 \cdot 82$	60	-0.18	44	83
												Average	62	-	52	91

Mature sheep April graving + Sussex Beams.																
7	43	320	-	100	387	7-36	2.52	1.94	6.78	$4 \cdot 16$	$1 \cdot 17$	$3 \cdot 79$	56	+0.68	66	92
8	40	320	-	100	387	7-36	2.81	1.94	$6 \cdot 49$	3.75	$1 \cdot 10$	3.84	59	+0.80	62	88
9	40	320	-	100	387	$7 \cdot 36$	$3 \cdot 09$	1-94	$6 \cdot 21$	$3 \cdot 75$	$1 \cdot 10$	$3 \cdot 56$	57	+0.52	58	84
10	40	320	-	100	387	7-36	$2 \cdot 45$	1.94	6.85	$3 \cdot 46$	$1 \cdot 10$	$4 \cdot 49$	65	$+1.45$	67	93
												Average	59	-	63	89

