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Abstract

In this paper the non-central bivariate Kummer-beta type IV distribution is introduced and derived

via the Laplace transform of the non-central bivariate beta distribution by Gupta et al. (2009). We focus

on and discuss the central bivariate Kummer-beta type IV distribution; this distribution is a special case

of the non-central bivariate Kummer-beta type IV distribution and extends the popular Jones’ bivariate

beta distribution. The probability density functions of the product and the ratio of the components of

the central bivariate Kummer-beta type IV distribution are also derived and we provide tabulations of the

associated lower percentage points as well as some upper percentage points that are useful in reliability.
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1 Introduction

We explicitly derive the non-central bivariate Kummer-beta type IV distribution via the Laplace

transform of the non-central bivariate beta distribution by Gupta et al. (2009); this latter distribution may

be regarded as a generalization of the popular Jones’ bivariate beta distribution, which was independently

proposed by Jones (2001) and Olkin and Liu (2003) and is a special case of models proposed by Libby and

Novick (1982) and Sarabia and Castillo (2006). The central bivariate Kummer-beta type IV distribution

follows from the non-central bivariate Kummer-beta type IV distribution by setting the non-centrality

parameter, , equal to zero (i.e.  = 0). The central bivariate Kummer-beta type IV distribution is a

special case of the bimatrix variate Kummer-beta type IV distribution defined by Bekker et al. (2010).

Kummer-type distributions form an integral part of statistical distribution theory and a number of

these distributions have been proposed. In the univariate case, for example, Armero and Bayarri (1997)

introduced the Kummer-gamma distribution (which is an extension of the well-known gamma distribu-

tion). Ng and Kotz (1995) subsequently examined some properties of the Kummer-gamma distribution,

introduced the Kummer-beta distribution (which is an extension of the familiar beta type I distribution)

and also proposed and studied the multivariate Kummer-gamma and multivariate Kummer-beta families

of distributions. In the matrix variate case, there is the work by Gupta et al (2001), Nagar and Gupta

(2002) and Nagar and Cardeño (2001). These authors proposed and studied matrix variate generaliza-

tions of the multivariate Kummer-beta and the multivariate Kummer-gamma families of distributions,

which are called the matrix variate Kummer-Dirichlet (or the matrix variate Kummer-beta) and the ma-

trix variate Kummer-gamma distributions. It should be noted that these Kummer distributions get their

name from the fact that their normalizing constants are all defined in terms of one of the two so-called

Kummer functions (see e.g. Rainville, 1960, p. 124-126).

The distributions of the product and the ratio of the components of independent and dependent

random variables arise in various applications (see e.g. Nagar et al. (2009), Gupta and Nadarajah

(2008), Joarder (2007), Pham-Gia and Turkkan (2002) and Pham-Gia (2000)). In this paper, we also

study the product and the ratio of the central bivariate Kummer-beta type IV distribution.

The benefits of introducing the central bivariate Kummer-beta type IV distribution and the distrib-

utions of the product and the ratio of its components will be discussed and demonstrated by graphical

representations of their density functions.

The rest of this paper is organized as follows: In section 2 we derive the joint probability density

function (pdf) (1 2;  ) of the non-central bivariate Kummer-beta type IV distribution and its central
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counterpart with pdf (1 2;  = 0 ). Because (1 2;  ) is a finite mixture of (1 2;  = 0 ),

we focus on the central bivariate Kummer-beta type IV distribution and its properties. Then, the pdf’s

of the marginal distributions () for  = 1 2, the pdf’s of the conditional distributions (|) for
  = 1 2 and  6=  and the product moment (

1

2) of the central bivariate Kummer-beta type IV are

derived. In section 3 we derive the distributions of the product  = 12 and the ratio  =
1

2
of the

correlated components of the central bivariate Kummer-beta type IV distribution. In section 4 we show

the relationship between the central bivariate Kummer-beta type IV distribution and Jones’ bivariate

beta type I distribution (and their associated properties). In Section 5 we investigate the influence of the

shape parameter, , of the central bivariate Kummer-beta type IV distribution. Thus, its effect on the

correlation between the components of this distribution as well as its effect on the pdf’s of (12), the

marginal of 1 and the ratio  will be shown. We complete the paper with an application by looking

at some percentage points.

2 The Bivariate Kummer-Beta type IV distribution

In this section we derive the pdf of the non-central bivariate Kummer-beta type IV distribution

(1 2;  ). The central bivariate Kummer-beta type IV distribution, which is obtained by setting

the non-centrality parameter equal to zero (i.e.  = 0), will be used to derive the pdf’s of the marginal

distributions () for  = 1 2, the pdf’s of the conditional distributions (|) for   = 1 2 and  6= 

and the product moment (
1


2)

The pdf (1 2;  ) is derived via the Laplace transform (a technique used in Marshall and Olkin

2007, p 260) of the non-central bivariate beta distribution by Gupta et al. (2009), which has pdf

 (1 2; ) =
−−11 −12 (1− 1)

+−1
(1− 2)

+−1

(  ) (1− 12)
++ 11

µ
+ + ; ;

(1− 1)(1− 2)

1− 12

¶
(1)

or, equivalently,

 (1 2; ) = 

∞X
=0

−

!
−11 −12 (1− 1)

++−1
(1− 2)

++−1
(1− 12)

−(+++)
(2)

for 0 ≤ 1 2 ≤ 1,     0 and where −1 = (  +) =
Γ()Γ()Γ(+ )

Γ(+ + + )
denotes the normalizing

constant (Gupta et al, 2009) and  ≥ 0 denotes the non-centrality parameter.
Note that, when  = 0 we obtain Jones’ bivariate beta distribution, which has pdf

 (1 2;  = 0) = −11 −12 (1− 1)
+−1

(1− 2)
+−1

(1− 12)
−(++)

(3)

for 0 ≤ 1 2 ≤ 1,     0 and where −1 = (  ) =
Γ()Γ()Γ()

Γ(+ + )
denotes the normalizing

constant (Jones, 2001). In this latter case (i.e. when  = 0), 1 and 2, each have a standard beta type

I distribution, i.e. 1 ∼ ( ) and 2 ∼ ( ) over 0 ≤ 1 2 ≤ 1.
Also, note that, the pdf of the non-central bivariate beta distribution in (2) is expressed as an infinite

mixture of central bivariate distributions (i.e. Jones’ bivariate beta distribution); this alternative expres-

sion (see (2))simplifies the derivation of the non-central bivariate Kummer-beta type IV distribution.

Theorem 1

The pdf of the non-central bivariate Kummer-beta type IV distribution is given by

 (1 2;  ) = 

∞X
=0



!
−11 −12 (1− 1)

++−1
(1− 2)

++−1
(1− 12)

−(+++)
−(1+2)

(4)

where 0 ≤ 1 2 ≤ 1,     0,  ≥ 0, −∞   ∞ and the normalizing constant  is given by

−1 = −
∞X
=0



!

Ã ∞X
=0

(+ + + )

! ( (+ +  + ) (+ +  + ))
−1

×11 (+ ; + + + + ;−) 11 (+ ; + + + + ;−) ) (5)
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where () denotes the beta function, 11() denotes the confluent hypergeometric function (Gradshteyn,

2007, Section 9.2, p 1022) and () is the Pochhammer symbol defined as
Γ(+)

Γ()
.

This distribution is denoted as (12) ∼  (    ) 

Proof

Apply the Laplace transform on the pdf  (1 2; ) i.e. the non-central bivariate beta distribution by

Gupta et al. (2009) as given in (2).

 () =

Z 1

0

Z 1

0

−(1+2)(1 2; )12

= −
∞X
=0



!

Ã ∞X
=0

(+ + + )

!

Z 1

0

+−12 (1− 2)
++−1−2

×
Z 1

0

+−11 (1− 1)
++−1−112

¶
= −

∞X
=0



!

Ã ∞X
=0

(+ + + )

!

Z 1

0

+−12 (1− 2)
++−1−2

×11 (+ ; + + + + ;−)
( (+ +  + ))

−1 2

!

= −
∞X
=0



!

Ã ∞X
=0

(+ + + )

! ( (+ +  + ) (+ +  + ))
−1

×11 (+ ; + + + + ;−) 11 (+ ; + + + + ;−))

The above result is obtained by expanding the term (1− 12)
−(+++)

as a power series into

∞X
=0

(+++)

1


2

!

and then using the integral representation of the confluent hypergeometric function, 11() (Gradshteyn,

2007, Eq 3.383, p 347).

Using the Laplace transform to obtain the normalizing constant, we define the non-central bivariate

Kummer-beta type IV distribution with pdf as

(1 2;  ) = 

∞X
=0



!
−11 −12 (1− 1)

++−1
(1− 2)

++−1
(1− 12)

−(+++)
−(1+2)

with

−1 =  ()

= −
∞X
=0



!

Ã ∞X
=0

(+ + + )

! ( (+ +  + ) (+ +  + ))
−1

×11 (+ ; + + + + ;−) 11 (+ ; + + + + ;−)) 

¥

Corollary 1

The pdf of the central bivariate Kummer-beta type IV distribution is obtained by substituting  = 0 in (4)

and (5) and is given by

 (1 2;  = 0 ) = −11 −12 (1− 1)
+−1

(1− 2)
+−1

(1− 12)
−(++)

−(1+2) (6)

where 0 ≤ 1 2 ≤ 1,     0 −∞   ∞ and the normalizing constant  is given by
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−1 =
∞X
=0

(+ + )
!

11 (+  + + + ;−) 11 (+  + + + ;−)
( (+  + ) (+  + ))

−1 (7)

where () denotes the beta function, 11() denotes the confluent hypergeometric function (Gradshteyn,

2007, Section 9.2, p 1022) and () is the Pochhammer symbol defined as
Γ(+)

Γ()
.

This distribution is denoted as (12) ∼  (   ) 

Note the following:

1. The central bivariate Kummer-beta type IV distribution may also be obtained by substituting  = 1

in the pdf of the bimatrix variate Kummer-beta type IV distribution defined by Bekker et al. (2010)

(see Section 5.3 of their article). We, however, derived the bivariate case explicitly in the light of

the work by Balakrishnan and Lai (2009) and more specifically as an extension of Jones’ bivariate

beta distribution also discussed in Balakrishnan and Lai (2009, p 379-381).

2. Balakrishnan and Lai (2009, p 377-378) also give various applications for the bivariate beta distrib-

ution which could possibly be extended to the Jones’ bivariate beta distribution and the bivariate

Kummer-beta type IV distribution. For example, the ratio of the components of bivariate beta

distributions is often used in the context of reliability theory in the stress-strength model. The

central bivariate Kummer-beta type IV distribution can easily be extended to this application as is

done at the end of Section 5.

3. In the rest of the paper and in subsequent derivations of the pdf’s of the product and the ratio we

will focus on the central bivariate Kummer-beta type IV distribution, since the non-central bivariate

Kummer-beta type IV distribution is given as an infinite mixture of central bivariate Kummer-beta

type IV distributions (see (4) and (6)).

4. The infinite sums in (5) and (7) will converge even for relatively large values of .

Theorem 2

If (12) ∼  (   ), the marginal pdf of 1 is given by

(1) = −11 (1− 1)
+−1−1 ( + )Φ1 ( + +  + +   1) (8)

= −11 (1− 1)
+−1−1

∞X
=0

(+ + ) 

1

!

11 (+ ; + + + ;−)
( (+  + ))

−1 (9)

where 0 ≤ 1 ≤ 1     0 () denotes the beta function, Φ1() denotes the confluent hypergeometric
series of two variables (Gradshteyn, 2007, Eq 9.261, p 1031) and K is defined in (7).

Proof

Using (6), the first representation of (1) given in (8), is obtained by using the integral representation

of the confluent hypergeometric series of two variables, Φ1() (Gradshteyn, 2007, Eq 3.385, p 349):

(1) = −11 (1− 1)
+−1−1

1Z
0

−12 (1− 2)
+−1(1− 12)

−(++)−22

= −11 (1− 1)
+−1−1 ( + )Φ1 ( + +  + +   1) 

The second representation of (1) given in (9), is obtained by expanding the term (1− 12)
−(++)

in (6) as a power series into

∞X
=0

(++)

1


2

!
, hence

(1) = −11 (1− 1)
+−1−1

∞X
=0

(+ + )

1

!

1Z
0

+−12 (1− 2)
+−1−22
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and (9) follows directly by using the integral representation of the confluent hypergeometric function,

11(). ¥

Equation (9) is more useful (in the sense that it is easier to implement and/or program) in computer

packages such as Mathematica when we want to graph the pdf () for  = 1 2 as the 11() is a built-in

routine.

Note that, the marginal pdf of2 is obtained by substituting 2 for 1 in (8) and (9) and interchanging

the parameters  and .

Theorem 3

If (12) ∼  (   )  the conditional pdf of 2|1 is given by

(2|1) = −12 (1− 2)
+−1 (1− 12)

−(++)
−2 (10)

where 0 ≤ 2 ≤ 1,     0 and the normalizing constant  is defined as

−1 =  ( + )Φ1 ( + +  + +   1) 

Proof

Using the joint pdf  (1 2;  = 0 ) in (6) and the marginal pdf (1) in (8), expression (10) for the

conditional pdf of 2|1 follows directly, i.e. (2|1) = (12;=0)

(1)
. ¥

Note that the conditional pdf of 1|2 is obtained by interchanging the variables 1 and 2 and the

parameters  and  in (10).

Theorem 4

If (12) ∼  (   )  the product moment i.e.  (
1


2)  equals



∞X
=0

(+ + )
!

11 (+  +  + + +  + ;−) 11 (+  +  + + +  + ;−)
( (+  +  + ) (+  +  + ))

−1

= ((   0 0))
−1 ×(    ) (11)

where

(    ) =

∞X
=0

(+ + )
!

11 (+  +  + + +  + ;−) 11 (+  +  + + +  + ;−)
( (+  +  + ) (+  +  + ))

−1

(12)

and (   0 0)−1 =  as defined in (7).

Proof

From (6), expanding the term (1− 12)
−(++)

as a power series into

∞X
=0

(++)

1


2

!
and using the

integral representation of the confluent hypergeometric function, 11(), we obtain the product moment

as

 (
1


2)

= 

∞X
=0

(+ + )

!

Z 1

0

++−12 (1− 2)
+−1−2

Z 1

0

++−11 (1− 1)
+−1−112

= 

∞X
=0

(+ + )

!

11 (+  + ; + + +  + ;−)
 (+  +  + )

−1

Z 1

0

++−12 (1− 2)
+−1−22

= 

∞X
=0

(+ + )

!

11 (+  + ; + + +  + ;−) 11 (+  + ; + + +  + ;−)
( (+  +  + ) (+  +  + ))−1

= ((   0 0))
−1 ×(    )
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with (    ) as defined in (12). ¥

The estimation of the parameters of the bivariate Kummer-beta type IV distribution (i.e. , ,  and

) is an important issue. However, it is currently being investigated and will be reported elsewhere as

it is beyond the scope of this paper.

3 Distribution of the ratio and product of the components

In this section we derive exact expressions for the pdf’s of the product and ratio of the correlated

components of the central bivariate Kummer-beta type IV distribution i.e.  = 12 and  = 1

2
, in

terms of Meijer’s G-function (see Mathai, 1993, Definition 2.1, p 60) using the Mellin transform and the

inverse Mellin transform (see Mathai, 1993, Definition 1.8, p 23).

Theorem 5

If (12) ∼  (   ) and we let  = 12 and  =
1

2

, then the pdf’s of  and  are

given by

1.

() = Γ (+ )Γ (+ )

∞X
=0

∞X
=0

∞X
=0

(+ + )
(−)+
!!!


20
22

µ


¯̄̄̄
1 2
1 2

¶
for 0 ≤  ≤ 1 (13)

where

1 = + + +  +  − 1 2 = + + +  +  − 1
1 = +  +  − 1 2 = +  +  − 1

2.

() = Γ (+ )Γ (+ )

∞X
=0

∞X
=0

∞X
=0

(+ + )
(−)+
!!!


11
22

µ


¯̄̄̄
1 2
1 2

¶
for  ≥ 0 (14)

where

−1 = +  +  2 = + + +  +  − 1
1 = +  +  − 1 −2 = + + +  + 

with  as defined in (7).

Proof

1. Setting  =  =  − 1 in (11) and using the series representation of the confluent hypergeometric
function, 11() (Gradshteyn, 2007, Section 9.21, p 1023), we obtain an expression for the Mellin transform

of (1 2;  = 0 ) as

()

= (−1) =  ((12)
−1

)

= ((   0 0))
−1 ×(   − 1 − 1)

= 
Γ(+ )Γ(+ )

Γ(+ + )

∞X
=0

∞X
=0

∞X
=0

Γ(+ + + )
Γ (1 + )Γ (2 + )

Γ (1 + )Γ (2 + )

(−)+
!!!

with

1 = + + +  +  − 1 2 = + + +  +  − 1
1 = +  +  − 1 2 = +  +  − 1
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Using the inverse Mellin transform, the density of the product of the components of (1 2;  = 0 )

i.e.  in terms of the Meijer’s G-function is given by:

() = 
Γ(+ )Γ(+ )

Γ(+ + )

∞X
=0

∞X
=0

∞X
=0

Γ(+ + + )
(−)+
!!!

1

2

Z 2Q
=1

Γ
¡
 + 

¢
2Q

=1

Γ ( + )

−

= 
Γ(+ )Γ(+ )

Γ(+ + )

∞X
=0

∞X
=0

∞X
=0

Γ(+ + + )
(−)+
!!!


20
22

µ


¯̄̄̄
1 2
1 2

¶

2. Setting  =  − 1 and  = 1 −  in (11) and using the series representation of the confluent

hypergeometric function, 11(), we obtain an expression for the Mellin transform of (1 2;  = 0 )

as

()

= (−1) = 

Ãµ
1

2

¶−1!
= ((   0 0))

−1 ×(   − 1 1− )

= 
Γ(+ )Γ(+ )

Γ(+ + )

∞X
=0

∞X
=0

∞X
=0

Γ(+ + + )
Γ (1− 1 − )Γ (1 + )

Γ (1− 2 − )Γ (2 + )

(−)+
!!!

with

−1 = +  +  2 = + + +  +  − 1
1 = +  +  − 1 −2 = + + +  + 

Similarly, using the inverse Mellin transform, the density of the ratio of the components of (1 2;  =

0 ) i.e.  in terms of the Meijer’s G-function given by (14) follows. ¥

4 Relationship with other distributions

In this section we show the relationship between the central bivariate Kummer-beta type IV distri-

bution and Jones’ bivariate beta distribution and the relationships between the associated properties of

these distributions e.g. the distributions of the product and the ratio of their correlated components.

These relationships follow when we set  = 0 i.e. the additional parameter that we have introduced in

the case of the central bivariate Kummer-beta type IV distribution.

1. If we set  = 0 the marginal pdf (1) simplifies to the standard beta type I pdf i.e. 1 ∼
 ( ).

2. If we set  = 0 the pdf (1 2;  = 0 ) of the central bivariate Kummer-beta type IV distribution

reduces to the pdf  (1 2;  = 0) of Jones’ bivariate beta distribution. This shows, as mentioned

earlier, that  (1 2;  = 0) may be regarded as a special case of (1 2;  = 0 ).

3. If we set  = 0 the pdf’s of () and () (see (13) and (14)) simplify to the pdf’s of the product

and the ratio of the components of Jones’ bivariate beta distribution derived by Nagar et al (2009).
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5 Shape analysis and computations

In this section we illustrate the effect of the parameter  on the shape of the central bivariate

Kummer-beta type IV density, the marginal density, the density of  = 1

2
as well as on the correlation

between 1 and 2. We provide tabulations of the percentage points of  = 1

2
 The programming

was done by making use of built-in routines of the package Mathematica.

Figures 1 and 2 illustrate the effect of the parameter  for  = −11 0 and 11 on the central bivariate
Kummer-beta type IV pdf (see (6)) for different choices of the parameters   and ; these two figures may

be compared to Figure 1 of Olkin and Liu (2003). Figure 2 in this paper also contains the contour plots

for easy comparison. We note that the domain of the graphs in Figure 1 and 2 are all R2 : [0 1]× [0 1].
Considering panels (i)(a), (i)(b) and (i)(c) in Figure 1 we see that the parameter  shifts the bell of

the density. The correlations between 1 and 2 corresponding to the three values of  are 070399,

0607467 and 0506187, respectively. Looking at panels (ii)(a), (ii)(b) and (ii)(c) in Figure 1, we see

that the parameter  heightens and lowers the graph. The maximum height is obtained for  = 11 at

about 10, while the minimum is obtained for  = 11 at about 25. The correlations between 1 and 2

corresponding to the three values of  are 0424531, 0346873 and 0263492, respectively.

(i)(a) (ii)(a)

(i)(b) (ii)(b)

(i)(c) (ii)(c)

Figure 1: Bivariate Kummer beta type IV density function for (i)  = 2,  = 5,  = 3; (ii)  = 1,  = 1,  = 2.

The 3 panels in each column are: (a)  = −11; (b)  = 0; (c)  = 11
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In Figure 2 we observe the same results as in panels (i)(a), (i)(b) and (i)(c) of Figure 1. The bell of

the density moves towards the origin for positive values of  and away from the origin for negative values

of , as is also easily seen in the contour plots. The correlations between 1 and 2 corresponding to

the three values of  are 0535713, 0490536 and 0427197, respectively.

(i)(a) (i)(b)

(ii)(a) (ii)(b)

(iii)(a) (iii)(b)

Figure 2: Bivariate Kummer beta type IV density function (a) and contour plots (b) for (i)  = −11; (ii)
 = 0; (iii)  = 11. The parameter values are  =  =  = 2

Figure 3 illustrates the effect of the parameter  ∈ [−10 10] on the correlation between 1 and 2

using Equation 11. We see that: (i) the parameter  can both increase and decrease the correlations

for different values of ,  and  and (ii) we can obtain a wide range of correlations between 0 and 1

- depending on the values of , ,  and . The correlation cannot be negative because the central

bivariate Kummer-beta type IV distribution is totally positive of order 2 (denoted TP2). Balakrishnan

and Lai (2009, p 115) define a bivariate distribution to be TP2 if

(1 1)(2 2) ≥ (1 2)(2 1) (15)

for 1  2 1  2 and where ( ) denotes the pdf of the particular bivariate distribution.

In order to prove that the pdf (1 2;  = 0 ) is TP2, we substitute (1 2;  = 0 ) in (15).

We note that (1 1;  = 0 )(2 2;  = 0 ) ≥ (1 2;  = 0 )(2 1;  = 0 ) if and only
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if (1− 11) (1− 22) ≤ (1− 12) (1− 21), which always holds. We, therefore, conclude that the

central bivariate Kummer-beta type IV distribution is TP2 which implies that it is also positive quadrant

dependent (denoted PQD), which in turn implies that the components 1 and 2 are always positively

correlated (Balakrishnan and Lai, 2009, p 116).

- 10 - 5 0 5 10
y

0.2

0.4

0.6

0.8

1.0
Corr

Figure 3: Correlation between 1 and 2. The five curves are: thick solid line  = 1,  = 1,  = 10; medium

solid line  = 2,  = 4,  = 5; thin solid line  = 05,  = 09,  = 01; dashed line  = 25,  = 4,  = 05;

dotted line  = 01,  = 05,  = 5.

The influence of the parameter  on the corresponding marginal density (1) (see Equation 9) is

shown in Figure 4. The solid line in each panel is the pdf of the beta type I distribution. In all four these

panels the domain is R : [0 1]. The four panels represent four of the more frequently found pdf shapes,
namely symmetric, u-shaped, negatively skewed and positively skewed. In panel (i) the symmetric beta

pdf is pushed a little off center by the parameter  i.e. to the left for negative  and to the right for

positive . In panel (ii) the symmetric u-shaped beta pdf is also pushed a little skew by the parameter

. In panel (iii) we see that the parameter  changes the kurtosis of the pdf i.e. positive  decreases

the kurtosis while a negative  increases the kurtosis. In panel (iv), the effect of the parameter  is to

make the pdf a little steeper or flatter.
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0.2 0.4 0.6 0.8 1.0
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(i) (ii)

0.2 0.4 0.6 0.8 1.0
x1

1

2

3

4

5

mHx1L

0.2 0.4 0.6 0.8 1.0
x1

1

2

3

4

mHx1L

(iii) (iv)

Figure 4: Marginal density of 1 for (i)  = 3,  = 3,  = 3; (ii)  = 05,  = 05,  = 05; (iii)  = 4,  = 4,

 = 1; (iv)  = 1,  = 1,  = 3. The three curves in each panel are: dashed line  = −11, solid line  = 0,
dotted line  = 11.

Figure 5 illustrates the shape of the density of  = 1

2
(see Equation 14) for the case  = 1  =  = 2

and  =  =  = 2 for different values of . The domain for these graphs is R : [0∞]. In panel (i) we see
that the value of  mostly affects the left tail of the pdf, while the right tail remains basically unchanged.

It would seem that the value of  does actually have an effect on the shape of the pdf. In panel (ii) we

see that the value of  only changes the kurtosis with a positive  decreasing kurtosis and a negative 

increasing kurtosis.

1 2 3 4
r

0.2

0.4

0.6

0.8

1.0

wHrL

1 2 3 4
r

0.2

0.4

0.6

0.8

wHrL

(i) (ii)

Figure 5: The pdf of the ratio  =1

2
for (i)  = 1  =  = 2 and (ii)  =  =  = 2. The three curves in each

panel are: dashed line  = −11, solid line  = 0, dotted line  = 11.

The percentage points  for 0    1 of  are obtained numerically by solving the equation

Z
0

() = 

Evidently, solving the above integral involves the computation of Meijer’s G-function. We used the

build-in routines of the package Mathematica. Table 1 provides the numerical values of  for  = −11
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0 11 and  = 001 0025 005 01 for the cases  = 1  =  = 2 and  =  =  = 2 Similar tabulations

can be derived for the percentage points  for 0    1 of  = 12; this is also true for other

values of the parameters as well as the upper percentiles. We see that the percentage points in Table 1

confirm the shapes of the pdf’s in Figure 5. For example, when  = 1  =  = 2, the first percentile

(i.e.  = 001) values decrease when  changes from negative to positive, which is confirmed in Figure 5

panel (i) where the dotted line ( = 11) is highest and the dashed line ( = −11) the lowest for small
values of .

a b c ψ α = 001 0025 005 01

1 2 2 −11 001926 004774 009413 018303

1 2 2 0 001250 003127 006261 012552

1 2 2 11 000925 002322 004681 009511

2 2 2 −11 019660 030078 041009 055136

2 2 2 0 015131 023798 033449 046875

2 2 2 11 012233 019555 028012 040378
Table 1: The lower percentage points  of 

The stress-strength model in the context of reliability is a well-known application of various bivariate

beta distributions. This model describes the life of a component with a random strength 2 subjected

to a random stress 1. The reliability of a component can be expressed as  (1  2) or  (
1

2


1) =  (  1). Table 2 provides the reliability of the central bivariate Kummer type IV distribution

for  = −11 0 11 with parameters  = 1  =  = 2 and  =  =  = 2; these parameters are

the same as those used in Table 1. For example, when  = 1  =  = 2 and  = −11, we see that
 (  1) = 068471; this implies that the probability that the component will function satisfactorily is

0.68471; or, in other words, the component will fail with probability 0.31529.

a b c ψ P(R  1)

1 2 2 −11 068471

1 2 2 0 074904

1 2 2 11 075217

2 2 2 −11 042325

2 2 2 0 049782

2 2 2 11 048213
Table 2: Some reliability values

6 Conclusion

In this paper we introduced and derived the new non-central bivariate Kummer-beta type IV dis-

tribution and studied the central bivariate Kummer-beta type IV distribution, which is a special case of

the non-central version. We also obtained exact expressions for the density functions of the ratio and

the product of the components of the central bivariate distribution. The effect of the shape parameter

 on the shapes of the central bivariate Kummer-beta type IV density, the marginal density and the

density of the ratio were also illustrated. Furthermore, lower percentage points of  = 1

2
were given

as well as some upper percentage points that are useful in reliability. It was shown that the densities

can take different shapes and, therefore, the bivariate Kummer-beta type IV distribution can be used to

analyse skewed bivariate data sets. The expressions derived in this paper are a valuable contribution to

the existing literature on Continuous Bivariate Distributions as the comprehensive work by Balakrishnan

and Lai (2009).
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