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Abstract

A non-linear observer model of a semi-autogenous grinding mill is developed. The observer model distin-
guishes between the volumetric hold-up of water, solids, and the grinding media in the mill. Solids refer to
all ore small enough to discharge through the end-discharge grate, and grinding media refers to the rocks
and steel balls. The rocks are all ore too large to discharge from the mill. The observer model uses the
accumulation rate of solids and the mill’s discharge rate as parameters. It is shown that with mill discharge
flow-rate, discharge density, and volumetric hold-up measurements, the model states and parameters are
linearly observable. Although instrumentation at the mill discharge is not yet included in industrial circuits
because of space restrictions, this study motivates the benefits to be gained from including such instrumen-
tation. An extended Kalman filter is applied in simulation to estimate the model states and parameters
from data generated by a semi-autogenous mill simulation model from literature. Results indicate that if
sufficiently accurate measurements are available, especially at the discharge of the mill, it is possible to
reliably estimate grinding media, solids and water hold-ups within the mill. Such an observer can be used
as part of an advanced process control strategy.

Keywords: comminution, extended Kalman filter, grinding mill, observability, process control, state and
parameter estimation

1. Introduction

Process industries in general have benefited considerably from advanced process control, but the mineral
processing industry in particular has yet to take full advantage of model-based advanced process control
(Craig et al., 2011). Simulation studies confirm the considerable benefits advanced model-based process
control can achieve over proportional-integral-derivative (PID) control in terms of plant stability and eco-
nomic performance (Pomerleau et al., 2000; Ramasamy et al., 2005; Wei and Craig, 2009a). One of the
main impediments to implementing model-based control in the mineral processing industry, and specifically
grinding mill circuits, is the lack of sufficient real-time measurements to estimate the necessary model states
and parameters. The number of available real-time measurements are generally far less than the size of the
state vector to be measured (Wei and Craig, 2009b). Therefore, the peripheral tools of the control loop such
as observers and soft sensors become as important as the controller itself (Hodouin, 2011).

In general terms, the grinding performance of a mill depends on the hold-up of steel balls, ore and water.
Although the total mill hold-up is generally measured in industrial circuits (Wei and Craig, 2009b), the steel
ball, ore, and water hold-ups cannot be measured directly with the currently available instrumentation.

IA subset of this work was presented at the 17th IFAC Symposium on Control, Optimization and Automation in Mining,
Mineral and Metal Processing (Vienna, 2016) (Le Roux et al., 2016b).
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Measurement of these three mill inventories, which influence the mill’s product throughput and product
quality, can significantly improve plant performance if used to inform a control loop.

The model structure used to describe a comminution process has a significant impact on the success
of state and parameter estimation. Models aimed at plant design are generally not suited for model-based
control, and vice-versa. Steady-state phenomenological models, a combination between theoretical and
empirical models, are well established and have proven valuable for comminution plant design and steady-
state optimisation (King, 2001; Napier-Munn et al., 2005; Gupta and Yan, 2006). The model parameters are
generally divided into the ore to be processed and the comminution unit processing the ore. Laboratory drop-
weight and pendulum-breakage tests provide the ore specific parameters, and sampling campaigns provide
the processing unit’s parameters (Napier-Munn et al., 2005). Since the characteristics of run-of-mine ore fed
to industrial mills change over time, results from laboratory tests used to estimate ore specific parameters do
not necessarily reflect the range of ore breakage conditions in industrial mills (Powell and Morrison, 2007).
Also, sampling campaigns used to estimate the processing unit’s parameters assume steady-state operation
at a specific operating point, but steady-state is difficult to guarantee over a long period given the variation
of run-of-mine ore characteristics. It is usually assumed the functions describing the milling environment
can be expressed as simple equations with parameters that can be estimated from sampling campaign data
through back-calculation. Because of the heavy reliance on back-calculation, small measurement errors can
lead to large variances in parameters (Hinde and Kalala, 2009). With the advancements in computing power,
computational fluid dynamics (CFD) and discrete element method (DEM) models have provided valuable
insight into the charge motion of grinding processes. A difficulty associated with these fundamental models
is the correct estimation of the model’s parameters as ore characteristics vary over time (Morrison et al.,
2007; Delaney et al., 2013). Additionally, fundamental models remain too computationally intensive to be
used in advanced process control strategies (Mishra, 2003a,b).

The mathematical models of comminution processes proving most useful for industrial automatic control
so far are developed on-line (Wills, 2006). These empirically derived linear time-invariant transfer function
models have been successfully applied in model-based controller strategies to industrial circuits, e.g. by
Hulbert et al. (1990); Craig and MacLeod (1996); Chen et al. (2007, 2008). However, these linear models
are restricted to the domain around the nominal operating points of the plant and require constant manage-
ment to accommodate variations in grinding conditions. System identification is particularly difficult given
the inherent uncontrollable disturbances, measurement noise and high tonnage operation (Hodouin, 2011).
Ideally, real-time measurements should be used to estimate model states and parameters.

Considerable work has been done to estimate grinding mill process variables using different modelling
approaches (Herbst et al., 1992). A very simple model along with power and bearing pressure measurements
is used by Herbst et al. (1989) to estimate mill filling and rock hardness. This work was extended in Herbst
and Pate (1996) to estimate ore, water, and ball inventories. A commercialised soft-sensor is described by
Herbst and Pate (1999) to estimate mill inventories and breakage rates. In all cases a Kalman filter is used
to estimate the unknown state vector. Although the filters capture the qualitative trend of the unknown
state vector, the studies above do not explicitly include observability analyses to ensure the filters produce
reliable solutions.

A linear observability test is included in the inferential measurement work of Apelt et al. (2002). The
SAG mill model of Napier-Munn et al. (2005) was used to describe the grinding process, along with a novel
ball charge model and a mill-liner model. Using measurements of the mill charge weight and size-by-size
solids discharge, Apelt et al. (2002) used 29 measurements to estimate 37 states and 7 parameters with an
extended Kalman filter (EKF). However, the rank of the observability matrix of the linearised system was
only 20, which meant a unique solution for the parameters and states was not available.

As shown by Le Roux and Craig (2016), it is theoretically possible to uniquely fit the simplified non-
linear grinding mill circuit model of Le Roux et al. (2013) to real-time plant measurements. However, the
algebraic fitting procedure is too sensitive to uncertainties in measurements as the procedure involves the
calculation of first and second order time-derivatives from noisy data. Although a relatively simple model
is used, there are so many parameters to be defined that the value of this procedure is limited.

The model of Coetzee et al. (2010) is used by Olivier et al. (2012) to estimate the mill inventories and
grinding environment parameters in simulation. Assuming measurements of the mill discharge are available,
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a dual particle filter is used to estimate the hold-up of balls, rocks, solids, fines, and water as states, and the
fraction of rock entering the circuit and the power needed per tonne of fines produced as parameters. The
technique achieves good quantitative estimation if constant rock abrasion rates, ball abrasion rates, and step
disturbances are assumed, but these assumptions may not necessarily hold true for industrial operation.

Since the grinding performance of a mill depends on the hold-up of steel balls, ore, and water, control of
these three hold-ups can reduce the variance in the throughput and quality of the mill’s product. Therefore,
this work aims at developing an observer for use in model-based control strategies of grinding mill circuits
such that the hold-ups in the mill can be regulated (Le Roux et al., 2016a; Cortinovis et al., 2013). To
achieve this aim, a non-linear observer model is presented which distinguishes between the volumetric hold-
up of water, solids, rocks, and balls in a SAG mill. As seen from an observability analysis, the states and
parameters of this model are locally (weakly) observable, but they are not observable from the linearised
observer model. The observer model is subsequently reduced such that the states and parameters are
linearly observable. The measurements used by the reduced observer model are the total volumetric filling,
the mill discharge flow-rate, the mill discharge density, and the derivative of the mill discharge density.
Although instrumentation at the mill discharge is not yet included in industrial circuits because of space
restrictions, this work motivates the benefits to be gained from including such instrumentation. To illustrate
the effectiveness of the observer, a simulation study using an EKF is presented. Results indicate that the
modelled states can be reliably estimated if sufficiently accurate measurements are available.

2. Grinding mills

2.1. Process Description

The open circuit SAG mill depicted in Fig. 1 receives three streams: mined ore (MFO), water (MIW )
and additional steel balls (MFB) to assist with the breakage of ore. If the mill circuit is closed with a
classifier such as a hydrocyclone, the underflow from the hydrocyclone also flows into the mill. The mill
charge constitutes a mixture of grinding media and slurry. Grinding media refers to the steel balls and large
rocks used for breaking the ore, and slurry refers to the mixture of water and all ore material that exhibit
the same flow characteristics as water. The fraction of the mill volume filled with charge is denoted by JT .

The mill is rotated along its longitudinal axis by a motor. As shown in Fig. 2, the charge in the mill
is lifted by the inner liners on the walls of the mill to a certain height from where it cascades down, only
to be lifted again by the liners through the rotating action of the mill. If the rotational speed is sufficiently
fast the material in the charge will become airborne after reaching the top of its travel on the mill shell.
The uppermost point where material leaves the mill shell is called the shoulder of the charge. The airborne
particles follow a parabolic path, reaching a maximum called the head and making contact again with the
mill charge at the bottom of the mill. The cascading motion of the charge causes the ore to break through
impact breakage, abrasion and attrition. The mill grind is the fraction of material in the discharge of the
mill below the specification size and indicates the efficiency of the mill to break the ore. The power draw
(Pmill) of the motor turning the mill is an indication of the kinetic and potential energy imparted to the
charge.

As shown in Fig. 2, the grinding media starts at the charge shoulder, continues downwards past the
slurry toe, and ends at the charge toe. The slurry in the mill stretches from the slurry shoulder to the slurry
toe. As slurry in the mill increases, the slurry toe approaches the charge toe. If the slurry toe and charge
toe are equal, the slurry completely fills the grinding media. Up to this point, slurry discharge occurs only
through the grinding media, i.e. the slurry flows through the grinding media interstices before exiting the
mill. If the slurry toe exceeds the charge toe, i.e. there is more slurry than grinding media, a slurry pool
forms. Discharge is no longer only via the grinding media, but also occurs via a slurry pool. Slurry pool
conditions are undesirable since the pool absorbs the impact of falling material.

The ground ore in the mill mixes with the water to create a slurry. The slurry in a mill begins to form
at the shoulder of the charge. The toe of the slurry starts to grow downwards towards the toe of the charge
with increasing flow-rate of slurry through the mill. While the toe of the slurry is less than or equal to the
toe of the charge, discharge occurs via the grinding media. When the toe of the slurry exceeds the toe of
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Table 1: Description of circuit variables assumed to be measured.

Variable Unit Description
MIW m3/h Flow-rate of water to the mill
MFO t/h Feed-rate of ore to the mill
MFB t/h Feed-rate of steel balls to the mill
JT - Fraction of mill volume filled with charge
Q m3/h Mill discharge flow-rate
ρQ t/m3 Mill discharge density
Pmill kW Mill power draw

the charge, a slurry pool forms at the bottom of the mill. Slurry discharge is then a combination of flow
via the grinding media and the slurry pool (Latchireddi and Morrell, 2003). Slurry pool conditions should
be avoided as they decrease the mill power draw and the breakage rate by cushioning material falling from
the charge shoulder to the charge toe. The slurry is discharged through an end-discharge grate where the
aperture size of the end-discharge grate limits the particle size of the discharged slurry. The flow-rate of
slurry at the mill discharge is given by Q. It is assumed that the in-mill slurry density is equal to the
discharge slurry density (ρQ). The circuit variables are described in Table 1.

Mill Feed Ore
(MFO)

Mill Inlet Water
(MIW )

Mill Feed Balls
(MFB)

Mill Filling
(JT )

Mill

Mill Power
(Pmill)

Classifier
flow

Discharge
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Density

(ρQ)

Figure 1: A semi-autogenous grinding mill.
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Charge
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Figure 2: Cross-section of a semi-autogenous grinding mill.

4



2.2. Industrial Circuit Measurements

The survey of Wei and Craig (2009b) indicates that Pmill and JT are commonly measured variables in
industrial plants, whereas Q and ρQ are not explicitly included as real-time measured variables for any of
the plants surveyed.

The combined mass of the mill and of the charge inside the mill is generally measured using either load
cells or bearing pressure. Because this is not a direct measurement of JT , the relation between JT and
a mass measurement needs to be determined whenever a mill survey is performed (Powell and Mainza,
2006). For different mill charges, accurate mill filling measurements after mill stops can be used to calibrate
the relationship between the mass measurement and JT . The calibration exercise should be repeated at
reasonable intervals as the loss of liner mass through wear and tear will cause a drift in the accuracy of
the relationship. Once the drift in the data is quantified, an empirical liner wear model can be constructed
to predict the service life of liners and adjust the relationship between the mass measurement and JT over
time. With careful planning, the mass to JT relationship can easily be checked within half an hour from
mill stop to start (Powell et al., 2009).

This study assumes measurements of Q and ρQ are available. Because of space restrictions at the
discharge trommel of the mill, inclusion of flow and density instrumentation at the mill discharge is not yet
a viable reality (Napier-Munn et al., 2005). Through careful planning and design of greenfield comminution
circuits it should be possible to install existing flow and density instrumentation at a mill discharge trommel.
In the case where the mill discharges into a sump, ρQ and Q can be back-calculated from a flow-balance
if all other inflows and outflows are measured, but this is sensitive to the accuracy of measurements at
the sump. This study aims to illustrate the benefits to be gained from including Q and ρQ measurement
instrumentation in industrial circuits.

SAG mills are usually designed with a constant target fractional volumetric filling of balls (JB) in mind.
Because accurate real-time measurements of JB are not available, JB is usually not included in control
schemes to manipulate the mill grind and the discharge rate. Although JB is not measured directly, it can
be approximated inferentially using models and measurements of Pmill or JT (Apelt et al., 2001). Generally
a linear relationship between the rock volume and ball abrasion rate is assumed. This assumption allows
for the calculation of MFB to maintain an approximately constant JB in terms of the ton of ore milled. At
steady-state this relates to MFB being a constant fraction of MFO.

3. Observer Model for a Grinding Mill

This section describes how the observer model is developed. The aim of the observer is to use the
variables listed in Table 1 as measured quantities to estimate the mill states, the discharge rate constant,
and the ore and ball breakage rates. The nomenclature for the observer model is given in Table 2.

The constituents in the mill are modelled as four volumetric quantities: water (xw), solids (xs), rocks
(xr), and balls (xb). The model makes use of only two size classes to describe ore in the mill: solids includes
all ore smaller than the end-discharge grate aperture size, and rocks all ore larger than the aperture size.

3.1. Process Dynamics

3.1.1. Process Feed

The mill inflow flow-rates are described as

Vwi = MIW + Vcw (1a)

Vsi = MFO(1− αr)/ρo + Vcs (1b)

Vri = αrMFO/ρo (1c)

Vbi = MFB/ρb, (1d)

where Vwi, Vsi, Vri, and Vbi (m3/h) are the mill inflow of water, solids, rocks, and balls respectively, ρo
(t/m3) is the density of the feed ore, ρb (t/m3) is the density of the steel balls, and Vcw and Vcs (m3/h)
are the flow of water and solids returned by the classifier, respectively. The parameter αr defines the mass
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Table 2: Observer model nomenclature
Parm Unit Description
αr - Mass fraction of rocks in the feed ore
ρb t/m3 Density of steel balls
ρo t/m3 Density of feed ore
ρw t/m3 Density of water
η h−1m−3 Discharge rate per volume of slurry
Kb 1/h Ball abrasion rate
Kr 1/h Rock abrasion rate
vmill m3 Mill volume
xb m3 Volume of balls in the mill
xr m3 Volume of rocks in the mill
xs m3 Volume of solids in the mill
xw m3 Volume of water in the mill

fraction of rocks in MFO and is assumed to be measured as a function of time (Wei and Craig, 2009b).
The implicit assumption when dividing by ρo in (1b) and (1c) is that the ore is non-porous. It is assumed
that the flow from the classifier to the mill is known.

3.1.2. Population Balance

The population balance used to describe the kinetics of the states defined above is

ẋw = Vwi − Vwo (2a)

ẋs = Vsi − Vso +RC (2b)

ẋr = Vri −RC (2c)

ẋb = Vbi −BC, (2d)

where Vwo and Vso (m3/h) are the discharge of water and solids from the mill respectively, and RC and BC
(m3/h) are the consumption of rocks and balls respectively. Because the mill is fitted with an end-discharge
grate, no rocks or balls are discharged from the mill. It is assumed the mill is a fully mixed reactor. The rate
of ball consumption is considerably lower than for rocks, and its contribution to ẋs is regarded as negligible.

3.1.3. Breakage Rates

The cumulative rates modelling approach assumes only one function is necessary to describe the grinding
kinetics. The cumulative breakage rate function is defined as the rate per unit mass that a given species
coarser than a given size breaks to below that size (Le Roux and Craig, 2013). This is an advantage over
other population balance models which require two functions, a breakage rate and an appearance function,
to describe grinding kinetics (Whiten, 1974). The cumulative breakage rates modelling approach was used
by Austin et al. (1993) to model the steady-state behaviour and by Amestica et al. (1993, 1996) to model the
dynamic behaviour of SAG mills. A disadvantage of this approach is that the cumulative rate of breakage of
ore above a given size si is assumed to be unaffected by the grinding environment and the detailed structure of
the size distribution above si. Empirical relationships are required to relate the parameters of the cumulative
breakage rate function to variations in the milling environment. However, more sophisticated models face
similar problems where the parameters of both the breakage rate and breakage distribution function vary
according to changes in the grinding environment (Hinde and Kalala, 2009). The cumulative breakage rate
function remains constant if the ball filling level and the charge level remain relatively constant (Amestica
et al., 1993). A validation study of the cumulative rates model was conducted by Salazar et al. (2009), and
a model predictive controller using the cumulative rates model was investigated in simulation by Salazar
et al. (2014).
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Similar to the cumulative rates modelling approach, the consumption of rocks (RC) and balls (BC) in
the population balance of (2b) to (2d) are described as

RC = xrKr (3a)

BC = xbKb, (3b)

where Kr and Kb (1/h) are the abrasion rates of rocks and balls, respectively. Instead of the first order
approach above, a second order model could be used to describe RC as the interaction between rocks and
rocks, balls and rocks, and rocks and liners. However, this is deemed as an unnecessary increase in the
number of model parameters as the first order cumulative rates modelling approach is well attested in
literature and practice (Amestica et al., 1993, 1996; Hinde and Kalala, 2009; Salazar et al., 2009, 2014).

A relatively constant rock abrasion rate Kr can be achieved through a high xb (as in the case of a ball
mill), but the heavy balls increase the power required to turn the mill and consequently increase the energy
costs. The ball abrasion rate Kb depends on the ore characteristics, the mill liner type, the ball material,
xr, and xb. A high xb increases Kb as there is more ball-ball and ball-liner contact rather than ball-ore
contact. Although a low xb reduces Kb, it also reduces the grinding ability of the mill. For a very high mill
rotational rate the balls may collide with exposed liners causing unnecessary liner wear and a higher Kb.

3.1.4. Mill Discharge

The mill discharge model for the observer is adapted from the model presented in Morrell and Stephen-
son (1996), where the discharge of charge from the mill through the end-discharge grate is viewed as a
product of two mechanisms: the fluid transport through the grate, and the solids classification by the grate
which differentiates between ground particles either returning to the milling chamber for further grinding
or becoming part of the mill discharge stream. In the case of i = 1, 2, ..., N ore size classes, the discharge
rate (di) (h−1) of the mill charge is approximated as (Morrell, 2004)

di = d0 ; si ≤ sm
di = d0

ln si−ln sg
ln sm−ln sg

; sm < si ≤ sg
di = 0 ; si > sg,

(4)

where si (mm) represents the particle size classes, d0 (h−1) is the specific discharge rate for water and ore
up to particle size sm (mm) (i.e. slurry), and sg (mm) is the effective mesh size of the grate above which
discharge is zero. Since rocks and balls are larger than sg, they have a discharge rate of 0 h−1.

To determine d0, a function relating slurry hold-up to slurry flow (i.e. flow of particles smaller than sm
exhibiting the same flow characteristics as water) out of the mill is required. This function should account
for whether the slurry flow occurs via the grinding media or via a slurry pool. The slurry flowing through
a single grate aperture depends on the following factors: area of the aperture, depth of the aperture below
the free surface of the slurry, gravity and centrifugal forces, and slurry viscosity. By analysing pilot and
industrial mills, Morrell and Stephenson (1996) expressed the relationship between slurry flow-rate and
hold-up for the case where slurry flow occurs via the grinding media and for the case where slurry flow
occurs via the slurry pool.

As discussed in Section 2.1, slurry flow via the grinding media occurs when Jp ≤ Jmax and via the slurry
pool when Jp > Jmax. Here Jp is the fraction of the mill volume filled with slurry, Jmax = 0.5JT − Jpo is
the maximum volumetric fraction of the interstices of the grinding media which can be filled with slurry,
Jpo = 0.33(1− r̄a) is the fraction of “dead” slurry hold-up within the mill (contained between the mill shell
and the outer most grate aperture), and r̄a (m) is the radial position of the outermost row of grate apertures
as a fraction of the mill radius rm.

Slurry flow via the grinding media Qm (m3/h) is expressed as (Morrell and Stephenson, 1996)

Qm = kmJ
2
pmλ

2.5D0.5
m Aφ−1.38

c (5)

where km (m0.5/h) is a constant, Jpm is the net fractional slurry hold-up in the grinding media, Dm (m) is
the mill diameter, A (m2) is the total open area of the grate apertures, φc is the fraction of the critical mill
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speed. The mean relative radial position of the grate apertures is defined as λ =
∑
riai

rm
∑
ai

where ai is the

open area of all holes at a radial position ri. Slurry flow via the slurry pool Qt (m3/h) is expressed as

Qt = ktJptλ
2D0.5

m A (6)

where Jpt = Jp−Jmax is the net fractional hold-up of slurry in the slurry pool, and kt (m0.5/h) is a constant.
It is worth noting the inverse relationship between φc and Qm shown in (5). A possible reason for this

relationship is the increase in the dynamic porosity (void fraction) of the charge as the mill speed increases
(Latchireddi and Morrell, 2003). Also, the grinding media thrown from the charge shoulder overshoots the
charge toe because of the higher speed. As a result of the overshoot the number of high impact breakage
events reduces and consequently the fines contributing to the mill slurry reduce. Morrell and Stephenson
(1996) assumed the viscosity effects would be captured by the constants km and kt without altering the
form of (5) and (6).

Solids between sizes sm and sg also exit the mill and contribute approximately 5-15% to the volumetric
flow-rate depending on the size of the grates. To predict the total flow-rate of slurry out of the mill Q, the
predictions for Qm and Qt need to be increased to account for the additional amount of coarse material.
Therefore

Q = kg(Qm +Qt), (7)

where kg is a positive dimensionless factor to account for coarse material. The value of kg varies depending
on the grate aperture size. Morrell and Stephenson (1996) provide guidelines on the choice of kg.

In the inferential measurement work of Apelt et al. (2002), it is assumed that no slurry pooling occurs
in the case of a large open area (A), a high relative radial position of the open area (λ), and a high relative
radial position of the outermost apertures (r̄a) in the end-discharge grate. For this study it was assumed
that the discharge flow is only through the grinding media, i.e. Q = kgQm. Therefore, assuming no slurry
pooling, Q can be approximated as (Kojovic et al., 2011)

Q = kgkmλ
2.5D0.5

m Aφ−1.38
c J2

pm. (8)

As shown in (8), Q is quadratically proportional to Jpm if there is no slurry pool. Thus, in terms of the
four states of the observer defined (xw, xs, xr, and xb), it is possible to express Q as

Q = η (xw + xs)
2

(9)

where (xw + xs) represents the total slurry hold-up in the mill, and η (h−1m−3) is the discharge rate per
volume of slurry. Since only two size classes are used for the observer model, one size which discharges
completely and one which remains inside the mill, it is implicitly assumed in (9) that sg = sm in (4).
Therefore, the discharge of the water (Vwo) and solids (Vso) in (2a) and (2b) can be expressed as

Vwo = η (xw + xs)xw (10a)

Vso = η (xw + xs)xs. (10b)

3.2. Process Output

For this study, it is assumed that measurements of JT , Q and ρQ are available. The implications of
measuring these variables are discussed in Section 2.2. These quantities are modelled as

JT =
xw + xs + xr + xb

vmill
(11a)

Q = η (xw + xs)
2

(11b)

ρQ =
ρoxs + ρwxw
xs + xw

. (11c)

The fourth measured output listed in Table 1 is Pmill (kW), which is defined by Apelt et al. (2001) as

Pmill = PNL + kPPC , (12)
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where PNL (kW) is the no-load power (empty mill power draw), PC (kW) is the mill power draw attributed to
the mill contents, and kP is a lumped power draw parameter to account for heat losses due to internal friction,
energy for attrition and abrasion breakage and rotation of grinding media, plus inaccuracies associated with
the assumptions and measurements of the charge shape and motion (Napier-Munn et al., 2005).

Apelt et al. (2001) models PC as an empirical function of JT and the mill charge density (ρC)

ρC =
ρbxb + ρo (xr + xs) + ρwxw

xb + xr + xs + xw
. (13)

Ideally ρC could be inferred from the measurement of Pmill using the power draw model in Apelt et al.
(2001). However, to use the model, parameter kP in (12) must be fitted to process data. This fitting process
requires ρC to be known. Therefore, the observer model does not make use of Pmill as an output equation
as it only introduces additional parameters to estimate. The same holds true for other models of Pmill, such
as for example the models in Austin (1990) and Le Roux et al. (2013).

4. Observability of States and Parameters

4.1. Background

A multi-input-multi-output control-affine non-linear state-space model with dim(x) = n and dim(y) = m
can be written as

ẋ = f (x) + g (x)u
y = h (x) .

(14)

The system in (14) is said to be locally (weakly) observable at x0 if there exists a neighbourhood X0 of x0

such that for every x1 which is an element of the neighbourhood X1 ⊂ X0 of x0 the indistinguishability of
the states x0 and x1 implies that x0 = x1. The two states x1 and x0 are said to be indistinguishable if for
every admissible input u the output y of (14) for the initial state x0 and for the initial state x1 is identical.
If the system satisfies the so called observability rank condition, i.e. the observability codistribution of x0

(Hermann and Krener, 1977)

dO = span
{

dhj ,dLfhj , . . . ,dL
n−1
f hj

}
; j = 1, . . . ,m (15)

has dimension n at x0, then the system is locally (weakly) observable. Note, Lkfhj refers to the k-th
repeated Lie derivative of the scalar function hj(x) along the vector field f(x), and d is the exterior
derivative. In the linear case, the observability codistribution corresponds to the observability matrix
OT =

[
CT , ATCT , . . . , (An−1)TCT

]
where C = ∂h

∂x |x=x0
and A = ∂

∂x (f(x) + g(x)u) |x=x0, u=u0
.

4.2. Analysis of Observer Model

For the observer model of the grinding mill, it is assumed that the parameters η, Kr and Kb are unknown
constants, although in practice these parameters may vary slowly. Thus, the observer model described in
Section 3 can be written in the form of (14), such that

ẋ = fO (x) + gO (x)u =


−η (xw + xs)xw
−η (xw + xs)xs + xrKr

−xrKr

−xbKb

03×1

+

[
I4×4

03×4

]
u (16a)

y = hO(x) = [JT , Q, ρQ]
T

(16b)

where x = [xw, xs, xr, xb, η,Kr,Kb]
T

, u = [Vwi, Vsi, Vri, Vbi]
T

and y = hO(x) is given by (11). (The subscript
O refers to Observer.)
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For the system in (16), the dimension of the observability codistribution dO was determined using Maple1.
The dimension of dO at a generic point x0 is 7, which implies that the non-linear system is locally (weakly)
observable. Thus, a non-linear observer such as a moving horizon estimator (MHE) could possibly estimate
the unknown states and parameters. However, it is necessary to correctly assume the time-varying nature
of the parameters for the MHE to estimate the true state and parameter values. A longer time horizon for
the MHE reduces the validity of modelling the parameters as constants, but a shorter time horizon may not
include sufficient system dynamics for the observer to estimate the unknown states and parameters.

Linearisation of (16) results in the A and C matrices

A =


−η (2xw + xs) −ηxw 0 0 − (xw + xs)xw 0 0
−ηxs −η (xw + 2xs) Kr 0 − (xw + xs)xs xr 0

0 0 −Kr 0 0 −xr 0
0 0 0 −Kb 0 0 −xb

03×1 03×1 03×1 03×1 03×1 03×1 03×1

 (17a)

C =

 1
vmill

1
vmill

1
vmill

1
vmill

0 01×2

2η (xw + xs) 2η (xw + xs) 0 0 (xw + xs)
2

01×2
ρw−ρQ
xw+xs

ρo−ρQ
xw+xs

0 0 0 01×2

 . (17b)

The observability matrixO formed from (17) has rank 5. From an analysis of the eigenvalues and eigenvectors
of the matrix A it can be seen that the three unknown parameters (η, Kr, Kb) each contribute an integral
mode to the linearised system. Because of this repeated mode, two of the three parameters need to be
chosen in the linearised model for the other parameter to be linearly observable.

In an attempt to attain linear observability of the system, the time derivatives of (16b) can be used as
additional measurements. However, the addition of J̇T , Q̇, or ρ̇Q, or all of these derivatives only increases
the rank of the observability matrix O from 5 to 6. To achieve full column rank, the measurement ρC needs
to be used along with Q̇, or ρ̇Q, or both. However, direct measurement of ρC is rarely possible. If ρC is
estimated from Pmill, additional unknown parameters are introduced which negates any benefit of using ρC
as an inferred measured variable.

4.3. Model Reduction and Linear Observability

4.3.1. Reduced Model

To achieve linear observability, the model in (16) is reduced based on the assumption that the dynamics
of the slurry (xw and xs) is much faster than the dynamics of the grinding media (xr and xb). Therefore,

ẋ = fRM (x) + gRM (x)u =

 −η (xw + xs)xw
−η (xw + xs)xs + χ
03×1

+

[
I2×2

03×2

]
u (18a)

y = hRM (x, u) =


xw+xs+xrb

vmill

η (xw + xs)
2

ρoxs+ρwxw

xs+xw
(ρo−ρw)(χxw+xwVsi−xsVwi)

(xs+xw)2

 (18b)

where x = [xw, xs, xrb, η, χ]
T

, u = [Vwi, Vsi]
T

, and y = [JT , Q, ρQ, ρ̇Q]
T

. (The subscript RM refers to
Reduced Model.) The state xrb (m3) represents all grinding media in the mill (sum of rocks and balls)
which is assumed to stay relatively constant compared to xw and xs, and the state χ (m3/h) represents the
generation of solids. The output vector in (11) is extended in (18b) with the addition of ρ̇Q.

1MapleTM is a trademark of Waterloo Maple Inc.
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4.3.2. Linear Observability

The A and C matrices for the system in (18) are

A =

 −η (2xw + xs) −ηxw 0 − (xw + xs)xw 0
−ηxs −η (xw + 2xs) 0 − (xw + xs)xs 1
03×1 03×1 03×1 03×1 03×1

 (19a)

C =


1

vmill

1
vmill

1
vmill

0 0

2η (xw + xs) 2η (xw + xs) 0 (xw + xs)
2

0
ρw−ρQ
xw+xs

ρo−ρQ
xw+xs

0 0 0
(ρo−ρw)(χ+Vsi)

(xw+xs)2
− 2ρ̇Q

xw+xs

(ρw−ρo)Vwi

(xw+xs)2
− 2ρ̇Q

xw+xs
0 0 (ρo−ρw)xw

(xw+xs)2

 . (19b)

The observability matrix O of the pair (C,A) has full column rank. Therefore, all states and parameters
are observable from the system outputs. However, at steady-state, ρ̇Q will be equal to zero and the observ-
ability matrix O will no longer have full column rank. (The determinant of the first 5 rows and columns is
det (O1..5,1..5) = (ρo − ρw) ρ̇Q/v

2
mill which reduces to zero at steady-state.) For a reasonable value of ρ̇Q it

is necessary to continuously excite the system.
As seen in (18b), the derivative of ρQ is used as a fourth measurement. This is necessary to achieve linear

observability. If J̇T is used instead of ρ̇Q in (18b), the observability matrix O does not have full column

rank. Although Q̇ could be used to achieve full column rank, it is a function of η̇ which is assumed to be
equal to zero in (18a). Rather than including the assumption that η̇ = 0 in the measurement model, ρ̇Q is
used in (18b).

5. Observer Design

The trapezoidal rule is used to discretize the reduced observer model presented in continuous-time form in
(18). A discrete-time EKF is used as the non-linear estimator (Simon, 2006). The system and measurement
equations are

xk = Fk−1 (xk−1, uk−1, wk−1)
yk = Hk (xk, uk, vk)
wk ∼ (0, Qk) ; vk ∼ (0, Rk),

(20)

where the process noise wk is white noise with covariance Qk > 0 and the measurement noise vk is white
noise with covariance Rk > 0.

Between each measurement, the state estimate x̂k and the estimation-error covariance matrix Pk is
propagated according to the known non-linear dynamics of the system:

x̂−k = Fk−1

(
x̂+
k−1, uk−1, 0

)
P−
k = Tk−1P

+
k−1T

T
k−1 + Lk−1Qk−1L

T
k−1

(21)

where Tk−1 = ∂Fk−1

∂xk−1
|x̂+

k−1,uk−1,0
and Lk−1 = ∂Fk−1

∂wk−1
|x̂+

k−1,uk−1,0
. The state estimate and its covariance is

updated through

Kk = P−
k S

T
k

(
SkP

−
k S

T
k +Rk

)−1

x̂+
k = x̂−k +Kk

[
yk −Hk

(
x̂−k , uk, 0

)]
P+
k = (I −KkSk)P−

k

(22)

where Sk = ∂Hk

∂xk
|x̂−

k ,uk,0
.

6. Simulation

6.1. Simulation Setup

The aim of the simulation is to test the effectiveness of the reduced observer model to be used in a state
and parameter estimation scheme. The simulation setup is depicted in Fig. 3. The plant, a SAG mill with

11



Model:

ẋ = fP (x, u) + w

y = hP (x, u)

Plant: SAG mill

Model:

ẋ = fRM (x) + gRM (x)u

y = hRM (x)

Observer: EKF

u ỹ

x̂

v

y
+

Noise
Filter

Figure 3: Simulation setup.

an end-discharge grate, is represented by the continuous-time dynamic non-linear model of Le Roux et al.
(2013), and the power-draw is given by the model of Apelt et al. (2001). This model is used to simulate
the system and to generate fictitious measurement data. The noisy measurement data is filtered using a
Savitzky-Golay filter, which is also used to determine the derivative ρ̇Q (Savitzky and Golay, 1964).

6.1.1. Plant model

The SAG mill simulation model of Le Roux et al. (2013) was developed with the aim to produce rea-
sonably accurate model responses using as few parameters and states as possible. The model was validated
using industrial plant data. The model divides the ore into the same two size classes as used in the observer
model. Therefore, the mill inflow flow-rates are the same as in (1), and the population balance of the model
is the same as in (2).

The mill discharge flow-rates are defined as

VwoP = ϕdHxw

(
xw

xs + xw

)
(23a)

VsoP = ϕdHxw

(
xs

xs + xw

)
, (23b)

where dH (1/h) is a constant discharge rate parameter, and ϕ is an empirical function called the rheology
factor. (The subscript P refers to Plant.) The rheology factor attempts to incorporate the effect of the
fluidity and density of the slurry on the performance of the milling circuit and is defined as

ϕ =

[
max

(
0, 1−

(
1

εsv
− 1

)
xs
xw

)]0.5

, (24)

where εsv is the maximum fraction of solids by volume of slurry at zero slurry flow. A rheology factor
of unity corresponds to xs

xw
= 0, indicating the slurry consists only of water. A rheology factor of zero

corresponds to xs

xw
= εsv

1−εsv , indicating the slurry is a non-flowing mud.
The rock consumption (RCP ) and ball consumption (BCP ) for the plant model are defined as

RCP =
ϕPmillxr

ρoκr (xr + xs)
(25a)

BCP =
ϕPmillxb

κb [ρo (xr + xs) + ρbxb]
, (25b)

where κr and κb (kWh/t) represent the energy requirement for the abrasion of rocks and balls, respectively.
The mill power draw model described in Apelt et al. (2001) is used to define Pmill.

12



Table 3: Model parameter values.

Parameter Value Unit Description
αr 0.47 - Fraction of rock in feed ore
dH 88 1/h Constant mill discharge parameter
Dm 4.07 m Mill inside diameter (Dm = 2rm)
εsv 0.6 - Max fraction solids by volume of slurry at zero slurry flow
φc 0.72 - Fraction of critical mill speed
g 9.8 m2/s Gravity constant
κb 90 kWh/t Steel ball abrasion energy requirement
κr 6.72 kWh/t Rock abrasion energy requirement
kP 0.97 - Power draw fitting parameter
Lc 0 m Mill cone length
Lm 4.54 m Mill cylinder length
PNL 93.73 kW Mill power at zero load
ρb 7.85 t/m3 Steel ball density
ρo 3.2 t/m3 Ore density
ρw 1 t/m3 Water density
rt 0.46 m Mill feed trunnion radius
Vcs 96.9 m3/h Flow of classifier solids to mill
Vcw 112 m3/h Flow of classifier water to mill
vmill 59.12 m3 Mill volume

Finally, the plant model is written as

ẋ = fP (x, u) =


Vwi − ϕdHxw

(
xw

xs+xw

)
Vsi − ϕdHxw

(
xs

xs+xw

)
+ ϕPmillxr

ρoκr(xr+xs)

Vri − ϕPmillxr

ρoκr(xr+xs)

Vbi − ϕPmillxb

κb[ρo(xr+xs)+ρbxb]

 (26a)

y = hP (x, u) =

 xw+xs+xr+xb

vmill

ϕdHxw
ρoxs+ρwxw

xs+xw

 (26b)

where y = [JT , Q, ρQ]
T

.

6.2. Simulation Environment

Table 3 shows the plant model parameter values and Table 4 shows the initial conditions considered.
The data is adapted from the industrial data in Le Roux et al. (2013) for a single-stage closed grinding mill
circuit.

6.2.1. Plant and Observer

The general simulation environment for the plant and observer is as follows:

(i.) The plant is integrated using the fourth order Runge-Kutta method at a rate of Ts = 2 s. The full
simulation time is 8 h.

(ii.) Measurements are sampled at a rate of Ts = 2 s.

(iii.) There is no feedback controller for the mill. For the sake of experimentation, it is assumed the flow
from the classifier to the mill remains constant throughout the simulation.

(iv.) The plant is excited by sinusoidally varying input MIW with a period of TMIW = 12 min and an
amplitude of 8 m3/h around its initial condition. Since the amplitude is greater than the initial
condition, the additional bound MIW ≥ 0 m3/h is considered.
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Table 4: Initial operating conditions.

Variable Value σ Unit

Inputs and Outputs
MIW 4.64 - m3/h
MFO 65.2 - t/h
MFB 5.68 - t/h
JT 0.33 0.006 -
Q 234 5 m3/h
ρQ 2.10 0.02 t/m3

Plant Initial States
xb 8.23 0.04 m3

xr 1.88 0.01 m3

xs 4.65 0.02 m3

xw 4.63 0.02 m3
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Figure 4: Inputs as described in (1), and disturbances for simulation scenarios.

(v.) To show the ability of the observer to track changes in xs, and xrb, inputs MFO and MFB are
varied. Input MFO is sinusoidally varied at a period of TMFO = 4 h and an amplitude of 10 t/h.
Step changes at intervals of 2 h are applied to MFB where the deviations from the operating point
are chosen from the uniform distribution U ∼ (−1, 1) (t/h).

(vi.) Disturbances in the feed-ore size-distribution and the feed-ore hardness are simulated by varying αr
and κr around their nominal values.

� A change in feed size distribution is simulated by applying step-changes to αr at intervals of
1.5 h starting at t = 2.5 h. The size of step-changes are randomly selected from the uniform
distribution U (−0.14, 0.14). It is assumed measurement instrumentation is available to measure
αr at the input of the plant (Wei and Craig, 2009b).

� A change in feed ore hardness is simulated by applying step-changes to κr at intervals of 1.5 h
starting at t = 1.5 h. The size of step-changes are randomly selected from the uniform distribution
U (−2, 2) (kWh/t). This parameter is not measured.

Fig. 4 shows the inputs and disturbances to the plant.
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Figure 5: Filter implementation and management of phase shift.

6.2.2. Simulation Scenarios

Two simulation scenarios are considered.

Simulation 1. No measurement noise or process noise is added. Perfect measurements of the outputs in
(26b) as well as the derivative of ρQ is assumed and is passed to the observer, i.e. Rk is small.
The covariance matrix Qk is used as a tuning matrix. The initialization of the observer is:

� x̂0 =
[
3.5 m3, 4 m3, 9 m3, 3 1/(hm3), 10 m3/h

]T
� P0 =

(
diag

[
2 m3, 2 m3, 2 m3, 2 1/(hm3), 2 m3/h

])2
� Qk = 10−1 ×

(
diag

[
0.2 m3, 0.5 m3, 1 m3, 0.8 1/(hm3), 2 m3/h

])2
� Rk = 10−4 ×

(
diag

[
1, 1 m3/h, 1 t/m3, 1 t/(hm3)

])2
Simulation 2. Measurement noise (v) is added to the outputs of the plant with a normal distribution of

N
(
0, σ2

v

)
. System noise (w) is added to the plant states with a normal distribution of

N
(
0, σ2

w

)
. The values σv and σw are shown in Table 4.

The covariance matrix Rk for the EKF aligns with the covariance of the measurement noise
added to the plant outputs. A high covariance is assigned to the measurement of ρ̇Q as this
measurement is highly sensitive to the noise on ρQ. The covariance matrix Qk is used as a
tuning matrix. The initialization of the observer is:

� x̂0 =
[
3.5 m3, 4 m3, 9 m3, 3 1/(hm3), 10 m3/h

]T
� P0 =

(
diag

[
2 m3, 2 m3, 2 m3, 2 1/(hm3), 2 m3/h

])2
� Qk =

(
diag

[
0.1 m3, 0.1 m3, 0.1 m3, 0.2 1/(hm3), 2 m3/h

])2
� Rk =

(
diag

[
0.006, 5 m3/h, 0.02 t/m3, 1.0 t/(hm3)

])2
For the second simulation scenario where noise is added, the noisy measurements are filtered using a

Savitzky-Golay digital filter. The filter smooths data by fitting a frame of F data samples with polynomials
of small order N by means of linear least squares. The filter returns a filtered value at the centre of the
frame. For real-time applications this means that the value returned by the filter is delayed by half the
frame length ((F + 1)/2). To minimise this time delay, two consecutive filters are used.

1. The three measurements described in (26b) are filtered with a filter configured to fit a polynomial of
order 2 using a frame length of F1 = 35 samples.

2. The first order derivative ρ̇Q is calculated from the delayed filtered ρQ data. A Savitzky-Golay filter
with an order of 2 and a frame length of F2 = 135 is used.

As depicted in Fig. 5, the filtered measurements are delayed by 18 samples from the current sample. Because
ρ̇Q is calculated from the filtered data, another 68 samples delay is introduced. The equivalent delay is 86
samples, i.e. 172 s.

7. Results and Discussion

7.1. Simulation Scenario 1
The results of the simulation scenario where perfect measurements and no process noise are assumed is

shown in Figs. 6 and 7. As seen from Fig. 7, the filter converges within two hours to the correct state
value and is able to track the changes in the states. The effect of the disturbances in parameter κr given in
Fig. 4, which affects the generation of solids, is clearly visible in the abrupt changes of χ in Fig. 7, which
represents the generation of solids.
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the plant output.

7.2. Simulation Scenario 2

The results of the simulation scenario where measurements are filtered to remove noise and to calculate
the derivative of ρQ is shown in Figs. 8 and 9. As seen in Fig. 8, the noise on the measurements of JT ,
Q and ρQ are filtered very well, but the derivative of ρQ is not calculated with sufficient accuracy by the
Savitzky-Golay filter. The error between the filtered value and the plant output is shown in the last column
of Fig. 8. The error in ρ̇Q is almost as large as the signal itself.

Since a Savitzky-Golay filter is based on a smoothing least-squares approximation of the signal, the
filter cannot guarantee complete noise suppression in high frequencies when calculating the derivative of the
signal. The size of the ripples at high frequencies in the magnitude response of the filter can be reduced
only if a very long window length is chosen (Luo et al., 2005). However, a long window length introduces a
time delay (phase shift) which is also undesirable.

The normalised root mean squared error (NRSME) between the actual state and the estimated state in
Fig. 9 is shown in Table 5 and calculated as

NRMSE =
1

Λ̄

√∑N
(Λ− Λ̂)2

M

where Λ is the process signal, Λ̄ is the mean of the process signal, Λ̂ is the estimate of the process signal,
and M is the number of data points. Results in Fig. 9 and Table 5 indicate the EKF filter is able to track
xrb with reasonable accuracy, where xw and xs are estimated with lower accuracy. Parameters χ and η are
used to absorb the uncertainties in the measured data.
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Figure 9: States and parameters for Simulation Scenario 2.

Table 5: Normalised Root Mean Squared Error of State Estimation.

xw xs xrb η χ
NRMSE 6.66% 6.17% 5.14% 12.9% 53.3%

8. Conclusion

The states and parameters of a non-linear grinding mill observer model developed in this paper are weakly
non-linearly observable, although they are not observable in the linearised case. For linear observability, a
reduced observer model was developed. This reduced model represents the constituents of the mill using
three states: water, solids, and grinding media (sum of rocks and balls). The grinding environment is
modelled using two parameters: a discharge rate and an accumulation rate of solids. The measurement used
are: the mill filling volume, the discharge rate of the mill, the discharge density of the mill, and the first
time derivative of the discharge density.

Milling data is generated from a model different to the observer model. Simulations indicate that with
accurate mill discharge measurements it is possible to estimate the system states and parameters using a
discrete-time EKF. The main challenge is to accurately calculate the first time derivative of the mill discharge
density.

Since industrial mills rarely include measurement instrumentation at the mill discharge, this work aims
to motivate accurate discharge measurements in light of the information about mill inventories that can be
gained. This would require careful consideration of mill discharge trommel designs to allow sufficient space
to install the required instrumentation. Future work involves using the observer to provide state feedback
for an advanced process controller for a grinding mill circuit.
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