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Abstract 

Occurrence data from museum and herbarium collections are valuable for mapping 
biodiversity patterns in space and time. Unfortunately these collections datasets contain 
many errors and suffer from several data quality issues that can influence the quality of the 
products derived from them. It is up to the user to identify these errors and data quality 
issues when using these data. Despite the large number of potential users of these datasets 
there are few software tools dedicated to error detection and correction of collections 
datasets. The R package biogeo was developed for detecting and correcting errors and for 
assessing of data quality of collections datasets consisting of occurrence records. Features of 
the package include error detection, such as mismatches between the recorded country and 
the country where the record is plotted, records of terrestrial species that fall into the sea 
and outlier detection. A key feature of the package is the ability to identify likely alternative 
positions for points that represent obvious errors in the dataset and functions to explore 
records in geographical and environmental space in order to identify possible errors in the 
dataset. Functions are also available for converting coordinates that are in various text 
formats into degrees, minutes and seconds and then into decimal degrees. 

Vast amounts of biodiversity data are available in museum and herbarium collections 
(Graham et al. 2004, Suarez and Tsutsui 2004, Boakes et al. 2010, Maldonado et al. 2015). 
These datasets are based on collections that were assembled for the primary purpose of 
taxonomy, but are now being used for an array of other analyses and applications (Funk and 
Richardson 2002, Graham et al. 2004, Chapman 2005a, Newbold 2010). Several recent 
studies have made use of collections data to investigate various questions in macroecology 
(Swenson et al. 2012, Lamanna et al. 2014) and invasion biology (Richardson et al. 2011, 
Novoa et al. 2015). Collections data consist of ad hoc records obtained from specimen labels 
in museums and herbaria. These specimens were collected at a particular locality and often 
the coordinates of this locality are given by the collector; alternatively, coordinates can be 
assigned later if the locality description is sufficiently precise. Many collections datasets 
have become more easily accessible to users through online databases such as the Global 
Biodiversity Information Facility (< www.gbif.org >; Edwards 2004). These datasets 
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represent a valuable source of species distribution data and represent a valuable baseline 
for describing biodiversity patterns (Chapman 2005a, Weiser et al. 2007, Boakes et al. 2010, 
Swenson et al. 2012, Lamanna et al. 2014, Maldonado et al. 2015). Another valuable source 
of species distribution data comes from atlas projects (Robertson et al. 2010). Atlas projects 
are usually initiated to collect data for a particular taxonomic group and have certain 
minimum data requirements for a record (Robertson et al. 2010). The presence of a species 
is usually recorded in a grid with a particular spatial resolution e.g. 15 minutes. A key 
difference between these two data sources is that atlas data tend to be grid-based while 
collections data are point-based. This has important data quality implications. 

These collections datasets are frequently used to develop species distribution models 
(ecological niche models) that have many applications in biology (Guisan and Zimmermann 
2000, Elith and Leathwick 2009). The simplest application of collections datasets is to 
produce point-based range maps that can be used in field guides or to guide further 
collection efforts. These range maps are used to calculate range size metrics that are used in 
IUCN red list assessments (IUCN 2012), which include area of occupancy (AOO) and extent 
of occurrence (EOO) calculations (Gaston and Fuller 2009). These metrics can be used to 
calculate changes in range size over time, such as range contractions in the case of 
threatened species (Joseph and Possingham 2008) or range expansion in the case of invasive 
species. Range size calculations such as alpha-hulls can be used for investigating macro-
ecological questions (Hui et al. 2011a). In addition to knowing the distribution of single 
species in isolation, it is valuable to document the species assemblage in a given area. 
Species richness maps are the basis for many macroecological studies and for conservation 
(Gaston 2000, Weiser et al. 2007, Swenson et al. 2012, Maldonado et al. 2015). Species 
richness maps can be produced using various approaches, including by converting point 
data to grids and by combining range maps produced by distribution models (Graham and 
Hijmans 2006). Point data can be incorporated into grid-based atlas projects, which in turn 
have a number of applications in biogeography and conservation (Robertson et al. 2010). 
The quality of the datasets used in these applications has a strong influence on the reliability 
of the products produced (Freeley and Silman 2010, Maldonado et al. 2015). It is up to the 
users of these datasets to assess the quality of the data that they obtain and make decisions 
about the suitability of those data to answer particular questions. 

Collections datasets are known to contain errors (Yesson et al. 2007, Robertson 2008, 
Newbold 2010) and suffer from certain weaknesses, such as sampling bias (Reddy and 
Davalos 2003, Robertson and Barker 2006, Hortal et al. 2008, Hui et al. 2011b) that can 
decrease the quality of the products derived from them (Franklin 2009). Several articles 
have assessed various aspects of data quality of collections datasets (Hijmans et al. 1999, 
Ponder et al. 2001, Funk and Richardson 2002, Hortal et al. 2007, Yesson et al. 2007, 
Robertson 2008, Newbold 2010, Maldonado et al. 2015), but fewer have provided advice on 
how to detect and correct errors (Hijmans et al. 1999, Chapman 2005b, Hortal et al. 2007). 
Some of the important data cleaning steps are described by Hijmans and Elith (2015) and 
they show how these can be performed in R using the dismo package (Hijmans et al. 2015). 

Obvious errors in collection localities can be detected by producing a map of the records for 
a species and identifying outliers such as points in the sea for terrestrial species (Hijmans et 
al. 1999). Errors such as these are easily detected and the record can either be corrected or 
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discarded from the dataset. However other errors, such as a record for a species that is 
geographically close to other records for that species, but that is incorrectly located at the 
top of a mountain range, may be more difficult to detect and to correct (Newbold 2010). 
Users need to know which types of errors to look for, identify these errors in records, 
correct them if possible, or exclude the records from their analyses. Despite the large 
number of potential users of these datasets there seem to be relatively few software tools 
dedicated to error detection and correction of point data from collections datasets. To 
address this need we have developed an R package, biogeo, for the detection and correction 
of errors and for assessment of data quality of collections datasets consisting of occurrence 
records. 

This package has been developed with the primary aim of data cleaning and data quality 
assessment. Although other software packages can perform some of the data cleaning 
operations available here, there are none that are as comprehensive or that offer as many 
different tools. A key feature of the package is that it can cope with a dataset that consists 
of records that are in a range of different coordinate formats, a common problem with 
datasets that have been collated from multiple sources. The package has several functions 
for detecting errors in datasets but also has the functionality to correct these errors instead 
of simply removing them from the dataset. The package also has functions for detecting 
various data quality issues, such as low precision coordinates. This package has been written 
in R, which has become a very popular programming language used by scientists and by 
biologists in particular. This means that the tools available in this package can be 
incorporated into user-specific scripts for more experienced R users, to enable quicker and 
more efficient data cleaning of large datasets. However the functions can also be used by 
those with limited programming experience as the tutorial demonstrates their application 
and has been prepared with the inexperienced user in mind. 

In order to provide the necessary context for describing the features of the package we first 
discuss errors and data quality considerations in relation to collections data followed by a 
section on data preparation and cleaning. 

Errors and data quality considerations 

The most common type of error in collections datasets is probably locational errors, 
concerning the geographical position of a given record in space. These errors can often be 
detected as obvious geographical outliers on a map (Yesson et al. 2007). Locational errors, 
and geographical outliers in particular, are most problematic for drawing range maps and 
especially for calculating range size using extent of occurrence and area of occupancy 
(Gaston and Fuller 2009). These errors can be caused by missing coordinates, substitution of 
x- and y-coordinates and errors in converting to decimal degrees, which makes them 
relatively easy to detect (Table 1). Locational errors can be detected if other data such as 
country names, locality descriptions and elevation are provided as part of the record (see 
errors e and f in Table 1). Low precision of the coordinates (e.g. when only the degrees have 
been recorded) is a data quality issue rather than an error but it has important 
consequences for many applications. This problem can cause records to appear as if they 
are incorrect e.g. points plotted in the sea for terrestrial species (Yesson et al. 2007). 
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Table 1. Description of errors detected in point data with explanations of the likely cause of the error. Yesson 
et al. (2007) described several errors, which we give in brackets in the Error column 

Error Possible cause of problem 

a) Point plotted at zero degrees
latitude and longitude. No coordinates were available in the original dataset but values of zero 

assigned to the coordinates. 
(‘Lat/Long zero’). 

b) Points in sea for terrestrial
species or on land for aquatic 
species, obvious geographical 
outliers. 

Transposed latitude and longitude coordinates; incorrect sign on the decimal 
degrees of the latitude or longitude coordinate; degrees and minutes were 
transposed before the coordinate was converted to decimal degrees; 
imprecise locality description used to assign coordinates; the specimen was 
incorrectly identified by the collector or the incorrect name was applied to 
the species when the data were digitized. 

(‘Lat/Long error’, ‘Far from 
valid’). 

c) Point in sea but close to coast
for terrestrial species, or on land 
but close to coast for marine 
species. 

Low precision coordinates e.g. only degrees were available or the data were 
originally collected on a coarse scale grid. Imprecise locality description used 
to assign coordinates. 

(‘Lat/Long error’, ‘Near Valid’). 

d) Point plotted along the prime
meridian or equator. Missing coordinate for latitude or for longitude that was incorrectly assigned 

a value of zero. 
(‘Lat/Long zero’). 

e) Country name given in the
record does not correspond with 
country where point is plotted. 

Likely to be the same errors as for b) above. 

f) Elevation given in the record
does not correspond with 
elevation obtained from a digital 
elevation model where point is 
plotted. 

Likely to be the same errors as for b) above, or the spatial resolution of the 
digital elevation model is too coarse. 

Species distribution models are probably less sensitive to geographical outliers, especially if 
there are few of these errors in proportion to the remaining records that are correct (but 
see Freeley and Silman 2010). Environmental data can be extracted from, among others, 
interpolated climate surfaces, digital elevation models, vegetation and soils maps using the 
coordinates of the geographical locations of point records. These data are the basis for 
distribution models and the interplay between geographical and environmental space is 
important in species distribution modeling (Elith and Leathwick 2009). Environmental 
outliers are points in environmental space that are far away (not typical) of the rest of the 
records in the environmental space. Environmental outliers are potentially more serious for 
species distribution models than geographic outliers (Newbold 2010). A point may be a 
geographical outlier but have very similar environmental conditions to the remaining 
records of the species. In contrast, a point may be close geographically to the other points 
but have a different environment, especially where environmental gradients are steep 
(Freeley and Silman 2010). 

Sampling bias is a known problem in collections datasets (Reddy and Davalos 2003, 
Robertson and Barker 2006, Hortal et al. 2008), although it is not explicitly addressed in this 
package since other software are available for correcting sampling bias in datasets e.g. R 
package spThin (Aiello-Lammens et al. 2015). 
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Dataset preparation and cleaning 

In order to prepare a dataset for analysis data usually have to be collated from a variety of 
sources e.g. Global Biodiversity Information Facility (GBIF), museum collections and private 
collections. The dismo (Hijmans et al. 2015) and rgbif (Chamberlain et al. 2015) packages are 
especially useful for downloading species occurrence records from GBIF. Several procedures 
will then usually be followed as part of the data preparation and cleaning process. These 
data, particularly the coordinates, will be converted into a common format (steps 1 and 2 in 
Table 2), duplicate records will be removed (step 3 in Table 2), then data quality issues (such 
as low precision coordinates) will be identified (step 4 in Table 2), error checks and error 
corrections will be performed (step 5 in Table 2), finally the data will be prepared for 
particular applications e.g. species richness maps (step 6 in Table 2). The specific steps for 
dataset preparation and cleaning are described in Table 2 together with the appropriate 
functions in the biogeo package that can be used to assist with the data management or 
analysis at each step. 

Table 2. Description of steps in data preparation and data quality assessment. The names of appropriate 
functions from the biogeo package are given (in italics) that can be used in each step, along with a brief 
descriptions of what they do 

Steps Function and description 

1) Data formatting for compatibility with
biogeo 

checkdatastr – ensures that certain required fields are present e.g. 
the x- and y-coordinates named as ‘x’ and ‘y’ and a unique 
identifier field called ‘ID’. 

addmainfields – adds required fields to the dataframe. 

keepmainfields – retains user-selected fields from a dataframe. 

renamefields – renames fields in the dataframe. 

2) Convert coordinates to decimal degrees
and find coordinates for localities that 
have no coordinates 

dmsparse – converts all coordinates, regardless of format (e.g. 
degrees, minutes and seconds; decimal degrees; character; 
numeric) to a standardized format in decimal degrees. 

dmsabs – separates coordinates that are in text strings into 
separate fields for degrees, minutes and seconds when there are 
no delimiters. 

dmsparsefmt – parses coordinate string using a format string. 

uniqueformats – produces a list of unique coordinate formats in 
the dataset. 

finddecimals – finds coordinates that are in decimal degree format. 

dms2dd – converts coordinates from degrees, minutes and 
seconds format into decimal degrees. 

missingcoords – finds indices of records in the datasets for which 
there are no coordinates. 

fromGEarth – obtains coordinates of a point from Google Earth via 
the clipboard. 

3) Identify duplicate records to prevent
pseudoreplication 

duplicatesexclude – flags duplicate point records per species per 
grid cell. 

4) Identify records that may be too
imprecise for the analysis 

precisioncheck – checks the precision of the coordinates. 

precisionenv – checks whether precision of coordinates is less than 
that of environmental data. 

5) Identify records that likely have
incorrect coordinates using geographical 

errorcheck – performs several data quality and error checks (see 
detailed description below and Table 3). 
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Steps Function and description 

and environmental information nearestcell – assigns points that fall in the sea to the nearest 
adjacent terrestrial grid cell, or vice versa. 

pointsworld – plots points on a world map showing countries. 

missingvalsexclude – highlights records which do not have any 
associated environmental values (depending on the raster used). 

alternatives, alternatives2 – identifies likely alternative positions 
for points that are known to have positional errors. 

alternativesenv – identifies likely alternative positions for points 
that are known to have positional errors using geographical and 
environmental space. 

geo2envid, geo2envpca – error detection using geographical and 
environmental space. 

elevcheck – identifies records that have a recorded elevation, but 
this elevation does not match that based on its coordinates and 
extracting an elevation value from a digital elevation model. 

modifiedtoday – selects records that were modified during the 
current day. 

6) Data summaries and output

pointsworld – plots points on a world map showing countries. 

points2shape – converts a dataframe to a point shape file. 

speciescount – counts number of records per species in a 
dataframe. 

richnessmap – creates a raster map of the number of species or 
number of records per grid cell. 

quickrich – produces a raster map of species richness values and 
applies the function quickclean to remove records with errors. 

Features of the package 

The package has been designed to work with a dataset consisting of point records 
containing x- and y-coordinates for several different species. The errorcheck function 
performs a number of error and data quality checks on a dataset consisting of several 
records per species. It starts by excluding any records where the x- and y-coordinates are 
both zero. It then checks for any x-coordinates that are outside the range of −180 to 180 
degrees and any y-coordinates that are outside the range of −90 to 90 degrees. It extracts 
country names for each point record from a user-specified shapefile and compares these to 
country names in the dataset. If there is a mismatch between these two names for a record 
then the record is flagged. Records without country names are flagged as being potential 
errors. Low precision records are flagged by determining whether they occur either at the 
top left corner or centre of a 10, 15, 20, 25 or 30 minute grid cell. If records have these exact 
coordinates then it is possible that they were collected at a coarse spatial resolution. A cell 
identifier is returned for each record based on the grid cell that the record falls into. These 
identifiers are then used to identify records that have the same cell identifier number. An 
environmental outlier detection is performed for all species with 10 or more records for 
each of the user-selected environmental variables. The reverse jackknife algorithm has been 
used for detecting outliers (Chapman 2005a, 2005b) and has been implemented in DivaGIS 
(< www.diva-gis.org >). It is considered to be a reliable method of detecting outliers. The 
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second approach to outlier detection is to highlight records that fall a distance of 1.5 times 
beyond the interquartile range. 

The function called quickclean performs many of the checks performed by errorcheck but 
instead of indicating records with possible errors it simply removes these records from the 
dataset. It is intended for the user who wants to rapidly remove any suspect records (e.g. 
for an analysis including a large number of species). This function performs a country 
mismatch check if the country field is specified, it performs a check to determine if the 
records are at the appropriate precision for the spatial resolution, it assigns point records to 
the nearest cell containing environmental data (using nearestcell, explained below) and 
removes records that are in the wrong environment. It flags duplicate records per species 
per grid cell but does not remove the duplicates. It does not require environmental data and 
does not perform the environmental outlier checks as performed in errorcheck. The function 
called quickrich produces a species richness map at a selected spatial resolution. It uses 
quickclean to eliminate any records with errors. 

A key feature of the package is being able to identify likely alternative positions for points 
that represent obvious errors in the dataset. These alternative positions are plotted by 
simulating common errors such as substituting the x- and y-coordinates and changing the 
signs on one or both coordinates. Using the alternatives function, the user can select the 
correct position for the point on a map based on several alternatives. The alternativesenv 
function is available for exploring the positions of points in geographical and environmental 
space in order to identify likely alternative positions for points that are known to have 
positional errors. Similarly, the positions of points in geographical and environmental space 
can be used to identify possible errors in the dataset using the geo2envid function for 
plotting a two-dimensional environmental space or the geo2envpca to use principal 
components analysis to define the environmental space for several environmental variables. 
The nearestcell function moves points that are in the sea to the nearest grid cell on land (or 
the converse) if they are within one grid cell of land grid cells. Functions are available for 
producing species richness maps and maps of numbers of records per species per grid cell. 

Another major highlight of the package is the ability to separate (parse) coordinates that are 
in text format e.g. 23°15′35″S into separate fields for degrees, minutes, seconds and then 
convert them into decimal degrees. The advantage is that a single function (dmsparse) can 
automatically identify several different coordinate text formats in a single dataset and parse 
them. Coordinates are often in different formats when datasets are combined from several 
different sources (e.g. Table 4, second column). There are also several tools for performing 
coordinate conversions (Table 2). The coordinate management and conversion functions are 
particularly useful for preparing a dataset and standardizing the data format (Table 2). 
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Table 3. Output from the errorcheck function run for Species U, with certain fields removed. Names of fields are as follows: ID – a unique identifier, x and y are the x- and y-
coordinates in decimal degrees, cellid – cell identifiers calculated based on the coordinates; dups – indicates that a particular record represents a duplicate cell identifier 
for that particular species; country_ext – the country name extracted from the shape file based on the coordinates for the point; CountryMismatch – indicates a mismatch 
in names for the country in the original record (Country) and the country name extracted (country_ext); lowprec – low precision records. The bioclimatic variables are: bio1 
– annual mean temperature; bio5 – maximum temperature of warmest month; bio6 – minimum temperature of coldest month; bio12 – annual precipitation. Bioclimatic
variables ending with ‘_e’ indicate outlier detection using boxplot statistics and ending with ‘_j’ indicate outlier detection using the jackknife procedure. The column 
labeled ‘elevMismatch’ indicates when there is a mismatch in the elevation in the elevation field and that extracted from a digital elevation model (shown in 
demElevation). The column labeled as ‘error’ indicates that there was at least one error for that record. The final column labeled ‘spperr’ indicates that there was at least 
one error for that species 

ID x y cellid dups country_ext CountryMismatch wrongEnv lowprec bio1_e bio12_e bio5_e bio6_e bio1_j bio12_j bio5_j bio6_j elevMismatch demElevation error spperr 

1971 28.1 −25.4 1495969 0 South Africa 0 0 0 0 0 0 0 0 0 0 0 0 1127 0 1 

1972 32.41666667 −27.03333333 1517595 0 South Africa 0 0 0 0 0 0 0 0 0 0 0 0 78 0 1 

1973 32.88333333 −27 1517598 0 NA 1 0 0 0 0 0 0 0 0 0 0 0 25 0 1 

1974 32.31 −27.78 1526234 0 South Africa 0 0 0 0 0 0 0 0 0 0 0 0 125 0 1 

1975 32.27 −27.65 1524074 0 South Africa 0 0 0 0 0 0 0 0 0 0 0 0 69 0 1 

1976 32.27 −27.65 1524074 1 South Africa 0 0 0 0 0 0 0 0 0 0 0 0 69 0 1 

1977 32.27 −27.65 1524074 1 South Africa 0 0 0 0 0 0 0 0 0 0 0 0 69 0 1 

1978 32.8 −26.96666667 1515437 0 South Africa 0 0 0 0 0 0 0 0 0 0 0 0 51 0 1 

1979 32.8 −26.96666667 1515437 1 South Africa 0 0 0 0 0 0 0 0 0 0 0 0 51 0 1 

1980 27.38333333 −24.61666667 1485165 0 South Africa 0 0 0 0 0 0 0 0 0 0 0 0 1087 0 1 

1981 28.538 −29.752 1552132 0 Lesotho 1 0 0 0 0 1 1 1 0 1 1 0 2716 1 1 

1982 30.16666667 −23.83333333 1474382 0 South Africa 0 0 1 0 0 0 0 0 0 0 0 0 720 0 1 

1983 19.71666667 −33.26666667 1597439 0 South Africa 0 0 0 0 0 0 0 0 0 0 0 0 934 0 1 
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Table 4. Output from the dmsparse function with certain fields removed. The field x_dms contains the text 
strings of x-coordinates that were used in the input to dmsparse and parsed into degrees (xdeg), minutes 
(xmin) and seconds (xsec). Coordinates that have been converted into decimal degrees are given in the column 
labeled ‘x’ 

Place x_dms xdeg xmin xsec EW x 

Chimoio 33 28.9 E 33 28 54 E 33.48167 

Grahamstown 26d31m59.98 E 26 31 59.98 E 26.53333 

Kenton 26°38′59″E 26 38 59 E 26.64972 

Ladybrand 27°27′E 27 27 0 E 27.45 

Maun 23 25E 23 25 0 E 23.41667 

Mwinilunga E 24 25 59.9880 24 25 59.988 E 24.43333 

Pretoria 28°13 45.9840 E 28 13 45.984 E 28.22944 

Tsumeb 17 43 0.0120 E 17 43 0.012 E 17.71667 

Frostburg 78 55 42.3912 W 78 55 42.3912 W −78.9284 

San Francisco 122 25 9.4116 W 122 25 9.4116 W −122.419 

Seronera 34 49 13.1 E 34 49 13.1 E 34.82031 

Paphos 32 25 47.1072 E 32 25 47.1072 E 32.42975 

Alumine 070 55 11 W 70 55 11 W −70.9197 

Douala 009°56′41″E 9 56 41 E 9.944722 

Mega 038°26′00″E 38 26 0 E 38.43333 

Lausanne 006°40′00″E 6 40 0 E 6.666667 

Moscow 037°36′56″E 37 36 56 E 37.61556 

Harare 31.0 E 31 NA NA E 31 

Trondheim 10.3999 NA NA NA NA 10.3999 

Maputo 32.58 NA NA NA NA 32.58 

Some of the functions available in the biogeo package are also available in other stand-alone 
software packages e.g. outlier detection in DivaGIS (< www.diva-gis.org >). Software tools 
are available for performing certain operations that are not available in biogeo e.g. the GBIF 
name parser for separating species names into component parts (< 
http://tools/gbif/org/nameparser >) and obtaining coordinates from text descriptions 
(BioGeomancer, Guralnick et al. 2006). Many other useful tools for managing collections 
data can be found on the GBIF website (< www.gbif.org/resource-type/tool >). 

Example application of biogeo 

To demonstrate some of the key features of biogeo we used a dataset of insect records 
from southern Africa containing 21 species with several occurrences per species. We 
renamed the species with letters and included some known errors in order to demonstrate 
the capability of the package. 

The function alternatives was applied to the full dataset of records. All records should be 
plotted in southern Africa, but the point with the identifier 732 in Egypt is clearly an error 
(Fig. 1). By selecting this point the alternative positions for that point are indicated as purple 
dots with broken lines leading to them. All other records for that species are indicated as 
points in black and the records of all other species in the dataset are indicated as blue 
points. By clicking on the alternative point in southern Africa, the coordinates will 
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automatically be updated to that position and the original incorrect coordinates for the 
point will be stored. 

Figure 1. Alternative positions (purple points) for the point with the identifier 732, generated using the 
function alternatives. Records for the species that is found at the selected outlier (Species G) are indicated in 
black and records for all other species are in blue. Records that fall outside of country boundaries are shown in 
red. 

The function alternatives2 was applied to a single species (Species A, Fig. 2). This function 
plots only the points for the selected species. The correct position for the record labelled 39 
(Fig. 2) is indicated by the red arrow. The selection of this point instead of the other point in 
South Africa was based on the locality description for the point (Kosi Bay), which is displayed 
at the top of the map. 

Figure 2. Alternative point records for a selected species (Species A) using the function alternatives2. Only the 
records for Species A are displayed. The red arrow indicates the correct position for the incorrect record 
labeled as 39. 
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The interplay between geographical and environmental space is important in species 
distribution modeling (Elith and Leathwick 2009), but there appear to be few tools to easily 
examine the distribution of points in both geographical and environmental space at the 
same time. Several functions make use of geographical and environmental space to detect 
possible errors and correct errors (e.g. Fig. 3 and 4). The function geo2envpca was applied 
to a single species and demonstrates the use of geographical and environmental space for 
identifying errors (Fig. 4). The point selected on the map (1981), which occurs in the 
highlands of Lesotho, is a clear environmental outlier in the environmental space that was 
defined by performing a principal components analysis on five climatic variables. 

Figure 3. Outputs from the function alternativesenv. The alternative points for the record selected (identifier 
1981) in the map on the above (a) are displayed in a two-dimensional environmental space below (b) (as blue 
points numbered 3 and 6). The environmental space is defined in this example by annual precipitation and 
annual mean temperature. 
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Figure 4. Outputs from the function geo2envpca, showing the geographical space above (a) and the 
environmental space as defined by principal components from a principal components analysis below (b). The 
environmental variables are: bio 1 – annual mean temperature, bio5 – maximum temperature of warmest 
month, bio6 – minimum temperature of coldest month, bio12 – annual precipitation, bio14 – precipitation of 
driest month. 

The function alternativesenv was applied to a single species and demonstrates the use of 
alternatives with an environmental space defined by the values of two climatic variables 
(Fig. 3). The alternative points for the record selected (1981) in the map on the left are 
displayed in a two-dimensional environmental space on the right, where point 6 appears to 
be plausible in terms of its proximity in the climatic space to the other records for the 
species (blue points Fig. 3b). 

The function errorcheck was run for Species U, the records of which are shown in Fig. 4. A 
screen shot with some of the fields and records removed is shown in Table 3. For the fourth 
record (ID 1973) a country mismatch error was recorded because the point was plotted 
outside the borders of any country, thus returning NA for the country_ext field and a 
countryMismatch error. For the 12th record (ID 1981) the record was incorrectly plotted in 
Lesotho (see outlier in Fig. 3), resulting in a country mismatch and being identified as an 
outlier for several of the environmental variables including bio1 – annual mean 
temperature; bio5 – maximum temperature of warmest month and bio6 – minimum 
temperature of coldest month. The 13th record (ID 1982) has low precision coordinates as 
both the x and y-coordinates were recorded at the top left corner of a 10 minute grid cell. 

The dmsparse function was applied to a set of coordinates in various text formats for the x-
coordinate (x_dms in Table 4) to parse these coordinates into separate fields for degrees, 
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minutes and seconds. The coordinates that are all in different text formats have been 
successfully parsed into degrees, minutes and seconds. The last two places (Maputo and 
Trondheim) are recognized as being in decimal degrees and so NA values are assigned to the 
degrees, minutes and seconds columns. 

In summary, this package provides users with a set of functions for easily detecting common 
errors and data quality issues with occurrence datasets sourced from collections datasets. 
Most importantly, several of the functions assist the user in correcting the errors in the 
dataset, rather than simply detecting and excluding them. 

To cite biogeo or acknowledge its use, cite this Software note as follows, substituting the 
version of the application that you used for ‘version 0’: 

Robertson, M. P., Visser, V. and Hui, C. 2016. Biogeo: an R package for assessing and 
improving data quality of occurrence record datasets. – Ecography 39: 394–401 (ver. 0). 
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