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Abstract: For about the past decade and a half research efforts into
cognitive radio networks (CRNs) have increased dramatically. This
is because CRN is recognized as a technology that has the potential
to squeeze the most out of the existing spectrum and hence virtually
increase the effective capacity of a wireless communication system.
The resulting increased capacity is still a limited resource and its
optimal allocation is a critical requirement in order to realize its
full benefits. Allocating these additional resources to the secondary
users (SUs) in a CRN is an extremely challenging task and inte-
ger programming based optimization tools have to be employed to
achieve the goals which include, among several aspects, increasing
SUs throughput without interfering with the activities of primary
users (PUs). The theory of the optimization tools that can be used
for resource allocations (RA) in CRN have been well established
in the literature; convex programming is one of them, in fact the
major one. However when it comes to application and implemen-
tation, it is noticed that the practical problems do not fit exactly
into the format of well established tools and researchers have to
apply approximations of different forms to assist in the process.
In this survey paper, the optimization tools that have been applied
to RA in CRNs are reviewed. In some instances the limitations of
techniques used are pointed out and creative tools developed by re-
searchers to solve the problems are identified. Some ideas of tools
to be considered by researchers are suggested, and direction for fu-
ture research in this area in order to improve on the existing tools
are presented.

Index Terms: Cognitive radio networks, Resource allocation, Opti-
mization, Mixed-integer programming.

I. INTRODUCTION

Cognitive radio (CR) [1],[2],[3], is a wireless communica-
tion technology which is evolving in a rapid pace. One of the
main objectives of CR networks (CRN) is the efficient utiliza-
tion of the radio spectrum. It capitalizes on making use of the
under-utilized radio frequency spectrum by letting unlicensed
secondary users (SUs) co-exist with the licensed primary users
(PUs) of a primary radio network without the SUs interfering
with the activities of the PUs.

There are two key components, among others, that are needed
for the success of CRN. The first is proper sensing to detect
under-utilized spectrum and the other is how to efficiently al-
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locate this spectrum hole to the SUs. Several research activi-
ties are on-going in the area of sensing. Most of the works are
based on statistical analysis of sensing on how to make infer-
ences on signals detected, and the other is on finding optimal
sensing strategies. Our interest is not on those aspects. Our in-
terest is mainly on the tools used to allocate, the SUs, the sensed
to be idle spectrum which we refer to as a resource. Resource
allocation (RA) problems in a CR environment are currently be-
ing extensively investigated by researchers in the telecommuni-
cations industry. Specifically how to allocate resources in an
efficient manner to SUs in a CRN is the key issue. RA is carried
out by using optimization tools, and the most common ones are
based on some form of integer programming.

Let us briefly explain what an RA problem in CRN is about.
Generally we have a PU who is licensed to use a particular chan-
nel. SUs are allowed to access this channel if they can do so
without interfering with the PU. This process may be achieved
in two different manners. One approach is for the SU to find
when the PU channel is idle and access it, keeping in mind that
it will have to give it up as soon as the PU comes back to the
channel. This scenario is termed overlay. The other approach is
for the SU to access the channel even when it is occupied by the
PU, but the SU does so at a considerably low enough power that
will not create interference to the PU. This second approach is
termed underlay. Our interest is in the underlay scenario. In this
underlay scenario which SU is allowed to access which channel
and at what power they can transmit has to be managed appro-
priately in order for the available limited resources to be opti-
mally well managed. This is what is generally termed resource
allocation (RA) in CRN. Mathematical programming tools have
been employed by telecommunication researchers in the attempt
to find how to allocate the resources optimally.

Integer programming (IP) is a mathematical tool commonly
used to select integer variables that can help determine an opti-
mal solution to a problem. For example, given several PU chan-
nels for which SUs can transmit at a low enough power with-
out interfering with the PU, deciding which SU to assign each
channel and how many channels to assign in order to maximize
some major objective of the system can be seen as an integer
programming problem. If in addition a decision has to be made
on power allocation also then we end up with a mixed-integer
problem. Optimization of RA problems in a CRN have gener-
ally been carried out by IP or a different member from its fam-
ily. IP family includes integer linear programming (ILP), integer
non linear programming (INLP), mixed integer linear program-
ming (MILP), mixed integer non linear programming (MINLP),
binary integer linear programming (BILP) etc. Mixed-integer



programming (MIP) includes both MILP and MINLP. Finding
an optimal solution of an IP problem is extremely computa-
tionally complex because they are generally Non-deterministic
Polynomial-time hard (NP-hard) [4]. Due to this complexity,
IP problems generally have a sub-optimal solution to the origi-
nal problems. This paper contains a literature review from 2006
onwards regarding the applications of IP for finding a suitable
sub-optimal solution for different RA problems in CRNs. We
selected the year 2006 because from our observations most of
the publication activities for this subject got into full swing after
2005, and before then the activities were limited. In that case
we hope that papers before 2006 have been cited by papers that
were published after that year. As expected, it is not unusual to
inadvertently omit some references, especially when there have
been lots of published papers in the area in a short period of time
(2006 to 2015). For this we apologize in advance, as this was
not intentional.

The remainder of this paper is organized as follows: Section
II presents the basic summary of tools used in optimization and
Section III classifies the objective functions of the resource allo-
cation problems studied. A survey of the tools commonly used
in radio resource allocation for cognitive radio networks is pre-
sented in Section IV. Challenges and open problems are pre-
sented in Section V and finally in Section VI conclusions are
presented.

II. BASIC SUMMARY OF OPTIMIZATION TOOLS

In this section we present a quick overview of basic optimiza-
tion techniques that mixed-integer programming is based on.
This is to help us set the stage for introducing some terminolo-
gies for our problem before we present a small example of how
it is applied to a CRN resource allocation problem. Consider
an n column vector x € R and an m column vectory € Z =
{0,1,2,3,---}. Suppose we want to find the values of these
two vectors for which a function f(x, y) is minimum, given that
there are a set of constraints g;(x,y) < b;,i = 1,2,--- ,r, and
that each variable is non-negative. Here f : (R", 2™) — R,
and g; : (R™, Z™) — R, Vi. This problem can be written as

min z = f(x,y) ey
X,y
st gi(x,y) <bj,i=1,2,--- 1, 2)
xkzoa k:1727"'7n7 (3)
yj€Z7 j:1727"’7m~ (4)
For simplicity and later use we can also write Eq. (2) as
g(x,y) <b, Q)
where
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g(x,y) = : 7 (6)

gr(x,y)

and b = [by, by, ---, b.]T and for a matrix A we write its
transpose as A If the problem was to maximize a function z =
h(x,y), that could be transformed to a form of minimization
function, by letting f(x,y) = —h(x,y), i.e. now writing

@)

min w = f(x,y).
Xy

This is a mixed-integer programming problem, where the el-
ements of the vector x are nonnegative and those of y non-
negative integer values. Eq. (1) and the lefthand side of the
inequality given in Eq. (2) may be linear or non-linear. If any
of them is non-linear then we have a non-linear mixed-integer
programming problem.

Most of the RA problems encountered in CRN are of the gen-
eral form Eq. (1) to Eq. (4), or Eq. (1) replaced by Eq. (5).
The first equation is called the objective function, the remain-
ing ones are the constraints and the variables x; and y; are the
decision variables. First let us discuss the most commonly oc-
curring types of objective functions, constraints and the decision
variables in CRN. Even though several kinds of these functions
and parameters are encountered in RA problems, we focus on
the most occurring ones that set the stage for the complexities
associated with the optimization problems for RA.

There are several types of objective functions occurring in RA
for CRN of which three appear to be very prominent. Most of
the other types are related to those three. The three are:

o maximization of network sum throughput,

o maximization of overall user data rate,

o maximization of user capacity.

The other types of objective functions that have been considered
in the literature include; maximization of spectrum utilizations,
maximization of total channel utility, maximization of fairness
scaling factor, maximization of downlink channel capacity, min-
imization of total transmission power, and minimization of total
power consumption. Even the three mentioned earlier seem to
have been used interchangeably by authors. For example, the
“user data rate” was used by [5] and “throughput” by [6], and
“sum capacity” by [7], but essentially the functions are about
the same. Even though we could have chosen to stay with the
use of the terms and terminologies as used by authors in order to
make it easier for readers, that may make the presentation rep-
etitious in many instances. So we are combining all those three
objective functions together into a class of "capacity" measure.

As for constraints, there are three that are very commonly
occurring and they are:

e power constraint,

e constraint on interference,

« minimum data rate for users.

The most commonly occurring decision variables are:

o transmission power,

o sub-channel allocation, which results in a zero-one decision
variable.

As an example of a typical optimization problem for CRN,
the vector x could be a set of transmission power for some
users that we have to decide on and the vector y could be sub-
channel allocation zero-one variables. The constraint in Eq.
(2) could be interference limit constraint or power constraint,
and finally Eq. (1) could be maximization of the network sum



throughput. Generally this is not a convex optimization prob-
lem, simply because of the mixed-integer aspects. However if
Yj» J = 1,2,--- ,m are relaxed such that y; € R, Vj, and
f(x,y)and g;(x,y),i = 1,2,--- ,r are convex, then this prob-
lem is called a convex optimization and there is a considerable
literature on this subject with well documented techniques for
analyzing them (see [8]). An example of a method is one that is
based on applying the Lagrangian duality and the Karush-Kuhn-
Tucker (KKT) conditions. The relaxation of y; completely re-
moves the integer requirement for that variable which is one of
the major aspects that make it non-convex, keeping in mind that
there are other aspects that may render it non-convex. Hence
one cannot apply the standard convex optimization techniques
to the general RA problems for CRN.

Suppose f(x,y) and g;(x,y),s = 1,2,---,r are linear,
then this problem is a classical mixed-integer linear program-
ming problem for which one may apply the Branch and Bound
method or the Lagrangian relaxation approach [9], [10]. Better
still is if the variables y do not have to be integers, then one may
apply standard Linear Programming (LP) tools.

Essentially we have one objective function (Eq. (1)), r re-
source constraints (Eq. (2)), n non-negative variables and m
non-negative integer variables. Usually the n non-negative vari-
ables should not pose major problems. However, satisfying the
integer variable restrictions is one of the issues that we face in
these optimization problems. Next is the set of r resource con-
straints. All the constraints, g;(.,.), ¢ = 1,2,--- , 7, need to
be convex and if we plan to use LP approach all have to be lin-
ear. Finally the objective function needs to be convex or linear if
we plan to use the LP approach. It becomes clear that there are
several combinations of the form of all these constraints and the
objective function that can make the problem complex. When
most of the constraints are linear and/or the objective function
is linear there is the tendency to assess whether a linearization
of the rest would lead to an approximation so that one can ap-
ply the classical LP approach, as an example. There are several
other types of approximations that can be considered and will be
discussed in this survey. First let us discuss the three main com-
ponents of the optimization problems as encountered for CRN.
We present the objective functions, the constraints and decision
variables that are commonly seen in RA for CRN.

II. AN EXAMPLE OF A GENERIC SIMPLE RA
PROBLEM

In what follows we introduce a small generic resource alloca-
tion problem and use that as the basis of our discussions in com-
paring the papers in the literature. Consider a simple CRN prob-
lem in which we have K PU channels. There are M SUs look-
ing for access to the PU channels. Each SU, s = 1,2,--- , M
has a maximum power source of Pj ... If SU s is allowed to
transmit on channel k with power level P/, then its capacity, ¢,
will be given as ¢j, = log(1 +~;P;), where ~y; is the channel to
noise level ratio associated with SU s transmitting on channel k
This is essentially a simplified Shannon’s capacity formula or a
formula derived from it. Whether we are dealing with capacity,
throughput or data rate a version of this formula is what we use.

Let 7, = 1 if channel k is assigned to SU, s and zero, other-
wise. Generally the throughput and data rate resulting from this

are directly proportional to this capacity. So in essence the total
capacity assigned to this SU, s will be

K
Zg = Z CLT. )
k=1

In RA problem our interest would be to maximize the total
weighted capacity for all the SUs, with the weight w, assigned
to SU s. Hence the objective function of this generic problem

will be
M K
max z = Z W Z cpTy- 9
s=1 k=1

This will be our equivalent of Eq. (1). It is a non-linear function
in P/ and in x}.

Next we consider the constraints. The first one is that we
cannot assign a channel to more than one SU. So we need the

constraint
S

Yoy <1, VE=1,2,- K,

s=1

(10)

and also a constraint that ensures that we do not allocate more
than available channels to all the SUs, i.e.

M K
2212 <K.

s=1k=1

an

These two constraints will be a versions of Eq. (2) with all the
variables here allowed to be only values of zero or one.

The next constraint is that we cannot allow the total power
generated by an SU to exceed its power limit. So we need the
constraint that

K
> P < Py, Vs=1,2,--- M, (12)
k=1

which is an equivalent version of Eq. (2) with the variables al-
lowed to assume any non-negative values.

A key requirement in CRN is that the SU should not interfere
with the PU, or at least the interference should not exceed the
maximum allowed level. This can be easily captured by requir-
ing that the power reaching the PU should not exceed a particu-
lar value P. So the next constraint is

M K
YD BisP
1

s=1 k=

13)

another version of Eq. (2) with the variables allowed to assume
any non-negative values.

Given that SUs usually have a minimum requirement for QoS
we assume that there is a constraint in this regard also. For ex-
ample, an SU, s, may require a minimum of o of total number
of sub-channels assigned, so this leads to the constraint

K
> wier > 0., Vs=1,2,--- M. (14)
k=1

Finally we have the two critical but common constraints, i.e. that
of zero-one on x}, and non-negativity on P, both written as

x5 = {0,1}. (15)



P> 0. (16)

In summary, Eqs (9) to (16) form the RA problem for this sim-
ple example. As one can see, in its simplest form, the objective
function in non-linear, and Constraint (14) is non-linear. Also
one variable, xj, is zero-one while P} is a simple non-negative
variable. So unless there is a significantly different problem
studied, non-linearity and integer variables (zero-one) are un-
avoidable in the formulations. That is why in general we have
a non-linear MIP problem for RA. The issue now is how it has
been handled in the literature.

An optimization problem is determined by its objective func-
tion, constraints and decision variables. The objective function
is one expression whilst the constraints could involve several
inequalities and equalities, and the decision variables are usu-
ally many. In order to present this survey in a very structured
form we classify the literature according to the objective func-
tion types for discussion. The alternative approach is that we
classify each problem by the general class of the optimization
type it belongs, i.e. whether it is a convex optimization problem
or not. This approach could lead to just one class, i.e. non-
convex programming problem, as most of them look that way
and only very limited number fit into the convex programming
class simply because they were modified. It was observed that
only few papers did declare whether their problems were convex
programming or not. This we can understand, as such a task is
usually challenging for most practical realistic problems. In fact
trying to develop simple approaches for assisting in establish-
ing convexity of an optimization is very important and should
be one of the future works in this area of research.

IV. CLASSIFICATION BY OBJECTIVE FUNCTION TYPES

As seen in the simple generic problem formulation, provided
the objective is to maximize throughput or capacity or data rate,
chances are that the objective function will involve the Shan-
non capacity formula. Hence the objective function will be non-
linear. Of the 79 papers surveyed, 16 of them claim to have
linear objective functions. Of the 16 papers, at least 10 of them
had either sum data rate or throughput as their objective func-
tions. It is therefore important for us to discuss how they were
able to carve out a linear function as an objective in those sit-
uations. This should be of interest to researchers and help in
understanding how to handle other problems in the future.

So, the problems are classified according to the two most
commonly used types that occur; Linear or Non-linear objec-
tive functions. The most important aspect of an objective func-
tion as it relates to solving an optimization problem is whether
it is linear or not. If it is a linear function, then we may start to
think of an LP based method, hoping that the constraints may
be linear or a good number of them are linear and that the rest
if not linear can be easily approximated by linear functions. Of
course, if most of the constraints are non-linear and can not be
well approximated by linear functions then an LP based method
may not be a good candidate approach to consider.

If the objective function is non-linear, the first thought is
whether it is a convex or concave function. For a minimization
problem a convex function has properties that make it amenable
to convex programming. This does not imply that a concave

function does not have an optimal solution. It is just that the so-
lution, if it exists in this case, will be at an edge or corner. An-
other factor that we look for is whether the function can be lin-
earized as an approximation, with the hope that most of the con-
straints are linear and those that are not linear can be linearized.
If the objective function, f(x,y) is convex and the constraints,
g(x,y) are convex then one has the chance to apply standard
convex programming techniques, i.e. use the Lagrangian Dual-
ity and apply the well-known Karush-Kuhn-Tucker (KKT) con-
ditions.

A. Linear Objective Function

Of all the papers surveyed, the ones which were trying to
maximize data rates and which have linear objective functions
include, [11],[12], [13],[14],[15],[16]. The initial formulation
in [11] was non-linear objective function and some of the con-
straints were non-linear. This is because the equation for the
required power for a given BER is non-linear and as a result
the objective function was non-linear. However, the authors
were able to reformulate the problem to an integer linear pro-
gramming problem by defining a binary variable xy, ,, . which is
equal to 1 if the n'" subcarrier is assigned to the k" SU which
transmits ¢ number of bits per symbol, and also another variable
Dk,n,c Which is the transmission power required by the kth SU
on the n*”* subcarrier to transmit ¢ number of bits per symbol.
This is a major and very useful transformation. The idea was
used by Awoyemi et al. [17] in solving a class of RA problems
for heterogeneous CRN. Mitran et al. [12] had a pure ILP right
from the start. The decision variable involves a binary term S;; .
which equals 1 if sub-channel j allocated to SU ¢ uses trans-
mission mode z which transmits at a rate I?,. Hence the objec-
tive function was of the max ming, ; _ ; Zj >, R.S;;., which
is linear. However, two of the constraints consist of a term f;;(z)
which is the minimum required transmit power associated with
;5. and it is assumed to be given. Without this been given the
problem could have probably been non-linear. The linearity of
the objective function was achieved by predetermining the rates
associated with each transmission mode and then formulating an
objective function with channel selection that maximizes total
rate. Shi and Hou [13], even though had linear objective func-
tion in their problem some of the constraints were non-linear;
they are the constraints that involve power allocation. The au-
thors were able to develop a clever approximation for those non-
linear constraints and then obtained upper bounds for the solu-
tion of the problem. They pointed out that their bounds and
feasible solution gap showed that they have good solutions. Shi
and Hou [13] were able to achieve linearity of objective func-
tion by trying to maximize a function that is linear in the mini-
mum rate and multiplied by a factor K they call scaling factor.
As a result the objective function is linear. In both their papers
[14],[15] the authors considered optimal framework for the de-
sign of spectrum sharing and flow routing in CRN with interfer-
ence consideration. Their problems are of the mixed-integer lin-
ear programming types. The authors however developed heuris-
tics for solving the problem. They did not explore the structures
of the problem to see whether they could exploit them. They
achieved linearity of the objective functions by maximizing the
percentage traffic demand as a pseudo measure of data rate. Shu



and Krunz [16] developed a mixed-integer non-linear program-
ming problem for joint power/rate control and channel assign-
ment. However they were able to exploit the discrete set of rates
structure and then transform the problem to a binary linear pro-
gramming problem (BLP) with linear constraints. They then de-
veloped a centralized polynomial time linear programming with
sequential fixing to further approximate the BLP by exploiting
the structure of their problem. All these papers identified their
objective functions as capturing data rates.

Another group of papers that had linear objective functions
include ([181,[19],[20],[21]). The work of Rahulamathavan et
al. [18] is an extension of their previous work [11] which was
on OFDMA to MIMO-OFDMA. In their paper, Guo and Huang
[19] considered opportunistic spectrum access in a cell covering
environment. They specifically considered overlay CRN situ-
ation and studied channel assignment and power control. They
achieved linearity of the objective function by using the data rate
assigned to a link, which is a linear function of power, as the ob-
jective function.The resulting problem formulation was a mixed
integer linear programming problem. They then used a greedy
algorithm to analyze it. It is surprising that they did not report
any attempts to explore any possible structure of the problem
given that it is a linearly based problem. On the other hand Shih
et al. [20], who obtained a linear objective function by using
data rate of a route whose upper bounds are known, were able
to develop a special technique for analyzing their integer lin-
ear programming problem that resulted from joint routing and
spectrum allocation for multi-hop CRN. They relaxed the in-
teger constraints and solved the resulting linear programming
problem iteratively. They were very creative in their approach
by fixing the values of some of the integer variables to 1 or 0 af-
ter each iteration, based on how the results turn out. They then
proceed to the next iteration with some variables fixed and re-
peated the process until a good solution is obtained. The idea is
novel and worth considering by other researchers. Wang et al.
[21] ended up with a binary linear programming problem in their
work on developing a spectrum sharing algorithm for through-
put in CRN. Somehow they seem to assume that the transmit
power is given and this allowed the problem to become linear.
They first assigned power, hence avoided having to include the
Shannon capacity formula in their objective function, and then
carried out channel assignment. Their assumption about power
allocation does not seem to be realistic. All these four papers
identified their objective functions as capturing throughput.

The following papers [22],[23],[24] had objective functions
that are linear and not based on capacity, throughput or data
rate. Hoang and Liang [22] considered the problem of down-
link channel assignment and power control for CRN, however
their objective function was maximizing the total number of ac-
tive subscribers in CRN. Their model was a mixed integer lin-
ear programming problem and they proposed what they called
DIGA (dynamic interference graph allocation) algorithm. This
work seemed like a minor extension of the authors’ previous pa-
per [23]. The linear formulation of the problem by Rahulamath-
avan et al. [24] is essentially similar in format to [18]. The main
difference here is that the objective function involves scheduling
and what they call MA (margin adaptive) problem which essen-
tially is that of minimizing transmit power subject to data rate

constraint.

An et al. [25] studied the optimization of energy efficiency in
cognitive femtocell networks. The authors considered the max-
imization of a revenue function associated with the femtocells.
The authors formulated the power control problem of standalone
femtocells as a linear optimization problem and introduced a
low-complexity iteration algorithm based on gradient-assisted
binary search algorithm to solve it. In addition, the authors for-
mulated the power control of collocated femtocells in a set as
non-cooperative game, and used an asymptotic analysis to ob-
tain the approximate spectrum utilization price in macrocells.

B. Non-linear Objective Function

The papers with non-linear objective functions include,
[26],[5],[27],[28],[29], [30],[31],[32],[20],[33]. None of these
problems were approximated by linear objective functions.
Even though some papers in the literature were able to take
advantage of the structure of their nonlinear problems by con-
verting the non-linear objective functions or constraint to linear
function, as pointed out in Section IVA, the papers classified as
non-linear in this paragraph could not, or did not exploit any
structure of their problem. This is partly because non-linearity
of the objective function was not the main source of difficul-
ties in solving the problem but rather the constraints were also
very complex. In their work, Mitran et al. [26] studied a queue
aware resource allocation problem for downlink system. It re-
sulted in the formulation of a large non-linear integer program-
ming problem. The authors then proposed heuristics based on
decoupling the power allocation and rate allocation problems.
On the other hand Waheed and Cai [27] used the binary parti-
cle swarm and genetic algorithm, both evolutionary methods, to
solve their problem of resource allocation in CRN. Ngo et al.
[28] did adopt a different approach compared to others. They
used Lagrange duality idea to handle the non-convex mixed-
nonlinear integer program arising from their RA problem. They
relaxed the integrality of some of the variables and turned the
problem to a convex optimization successfully. Salameh [29]
on the other hand, by considering finite number of idle chan-
nels and pre-specifying maximum transmission power was able
to exploit the structure of the problem and reduce it to a binary
linear programming problem. Another interesting approach was
adopted by Zhang and Leung [30]. They used multidimensional
knapsack approach together with a greedy max-min algorithm
to deal with the RA problem. Stochastic programming was used
by Xie et al. [31] for the joint power allocation and beamform-
ing — a different but related class of problem. Shin et al. [32],
used geometric programming approach to deal with joint rate
and power allocation problem while Li et al. [33] linearized
their original formulation of the max-min rate problem which
was a mixed non-linear problem. In [33] they were only able to
linearize some functions, one of the constraints could not be lin-
earized so in the end they combined what they called sequential
parametric convex approximation with some heuristics to solve
the problem. Generally most of the problems discussed in this
paragraph did not lend themselves to simple linearization for the
authors. For example, [5] has an objective function of the form
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where w,, is the weight of the cognitive user U,, and
R,, is the maximum transmit rate of the cognitive user U,,.
Here a = [ai1,a12,..,01K,021,...apk)] is the cognitive
users binary channel allocation vector, where a;; is 1 if chan-
nel j is allocated to user ¢ and zero otherwise, and P =
[Pi1, P12, .., Pixc, Por1, ... Pyrc] 7 is the power allocation vector,
where P;; is the power allocated to user ¢ on channel j.

The variable R,, is given as

Z Amk IOgQ

The parameters associated with this equation are defined as
follows: I' is a constant SNR gap, h,, is the link gain between
cognitive transmiter U,, (1 < m < M) and its intended receiver
Yn(1 < m < M) on subchannel k(1 < k < K), and oy, is
the sum of power of Gaussian noise and interference caused by
primary users on subchannel k. Note that K is the number of
subchannels and M is the number of secondary users.

Two commonly occurring decision variables, as earlier men-
tioned, are transmission power and sub-channel allocation.
Transmission power is a non-negative real variable whereas sub-
channel allocation is a zero-one variable. Thus we find that most
times we are dealing with mixed-integer programming (MIP)
problems, whether linear or non-linear. So this already creates
some form of difficulty.

It is obvious why this objective function was not linearized.
Any attempt to carry out this linearization will lead to a very
poor approximation, if not an unrealistic approximation. Sup-
pose the log function was linearized, one still has to deal with
the fact that the objective function is a sum of products, hence a
nonlinear function, even though the idea of quadratic program-
ming may then be considered. In any case, a reasonable lin-
earization may be difficult. In addition, one of the main set of
constraints is also non-linear. The constraints to the problem are
given as follows

hmkPmk:
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where the remaining parameters are known and well defined
constants. The last set of constraints is interference temperature
constraint and is non-linear. It is a sum of products of the trans-
mission power and the channel allocation which is a zero-one
variable. Specifically b,,;, assumes the value of 1 if sub channel
k is assigned to primary user n, or zero otherwise, h,,i is the
channel gain for CR user m on link k and g, is its associated

interference to primary user n. B,, is the bandwidth and T, is
the interference threshold to primary user n.

Thus this objective function has to be considered the way it
is, i.e. as non-linear function. The question then is whether it is
a well behaved function for optimization in its non-linear form.
This is a maximization problem, so we want the objective func-
tion to be concave, if the variables are all real and not necessarily
integers. The log component is concave, and since the variable
amk 18 a zero-one variable it follows that the objective function
is concave. Hence it is a well behaved function for our purpose.
We simply have to find an appropriate method for solving this
problem. Most of these problems employed OFDM/OFDMA
and their declared goal was to maximize data rate.

A group of papers had non-linear objective functions, in
many instances in MIMO-OFDMA downlink RA, and defined
their objective functions as throughput. Those papers include,

([341.[351.[361,[61,[371.[381,[391,[401,[411,[42],[43],[44],[45].[46],

and [47]). As mentioned earlier throughput is based on Shannon
capacity formula which is non-linear in power allocated, so the
non-linearity of the objective function could not be avoided. For
example, [6] has an objective function of the form
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where w,, is the probability the subcarrier n is vacant (idle),
and the decision variables are py,, which is power level allocated
to user k in sub-carrier n and x,, which is the sub-channel as-
signment indicator. Py, is the power budget, vy, is the channel
to noise ratio between CR k and subcarrier n and I, is the
corresponding interference, with Iy, = p;m] and I is the in-
terference factor. The constraints are,
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and Iy, is the threshold interference level.

For this problem the objective function is thus non-linear,
partly because of the Shannon formula and partly due to the
product form. Two sets of the constraints are also non-linear
due to product form terms. What the authors did was to de-
velop a three step heuristic algorithm in which power allocation
was carried out in the first step and sub-carrier assignment in
the second. This second step resulted in a Generalized Assign-
ment problem for which there are well known heuristics. The
third step involved the power allocation component. Some of the
tools they used are based on their results from a previous paper
[35]. Xu and Li [34] studied an RA problem in OFDMA based
CRN where SUs relay data for the PUs in order to gain access to



spectrum — a different class of problem. The authors formulated
this as a Nash equilibrium problem and developed a nonlinear
mixed integer programming problem for it. In order to make the
problem tractable they did not consider QoS requirements. The
problem is neither convex nor concave as the authors mentioned.
They used a dual decomposition idea in solving the problem.
Zhang and Leung [36] studied a distributed RA in OFDMA for
CRN. Their main objective was to maximize throughput while
ensuring that the nominal rate requirement is met. The prob-
lem is nonlinear and formulated as goal programming. They
used two algorithms to analyze the problem; one based on what
they call iterative water-filling approach and the other is based
on solving a dual problem. Joint optimal cooperative sensing
and RA in a multichannel environment was considered by Fan
et al. [48]. They formulated the problem as non-convex opti-
mization and then proposed a bilevel optimization approach to
solve it based on monotonic programming. Yu et al. [37] stud-
ied a much larger problem which involved joint optimal sensing
and power allocation for a cooperative relay in CRN. Their goal
was to maximize throughput and minimize outage probability.
Generally their problem was non-convex and they had to de-
velop a concave objective function equivalent for maximizing
throughput and a convex equivalent problem for minimize out-
age probability. Optimal sensing strategy coupled with power
allocation for two SUs in an AF-cooperative CRN was stud-
ied by Zhao and Kwak [38]. They showed that the resulting
objective function was concave and then developed appropriate
algorithm for solution accordingly. Jian et al. [39] studied a
system in which cooperative relay is used to assist in transmis-
sion. Their problem formulation resulted in a nonlinear integer
programming problem which they claimed had high complex-
ity. The authors went ahead and sought a heuristic for dealing
with the problem. Yao et al. [40] considered the joint opti-
mization for downlink RA in CRN, and just like several other
researchers, found the problem to be a mixed integer non-linear
programming problem. They proposed a dual decomposition
algorithm. Of course they had to relax the integer constraints
and they were able to implement the Karush-Kuhn-Tucker con-
ditions and then applied the ellipsoid method to update the dual
variables. The approach depends strongly on the relaxation of
the integer variables. Distributed RA for CRN with spectrum
sharing constraints was studied by Ngo and Ngoc [41]. Even
though their aim was to maximize the rate-sum capacity in the
end what they did was maximize system throughput. The reality
is that both sum capacity and throughput involve the Shannon
capacity formula. As a result of Shannon’s equation for capac-
ity their objective function was nonlinear. And in addition they
had a set of complicating constraints (spectrum sharing con-
straints). In summary they employed a dualization approach as
other researchers in order to come up with an efficient algorithm.
Lin and Lin [42] formulated joint channel allocation and power
control into a mixed non-linear programming problem. By ap-
propriately exploiting the structures of the zero-one variables
they were able to convert the problem to a pure non-linear pro-
gramming problem with linear constraints that resulted in con-
vex solution space. They then used the interior point method to
solve the problem. The way they exploited the structures of the
zero-one variables is very clever and worth considering by other

researchers. Wang et al [43] introduced overhead with route
switching in their formulation of the joint spectrum allocation
and power control in CRN utilizing open spectrum bands. In-
terference temperature constraints were also introduced. Their
problem was not a classical optimization problem like others.
Xu et al. [44], in addition to trying to achieve joint channel al-
location and power control in CRN, also incorporated fairness
goal for SUs while trying to protect PU transmission. Their
problem was a mixed non-linear integer programming problem.
They relaxed the zero-one variables, applied Lagrangian duality
and then applied the Karush-Kuhn-Tucker conditions in solving
the problem. Golcezaei-Khuzani and Ardelbilpour [45] studied
the RA in cognitive relaying network under the AF-protocol.
The problem was a non-linear programming one and was solved
based on the standard KKT conditions. Wang et al. [46] also
solved the RA for CRN with cooperative relays. Just like other
authors found, the problem formulation results in a mixed non-
linear programming formulation which is N P hard. As a result
they developed their own two stage algorithm for its analysis;
the first stage involves sub channel assignment and the second
one is power allocation. In a recent paper Shaat et al. [47] tried
to maximize the throughput of OFDM-based cognitive two-way
multiple-relay networks, by jointly optimizing power, relay as-
signment and subcarrier pairing. They also ended up with an
MIP which they applied Lagrangian relaxation and then devel-
oped what they call a low complexity suboptimal algorithm to
solve it. They did not explore the possibility of any structure
that they could take advantage of.

Some papers claim to be maximizing sum capacity, which
is based on the sum of several Shannon equations, and
hence non-linear objective functions. Those papers include,
[71,[491,[501,[511,[52],[53],[541.[55],[561,[571,[58], and [59].
We point out that even though Nguyen et al. [51] did claim that
their problem is a mixed integer linear programming we feel
their claim is subject to interpretation as will be discussed later.
Once again, that the formulation is nonlinear is not surprising
keeping in mind that sum capacity is related to the Shannon ca-
pacity formula. As an example, in [7], the authors addressed
a resource allocation problem of an OFDM based CRN under
the considerations of imperfect spectrum sensing, limitation of
transmission power etc. The objective of this optimization prob-
lem is to maximize the sum capacities of all the SUs, and given
by
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where the decision variables are py, , which is the allocated
power on the nt" sub-channel used by the k" SU whereas py.,,
is the sub-channel allocation index. Here Hj, ,, is the SNR of
the nt" subchannel used by the k** SU with unit power. R}, is
the rate of the k" SU with required rate of R}, and Py is the
transmission power limit. Let I, ; be the interference to the [th
PU by an SU’s access with n*”* sub-channel with unit power and
I lth the interference threshold of the {t* PU. The constraints are,

DPin > 0,Yn € N, VE, (30)
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In order to solve this problem the authors used a two stage ap-
proach to approximate the solution. In the first stage they carried
out a sub-channel allocation to satisfy heterogeneous users’ rate
roughly and then removed the integer requirements constraints
after that. The second stage involves power distribution among
the OFDM sub-channels.

Xie, et al. [49] studied a problem that is fairly similar to the
one studied by Wang et al. [7]. Even though Xie, et al. [49] also
used a two stage approach to solve it, their approach is quite
different. In their two stage approach, the first stage involved
optimal power allocation while the second state involved chan-
nel allocation. The authors claim that the advantage with this
type of approach is that it is able to track the changing radio
environment in the dynamic allocation procedure. In an ear-
lier paper Xie, et al. [50], considered the fairly similar class of
problem and ensured that the minimum rate is guaranteed for
SUs while proportional fairness is also incorporated. They pre-
sented a heuristic for the resulting MILNP. Nguyen et al [51]
studied the joint scheduling and power allocation in a multi-cell
CRN. The objective function of their optimization problem is of
the form ), C;, where C; = log(1 + ~§) and ~{ is the SINR
for user ¢ on channel c. Obviously 7y is non-linear and hence
the objective function is non-linear. The authors presented a
heuristic for solving the problem. Xiang et al. [52] used clas-
sical approximation approaches to solve their downlink spec-
trum sharing problems in CR femtocell network. The problem
formulation was a mixed integer non-linear programming prob-
lem. They used a mixed primal and dual decomposition to ap-
proximate the solution by also relaxing the integer variables. As
a result they decomposed the problem to those of channel al-
location and power control. They efficiently applied the KKT
conditions in the process. Huang et al. [53] studied the RA
problem in a multi-cell CRN. Their problem is similar to those
of previous researchers except that they did not seem to have
considered how to explore the structure of the problem. They
went ahead and sought a heuristic approach to handle the mixed
integer nonlinear programming problem. Almalfouh and Stuber
[54] considered the case of interference-aware power allocation
for CRN with imperfect spectrum sensing. They used water fill-
ing criteria for single user CRN to carry out power allocation
and applied a heuristic they developed. Choi et al. [55] stud-
ied the downlink sub-channel and power allocation in multi-cell
OFDMA CRN. Their problem was also a mixed integer non-
linear programming problem. But they were able to exploit the
structure of problem, as conceptually done by Xiang et al. [52],

by using a dual decomposition approach. Hu and Mao [56] con-
sidered interference mitigation problem via channel assignment
and power allocation for CRN based on cross-layer optimiza-
tion. Surprisingly even though the original problem is that of
minimizing interference it was later considered as that of max-
imizing throughput and then maximizing capacity. They claim
to have reduced the mixed integer nonlinear programming prob-
lem to a linearized problem and presented results. Wang et al.
[57] considered the problem of adaptive proportional fairness
for RA of OFDM based CRN. The problem and methods used
are quite similar to those discussed earlier in [7]. Du et al. [58]
studied the problem of spectrum access for CR. They ended up
with the same general formulation and used the KKT theorem;
the problem and solution method are standard. Li et al. [59]
dealt with the same type of problem as the other in this cate-
gory, i.e. maximizing sum transmission rate and this resulted in
mixed integer nonlinear programming problem, which was then
analyzed using Lagrangian relaxation with implementation via
the KKT conditions.

Other papers which are based on non-linear objective func-
tions, and where the functions are not data rate, capac-
ity or throughput include: [60],[61],[62],[63],[64],[65],[66],
[671,[68],[69],[70], and [59].

Cumanan et al [60] considered the problem of joint fast opti-
mal RA and beam forming in an underlay CRN. In an attempt
to achieve several objectives including spectrum utilization, ad-
mitting maximum number of SUs while satisfying several con-
straints such as fairness, they ended up with a multi-objective
optimization problem with mixed integer nonlinear program-
ming structure. They used semidefinite programming coupled
with Branch and Bound tools to analyze the problem. Shi et
al. [61] considered a per node based optimal power control
and multi-hop CRN, which led to a mixed integer nonlinear
programming problem. They focussed on trying to optimize
network performance by trying to achieve joint power control,
scheduling and routing. Specifically they considered cross-layer
optimization based on 3-layers and used Branch and Bound to-
gether with convex hull relaxation. Tseng et al. [62] studied
the joint power control, channel assignment and routing to min-
imize network energy consumption while maintaining data rate
requirements in a multi-hop CRN. They formulated the problem
as a mixed integer nonlinear programming problem and used
Lagrangian relaxation based heuristic. The authors claimed that
they were able to save up to 90% energy consumption. Hou et al.
[63], developed a mathematical programming problem with ob-
jective function to minimize required network wide radio spec-
trum resource for a set of user sessions. Their problem was set
up as a mixed integer nonlinear programming problem, which
was solved by using what the authors call sequential fixing pro-
cedure based on converting integer variables to achieve linear
program. In trying to solve a channel selection problem in CRN
with heterogeneous channel availabilities at different nodes Hou
and Huang [64] presented a binary integer non-linear program-
ming problem with the objective function given as maximizing
total channel utilization. They then developed greedy channel
selection (GCS) heuristic for it, which they claimed gives more
than 95% close-to-optimal solution. Scheduling in a relay envi-
ronment for CRN was considered by Liang and Chen [65]. They



considered, in their model, fluctuations of usable spectrum re-
source, channel quality variations and interference. Their objec-
tive function was actually fractional because they were trying
to maximize throughput while maintaining long-term fairness.
They ended up developing a greedy heuristic to solve the prob-
lem. Tachwali et al. [66] developed a bandwidth-power product
minimization problem in order to incorporate PU activity in the
design of RA and limited hardware capabilities. This resulted in
a mixed integer nonlinear programming problem. They decom-
posed the problem after using Lagrangian based approach; again
a heuristic. Joint admission control and power allocation for
CRN was considered by Zhang et al.[67]. Their problem was to
find a subset of SUs such that the total revenue output of network
is maximized in an environment where not necessarily all SUs
can be accommodated. They transformed the mixed integer non-
linear problem to a smooth problem and used gradient descent
based algorithm. The objective function considered by Lu et al.
[68] was to maximize utility, which in this case, is used to mea-
sure QoS for users. The problem was a mixed integer nonlinear
programming problem and they used the Lagrangian duality to
find an approximate solution. Chen and Yuen [69] studied RA
strategy for multi-user MIMO rate less-coded CRN with QoS
provisioning. It resulted in a two integer product programming
problem. They developed a heuristic for solving it. Guan et al.
[70] considered the problem of RA for stream multimedia con-
tent in cognitive ad hoc networks with cooperative relays. They
formulated the problem as joint video encoding rate control,
power control, relay selection and channel assignment. This re-
sulted in a mixed integer nonlinear programming problem. The
authors used a branch and bound algorithm based on convex
relaxation techniques. El-Sherif and Mohamed [71], in their pa-
per, considered joint routing and resource allocation aiming to
minimize delay in cognitive radio based mesh networks. Their
problem actually is a convex optimization problem, with convex
objective function and linear constraints. However, the integer
valued decision variables made the problem complex.

One paper, [72] considered spectral footprint for OFDMA-
based CRN and tried to minimize this. This led to a non-linear
objective function, however the authors were able to decompose
it to two problems; sub-channel allocation and power allocation.
The sub-channel allocation problem was solved using the Hun-
garian method for assignment and the power allocation problem
by the Lagrangian dual. Two recent papers [73] and [74] consid-
ered a hybrid underlay/overlay CRN problem. The resulting ob-
jective function was non-linear and the authors decomposed the
problem into two; sub-channel allocation and power allocation.
The problems were solved using cutset for the sub-channel allo-
cation and the Lagrangian dual for the power allocation compo-
nent.

Cognitive radio and femtocells are recent technology break-
throughs that aim to achieve throughput improvement by means
of spectrum management and interference mitigation, respec-
tively. However, these technologies are limited by the for-
merdAZs susceptibility to interference and the latteraAZs de-
pendence on bandwidth availability. Although the deployment
of cognitive femtocell networks is seen to improve the efficiency
of frequency reuse and spectrum sharing, it too suffers from
the challenges associated with resource management. Zhang

et al. [75] proposed a near optimal cooperative bargaining re-
source allocation strategy that is derived based on Lagrangian
dual decomposition. The optimization problem is defined by
the authors as a non-convex mixed integer programming prob-
lem. The time-sharing method is used to transform the problem
into a convex optimization problem; this transformed problem
is regarded as a low bound of the original problem. One of the
interesting contributions of this paper is the proof of the convex-
ity of the transformed problem. Based on standard optimization
techniques and the KKT conditions, the power allocation opti-
mization problem for users in small cells are obtained. Simi-
lar to this work, is the joint sub-channel and power allocation
problem which is formulated as a non-convex non-linear MIP
in effort of addressing the issue of severe inter-cell interference
[76]. The problem is transformed to an optimization problem
with a concave objective function and convex constraints. It is
then solved using the Lagrangian dual decomposition method, in
which the Lagrangian dual problem is decomposed into a master
problem and several subproblems that are iteratively solved.

The optimization problem associated with the spectrum se-
lection with limited number of antennas for downlink cognitive
femtocell networks was formulated by Chen et al. [77]. The op-
timization problem formulated aims to maximize the system’s
energy efficiency while being constrained by hardware limita-
tions and user equipment. The objective function is non-linear
and non-convex; and is further divided into two sub-problems:
one which pertains to the spectrum selection and the other re-
lated to the power allocation. The Lagrangian dual is obtained
for the power allocation optimization problem and is then eval-
uated using the Lagrangian algorithm. The duality gap between
the primal and dual problem, which arises as a result of the non-
convexity of the objective function, is neglected as the subcar-
riers are shown to be large enough for the multi-carrier systems
as proved in [78]. Li et al. [79] leveraged cognitive radio tech-
nology in femtocell networks and proposed an asymptotically
optimal resource allocation algorithm using dual decomposition
methods. The authors considered open access OFDMA femto-
cell networks for the scenario where a macrocell user performs
handover from its serving macrocell base station to a nearby
femtocell access point. As was performed by Chen et al. [77], a
joint subchannel and power optimization problem is formulated
and an efficient algorithm using dual decomposition methods is
proposed.

Zhang et al. [80] proposed a power management scheme
for adjacent femtocell networks to reduce interference while
satisfying capacity requirements. The authors considered the
distance-dependent variation of channel gain in the analysis of
network interference and sum capacity. In order to maximize
the sum capacity, a non-convex power optimization problem is
formulated. This non-convex problem is then divided into two
convex problems which is solved by Lagrangian dual theory and
linear programming methods. A multi-objective optimization
problem with mixed integer variables for the joint power con-
trol, base station assignment, and channel assignment scheme in
cognitive femtocell networks is formulated by Torregoza et al.
[81]. The multiobjective optimization problem aims to maxi-
mize the achievable throughput of the system while minimizing
the need for femtocell compensation.



The classification of the objective function into linear or non-
linear gives us a quick overview of the possible ratio of pa-
pers that have the potential of being linearly based. Clearly for
a problem to be linearly based, in addition to linear objective
function, it must also have linearly based constraints. Seeing
that of the 79 papers surveyed only 16 have linearly based ob-
jective function, the number of linearly based problems is def-
initely less than or equal to 16. As for non-linearly based ob-
jective functions we know that the problem will be a non-linear
programming one. It is known that there are useful tools for
solving convex optimization problems (see [8]). However, only
a very limited number of authors declared whether their non-
linear programming problems are convex or non-convex. Most
went straight for heuristics or first declared that their problem
is NP-hard or complex and then using heuristics or special tech-
niques. In that case we assume that their problem is non-convex.
As such most of the non-linear based problems encountered in
the survey can be declared as being non-convex programming
problems, especially if there are zero-one variables involved
then they are non-convex.

V. SURVEY OF TOOLS COMMONLY USED FOR
SOLVING RA PROBLEMS FOR CRN

Unless a problem fits nicely into a well-known and well re-
searched class of optimization problem, we usually have to
carry out some form of approximation or find some bounds. In
this section we discuss the commonly employed techniques and
identify which of them were used in some papers. We also dis-
cuss how effective those techniques were in each case.

A. Exploring and Exploiting Problem Structure

One of the tools commonly used when mathematical methods
are applied to practical problems is that of exploiting a special
structure that may exist to assist in making the problem easier.
Once the special structure is found, if it exists, then special tech-
niques are employed to solve the problem. Here we discuss two
very interesting cases in which the authors found and exploited
a special structure discovered.

The first one is the work of Shu and Krunz [16]. In that paper,
the authors addressed the issues of coordinated channel access
as a joint power control, rate control and channel assignment op-
timization problem. The objective of this optimization problem
is to maximize all of the sum rate of all SUs over all channels.
The objective function is,
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and f is any arbitrary rate-SINR function, Ny is the AWGN and
qg(li)) is received interference over channel m at D(4). The other
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parameters are; h;n the channel gain of link 7 on channel m,
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Pmaz,iy the maximum battery power, r; ' the spectrum effi-

ciency of link ¢ on channel m, and I,L-(m) the set of interfering
CR links.

The first constraint implies that transmission power of link
on channel m cannot exceed the threshold level of power mask,
Pi(m). The second constraint implies that the sum of transmis-
sion power over all the channels cannot exceed the maximum
power level. The third constraint denotes channel allocation pol-
icy. This policy implies that if channel m is being used by link
1, then it cannot be used by any other link that will interfere with
link ¢ on channel m and vice versa.

This optimization problem is an MINLP problem which is
generally NP-hard. To find a solution, the authors cleverly ex-
plored the special structure of the problem. They observed that
actual communication systems only support a finite set of dis-
crete transmission rates. They were able to exploit this special
structure to convert this MINLP problem into a binary integer
programming (BIP) problem. This BIP problem contains only
binary variables and linear objective function along with the
constraints. This transformation also applies to a given data rate
and SINR relationship. The authors have proposed a central-
ized polynomial time linear programming with sequential fix-
ing (LPSF) approximate algorithm for solving the BIP problem.
The authors claimed that the accuracy of their proposed algo-
rithm has been proved through their numerical examples.

It is true that several of the optimization problems encoun-
tered in telecommunication systems, especially wireless and in
particular CRN, are complex and usually of the mixed-integer
NLP types which are often NP-hard. However additional efforts
to seek special structure can sometimes lead to finding more
manageable solution techniques.

A second example is the work of Salameh [29] in which the
objective function looks closely like that of [16], even though
the constraints are not entirely the same. The problem is a
mixed-integer NLP and Salameh [29] also exploited about the
same type of structure observed in [16] and used it to convert
the problem to a mixed-integer LP

Shin, et al. [32] in their work converted a non-convex opti-
mization problem to a geometric programming problem, which
in turn is converted to a convex programming problem. This is
a “double-conversion”, but the main thing is that it allowed the
problem to be cast in a format that is standard — convex pro-
gramming.



Suppose the problem being considered is linear where

flx,y)=c [ ’y‘ } : (42)

where c is a row vector, and also g(x,y) is linear, i.e. can be

written as A and supposing the problem is the size of

matrix A. Some authors [82], [83] were able to find some spe-
cial structures in A and used column generation [84], [85], a
special technique that can capitalize on such structures. Even
though this technique has been used in some telecommunica-
tions research its application in RA for cognitive radio networks
is limited.

B. Linear Programming

Suppose the problem falls into the Linear Programming cat-
egory, i.e. Eq. (1) and Eq. (2) are linear and Constraint (4)
is simply a non-negativity constraint and does not have integer
requirements, then we may employ the well known simplex al-
gorithm or the interior point method [86], [87]. However, the
chances of the problem falling exactly into that category are
very rare. Usually there is a non-linear component and integer
variables. Assuming that the non-linear functions can be well
approximated by linear functions, one may apply mixed inte-
ger programming methods which will be based on Branch and
Bound approach and is discussed in Section V.C. Such problems
can then be solved using LP techniques and the results obtained,
if feasible, become bounds for the true solutions. One exam-
ple in which this approach was adopted is Shi and Hou [13].
They linearized the non-linear constraint, which was the only
non-linear function in the problem and then relaxed the integer
variables. So they obtained some bounds for the problem. Such
bounds are usually not quite tight. Meanwhile we focus on the
cases where the integer variables can be relaxed, i.e. allowed to
assume non-negative real values. Sometimes researchers have
then taken the resulting non-negative real values of the variables
and rounded up or down to give approximate solutions. In an-
other paper Hu, et al. [56] applied the linear programming re-
laxation to an integer linear programming problem. Zhang et
al. [80] transformed their initial non-convex problem formula-
tion into a convex problem by changing the optimized variable
and ignoring some constraints, this is then solved by the La-
grangian dual method. After this, the authors re-consider the
constraints ignored in the first step and formulate a linear pro-
gramming problem to obtain the final solution.

C. Branch and Bound

Branch and Bound is a tool that is applicable to either linear
or non-linear programming problems that are integer or mixed-
integer based, even though it has been popularly used more often
for ILPs and MILPs. Essentially it first relaxes some of the con-
straints of the problem and solves it. If the solution is feasible
for the original problem, then that is the optimal solution. Oth-
erwise the solution provides a kind of bound and the problem
then branches by splitting the problem solution space into two
separate ones (usually by adding new constraints to break some
of the violating constraints). This process results in a tree with

branches of solution space created at each step. Through such
a process a form of feasible solution is obtained. For a detailed
treatment of Branch and Bound see [88]. For most RA problems
the integer component is first relaxed and based on that a solu-
tion is obtained. If the integer conditions have been met then this
solution is the optimal solution desired. Usually the integer vari-
ables have been violated then this solution is only a bound to the
original problem. The next stage is then to partition the solution
space into two, based on one of the violated integer constraints
selected. This is a branch point and at least one of the two prob-
lems resulting (at this node) is solved. The process is repeated at
each of these nodes until a feasible solution to the original prob-
lem is obtained. This solution then serves as a true bound. This
continues until an optimal solution is obtained or, in a more real-
istic situation, until some feasible solutions to the original prob-
lem have been obtained and the best of them serves a bound. It
also provides the gap between it and the relaxed one used as a
measure of quality of the solution. The use of Branch and Bound
has been very popular in this class of problems. Rahulamatha-
van, et al. [11] reformulated their MINLP to an ILP and used
Branch and Bound method to solve it. The decision variable in
their problem is ¢ ,,, which is the number of bits allocated to
the k' secondary user in the n*" sub-carrier. Other papers that
have applied Branch and Bound include, [18], [60] and [12].
The problem with branch and bound method is that one never
knows how long it would take to get a very good bound. For
example, Mitran et al. [12] found that for their MILP problem,
even though Branch and Bound is a good candidate technique
to use, its behaviour was inconsistent. For some example prob-
lems the authors obtained exact optimal results within a time
limit and in other cases the Branch and Bound ran until its time
limit and in some cases it stopped because the enumeration tree
became too large, i.e. there were too many branches. This is
understandable, given that there is a function f(z) in one of the
constraints for which it is not clear how it is found, and its lin-
earity is not established. In another later paper, Mitran et al. [26]
studied a closely related problem which includes what they term
queue-awareness. In that case the optimization problem became
a very large non-linear integer programming problem and they
had to develop heuristics to solve it. However, Shi et al. [61] and
Guan et al. [70] did use Branch and Bound in a creative manner
by complementing it with what they call convex relaxation, an
approach that creates a form of linear relaxation in conjunction
with Branch and Bound. Torregoza et al. [81] used the branch
and bound method for solving their nonconvex problem in a pre-
determined time for a fixed number of variables.

Branch and Cut is a technique that combines Branch and
Bound with some elements of Cutting Plane [89]. It has poten-
tial of working well in some instances where Branch and Bound
is taking too long. When a problem is well suited to Branch and
Bound, but using it leads to inconsistent results or the algorithm
is taking too long to complete, one could consider Branch and
Cut. A candidate problem to revisit using Branch and Cut is the
one in [12].

D. Lagrangian Duality

Lagrangian duality, as mentioned earlier, is based on dualiz-
ing all the major constraints, i.e. other than the non-negativity



constraints, and making sure that the integer constraints are re-
laxed if they are part of the problem. The problem is then
solved using the classical KKT conditions, on the assump-
tion that the relaxed problem is a convex programming prob-
lem. Several papers actually applied this technique, among
them is [5], even though their problem is a non-convex one and
they claim that they were able to obtain an optimal solution.
Other papers include: [28],[40], [41],[43],[44],[49],[58],[68],
[45],[59]1,[751,[761,[77],[79], and [80]. El-Sherif and Mohamed
[71] used this technique to obtain sub-optimal solution to their
problem. They relaxed the integer variables in order to pursue
this solution method.

E. Lagrangian Relaxation

Lagrangian relaxation is a tool made popular by Fisher [9],
[10] and Geoffrion [90]. It involves dualizing some of the con-
straints of an integer linear programming problem. This usu-
ally entails removing some of the constraints to make the prob-
lem easier to work with. An initial value for the dual variables
for those constraints are selected and used in the optimization
problem; those values are usually not good estimates initially,
but through an iterative process the values are adjusted and they
usually converge for well behaved problems. Results from this
always serve as good bounds for the original problem. The
challenges with this method are usually deciding on which con-
straints to dualize and how to select initial values of the dual
variables. Given the power of this method, it is surprising that
it is not used more often for this class of problems. Generally
researchers seem to gravitate towards the Lagrangian duality,
without first assessing the possibility of using Lagrangian re-
laxation. The key difference is that Lagrangian relaxation (LR)
and Lagrangian duality (LD) can be summarized in the follow-
ing. Consider a simple non-linear integer programming prob-
lem which is to maximize z = f(x), s.t. g(x) < by, d(x) <
by, x > 0,x € I*, where x is a vector of k integer variables.
We let the number of constraints in g(x) < b; be n and for
d(x) < bg be m. The LR of this problem, which we call LR(u)
could be, for example

z(u) = max{f(x) + u” (by —d(x));g(x) < by,  (43)

x> 0,x € I*}. (44)

We want to find « that gives an optimal and feasible solution to
this. The Lagrangian duality of this is given as

Zrp = min{z(u);u > 0,u e R™}. (45)

The solution to this problem is an upper bound to the z(u), i.e.
the LR. If in the solution of LR we obtain integral x then the 2, p
is the value of the LR. Often researchers relax the integrality of
x in LD and then apply the KKT conditions as discussed earlier.
As one can see, the LD is a special case of the LR.

F. Heuristics

Heuristics are generally seen as techniques that are based on
logical ideas on how to improve solutions and are problem spe-
cific. It is not quite common to find heuristics that can be gen-
eralized to a group of problems. However they usually do work

very well for the problems that they are designed for. Some ex-
amples of problems in which heuristics were used include: [26],
[35], [6].[201], [51], [52], [501, [53], [54], [57], [65],[69] and [39]
who all developed problem specific heuristics. Guo et al. [19]
developed a heuristic which they described as a greedy algo-
rithm. Actually, it is a heuristic in the same sense as the others.
In another paper Wang, et al. [7] considered an MIP and after
eliminating all possible classical methods and approximations
that can be used to solve it, they resorted to a heuristic method.
Hoang et al. [23] and Hoang et al. [22] formulated their prob-
lem as a form of mixed-integer linear programming problem.
They went ahead and developed what they call a sub-optimal
technique — a heuristic — to solve the problem. It is surprising
that despite considering the structure of the problem they only
ended up with a heuristic instead of a standard approach. Hou et
al.[64] first proved that the binary NLP they had was definitely
NP-hard before embarking on seeking a greedy algorithm.

Metaheuristic methods are those that are based on genetic al-
gorithm, simulated annealing, tabu search, ant colony, particle
swarm, etc., i.e., those that are developed based on some natural
occurring situations. Waheed et al. [27] used both swarm opti-
mization and genetic algorithm. These methods seem to work
for each problem studied, but the idea or knowledge gained are
usually not quite transferable to other problems.

G. Other Methods

Xie et al. [31] modelled their system using stochastic pro-
gramming approach and later solved it as a discrete stochas-
tic programming problem. Shin et al. [32] applied geometric
programming tool, which is a well established approach. In a
special case, Lin et al. [42] used the interior point method, a
technique that is an alternative to the simplex method, but can
also be used for non-linear programming problems, especially
if integer constraints are not an issue. Wang et al. [21] formu-
lated their problem as a binary linear program and designed an
algorithm called directional search to handle the problem. An-
other very interesting technique is the one used by Fan et al. [48]
to handle a non-convex problem. They call it bilevel optimiza-
tion and monotonic program. Zhao et al. [38] used a classical
approximation method to deal with their problem which is the
maximization of a concave function and the constraints are well
behaved. Zhang et al. [36] used goal programming combined
with a heuristic. Zhang et al. [67] on the other hand relaxed the
integer constraints and then applied the gradient descent based
method to solve the problem. This method is a classical ap-
proach used for non-linear programming problems. Tachwali
et al. [66] created an iterative method based on decomposition
to handle their mixed-integer NLP. An et al. [25] used a low-
complexity iteration algorithm based on gradient-assisted binary
search algorithm for solving the resource management problem.

Wang et al. [46] used barrier method and speedup Newton
method to deal with their mixed-integer programming problem
resulting from maximizing overall system throughput. The au-
thors claim the problem was intractable and thus developed a
two-stage method to deal with it

Knapsack problems can be solved using different approaches,
including Branch and Bound and dynamic programming, but
greedy algorithms have been applied in many cases. Zhang et



al. [30] set their problem up as a knapsack problem and used
greedy algorithm for the solution.

Some papers simply set up the optimization problem, did not
seek special structures but went ahead and used known soft-
ware packages to seek solutions. For example, in [14] and [15],
the authors set up their problems as mixed-integer programming
problems and used the software LINGO to obtain solutions.

Table 1 provides a summary of tools used to solve the re-
source allocation problems as found in the literature.

VI. CHALLENGES AND OPEN PROBLEMS

There are several ways to carry out approximations and there
are also issues associated with applying existing knowledge for
RA. In this section we discuss such issues, present the chal-
lenges and suggestions.

A. Linearization

One that leads the way is the linearization type of approxi-
mation. Some expressions are commonly encountered in this
RA class of problems. If they could be properly linearized to be
close to the values obtained from the original expression within
a particular limit and bounds that would make solving this class
of problems much easier. Consider the expression

hmkPmk}

K
Ry = i logy (1 + —=5"),Ym (46)
k=1

2
Lo

This type of expression appears in most RA problems for CRN.
Other than the a,,,;, component of the expression the rest is based
on the well known Shannon limit and it is non-linear in p,,;. It
will appear and re-appear in constraints and sometimes in the
objective functions as long as we are concerned about capacity
and data rates.

Consider a function

f(@) = logy(a + ba). )
We can study its first order Taylor approximation and see when
and within what ranges it does represent the original function
well. If we can do this we might be able to convert some non-
linear programming problems to LP or quadratic programming.
We also know that second order Taylor approximation would
probably be better even though that takes us into the quadratic
optimization class of problems, if they do not involve product
forms. It is well known that quadratic programming has better
potential of getting solved effectively than general NLP. With
recent developing interest in semi-definite programming such
an undertaking may be worthwhile.

Shi and Hou in their paper [13] presented a linearizing ap-
proximation method for the function log, (1 + ). Let d = be
and specifically consider a variable x and the expression

a
log, (1 + gx) (48)
The authors proceeded by defining a variable v which replaces
the expression and then applied what they call three tangential
supports as the approximation which they say is a convex enve-
lope linear relaxation, thereby leading to four constraints instead

of one. Their approximation is not based on Taylor series. What
they did was to replace the expression in (16) with four inequal-
ities as follows:

v — %x <0, (49)

o~ ramma <ow (0 7) - @ e O
o (d+ aaP)€n2x < logy (1 * aCllD> C(d+ Zi)g?ﬂ7

(5D

p gl +agl >0, (52)

P

where P is a known constant and in their case it is the maximum
power, and § = % with

aP aP
A= [log2 (1 * d) - (d+aP)zn2} ’ (53)
and
a a
b= [d£n2 - (d+aP)€n2] ' (54)

Whereas the approximation for linearization itself is cumber-
some to use because it introduces three additional constraints,
the idea is in the right direction. Efforts should be made to im-
prove on this work.

Li et al. [33] also used a clever linearization technique. First
they noticed that their formulation is in the linear form except
for one of their constraints which captures transmission rate be-
tween two nodes. This allowed them to develop an effective
approximation method for solving the problem.

B. Dealing with Fractional Constraints

One class of constraints frequently encountered is the one to
do with minimum SNR requirements for QoS. This is usually of
the form

9iPj
K+ ZVk7$j IkPk

(35)

where g; and p; are the gain and power from user j, K is some
constant usually representing thermal and other factors, and ~
is the minimum SNR required by the users in order to meet the
QoS. This constraint is of the fractional type and does create a
challenge when it also appears in the objective function; other-
wise as a constraint only it can be linearized. Often, however,
when it appears it is usually as a constraint and also as part of an
objective function. Efforts should be directed towards finding
reasonable approximation to this function that makes it easier to
manage. For example in a different type of problem, Abadpour
et al. [91] were able to take advantage of the structure presented
by their problem to come up with a nice replacement format for
this function that made it easier to work with.



Table 1. Summary of tools used to solve RA problems found in literature

] | Linear Objective Function

\ Non-linear Objective Function

Exploring and Exploit- | [16]

ing Problem Structure

[71, [291, [32], [55]

Linear Programming [13], [16], [18], [24] 56], [80]
Branch and Bound [11], [12], [17] 60], [61], [70], [81]
Lagrangian Duality 5], [28], [40], [41], [43], [44], [45],

491, [58], [59], [68], [71], [72],
73], [74], [75], [76], [77], [79],

Lagrangian Relaxation

Heuristics [19], [20], [22], [23] 6], [26], [27], [33], [34], [35], [39],
501, [51], [52], [53], [54], [57],
641, [65], [69]

Other Methods [14], [15], [21], [25] 301, [311, [32], [36], [37], [38],

42], [46], [48], [63], [66], [67],
721, [73], [74]

[
[
[
[
[
[
[47], [62]
[
[
[
[
[
[

C. Effective Use of Lagrangian Relaxation

As pointed out earlier, LR was made popular by Fisher [9],
[10] and Geoffrion [90]. Specifically, it dualizes some of the
constraints, in ILPs and MILPs, which when not in the set of
constraints may make solving the problem easier or provide spe-
cial structures. For example, consider the problem of Section II.
We assume that f(x,y) and g(x,y) are all linear. Suppose Eq.
(2) can be partitioned into two subsets and written as

s.t. gz(xvy) < bl;Z = 1a2a T (56)

gi(xvy)Sbi;i:rl+1arl+2,”'ar; (57)

and the situation is such that without the first v constraints, the
problem may have a structure that makes it easier to solve. We
may then write a new problem as follows

rguyn flx,y)+ ﬁ:l (b —gi(x,y)) (58)
j=

st gi(x,y) <bji=ri+1,r1+2,-- 1 (59)

e >0, k=1,2,--- n, (60)

y; €L, j=1,2,--- ,m. (61)

A;j>0, j=1,2,--- 71, (62)

and the values of \; are estimated based on the knowledge of the
problem and those values are adjusted after each iteration until
a very good bound has been found.

This approach helps tremendously if one is able to identify
such a set of constraints that can be dualized. The common chal-
lenges with this approach are:

1. identifying the most appropriate constraints to dualize,

2. selecting the initial dual variables corresponding to those
constraints,

3. determining how to adjust the values of those dual variables
at each iteration. Even though the sub gradient method was sug-
gested in [9], in some instances we have found more efficient
approaches [92].

Efforts should be made to determine how to make progress in
this area regarding optimization problems for RA in cognitive
radio networks. Some of the constraints appear commonly in
this class of problems and theoretical research efforts should be
pursued in this respect.

D. Decomposition Algorithms

Decomposition algorithms attempt to capitalize on some spe-
cial structures of the problem, and then decompose it to several
smaller problems that become manageable. As an example, con-
sider the following. Suppose Eq. (1) can be written as

n}r{{iyn z = fi(x) + fa(y), (63)
and Eq. (2) written as
9i(x) < b;, i=1,2,--- kK, (64)
9i(y) <b;, i=k+1k+2,---,r—1, (65)
and
gr(%,¥) = gr1(x) + gra(y) < by (66)

We could use a relaxation approach and transform the problem
to

D;llyﬂ zr, = f1(x) + f2(y) + Arlbr — gr1(%) + gr2(y)], (67)

(68)



gi(y)gbi, i:k—l—l,]{/‘—‘rQ,“-,T—l, (69)
plus the standard non-negativity and appropriate integer con-
straints, where )\, is the associated dual variable to be deter-
mined.

It is clear that the objective function can now be written as
two loosely independent parts with the only connecting param-
eter being the dual variable A, which can be used effectively in
assessing the convergence of any algorithm implemented for the
problem. Hence this problem can be decomposed into two sep-
arate problems that are, in theory or superficially, independent,
as follows

Problem Py :
mxin 2 (1) = f1(x) = A\rgr1(x) (70)
st gi(x) <b;, i=1,2,-- k, (71)
and
Problem P :
myin z1(2) = fa(y) — Argra(y) (72)
st gi(ly) <b, i=k+1,k+2,---,r—1. (73)

Now each of these can be solved individually and the solutions
combined later. This general idea was used by [55]. Xiang et
al. [52] also used a different type of decomposition which is re-
ferred to as the Primal-Dual decomposition. Xu et al. [34] found
that their problem was not a convex optimization (the objective
function was neither convex nor concave) but that by using the
idea of dual-decomposition the problem became manageable.

There are other well established decomposition tools such as
Bender’s decomposition which are very suitable to some class of
non-linear problems that are decomposable or near decompos-
able and the Dantzig-Wolfe decomposition which is more appro-
priate for linearly based optimization and does use Column Gen-
eration tools partially. Both Dantzig-Wolfe decomposition and
Column Generation are mainly for linear programming based
problems. Such types of problems rarely occur in RA for CRN,
except in the few cases mentioned earlier and even then are ap-
proximations. However, Benders decomposition originally de-
veloped in [93] for linear program based problems was later ex-
tended to non-linear based problems by Geoffrion [94]. Ben-
ders decomposition can be used also for stochastic programming
problems.We briefly present Bender’s decomposition for solv-
ing mixed integer nonlinear programming problem. We adapt
the presentation approach in [95].

We present Bender’s decomposition for mixed integer nonlin-
ear programming problem. Consider the problem presented in
Eq. (1) to Eq. (4), and for simplicity without loss of generality
we make b = 0. Let the problem be re-written in the following
form:

min 2 = f(x,y) (74)

X,y

st g(x,y) <0 (75)
x € R, (76)
y € 2™ 7

On the assumption that f(x,y) and g(x,y) are convex with
respect to x, then for a fixed y € Z™ the problem can be de-
composed into two subproblems; 1) Primal and 2) Master as
follow:

Primal
min  z = f(x,¥) (78)
st. g(x,y) <0 (79)
x € R, (80)
Master
min max(min {f(x.y) +u"g(xy)] 6D
s.it. min{\'g(x,y)} <0, VA€A, (82)

xeR”

where A = {A >0, > .\ =1}

This is just one form of the Master. Geoffrion [94] wrote it in
a slightly different way. One then solves the Primal and master
alternately until convergence or desired gap is achieved. The
details of how to implement the decomposition can be found in
the references cited in [94].

The idea of decomposition is an area that needs to be studied
more in the future in terms of optimization for RA in cognitive
radio networks. These techniques have great potential of making
some problems less complex to analyze.

Few papers in the literature have used some versions of de-
compositions. For example, [72],[73], and [74] have all used
some form of decomposition, to mention just few. The most
common type of decompositions we came across in the litera-
ture involve decomposing the problem into 1) power allocation
and 2) sub-channel allocation. Occasionally the power alloca-
tion component would have to be further approximated by, may
be Lagrangian dual problem. In any case it makes the problem
manageable.

E. Column Generation

This is another technique that has great potential when it is
applied in appropriate problems. It was briefly discussed in
Section V(A), as an example of a technique that explores and
exploits special structures. It has been used more commonly for
optimization problems with linearly based constraints, usually
linear programming which have some special structures associ-
ated with matrix A of the constraints. For example, consider the



case where all functions in Eqgs (1) and (2) are linear, and for
simplicity let us write them as classical MILP of the form

X
n;’z;x zc{y] (83)
A~ 4
s.t [y} <b, (84)

x>0, k=1,2,---,n; y; €Z,j=12,---,m.
(85)

Here A is a matrix associated with the constraints. There are
some instances when obtaining the matrix A could be onerous,
either because it is too large or hard to generate all the columns.
A very good example of where this can be found is in cutting
stock problems [84] and [85]. Suppose it is laborious to find all
the columns of A because it is large. If there is a structure or a
pattern associated with A such that for each column a; of the
matrix A there is a row vector d; and a constant r; such that
dja; < r;, then we can use the idea of the simplex algorithm to
determine the entering column (variable) by finding which vari-
able j minimizes chBflaj — ¢, subject to dja; < r;. Here
cpy is the vector of the coefficients, in the objective function,
of the current basic solution, B. The matrix B is the associated
portion of matrix A and c; is the objective function coefficient
associated with variable j.

This idea was used in a communication problem by [83] for
scheduling and power control for vertical spectrum in STDMA
wireless networks. The use of this technique for resource allo-
cation problems in cognitive radio networks should be explored
more. The original papers that introduced column generation
for solving communication problems are [84] and [85].

As a matter of fact, the Dantzig-Wolfe decomposition algo-
rithm does use some aspects of column generation in its scheme.
We believe that column generation applications to complex RA
problems in CRN have not received as much attention as they
should.

Finally, we believe that trying to find ways of managing com-
plexity in MIP is one of the keys to effectively dealing with RA
issues for CRN. To that we suggest exploring the idea of fixed
or constant number of variables proposed in [96] and [97].

VII. CONCLUSIONS

In this paper we carried out a survey of papers that developed
methods for RA in CRN and observed that most of the opti-
mization problems encountered did not fit into the classical con-
vex programming problems. Hence classical and conventional
methods available in the literature could not be used for solving
them. Several authors have been creative in how they used the
knowledge of their problems together with the classical methods
in order to come up with good solutions. We also pointed out the
challenges in this class of problems, summarized what we clas-
sify as open problems and suggested some research directions
in this area.

It is clear that because several allocation processes lead to a
decision variable that is binary in nature, i.e. assign a channel

or not, a zero-one programming is common to nearly all RA
problems in addition to power allocation which is a real vari-
able. Others involve deciding on the number of channels to as-
sign which is integer and/or power allocation, which is not inte-
ger. Hence most of the problems are in a form of mixed integer
programming, which are usually solved by Branch-and-Bound,
cutting plane method, or problem based heuristics. Generally,
the first of these techniques is more commonly used. Branch-
and-Bound, even though sometimes computationally challeng-
ing, does provide very good and well founded bounds and are
thus more scientifically preferred. However, very often heuris-
tics which are developed based on the knowledge of the specific
problem are usually easier to implement and do sometimes give
good results, as can be observed from the literature. Our sug-
gestion here is that one may pursue a heuristic initially, if nec-
essary, and then quickly develop a branch-and-bound result to
assess the quality of the heuristic for each example.

Generally, if all the problems were of ILP types then the stan-
dard approach would be to apply some form of relaxation, either
LR or LP relaxation. With LP relaxation, we are only able to
obtain bounds, we would still need to solve the ILP using some
other method. However with the LP relaxation we would be able
to obtain a bound very quickly. With Lagrangian Relaxation, we
try to dualize some of the constraints. This method gives us ac-
ceptable solutions and their bounds. The challenges with this
approach usually are: 1) deciding on which constraints to dual-
ize and 2) selecting the starting dual variables to use in the prob-
lem. These two challenges, in our opinion, form a basis for one
of the open problems in this field. Selection of which constraints
to dualize should be based on the structure of the problem and
also knowledge of the features of the problem. Secondly, select-
ing the initial values of the dual variables can be achieved based
on the importance of a constraint and to what extent one thinks
or wants it to be binding. Coming up with a unified approach
for dealing with these two issues will go a long way to improv-
ing methods for RA for CRN. Some problems have been solved
by applying Lagrangian Duality and then using the KKT based
tools. While these methods are well founded scientifically one
has to search for special tools for the computational component
of the solution.

The three key directions we feel researchers should try and
focus on in looking for efficient and effective solutions are: LR,
Decomposition methods, and Linearization of functions to help
turn CRN problems to LP types. However, most important is
that researchers should take the time to explore possibilities of
useful structures in formulated problems before embarking on
just developing heuristics.
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