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Abstract

This paper evaluates the use of several parametric and nonparametric forecasting tech-
niques for predicting tourism demand in selected European countries. ARIMA, Exponential
Smoothing (ETS), Neural Networks (NN), Trigonometric Box-Cox ARMA Trend Seasonal
(TBATS), Fractionalized ARIMA (ARFIMA) and both Singular Spectrum Analysis algo-
rithms, i.e. recurrent SSA (SSA-R) and vector SSA (SSA-V), are adopted to forecast tourist
arrivals in Germany, Greece, Spain, Cyprus, Netherlands, Austria, Portugal, Sweden and
United Kingdom. This paper not only marks the introductory application of the TBATS
model for tourism demand forecasting, but also marks the first instance in which the SSA-R
model is effectively utilized for forecasting tourist arrivals. The data is tested rigorously for
normality, seasonal unit roots and break points whilst the out-of-sample forecasts are tested
for statistical significance. Our findings show that no single model can provide the best fore-
casts for any of the countries considered here in the short-, medium- and long-run. Moreover,
forecasts from NN and ARFIMA models provide the least accurate predictions for European
tourist arrivals, yet interestingly ARFIMA forecasts are better than the powerful NN model.
SSA-R, SSA-V, ARIMA and TBATS are found to be viable options for modelling European
tourist arrivals based on the most number of times a given model outperforms the competing
models in the above order. The results enable forecasters to choose the most suitable model
(from those evaluated here) based on the country and horizon for forecasting tourism de-
mand. Should a single model be of interest, then, across all selected countries and horizons
the SSA-R model is found to be the most efficient based on lowest overall forecasting error.
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1 Introduction

Tourism in the 21th century has experienced continued expansion and diversification, becoming
one of the largest and fastest-growing economic sectors in the world. Among the most favourite
destinations, Europe is considered the most prominent one, receiving the highest amount of
tourists arrivals (563 million), representing 52% of the global tourist arrivals and generating an
income of more than e368 billions in 2013 (UNWTO, 2014). However, despite Europe being the
region with the most arrivals, it is not the region that is growing at the fastest rate. According
to UNWTO (2014), regions such as Asia and the Pacific, and Africa that have traditionally had
a lower rate of arrivals are experiencing the highest growth in recent years. These developments
might be due to the global financial crisis and the ongoing European debt crisis that Europe has
suffered the most from (e.g., see Antonakakis et al., 2015a,b). Since the European Union has
placed a lot of emphasis on the tourism sector as a source of economic prosperity for its member
countries (Lee and Brahmasrene, 2013), the need of accurate forecasts of tourism demand is
of paramount importance for tourism planning, entrepreneurs, investors, policy makers, tour
operators and others alike.

In addition, various time horizons are relevant to decision making in the tourism sector.
For example, short-term forecasts are required for scheduling and staffing, while medium-term
forecasts for planning tour operator brochures and long-term forecasts for investment in aircraft,
hotels and infrastructure.

To that end, the purpose of this study is to evaluate both the short-, medium- and long-run
forecasting accuracy of tourism demand based on several parametric and nonparametric fore-
casting techniques in selected European countries, namely, Austria, Cyprus, Germany, Greece,
Netherlands, Portugal, Spain, Sweden and the United Kingdom. In contrast to previous studies,
that compare different classes of the same model or a few different classes of models, this study
employs seven alternative parametric and non-parametric techniques, thereby complementing all
previous studies in an attempt to uncover the best forecasting method of tourist arrivals in Eu-
rope. In particular, the models employed include the Autoregressive Moving Average (ARIMA),
Exponential Smoothing (ETS), Neural Networks (NN), Trigonometric Box-Cox ARMA Trend
Seasonal (TBATS), Fractionalized ARIMA (ARFIMA) and both Singular Spectrum Analysis
algorithms, i.e. recurrent SSA (SSA-R) and vector SSA (SSA-V). This study not only marks the
introductory application of the TBATS model for tourism demand forecasting, but also marks
the first instance in which the SSA-R model is effectively utilized for forecasting tourist arrivals.
The TBATS introduced by De Livera et al. (2011) relies on a new method that greatly reduces the
computational burden in the maximum likelihood estimation when forecasting complex seasonal
time series such as those with multiple seasonal periods, high-frequency seasonality, non-integer
seasonality, and dual-calendar effects, while the SSA-R approach of Hassani et al. (2013) is a
nonparametric approach that has very good properties in dealing with both stationary as well as
non-stationary data and requires no prior assumptions about the data-generating process. The
TBATS has been used to forecast energy consumption (Silva and Rajapaksa, 2014), the price of
gold (Hassani et al., 2015) and housing downturns (Zietz and Traian, 2014), while the SSA-R
to forecast inflation dynamics (Hassani et al., 2013) among others.

Put differently, this study provides the most comprehensive forecasting comparison among
several parametric and non-parametric techniques of international tourist arrivals in Europe.
Following the comprehensive univariate modelling exercise we go a step further and seek to
ascertain leading cross country indicators for tourism demand in the selected European nations.
For this purpose we also introduce an automated multivariate SSA based algorithm in this paper.
Note that, in this paper, as discussed, we follow an univariate approach to forecasting tourist
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arrivals. There are two reasons for this: First, as indicated by Antonakakis et al. (2015a,b),
on average tourism is a leading indicator for the economies under consideration. In light of
this, it is only rational that we try and develop univariate forecasting models for tourist arrivals,
which allows us to forecast the same independent of other macroeconomic variables that possibly
affects tourist arrivals. Second, the tourism-growth literature (see, for example Arslanturk et al.,
2011; Balcilar et al., 2014, and references cited therein for detailed literature reviews) indicates
that there are possibly large number of variables that can affect both tourism and growth
simultaneously. Given this, at this stage, we avoided possible selection bias in choosing such
variables for these countries. However, we leave this as a possible venue of future research, which
we discuss further in the conclusion.

Our findings reveal that no single model can provide the best forecasts for any of the coun-
tries considered here in the short-, medium- and long-run. Moreover, forecasts from NN, ETS
and ARFIMA models provide the least accurate predictions for European tourist arrivals, yet in-
terestingly ARFIMA forecasts are better than the powerful NN model. SSA-R, SSA-V, ARIMA
and TBATS are found to be viable options for modelling European tourist arrivals based on the
most number of times a given model outperforms the competing models in the above order. The
paper also computes information on the ability of the forecasts to predict the correct direction
of change in the data which adds value to the overall results. Thus, the nature in which the
results have been presented enables forecasters to choose the most suitable model (from those
evaluated here) based on the country, horizon and direction of change criteria for forecasting
tourism demand. Should a single model be of interest, then, across all selected countries and
horizons the SSA-R model is found to be the most efficient based on lowest overall forecasting
error.

The remainder of the paper is organised as follows. Section 2 reviews the most related studies
on forecasting methods of tourist arrivals. Section 3 discusses the various parametric and non-
parametric forecasting techniques employed in this study. Section 4 presents the data used and
the measures employed for evaluating forecast accuracy. Section 5 presents the empirical results.
Finally, Section 6 concludes this study.

2 Literature Review

Along with the phenomenal growth in demand for tourism in the world over the past two
decades, there is a growing interest in tourism forecasting research. The empirical literature on
forecasting tourism demand shows that there is not a single model that has superior predictive
ability. Rather, a number of different parametric and non-parametric time-series models, as
well as, various econometrics models have been applied in this crowded strand of the tourism
literature. Although no consensus has been reached so far, regarding the model with the best
forecasting accuracy, the literature reveals that the ARIMA-type models are the most widely
used ones.

Starting from these models, one of the early studies is this by Dharmaratne (1995) who
compares a number of ARIMA-type models to forecast tourist arrivals in Barbados. The study
concludes that ARIMA-type models are capable of producing valid forecasts but specifically the
ARIMA(2,1,1) is the best performing model.

Furthermore, a number of authors compare ARIMA-type models with other time-series or
econometric models (see, inter alia Goh and Law, 2002; Kulendran and Witt, 2003; Chu, 2004;
Kim and Moosa, 2005; Vu and Turner, 2006; Wong et al., 2007; Chu, 2008; Brida and Risso,
2011; Wan et al., 2013).
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More specifically, Goh and Law (2002) apply Seasonal ARIMA (SARIMA) and Multivari-
ate ARIMA (MARIMA) models, and compare their forecasting accuracy against a number of
exponential smoothing models, moving average models, as well as, a random walk model (naive
model). The authors argue that both the SARIMA and MARIMA models outperform all re-
maining models across a number of forecasting accuracy criteria.

Furthermore, Kulendran and Witt (2003) use a number of ARIMA specifications, a causal
structural time-series model (STSM), a basic structural model (BSM), as well as, the naive
model of no change. The findings suggest that the ARIMA models exhibit superior predictive
ability in the short-run forecasts; however, none of the models could outperform the naive model
in the medium-run forecasts. Vu and Turner (2006) second the findings by Kulendran and Witt
(2003), as they also compare ARIMA models against a BSM for the case of Thailand and find
that the ARIMA models showed a better forecasting accuracy.

Chu (2004) further examines whether a cubic polynomial model could outperform other linear
and nonlinear forecasting models, such as a regression-base model, two naive models, ARIMA-
type models and a sine wave nonlinear model, which have been estimated in the earlier studies
of Chan (1993) and Chu (1998a,b). The study focuses on tourist arrivals in Singapore and the
findings suggest that the cubic polynomial model cannot outperform either the ARIMA-type
models or the combined forecasts.

Another study that confirms the superiority of the ARIMA-type models is this by Kim and
Moosa (2005) who compare the SARIMA model against a regression-based model and Harveys
structure time-series model. They also compare the forecasting accuracy of these models based
on both aggregate and disaggregate data. Their results suggest that the SARIMA models
perform better than the other two models. They also claim that disaggregate data offer better
predictive ability compared to aggregate data.

Furthermore, Chu (2008) uses nine time-series models, including two naive models, ARIMA-
type models (ARIMA, SARIMA and ARFIMA), as well as, regression-based models. Chu
(2008) finds that the ARFIMA model that exhibits the highest forecasting accuracy both in the
short-run and in the long-run, nevertheless, the SARIMA is the best performing model in the
medium-run. In a subsequent paper, Chu (2009) confirms his previous findings, suggesting that
the ARFIMA model performs better compared to other ARIMA specifications.

More recently, Wan et al. (2013) use a SARIMA model and compare it against a seasonal
moving average model and a Holt-Winter model. Their findings show that the SARIMA model
is the best performing under all three different h-step-ahead forecasting horizons (where h is
one-month, three-months and twelve-months ahead).

Other authors have tried to combine ARIMA-type models with ARCH-type models. In-
dicatively, Coshall (2009) combines the ARIMA with the GARCH models and compares their
forecasting accuracy against the Holt-Winters additive and multiplicative exponential smooth-
ing, as well as, a naive model. The results show that the Holt-Winters models perform better
in the one and three year-ahead forecasts, whereas the ARIMA-GARCH model yields the best
forecasts for the two years-ahead horizon. However, forecasts based on the combined models
between the ARIMA-GARCH and the Holt-Winters models provide the most accurate forecasts
in almost all sample countries and horizons.

Furthermore, Brida and Risso (2011) compare two SARIMA-ARCH models and show that
overall SARIMA-ARCH-type models are able to generate accurate forecasts. In particular, the
SARIMA(2,1,2)(0,1,1)–ARCH(1) produces the best forecasts.

Despite the fact that a wealth of studies demonstrates the superior predictive ability of the
ARIMA-type models, there are studies that cannot subscribe to this belief.For instance, Song
et al. (2003) consider six econometric models (including a regression-based model, a Wickens-
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Breusch Error Correction Model (ECM), Johansens ECM, an Autoregressive Distributed Lag
Model (ADLM), an unrestricted Vector Autoregressive Model (VAR), a Time Varying Param-
eter model) and two time-series models (ARIMA and naive model of no change) and produce
forecasts for one up to four years-ahead. The results show that there is not a single model that
outperforms all others across all different forecasting horizons. In particular, the Time Varying
Parameter model is the best performing model for the one and two years ahead; nevertheless, for
the longer-term forecasts it is the regression-based model that has the best forecasting accuracy.

Similarly, Wong et al. (2007) compare the ARIMA models with several other time-series
and econometric models, such as the ADLM, ECM and VAR. The authors cannot confirm the
superiority of the ARIMA models or any other model over the others, for all sample countries.
What is more, the authors suggest that in some cases the best forecasting accuracy can be
obtained with combined forecast models.

Chu (2011) also uses AR, ARFIMA and SARIMA models and compares them against the
forecasting power of a piecewise linear model for Macaus tourism demand. Focusing on four
different forecasting horizons (spanning from 6 months to 24 months), they claim that the
piecewise linear model is able to outperform all other benchmark models for all forecasting
horizons.

More recently, Kim et al. (2011) cannot confirm the superior forecasting accuracy of the
ARIMA-type models. More specifically they consider SARIMA models and compare them
with autoregressive models (AR), Harveys structural time series model, state space exponential
smoothing models and a forecasting model with bootstrap bias-corrected AR parameters. They
report that the latter model has superior predictive ability.

At the same time, there are studies which did not consider the ARIMA models at all.
For instance, Lim and McAleer (2001) use a number of Holt-Winters and Browns exponen-
tial smoothing models, such as the single and double exponential smoothing, non-seasonal and
seasonal exponential smoothing, as well as, additive and multiplicative Holt-Winters seasonal
smoothing.Theyreport that the Holt-Winters multiplicative seasonal model outperforms all other
specifications for the majority of the countries under examination. They note that, in some cases,
the Holt-Winters additive seasonal model yields the best forecasts.

Along the same lines, Wong et al. (2006) do not consider any ARIMA model but rather
concentrate on various VAR models, including both unrestricted and Bayesian (BVAR) models.
They conclude that the univariate BVAR model outperforms all other specifications, including
the standard and the general BVAR models. Similarly, Song and Witt (2006) focus only on
VAR models and maintain that these models are capable of producing valid forecasts at both
the medium- and long-run.

Furthermore, there are studies which turn their attention to biological algorithms in an effort
to achieve greater forecasting accuracy for tourism demand. One of the first studies is this by
Law and Au (1999) who use a supervised feed-forward neural network to forecast tourist arrivals
in Japan. Their findings show that the use of the neural network model is able to outperform
the forecasts produced by regression-based models, naive models or even those produced by
exponential smoothing and moving average models.

Cho (2003) also use neural network models and compares them against ARIMA and expo-
nential smoothing models. This study confirms the superior character of the neural network
model, which was the model that showed the best forecasting accuracy. Burger et al. (2001), in
an earlier study, also show that aneural network model can outperform the ARIMA models, as
well as, various exponential smoothing, regression-based and naive models.

Furthermore, Kon and Turner (2005) compare a neural network model against a basic struc-
tural method in order to identify whether the former can outperform the forecasting accuracy

5



of the latter for the tourist arrivals in Singapore. The authors also use two more models as
benchmarks, namely, a naive model and a Holt-Winters model. The findings show that a well
structured neural network model can outperform all other models for short-run forecasts.

Other recent studies that focus on biological algorithms include these by Palmer et al. (2006),
Hadavandi et al. (2011) and Pai et al. (2014). More specifically, Palmer et al. (2006) develop
an artificial neural network (ANN) to forecast tourism arrivals and they claim that an ANN
can perform better compared to the traditional statistical models. In addition, Hadavandi et al.
(2011) apply a genetic fuzzy system (GFS) and show that biological algorithms are capable of
producing successful forecasts for tourism arrivals. Furthermore, Pai et al. (2014) use a fuzzy
c-means model with least-square support vector regression algorithm. They report that the
use of such hybrid system is a promising alternative for tourism arrivals forecasts compared to
standard forecasting models, such as ARIMA.

On the contrary, Claveria and Torra (2014) do not agree with these aforementioned findings,
showing that neural networks cannot outperform the ARIMA models, especially for the short-
run forecasts.

Summing up, the empirical literature has provided mixed results in terms of tourism de-
mand forecasting accuracy among the various employed models that reveal several idiosyncratic
features, both in terms of the forecasting horizons and countries of interest.

3 Forecasting Methods

3.1 Auto-Regressive Integrated Moving Average (ARIMA)

This paper exploits an optimized version of the ARIMA model which is found in the forecast
package inR. Those interested in a detailed description of the algorithm are referred to Hyndman
and Khandakar (2008). The number of seasonal differences, d, and the the determination of its
value is based on the Osborn-Chui-Smith-Birchenhall test (Osborn et al. 1988) seasonal unit
root test. Then, the Akaike Information Criterion (AIC) of the following form is minimized to
determine the values of p and q.

AIC = −2log(L) + 2(p+ q + P +Q+ k), (1)

where k = 1 if c 6= 0 and 0 otherwise and L is the maximum likelihood of the fitted model.
Then, the algorithm searches for the model which represents the smallest AIC from: ARIMA(2,d,2),

ARIMA(0,d,0), ARIMA(1,d,0) and ARIMA(0,d,1) which is selected as the optimal ARIMA
model. The decision on the inclusion or exclusion of the constant c depends on the value of d.
As seen in the next section, all time series considered in this study have a seasonal unit root
problem and therefore we provide a brief expansion of the seasonal ARIMA model alone. In
doing so we mainly follow Hyndman and Khandakar (2008). Accordingly, the seasonal ARIMA
model can be expressed as:

Φ(Bm)φ(B)(1−Bm)D(1−B)dyt = c+ Θ(Bm)θ(B)εt, (2)

where Φ(z) and Θ(z) are the polynomials of orders P and Q, and εt is white noise. If, c 6= 0,
there is an implied polynomial of order d+D in the forecast function.

As explained in Hyndman and Athanasopoulos (2013) point forecasts can then be obtained
as follows. Begin by expanding the seasonal ARIMA equation so that yt is on the left hand
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side with all other terms on the right. Then, rewrite the ARIMA equation and replace t with
T + h and finally, on the right hand side of this equation replace future observations by their
forecasts, future errors by zero, and past errors by the corresponding residuals. Eventually, use
the forecasting horizon h = 1 month ahead for example to calculate all forecasts for that horizon.

3.2 Exponential Smoothing (ETS)

In brief, the ETS model considers the error, trend and seasonal components in choosing the
best exponential smoothing model from over 30 possible options by optimizing initial values and
parameters using the MLE for example and selecting the best model based on the AIC. This
ETS algorithm overcomes limitations from the previous models of exponential smoothing which
failed to provide a method for easily calculating prediction intervals (Makridakis, Wheelwright,
& Hyndman 1998). Those interested in a detailed description of ETS are referred to Hyndman
and Athanasopoulos (2013).

3.3 Neural Networks (NN)

The neural network models used in this paper are estimated using an automatic forecasting
model known as nnetar which is provided through the forecast package in R programming code.
For a detailed explanation on how the nnetar model operated, see Hyndman et al. (2013). The
parameters in the neural network model are selected based on a loss function embedded into
learning algorithm. The nnetar algorithm trains 25 networks by using random starting values
and then obtains the average of the resulting predictions to compute the forecast. It may be
noted that in all cases the selected neural network model has only k=1 hidden node, p=2 lags
and we adopt annual difference specifications. Thus, for these series it appears that simpler
network models perform better than more complex ones.

3.4 Trigonometric Box-Cox ARMA Trend Seasonal Model (TBATS)

The TBATS model is an exponential smoothing state space model with Box-Cox transformation,
ARMA error correction, Trend and Seasonal components. The result is a technique which is
aimed at providing accurate forecasts for time series with complex seasonality. A detailed
description of the TBATS model can be found in De Livera et al. (2011).

3.5 Fractionalized ARIMA Model (ARFIMA)

The ARFIMA modelling process provided through the forecast package in R automatically esti-
mates and selects p and q for an ARFIMA(p,d,q) model based on the Hyndman and Khandakar
(2008) algorithm whilst d and parameters are selected based on the Haslett and Raftery (1989)
algorithm.

3.6 Singular Spectrum Analysis (SSA)

The basic SSA technique is well established and detailed in literature. Those interested in a
detailed description of the two main stages of SSA (i.e. Decomposition and Reconstruction), are
directed to Hassani (2007); Golyandina et al. (2001). Figure 1 presents a summary of the basic
SSA process. Thereafter the SSA-R and SSA-V forecasting algorithms are concisely explained.

[Insert Figure 1 around here]
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SSA-R

Let v2 = π21 + . . . + π2r , where πi is the last component of the eigenvector Ui (i = 1, . . . , r).
Moreover, suppose for any vector U ∈ RL denoted by UO ∈ RL−1 the vector consisting of the
first L−1 components of the vector U . Let yN+1, . . . , yN+h show the h terms of the SSA recurrent
forecast. Then, the h-step ahead forecasting procedure can be obtained by the following formula

yi =

{
ỹi for i = 1, . . . , N∑L−1

j=1 αjyi−j for i = N + 1, . . . , N + h
(3)

where ỹi (i = 1, . . . , N) creates the reconstructed series (noise reduced series) and vector A =
(αL−1, . . . , α1) is computed by:

A =
1

1− v2
r∑

i=1

πiU
O
i . (4)

SSA-V

Consider the following matrix

Π = VO(VO)T + (1− v2)AAT (5)

where VO = [UO
1 , ..., U

O
r ]. Now consider the linear operator

θ(v) : Lr 7→ RL (6)

where

θ(v)U =

(
ΠUO

ATUO

)
. (7)

Define vector Zi as follows:

Zi =

{
X̃i for i = 1, . . . ,K

θ(v)Zi−1 for i = K + 1, . . . ,K + h+ L− 1
(8)

where, X̃i’s are the reconstructed columns of the trajectory matrix after grouping and eliminating
noise components. Now, by constructing matrix Z = [Z1, ..., ZK+h+L−1] and performing diagonal
averaging we obtain a new series y1, ..., yN+h+L−1, where yN+1, ..., yN+h form the h terms of the
SSA vector forecast.

4 The Data and Measures for Evaluating Forecast Accuracy

4.1 The Data

This papers focuses on international tourist arrivals in European countries, namely, Austria,
Cyprus, Germany, Greece, Netherlands, Portugal, Spain, Sweden and the United Kingdom.
The data on international tourist arrivals is obtained from Eurostat database. The period spans
from January 2000 until December 2013.

We begin our analysis by testing the data for normality, seasonal unit roots and break points.
From the descriptive statistics reported in Table 1, the Shapiro-Wilk (SW) test for normality
indicates that tourist arrivals in Austria is the only normally distributed series. This suggests

8



that when discussing central tendency and variation it is more appropriate to consider the median
and IQR for all majority of the series which are skewed whilst for Austrian tourist arrivals the
mean and standard deviation (SD) criterion is appropriate. During the 13 year period, the
highest median tourist arrivals was reported in Italy whilst the lowest median tourist arrivals
had been in Cyprus. Based on the IQR, the most variation in tourist arrivals was recorded
in Italy whilst the least variation was in Cyprus. However, if we were to consider variation in
monthly tourist arrivals based on the standard deviation then again the results are consistent
with those reported based on the IQR. As majority of the tourist arrivals series are skewed, it
is better to rely on the coefficient of variation (CV) criterion to compare the variability between
countries. Based on the CV, Greece reports the highest variation in tourist arrivals whilst
Netherlands reports the lowest variation in tourist arrivals. The OCSB (Osborn et al. 1988)
test for seasonal unit roots indicates that except for the Dutch tourist arrivals series, all other
series have seasonal unit roots.

[Insert Table 1 around here]

Results from the Bai and Perron (2003) test for break points is reported in Table 2. Between
2000 and 2013 the only country to experience two structural breaks in tourist arrivals is Germany
whilst Cyprus and Sweden has experienced no structural breaks during this period. We use this
information to determine training and validation sets for our forecasting exercise which follows.
As 2011 April is the last structural break experienced by at-least one of the countries considered
here, we use data from January 2000 - April 2011 for training and testing the forecasting models,
and set aside as validation sets the observations from May 2011 - December 2013 which is
approximately 2.5 years. This is done in order to ensure that no model has any undue advantage
because both parametric and nonparametric methods are considered in this study. It is well
known that methods such as SSA can handle non-stationarity well, and that it is less sensitive to
structural breaks as was shown recently in Silva and Hassani (2015) where the authors considered
the same ARIMA, ETS and Neural Network models from the forecast package alongside SSA
in an application on forecasting U.S. trade. Moreover, this approach will enable us to ascertain
whether structural breaks in the training samples have adverse effects on the forecasts generated
by these models.

[Insert Table 2 around here]

Reported in Table 3 are the parameters of the fitted models during the training process for
the selected European tourist arrivals series. It should be noted that the parameters reported
for ARIMA, ETS, NN, TBATS and ARFIMA are those relevant at the first instance. This is
because these parameters keep changing over any selected forecasting horizon as the algorithms
re-estimate a new model fit each time a new observation is introduced. In contrast, the SSA-V
and SSA-R model parameters once fitted remain constant and do not vary. Thus, the SSA model
is more stable and it will be interesting to see how the constant SSA models compete with the
varying models in the forecasting exercise which follows.

[Insert Table 3 around here]

Whilst ARIMA, ETS, NN, TBATS, and ARFIMA models can be automatically estimated
via the algorithms freely accessible through the forecast package in R, for SSA, here we use the
conventional method which requires an understanding of the theory underlying the technique.
As such, in order to enlighten the reader on how each SSA model was trained, as an example,
below we present Figure 2 and briefly explain the process involved in fitting the SSA(48,13)
model for German tourist arrivals.
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[Insert Figure 2 around here]

We begin by considering only the training data for German tourist arrivals. The first step
is to analyze the periodogram in order to identify the dominating frequencies. In this case it is
clear that the 12 month seasonal component is dominating tourist arrivals in Germany with some
comparatively small peaks visible around 2, 4 and 6 months as well. Accordingly, we follow the
method in Hassani (2007) and select L proportional to the dominating frequency of 12. We then
evaluate L = 24, 36, 48 and 60, and during each evaluation we study the paired-eigenvectors to
ascertain which decomposition provides the best in-sample fitting. The paired-eigenvectors for
Germany showed that beyond r = 13 there were no eigenvectors which represents the seasonal
components of interest, i.e. 12, 6, 4, and 2 months. As such, in this case we choose SSA(48,13) as
the fitted model for Germany. This model is then used to calculate the out-of-sample forecasts.
The same steps are followed for the remaining time series.

As SSA is the only filtering technique used in this paper we find it pertinent to comment with
regard to the separation of signal and noise as achieved via SSA. The weighted correlation (w-
correlation) statistic can be used to present the appropriateness of the various decompositions
achieved by SSA (see, Table 3). As mentioned in Golyandina, et al. (2001), the w-correlation is
a statistic which shows the dependence between two time series. It can be calculated as:

ρ
(w)
12 =

(
Y

(1)
N , Y

(2)
N

)
w

‖ Y (1)
N ‖w‖ Y

(2)
N ‖w,

where Y
(1)
N and Y

(2)
N are two time series, ‖ Y (i)

N ‖w =

√(
Y

(i)
N , Y

(i)
N

)
w
,
(
Y

(i)
N , Y

(j)
N

)
w

=∑N
k=1wky

(i)
k y

(j)
k (i, j = 1, 2), wk=min{k, L,N − k} (here, assume L ≤ N/2).

The w-correlation is interpreted such that if its value between two reconstructed components
are close to 0, it confirms that the corresponding time series are w-orthogonal and are well
separable (Hassani et al. 2009), and thus confirms the noise is indeed random even though
residual randomness is not an explicit concern for nonparametric models. Table 4 shows the
w-correlations for all SSA decompositions by comparing the two components of signal and noise.
Here, we use as signal the reconstructed series containing r components and select the remaining
r (which does not belong to the reconstruction) as noise. As evident, all w-correlations are close
to 0 and this confirms that SSA has successfully achieved a sound separation between noise and
signal.

[Insert Table 4 around here]

4.2 Measures for Evaluating the Forecast Accuracy

Root Mean Squared Error (RMSE)

The RMSE is used to measure the forecast accuracy. Recently it has been widely adopted in
forecasting literature, see for example, Zhang et al. (1998), Hassani et al. (2009;2013;2015).
Here, in order to save space, we only provide the RMSE ratios of SSA to that of NN:

RMSE =
SSA

NN
=

(∑N
i=1(ŷT+h,i − yT+h,i)

2
)1/2

(∑N
i=1(ỹT+h,i − yT+h,i)2

)1/2 ,
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where, ŷT+h is the h-step ahead forecast obtained by SSA, ỹT+h is the h-step ahead forecast
from the NN model, and N is the number of the forecasts. If SSA

NN is less than 1, then the SSA
outperforms NN by 1- SSAETS percent.

Direction of Change (DC)

The DC criterion is a measure of the percentage of forecasts that accurately predict the direction
of change (Hassani, Heravi, & Zhigljavsky, 2013). DC is an equally important measure, as the
RMSE, for evaluating the forecasting performance of tourism demand models, because it is
important that for example, when the actual series is illustrating an upwards trend, the forecast
is able to predict that upward trend and vice versa. Here, the concept of DC is explained in brief,
and in doing so we mainly follow Hassani, Heravi, and Zhigljavsky (2013). In the univariate
case, for forecasts obtained using XT , let DXi be equal to 1 if the forecast is able to correctly
predict the actual direction of change and 0 otherwise. Then, D̃X =

∑n
i=1DXi/n shows the

proportion of forecasts that correctly identify the direction of change in the actual series.

5 Empirical Results

Table 5 presents the empirical results from the univariate forecasting exercise. The first obser-
vation is that no single model is able to provide the best forecast of inbound tourism for all
European countries across both the short and long run. Secondly, ETS, NN and ARFIMA mod-
els are unable to report the best forecast for any of the countries, at least on one occasion and
thus we are able to rule out these models as irrelevant for forecasting European tourism demand.
ARIMA, TBATS, and the two SSA models appear to be lucrative based on the RMSE crite-
rion. The findings pertaining to the performance of NN and ETS model forecasts are consistent
with the findings in Hassani et al. (2015) where the same two models were seen providing the
least favourable forecasts for U.S. tourism demand forecasting. The fact that TBATS reports a
better performance than NN and ETS in this case was expected as by definition TBATS was
developed for handling time series with complex seasonal patterns (De Livera et al., 2011) and
this application shows it is able to report a reasonable performance whilst there is ample room
for improvements to this algorithm.

[Insert Table 5 around here]

Table 5 shows in bold font the model with the lowest RMSE at each horizon. Overall,
based on the the highest number of bold outcomes reported by a particular model we can
suggest that on average across all horizons the two SSA models are able to provide the optimal
univariate forecasts in comparison to forecasts from the other models. More specifically, if one
is interested in using a single model which can provide the most accurate forecast of tourism
demand for a particular country, then we can make the following suggestions. When forecasting
tourism demand in Germany, Greece, Cyprus, Portugal, Sweden, and UK the SSA-R model can
provide the best forecasts whilst for Italy, Netherlands and Austria SSA-V model is the best
option. For Spain the traditional ARIMA model is seen providing the best forecasts on average.
Furthermore, focusing on the forecasts with the lowest RMSE at each horizon, then we maintain
that this depends on a mixture of forecasting models for a given country based on the horizon
of interest.

Let us consider the forecasting results for each country at each horizon in detail. We find that
ARIMA provides the best forecasts for tourist arrivals in Germany and Greece in both the very
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short and very long run whilst SSA-R forecasts outperform the rest at h = 3, 6, 12 steps-ahead.
For tourist arrivals in Spain, forecasts from TBATS are found to be best at h = 1, 3, 24 steps-
ahead whilst ARIMA forecasts are seen reporting the lowest RMSE at h = 6, 12 steps-ahead.
SSA-V forecasts provide the lowest error for tourist arrivals in Italy at horizons of 1, 12 and 24
steps ahead with SSA-R reporting the best forecast at 3 months ahead and ARIMA reporting
the best forecast at 6 months ahead. For tourist arrivals in Cyprus, SSA-V forecasts are best in
the very short run and SSA-R forecasts are best in the medium term (h = 3, 6) whilst TBATS
can provide the best forecasts in the long run (h = 12, 24). TBATS is seen reporting the best
forecast for the Netherlands at h = 1 step ahead with SSA-V providing the best forecast at all
other horizons. When forecasting tourist arrivals in Austria we find that SSA-V can provide
the best forecasts at horizons of 1, 3, 12 and 24 steps-ahead with SSA-R providing the best
forecast at h = 6 months ahead. For Portugal, ARIMA can provide the best forecast in the
very short run whilst SSA-R is best at providing the better forecasts at all remaining horizons.
For Sweden, forecasts from ARIMA are best at horizons of 1 and 6 steps ahead whilst SSA-V
forecasts are best at 3 and 12 steps ahead with SSA-R providing the best forecast in the very
long run. For UK once again ARIMA provides the best forecast in the very short run whilst
SSA-R provides the best forecasts for the remaining horizons.

The results in Table 5 also make it clear that the SSA models appear to be best especially
beyond h = 1 step-ahead as majority of the instances whereby SSA outperforms the other
models are in the medium - long term cases. These results are useful to practitioners for various
reasons. First, it enables them to easily determine which model is best in general overall for
modelling and forecasting tourist arrivals in these selected countries should one only wish to use
a single model. Second, the results also enable practitioners to select which model is on average
best for forecasting a particular horizon across all countries. Third, a more closer look enables
practitioners to pick the best model for forecasting a chosen horizon for each individual country.

However, relying on the RMSE alone for determining the best forecasting model is not
statistically efficient. As such, we go a step further and test all our out-of-sample forecasting
results for statistical significance using the modified Diebold-Mariano test in Harvey et al. (1997).
For this purpose we consider SSA-R forecasts as a benchmark and calculate the RMSE comparing
forecasts from each other model against our chosen benchmark. The choice of SSA-R as the
benchmark model is a result of many positive aspects. First, for the 10 countries considered in
this study, forecasts from the SSA-R model report the lowest average RMSE across all horizons
in 6 out of the 10 cases which is equivalent to 60% of all cases. Second, SSA-R forecasts report
the highest number of the lowest RMSEs at each horizon for all countries considered here.
Thus, based on the criterion of a loss function it is clear that in general the SSA-R is the best
performing model overall. However, instead of relying on the RMSE criterion alone, we also
consider the Model Confidence Set (MCS) of Hansen et al. (2011). The results show that across
all horizons, the SSA-R model is constantly ranked as either first, second or third in comparison
to the other nine models which provides added justification for its choice as a benchmark in this
study1.

The RMSE results are reported in Table 6. The RMSE criterion can provide us with the fol-
lowing information. Suppose that we wish to quantify how well a particular model fares against
the benchmark, then if we consider the average RMSE between SSA-R and ARIMA forecasts
for Germany, the value of 0.93 indicates that SSA-R forecasts are 7% better on average across
all horizons than the ARIMA forecasts for same country. In terms of statistically significant
differences between forecasts, all forecasts from NN and ARFIMA models are found to have a

1The detailed results from Hansen et al.’s (2011) MCS test are available upon request.
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statistically significant difference in comparison to forecasts from SSA-R. The score indicates the
number of statistically significant outcomes reported by SSA-R in comparison to other models
for each country. The percentage score indicates that across all countries the number of statis-
tically significant outcomes have always been at or above a minimum of 50% and thus indicates
the results do represent a considerable amount of statistically significant outcomes in this study.

[Insert Table 6 around here]

In line with good statistical practice we also consider the direction of change (DC) predictions
of all forecasts. These are reported in Table 7. SSA-V forecasts interestingly reports the largest
number of highest average DC predictions across all horizons for the countries considered in
this study, whilst ARIMA is second best. The DC results for the SSA-R forecasts are not the
best but it is important to remember that the DC criterion should always be coupled with
results from a loss function for the accuracy of forecasts in order to make meaningful decisions.
Practitioners can use the information in the DC table in combination with the results in Tables
5 and 6 to determine which model to use to obtain forecasts for a particular country based on
the objective of the exercise. This enables them to reach a compromise between the accuracy of
forecasts in terms of the lowest possible error and the best DC prediction.

[Insert Table 7 around here]

Finally, we go a step further and calculate the cumulative distribution functions (cdf) of
the absolute values of the out-of-sample errors for all ten countries across all horizons from
all seven forecasting models. According to Hassani et al. (2009), if the cdf graph produced
by one method is strictly above the graph of another cdf, then we can conclude that the errors
associated with the first method are stochastically smaller than the errors of the second method.
In Figure 3 we present a selection of the graphs for instances where there is sufficient evidence
to prove that forecasts from SSA-R for all ten countries provide stochastically smaller errors
than forecasts from a competing model at a given horizon. Based on the cdf graphs we find
concrete evidence to prove that for all ten countries considered in this study, at horizons of 1,
3, 6, 12 and 24 step-ahead-forecasts from the SSA-R suggest stochastically smaller errors than
those from forecasts based on the ARFIMA and NN models, as the absolute errors from SSA-R
forecasts are lying strictly and well above those of ARFIMA and NN. Furthermore, at h = 12
steps-ahead we find comparatively weaker evidence to justify that SSA-R provides stochastically
smaller errors than forecasts from ETS and ARIMA at this horizon across all ten countries. The
evidence is more convincing at h = 24 steps ahead where we find that SSA-R forecasts across all
10 countries at this horizon indicate stochastically smaller errors than those from ETS forecasts.
These results provide added justification to the claims based on the RMSE, RRMSE and the
MCS test of Hansen et al. (2011) which suggested that SSA-R is the an appropriate benchmark
for this study.

[Insert Figure 3 around here]

6 Conclusion

The aim of this paper is to generate and evaluate international tourist arrival forecasts in se-
lected European countries. We focus on short-, medium- and long-run forecasts using several
parametric and nonparametric forecasting techniques. The countries under investigation are
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Austria, Cyprus, Germany, Greece, Netherlands, Portugal, Spain, Sweden and the United King-
dom and the study period spans from January 2000 until December 2013. Previous studies
mainly compare different specifications of a single model or use a limited number of different
classes of models. This study provides the most comprehensive forecasting comparison among
several parametric and non-parametric techniques, namely, the ARIMA, ETS, NN, TBATS,
ARFIMA, SSA-R and SSA-V. Furthermore, this is the first study to use the TBATS and SSA-R
models for tourist arrival forecasting purposes.

The results suggest that there is not a single model that its forecasting accuracy consistently
outperforms that of all other models for any of the countries under investigation and any of the
forecasting horizons. More specifically, based on the RMSE, DC and DM tests, the SSA-R, SSA-
V, ARIMA and TBATS models are found to be viable options for modelling European tourist
arrivals based on the number of times that they outperform the competing models. Forecasts
from NN, ETS and ARFIMA models provide the least accurate predictions for European tourist
arrivals.

Overall, these results enable forecasters to choose the most suitable model, based on the coun-
try, forecast horizon and direction of change criteria, for forecasting tourism demand. Should a
single model be of interest, then, across all selected countries and horizons the SSA-R model is
found to be the most efficient based on lowest overall forecasting error.

As previously, future research could be aimed at revisiting the robustness of our results in
multivariate nonlinear frameworks, which controls for additional exogenous variables that affect
tourism demand. Moreover, an avenue for future research is to examine whether a combination
of forecasts based on the aforementioned models provides any additional gains in the forecasting
accuracy of tourism demand.
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Table 1: Descriptive statistics for European tourist arrivals (Jan. 2000 - Dec. 2013).
Min. Max. Mean Med. IQR SD CV SW (p) OCSB

Germany 878100 3895000 1953000 1849000 909447 641550 32 <0.01 1
Greece 88040 2838000 762900 555100 1065914 686634 89 <0.01 1
Spain 1566000 6744000 3449000 3429000 2449991 1366387 39 <0.01 1
Italy 1067000 7457000 3415000 3442000 2863705 1653644 48 <0.01 1
Cyprus 30746 321844 158692 187800 154268 83409 53 <0.01 1
Netherlands 451200 1541087 874767 895900 408633 241150 28 <0.01 0
Austria 492255 2834741 1501201 1480754 661226 475432 32 0.67* 1
Portugal 192923 1181643 533720 531457 369484 227719 43 <0.01 1
Sweden 125916 1428207 383473 240430 187245 303655 79 <0.01 1
United Kingdom 692120 3162159 1628266 1495147 770656 546790 34 <0.01 1

Note: * indicates data is normally distributed based on a Shapiro-Wilk (SW) test at p=0.05. 0 indicates there is no

seasonal unit root based on the OCSB test at p=0.05. 1 indicates there is a seasonal unit root based on the OCSB test at

p=0.05.

Table 2: Break points in European tourist arrivals series.
Series Structural Break

Germany 2005(4), 2011(4)
Greece 2009(4)
Spain 2006(3)
Italy 2010(4)
Cyprus None
Netherlands 2011(3)
Austria 2007(5)
Portugal 2006(3)
Sweden None
United Kingdom 2005(4)

Table 3: Forecasting model parameters for European tourist arrivals.
Series ARIMA ETS(α, γ, σ) NN(p, P, k) TBATS ARFIMA(d) SSA-V SSA-R

Germany (0,1,1)(1,1,1) (0.485,1e-04,0.0415)M NNAR(2,1,1) (0.357,{0,0},1,{<12,5>}) 0.33 (48,13) (48,13)

Greece (3,1,1)(0,1,2) (0.7496,1e-04,0.0796)M NNAR(2,1,1) (0,{0,0},-,{<12,5>}) 0.27 (36,20) (36,20)

Spain (1,0,2)(0,1,1) (0.4911,4e-04,0.0308)M NNAR(2,1,1) (0.082,{0,0},-,{<12,5>} 0.27 (36,22) (36,22)

Italy (0,0,2)(0,1,1) (0.2463,1e-04,0.0573)M NNAR(2,1,1) (0,{0,0},0.999,{<12,5>}) 0.35 (60,16) (60,16)

Cyprus (1,0,1)(2,0,0) (0.649,0.0015,0.0937)M NNAR(2,1,1) (0.301,{0,0},1,{<12,5>}) 0.29 (36,14) (36,14)

Netherlands (1,0,2)(2,1,2)* (0.3069,1e-04,0.0565)M NNAR(2,1,1) (1,{2,0},-,{<12,5>}) 0.32 (36,11) (36,11)

Austria (2,0,3)(2,1,2) (0.0628,1e-04,0.0628)M NNAR(2,1,1) (0.263,{1,0},1,{<12,5>}) 0.19 (60,20) (60,20)

Portugal (1,0,1)(0,1,2) (0.4834,1e-04,0.0531)M NNAR(2,1,1) (0.027,{0,0},-,{<12,5>}) 0.19 (36,14) (36,14)

Sweden (1,0,1)(1,1,1) (0.8362,1e-04,0.0884)M NNAR(2,1,1) (0,{2,0},0.999,{<12,5>}) 0.09 (60,20) (48,20)

United Kingdom (1,0,3)(0,1,1) (0.3707,1e-04,127846.3)M NNAR(2,1,1) (0.557,{0,0},-,{<12,4>}) 4.58e-05 (48,8) (48,8)

Note:* indicates an ARIMA model with drift. M is an ETS model with multiplicative seasonality. α, γ, σ are the ETS smoothing

parameters. p is the number of lagged inputs, P is the automatically selected value for seasonal time series, and k is the number of nodes in

the hidden layer. d is the differencing parameter. L is the window length and r is the number of eigenvalues.
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Table 4: W -correlations between signal and residuals for European arrivals.
Series SSA-V SSA-R

Germany 0.005 0.005
Greece 0.006 0.006
Spain 0.005 0.005
Italy 0.004 0.004
Cyprus 0.010 0.010
Netherlands 0.009 0.009
Austria 0.005 0.006
Portugal 0.006 0.006
Sweden 0.020 0.020
United Kingdom 0.014 0.014
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Table 5: Out-of-sample RMSE results for European tourist arrivals.
h Germany Greece Spain Italy Cyprus Netherlands Austria Portugal Sweden UK

ARIMA
1 60878 87469 178075 286925 14583 73122 124291 43163 26310 169626
3 83511 162309 264844 300433 26090 82915 120614 64763 26216 236219
6 100444 193335 283152 246547 28481 87697 112352 75174 23456 274589
12 69436 237010 205741 249131 23899 111354 134475 76410 29027 314892
24 67705 148597 338420 392398 30902 183056 160058 124777 50192 326923

Avg. 76395 165744 254047 295087 24791 107629 130358 76857 31040 264450
ETS
1 72512 167965 175616 323764 17224 70263 101502 47590 68145 182703
3 91323 404044 283443 374324 34538 73491 99931 68241 135865 252056
6 110840 511331 371152 305881 43624 85819 101770 94031 71223 281880
12 158631 220320 185833 287974 15988 98392 125114 75547 26005 320905
24 307251 203286 292574 501241 21318 158859 194347 128418 36960 335751

Avg. 148111 301389 261723 358637 26538 97365 124533 82765 67640 274659
NN
1 583107 927936 1216291 1656221 136427 302251 818291 286229 277131 647598
3 601307 1103090 1331447 1797720 148617 289456 880077 249931 277702 666412
6 592265 791876 1523879 2060446 170584 253952 828686 252160 260963 576560
12 870987 857915 1416616 2384578 191839 314958 562093 289237 241766 526148
24 1043841 947666 2101843 2852818 114903 366222 533021 377186 340947 691906

Avg. 738302 925697 1518015 2150357 152474 305368 724434 290949 279702 621725
TBATS

1 69755 172827 165087 341700 19861 67244 112262 52697 59588 185346
3 74674 341103 251317 355806 30749 75087 109237 63350 118345 236517
6 82177 460453 339932 277413 38975 83379 108682 94370 82045 262771
12 68885 327041 226438 292928 17494 89928 124210 76427 50967 323241
24 96389 413543 308376 420722 25576 138154 157441 124781 80656 308798

Avg. 78376 342993 258230 337714 26531 90758 122366 82325 78320 263335
ARFIMA

1 288078 288527 561791 762573 32801 151566 277166 121087 147602 243738
3 498755 615426 1326277 1147309 53293 185584 327985 234275 170292 405534
6 485296 612500 1429433 1058050 51604 228567 325631 231540 188204 437942
12 549514 464374 1551741 764317 52636 187482 358598 206498 191729 426249
24 836800 723297 1931975 1264606 78506 258383 429657 335729 250608 846006

Avg. 531689 540825 1360244 999371 53768 202317 343808 225826 189687 471894
SSA-V

1 66754 90421 187053 269987 12452 79624 110669 43899 30150 219075
3 74657 161642 258974 247843 19309 72825 97258 53920 23912 238796
6 84512 174413 319133 247302 25103 76307 100631 65085 24282 244749
12 71809 198750 273338 230185 27319 82871 92983 75607 26318 226785
24 79860 156307 474835 289067 36938 114085 131438 102602 49615 322121

Avg. 75518 156307 302667 256877 24224 85142 106596 68223 30855 250305
SSA-R

1 66278 87807 197206 273286 14132 80036 111899 45565 27880 214170
3 69996 151700 343912 243894 17722 75227 104308 52128 24230 225354
6 74054 157592 396543 248764 17923 78755 99183 58928 25766 232604
12 53384 173704 227745 256370 21241 86821 96732 68175 26986 222035
24 82974 177537 409057 298978 33875 126767 167380 97214 34386 280366

Avg. 69337 149668 314892 264258 20979 89521 115900 64402 27850 234906

Note: Shown in bold font is the model reporting the lowest RMSE at each horizon for a given country.
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Table 6: Out-of-sample RMSE results for European tourist arrivals with SSA-R as the bench-
mark model.

h Germany Greece Spain Italy Cyprus Netherlands Austria Portugal Sweden UK
SSA−R
ARIMA

1 1.09 1.00 1.11 0.95 0.97 1.09 0.90 1.06 1.06 1.26*
3 0.84 0.93 1.30* 0.81 0.68 0.91 0.86 0.80* 0.92 0.95
6 0.74 0.82 1.40* 1.01 0.63* 0.90 0.88 0.78* 1.10* 0.85
12 0.77 0.73* 1.11 1.03 0.89 0.78 0.72* 0.89* 0.93 0.71
24 1.23* 1.19* 1.21* 0.76* 1.10* 0.69* 1.05* 0.78* 0.69* 0.86*

Avg. 0.93 0.94 1.22 0.91 0.85 0.87 0.88 0.86 0.94 0.93
SSA−R
ETS
1 0.91 0.52* 1.12 0.84 0.82 1.14 1.10 0.96 0.41* 1.17
3 0.77 0.38 1.21 0.65 0.51* 1.02 1.04 0.76 0.18* 0.89
6 0.67* 0.31* 1.07 0.81 0.41* 0.92 0.97 0.63* 0.36* 0.83
12 0.77* 0.73 1.11 1.03 0.89 0.78 0.72 0.89* 0.93 0.71
24 0.27* 0.87* 1.40* 0.60* 1.59* 0.80* 0.86* 0.76* 0.93* 0.84*

Avg. 0.68 0.56 1.18 0.79 0.84 0.93 0.94 0.80 0.56 0.89
SSA−R
NN
1 0.11* 0.09* 0.16* 0.17* 0.10* 0.26* 0.14* 0.16* 0.10* 0.33*
3 0.12* 0.14* 0.26* 0.14* 0.12* 0.26* 0.12* 0.21* 0.09* 0.34*
6 0.13* 0.20* 0.26* 0.12* 0.11* 0.31* 0.12* 0.23* 0.10* 0.40*
12 0.06* 0.20* 0.16* 0.11* 0.11* 0.28* 0.17* 0.24* 0.11* 0.42*
24 0.08* 0.19* 0.19* 0.10* 0.29* 0.35* 0.31* 0.26* 0.10* 0.41*

Avg. 0.10 0.16 0.21 0.13 0.15 0.29 0.17 0.22 0.10 0.38
SSA−R
TBATS

1 0.95 0.51* 1.19 0.80 0.71* 1.19 1.00 0.86 0.47* 1.16
3 0.94 0.44 1.37 0.69 0.58 1.00 0.95 0.82 0.20* 0.95
6 0.90 0.34* 1.17 0.90 0.46* 0.94 0.91 0.62* 0.31* 0.89
12 0.77 0.53 1.01 0.88* 1.21 0.97 0.78 0.89* 0.53 0.69
24 0.86* 0.43* 1.33* 0.71* 1.32* 0.92* 1.06* 0.78* 0.43* 0.91*

Avg. 0.88 0.45 1.21 0.79 0.86 1.00 0.94 0.80 0.39 0.92
SSA−R
ARFIMA

1 0.23* 0.30* 0.35* 0.36* 0.43* 0.53* 0.40* 0.38* 0.19* 0.88*
3 0.14* 0.25* 0.26* 0.21* 0.33* 0.41* 0.32* 0.22* 0.14* 0.56*
6 0.15* 0.26* 0.28* 0.24* 0.35* 0.34* 0.30* 0.25* 0.14* 0.53*
12 0.10* 0.37* 0.15* 0.34* 0.40* 0.46* 0.27* 0.33* 0.14* 0.52*
24 0.10* 0.25* 0.21* 0.24* 0.43* 0.49* 0.39* 0.29* 0.14* 0.33*

Avg. 0.14 0.29 0.25 0.28 0.39 0.45 0.34 0.29 0.15 0.56
SSA−R
SSA−V

1 0.99 0.97 1.05 1.01 1.13* 1.01 1.01 1.04 0.92 0.98
3 0.94 0.94 1.33 0.98 0.92 1.03 1.07 0.97 1.01 0.94
6 0.88 0.90 1.24* 1.01 0.71* 1.03* 0.99 0.91* 1.06 0.95
12 0.74* 0.87 0.83* 1.11 0.78* 1.05* 1.04* 0.90 1.03 0.98*
24 1.04* 1.14* 0.86* 1.03* 0.92* 1.11* 1.27* 0.95* 0.69* 0.87*

Avg. 0.92 0.96 1.06 1.03 0.89 1.05 1.08 0.95 0.94 0.94
Score 17 19 18 15 22 16 16 22 21 16

% Score 0.56 0.63 0.60 0.50 0.73 0.53 0.53 0.73 0.70 0.53

Note: * indicates a statistically significant difference between forecasts based on the modified Diebold Mariano
test at p = 0.10. Score indicates the number of statistically significant outcomes for each horizon.
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Table 7: Direction of change results for European tourist arrivals.
h Germany Greece Spain Italy Cyprus Netherlands Austria Portugal Sweden UK

ARIMA
1 1.00* 0.91* 1.00* 0.97* 0.91* 0.84* 0.84* 1.00* 0.94* 0.84*
3 1.00* 0.90* 1.00* 1.00* 0.97* 0.97* 0.97* 1.00* 0.97* 0.93*
6 1.00* 1.00* 1.00* 0.89* 1.00* 1.00* 0.81* 0.96* 1.00* 0.85*
12 1.00* 0.38 0.43 0.52 0.38 0.33 0.43 0.29 0.62 0.57
24 1.00* 0.89* 0.33 1.00* 0.22 0.44 0.67 0.56 0.44 0.33

Avg. 1.00 0.82 0.75 0.88 0.70 0.72 0.74 0.76 0.79 0.71
ETS
1 0.91* 0.91* 0.94* 1.00* 0.91* 0.91* 0.94* 1.00* 0.94* 0.91*
3 1.00* 0.97* 1.00* 1.00* 1.00* 1.00* 0.97* 1.00* 0.97* 0.90*
6 1.00* 1.00* 1.00* 0.93* 1.00* 1.00* 0.93* 0.93* 1.00* 0.85*
12 0.24 0.52 0.57 0.52 0.19 0.67 0.52 0.38 0.67 0.48
24 0.22 0.56 0.56 0.67 0.22 0.67 0.56 0.33 0.33 0.44

Avg. 0.67 0.79 0.81 0.82 0.66 0.85 0.78 0.73 0.78 0.72
NN
1 0.91* 0.47 0.75* 0.81* 0.72* 0.63 0.34 0.56 0.59 0.41
3 0.77* 0.77* 0.77* 0.80* 0.67 0.80* 0.70* 0.73* 1.00* 0.83*
6 0.81* 0.85* 0.78* 0.85* 0.70* 0.85* 0.52 0.93* 0.85* 0.85*
12 0.52 0.48 0.38 0.33 0.19 0.52 0.43 0.38 0.67 0.62
24 0.33 0.44 0.22 0.56 0.11 0.67 0.67 0.22 0.89* 0.56

Avg. 0.67 0.60 0.58 0.67 0.48 0.69 0.53 0.56 0.80 0.65
TBATS

1 0.91* 0.84* 1.00* 0.97* 0.88* 0.91* 0.88* 1.00* 0.91* 0.91*
3 1.00* 0.97* 1.00* 1.00* 0.97* 0.93* 1.00* 1.00* 1.00* 0.90*
6 1.00* 1.00* 1.00* 0.93* 1.00* 1.00* 0.89* 0.93* 1.00* 0.89*
12 1.00* 0.62 0.43 0.57 0.38 0.86* 0.38 0.38 0.67 0.48
24 1.00* 0.33 0.33 0.78 0.33 0.89* 0.44 0.33 0.56 0.44

Avg. 0.98 0.75 0.75 0.85 0.71 0.92 0.72 0.73 0.83 0.72
ARFIMA

1 0.84* 0.88* 0.84* 0.88* 0.97* 0.75* 0.84* 0.75* 0.78* 0.75*
3 0.77* 0.97* 0.73* 0.80* 0.87* 0.80* 0.83* 0.77* 0.93* 0.83*
6 0.89* 0.93* 0.89* 0.89* 1.00* 0.93* 0.70* 0.89* 0.85* 0.85*
12 0.10 0.57 0.38 0.38 0.29 0.38 0.33 0.33 0.62 0.52
24 0.00 0.11 0.33 0.33 0.11 0.33 0.33 0.22 0.67 0.22

Avg. 0.52 0.69 0.64 0.66 0.65 0.64 0.61 0.59 0.77 0.64
SSA-V

1 0.97* 0.88* 0.97* 0.94* 0.88* 0.84* 0.91* 0.94* 0.94* 0.84*
3 0.93* 0.93* 1.00* 1.00* 1.00* 0.93* 0.93* 0.97* 0.97* 0.97*
6 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 0.89* 1.00* 0.85* 0.93*
12 0.90* 0.43 0.48 0.67 0.38 0.81* 0.81* 0.57 0.76 0.76
24 1.00* 0.67 0.11 0.78 0.67 0.78 0.78 0.78 0.78 0.56

Avg. 0.96 0.78 0.71 0.88 0.78 0.87 0.86 0.85 0.86 0.81
SSA-R

1 0.97* 0.88* 0.88* 0.97* 0.84* 0.81* 0.91* 0.94* 0.94* 0.84*
3 0.60 0.50 0.57 0.47 0.33 0.57 0.60 0.60 0.47 0.63
6 0.67 0.52 0.48 0.44 0.30 0.48 0.48 0.74* 0.41 0.56
12 0.57 0.52 0.86* 0.57 0.33 0.43 0.48 0.81* 0.48 0.67
24 0.78 0.33 1.00* 0.89* 0.22 0.78 0.78 1.00* 0.44 0.89*

Avg. 0.72 0.55 0.76 0.67 0.41 0.61 0.65 0.82 0.55 0.72

Note: Shown in bold font is the model reporting the best average DC prediction across all horizons for a given
country. * indicates the DC predictions are statistically significant based on a t-test at p = 0.05.

21



Figure 1: A summary of the basic SSA process.
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Figure 2: Time series, periodogram and selected paired eigenvectors for German tourist arrivals
(Jan. 2000 - Apr. 2011).
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Figure 3: The cumulative distribution functions of the absolute values of the out-of-sample
errors.
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