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A Multi-State Based Control System Approach Towards Optimal Maintenance Planning

Bo Wang, Zhou Wu, and Xiaohua Xia

Abstract—This paper incorporates the multi-state system into a 
control system approach to address the maintenance plan opti-
mization problem. The maintenance plan focuses on the totality of a 
set of items. A building energy efficiency retrofitting context is 
employed, where the retrofitted items are categorized into several 
homogeneous groups. The homogeneous group population dynamics 
and the aggregate performance dynamics under the impacts of multi-
state deteriorations and maintenances are for-mulated as a control 
system model. Thereafter, the maintenance planning optimization is 
cast into an optimal control problem. An MPC based approach is 
employed to solve the optimal control problem with system 
uncertainties. A case study is conducted to illustrate the effectiveness 
of the present approach.

Index Terms—Maintenance plan optimization, Multi-state sys-
tem, Control system modelling, Model predictive control.

I. INTRODUCTION

In practice, the performances of a system can change
over time due to deterioration. For example, in a building
energy efficiency retrofitting project, the energy savings of
the retrofitted items decrease from the design value due to
deterioration. Furthermore, according to the Measurement and
Verification (M&V) principles [1], a malfunctioning item
results in the absence of its energy saving. The aggregate
energy savings thereby deteriorates over time from the M&V
perspective [2]. As maintenance actions can restore the energy
saving of a deteriorated item, the performances of the totality
of the retrofitted items manifest significant dynamics under
the impacts of deterioration and maintenance. In this way,
the performance dynamics, namely maintenance dynamics,
is interpreted as a control system. The maintenance plan
optimization problem is cast into an optimal control problem,
where control approaches can be introduced to facilitate the
maintenance planning [3], [4].

There are generally two categories of maintenance actions:
the Preventive Maintenance (PM) and the Corrective Main-
tenance (CM). According to MIL-STD-721C [4], PM refers
to all actions performed in an attempt to retain an item
in a specified condition and CM involves the repairs and
replacements against failures. Wang and Xia [4] proposed a
control system interpretation of the corrective maintenance
plan optimization in building energy efficiency retrofitting.
However, incorporating the preventive maintenance into the
control system framework remains unexplored. Furthermore,
existing studies only take account of malfunctions of items.
The decrease of energy savings are omitted. In practice,
equipment can deteriorate to a worse working state before
malfunctions, e.g., air conditioners and heat pumps consume
more energy upon usage. Such a relationship has been revealed
[5], [6], and existing studies lack relative discussions.

In reliability engineering, the Multi-State System (MSS)
is able to characterize the multiple performance levels of a
system [7]. The MSS is usually defined as a multi-working
and failure-state system that has a range of performance levels,
from perfectly functioning to complete failure, resulting from
the deterioration and failure of some components in the system
[8]. In the scope of MSS model, CM represents the actions
that restore the system from a failure state and the PM actions
are carried out before failures, restoring the system to a
better state. According to literatures, existing efforts focus on
the maintenance planning of one deteriorating system with
multiple working states [9]. The state-transition of the system
is considered to be governed by a Markov process in some
relavant studies [10], where the system state is described as
a set of probabilities corresponding to the working states. In
building context, the state of the totality of retrofitted items
can become very complicated, as the aggregate performances
are influenced by various categories of retrofitted items that
are corresponding to different performance levels. Therefore,
the retrofitted items are categorized into several homogeneous
groups for simplicity. A hypothesis is made to obtain the
categorization: items from the same homogeneous group have
the same inherent energy and reliability performances, the
same operating schedules and similar operational environment.
Such items have same energy savings and can be characterized
by the same MSS model. Practically, this assumption is
easy to implement such as lighting is grouped according to
installations in offices, public areas and board rooms [3]. The
general theoretical robustness of this hypothesis in practice
yet remains an open problem that requires further exploration.
An arbitrary homogeneous group can be further divided into
several subsets according to the item working state. We
specially employ the term ‘population’ to represent the count
of items within a homogeneous group under a specific working
state. The populations of the subsets are commensurate with
the probabilities of an individual item manifesting different
working states. The population dynamics thereby represent the
process that a number of items transit from one working state
to another, resulting in the changes of populations of corre-
sponding subsets. Such population changes are commensurate
with the state-transition probabilities of an individual item.

Thereafter, the population dynamics can be modelled as a
control system. In this way, the maintenance plan optimization
(MPO) problem is cast into an optimal control problem, where
the control approaches can be introduced, e.g., the Model
Predictive Control (MPC). The MPC finds the optimal control
inputs by predicting the future based on the present state of
the system. In literatures [11], [12], the MPC algorithm con-
vergence and the robustness against disturbances in controller
implementation or state measurement have been investigated



2

and verified for a kind of constrained minimization problem
over a receding finite horizon. It is noted that theoretical proof
of such stability and robustness of MPC exists only in a few
circumstances [13], rarely in the case of discrete variable
MPC [14]. The MPC approach is employed for the MPO
problem. The MPC algorithm design is extensively explored
in the past decades to suit complicated requirements [15]. At
the current stage, the control objective from [4] is employed,
which is a weighted sum of two optimization objectives:
maximizing the aggregate energy savings and maximizing the
internal rate of return (IRR) [16] for a retrofitting project over
a pre-decided, finite time period, namely the sustainability
period. Some constraints over a whole finite horizon, e.g., the
targeted energy saving and the budget limit, can be involved
in the MPO optimal control problem. Therefore, the employed
MPC algorithm is modified to take into account the history
performances. In practice, the state variables and control inputs
are both integers as they represent the counts of items, and the
IRR is a non-analytic performance indicator. Consequently,
an improved Differential Evolution (DE) algorithm with a
Binary Neighborhood Field Optimization (BNFO) method[17]
is employed as a numerical solver.

The main contribution of this paper is a multi-state based
control system approach for the maintenance plan optimization
(MPO) problem taking into account different levels of deterio-
rations and impacts of both PM and CM actions. An alternative
MSS model is employed to describe the states of a set of
homogeneous items, and a state-space model is formulated
based on the alternative MSS model. The state variables are
the populations of the item subsets corresponding to different
working states. For simplicity, assuming the PM actions restore
a specific amount of items from the worse state to the best
state, and the CM actions from the malfunctioning state to
the best state. We adopt the term ‘maintenance intensity’ to
describe the count of items being restored by the maintenance
actions. The control inputs are the maintenance intensities. The
maintenance time schedule, i.e., the instants when maintenance
actions are applied, is assumed fixed and known a priori.
Installing additional equipment other than the retrofitted item
group is ignored at the current stage, therefore the system
states are physically bounded. The system uncertainties are
also taken into account. The MPC controller is designed and a
DE algorithm based numerical solver is employed. A building
energy efficient retrofitting project is adopted as the case study
to test and verify the effectiveness of the proposed approach.

The remainder of the paper consists of four sections. Section
2 gives the control system framework and the state-space
model formulation. Section 3 introduces the optimal control
problem formulation, the MPC controller design and the
numerical solver. Section 4 provides the simulation results and
analysis. Section 5 draws conclusion.

II. CONTROL SYSTEM MODELING

A. A Control System Framework For MPO Problem

Let tk = kS , k = 0, 1, 2, ... denote the sampling instants
during operation, where S indicates the sampling interval. An
MPO problem with finite decision horizon k = {0, 1, 2, ..., T}

is introduced. This finite decision horizon indicates a collection
of sampling instants over the sustainability period [0, TS).
Given a homogeneous group l with Nl items and Ml different
working states corresponding to the different performance
levels. Let Gl(tk) denote the performance level of an arbitrary
item at instant tk. Gl(tk) takes value from the set

gl = {gl,1, gl,2, ..., gl,Ml
}, (1)

and working state i is corresponding to performance level
gl,i. gl is given in ascending order, where gl,Ml

denotes the
maximum energy saving an item can contribute under the best
working state, and gl,1 denotes the minimum saving under the
worst state. Accordingly, the homogeneous group l can be
divided into Ml subsets corresponding to different working
states, i.e., ∀i ∈ [1,Ml], the subset i consists of all items
from group l that are under working state i, i.e., subject to
Gl(tk) = gl,i. The subset populations are dynamic. Let xl(tk)
denote the populations of all subsets in group l at tk:

xl(tk) = [xl,1(tk), xl,2(tk), ..., xl,Ml
(tk)]T , (2)

where xl,i(tk) denotes the population of subset i at instant
tk,

∑Ml

i=1 xl,i(tk) = Nl. Let ul(tk) denote the maintenance
intensities for group l during [tk, tk+1):

ul(tk) = [ul1(tk), ul2(tk), ..., ulMl−1(tk), ulC(tk)]T , (3)

where uli(tk) denote the PM intensities, i.e., the count of
items under state i and restored to state Ml. ulC(tk) denotes
the CM intensities, i.e., the count of malfunctioning items
that are restored to state Ml. In practice, the numbers of
items are integers, therefore xl,i(tk), uli(tk) and ulC(tk) are
integers accordingly. Given pre-decided PM time schedule P
and CM time schedule Q, where P = {mp

1,m
p
2, ...,m

p
Tp
} and

Q = {mc
1,m

c
2, ...,m

c
Tc
} respectively denote a set of indices

of sampling instants, namely the maintenance instants. The
elements of P and Q are selected from k = 0, 1, 2, ..., T ,
implying that the maintenance instants are commensurate with
the sampling instants tk. For tk with k /∈ P , uli(tk) = 0 with
∀i ∈ [1,Ml]. For tk with k /∈ Q, ulC(tk) = 0.

Given N̄ homogeneous groups in the MPO problem, let
x(tk) = [x1(tk),x2(tk), ...,xN̄ (tk)]T denote the state vari-
able vector, u(tk) = [u1(tk),u2(tk), ...,uN̄ (tk)]T the control
input vector, and Fl(xl(tk),ul(tk)) the population changes in
group l under the impacts of deteriorations and maintenances.
A compact form of the state-space model can be obtained:x1(tk+1)

...
xN̄ (tk+1)

 =

x1(tk)
...

xN̄ (tk)

 +

 D1(x1(tk),u1(tk))
...

DN̄ (xN̄ (tk),uN̄ (tk))

 , (4)

where

Dl(xl(tk),ul(tk)) = [4xl,Ml
(tk),4xl,Ml−1(tk), ...,4xl,1(tk)]T ,

(5)
with 4xl,i(tk) representing the population change of subset i
in group l. The initial state is x(t0) = x0 = [x0

1,x
0
2, ...,x

0
N̄

]T .

B. Population Changes Formulation

In homogeneous group l, xl,i(tk) changes over each sam-
pling interval. The state-transition of an individual item from
group l is demonstrated in Fig. 1, where Pl,i(tk), i ∈ [1,Ml]
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

4xl,Ml
(tk) = −f lMl,Ml−1(xl,Ml

(tk))− f lMl,F
(xl,Ml

(tk)) +

Ml−1∑
i=1

uli(tk) + ulC(tk),

4xl,Ml−1(tk) = f lMl,Ml−1(xl,Ml
(tk))− f lMl−1,Ml−2(xl,Ml−1(tk))− f lMl−1,F (xl,Ml−1(tk))− ulMl−1(tk),

...

4xl,2(tk) = f l3,2(xl,3(tk))− f l2,1(xl,2(tk))− f l2,F (xl,2(tk))− ul2(tk),

4xl,1(tk) = f l2,1(xl,2(tk))− f l1,F (xl,1(tk))− ul1,Ml
(tk),

(6)

Fig. 1. The state-transition diagram of an individual item from homogeneous
group l with Ml working states and one malfunctioning state

denotes the probability that this item works under state i and
performance level gl,i. λli,i−1(tk) indicates the state-transition
from state i to state i−1 over the sampling interval [tk, tk+1).
The circle F denotes the malfunctioning state and Pl,F (tk)
the probability of this item being malfunctioning. λli,F (tk)
indicates the state-transition from state i to malfunctioning. As
shown in Fig. 1, Pl,i(tk) increases due to transition λli+1,i(tk),
decreases due to transition λli,i−1(tk) and transition λli,F (tk)
simultaneously. Pl,Ml

(tk) continuously decrease and Pl,F (tk)
continuously increase without maintenance. Boukas and Liu
[10] formulate such state-transition as a Markov process. As
introduced in the previous section, the population dynamics
of homogeneous group l is commensurate with the individual
item state-transition. Taking advantage of the Makrov process
formulation in [10], the population changes Dl(xl(tk),ul(tk))
in group l are formulated in (6), where f li,i−1(xl,i(tk)) denote
the population change from subset i to subset i − 1 that is
resulted from the transition λli,i−1(tk). Please noted that (6)
describes a simplified state-transition process, assuming that
transition only exists between a pair of neighbor states or
from current state to malfunctioning state. f li,i−1(xl,i(tk)) can
be obtained via the deterioration model by experimental data
fitting, e.g., Carstens et al. obtain a model characterizing the
decay of the Compact Fluorescent Lamp (CFL) populations
over time in [18]. It is expected that the employment of
such empirical models can facilitate the population dynamics
modelling. Some other deterioration models can be found from
the reliability studies [19].

Several assumptions are made to allow (6):

1) The maintenance downtime and degradations of the
maintained items at tk are ignored over [tk, tk+1).

2) The state transition intensities of the items are known a
priori by the planner.

3) The working states of the retrofitted items can be per-
ceived. The inspections at tk are considered as the actual
populations during [tk−1).

III. CONTROLLER DESIGN

A. Objective Function Formulation
The aforementioned maintenance planning for a building

retrofitting project is employed to demonstrate the applicability
of our approach. In a building retrofitting project, we catego-
rize the retrofitted items into two types. The type-I retrofitted
items undertake no preventive maintenance over the life-cycle.
After the breakdown of a type-I item, corrective replacement
takes place and the failed item is scrapped. Energy efficient
globes and motion sensors are typical type-I items. The energy
saving degradation of the type-I retrofits are not taken into
account at the current stage. The type-II retrofitted items are
more complicated. The performance levels of a type-II item are
indicated by the estimated energy savings, computed following
the M&V principles [1]. A type-II item can deteriorate to
a worse working state before becoming malfunctioning. The
PM actions are introduced to restore the type-II item to a
better state. The CM actions also take place to address the
malfunctions. Air-conditioners and heat pumps are typical
type-II items. Given the type-I item a special case of the MSS,
(2) applies to both item types.

There are two objectives: the energy saving amount and
the IRR. The constraints include the targeted energy saving
amount limit, the budget limit and the payback period limit.
Given a series of performance characteristics that are obtained
via pre-implementation audit and simulation:

al(tk) = {al,1(tk), al,2(tk), ..., al,Ml
(tk)},

bl(tk) = {bl,1(tk), bl,2(tk), ..., bl,Ml
(tk)},

Cl(tk) = {Cl
1(tk), Cl

2(tk), ..., Cl
Ml

(tk), Cl
C(tk)},

(7)

where al(tk) denotes the average energy savings over sam-
pling interval [tk−1, tk) and bl(tk) the average cost savings.
Cl(tk) denotes the maintenance costs. In (7), for i ∈ [1,Ml],
al,i(tk) and bl,i(tk) denote the performance characteristics
corresponding to an individual item with Gl(tk) = gl,i. Cl

i(tk)
denote the PM costs and Cl

C(tk) the CM cost. Thereafter, the
aggregate energy savings can be formulated:

ES(tk) =

N̄∑
l=1

Ml∑
i=1

al,i(tk)xl,i(tk),

ES|all =
T∑

k=1

ES(tk),

(8)

and the corresponding cost savings:
B(tk) =

N̄∑
l=1

Ml∑
i=1

bl,i(tk)xl,i(tk),

B|all =

T∑
k=1

B(tk),

(9)
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the aggregate maintenance cost at each time instant:

h(tk) =
N̄∑
l=1

(

Ml∑
i=1

Cl
i(tk)uli(tk) + Cl

C(tk)ulC(tk)), (10)

and the total investment of the retrofitting project:

h|all = h0 +

T∑
k=1

h(tk), (11)

where h0 denotes the initial expenditure of implementing
the retrofitting project. With the aforementioned cost savings
and maintenance costs, the net present value (NPV) [16] is
employed as one of the performance indicators. The NPV of
the project over [0, TS) is formulated as following,

NPV =

T∑
k=1

B(tk)− h(tk)

(1 +R)n−1
− h0, (12)

where R denotes the discount rate for NPV calculation. n =
1, 2, ... indicates that the sampling instant tk lies within the
n-th year after the implementation of the retrofitting project.
However, choosing proper discount rate can be very tricky.
The IRR instead of NPV is hereby employed to evaluate the
economy of the project. IRR, denoted by RT in the present
model, refers to the discount rate that makes NPV = 0
over [0, TS). Usually, the investors are more desirable to
undertake the project with higher IRR, therefore maximizing
IRR becomes one of the optimization objectives.

B. Optimal Control Problem Formulation

Given the initial state x(t0) = x0, the pre-decided PM
time schedule P = {mp

1,m
p
2, ...,m

p
Tp
} and CM time schedule

Q = {mc
1,m

c
2, ...,m

c
Tc
}. The optimal control problem is

to find a control law, i.e., the maintenance plan u(·) =
{u(t1),u(t2), ...,u(tT )}, which minimizes the following per-
formance index over the sustainability period:

J(x0,u(·)) = −ω1
ES|all
α

− ω2RT , (13)

subject to (4)-(6), and

ES|all ≥ α,
T∑

k=1

h(tk) ≤ β,

NPV |Tpp

0 ≥ 0,

0 ≤ x(tk) ≤ x0,

(14)

where ω1 and ω2 denote the weighting factors. α denotes the
target energy saving amount, and β the maintenance budget
limit over [0, TS). Tpp represents the maximum acceptable
payback period and NPV |Tpp

0 denotes the NPV computed
over [0, TppS).

C. MPC Controller

An MPC based approach is employed to solve the optimal
control problem in (13) and (14). In existing studies, the
MPC prediction horizon can be time-varying [20]. Given some
constraints in (14) involve the performance index over the
whole sustainability period, a decreasing horizon mechanism
is implemented. The predictive horizon at instant tm covers the

rest of the sustainability period, i.e., the horizon N = T −m.
A mathematical transformation of the optimal control problem
is accordingly applied, where the open loop problem over
[tm, TS) is defined as a dynamic programming problem which
minimizes the following performance index:

J ′(x(tm),u′|m(·)) = −ω1
ES′|m
α

− ω2R
′
T , (15)

R′T is the discount rate that makes NPV ′|m = 0, with
ES′|m =

m∑
k=1

ĒS(tk) +

T∑
k=m+1

ES(tk),

NPV ′|m =

m∑
k=1

B̄(tk)− h̄(tk)

(1 +R)n−1
+

T∑
k=m+1

B(tk)− h(tk)

(1 +R)n−1
− h0,

(16)
subject to (4)-(6), and

ES′|m ≥ α,
h′|m ≤ β′, m ∈ R,

NPV ′|Tpp
m ≥ 0,

0 ≤ x(tm) ≤ x0,

(17)

where

h′|m =
T∑

k=m+1

h(tk),

β′ = β −
m∑

k=1

h̄(tk),

NPV ′|Tpp
m =

m∑
k=1

B̄(tk)− h̄(tk)

(1 +R)n−1
+

Tp∑
k=m+1

B(tk)− h(tk)

(1 +R)n−1
− h0.

(18)
The ĒS(tk), B̄(tk) and h̄(tk) respectively denote the energy
saving, the cost saving and the maintenance cost in history, i.e.,
the existing performance measures resulting from the executed
control inputs. Consequently, the problem in (15)-(18) is
solved over the interval [tm, TS) when m ∈ P or m ∈ Q, and
a series of optimal control rates are obtained, represented by
u′|m = {u′(tk) : k = m,m+ 1, ..., T − 1}. Only the optimal
solution in the first sampling period [tm, tm+1) is applied,
represented by ū|m = {u′|m(tm)} = {ū|m(x(tm))}, where
the last equation is to emphasize the functional dependence
of the optimal control on the initial state x(tm) of the MPC
formulation in (15)-(18). According to (4), ū|m is applied
and x(tm+1) is thus obtained. x(tm+1) then becomes the
initial condition of the MPC formulation over the time horizon
[tm+1, TS). These are taking place consecutively over the
sustainability period to obtain the optimal control inputs ū.

In practice, uncertainties can influence the prediction of state
variables. Let d(tk) = [d1(tk),d2(tk), ...,dN̄ (tk)]T denote
the impacts of uncertainties, the actual state x̂(tm+1) =
x(tm+1)+d(tk), which can be measured through inspections.
The actual state is utilized to be the initial condition of
prediction horizon [tm+1, TS). In the MPO problem, the
system states are physically bounded. The stability of such
a closed-loop system has been investigated in [21].

MPC Algorithm
Initialization: Let initial state x(t0) = x0 and m = 0.

(i) Compute the open loop optimal solution {u′|m(tk)} of the
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problem formulation (15)-(18), where k = m,m+1, ..., T−1.
(ii) The MPC controller ū|m = {u′|m(tm)} is applied after
the sampling instant tm. The remains of the open loop optimal
solution {u′|m(tk) : k = m+ 1, ..., T − 1} are discarded. The
predicted x(tm+1) are then obtained according to (4)-(6). As
a result of the uncertainties, the actual system state over the
next sampling period is updated according to: x̂1(tm+1)

...
x̂N̄ (tm+1)

 =

x1(tm+1)
...

xN̄ (tm+1)

 +

d1(tm)
...

dN̄ (tm)

 ,
which is inspected at tm+1 and executed over [tm, tm+1).
(iii) Let x̂(tm+1) = {x̂1(tm+1), ..., x̂N̄ (tm+1)} be the initial
state for the next predictive horizon, m := m + 1 and go
back to step (i).

According to the pre-decided maintenance time schedules P
and Q, u(tm) = 0 when m /∈ P and m /∈ Q, where step (i)
is skipped and x̂(tm+1) is obtained by x̂1(tm+1)

...
x̂N̄ (tm+1)

 =

x1(tm)
...

xN̄ (tm)

 +

 D1(x1(tm), 0)
...

DN̄ (xN̄ (tm), 0)

 +

d1(tm)
...

dN̄ (tm)

 .
The above MPC algorithm will go over the sustainability
period to solve out the optimal control strategy.

D. DE-based Numerical Solver

To most non-linear optimization problems, the Differen-
tial Evolutionary (DE) algorithm can hopefully, although not
guaranteed, discover a satisfactory solution after sufficient
iterations, where the nonlinearity can be addressed with easier
computer implementation [22]. Wang et al. [4] employ DE
algorithm as a numerical solver to the optimal corrective
maintenance planning problem.

Given R′T a non-analytic performance index formulation
and x,u of (13)-(14) integers as aforementioned, the dynamic
programming problem (15)-(18) is a non-linear integer
optimization problem. An improved DE algorithm with the
the binary neighborhood field optimization (BNFO) method
is thereby employed as the numerical solver to (15)-(18). The
idea of the BNFO method comes from the biological world,
where individuals often communicate with and learn from
their neighbors within limited perceptual range. Similarly,
the individuals in BNFO method are mostly affected by
the local environment rather than the global one, i.e., each
individual is updated under the concept of ‘learning from the
neighbors’ that is following superior neighbors and diverging
from inferior neighbors [23]. The utilization of the attractive
field of the superior neighbor and the repulsive field of the
inferior neighbor in the BNFO method is able to deliver
promising results efficiently within acceptable computational
time, thereby reduces the computational cost [24]. As a solver
to the integer optimization problem, the sequences of bits are
employed to represent the individuals in the BNFO method.
The pseudo code of the DE algorithm with BNFO method is
given in Algorithm 1. More details of BNFO can be found
in [17], [24], where the comparison with other stochastic

optimization approaches, e.g., the Genetic Algorithm, the
Particle Swarm Optimization, is thoroughly discussed.

Algorithm 1 Pseudocode of DE algorithm with BNFO method
Definition:
np: the population size;
d: dimension of the problem;
X: the decision matrix with the size of np*d;
J : the function value vector with the size of np*1;
Mg: the maximum number of generations for stopping criterion.

1: BEGIN
2: Set mutation probability Cr and learning rate α;
3: Create a random, binary coded initial population {xi,1|i = 1, 2, ..., np};
4: Let xbest = x1,1;
5: while G = 1 to Mg do
6: while i = 1 to np do
7: Locate xi,G in X and obtain its superior neighbor xci,G and

inferior neighbor xwi,G;
8: αr1 = rand < α; αr2 = rand < α;
9: v1 = αr1 & xor(xi,G, xci,G);

10: v2 = αr2 & xor(xwi,G, xci,G);
11: vi,G = xor(xi,G, v1|v2);
12: Repair vi,G if it violates the upperbound or lowerbound;
13: Generate jrand = randint(1, d);
14: while j = 1 to d do
15: if j = jrand or rand(0, 1) < CR then
16: uj,i,G = vj,i,G;
17: else
18: uj,i,G = xj,i,G;
19: end if
20: end while
21: if J(ui,G) ≤ J(xi,G) then
22: xi,G+1 = ui,G;
23: if J(xi,G+1) < J(xbest) then xbest = xi,G+1;
24: end if
25: else
26: xi,G+1 = xi,G;
27: end if
28: end while
29: end while
30: Return xbest;
31: END

Remark 1: Generally, the DE improved algorithm manifests
satisfying performances when compared with other stochastic
optimization approaches. As detailed analysis and comparison
are not the focuses of this brief, thorough investigations can
be found in relavent studies [17], [24].

IV. SIMULATION AND VERIFICATION

A small retrofitting project for a government office building
is presented as our case study to verify the effectiveness of
the present model. The sampling interval is one month and
the sustainability period is 10 years, i.e., 120 months. The
retrofitting plan is priori decided, based on which the mainte-
nance plan is optimized. There are 5 homogeneous groups of
retrofitted items, listed in Table II. Three of them are type-I
items, including the motion sensors, the 20W Light Emitting
Diode (LED) bulbs and the 180W new projectors. The 3kW
heat-pumps and new air conditioners are type-II items. The
type-II items have three working states, good, average and
bad, and one failure state, corresponding to different energy
performance levels. The state transition diagram is illustrated
in Fig. 2, where preventiveA indicates the PM action that
restores the item state from average to good, preventiveB from
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Fig. 2. The state transition diagram for type-II items in the case study.

TABLE I
Transition intensities of involved retrofits (in months)

Retrofitted Type MTBF t1 (good t2 (average
Items to average) to bad)
Motion sensor I 33.5 N/A N/A
20W retrofit LED I 27.2 N/A N/A
180W new projector I 32.8 N/A N/A
3kW heat-pumps II 52 25.2 100
New air conditioner II 43.8 21.6 86.4

bad to good, and corrective from failed to good. The type-I
items switch between the good and failed states.

In our case study, the population changes are estimated by
an exponential decay model from the reliability engineering
[19]. Let θli,i−1 denote the transition intensity from state
i to state i − 1 for an item from homogeneous group l,
and kli,i−1 = 1/θli,i−1. The corresponding population change
f li,i−1(xl,i(tk)) is:

f li,i−1(xl,i(tk)) = kli,i−1xl,i(tk). (19)

The transition intensities are known a priori and illustrated in
Table I, where mean time between failure (MTBF) indicates
the transition intensity for an item from an arbitrary working
state to failure state, t1 indicates the one from good to average
and t2 from average to bad.

In Table II, the quantities represent the initial populations of
the homogeneous groups. At the initial stage, all items are in
good condition. The unit prices represent the initial investment
taking into account all the purchase and installation. The unit
energy savings and cost savings are the monthly average mea-
sures. During the sustainability period, these saving amounts
are considered constant. The preventiveA cost, preventiveB
cost and corrective cost hereby represent the average costs of
implementing the respective maintenance actions.

The targeted energy saving amount is 9,067,921.6 kWh.
The expenditure of implementing this retrofitting project at
the initial stage is $270,760. The maintenance budget limit is
$165,000 over the 120 months. The discount rate for NPV cal-
culation is 9% per year, and the desired payback period is 40
months. An inspection will be applied at the end of each month
to monitor the status of the retrofitted items, i.e., the sampling
instants. The PM time schedule P = {11, 23, 35, 47, ..., 119}
and CM time schedule Q = {2, 5, 8, 11, ..., 119}. Fig. 3 illus-
trates the population dynamics without maintenance and under
full maintenance policy. The curves respectively represent the
population dynamics of items under good, average, bad and
failed states from all 5 categories.

Fig. 3. The population dynamics of no maintenance and full maintenance.

Table III illustrates the solutions in five different main-
tenance cases: no maintenance and full maintenance where
uncertainties are not included, and three optimal maintenance
cases with uncertainties, namely the optimal balance case,
the energy prior case and the economy prior case, where our
method is employed. Different weighting factors are employed
in these cases. For the optimal balance case, ω1 = 0.5 and
ω2 = 0.5, where the two objectives are equally considered;
for the energy prior case, ω1 = 1.0 and ω2 = 0, where only
the energy savings are considered; for the economy prior case,
ω1 = 0 and ω2 = 1.0, where only the financial payback
is considered. In the two latter cases, the MPO problem is
interpreted into a constrained single-objective optimization
problem. The solution without maintenance illustrates the
impact of the deterioration. The solution from full maintenance
policy is introduced for comparison, where all the degraded
and failed items are restored without taking the budget limit
into account. This may be infeasible in some cases.

The uncertainties in the building context can be resulted
from the sampling errors, the limited accuracy of the pop-
ulation dynamics models, the random human behaviors, the
environmental factors and the stochastic reliability perfor-
mances [25]. All these resources make the uncertainties very
complicated. Therefore, the uncertainties in our system are
represented by a series of bounded random noises up to ±5%
of the state variables.

The solutions in the three optimal cases manifest satisfy-
ing performances in comparison with the full maintenance
policy. The energy saving amounts are very close to the
full maintenance solution, while the IRR and NPV values
become larger and the payback periods are reduced. The
maintenance investments are kept within the budget limit
and much smaller than the full maintenance cost. All these
performance characteristics the mean value of 10-run results
with uncertainties. The effectiveness of the present MPC-based
approach is thereby verified. The trade-off between the savings
and the IRR can be observed between the energy prior and
economy prior. Fig. 4 demonstrate the respective performances
in each case. In addition to the population dynamics, the cash
flows are also illustrated. We believe that the cash inflow
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TABLE II
Characteristics of involved retrofitted facilities

Retrofitted Type Quantities Unit Energy Unit Cost Corrective PreventiveA PreventiveB
Items Saving (kWh) Saving ($) Cost ($) Cost ($) Cost ($)
Motion sensor I 125 95.08 11.26 196 N/A N/A
20W retrofit LED I 382 8.5 0.91 14.19 N/A N/A
23 inch LCD Monitor I 48 19.2 2.16 263.28 N/A N/A
3kW Heat-pumps II 86 720 81.11 201 47 65
New air conditioner II 111 148.5 16.3 175 26 35

TABLE III
Performance characteristics of obtained maintenance plan in different cases

Cases Energy Percentage IRR Payback NPV Maintenance Total
savings (kWh) saved period (months) ($) cost ($) investment ($)

No maintenance 3517093 38.70% 13.62% 62.77 33277.99 0 270758
Full maintenance 10687010 117.86% 33.18% 40.62 338954.1 255249.6 526007.6
Optimal Balance 10367170 114.31% 35.06% 39.33 366320.5 164992.1 435750.1
Energy Prior 10381420 114.49% 34.92% 39.32 366461.8 164989.6 435747.6
Economy Prior 10256830 113.11% 35.23% 39.34 364942 156841.6 427599.6

Fig. 4. The performances of the three optimal cases. Both the population dynamics and the cash flows are illustrated.

can indicate the benefit of the retrofitting project while the
cash outflow reflects the magnitude of control inputs, i.e., the
maintenance intensities. Fig. 5 demonstrates the energy saving
dynamics in different cases. The black solid line indicates
the ideal energy savings without deterioration, which cannot
be achieved in practice. The rest four curves respectively
represent the energy savings in the full maintenance case and
the three optimal maintenance cases.

In Table III and Fig. 4, the magnitude of difference is
limited. The reason is that, in our case study, the government is
the owner and the user of the retrofitted building. It is possible
to considered the cost savings as a part of the cash inflow. The
more energy savings are achieved, the more cash inflow can
be obtained. As a result, the energy saving objective plays
a very important role in the MPO problem. However, when
various stakeholders are involved, striking the balance between

Fig. 5. The energy saving dynamics over the sustainability period in all cases

different interests remains an open problem for the current
approach. This issue will be studied in relative extensions.
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Fig. 6. The convergence of the DE algorithm with BNFO method and the
classical DE algorithm

Fig. 6 compares the performances of both the DE algorithms
with BNFO method and classical method, where the solid
curve indicates the BNFO method and the dashed curve
indicates the conventional DE algorithm. The logarithmic
coordinate is applied to the y-axis for the sake of clearer
demonstration. The performances are the mean result over
10 runs with the standard errors. As the global optima of
minimization problem (15) is unknown in this case study, the
local minima is reached as a satisfying solution. In Fig. 6, the
solid curve decreases faster than the dashed curve and stops
at a smaller fitness value at the end. This illustrates the better
convergence and accuracy of the BNFO method.

V. CONCLUSION

In this paper, the multi-state system model is employed
to formulate the maintenance planning optimization involving
both the preventive and corrective maintenances in a build-
ing energy efficiency retrofitting project. For simplicity, the
retrofitted items are assumed to be categorized into several
homogenous groups, each can be divided into several sub-
groups corresponding to different working states of the items
within the homogeneous group. The population dynamics then
follows the state-transition of the item. During operation, the
items deteriorate to worse working states and can be restored
to better working states by maintenance actions. The item
group therefore manifests substantial magnitude of population
and performance dynamics under the impacts of multi-level
deterioration and multiple types of maintenance actions. In
this way, the MPO incorporating multi-state system model
is cast into an optimal control problem. An MPC approach
taking into account the history performances is employed and
solved by an improved DE algorithm with BNFO method.
From simulation results of the case study, the effectiveness
of the present approach is illustrated, where the long-term
energy saving and the economy of the project are maximized
with limited budget under the impacts of the uncertainties, as
opposed to the expensive full maintenance strategy.
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