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Abstract 

The science of biology has been transforming dramatically and so the need 

for a stronger mathematical background for biology students has increased. 

Biological students reaching the senior or post-graduate level often come to 

realize that their mathematical background is insufficient. Similarly students 

in a mathematics programme, interested in biological phenomena find it 

difficult to master the complex systems encountered in biology. In short, the 

biologists do not have enough mathematics and the mathematicians are not 

being taught enough biology.  

The need for interdisciplinary curricula that includes disciplines such as 

biology, physical science, information technology, and mathematics is 

widely recognized, but has not been widely implemented.  In this paper it is 

suggested that mathematical biology students develop a skill set of biology 

(ecology), mathematics, modeling and technology to encourage working 

across disciplinary boundaries. To illustrate such a skill set a predator-prey 

model that contains self-limiting factors for both predator and prey, is 

suggested. The general idea of dynamics, as described by differential 

equations is introduced and students are encouraged to discover the 

applicability of this approach to the dynamics of more complex biological 

systems.  
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The level of mathematics and technology required is not advanced; 

therefore it is ideal for inclusion in a senior-level or introductory graduate-

level course for students interested in mathematical biology in which three  

important disciplines - biology, mathematics and technology - come 

together to develop a skill set for prospective researchers.  

Keywords: Mathematical biology, predator-prey, interdisciplinary, 

mathematical modeling, ordinary differential equations, computer algebra 

system, technology. 

 

1. Introduction 

 

The science of biology has been transforming dramatically with advances in biological 

understanding, experimental techniques and computational analysis and recent reports 

have called for change in how undergraduate mathematics is approached for students in 

biology [1, 2]. It has become apparent that no single discipline can fully address the 

challenges of new frontiers in biology [3], and as such the average life science student is 

not exposed to enough areas in mathematics [4]. The use of mathematics in biological 

research is taking on many forms: statistics in experimental design; pattern seeking in 

bioinformatics; models in evolution, ecology and epidemiology and many more [5]. The 

need for knowledge of quantitative biology is even more evident in systems biology, 

where at molecular level this involves building mathematical models and understanding 

complex processes such as gene regulation, protein-protein interactions and metabolism 

[6, 7].  

Biological sciences have been revolutionized, not only in the way research is conducted 

but also in how research findings are communicated among professionals and to the 

public. Yet, the undergraduate programs that train biology researchers remain much the 

same as they were before these fundamental changes came about [1, 8]. In many 

universities, majors in mathematics, physics, chemistry and engineering are taught 

separately from those hoping to be biologists or physicians [1]. These students 

traditionally do only one or two semesters of mathematics, often not with much depth, 

since mathematics is not their primary interest. It is only once they get to senior-level or 
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post-graduate level that they realize that their mathematical background is insufficient. 

Similarly, students in a mathematics programme who become interested in biological 

phenomena find it difficult to master the complex systems encountered in biology. In 

short, the biologists do not have enough mathematics and the mathematicians are not 

being taught enough biology. These barriers to communicate between disciplines have 

become more and more evident. 

 

Calls for improvement in interdisciplinary education date from as far back as 1976, with 

Robert May’s [8] plea for the introduction of difference equations, used in, amongst 

other, ecological modeling, into elementary mathematics courses. Bialek and Botstein [1] 

advocate an integrated introductory curriculum in which mathematics, physical sciences 

and biology is introduced simultaneously. They suggest that disciplines should be 

introduced at a high level of sophistication, because a large part of the goal is to show 

students how each discipline contributes to understanding the phenomena of life. 

Hastings and Palmer [9] advocate that the training of scientists with expertise in both 

biology and mathematics must be promoted. 

 

Although the need for a strong interdisciplinary curriculum that includes disciplines such 

as biology, physical science, information technology, and mathematics is widely 

recognized, it has not been widely implemented.  These changes will only become a 

reality once the different faculties decide to collaborate and a serious paradigm shift takes 

place on how such a curriculum is structured. 

 

How then can this gap between mathematics, biology and other related disciplines be 

bridged?  Eager, Pierce and Barlow [4] suggest first developing a skill set of 

mathematics, mathematical modeling and technology to encourage working outside 

disciplinary boundaries. Practically this would mean identifying a biological (or other) 

problem that could benefit from mathematical or theoretical treatment. The next step 

would be to create a model to make predictions about the biological system and to 

understand the uncertainties associated with these predictions and finally develop the 

skills and ability to analyze the results obtained from the mathematical model. 
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An excellent vehicle for developing such a skill set is a system of differential equations, 

such as the Lotka-Volterra predator-prey model. The model arises in many settings in 

biology, ecology, economics and social sciences and although these models are simple 

they exhibit a surprising array of dynamical behavior.  

 

In this paper, students are guided through the modeling process, classification of 

equilibrium points and finally using technology to visualize the possible outcomes. In this 

way three important disciplines - biology, mathematics and technology - come together to 

develop the skill set of prospective researchers. The general idea of dynamics, as 

described by differential equations, is conveyed and students are encouraged to discover 

the applicability of this approach to the dynamics of more complex biological systems. 

 

The model, in essence, a classical Rosenzweig-MacArthur type, although simple, 

displays rich dynamical behavior.  Students must apply a numerical investigation to 

determine the conditions under which the model possesses either a stable equilibrium or 

limit cycles, or under which conditions the uniqueness of the equilibrium cannot be 

guaranteed. In the latter case a Computer Algebra System (CAS) is used to investigate 

the long term behaviour of trajectories in order to predict the nature of the unique or 

multiple equilibrium points. The investigation includes defining and plotting the 

separatrices and trajectories to gain insight into the dynamics of the system.  

 

In most cases there is but a single critical value, an attracting spiral point suggesting a 

stable population pair or an unstable node, resulting in a unique limit cycle. The critical 

values of the system are related to the roots of a cubic polynomial and it is only when the 

cubic has multiple positive roots that the system becomes unstable. Thus the analysis of 

equilibria entails investigating a well-known cubic polynomial. The level of mathematics 

and technology required is not advanced; therefore it is ideal for inclusion in a senior-

level or introductory graduate-level course for students interested in mathematical 

biology. In addition, by introducing any available CAS, such as Mathematica [10], 

interesting phenomena of the dynamics of such a modeled system can be observed.  
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2. The proposed mathematical model   

 

The point of departure is that the student has some basic knowledge of predator-prey 

models and expanding the model contributes to understanding the reasoning behind and 

ecological basis for the inclusion and form of each of the terms in the suggested model. 

 

The model is, in essence, a classical Rosenzweig-MacArthur type model (Rosenzweig 

and MacArthur 1963), [11] but with an added function 
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where )(tx  denotes the number of prey and )(ty  denotes the number of predators at 

given time t.  

System (1) contains the conventional logistic term )/1( Kxrx   and a Holling type II 

functional response )/( Hxx  . The constant L is introduced as the saturation 

population of the predator in the same way as the K represents the carrying capacity of 

the prey. The intrinsic growth rate of prey is represented by r  while   is the mortality 

rate of predator. The attack coefficient , also called the capturing rate, is the rate at 

which a predator can search out its prey, while   is the conversion rate, that is in simple 

terms, the predator's efficiency in turning food into offspring. The constant H  contained 

in the Holling type II functional response is the half-capturing saturation constant. The 

model parameters are all assumed to be positive.  

 

Since the proposed model contains self-limiting factors for both predator and prey and 

thus has bounded solutions )( and)( tytx  in the population quadrant. The inclusion of h(y) 

is effectively saying that the predators are becoming less efficient at converting prey 

biomass to predator biomass when there are more predators around. This is validated by a 
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study conducted by Schmidt and Mech [12] on the optimal wolf pack size. They asked 

the question: Does living in large groups facilitate the acquisition of large prey? In other 

words, will a pack of eight wolves be twice as successful as a pack of four? If this is so, 

then the food acquired per wolf should increase as the pack increases. 

However, they found no evidence to indicate that an increased pack size will lead to an 

increased food supply. In fact, all the data they used suggested that there was less food 

per wolf as pack size increased. They use the term "optimal pack size" - which is 

equivalent to population saturation L in the suggested model. The interested reader is 

referred to Schmidt and Mech [12] for more detail. 

The relevance of having bounded solutions is reflected in the Poincaré-Bendixon 

Theorem [13], which predicts that if a single equilibrium point exists within this bounded 

region, then it is either an attracting spiral point, suggesting a stable population pair, or an 

unstable node, resulting in a unique limit cycle. If uniqueness cannot be guaranteed the 

model becomes unstable, but the analysis of the behaviour of solutions leads to some 

interesting phenomena. 

 

3. Mathematical Analysis of the Model 

 

3.1 Analysis of equilibrium points 

 

For the following analysis the student needs to be familiar with basic concepts related to 

nonlinear systems of differential equations. Students will be expected to master the 

concepts of equilibrium point, linearization, Jacobian, stability, Poincaré-Bendixson 

theory, limit cycles, etc. Investigation of stability of the model reduces to eigenvalue 

analysis to determine the nature of the equilibrium points. The relevance of the latter 

should be highlighted as this indicates whether the species will coexists or if extinctions 

will occur. These topics are dealt with in many textbooks such as Zill and Cullen [13]. 

 

An alternative approach that could be introduced at this stage is a useful tool for the 

analysis of nonlinear systems: nondimensionalization, or rescaling [14]. This is a process 

for transforming a series of equations (usually ODEs or PDEs) to dimensionless (i.e. unit-

less) forms by rescaling the model variables. In the process the number of parameters is 

reduced but the dynamics of the system of equations remain the same.  In the case of 
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System (1) nondimensionalization will reduce the number of parameters from 7 to 4, but 

for our example we will continue with the original number of parameters. 

 

It is convenient to use eigenvalue analysis by determining the signs of the determinant 

and trace of the Jacobian matrix. For example, an equilibrium point  **,* yxE  of 

System (1) is unstable if both the determinant and the trace of the Jacobian matrix are 

positive [13].  

It is easily shown that the determinant of the Jacobian matrix is given by 
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and the trace is given by 
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To determine the nature of each equilibrium point, the sign of both the trace and 

determinant need be determined in each of the equilibrium points. 

 

To determine the equilibrium points of System (1), consider 

01 




















Hx

xy

K

x
rx   and 01 





















L

y

Hx

xy
y  . 

From this follows that the system has trivial equilibrium points at  0,00E  and  0,1 KE   

neither situated in the population quadrant and indicating extinction of one or both 

species. 

The non-trivial equilibrium points, that is those within in the population quadrant that 

could lead to co-existence of both species, are defined by the two simultaneous equations, 

the x-nullcline  
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A graphical analysis of these nullclines can be a powerful tool in investigating the 

nonlinear dynamics of System (1). For example, if the vertex of the x-nullcline (4) has a 

negative x-coordinate it precludes having more than one equilibrium solution in the first 

quadrant. This comes down to the condition that   0 KHa  , which will be referred 

to in Section 3.3.  Further exploration into nullclines and the interpretation thereof should 

be encouraged.  

 When equated and simplified, the nullclines deliver the x-values of the equilibrium 

points. That is, the x-values can be found by solving 0)( xP where 
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In simple terms, the cubic equation 0)( xP  needs to be solved where 

cbxaxxxP  23)(      (6) 

with      rHKLcrHKrKLKLbKHa /   and/,  . 

 

A unique equilibrium point in the population quadrant will exist if )(xP  possesses one, 

and only one, intercept (root) with the positive x-axis. Note that 0c , since all the 

parameters of  System (1) are assumed to be positive. Let a and b be arbitrary. 

For all values of a and b the function )(xP  will entertain only one positive root, except 

for one case, namely if 0,0  ab and ba 32  . In the latter case, since ,0b  and 

,32 aba  it is clear that xP( ) will have two critical points with positive x-values, 

namely   3/32

1 baax  and   3/32

2 baax  , yielding the possibility of 

either one or three positive roots. If the signs of )( 1xP  and )( 2xP  are the same, then 

)(xP  possesses a unique positive root. However, the more interesting scenario is when 

the signs of )( 1xP  and )( 2xP  differ, in which case the cubic will present with three 

positive roots, hence System (1) will have three distinct equilibrium points. 

 

3.2  Numerical Analysis 

Experience in applying a CAS system is beneficial in many research areas. The student is 

encouraged to compare the analytical findings to visual exploration.  
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Using the CAS system Mathematica choose parameter values that satisfy all the 

necessary assumptions to obtain a visual illustration of these scenarios are given below. 

 

3.2.1 Unique equilibrium 

If System (1) has a unique equilibrium in the bounded region, then the Poincaré-

Bendixon Theorem predicts either an attracting spiral point, suggesting a stable 

population pair, or an unstable node, resulting in a unique limit cycle. In both cases the 

species will coexist. 

As an example, choose parameter values 20  and 2.6,5.1,4,12   Hr . In 

Figure 1, the trajectory (x(t),y(t))  is depicted for varying values of the carrying capacity 

K and the population saturation L.  

 

Figure 1:The trajectory (x(t),y(t)) for varying values of K and L 

 

In Figure 1(a), it can be seen that if 15  and 15  LK  then the corresponding 

equilibrium point (7.5773, 4.0906) is stable.  In Figure 1(b), if 81.35  and 4.17  LK  

the equilibrium point is an attracting spiral. If 07.33  and 13.18  LK the beginning of 

a limit cycle is evident as the bifurcation occurs. This is illustrated in Figure1(c). In 

Figure1 (d), with 20  and 30  LK , the limit cycle can clearly be seen.  

 

3.2.2 Multiple equilibrium points 

Choose parameter values  10,1,1,5,10,4.2   HLKr  and 1 .  

The conditions 0,0  ab and ba 32   are satisfied, resulting in 
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0833.275.89)( 23  xxxxP . 

The cubic )(xP  has three positive roots at 9297.7 and6890.0,3813.0 321  xxx , 

hence the system has three non-trivial equilibrium points in the population quadrant. 

System (1) has trivial equilibrium points 0E  and 1E  and therefore the system has five 

equilibrium points in total. The trace and determinant of each equilibrium point can be 

determined by using Equations (2) and (3). Table I contains a summary of the detail 

needed to discuss the nature of these equilibrium points. 

 

Equilibrium x y Trace ( ) Determinant ( ) 

0E  0 0 1.4 -2.4 

1E  10 0 5.69091 -19.4182 

2E  0.381312 3.18874 -1.21476 0.71044 

3E  0.689005 3.77432 -2.33313 -0.974846 

4E  7.92968 4.43695 -9.34203 11.5755 

Table I: Trace and determinant of each equilibrium point 

The trivial equilibrium points 0E  and 1E , both situated on the population axes, are 

saddles since they have negative determinant values. Equilibrium points 2E  and 4E  have 

positive determinants and negative traces and therefore are classified as stable. The 

equilibrium point 3E  is classified as a saddle, since both the determinant and the trace are 

negative. Using Mathematica, these saddles and the stable equilibrium points are shown 

in the vector field of the System (1) as depicted in Figure (2). 
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Figure 2: Vector field of System (2) 

 

To understand the behaviour of the trajectories in the vicinity of 2E  and 3E  it is helpful 

to consider the following: Since ),( 333 yxE   is a saddle point, it should be possible to 

find the separatrices.  We refer to a method described by Fay and Joubert [16] on how to 

use numerical investigations to plot the separatrices, even though it is not possible to 

determine the equations of the separatrices. 

Solve the System (1) using initial conditions  

and)0(,105)0( 3

6

3 yyxx    

.105)0(,)0( 6

33

 yyxx  

This results in four solutions of which the trajectories, represented in both forward and 

backward time, are depicted in Figure 3, showing the separatrices and all five equilibrium 

points. 
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Figure 3: The separatrices of the saddle E3 

 

 

Figure 4: Phase portrait of System (2) 

 

By judicious choice of initial conditions and solving in both forward and backward time, 

a phase portrait can be generated showing representative behaviour of the model. This is 

shown in Figure 4. 

The separatrices divide the plane into two regions; one is inside the parabolic- appearing 

curve and the other is the region outside. If an initial condition is chosen on the outside of 

the parabola, the trajectory is attracted to the node 4E , while if the initial condition is on 

the inside, the trajectory is attracted to the spiral point 2E . The two trajectories 

connecting  2E  to 3E  and 3E  to 4E  together form a heteroclinic path. 

 

Similar numerical analysis can be carried out to classify the equilibrium points and 

produce a phase portrait by varying the parameter values such as  

4,4,20,20,80,12   HLKr  and 6.1 . Also worth exploring is the 

case where the cubic )(xP  has three roots but one root is repeated for example use 

parameter values 10,10,25,0268.5,19,4.2   HLKr  and 0.011350 . 

 

3.3 Summary of findings 

The model (1) supports the feature that the solutions are bounded from the onset by the 

carrying capacity of the prey and the population saturation of the predator. This makes 

applying Poincaré-Bendixson theory possible as long as the equilibrium point in the 

population quadrant is unique.  
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System (1) possesses a unique equilibrium point in the population quadrant at 

Kx  *0  and   */*1/* xHKxry    if 

,0)( bi or ,03)( 2  baii or 0)( biii and 0a  

where      rHKLcrHKrKLKLbKHa /   and/,  . 

In this case, System (1) is robust and results in system stability, yielding equilibrium 

values which lead to either limit cycles or attracting spiral points. However, no general 

conclusion may be drawn regarding the number or nature of the equilibrium points in the 

case where 0,0  ab and ba 32   and further investigation is necessitated for each 

individual case.  

Lastly, as the dynamics of the model are influenced by the parameters a, b and c, we need 

to answer questions such as: what are the physical interpretations of these parameters and 

is it reasonable that the dynamics should be influenced by them. Further investigations of 

the model should help in the understanding of what is driving the dynamics from a 

biological point of view. 

  

4. Conclusion 

The aim of this paper is to introduce an example which can be used to develop a skill set 

for prospective mathematical biology students. Students are guided through the modeling 

process by means of a system of nonlinear differential equations that describe an 

ecological situation. The terminology and reasoning behind and ecological basis for the 

inclusion and form of each of the terms in the model form an important component in 

mathematical modeling. 

The methods of solution, applications and theory of ordinary differential equations are 

introduced. The classification of equilibrium points and relevancy of having a unique 

equilibrium point is interpreted in the ecological context.  

Finally, using technology the numerical calculations are simplified and using a CAS the 

possible long term behavior of the system can be visualized. 

This skill set acquired should be of value to students with either a mathematical or 

biological background entering a research career. The gap that exists in these important 

disciplines can be transcended by analyzing similar examples and students should be 
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encouraged to discover the applicability of this approach to the dynamics of more 

complex biological systems. 
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