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Abstract 

For well over a century and a half coal has played a vital role in South Africa’s economy and currently 
bituminous coal is the primary energy source for domestic electricity generation, as well as being the 
feedstock for the production of a substantial percentage of the country’s liquid fuels. It furthermore 
provides a considerable source of foreign revenue from exports.  

Based on geographic considerations, and variations in the sedimentation, origin, formation, 
distribution and quality of the coals, 19 coalfields are generally recognised in South Africa. This paper 
provides an updated review of their exploration and exploitation histories, general geology, and coal 
seam nomenclature and coal qualities. Within the various coalfields autocyclic variability is the norm 
rather than the exception, whereas allocyclic variability is much less so, and allows for the 
correlation of genetically related sequences. During the mid-Jurassic break up of Gondwana most of 
the coals bearing successions were intruded by dolerite. These intrusions are important as they may 
cause devolatilisation and burning of the coal, create structural disturbances and related seam 
correlation problems, and difficulties in mining operations. 

Whilst many of the coalfields have been extensively explored and exploited, those in the north of 
the country have until recently received much less attention. Four coalfields occur partly or wholly 
within the Limpopo Province of South Africa and these may contain as much as 70% of South Africa’s 
remaining coal resources. These coalfields in particular have been the focus of recent exploration 
due to the presence of large coking and thermal coal resources, as well as for their coal bed 
methane potential, resources that need to be unlocked regards to maximum benefit and minimal 
environmental degradation. 

South Africa’s coals have been also recently addressed as palaeoclimate archives recording 
Gondwana’s postglacial climate amelioration by major changes in land plant communities, and 
proving high-resolution palyno-stratigraphy as a crucial tool to decipher climate change during the 
Permo-Carboniferous. This aspect of the coals of South Africa is also reviewed. 
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1. Introduction 

Coal was first mined on a commercial basis in South Africa in 1857 and the country is currently 
the 6th largest coal producer in the world. Whilst in-roads have and are being made into clean 
energy (including wind and solar power) coal remains the primary energy source in South Africa 
for domestic power generation, and is set to dominate the energy mix for the foreseeable 
future. South Africa was one of the first countries in the world to use electricity on a commercial 
basis and presently Eskom (www.eskom.co.za), the state-owned national electricity supply 
utility, generates 96% of the country’s electricity. 

Presently South Africa is the only country in the world that operates commercial coal to liquids 
(CTL) synfuel plants, and coal is the feedstock for the production of a substantial percentage of 
the country’s liquid fuels. Coal is furthermore used extensively in the metallurgical industry 
(titanium, ferrochrome, ferromanganese and steel industries) and provides a considerable 
source of foreign revenue from exports. 

1.1. The main coal producers in South Africa 

South African coal production is dominated by five major companies, these being Anglo 
American Thermal Coal (http://www.angloamerican.com/), Sasol (http://www.sasol.co.za/), 
Exxaro (http://www.exxaro.com/), BHP Billiton Energy Coal South Africa 
(http://www.bhpbilliton.com/) and Glencore Xstrata (http://www.glencorexstrata.com/), with 
more than 80% of the South African coal market supplied by these companies. Where relevant 
their individual assets are covered in this review under the relevant coalfield. 

1.1.1. Anglo American Thermal Coal (AATC) 

AATC is a global coal business with operations in South Africa and Colombia. In South Africa the 
company wholly owns and operates seven mines, with a 73% stake in two additional mines. Six 
of the mines collectively supply 23 million tonnes per annum (Mtpa) of thermal coal to both the 
local and export markets. In addition the company has a 50% interest in the Mafube Colliery and 
Phola washing plant. They also hold a 24.2% interest in the Richards Bay Coal Terminal (RBCT) 
through which the bulk of South Africa’s coal is exported. 

1.1.2. Sasol 

The South African Synthetic Oil Limited (Sasol) was established in 1950 and in 1955 produced its 
first oil from coal. Today Sasol is an international integrated energy and chemical company with 
its home-base still in South Africa. Coal mined by Sasol feeds coal into the gasifiers of Sasol 
Chemical Industries (SCI) at Sasolburg and Sasol Synthetic  Fuels (SSF) at Secunda for conversion 
into crude synthesis gas. At Sasolburg SCI reacts the crude synthesis gas in a low-temperature slurry 
phase distillate reactor to produce linear-chained hydrocarbon waxes and paraffins. At Secunda SSF 
reacts the crude synthesis gas in the higher-temperature Sasol advanced reactors to produce, in one 
step, C1 to C20 hydrocarbons, including synthetic crude oil for downstream refining and fuels 

production. Gasification also yields essential co-products including ammonia, sulphur, phenolics 
and pitch for speciality carbon products. The chemical streams are routed through various 
downstream processes to produce the likes of ethylene, propylene, solvents and alpha olefins. 

1.1.3. Exxaro 

Exxaro is one of the largest South African-based diversified resources groups. Its coal assets 
include eight managed coal mines, from which the company produces some 40 Mtpa of local 

http://www.eskom.co.za/
http://www.angloamerican.com/
http://www.sasol.co.za/
http://www.exxaro.com/
http://www.bhpbilliton.com/
http://www.glencorexstrata.com/
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and export thermal coal, as well as soft and hard coking coal. They operate both the world’s 
largest opencast coal mine and coal beneficiation complex. Exxaro also produces char and 
related products for the rapidly growing ferroalloys industry. 

1.1.4. BHP Billiton Energy Coal South Africa (BECSA) 

BECSA is 90% owned by BHP Billiton, a leading global resources company. The company’s coal 
assets include four primary coal mining operations as well as three processing plants, from 
which it produces thermal coal for the South African domestic and export markets.  

1.1.5. Glencore Xstrata 

Glencore Xstrata is one of the world’s largest global diversified natural resource companies. The 
company was formed following the merger of Glencore International plc and Xstrata plc, which 
was completed in May 2013. The histories of the two companies have been inextricably linked 
since March 2002 when Xstrata acquired Australian and South African coal assets of Glencore, 
the largest shareholder in Xstrata at the time. 

1.2. Academic research and previous reviews 

Much academic research has been undertaken on South Africa’s coal deposits with the hedeys 
being in the late 1980’s and 1990’s. The economic aspects of South Africa’s coal deposits were 
last discussed in any real detail in the seminal papers of Volume II of the 1986 Mineral Deposits 
of Southern Africa (Anhausser and Maske, 1986), where the coalfileds of South Africa were 
presented in order of increasing rank. Following on this work a number of review papers were 
written detailing the coalfields of South Africa, the most important of these being:  a review of 
the coalfields of South Africa in Bulletin 113 (Barker, 1999); a review paper on the Permian coals 
of southern Africa by Cairncross (2001); and a paper on the characterisation of the coal 
resources of South Africa by Jeffrey (2005a). 

Two events occurred in the 1990’s that had a positive impact on what is known about South 
African coals. The first of these was the establishment of the Fossil Fuel Foundation 
(http://www.fossilfuel.co.za/) in late 1994. Since 1995 this organisation has hosted numerous 
coal technical events, many of which have been region or coalfield focused and at which much 
new knowledge has been disseminated. The second was the establishment of the Coaltech 2020 
Research Programme (http://www.coaltech.co.za/) in 1999. This programme is a state, industry 
and academia backed collaborative initiative aimed at research and technology advances that 
will enable the South African coal industry to remain competitive and sustainable to the year 
2020 and beyond. 

Two major changes have taken place this century in the South African coal industry. The first 
and most important of these being the implementation of the new Mineral and Petroleum 
Resources Development Act, 28 of 2002 (MPRDA). The MPRDA defines the State’s legislation on 
mineral rights and mineral transactions in South Africa and entrenches a “use it and keep it” 
principle, thus preventing the hoarding of mineral rights to the exclusion of new entrants to the 
minerals industry. The second change, which is partially driven by the former, is the emergence 
of a number of new junior and mid-tier coal miners, marking a swing away from an industry that 
was previously dominated by only a few major producers. This in turn has led to much 
information becoming freely available on various company websites, as well as on the Canadian 
Stock Exchanges System for Electronic Data Storage and Retrieval (SEDAR). 

http://www.fossilfuel.co.za/
http://www.coaltech.co.za/
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This paper draws from all these previous works, especially the papers of the 1986 Mineral 
deposits of southern Africa (Anhausser and Maske, 1986), as well as from an extensive historic 
literature, numerous personal files and notes provided to the senior author by Dr Tony Cadle, 
various open-file reports and company websites, as well as field experience gained by the 
authors over the past 20 years. Attention is paid to the economically most important coalfields, 
as well as those that have potential for the future energy mix, and those that have not been 
covered in much detail elsewhere. Because a lot of data pertaining to the coalfields is of a 
confidential nature, only publicly available information has been used when discussing coal 
quality values for each coalfield. A review of this kind has to, by its very nature, be fairly high 
level and not exhaustive, but it is hoped that sufficient work is referenced that readers can 
further their individual interests. 

As all of the coalfields of South Africa (Fig. 1) occur in rocks of the Main Karoo Basin (MKB) and its 
associated sub-basins, and because much new work has been undertaken in the past decade on 
understanding the tectonics and sedimentary fill of these repositories, a brief overview of Karoo 
aged depocentres of South Africa is critical and is provided below. 

 

Fig. 1. Coalfields of South Africa (variously modified after Snyman, 1998). The Mopane, Tshipise and Pafuri 
coalfields collectively form the Soutpansberg Coalfield. Fm. = Formation. 
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2. Karoo Basin Overview 

The MKB forms part of a major series of Gondwanan basins (Fig. 2) that developed through 
subduction, compression, collision, and terrane accretion along the southern margin of Gondwana 
(Cole, 1992; De Wit and Ransome 1992; Veevers et al. 1994; Catuneanu et al. 1998;). These include 
the Paraná Basin in South America, the Beacon Basin in Antarctica and the Bowen Basin in Australia. 
These depocentres filled between the Late Carboniferous and Middle Jurassic and their combined 
stratigraphies represent the best record of non-marine sedimentation of this period anywhere in the 
world. 

 

Fig. 2. Position of the Karoo Basin in relation to the other Karoo aged depocentres of south-western Gondwana 
(modified from de Wit and Ransome, 1992). 

The mainly sedimentary fill of these basins is important from a geological and palaeontological 
perspective in that they contain an almost unbroken record of 120 million years of earth’s history, at 
a period when the Pangaean supercontinent had reached its maximum extent, and during which 
major evolutionary change was taking place. Their economic significance in terms of energy 
resources runs to coal and coal bed methane, shale gas, uranium and geothermal energy. Various 
small oil shows have also been documented but are believed to be uneconomic (Rowsell and 
Connan, 1979). 

The stratigraphy of the Karoo Supergroup in the MKB preserves markedly different fills between the 
southern (proximal) and northern (distal) regions of the basin (e.g. Smith 1990; Catuneanu et al., 
1998). North of the MKB, equivalent aged, coal bearing successions are preserved in isolated 
extensional intercratonic and intracratonic grabens or half-grabens (Rust, 1975; Hobday, 1986; 
Cairncross, 1987; Watkeys and Sweeney, 1988; Johnson et al., 1996; Cairncross, 2001; Bordy (2000); 
Bordy and Catuneanu, 2001; 2002a; b; c; Malaza, 2013) and these are here collectively referred to as 
the northern basins. 
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2.1. Regional tectonic framework 

Recent interpretations of the basin evolution and tectonic setting of the MKB range from: a retro-arc 
foreland basin (Catuneanu et al., 1998; Catuneanu et al., 2002; Veevers, 2004; Johnson et al., 2006); 
a transtensional foreland system created by subsidence and tilting in a strike-slip regime (Tankard et 
al., 2009); a thin-skinned fold belt that developed from collisional tectonics and distant subduction 
to the south (Lindeque et al., 2011), to a transient hypothetical mantle plume related model (Turner 
1999). A full review of these individual models is beyond the scope of this paper and the interested 
reader is referred to the references above as well as Bordy et al. (2005). 

Whilst there is not yet consensus, most authors believe the MKB of South Africa to be a retroarc 
foreland system (de Wit et al., 1988; Johnson, 1991; Catuneanu et al., 1998; Johnson et al., 2006), 
which developed in front of the Cape Fold Belt (CFB) section of the Gondwanide Orogeny in 
response to crustal shortening brought about by the late Palaeozoic–early Mesozoic subduction of 
the palaeo–Pacific plate beneath the Gondwana plate (Lock, 1980; de Wit and Ransome, 1992; 
Catuneanu et al., 1998). A combination of supra- and sub-lithospheric loads (Pysklywec and 
Mitrovica, 1989; Catuneanu et al., 2002) is believed to be responsible for the observed flexural 
profile and generation of accommodation space. 

Whatever their mechanism of formation, Karoo aged depositories in South Africa were formed in 
two different, yet linked, tectonic settings (Rust, 1975). These are the compression related MKB and 
the extension or transtension related northern basins.  

The Karoo Supergroup of the MKB of South Africa is the best-studied of these fills (Tankard et al., 
1982), as well as being the most continuous and best developed of all of the sub-Saharan basins. It is 
for this reason that the MKB of South Africa is considered as the type locality for southern African 
coals (Cadle et al., 1993). The extensional, rift related Karoo sub-basins outside of the MKB are often 
fault bounded, with syn-tectonic rifting. This has resulted in a highly truncated sequence of 
lithologies that whilst superficially similar, show differences to their correlative counterparts 
encountered in the MKB.  

At group level the general coal bearing stratigraphic succession is similar between the MKB and the 
northern basins, and as such the overview of the general geology and stratigraphy of the Karoo 
Supergroup that follows is pertinent to all of South Africa’s coalfields. Area specific geology is 
provided for each coalfield. 

2.2. General geology and stratigraphy of the Karoo Supergroup 

The sedimentary part of the Karoo Supergroup is subdivided into four main lithostratigraphic units, 
which from the base up are the Dwyka, Ecca, Beaufort and Stormberg (Molteno, Elliot and Clarens 
formations) groups (SACS, 1980; Johnson et al., 1996; Fig. 3). These are capped by some 1.4 km of 
basaltic lavas of the Drakensberg Group (Veevers et al., 1994; Johnson et al., 1996), the extrusion of 
which is related to the break-up of Gondwana (Cox, 1992). 

The basement to the Karoo Supergroup fill in both the MKB and in the northern basins is 
heterogeneous (Hancox, 1998; Bordy et al., 2004a; Rutherford, 2009) and this heterogeneity plays a 
significant control on the nature of the fill, particularly during the early phases of the deposition of 
the Karoo Supergroup. The main crustal scale blocks for the MKB are shown below in Figure 3. Most 
of the coalfields discussed occur on the Wits block of the Kaapvaal Craton. Due to the fact that the 
coalfields of South Africa occur over such a vast area, the nature of the basement lithologies differ 
considerably from coalfield to coalfield and as such are described below individually for each 
coalfield. An understanding of the basement lithologies is important for interpreting the nature of 
pre-conditioning prior to the onset of Dwyka glaciation, which provides an important control on the 
sedimentary fill of the lower parts of the Karoo Supergroup. 
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Fig. 3. Geological map of the Main Karoo Basin (after Catuneanu et al., 1998) showing the position of the 
Kaapvaal Craton boundaries as proposed by Skinner et al. (1992); modified from Bordy et al. (2004a). 

Karoo aged depositional environments broadly range from glacial (Dwyka Group), to shallow marine 
and coastal plain (Ecca Group), to nonmarine fluvial and aeolian (Beaufort and Stormberg groups). 
Whilst this paper focusses on the Ecca and Beaufort groups and Molteno Formation sedimentary 
successions, a review of the variable basement lithologies and Dwyka Group is also pertinent, and is 
therefore included below. 

2.2.1. Dwyka Group 

Rocks of the Dwyka Group in South Africa are among the most important glaciogenic deposits from 
Gondwana. The Dwyka Group is named for exposures along the Dwyka River east of Laingsburg, and 
forms the basal succession of the Karoo Supergroup. Sutherland (1870) is credited with ascertaining 
its glacial origin and Dunn (1875) introduced the term "Dwyka Conglomerate" in the second edition 
of his "Geological Sketch Map of South Africa". Anderson (1901, 1904, 1907) documents various 
aspects of the Dwyka Group in KwaZulu-Natal (KZN) and felt it was an important marker horizon in 
the metalliferous deposits that occurred below it, and coal above it. Dwyka Group lithologies are 
also well documented by Du Toit (1921) and it was his studies on the Dwyka which led to his 
thoughts on the wandering of continents, and his documentation of the supercontinent Gondwana 
(Du Toit, 1937). An excellent review of the state of knowledge of the Dwyka Group in South Africa 
prior to 1970 is given in Haughton (1969). 
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Since this time numerous authors have added to our understanding of the Dwyka Group, including 
aspects of its sedimentology (Stratten, 1968, 1970; Crowell and Frakes, 1975; Von Brunn and 
Stratten, 1981; Von Brunn and Gravenor, 1983; Von Brunn and Talbot, 1986; Visser, 1986, 1987a,b, 
1989, 1991a,b, 1994, 1995, 1996, 1997; Visser, et al., 1987; Von Brunn, 1987, 1996; Isbell et al., 
2008), palaeontology (Anderson, 1981; Anderson and McLachlan, 1976) and basinal setting 
(Stratten, 1970; Visser, 1993; Johnson et al., 1997; Catuneanu, 2004) and it is now widely accepted 
to be the product of glacio-marine sedimentation, and part of the Late Palaeozoic Ice Age (LPIA) that 
affected most southern Gondwanan basins (Dineen et al., 2013). Studies of these rocks have also 
been used to establish the thermal conditions (Visser and Young, 1990) and to estimate the size and 
duration of the Gondwanan ice sheets (Veevers and Powell, 1987). Despite a long history of study, 
many questions concerning Dwyka glaciation still however remain (Isabell et al., 2008). 

The age of deposition of the Dwyka Group is discussed by Visser (1990). Subsequently the age has 
been bracketed by two zircon U-Pb sensitive high-resolution ion microprobe (SHRIMP) dates of 302 ± 
3 Ma and 288 ± 3 Ma (Bangert et al., 1999). The onset of Dwyka Group sedimentation is therefore 
believed to occur during the Late Carboniferous, continuing until the Early Permian.  

Different proximal (marine facies) and distal (inlet facies glacial, continental) facies have been well 
documented (Smith, 1990; Visser, 1992), with the proximal foredeep accumulating up to 800-
1000 m of marine diamictites, with dropstones derived from floating ice (Winter and Venter, 1970; 
Visser, 1991). These facies are not however relevant to this review and only the distal northern 
valley facies are described below in detail. The general direction of ice advance within the distal 
forebulge area was from north to south (Visser, 1991) and in the northern basins from the east to 
the west (Catuneanu, 2004). Glacial retreat to the north created a number of glacial palaeovalleys 
around the northern margin of the MKB, the fill of which have very irregular thicknesses and 
complex facies relationships. Dwyka Group strata are mostly contained within bedrock valleys 
incised into Archean to lower Palaeozoic bedrock (Visser and Kingsley, 1982; Visser, 1990; Von 
Brunn, 1996). 

Four localities within the Free State Coalfield (Fig. 1) are listed by Cadle (1974) as having thicknesses 
greater than 100 m, with a maximum thickness of 317 m recorded to the west of the town of 
Virginia. Dwyka Group lithologies in the areas underlying the coalfields of South Africa consist of a 
heterolithic arrangement of massive and stratified polymictic diamictites (Fig. 4), conglomerates, 
sandstones and dropstone-bearing varved mudstones (Fig. 5). The easily identifiable lithologies form 
a good marker below the coal bearing Ecca Group lithologies. 
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Fig. 4. Typical diamictite facies of the Dwyka Group overlying basement of the Mozaan Group (Pongola 
Supergroup). Denny Dalton mine site, KwaZulu-Natal. Heavy red line marks the position of the contact. 

 

Fig. 5. Typical varved mudstone lithologies of the Dwyka Group. Note the interbeds of very fine-grained 
mudstone and coarser sandstone, as well as the presence of soft sediment deformation. Sterkfontein 
Exploration Project (Borehole SK07-03; 210 m). NQ core diameter (47.6 mm). 
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In the distal sector of the MKB these sediments accumulated largely as ground moraine associated 
with continental ice sheets, and is generally composed of basal lodgement and supraglacial tills. 
These deposits are generally massive, but crude horizontal bedding occurs in places toward the top 
(Tankard et al., 1982). The difficulty in correlating the Dwyka facies, even between exposures only a 
few kilometres apart, suggests local development of grounded ice lobes separated by ponds and 
outwash fans (Catuneanu et al., 2005). The clasts are not imbricated, but some show a weakly 
developed long-axis alignment parallel to the direction of ice flow as inferred from the subjacent 
striated pavements (Tankard et al., 1982). At Vereeniging, Dwyka Group lithologies occur as cave fills 
in the Transvaal Supergroup dolomites. 

In the extensional basins north of the MKB, Dwyka Group equivalent deposits occur with thicknesses 
that range from centimetres to meters. These are often markedly different from their MKB 
correlatives and include a mixture of colluvial and glacial-outwash alluvial facies (Bordy and 
Catuneanu, 2002). Deposition in these environments took place under high-water table conditions, 
marked by the presence of glacial or periglacial lakes. The presence of lacustrine facies containing 
angular clasts suspended in a mudstone matrix, similar to the dropstones in the MKB, suggests the 
presence of floating ice (Bordy and Catuneanu, 2002a). 

Palaeontologically the Dwyka Group contains only a sparse fossil record (Anderson, 1981), including 
disarticulated fish scales and arthropod and fish trace fossils. Bangert et al. (2000) describe the fossil 
record of Dwyka Group equivalent glacial mudstones in southern Namibia. 

A number of coal seams have previously been assigned to the uppermost part of the Dwyka Group in 
the past (Stavrakis, 1986) and certainly Dwyka aged coals occur in other sub-Saharan Karoo basins, 
but this aspect of the stratigraphic succession needs to be restudied in detail, with positive seam 
positions and correlations based on absolute age data, and accurate correlative stratigraphic and 
palynological studies. 

2.2.2. Ecca Group 

Ecca Group strata were first described by Rubidge in 1896 from the Ecca Pass, north of 
Grahamstown in the Eastern Cape (quoted in Du Toit, 1954). As for the Dwyka Group, significantly 
different facies assemblages occur in the proximal and distal sectors. The proximal sector has 
recently been the focus of renewed interest due to the potential for these rocks to host shale gas 
resources (Geel et al., 2013; Götz, 2014a). Only the distal sector is however covered here. 

In the 1970s a number of studies (Hobday, 1973, 1978; Cadle, 1974; Mathew, 1974; Van Vuuren and 
Cole, 1979) showed that the Ecca Group could be subdivided into several informal units based on 
the cyclic nature of the sedimentary fills. In 1980 the South African Committee for Stratigraphy 
(SACS, 1980) introduced a formal lithostratigraphic nomenclature for the Ecca Group in the northern 
distal sector of the MKB, which replaced the previously used informal Lower, Middle and Upper 
subdivisions with the Pietermaritzburg Shale Formation, the Vryheid Formation and the Volksrust 
Shale Formation. 

Much research was undertaken into the nature of the Ecca Group in the northern part of the MKB in 
the 1980s. Two separate coal groups were formed at this time, the first, the University of the 
Witwatersrand group, which was led by Tony Cadle, was established in 1980. The second, based at 
the University of Natal in Durban, was established in 1981 and was led by Ron Tavener-Smith and 
Tom Mason. Due to a lack of outcrop, the University of the Witwatersrand group was largely 
restricted to the study of borehole data, which numbered over 3000 at the time. The Durban group 
had the added benefit of being able to study the numerous natural sections that are prevalent in 
KZN. 

 



11 
 

2.2.2.1. Pietermaritzburg Formation 

The name Pietermaritzburg Shale was introduced by Griesbach in 1871 for what later became known 
as the Lower Ecca Shales. Du Toit (1918) stated that the Lower Ecca Beds (Shales) were the 
equivalent of the “well-known soft blue Pietermaritzburg shale” and this unit was defined by SACS 
(1980) as the Pietermaritzburg Shale Formation, but is here referred to as the Pietermaritzburg 
Formation as SACS has subsequently dropped lithological terms from formal names. 

The unit consists almost entirely of dark grey laminated siltstone and mudstone, with subordinate 
sandstone, and attains a maximum thickness of over 400 m (Du Toit, 1954). Its upper boundary with 
the overlying Vryheid Formation is gradational and is taken as the horizon above which the 
sandstone to fines ratio is greater than 0.5 (SACS, 1980). No coal seams occur in the 
Pietermaritzburg Formation. 

2.2.2.2. Vryheid Formation 

The majority of the economically extracted coal in South Africa occurs in rocks of the Vryheid 
Formation, which ranges in thickness in the MKB from less than 70.0 m to over 500.0 m (Fig. 6). It is 
thickest to the south of the towns of Newcastle and Vryheid, where maximum subsidence took place 
(Du Toit, 1918; Cadle, 1975; Whateley, 1980a; Stavrakis, 1989; Cadle et al., 1982) and where the 
basin was the deepest. 

 

 

Fig. 6. Isopach map of the Vryheid Formation showing the increase in thickness towards the east (from Cadle, 
1982). 
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According to SACS (1980) the basic concept, distinguishing features and boundaries of the Vryheid 
Formation are those of the “Middle Ecca” as described by Du Toit (1954) and others. Prior to 1973 
studies of the Vryheid Formation were largely stratigraphic. This situation changed when Hobday 
(1973) postulated deltaic depositional systems for the Vryheid Formation, and academic studies 
became more depositional process orientated. 

The rapid sediment transfer into the basin was driven by bedload dominated fluvio-deltaic systems 
(Ryan, 1968; Hobday, 1973; Cadle, 1974) that prograded south and southwest, and had source areas 
to the northwest, north, northeast and east of the present-day basin margin (Cadle and Cairncross, 
1993). 

With the advent of later studies in the Witbank and Highveld coalfields (LeBlanc Smith, 1980; 
Cairncross, 1980; Cadle 1982, 1986; Winter, 1985; Cairncross and Winter, 1984 and Cairncross, 1986) 
the basic fluvio-deltaic model became refined into greater palaeoenvironmental detail, including the 
interpretation of beach-barrier deposits (Vos and Hobday, 1977; Tavener-Smith, 1983), bed-load 
(braided) fluvial deposits (Cairncross, 1979; LeBlanc Smith, 1980; Winter, 1985), fine- and coarse-
grained anastomosed river deposits (LeBlanc Smith and Eriksson, 1979; Cairncross, 1980) and high-
constructive, lobate deltaic complexes (Cairncross and Winter, 1984). It was this array of 
palaeodepositional environments, and palaeotopographic relief, palaeoclimate and tectonic setting 
which controlled the distribution and quality of the coal seams (Cadle et al., 1982; Cairncross, 1989). 

Hobday (1973) was the first to refer to the cyclical nature of the upward-fining and upward-
coarsening successions that typify the Vryheid Formation, characteristics that are also well-
documented by Cadle (1974), Mathew (1974) and Van Vuuren and Cole (1979).  

The stratigraphy of the Vryheid Formation is now described as a succession of five coarsening-
upward sequences which display a remarkable lateral continuity across the entire distal region of the 
Karoo Basin (Cadle et al., 1982). In a complete succession each of the five coarsening-upward 
sequences starts with fine-grained marine facies, which grade upwards into coarser delta front and 
delta plain-fluvial facies. Several coal seams occur in the Vryheid Formation and these are associated 
predominantly with the coarser-grained fluvial facies at the top of each sequence. These coal seams 
can be traced laterally across the entire area of occurrence of the Vryheid Formation in the MKB; 
however some disagreement exists as to the exact correlation in the various coalfields. Regional 
differences allow for the considerable diversity of coal types (organic content), mineral matter 
composition, and rank (maturity) that is found within the coalfields of South Africa (Falcon, 1986b). 

A shifting balance between sedimentation and the rates of base level rise most likely explains the 
cyclic nature of the Vryheid Formation. The transgressive units which occur at the base of each 
coarsening-upward sequence are some of the most widespread and laterally continuous beds in the 
Vryheid Formation in the northern part of the basin (Cadle et al., 1982, 1993; Cairncross, 1986). Such 
units form good markers for stratigraphic correlation, and are discussed below for the individual 
coalfields. Trace fossils have also played a role in the understanding of the palaeoenvironmental 
history and correlation of the Vryheid Formation (Hobday and Taverner Smith, 1975; Stannistreet 
and LeBlancSmith, 1980; Mason and Christie, 1986; Christie, 1988; Roberts, 1988). 

Palaeontologically the Vryheid Formation is best known for the rich fossil plant assemblages of the 
famous Glossopteris flora, which is the source vegetation for most of the Vryheid Formation coals. 
Detailed palaeobotanical studies based on the well-preserved plant fossils date back to the early 20th 
century (Etheridge, 1901; Leslie, 1903). Subsequent work was done by the likes of Plumstead (1952, 
1956, 1957, 1958, 1969), Lacy et al. (1974), Kovács-Endrödy (1976, 1991), Anderson and Anderson 
(1985), Rayner and Coventry (1985), Adendorff (2005), Bordy and Prevec (2008), Claasen (2008), 
Prevec et al. (2008, 2009, 2010) and Prevec (2011). 
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Following continental deglaciation, gymnospermous glossopterids came to dominate both the peat 
and non-peat accumulating Permian wetlands (Falcon, 1986c; Greb et al., 2006). The associated flora 
included lycopods, ferns, cordiatales and other early gymnosperms (Falcon, 1986c). No vertebrate 
fossils have been recorded from the Vryheid Formation. Plant fossils described by Bamford (2011) 
for the Vryheid Formation are Azaniodendron fertile, Cyclodendron leslii, Sphenophyllum 
hammanskraalensis, Annularia sp., Raniganjia sp., Asterotheca spp., Liknopetalon enigmata, 
Glossopteris > 20 species, Hirsutum 4 spp., Scutum 4 spp., Ottokaria 3 spp., Estcourtia sp., Arberia 4 
spp., Lidgetonnia sp., Noeggerathiopsis sp. and Podocarpidites sp. 

Various palynological studies have also focused on the coal bearing successions of the Vryheid 
Formation. Aitken (1993, 1994, 1998) worked on the Vryheid Formation in the Witbank and Highveld 
coalfields, as well as at Lindley in the Free State Coalfield. Millsteed (1994, 1999) reported on the 
Early Permian palynomorph assemblages from the Vryheid Formation of the Sasolburg-Vereeniging 
Coalfield. Recent studies focus on the Witbank Coalfield (Götz and Ruckwied, 2014). 

2.2.2.3. Volksrust Formation 

SACS (1980) applied the name Volksrust Shale Formation to the old “Upper Ecca Beds”, with the 
choice of name based on a description given by Blignaut et al. (1952). The general thickness of the 
unit is between 150-250 m and it is dominated by dark grey-green siltstones and mudstones, with 
phosphatic/carbonate/sideritic concretions. Cadle (1975) documents that the Volksrust Formation 
shows an overall coarsening-upward trend. Coals occur interbedded with the mudstones in places. 
The Volksrust Formation is postulated to have formed in shallow to deep water basinal conditions. 

Palaeontologically the Volksrust Formation is probably best known for its low diversity trace fossil 
assemblage (Tavener-Smith et al., 1988) and various organic microfossils. Macrofaunal remains 
include only various insects (Van Dijk, 1981) and a rare bivalve assemblage (Cairncross et al., 2005). 
Plant remains and fossilised wood are also known. 

2.2.3. Beaufort Group 

The Beaufort Group represents the transition from subaqueous (Ecca Group) to fully subaerial 
deposition (Rubidge et al., 2000) with predominantly fluvial sedimentation. Rogers (1902) 
introduced the term Beaufort “Series” and Johnson (1966) suggested the use of the "Group" 
designation. The Beaufort Group consists of two subgroups, the Lower Adelaide and upper Tarkastad 
subgroups. Lithologically the Beaufort Group consists of alternating fine-grained lithofeldspathic 
sandstone and mudstone, normally forming fining-upward cycles and displaying features generally 
considered to be characteristic of fluviatile deposition (Johnson, 1976). Few lithostratigraphic 
marker horizons exist. Coal is restricted to the Adelaide Subgroup. 

The Beaufort Group is a palaeontological superlative, containing probably the best documented 
succession of Permo-Triassic vertebrate fossils in the world. Hancox and Rubidge (1997) discuss the 
role of these fossils in the interpretation of the development of the Karoo Basin. Overviews of the 
palaeontology of the Beaufort Group are given in Hancox (2000), Hancox and Rubidge (2001) and 
Rubidge (2000, 2005) and references contained therein. The abundance of tetrapod fossils has 
allowed biostratigraphic subdivision of the Beaufort Group into eight biozones (Kitching, 1977; 
Rubidge, 1995, 2005). A biozonation based on fossil wood has also been erected for the Beaufort 
Group (Bamford, 1999) and various rich plant fossil localities are also known (Bordy and Prevec, 
2008; Claassen, 2008). Correlations based on the fossil occurrences were previously utilised for age 
assignations, however more recently a number of volcanic ash beds from the Beaufort Group have 
been dated (Coney et al., 2007; Rubidge et al., 2013), which has for the first time allowed for the 
establishment of a precise temporal framework for this interval based on absolute ages. 



14 
 

The contact between the Beaufort and Stormberg groups is covered in detail by Hancox (1998) and 
is not repeated here other than to note it represents the largest magnitude unconformity within the 
Karoo Supergroup of the MKB. 

2.2.4. Stormberg Group 

The Molteno, Elliot and Clarens formations were previously regarded as belonging to part of the 
Stormberg "Series" (see Rogers, 1902; Du Toit, 1954), which became collectively referred to as the 
Stormberg Group. In 1975 SACS decided that the continued use of "Stormberg" as a group 
designation in a formal lithostratigraphic scheme could not be justified. Recently however SACS have 
reversed this position and the group status has been re-instated (Cole pers. comm.). 

2.2.4.1. Molteno Formation 

The Molteno Formation forms the basal unit of the Stormberg Group and comprises a northward 
thinning wedge of dominantly clastic sedimentary rocks (Turner, 1975; Christie, 1981; Hancox, 
1988). Geographically, the Formation crops out over an area of some 25,000 km2 (Turner, 1983), 
forming a roughly oval-shaped feature in the MKB extending from the Eastern Cape Province 
northward into Lesotho, KZN and the Free State. 

The Molteno Formation has previously been subdivided into a lower Bamboesberg and Indwe 
Sandstone members, and an upper unit that has been variously grouped and named by previous 
authors (Turner, 1975; Christie, 1981; MacDonald, 1993; Hancox, 1998; Bordy et al., 2005). Except 
for the Bamboesberg and Indwe members this terminology has not been accepted by SACS. 

As economic coal seams occur only in the Bamboesberg Member, this is the only unit covered here 
in any detail. Lithologically, the Bamboesberg Member is composed of up to five stacked fining 
upward sequences between 5-50 m thick. These sequences are composed of laterally extensive 
sandstones, capped by thin lenticular siltstones and mudstones, and for the uppermost three cycles, 
rare coal. Three coal seams have previously been recognised within the Bamboesberg Member (Du 
Toit, 1905; Christie, 1981; MacDonald, 1993; Hancox, 1998).  

Palaeontologically the Molteno Formation contains a remarkably rich assemblage of plant and insect 
fossils (Anderson, H.M., 1974; 1976a, b; 1978; Anderson, J.M., 1979; 1983; 1984; 1989; Anderson 
and Anderson, 1984; 1984; 1989; 1995; 1998; 2008; Anderson et al., 1998; Scott et al., 2004) as well 
as rare fish (Jubb, 1973). The upper parts of the Formation contain some of the world’s oldest 
dinosaur trackways (Raath et al., 1990). Given the rich invertebrate palaeofauna, trace fossils 
attributable to these forms are suprisingly rare in the Molteno Formation (Turner, 1978; Hancox, 
1998). 

Whilst no absolute zircon dates exist for the Molteno Formation, most authors now follow Du Toit 
(1954) in assigning the Molteno Formation a Late Triassic age. Based on the constraining tetrapod 
fossil assembages of the underlying Burgersdorp Formation and overlying Elliot Formation (Lucas 
and Hancox, 2001), coupled to palaeobotanical and palynological studies and correlation with better 
dated sequences elsewhere in Gondwana, the Molteno Formation is probably of Carnian (Late 
Triassic) age (Anderson et al., 1998). 

The nature of the Molteno-Elliot contact was previously poorly understood, however Bordy et al. 
(2005) redefined it based on lithological changes (including the gross and internal geometries of the 
sandstone units and contained lithofacies associations); the presence/absence of coal seams and 
paleosols; and on palaeocurrent patterns, sandstone composition and grain-size variations.  
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2.2.4.2. Elliot Formation 

Although previous studies of the Elliot Formation in the MKB of South Africa had shown the 
Formation to consist of continental red beds of fluvial, lacustrine and aeolian origin (e.g. Botha, 
1968; Le Roux, 1974; Johnson, 1976; Visser and Botha, 1980; Eriksson, 1983, 1985; Kitching and 
Raath, 1984; Smith et al., 1993; Johnson et al., 1996; Johnson et al., 1997; Smith and Kitching, 1997) 
few field-based geological investigations dealing with the stratigraphy, sedimentology, depositional 
environments and basin development had been undertaken prior to the various works of Bordy et 
al. (2004 a-d). 

Architectural element analysis of the sandstones of the Elliot Formation has revealed two 
contrasting geometries resulting from different fluvial depositional styles (Bordy et al., 2004). The 
lower parts of the Formation are interpreted as deposits of perennial, moderately meandering fluvial 
systems, whereas the upper reaches represent ephemeral fluvial processes. No coal deposits occur 
within the Elliot Formation. 

Palaeontologically the Elliot Formation is important for its Late Triassic to Early Jurassic dinosaur and 
associated fauna (Kitching and Raath, 1984; Olsen and Galton, 1984; Smith and Kitching, 1997; 
Warren and Damiani, 1999; Yates and Kitching, 2003; Yates et al., 2004; Sidor and Hancox, 2006; 
Reisz et al., 2013; McPhee et al., 2014). This list is by no means definitive but would give the 
interested reader a good overview and covers most of the main fauna known. 

2.2.4.3. Clarens Formation 

This unit was first described as a separate lithologic entity by Dunn (1878), who introduced the name 
"Cave Sandstone". The present name was proposed by N.J. Beukes (personal communication to the 
SACS Karoo working group) and derived from the village of Clarens in the north-eastern Free State. 
According to Beukes (1969) the maximum thickness of the unit is some 305 m to the north-east of 
Barkly-East in the Eastern Cape Province. Most authors agree that the sandstone dominated 
deposits of the Clarens Formation represent aeolian depositional systems, with minor fluvial input 
(Eriksson, 1981; 1983; 1986; Eriksson et al., 1994; Holzförster, 2007). As for the Elliot Formation, no 
coal deposits occur in the Clarens Formation. Palaeontologically, the basal Clarens preserves a 
similar dinosaurian fauna to the uppermost Elliot Formation (Kitching and Raath, 1984). 

2.2.5. Drakensburg Group and associated intrusives 

As mentioned above the top of the Karoo Supergroup succession is formed by up to 1.4 km of 
basaltic lavas of the Drakensberg Group (Veevers et al., 1994; Johnson et al., 1996). Associated with 
the outpourings of such vast volumes of basaltic magma are numerous feeder dykes and sills. Due to 
their effect on the coals of South Africa, significant work has been undertaken on the nature of the 
dolerite intrusions (Hagelskamp, 1987; Oliveira and Cawthorn, 1999; Du Plesis, 2008; Bussio, 2012; 
van der Walt, 2012) and their immense impact and is discussed in detail for the individual coalfields. 

These intrusions tend to negatively affect the coal qualities in places, and mapping of their 
occurrences is critical for mine planning purposes. Both magnetic and non-magnetic dolerites are 
documented. Near vertical dykes display little displacement associated with their transgression 
through the seams. On the other hand sill transgressions always result in some displacement, the 
magnitude being dependant on a number of factors including sill thickness and the presence and 
orientation of pre-existing zones of weakness. These intrusions introduce local structural complexity 
by displacing seams relative to one another and isolating blocks of coal. Associated with all sill 
transgressions are sympathetic and antithetic slips within a variable zone either side of the intrusion. 
Another effect that the dolerite has is to locally burn or devolatilise the coal. Factors affecting the 
degree of burning include the temperature of the intrusion, the duration of molten flow and the 
attitude of the intrusion.  
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The age of the Drakensburg lavas and associated dolerites is bracketed at between 185–180 Ma 
based on 40Ar-39Ar geochronology (Duncan et al., 1997; Jourdan et al., 2005), which places them as 
being of Early Jurassic age. 

3. Previous research on the coals of South Africa 

3.1. Trace element chemistry 

Willis (1983) conducted the first trace elements studies on South African coals and fly ash. Dale 
(1995, 2003) compared the levels of trace elements in internationally traded South African coals 
with Australian export thermal coals. 

One of the main features of South African coals is that they have higher in situ ash, and hence 
mineral contents, on average than their counterparts in the northern hemisphere. Despite this, 
South African and other Permian coals of the southern hemisphere contain lower concentrations of 
sulphides, halogens, and trace elements relative to their northern hemisphere (Carboniferous) 
counterparts (Wagner and Hlatshwayo, 2005). 

Previous work undertaken by Cairncross (1989) on a variety of South African coals, and by Wagner 
and Hlatshwayo (2005) specifically on the Highveld Coalfield (Fig. 1) coals, provide a good indication 
of the likely concentrations of the trace elements in South African coals.  

Pinetown et al. (2007) investigated the quantitative evaluation of mineral matter in coal deposits in 
the Witbank and Highveld coalfields, and linked this data to the potential for acid mine drainage 
generation. Malaza (2013) discusses the trace element geochemistry of coals of the Soutpansberg 
and Limpopo coalfields (Fig. 1). 

3.1.1 Sulphur in South African coals 

Environmental pollutants such as sulphur dioxide, sulphuric acid and hydrogen sulphide have been 
linked to the presence of sulphur in coal and as such an understanding of the nature of the sulphur 
in the coal is important. Sulphur occurs in South African coals in three forms, these being sulphide, 
sulphate and organic sulphur. Sulphide minerals are mainly pyrite, marcasite and siderite. Primary 
(or organic) forms of sulphur are trapped in the organic matrix at the time of peat formation. 
Secondary (or inorganic) sulphur occurs along cleats and fractures. The type and nature of the 
sulphur is important in terms of the degree of liberation during beneficiation. Currently, there are 
limited published studies on the investigation of sulphur compounds, especially organic sulphur 
compounds, in South African coal (Laban and Atkin, 2000; Wagner and Hlatshwayo, 2005). To 
partially rectify this situation Kalenga (2011) undertook work into the characterisation and 
distribution of the sulphur components in South African coals. 

Roberts (1988a) discussed the relationship between macerals and sulphur content of some South 
African Permian coals and showed that since pyritic and organic sulphur are associated with vitrinite 
in coals from the MKB, sulphur content mirrors the trend of this maceral group i.e. increasing from 
west to east.  

The average sulphur content of South African coals is generally quite low, and where elevated often 
amenable to reduction via beneficiation. Mehliss (1987) notes that at that time washed export grade 
bituminous coal from the Witbank Coalfield (Fig. 1) had averaged 0.62% and the Ermelo Coalfield 
1.00%. Anthracite values for the coalfields of KZN for the years 1981-1985 were documented as 
being 1.26% (1.75% raw). Gonenc et al. (1990) note that it is generally less than or equal to 1%, 
Wagner and Hlatshwayo (2005) 0.40-1.29%, and Roberts (2008) 1.47%. Hsieh and Wert (1985) have 
reported that the total sulphur in South African coal ranges from 0.59-9.45%, whereas Olivella et al. 
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(2002) report the range up to 15.1 %. The senior author has also seen isolated values of greater than 
15% due to the nugget nature of pyrite. 

Pyrite in the coal is also one of the main components responsible for the wear and abrasion and high 
level of coal abrasiveness index (AI) in South African coals (Fosso-Kankeu et al. 2013). Weeber et al. 
(2000) postulated a possible relationship between low ash fusion temperatures (AFT) and an 
increase in the iron content present in the form of pyrite, as well as to the form in which pyrite is 
present. 

3.1.2. Nitrogen in South African coals 

Nitrogen is a major coal component subordinate only to sulphur in the hazard it poses to the 
environment. Roberts (1991) undertook a study into the influence of coal type and rank on the 
nitrogen content of the coals of the MKB. He showed that vitrinite and nitrogen in individual coal 
bands are positively correlated, whereas inertinite and nitrogen are negatively correlated. Both 
nitrogen and sulphur content are therefore positively correlated with the vitrinite maceral group in 
the MKB, increasing from west to east.  

3.1.3. Phosphorus in South African coals 

Phosphorus, essential to plant life, is an intrinsic mineral in coal, which cannot be easily removed by 
beneficiation. South African coals contain varying concentrations of phosphorus, which can have a 
number of detrimental effects on downstream usage, and the phosphorus content is one of the 
important specifications in terms of coal quality used in the metallurgical industry (Xaba, 2004). Low 
phosphorous (less than 0.010%) coals suitable for the metallurgical industry occur in the Witbank, 
Ermelo, Klip River, Utrecht, Nongoma, Sonkhele, Waterberg, Soutpansburg and Limpopo coalfields 
and probably in the Kangwane Coalfield (Fig. 1) as well. 

3.2. Petrological studies 

For most of the 20th century optical petrography has been the primary petrological and 
mineralogical tool used to characterize coal. Detailed petrographic works on the coals of South 
Africa were presented by Snyman (1961), Steyn and Smith (1977), Falcon (1978), Falcon et al. (1984), 
Falcon (1986a, b) and Holland et al. (1989). 

Falcon (1986a, b) recognised a considerable variation in the petrography, grade and rank of coals 
within the Karoo Supergroup succession. This was attributed to changing climatic, tectonic and 
sedimentary settings with time. Falcon and Ham (1988) also cover various aspects of coal 
petrography in their paper on the characteristics of Southern African coals.  

Holland et al. (1989) undertook maceral group and mineral matter analyses of the basal four seams 
of an area to the south of Middelburg in the Witbank Coalfield. This work showed that in general the 
coal seams are inertinite-rich, with the inertinite content commonly greater than 55%, but ranging 
from 20% to 80%. The vitrinite content generally varies between 0% and 10% and exinite (liptinite) 
contents are low, being generally less than 10%, and reaching a maximum of about 15%. Exinite 
(liptinite) contents are low, less than 10%, but reach a maximum of about 15%. The general role of 
coal petrography in understanding the properties of South African coal is covered by Snyman (1989). 

Glasspool (2003) used petrology as one of a suite of techniques to examine the No. 2 Seam from a 
single locality near the town of Ogies in the Witbank Coalfield (Fig. 1). He then compared the 
petrographic composition of this single locality to an average Witbank Coalfield coal as determined 
from the compilation of data from 34 mines from within the coalfield (Boshoff et al., 1991). 
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Fabianska and Kruszewska (2003) discuss the relationship between petrographic and geochemical 
characterisation of selected South African coals and note that the Beaufort Group coal seams are 
enriched in vitrinite.  

Whilst these studies have shown the high petrological variability of South African Permian-aged 
coals, in general these coals have a higher inertinite content in comparison to most Carboniferous-
aged Northern hemisphere coals. Major portions of the inertinite (up to 60 %) consist of low-
reflecting semifusinite, commonly known in South African petrography as ‘reactive semifusinite’ 
(Hagelskamp and Snyman, 1988). 

3.5. Palynological studies 

The palynology of coal-bearing strata in South Africa has been intensely investigated due to their 
economic importance. Rillett (1954) reported on the palynology of coal seams near Dannhauser in 
KwaZulu-Natal. Hart (1964a, b; 1965; 1966a, b; 1969a, b, c; 1970) is responsible for a major 
contribution to Gondwanan Permian palynology. In South Africa, he studied the Dwyka, Ecca and 
Beaufort groups in the Cape Province as well as many boreholes from Gauteng and the Free State 
and thus this work formed the basis for review by subsequent workers. It should be noted however 
that the bulk of this research was associated with the sedimentary rocks enclosing the coal, not on 
the coal seams themselves. 

Two main palynostratigraphic schemes have been established in the 1970s and 1980s for the coal-
bearing Karoo succession and work in this respect is ongoing. Anderson (1977) subdivided the 
Dwyka, Ecca and Beaufort groups of the northern Karoo into seven zones. Falcon et al. (1984) and 
Falcon (1986c) investigated the palynoflora of the Witbank and Highveld coalfields and erected four 
zones and five sub-zones. Falcon (1988, 1989) also documented the role of palynology for analysis of 
the quality and distribution of the No. 2 Seam in the Witbank Coalfield. 

Falcon et al. (1984) also showed that palynomorphs could be extracted from the coal seams 
themselves, and that all the coals investigated by these authors contained miospores in quantities 
ranging from 2-12%. MacRae (1988) identified six recognisable biozones in the coal-bearing strata of 
the Waterberg and Soutpansberg-Pafuri basins in the Limpopo Province. Aitken (1993, 1994, 1998) 
worked on the Vryheid Formation in the Witbank and Highveld coalfields, as well as at Lindley in the 
Free State Coalfield. He proposed a new microfloral biozonation scheme for the northern Karoo, 
with ten zones for the Permian and Lower Triassic. Millsteed (1994, 1999) reported on the Early 
Permian palynomorph assemblages of the Saolburg-Vereeniging Coalfield. Published palynological 
studies on the Molteno Formation lag behind. 

3.6. Age of the coals 

Coals in South Africa range in age from Early Permian to Late Triassic, with the majority being of 
Permian age, comparable to other Gondwanan coals in Sub-Saharan Africa, Madagascar, India, 
Australia, Antarctica and South America. As previously noted by Cairncross (2001) the absolute age 
of the coal-bearing units in South Africa are not well constrained, as to date zircon bearing tuff 
horizons have not been discovered. Most, if not all Permian age determinations and correlations 
therefore rely on palynology (Aitken, 1994, 1998; MacRae, 1988; Millsteed, 1994, 1999; Visser, 1992; 
Ruckwied et al., 2014). 

Based on these palynological studies the Vryheid Formation is dated as Artinskian, with possible 
extension into the Kungurian (McLachlan and Anderson, 1973; Loock and Visser, 1985; Visser, 1990; 
Aitken, 1994, 1998; Millsteed, 1994, 1999). Based on the presence of age-diagnostic index taxa 
Millsteed (1994) suggested an Artinskian (Aktastinian to lower Baigendzhinian) age for the Vryheid 
Formation in the Free State. Recent studies led to the conclusion that coal deposits of the Vryheid 
Formation correlate to the organic-rich black mudstones of the uppermost Prince Albert and 
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Whitehill formations (Ruckwied et al., 2014). New palynological data from the Witbank Coalfield and 
the north-eastern part of the MKB have enabled the establishment of a new basin-wide correlation 
scheme (Ruckwied et al., 2014) (Fig. 7). 

 

Fig. 7. Cross-basin correlation of Permian deposits using palynology. Fm. = Formation. 

Based on this new basin-wide correlation three main ages are documented for coal formation in 
South Africa; these being the Early Permian (Artinskian–Kungurian); Middle to Late Permian 
(Ufimian–Kazanian); and Late Triassic (Carnian). Not a lot of work has yet been undertaken on the 
palynological representation and age of the coals of the Nongoma, Somkhele, Kangwane, Limpopo, 
Soutpansberg (Mopane, Tshipise and Pafuri basins) and Springbok Flats coalfields (Fig. 1). 

4. The Coalfields of South Africa 

Although differences exist in the literature as to the total number of coalfields in South Africa, 19 are 
generally accepted (Fig. 1), covering an area of some 9.7 million hectares (ha). The distinction 
between coalfields is based on geographic considerations and variations in the mode of 
sedimentation, origin, formation, distribution and quality of the coals. These variations are in turn 
related to specific conditions of deposition and the local tectonic history of each area. 

The majority of coal mined to date in South Africa has however come from only six or seven of these 
coalfields, and for these coalfields, where hundreds of mines exist, individual mines are not 
mentioned in the text unless specifically required. For the newer coalfields, and those that have yet 
to be exploited, individual mines and projects are discussed, as most of the available data pertains to 
them and they form the entire knowledge base. Coal seam thicknesses are provided for the 
individual coalfields but it should be noted that these are highly variable within any one coalfield and 
should be taken only as an overall guide. Unless otherwise stated all coal qualities provided are on 
an air dried basis. For most coalfields coal qualities provided include general Calorific Value (CV), Ash 
% (Ash), Volatile Matter % (VM), Inherent Moisture % (IM), Fixed Carbon % (FC) and Total Sulphur 
(TS). For thermal coals CV is presented first in the tables, whereas for anthracite the FC is.  Dry Ash-
free volatile (DAFVOL) percentages are also presented where required to show areas of devolatilised 
coal. 
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The Witbank and Highveld coalfields (Fig. 1) are the best documented and described and are here 
presented first, as they set the standard for the descriptions of many of the coalfields that follow. 

4.1. Witbank Coalfield 

4.1.1. Introduction 

Whilst there is no clear record of when coal mining began in the Witbank Coalfield, it is known that 
by 1889 four small collieries (Brugspruit, Steenkoolspruit, Maggies Mine and Douglas Colliery) were 
operating (Smith and Whittaker, 1986a, b; Falconer, 1990). Over a century and a quarter later this 
coalfield is still one of the most important in South Africa, supplying more than 50% of South Africa’s 
saleable coal. It produces both metallurgical coal and thermal coal for the export and local markets, 
and hosts many of the major coal-fired power stations in South Africa including Kendal, Duvha, 
Komati and Arnot. The coalfield is fairly mature in terms of its exploration and exploitation and it is 
unlikely that it will see any new large coal mines. 

The coalfield is named after the city of Witbank, which was renamed to Emalahleni in 2006. Whilst 
some argument for renaming the coalfield might therefore exist, the name Witbank Coalfield is 
however retained here due to its historical significance. 

4.1.2. Location 

The Witbank Coalfield is situated in the northern part of the MKB, extending from roughly 25°30’S to 
26°30’S by 28°30’E to 30°00’E, and covering an area of over 568,000 ha. It extends some 90 km in a 
west-east direction, from the towns of Springs in the west to Belfast in the east, and 50 km in a 
north-south direction, from the town of Middelburg in the north to Rietspruit in the south. The 
northern boundary of the coalfield is formed by pre-Karoo basement rocks, while the southern 
boundary in the central portion of the basin is widely considered to be the sub-outcrop against a 
basement palaeohigh known as the Smithfield Ridge (Fig. 8), a broadly east-west trending, crescent  

 

Fig. 8. Schematic north-south transect of the Witbank and Highveld coalfields separated by the Smithfield 
Ridge (after Falcon, 1986a). 
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shaped ridge of pre-Karoo felsites, granites and diabase of the Bushveld Igneous Complex (BIC). This 
ridge extends for some 60 km between the farms Smithfield 44IS in the west and Fentonia 54IS in 
the east, as both a surface topographic high as well as in the subsurface (Le Blanc Smith, 1980a). To 
the east and west of the central portion, the southern boundary is rather arbitrarily defined. The 
extreme eastern and western boundaries are also defined by the sub-crop of the coal-bearing 
sedimentary succession against the pre-Karoo basement. 

We here informally sub-divide the coalfield into three fairly distinct geographical areas, these being 
the western, central and eastern sectors. The central sector is probably the best known and is host 
to many of the large mines and tied mine mouth power stations. 

4.1.3. Exploration and exploitation history 

It is beyond the scope of this work to fully detail over a 120 years of exploration and exploitation 
history in the Witbank Coalfield, so instead some highlights are documented below. In 1872, both 
Thomas Baines and Woolf Harris document coal in the Witbank Coalfield. Following on the 
identification of coal in the Vandyksdrift area, it is believed that Harris started the Maggies Mine 
around 1873 (Falconer, 1990). As mentioned above, four small collieries were in production by 1889 
and a Government Mining Engineer's report refers to the production of coke in 1890, which would 
suggest that coal mining operations were well established in the coalfield by that time. The first 
certain commercial company record however dates only from 1895, when the Home Coal Estates 
Company was formed to take over the Maggies Mine. Mining in the vicinity of the town of Witbank 
also began in 1895 when the Cassel Coal Company opened Landau Colliery (Schalenkamp, 2006). The 
coalfield has been in continuous exploitation since this time, providing a near 120 year record of 
mining and exploration history. 

The main end users of the coal were the gold mining industry and its associated businesses and 
infrastructure, including the railways. The gold mining companies bought heavily into the coal 
resources and for the first half of the twentieth century, nearly all coal mines in the Witbank 
Coalfield were owned by the large gold-mining houses. 

This exceptional history has also meant that this coalfield is South Africa’s best documented and 
understood. The Witbank Coalfield has been the home to a number of firsts in South Africa, 
including the introduction of the first continuous miner (CM), in 1947 at the Klipfontein Colliery, and 
the first large dragline, which was introduced at Optimum Colliery in 1971. The Witbank Coalfield is 
also home to the first black owned and managed coal mine in South Africa (Scott, 1998). This 
occurred in March of 1997 when Kuyasa Mining (www.kuyasamining.co.za) began production from 
its Ikhwezi Colliery, situated approximately 25 km from the town of Delmas in the western part of 
the Witbank Coalfield. Following on the change in mineral legislation in South Africa in 2004, the 
coalfield became the focus of renewed exploration and exploitation by a number of new junior and 
mid-tier miners including Continental Coal (http://www.conticoal.com/), Keaton Energy Holdings 
(http://www.keatonenergy.co.za/), Mbuyelo Resources (http://mbuyelo.com/), Sable Mining 
(http://www.sablemining.com/) and Universal Coal (http://www.universalcoal.com/). Much of this 
new exploration work has focused on the western sector of the coalfield. 

From these new entrants four new surface coal mines have been established in the past few years. 
These include from west to east Universal Coal’s Kangala Colliery, Mbuyelo’s Eloff/Manungu Colliery, 
Keaton Energy Holdings (Keaton) Vanggatfontein Colliery and Continental Coal’s Vlakvarkfontein 
colliery. These four opencast operations will together generate around 8 Mtpa of coal. 

4.1.4. Research history 

The earliest meaningful research into the coals of the Witbank Coalfield was that of Wybergh (1922) 
who interpreted the origin and palaeoenvironmental setting of the seams. Due to the sensitive 

http://www.kuyasamining.co.za/
http://www.conticoal.com/
http://www.keatonenergy.co.za/
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http://www.sablemining.com/
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nature of the data, published accounts of the coalfield between this early work and the 1980s is 
scarce, fragmentary and generalised, with the most comprehensive work being that of De Jager 
(1976).  Since this time exploration and mining in the Witbank Coalfield over the years has allowed 
for the description of various clastic depositional systems that are associated with the five coal 
seams (Fig. 9). 

 

Fig. 9. Generalised stratigraphic column for the Vryheid Formation in the Witbank Coalfield (redrawn from 
Cairncross and Cadle, 1988). Individual coal seams are numbered from No. 1 at the base to No. 5 at the top. 

The general geology of the Witbank Coalfield has been extensively studied, and was the focus of 
much research during the 1980s and 1990s during the time of the National Geoscience Programme’s 
Witwatersrand Coal Research Group. Specific studies that have focussed on aspects of the 
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sedimentology of the Witbank Coalfield (and its included coal seams) include those of Le Blanc Smith 
and Erikkson (1979), Le Blanc Smith (1980a,b,c), Cairncross (1980), Winter (1985), Cairncross (1986), 
Cairncross and Cadle (1988), Holland et al. (1989), Cadle and Cairncross (1993), Grodner (2002), 
Grodner and Cairncross (2006), and Uys (2007). 

Floor rolls on the No. 2 Seam at Greenside Colliery were noted by Atkinson and Leach (1979) as 
being responsible for the introduction of the first load-haul-dump unit, to supplement the 
conventional equipment in use by separately loading and dumping stone derived from the blasting 
of the footwall humps or rolls. They are described as being protuberances into the seam floor, 
varying in height between 0.5-3.5 m, and covering areas of 100 m2 or more. 

The same year saw the publication of one of the earliest works to geostatistically analyse the coals of 
the Witbank Coalfield, specifically the No. 2 Seam reserves of the Greenside Colliery (Wood, 1979). 
This work showed the No. 2 Seam to be composed of four different zones (plies) and discusses the 
presence in the colliery of muck-belts which were then believed to be erosion channels filled by the 
poorer quality zone 4. This work further shows the value of utilising geostatistical methodologies to 
understand the mining blocks and the relationship between borehole spacing and block size. 

Le Blanc Smith and Erikkson (1979) document various facies for the Dwyka Group and basal part of 
the Vryheid Formation in the north-central part of the Witbank Coalfield. These authors showed that 
outwash sediments associated with the waning Dwyka ice age, accumulated as fluvioglacial and 
glaciolacustrine deltaic deposits.  

Based on subsurface data from over 1200 boreholes, Le Blanc Smith (1980a, b) determined various 
aspects of the Witbank Coalfield stratigraphy and the palaeoenvironmental controls on coal 
formation. He further attempted to remove the inadequacies of the existing lithostratigraphy by 
defining a genetic stratigraphy for the Witbank Coalfield based on the recognition of ten aerially 
extensive marker horizons, allowing for the subdivision of the succession into eleven Genetic 
Increments of Strata (GIS) and four Genetic Sequences of Strata (GSS). To overcome a lack of 
uniformity in borehole core descriptions, Le Blanc Smith (1980c) also erected a useful logical letter 
facies coding system for the Witbank Coalfield, the basis of which is still used today in coal 
exploration programmes. 

Cairncross (1980) described the role of anastomosing fluvial channels in the No. 2 Seam at Van Dyks 
Drift Colliery, and the deleterious affect these had on coal seam distribution and quality. Winter 
(1985) and Cairncross (1986) related coal quality to interpreted processes of fluvial sedimentation 
and to differential compaction of the peat swamp. Cairncross (1986) also documented the 
importance of clastic partings in the No. 2 Seam at Arnot Colliery leading to splitting of coal, through 
deposition of sediments by braided or anastomosed fluvial systems. Cairncross and Cadle (1988a) 
described the No. 1 and No. 2 seams in the east Witbank Coalfield with respect to their distribution, 
thickness and quality. 

In a special publication of the Geological Society Hart and Leahy (1983) documented the 
geochemical characterisation of the coal seams in the Witbank Coalfield. Macfarlane (1985) 
described stone-floor rolls from the underground Tavistock Colliery in the southeast Witbank 
Coalfield and interpreted them as being the preserved tops of scroll bars in a meandering river 
system. Cairncross et al. (1988) also describe floor rolls from the Witbank Coalfield and felt that 
Macfarlane’s (1985) model was incorrect and that the floor rolls observed in the Witbank Coalfield 
were the abandoned floors of anastomosing rivers, similar in character to modern analogues in the 
Okavango Delta of Botswana. Floor rolls are positive topographic features that protrude upwards 
into a coal seam and cause rapid seam thinning, dangerous floor conditions, production and grade 
control problems, and drainage problems. 
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Holland et al. (1989) undertook sedimentological and petrographic research on subsurface data from 
an area 20 km south of the town of Middelburg. Seventy logged boreholes drilled on a 100 m x 50 m 
grid pattern provided the data base for this investigation. This work showed that coal seams formed 
in fluvial environments are thick and laterally continuous, and have higher inertinite and mineral 
matter contents than coals formed in lower delta plain environments, which are generally thin and 
laterally discontinuous. This work also showed that in the area, that two distinct sedimentary 
successions underlie the No. 1 Seam, one in a palaeovalley setting and the other in palaeovalley 
flank settings. In the same year Falcon (1989) published a study on the macro-and micro-factors 
affecting coal-seam quality and distribution in southern Africa, with a focus on the No. 2 Seam in the 
Witbank Coalfield. 

Cairncross, et al. (1990) looked at the geochemistry and sedimentology of coal seams from the 
Witbank Coalfield as a means of seam fingerprinting and identification. Based on drill core and 
outcrop studies, Cadle and Cairncross (1993) delineated a 2-5 km wide channel system in the 
southern part of the central Witbank Coalfield and showed the channel-fill sequence to represent 
the deposition of a bed-load dominated braided fluvial system. 

Grodner (2002) and Grodner and Cairncross (2003) established a regional, three-dimensional 
sedimentological model of the clastic strata of the Vryheid Formation and pre-existing basin floor 
topography of the western part of the Witbank Coalfield. As part of a MSc study, Schalenkamp 
(2006) reported on the financial viability, and the effective and responsible utilisation of reserves 
within the previously mined areas of the Witbank Coalfield.   

Based on data from 924 boreholes Uys (2007) documented the lihtostratigraphy of the most 
northern proximal setting of the Witbank Coalfield, and offered an interpretation of the various 
depositional environments. She notes that in contrast to the greater Witbank Coalfield, but 
concurrent with other studies in the more northern proximal regions, fluvial systems dominate over 
deltaic systems in her study area. 

As part of the Coaltech 2020 research programme two projects have also been undertaken on the 
dolerites of the central Witbank area by twin brothers. Gideon du Plesis (Du Plesis, 2008) looked at 
the relationship between geological structures and dolerite intrusions on four collieries (Bank, 
Goedehoop, Koornfontein and Optimum) south of the Ogies dyke. Johannes du Plesis (Du Plesis, 
2008) undertook a detailed study on the petrochemical characterisation of the dolerites at the 
Koornfontein, Bank and Goedehoop collieries. This work focussed on the mineralogy and 
geochemistry of the dolerites and the behaviour and metamorphic influence of a 20 m thick 
bifurcating dolerite sill (the Witbank sill) and provides a number of proximate analyses that show 
that the dolerite sill caused a localised increase in rank, with areas of high moisture content 
corresponding to devolatilised areas. 

Mahanyele (2010) presents an interpretation of high resolution airborne magnetic data flown over 
selected areas (Delmas, Vandyksdrif, Arnot and Belfast) in the Witbank Coalfield. This work focussed 
on the identification and delineation of faults, dykes and sills and concluded that structural 
disturbance was more severe in the eastern sector. This work also provides geological descriptions 
of the four areas and provides a number of useful stratigraphic sections and borehole logs. 

The descriptions of the general geology and coal seams which follow draw on these previous works 
as well as the senior author’s personal experience in the Witbank Coalfield. 

4.1.5. Geology 

Given that the Witbank Coalfield is elongated over 180 km in a west to east direction, it is not 
surprising that the basement to the Karoo Supergroup succession is varied. From west to east the 
basement rocks include metasedimentary, metavolcanic and dolomitic rocks of the Neoarchaean 
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Transvaal Supergroup, metasedimentary and metavolcanic rocks of the Palaeoproterozoic 
Waterberg Group and BIC age intrusives (felsites and granites) (Fig. 10).  

 

Fig. 10. North-South and East-West cross sections of the Witbank and Highveld coalfields showing the relation 
between the pre-Karoo basement and the Permian coal-bearing series (after Smith, 1970). 

The changing nature of the basement plays a major role in the nature of the palaeotopography 
created. For example, in the far west of the Witbank Coalfield (Fig. 10), where dolomites of the 
Transvaal Supergroup form the basement, abnormally thick coals filling karst topography are known. 
A similar but more extreme case is documented at the Syferfontein Colliery in the West Rand outlier 
(Stuart-Williams, 1986).  

In some areas close to the north-western basin margin, the stratigraphic column is reduced to only 
80 m. It was also the focus of much of the academic research, including the works of Cairncross 
(1979) in the Van Dykes Drift area, Le Blanc Smith and Erikkson (1979) to the west of Witbank, and 
Holland et al. (1989) to the east of Witbank. Cadle and Cairncross (1993) described a sandy bedload 
dominated system with lateral accretion surfaces from the southern part of the central sector. More 
recently it has been covered in the regional geological model of Grodner (2002) and Grodner and 
Cairncross (2002) and various Competent Persons Reports available on various companies’ web sites 
(Goldschmidt et al., 2010a). Two areas to the south and southeast of Van Dyks Drift were also 
included in a high resolution aeromagnetic study by Mahanyele (2010). 

The eastern sector is also well known from the works of Cairncross (1986), Cairncross and Cadle 
(1988), and Uys (2007). Here the basement is mainly Rooiberg felsites and BIC gabbronorites and 
late stage granites. The top part of the succession has been lost to erosion, so that the No. 2 Seam is 
the main seam of economic interest. 

The western sector has not been the subject of as much academic work, mainly due to the fact that 
the coal is generally of poorer quality than in the central and eastern sectors. For this reason it was 
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also not previously extensively mined or explored. This changed dramatically post 2004, and the 
sedimentology of the region has now been described in a number of Technical and Competent 
Persons Reports filed electronically on SEDAR and on various companies’ web sites (Dekker and van 
Wyk, 2008; Gemmel, 2009; Goldschmidt et al., 2010b; Hancox, 2011). These technical reports also 
present the raw coal qualities for the various projects, both as tables and grids. 

Dwyka aged glacial scouring and the induced basement palaeotopography is by far the greatest 
factor impacting on the distribution of the coal seams in the Witbank Coalfield. The northern margin 
of the MKB in the Witbank Coalfield displays vast valleys and ridges left after the scouring ice-sheets 
migrated across this part of Gondwana. Five regional palaeovalleys, trending roughly NNE-SSW, have 
been identified (Fig. 11). These include the Grootvlei Valley extending from North of Nigel and 
trending in a southerly direction towards the South Rand Coalfield;  Vischkuil Valley, North-east of 
Springs trending towards Devon; Coronation Valley running from North of Coronation Kromdraai 
Colliery, North-west of Witbank, southwards towards Springbok Colliery and then extending to the 
South-east towards Hendrina; Bank Valley extending southward from North-west of Middelburg to 
Bank Colliery and subsequently linking to the Coronation Valley; Arnot Valley trending from North of 
Arnot southwards to the East of Arnot Colliery. 

 

Fig. 11. Limit of the Karoo Supergroup Rocks in the Witbank Coalfield showing the five recognised 
palaeovalleys (after Smith and Whittaker, 1986a). The black dashed line represents the approximate position 
of the Smithfield Ridge. 

These valleys created variable accommodation space, which was subsequently filled by the 
sedimentary rocks of the Dwyka and Ecca (Vryheid Formation) groups. The valleys merge to the 
southwest and their impact on the nature of the sedimentary succession becomes less. 
Palaeotopographic highs between these valleys include those composed of Elsburg metaquartzite 
and Ventersdorp lavas on either side of the Grootvlei Valley; a prominent Pretoria Group 
metaquartzite and diabase ridge extending from Dryden towards Leslie; and a felsite ridge extending 
south-eastward from Kendal to link with the granite and felsite Smithfield Ridge which forms part of 
the southern boundary of the Witbank Coalfield. 
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The basal Pietermaritzburg Formation of the Ecca Group is not present in the Witbank Coalfield and 
rocks of the Dwyka Group are directly overlain by the coal bearing Vryheid Formation of the Ecca 
Group. Ambiguity exists as to when the true stratigraphic position of the coal-bearing rocks in the 
Witbank Coalfield was first recognized. Smith and Whittaker (1986b) described the geological work 
of Mellor (1906) who defined the current nomenclature of the five seams in the area. Du Toit (1954, 
p. 283) however states that it was not until 1918 that the “Transvaal Coal Measures were found to 
be part of the middle portion of the Ecca series”. 

Most authors however now agree that five (Cairncross, 1986) or sometimes six (Le Blanc Smith, 
1980b; Cadle et al., 1986) coal seams occur within an approximately 70 m thick succession of the 
Vryheid Formation. They are generally numbered from No. 1 Seam at the base of the sequence to 
No. 5 at the top. Descriptions of each of these seams are provided below within the sequence 
stratigraphic architecture. The nature of the floors and roofs to the various seams are of particular 
importance, especially for underground development and extraction, and they are described in 
detail below. 

As the lithostratigraphic nomenclature for the Karoo Supergroup outlined by SACS (1980) does not 
include sub-formational level divisions, various inadequacies are evident when detailed 
sedimentological investigations are undertaken (Holland et al., 1989). As such, academic studies 
moved from strict lithostratigraphic classification to palaeoenvironmental interpretation. To account 
for the genetic nature of the stratigraphy, a number of informal models were erected. 

This approach was adapted for the Witbank Coalfield by Le Blanc Smith (1980a), Winter (1985), 
Cairncross (1986) and Winter et al. (1987). The details of these genetic models are reviewed in 
Grodner and Cairncross (2003) and are not repeated here. Cairncross (1986) adapted a 
straightforward approach to the stratigraphic analysis of the Vryheid Formation strata in the 
Witbank Coalfield, subdividing the entire column into three sequences which contain the five coal 
seams. These units (the terminology of which is followed in this paper) are from the base up the No. 
2 Seam, No. 4 Seam and No. 5 Seam sequences (Fig. 9). 

Cairncross’s (1986) No. 2 Seam Sequence equates to Le Blanc Smith’s (1980a) Witbank Genetic 
Sequence of Strata (GSS) and incorporates the No. 2 Seam. The overlying No. 4 Seam Sequence 
equates to the Coalville GSS of Le Blanc Smith (1980a) and extends from the roof of the No. 2 Seam 
to the No. 4 Seam, incorporating the No. 3 Seam where present. The uppermost No. 5 Seam 
Sequence is the equivalent of the Middelburg GSS of Le Blanc Smith (1980a) and extends from the 
roof of the No. 4 Seam to the No. 5 Seam. As Cairncross’s (1986) study was a more detailed local 
scale analysis, he did not find it necessary to define an equivalent to Le Blanc Smith’s (1980a) Van 
Dyks Drift GSS. 

4.1.6. Seam Sequences 

The No. 2 Seam Sequence (Fig. 9) includes the succession from the top of the basement to the top of 
the No. 2 Seam, which may be up to a maximum development of 60 m in places (Le Blanc Smith, 
1980a). This sequence is probably the least well documented or understood succession in the entire 
MKB stratigraphy and should be the focus of studies in the future. It incorporates the rocks of the 
Dwyka Group, as well as the overlying No. 1 and No. 2 coal seams. It should be noted that we accept 
that the Dwyka has separate Group status, but that it is described below as the basal part of the No. 
2 Seam Sequence. 

Unfortunately, many exploration boreholes drilled within the Witbank Coalfield have not fully 
penetrated the Dwyka Group (which is often incorrectly referred to as basement) and as such the 
thickness variations are not as well-known as for parts of the Vryheid Formation. The thickness of 
the Dwyka Group in the Witbank Coalfield also varies considerably dependant on the nature of the 
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underlying topography. It ranges from being thin or absent over the most prominent pre-Karoo 
topographic highs, to over 25 m thick in the central part of the Witbank Coalfield (Le Blanc Smith and 
Erikkson, 1979) to 30 m thick (Glasspool, 2003) in the deeper palaeovalleys. Le Blanc Smith and 
Erikkson (1979) note that the fill consists of poorly sorted matrix-rich diamictites, laminated 
sandstones and siltstones, stratified pebbly mudstones and cross-stratified conglomerates.  

In the western Witbank Coalfield the No. 2 Seam sequence tends to be much more variable in nature 
than it is in the central part. This is mainly due to the irregular nature of the Transvaal Supergroup 
(Malmani Group) dolomite floor. The Dwyka Group outcrops in the area around Delmas and is also 
well known from borehole core, which show the succession to be between 0-10 m in thickness. The 
base of the No. 2 Seam Sequence is usually formed by poorly sorted matrix-rich diamictites, with 
angular to rounded basement clasts, set in a matrix of fine- to medium-grained sandstone, which 
may be highly carbonaceous in places. Maximum clasts sizes documented by the authors are in the 
region of 30 cm. According to Le Blanc Smith (1980a) the Dwyka Group diamictites may in turn be 
overlain by a succession up to 36.0 m thick of mudstone and siltstone, which grades upwards to 
sandstone and conglomerate that form the floor of the No. 1 Seam or its carbonaceous mudstone 
equivalent. 

In the Vischkuil Valley of the far western region of the Witbank Coalfield and in the Delmas region, 
the clastic interval (above the diamictites where present) beneath the No. 1 Seam is much thinner 
and less complex than that described by Le Blanc Smith (1980a) for the Witbank Coalfield in general, 
and is more similar to the succession described by Cairncross and Cadle (1987) for the north-east of 
the Coalfield. Variability is the norm, with the succession, where present, formed by variable 
thicknesses of matrix supported conglomerate, medium- to coarse-grained sandstone, finely 
laminated siltstones and mudstones, and insignificant stringer coals in places. Thick units of 
apparently massive to thinly laminated, very fine-grained sandstone to mudstone may also occur. 
These are interpreted as glacial flour deposits and are restricted to the stratigraphic interval below 
the No. 1 Seam. 

In the New Largo area (west central Witbank Coalfield), whilst not always present, the Dwyka Group 
is formed by a succession of polymictic diamictites and poorly sorted, coarse to very coarse-grained 
sandstones, with rare occurrences of varved and massive mudrocks. Thicknesses of up to 12 m have 
been intersected, but the entire Dwyka Group has been penetrated in only a few boreholes. In the 
eastern sector, Uys (2007) describes the Dwyka Group as being composed of up to 2 m of massive, 
sand or clay matrix supported conglomerate (diamictite) containing angular pebbles, cobbles and 
boulders. The diamictite grades upwards into very coarse-grained sandstones and minor lenses of 
siltstone and mudstone, including varved units. 

Whilst the thicknesses are highly variable, the nature of the Dwyka succession is remarkably similar 
in all areas of the coalfield. Generally the base of the Dwyka Group consists of rudaceous material of 
glacial origin (diamictite unit) accumulated as ground moraine and glaciomarine, including 
diamictite, varved and interlaminated siltstones and mudstones with dropstone pebbles, as well as 
fluvioglacial gravel and conglomerates.  

The paraglacial model of Le Blanc Smith and Erikkson (1979) is generally sound for the basal part of 
the No. 2 Seam Sequence in the Witbank Coalfield. Generally the succession is formed by basal 
diamictites formed during glacial retreat, overlain by various glacial outwash deposits including 
reworked diamictites (which form better sorted conglomerates), glaciodeltaic sandstones and 
glaciolacustrine deposits (including varves and dropstones). Upon abandonment of this outwash 
plain, shallow rooted vegetation developed giving rise to the peats which formed the No. 1 Seam. 
The immediate floor to the No. 1 Seam is also highly variable and may be formed by basement, 
Dwyka Group diamictite, reworked diamictite, very coarse to coarse and medium- to fine-grained 
sandstone, or carbonaceous siltstone and mudstone. 
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Development of the seam occurs mostly in palaeovalleys and tends to pinch out against the 
palaeohighs and seam development and thickness is highly variable. Hollard et al. (1989) document 
a maximum recorded thickness of 6 m for the No. 1 Seam in a palaeovalley in the central sector of 
the Witbank Coalfield. Smith and Whittaker (1986b) note it is best developed in the northern part of 
the Coalfield, where it is between 1.5 m and 2 m thick. In the western sector the No. 1 Seam is not 
usually well-developed and where present forms a coal and carbonaceous mudstone rich interval. It 
is of poor quality and is not usually included as part of the resource base except where it joins with, 
and forms the basal part of the No. 2 Seam. Even in this instance, it is sometimes left in surface 
operations as a non-select basal ply.  

At the Kendal Colliery in the west-central Witbank Coalfield, the No. 1 Seam is only developed as a 
thin marker unit, with a rooted basal contact (Hancox, 2011; Fig. 12).  

 

Fig. 12. Borehole core from Kendal Colliery showing diamictites of the Dwyka Group and the thin (8 cm) nature 
of the No. 1 Seam (from Hancox, 2011; Figure 7.4). TNW core diameter (60.5 mm). 

In the far eastern part of the Witbank Coalfield the No. 1 Seam, where present occurs between 
0.25 m and a little over 2 m thick. It may be sub-divided into bright coal, dull coal and lustrous coal. 
The bright coal is occasionally laminated and may contain disseminated pyrite. Dull coal is often 
described as gritty or granular (Uys, 2007) and may contain pyrite or siderite nodules. The basal 20-
30 cm of the No. 1 Seam in this area tends to be a carbonaceous siltstone or mudstone in places. Uys 
(2007) divides the seam into a No. 1 Lower-Lower Seam, No. 1 Lower Seam and No. 1 Seam. The No. 
1 Lower-Lower Seam is a thin ply that occurs only in isolated areas and pinches out against 
basement at places. It averages only 0.29 m and consists of dull coal with occasional thin laminae of 
bright coal. The parting between this lowermost seam and the No. 1 Lower Seam is composed of 
between 1.96-2.36 m of granulestone and reworked diamictite. The No. 1 Lower Seam is also thin 
(averaging 0.36 m) and discontinuously formed around basement highs and consists of mainly dull 
coal (Uys, 2007). The parting between this ply and the overlying No. 1 Seam is formed by a thin 
(average 0.43 m) reworked diamictite that may in fact represent a debris flow deposit. Uys (2007) 
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further notes that the No. 1 Seam is laterally persistent across the area of her study and that it 
appears relatively unaffected by the pre-Karoo basement. 

Where economically extracted the No. 1 Seam typically consists of high quality lustrous to dull coal, 
with local sandstone and siltstone partings, and may be a source of export quality thermal coal 
(Smith and Whittaker, 1986b; Falcon, 1989; Snyman, 1998) and low phosphorus metallurgical coal 
(Barker, 1999; Cairncross, 2001). In other places it may be formed by a high ash unit containing 
reworked Dwyka Group lithologies. It is however often misidentified and mis-correlated. 

The immediate roof to the No. 1 Seam is variously formed by reworked diamictite (Fig. 12) or 
dolomitic breccia, and fine- to coarse-grained sandstones. The succession between the No. 1 and No. 
2 Seams is also highly variable, but is often formed by a generally coarsening, then fining upward 
succession until the base of the No. 2 Seam. In the far eastern sector the parting between the No. 1 
and No. 2 seams is variously formed by either a coarse-grained sandstone or siltstone and mudstone 
unit. Where developed normally this unit is fairly consistent and ranges from 0.40-0.60 m in 
thickness. 

Cairncross and Cadle (1988) interpret the succession that forms the clastic parting between the No. 
1 and No. 2 seams as being deposited by coarse-grained bedload dominated fluvial deposits. In the 
western sector this is not however the case and the succession seems to be the product of a 
prograding deltaic unit, with various reworked diamictites forming as debris flow deposits. 

Due to the fact that the Dwyka Group and basal part of the No. 2 Seam sequence may not be 
developed in areas of the coalfield, the floor to the No. 2 Seam is highly variable, and this 
heterogeneity is important from a mining and environmental perspective, especially in the western 
sector of the coalfield where the No. 2 Seam may sit directly on dolomitic basement. The floor to the 
No. 2 Seam may therefore be formed by fresh or palaeoweathered dolomites or metasedimentary 
rocks of the Transvaal Supergroup, on Dwyka Group lithologies, on any lithology of the No. 1–No. 2 
parting, or directly on coal of the No. 1 Seam, thus forming a thick composite seam. This last option 
is particularly prevalent in the western sector of the Witbank Coalfield, which at Exxaro’s Leeupan 
Mine is up to 14 m thick (Goldschmidt, 2010b). To the west of this on Mbuyelo’s Eloff project area 
the lowermost coal may form a composite seam up to 20 m in thickness (Hancox, 2011). 

 

Fig. 13. Different partings and coal layers within No. 2 Seam common to the Witbank Coalfield (from 
Cairncross and Cadle 1988a). 
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In places the No. 2 Seam is split into a No. 2 Lower (2L) and No. 2 Upper (2U) by an intra-seam 
parting (lens) of clastic sediment deposited from a braided river system during peat accumulation 
(Fig. 13). The clastic lens deleteriously affects coal thickness and quality (Cairncross and Cadle, 1988). 
This No. 2 Seam split is also documented for the central part of the Witbank Coalfield by Holland et 
al. (1999) and is known to be up to 15 m in thickness in the Kendal-Oogies area (Hancox, 2011). In 
the central sector there is sometimes an additional intra seam parting, creating an upper No. 2A 
Seam as well (Fig. 14). 

 

Fig. 14. No. 2 Seam (#2 Seam) overlain by carbonaceous mudstone and siltstone (Roof 2a) grading upwards 
into fine-grained sandstone (Roof 2b). Eastern Witbank Coalfield. 

The majority of the coal resources in the Witbank Coalfield are attributed to the No. 2 Seam, which 
also contains some of the best quality coal. The seam averages 6.5 m in thickness in the main-central 
part of the Coalfield, and thins to approximately 3 m towards the east. In the Delmas region it may 
be up to 7 m thick. The seam generally displays well-defined zoning, with up to seven zones of coal 
of differing quality (Jeffrey, 2005a). Historically the basal three zones have been mined for low ash 
metallurgical and thermal export coal and in places the basal five zones are still mined for 
production of thermal coal for the export market. The top zone, which may be up to 3 m thick, is 
generally of inferior quality (high ash), and is only suitable for the local Eskom market. This zone has 
historically not been mined when the No. 2 Seam was extracted by underground mining. 

Given the high degree of variability exhibited by the No. 2 Seam, it is difficult to present an average 
set of qualities for the seam. This variability is enhanced in the western sector where dolerites often 
devolatilize the seam. Technical reports for the new projects in the western sector show the raw 
CV’s of the No. 2 Seam to vary from 3.0 MJ/kg to 24.7 MJ/kg, Ash from over 40% to around 22%, raw 
VM from 12-25% (with dry ash-free volatiles (DAFVOL) varying from 13.5% to 43%), and TS between 
lows of 0.5% and highs of over 10%. The reader interested in specific quality data for the western 
sector is referred to Goldschmidt et al. (2010a, b), Hancox (2011) and to the Universal Coal, Sable 
and Keaton Energy websites. 
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The No. 4 Seam Sequence (Fig. 9) comprises the succession incorporating the immediate roof of the 
No. 2 Seam to the top of the No. 4 Seam, and equates to the Coalville GSS of Le Blanc Smith (1980a) 
and the succession referred to as the Roof of No. 2 Seam to Floor of No. 4 Seam Sequence by 
Grodner (2002) and Grodner and Cairncross (2003). The most characteristic feature of this sequence 
is its coarsening-upward nature, as noted by previous workers such as Cairncross and Cadle (1987). 

The immediate roof of the No. 2 Seam is less variable than its floor, being composed of either a 
coarse-grained sandstone to granulestone where a channel is developed above it (such as at the 
Kendal Colliery), or a unit of laminated to rippled siltstone or mudstone.  

In the Delmas area of the western sector the succession between the No. 2 and the base of the No. 3 
Seam (where present) comprises a basal, highly carbonaceous siltstone, interbedded siltstone and 
fine-grained sandstone, which is frequently bioturbated grading upwards into a medium- to coarse-
grained arkosic sandstone. According to Cairncross and Cadle (1987) the succession to the base of 
the No. 3 Seam is usually formed by delta progradation, with delta abandonment allowing for the 
formation of the No. 3 Seam peat development. 

The No. 3 Seam is only poorly developed and when present is usually less than 0.5 m thick. It is often 
of a good quality coal, but is not generally economically extracted due to its thin development. 
Where it attains a thickness greater than 0.5 m, it may represent a potential shallow resource for 
opencast mining. In the far western sector it is sometimes greater than 0.5 m, but often has highly 
elevated sulphur values (4%), which are not dramatically lowered by beneficiation. 

The roof to the No. 3 Seam is variously formed by medium- to coarse-grained sandstones or 
carbonaceous siltstones. The interburden succession between the top of the No. 3 Seam and the 
base of the No. 4 Seam comprises a second coarsening upwards sequence from carbonaceous 
siltstones, or fine-grained sandstones through medium- to coarse-grained arkosic sandstones. Over 
much of the central Witbank area this interburden is fairly thin, being between only 0.6-2 m at the 
Kendal Colliery. At places the No. 3 and No. 4 seams are also known to coalesce. The fact that the 
top of the succession is formed by sandstone usually makes for a good mining floor to the No. 4 
Seam in the coalfield; however this may also be formed by a fining upward succession of 
carbonaceous siltstones and mudstones at places. 

The No. 4 Seam is the second most important source of coal in the Witbank Coalfield and varies in 
thickness from approximately 2.5 m in the central Witbank Coalfield to around 6.5 m elsewhere. In 
places, the Seam is divided into a No. 4 Lower (No. 4L), No. 4 Upper (No. 4U) and No. 4A seams, 
separated by sandstone and or siltstone partings. At the Kendal Colliery the interburden sequence 
between the No. 4L and No. 4U seams is formed by a coarse to very coarse, well-cemented 
sandstone, which changes in thickness from 7.5 m to over 20 m within the confines of the mine. In 
the Delmas area the No. 4 Seam can obtain thicknesses exceeding 6 m and may be formed by a 
composite seam comprising up to four different coal zones (plies) that have different aerial 
distributions. 

Holland et al. (1989) concluded that the No. 4 Seam accumulated as peat in an upper delta plain 
environment. Deposition of fine-grained sediment within an embayment, and later, deposition of 
mudstone, siltstone and sandstone during the accumulation of the coal bed, split the No. 4 Seam 
into the No. 4 Lower, No. 4 Upper, and No. 4A sub-seams. 

The No. 4 Seam usually contains dull to dull lustrous coal, and because of the poor quality of the No. 
4U Seam the mining horizon is generally restricted to the No. 4L Seam. The coal is used 
predominantly as a local power station feedstock. As for the No. 2 Seam the qualities of the No. 4 
Seam across the Witbank Coalfield are highly variable (and as such a single quality table is not 
provided her). Generally however the No. 4 Seam is poorer in quality than the No. 2 Seam. In the 
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western sector the raw CV for the No. 4 Seam varies from 4.0 MJ/kg to 25.81 MJ/kg, with the 
DAFVOL percentages varying from 14.3-40.2% dependent on the proximity of dolerites. 

The base of the No. 5 Seam Sequence (Fig. 9) is formed by the roof of the No. 4 Seam as described 
below. This sequence corresponds to the Middelburg GSS of Le Blanc Smith (1980a) and the Roof of 
No. 4 Seam to Floor of No. 5 Seam Sequence of Grodner (2002) and Grodner and Cairncross (2003). 
The immediate roof to the No. 4 Seam may be composed of a succession of fines (carbonaceous 
siltstones), or more commonly by a thick unit of medium- to coarse-grained sandstone, with a sharp, 
erosive contact into the underlying coal or carbonaceous mudstone. 

The No. 5 Seam generally lies some 25 m above the No. 4 Seam and the sequence between the No. 4 
and base of the No. 5 Seam is formed by a thick succession of interbedded sandstones and 
siltstones, culminating in the rocks that form the immediate floor to the No. 5 Seam. Over most of 
the Witbank Coalfield the immediate floor to the No. 5 Seam is composed of carbonaceous fines. 
This poor quality floor has caused significant issues with the mining of the No. 5 Seam, particularly in 
underground situations. 

According to Cairncross (1990) the No. 5 Seam is generally only present above basement 
palaeotopographic highs. It is best developed in the central Witbank Coalfield and has been 
extensively eroded over large areas of the coalfield, including the entire eastern sector. Even on a 
project scale it may be present in some areas and eroded away in others, making its correct resource 
definition problematic. 

Where present the No. 5 Seam has an average thickness of around 1.8 m, being developed between 
0.5-2 m. The seam consists of mixed, mainly bright, banded coal with thin clastic partings in a few 
localities. The quality of the coal in the No. 5 Seam is generally fairly high (except in the extreme 
western parts of the coalfield where it is not of economic quality) generally being a high-vitrinite 
bituminous coal. As for the No. 2 and No. 4 seams, there is significant variability, with company data 
for the western sector suggesting raw calorific values for the No. 5 Seam that vary from 5.1 MJ/kg to 
26.26 MJ/kg. The volatiles are usually quite high, except where devolatilised by dolerite, or through 
weathering. In places the No. 5 Seam is of high quality (Smith and Whittaker, 1986b) and may be a 
source of metallurgical coal for both the domestic and export markets, including the ferro-
manganese industry. 

 

Fig. 15. Thick (0.90 m) development of the Glauconitic Sandstone Marker (between the dotted lines) above the 
No. 5 Seam in the Delmas region of the Witbank Coalfield. Keaton Energy’s Vanggatfontein Colliery.  
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The immediate roof of the No. 5 Seam is formed by a coarse-grained glauconitic sandstone 
informally referred to as the Glauconite Sandstone Marker (Fig. 15). This marker is important in 
exploration and mining as it forms an easily recognisable unit immediately above the No. 5 Seam, 
although the laminated nature of the sandston may lead to weak mine-roof conditions that requires 
extensive support if mined underground. 

Where fully preserved in the western sector of the coalfield the sequence above the Glaucontic 
Sandstone Marker is formed by a coarsening upwards sequence (Fig. 16) beginning with 
approximately 2 m of carbonaceous siltstone and fine-grained sandstone, and that coarsens 
upwards into a 8 m thick package of fairly well-worked, medium- to coarse-grained, cross-stratified 
sandstone. 

 

 

Fig. 16. Coarsening-upward succession above the glauconitic marker. Vanggatfontein Exploration Project 
(Borehole VG07-47m; 40-56 m depth). NQ core diameter (47.6 mm). 
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Fig. 17. Stacked coarsening-upward cycles of carbonaceous siltstones into bioturbated fine-grained sandstones 
and medium- to coarse-grained sandstones. Vanggatfontein Exploration Project (Borehole VG07-46m; 38-56 m 
depth). NQ core diameter (47.6 mm). 

4.1.7. Structure and intrusions 

Apart from where locally tilted by dolerite intrusions the coal seams, and their bounding strata, are 
generally flat lying although gently undulating with a regional dip to the south and south-east of less 
than a degree. The internal structure of the strata and coal seams becomes complex in areas of 
dolerite intrusion, where dips of up to 1 in 8 (7 degrees) have been observed. The strata (including 
coal) are also often faulted, although the displacements are rarely more than a few metres. Small 
scale faulting may be a function of differential compaction during burial and lithification, as well as 
to the effects of the dolerite intrusions. Both magnetic and non-magnetic dolerites are documented 
(Campbell, 1994). 

Dolerite dykes in the Witbank Coalfield vary in thickness from less than a metre to over 14 m. 
According to Jeffrey (2005a) the dykes trend east, northeast and north. Dykes and sills may be 
present at all stratigraphic levels, often being prevalent near the Dwyka Group Basement contact, as 
well as transgressively through the stratigraphy to positions above the No. 5 Seam. The most 
prominent dyke in the Witbank Coalfield is the Ogies Dyke, which has a strike length of over 100 km, 
running from the town of Ogies in the west to beyond the Optimum Mine in the east. This dyke 
effectively splits the coalfield into a northern portion and a larger central southern portion. The dyke 
attains a maximum thickness of 14 m and sedimentary strata up to 20 m either side of the dyke have 
been subject to deformation and devolatilisation. 

There appears to be a higher density of dykes in the central-southern portion of the Witbank 
Coalfield, as indicated by intersections during mining operations. Sills also appear to be more 
prominent in the central-southern portion. The effects of burning and devolatilisation are more 
severe with sills as they can persist over extensive areas in close proximity to the coal seams while 
dykes only affect coal along the zone of intersection. Dolerite sills at surface also have the effect of 
increasing the depth to the top of the targeted coal seam and will also affect the blasting 
requirements for stripping where present. Where encountered in an underground mining situation, 
dolerite sills and dykes may have a significant effect on water retention and roof goafing. 
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4.2. Highveld Coalfield 

4.2.1. Introduction 

Whilst similar to the Witbank Coalfield in many ways, including the overall general stratigraphy, the 
Highveld Coalfield is considered as a distinct entity, and is separated from the Witbank Coalfield by 
the Smithfield Ridge (Fig. 8, 11). Economically the coal resources within the Highveld Coalfield are 
important to the long-term life of Sasol’s Synthetic Fuels (SSF) and Sasol Chemical Industries (SCI), 
which requires some 50 million tonnes a year. The geographic area encompassed by the coalfield is 
also the home to Eskom’s Kriel, Matla and Tutuka power stations. 

4.2.2. Location 

The Highveld Coalfield is situated in south-eastern Gauteng and Mpumalanga and covers an area of 
approximately 700,000 ha, extending over a distance of approximately 95 km from Nigel and 
Greylingstad in the west, to Davel in the east, and about 90 km in a north-south direction. 

As mentioned above, the northern margin of the Highveld Coalfield is defined by the Smithfield 
Ridge (Fig. 8, 11). The western part of the northern boundary is poorly defined and the demarcation 
around Leslie and Devon is rather arbitrary. In the west and south-west the Coalfield is bordered by 
outcrops of granite and rocks of the Witwatersrand Supergroup. The eastern boundary is 
approximately demarcated by a line extending from Hendrina in the north-east, through Davel and 
Morgenzon, to the Klip River Coalfield in the south (Fig. 1). The southern boundary is located south 
of Standerton along the Klip River to its confluence with the Vaal River, and from there along the 
Vaal River to a point south of Greylingstand. 

4.2.3. Exploration and exploitation history 

The date of the earliest coal exploration and exploitation in the Highveld Coalfield is not known, but 
Venter (1934) mentions that prior to 1899 a vertical shaft had been sunk 55 m to the No. 4 Seam on 
the farm Driefontein 69 IS in the Bethal District. Venter (1934) further identified three coal seams of 
which the upper and middle coal seams were correlated with the No. 5 and 4 coal seams of the 
Witbank Coalfield. He briefly described the coal seams and indicated their presence at various 
localities. The logs of several boreholes are presented and the dolerite sills present in the north of 
the coalfield are described. 

Major coal exploration programmes were initiated in the Highveld Coalfield in the early 1960s by 
Anglo American Corporation (AAC) of South Africa Limited and General Mining and Finance 
Corporation Limited. In 1969 the Coal Division of the Anglo American Corporation was awarded the 
tender to supply coal to the new 3000 MW power station to be erected at Kriel (Buchan et al., 1980), 
which is situated midway between the towns of Ogies and Bethal. It was the start of production of 
AAC’s Kriel colliery in 1975 that marked the commencement of large scale mining operations in the 
Highveld Coalfield. This was followed by Matla Coal Limited and Sasol’s Secunda Collieries, which 
were brought into production in 1978 and 1979, respectively. 

The Twistdraai Colliery was opened in 1980 to produce coal for Sasol's Secunda synthesis plant. It 
reached its original design capacity of 8.5 Mtpa during 1986 and 1987. Exploration carried out 
between 1990 and 1995 indicated that the coal had export potential and since 1995 it has been 
producing low-Ash thermal coal for the export market, as well as a higher Ash middlings product for 
the SSF plant. In 2006, ownership of Twistdraai was transferred to a new Black Economic 
Empowerment (BEE) company, Igoda Resources, formed as a joint venture between Sasol Mining 
(65%) and Exxaro (35%).  
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Following on the opening of the big three, the next major colliery to come on line was AATC’s New 
Denmark Colliery (NDC). The mine was established in 1982 with the first coal won in 1983. At a 
depth of some 200 m it is the deepest underground colliery mining the No. 4 Seam in South Africa. 
The colliery operates one of the few long walls in South Africa and has variously held the long wall 
record during the 1990s and into the new century. It is contracted to supply Eskom’s Tutuka Power 
Station with coal. 

Total Coal South Africa (Pty) Limited (TCSA) opened the Dorstfontein coal mine in February of 1999 
(Meyer, 2003). It also purchased the Forzando mine from JCI in 1998 and opened the Forzando 
South operation in 2006. 

Anglo American’s Inyosi Coal’s (AAIC) Elders block has also been the subject of much exploration, 
with over 420 boreholes drilled on the property (Sibiya, 2001). A pre-feasibility study was 
undertaken in 2005 and in January 2011 a conceptual study commenced to re-examine the potential 
of a multi-product mine at Elders. The proposed Elders Colliery plans to produce approximately 4.5 
Mtpa Run of Mine (RoM) coal from six CM sections from the No. 2 and No. 4 Seam operations, to 
supply coal for both export and domestic markets. Mining is planned for approximately 20 years, 
commencing on the No. 2 Seam in the first quarter of 2017 (SRK, 2013). 

Most recently Keaton has drilled out their Sterkfontein project, one of the last remaining large 
resource blocks in the Highveld Coalfield. This project is situated 10 km southwest of the town of 
Bethal, and east of the underground workings at Twsitdraai. This project focusses solely on the No. 4 
Seam and various tables and grids of qualities and wash yields may be found in Dekker and van Wyk 
(2008). 

4.2.4. Research history 

Early workers such as Wybergh (1928) and Venter (1934) describe various aspects of the Highveld 
Coalfield. Sehlke and van der Merwe (1959) report on the results of 13 boreholes drilled in the 
“Standerton” Coalfield. Modern work began with the work of Smith (1970) who documented the 
distribution of coal quality and correlated the coal seams of the Witbank and Highveld coalfields.  

Cadle and Hobday (1977) recognized three phases of sedimentation in the Vryheid Formation of the 
Highveld Coalfield, these being a lower delta-dominated phase; a fluvially dominated coal zone and 
an upper deltaic succession. Van Vuuren and Cole (1979) took the subdivision further, recognising 
eight cycles of sedimentation, with each cycle defined as the regressive sequence of strata between 
successive transgressions. 

Winter (1985) investigated parts of the northern Highveld Coalfield during his PhD studies and 
provides a full description of the various genetic sequences encountered. He related the qualities of 
the No. 4 Seam to the proximity of fluvial palaeochannels, showing that the coals situated close to 
the palaeochannels are generally of low-quality. Jordaan (1986) provides an overview of the 
Highveld Coalfield including various aspects of the sedimentology and stratigraphy, coal qualities, 
and the structure and nature of the dolerite intrusions. 

Working in an area to the south-southeast of the town of Secunda, Hagelskamp et al. (1988) 
recognised eight successive lithofacies associations, from which they derived a three-dimensional 
palaeoenvironmental model. This work was based on the logs of some 400 boreholes, most of which 
penetrated through the entire Karoo Supergroup succession. Coal distribution and coal quality 
characteristics for the No. 4 Lower Seam were also linked to the depositional features of the model. 
According to Hagelskamp et al. (1988) the identified depositional phases commenced with sub-
glacial, glaciofluvial and glaciolacustrine settings, with associated Gilbert-type deltas. These are 
followed by meandering and minor braided fluvial settings, characterized by laterally and vertically 
highly variable lithofacies, in which the main coal-bearing strata were formed. 
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Tony Cadle’s doctoral thesis (Cadle, 1995) is probably one of the most encompassing documents 
detailing the sedimentological and depositional systems of the Vryheid Formation in the Highveld 
Coalfield. The general characteristics of the Highveld Coalfield are also provided in Snyman (1998). 

Sibiya (2001) presents work on Anglo American Inyosi Coal’s (AAIC) Elders Block, near the town of 
Kriel. This work was based on the study of over 250 boreholes and included descriptions of the coal 
seams and their bounding facies (including petrography), cross-sections and various contour and 
isopach maps for the No. 2 and No. 4 seams on the project area. 

Based on data from 900 (out of 1951) borehole logs, the roof conditions of the No. 4 Seam at NDC 
was the subject of a study by Stanimirovic (2002). A genetic stratigraphic approach was followed 
with detailed descriptions of the No. 4 Seam Genetic Sequence being provided. This work was then 
used to describe the various roof conditions that exist for the No. 4 Seam. 

Meyer (2003) describes the feasibility of thin seam coal mining at TCSA’s Dorstfontein colliery, 
describing the regional and local geology of the area, as well as the nature and quality of the seams. 
In particular he records the presence of floor rolls on the No. 2 Seam at the Dorstfontein Coal Mine 
(Highveld Coalfield) and noted that in the north-western part of the mine excessive floor rolling 
prevented production. Whilst not positively explaining these rolls, Meyer (2003) felt they were 
related to basement palaeotopography. Wakerman (2003) describes aspects of Eyesizwe Coal’s 
Schurvekop exploration area in the Highveld Coalfield, with resources on the No. 4 Lower Seam only. 

Busio (2012) looked at the effects of three dolerite sills on coal qualities in what he termed the 
“Secunda” coalfield. Coal quality data was provided by Sasol Mining Secunda. This work showed that 
the relationship between the intrusive sill and the coal qualities is a complex one and that factors 
other than simple intrusion width, such as the role of hydrothermal fluids, must be considered in 
relation to their contact metamorphic effects. Van der Walt (2012) reports on the petrology, 
petrography and geochemistry of anomalous intrusions and shows them to be related to diatreme 
activity. 

As for the Witbank Coalfield the description of the general geology that follows draw on these 
previous works as well as the senior author’s personal experience in the Highveld Coalfield. Given 
the close similarities with the Witbank Coalfield stratigraphy, the sequences are not documented in 
as much detail to avoid unnecessary repetition. 

4.2.5. Geology 

Whilst being very similar to the stratigraphic succession in the Witbank Coalfield a generalised 
stratigraphic section for the northernmost Highveld Coalfield is provided below as Figure 18. 

The basement changes over the area of the Highveld Coalfield from basement granites, gabbros and 
norites of the BIC, to Witwatersrand Supergroup metaquartzites, and Transvaal Supergroup 
metaquartzites and metavolcanics (Fig. 10).  At TCSA’s Dorstfontein mine the basement is 
documented as being Nebo granite (Meyer, 2003). 

The thickness of the Karoo Supergroup strata in the Highveld Coalfield varies from extremely thin in 
the north, to in excess of 300 m in the Standerton area. This is due to the uneven nature of the pre-
Karoo topography in the Coalfield. Van Vuuren and Cole (1979) identified two major pre-Karoo 
valleys. The first extends southwards from Leslie, to past Greylingstand, and is postulated to be a 
possible extension of the Vischkuil valley of the Witbank Coalfield. The other extends south-
eastwards from between the towns of Bethal and Standerton towards Volksrust. Boreholes drilled to 
basement in the NDC lease area also showed a deeply incised pre-Karoo topography. As in the 
Witbank Coalfield the Pietermaritzburg Formation is absent in the Highveld Coalfield, with the 
Dwyka Group being overlain directly by rocks assignable to the Vryheid Formation. 
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Fig. 18. The generalised stratigraphy and depositional sequence of the Highveld Coalfield (from Winter, 1985). 

The irregular nature of the topography played a major role in controlling the thickness of the basal 
Dwyka Group sequence. Dwyka Group lithologies in these palaeovalleys may attain thickness in 
excess of 100 m, whereas over palaeohigh areas, the Dwyka Group may be thin or absent (Van 
Vuuren and Cole, 1979; Hagelskamp et al. 1988; Sibiya, 2001). The thickness of the Dwyka Group at 
the NDC is recorded as being between 4.6-24.0 m (Stanimirovic, 2002). 

Although Dwyka Group lithologies do not outcrop in the Highveld Coalfield they are well known from 
borehole data. Lithologically the succession consists of massive diamictite, with lesser matrix-
supported conglomerates and coarse-grained sandstones, with occasional siltstone and sandstone 
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interbeds, pebbly mudstones and varved siltstone. The diamictites are comprised of sub-angular to 
sub-rounded clasts, set in a fine-grained pale brown dirty matrix. In the NDC area the clasts are 
mostly granites, quartzite, mudstones, and calcareous sandstones. As for the Witbank Coalfield 
these rocks are believed to be the products of glacial and post-glacial depositional environments. 

Outcrop sections of the Vryheid Formation are equally rare, but the vast amount of borehole data 
provides a clear picture of the sedimentary succession. For the area to the south-southeast of 
Secunda, Hagelskamp et al. (1988) documented a thickness of between 80-130 m for the succession 
between the top of the Dwyka Group and the base of the “main coal zone”, noting that 
sedimentologically it was dominated by sandstones, siltstones and mudstones with sporadic 
seamlets and coalified plant debris. Each of the sequences is described in detail. These authors also 
note that the “main coal zone” contained the No. 3, No. 4L and No. 4U seams and that this unit was 
overlain by another coarsening upward deltaic sequence some 40 m thick. This unit is known to vary 
in thickness from 60 m to 100 m, and is comprised of micaceous mudstone and siltstone grading 
upwards into grey to white medium-grained sandstone, which is sometimes glauconitic. It is capped 
by the No. 5 Seam, that as for the Witbank Coalfield has a glauconitic sandstone in the roof which 
forms a useful stratigraphic marker. The Volksrust Formation is locally present on high ground in the 
Standerton area. 

4.2.6. Coal seams 

All the seams of the Witbank Coalfield are present in the northern part of the Highveld Coalfield 
(Jordan, 1980) however as one moves south into the basin the No. 2 Seam is often not well-
developed, and does not play an important role as an economic seam. The parting thicknesses 
between various seams vary from east to west and from north to south in the Coalfield. Various 
typical seam profiles for the No. 2 and No. 4 seams are provided in Jordaan (1986). 

The No. 1 Seam is discontinuous and is mainly developed in the eastern part of the Coalfield, 
particularly in the Kriel area. Elsewhere in the coalfield it is patchily developed and thin. As in the 
Witbank Coalfield it is topographically controlled and restricted to glacial valleys. 

The No. 2 Seam is developed at a depth of approximately 30 m in the northern margin of the 
Coalfield and up to a depth of 240 m in the southwest. It ranges in thickness from 4 m along the 
northern margin and up to 10 m in valleys in the west. The seam thins to less than a metre in the 
east and southeast, and may change down dip into carbonaceous mudstone, such as is seen on KEH 
Sterkfontein Project area. Siltstone and mudstone partings are present and distributed throughout 
the seam splitting it into a 2U and 2L seam. In most cases it is mined selectively because of the 
partings. 

The No. 3 Seam is intermittently developed and thin, being generally less than 0.5 m thick. It may 
locally be up to 1 m thick in the western part of the Secunda reserve area. Hagelskamp et al. (1988) 
document the No. 3 Seam as averaging between 0.5-0.6 m in their study area. Where the parting 
between the No. 3 and No. 4 Lower Seam becomes thin (less than 0.5 m) the two seams are mined 
as one unit. 

The No. 4 Seam is the major economic coal seam developed in the Highveld Coalfield and forms the 
bulk of the coal resources. The seam lies at a depth of 15 m in the Kriel area, deepening to around 
300 m to the east of Standerton. Stanimirovic (2002) documents an approximate depth of 200 m 
below surface at NDC. 

The minable section usually contains dull lustrous coal with minor amounts of mixed coal and dull 
coal. Coal is mined as a synthetic fuel feedstock for Sasol. The seam is divided into two units, the No. 
4 Lower (4L) and No. 4 Upper (4U) Seam. The sandstone parting between the No. 4L and No. 4U 
Seam varies from about 2 m in the north (Kriel area) to approximately 3 m in the central part of the 
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Coalfield, thickening to 15 m in the southern Balfour area. Hagelskamp et al. (1988) document it as 
being between 5-14 m to the south-southeast of Secunda and note that it is formed by an irregular 
succession of coarse-grained to gritty sandstones and granulestone, with medium- to fine-grained 
sandstones, siltstones and mudstones. 

The No. 4L Seam averages 4 m in thickness, varying from less than 1 m to 12 m in the Matla area.  In 
areas where the seam is thinner, the full seam is mineable, whereas in the thicker coal areas the 
mining horizon is restricted to the lower 3.5 m to 4.0 m of the seam. At New Denmark the No. 4 
Seam is comparatively narrow at an average height of 1.8 m, being as low as 1.6 m in places. On 
Keaton’s Sterkfontein project area in the east of the coalfield, the No. 4 Seam is on average 1.87 m 
thick, being thicker in the south, where it has an average thickness of 3.04 m (Dekker and van Wyk, 
2008). In certain instances the No. 4L Seam may contain a torbanitic unit. 

Over part of the reserve area at Sasol’s Twistdraai Mine the No. 3 and No. 4L seams converge into a 
single unit that averages 3.6 m in thickness (ranging from 2.7-4.5 m). The average thickness of the 
No. 4 Seam alone here is 3.3 m, ranging from 2.4-3.6 m. 

Roof lithologies prevailing are variable and consist of very coarse to fine-grained sandstone, inter-
laminated sandstone and siltstone, carbonaceous mudstone and coal. Erosion of part of the seam is 
attributed to channel scouring during high discharge periods. The seam floor consists generally of 
siltstone, fine-grained sandstone or laminated siltstone and mudstone. Roof conditions to the No. 4 
Seam at NDC are covered in detail in Stanimirovic (2002). 

The No. 4U Seam is only of mineable thickness in the western part of the Coalfield, where it occurs 
between 1 m and 5 m above the No. 4L Seam. The average thickness of the seam is 2 m, varying 
between 1.5 m and 3.4 m (Jordaan, 1986). 

The No. 5 Seam is widely developed at a depth of between 15-150 m. It ranges in thickness between 
0.30-3.0 m. A 0.4-0.6 m hard siltstone parting may be present in places along the northern margin of 
the Coalfield, which often renders the seam uneconomic. Where this parting is not present, a high-
grade product may be produced through beneficiation. On Keaton’s Sterkfontein Project in the 
southern part of the Coalfield the No. 5 Seam is present in most of the holes at an average depth of 
132 m and forms a thin (usually less than 30 cm) dull coal seam, which is a prominent marker 
horizon, between 15-60 m above the No. 4 Seam (Dekker and van Wyk, 2008). It is not considered as 
being economic. At Twistdraai to the southwest, this seam is on average 1.4 m thick but is not 
currently mined. At Matla the No. 5 Seam is of good quality (25-27 MJ/kg raw CV) but was only 
extracted to a limited scale due to the high levels of contamination from the poor floor and roof. 

4.2.6.1. Coal qualities 

General coal qualities for various areas of the Highveld Coalfield are provided in Jordaan (1986) and 
these are also reproduced in Snyman (1998). Jordaan (1986) covers the Leslie, Kriel and Val areas for 
the No. 2 Seam and the same areas plus the New Denmark area for the No. 4 Seam. He provides 
typical qualities for the mineable section in the Leslie area of 14.3 % ash and 26.31 MJ/kg CV but 
notes that the No. 2 Seam qualities are not however normally this good, usually varying between 22-
35 % and with CV’s varying between 20-23 MJ/kg. Where mined the No. 3 Seam is generally an 
export quality (28.1 MJ/kg CV) thermal coal. 

The No. 4L Seam is generally a low grade bituminous coal with a raw ash content of between 20-40% 
and a CV of between 18-25 MJ/kg.  Coal qualities for the No. 4 Seam on the Sterkfontein project are 
presented in Dekker and van Wyk (2008) and show that the raw coal is suitable as a feed stock for 
local power generation, and that once beneficiated could produce an export quality prime product 
at an average theoretical yield of 50% with a middlings product at a theoretical yield of 33%. At 
Twistdraai the raw Ash content of the No. 4L Seam varies between 18-36%. 
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Hagelskamp et al. (1988) provide contour maps of the CV of the No. 4L Seam in the area to the 
south-southwest of Secunda, and show that the CV ranged between less than 18 MJ/kg and more 
than 26 MJ/kg, with the upper and lower limits corresponding to highs and lows in the Ash 
concentrations. The quality of the No. 4U Seam is extremely variable, but is generally a low grade 
bituminous coal with an ash content of 25 % and a calorific value of 25 MJ/kg (Jordaan, 1986). 

4.2.7. Structure and intrusions 

The coal seams in the Highveld Coalfield are mainly flat lying to gently undulating, with a very gentle 
regional dip to the south. Dolerite dykes and sills are common in the coalfield and are often 
positioned above the coal zone. The dolerite sills have been the subject of classification mainly by 
the Sasol geologists who name them in terms of their stratigraphic position the B4, B6 and B8 sills. 

All three (B4, B6, and B8) of these dolerite sills are present in the NDC lease area. The two top sills 
(B4 and B8), which are generally in excess of 100 metres above the No. 4 Seam, have no direct 
influence on the coal seam geometry. The upper fragmented portion of the sills is one of the water 
aquifers in the area and goafing of these sills may lead to large amounts of water flowing into 
underground workings. Experience to date indicates that the sills do not act as a separate beam 
when goafing takes place and settle together with the sandstone and siltstone. 

The porphyritic B6 sill at NDC is on average 2 m thick, ranging from 0.2 to 4 m and transgresses 
various stratigraphic horizons, including the No. 4 Seam. Borehole data indicates that this sill lies 
well below the No. 4 Seam in most areas, but intrudes into the No. 4 seam in the 400 block at 
Central Shaft, in the area underlying the Thuthukani Township and in the Southwest block. A variable 
displacement is associated with the B6 sill intrusion where it transgresses the No. 4 Seam. Where 
this B6 sill is in close proximity to the No. 4 Seam it has caused extensive burning. 

Dolerite dykes are also common in the area. The dykes are considered to be of the same age as the 
sills. Two types of dykes have been recognised at NDC, namely types A and B. Both types are 
porphyritic in texture and are considered not to have intruded the B4 sill, which overlies most of the 
lease area, and are possibly feeder dykes to the B4 sill. Dyke type A is generally 0.5-4.5 m thick and 
occurs at 700-1500 m spacing, with a common northerly to northeast strike direction. The width of 
devolatilisation associated with these intrusives is approximately twice the width of the dyke.  Dyke 
type B varies in thickness between 9-70 m and has a common strike of N70°E. The extent of burning 
and devolatilisation associated with the coal seam caused by this dyke has averaged up to three 
times the width of the dyke. Van der Walt (2012) recently described explosive diatreme activity 
within the NDC mining lease area, which he linked to dolerite intrusives. 

4.3. Ermelo Coalfield 

4.3.1. Introduction 

Compared to the adjacent Witbank and Highveld coalfields, the Ermelo Coalfield hosts thinner 
seams, is more sedimentologically and structurally complex, and is not as well studied nor 
understood. During the 1980s it was a fairly prolific producer, but in the next two decades 
production declined (Snyman, 1998; Jeffrey, 2005a). Since 2004 this coalfield has however seen 
resurgence in exploration and mining due to the higher quality of the coals in relation to the 
Witbank and Highveld coalfields, as well as its proximity to the Richards Bay Coal Termina (RBCT) 
export coal line. The Ermelo Coalfield was previously called the Eastern Transvaal Coalfield. 

The Ermelo Coalfield is home to Eskom’s 1600 MW capacity Camden Power Station and its 
commissioning in 1967, mothballing in 1990, and subsequent recommisioning between 2006 and 
2008, have played an important role in the history of the coalfield. The 2000 MW Hendrina Power 
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Station occurs in the northern part and the southernmost part of the coalfield hosts the 3600 MW 
Majuba Power Station. 

4.3.2. Location 

The Ermelo Coalfield is located in the districts of Carolina, Dirkiesdorp, Hendrina, Breyten, Davel, 
Ermelo and Morgenzon in the southeast Mpumalanga Province. It extends approximately 75 km 
east-west, and 150 km north-south, covering an area of about 11,250,000 ha (Fig. 19). The northern 
and eastern boundaries of the Ermelo Coalfield are defined by the sub-outcrop of the coal-bearing 
strata against pre-Karoo basement. In the west, the Ermelo Coalfield shares a boundary with the 
Witbank and Highveld coalfields, and to the south with the Klip River and Utrecht coalfields of KZN 
(Greenshields, 1986). Between the Ermelo and westernmost part of the Highveld Coalfield there is 
an area of poor (thin) coal development where no coal mining takes place. 

 

Fig. 19. Geographic extent of the Ermelo Coalfield. 

4.3.3. Exploration and exploitation history 

Small scale production of coal in the Ermelo Coalfield began as early as the 1850s. Coal has also been 
mined on the “Spitzkop” farm since the early 1900s, with the coal was transported to Durban by ox 
wagons. According to Barker (1999, p. 20) the earliest recorded coal mining activities in the Ermelo 
Coalfield were at Kwaggafontein 81 IT, where a total of 360 tonnes were extracted between 1903 
and 1904. By the 1920s the Townlands Colliery, just to the west of Ermelo was mining a 1.2-1.5 m 
thick seam. 

The only area that was subjected to systematic prospecting prior to the 1950s was that bordering 
the route of the railway line from Breyten to Ermelo. Various collieries were established in this area, 
including Union, Witrand and Consolidated (Cape) Collieries to the north of Breyten, the Albion, 
Spitzkop, Grenfell, Breyten, Black Diamond, Carlchew (Consolidated) and Klipstapel mines in the 
environs of Breyten, and Mooifontein and Bellevue mines north of Ermelo. A mine was also opened 
up at Estanis on the Breyten-railway line. 
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Historical exploration was undertaken by the likes of Federale Mynbou Beperk and Trans-Natal Coal 
Corporation Limited (Trans-Natal) and Goldfields Mining and Development Limited (Goldfields). 
Trans-Natal later absorbed Federale Mynbou and in 1994 itself became part of the Ingwe Coal 
Corporation (Ingwe), through the merging of its coal assets with Randcoal Limited. Ingwe later 
became a wholly owned subsidiary of BHP Billiton.  

Federale Mynbou Beperk exploration work in the early 1960s in the general area to the east of the 
town of Ermelo, led to the delineation of the ‘Usutu Coalfield’ and the commissioning of the Usutu 
Colliery, which was the initial and sole supplier to the Camden Power Station. In 1975 the Usutu 
Colliery was the largest single producer of coal in South Africa supplying Camden with 435,000 tpm 
(Thompson and Henderson, 1975). 

In 1964 as part of a regional reconnaissance to determine possible coal potential a few widely 
spaced boreholes were drilled by General Mining & Finance Corporation. In 1966 the area that was 
to become the Ermelo Mines mining lease was subjected to the first phase of a more detailed 
geological examination, with between 40-50 boreholes drilled. The next phase of exploration was 
from 1971 to 1976 and encompassed roughly 300 cored boreholes, including some large-diameter 
hole for bulk sample testing. In 1976 shaft sinking on the Ermelo mines commenced, with coal 
production beginning in 1977. The mines ongoing exploration programme increased the number of 
boreholes that were drilled to the basement rocks to enable the proper evaluation of a dolerite sill 
structure and its effects on the mineability of the coal and from 1981 it became the norm to drill all 
boreholes to basement for structural interpretation purposes. Ermelo Mines closed in 1997 after 20 
years of production (Paulsen and Sonte, 2002). 

By 1975, three collieries were active in the coalfield, producing approximately 3.0 Mtpa. By 1985 the 
production had increased to 8.0 Mtpa, most of which was contributed by the Ermelo and Usutu 
collieries (Snyman, 1998).  

Based on the drilling of some 400 boreholes and resources of over 1.0 Gt (Chapman and Cairncross, 
1991), Majuba Colliery was initiated in the early 1980s as a joint development between Eskom and 
Rand Coal. The project was supposed to be a dedicated mine mouth colliery able to supply the 
Majuba Power Station 12 Mtpa of coal for an estimated period of 40 years. The mine was planned to 
mine bituminous coal from the Gus (C Seam) Seam by the long wall mining method. The average 
mining depth was 280 m below surface. Underground mining operations began in 1988 and 
complications were encountered with the underground mining conditions subsequent to the 
establishment of the mining infrastructure required to support long wall mining operations. As a 
result it was decided to consider CM operations and bord and pillar mining. Due to the intrusion of 
dolerites, the coal seam elevation varied by as much as 70 m. Due to the severe nature of the 
structural complexity caused by the dolerite intrusions underground mining activity ceased in 1990, 
with a total production reported to the Department of Mineral Resources (DMR) of only 611,000 
tonnes. 

Production decreased in the coalfield following the mothballing of the Camden Power Station in 
1990. According to Jeffrey (2005a) there were ten operating collieries in the Ermelo Coalfield in 
2002, however most of these were small to medium size. According to the DME (2010) in 2009 there 
were seven operating collieries in the Ermelo Coalfield, these being the Golfview, Droogvallei, 
Savmore, Umlabu, Kopermyne, Spitzkop, and Tselentis collieries. Until recently mining in this 
coalfield was decreasing, with most mines closed with reserves. Following on the re-commissioning 
of the Camden Power Station in 2006, the coalfield once again became the focus of renewed 
exploration activity, with a number of opencast and two new underground operations having begun 
since this time. 
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Between 2006 and 2013 (when it was subsumed by CCL) Mashala Resources drilled a significant 
number of boreholes in various exploration projects in the Ermelo Coalfield. Two of these projects 
have subsequently been brought to account by CCL, these being the Ferreira opencast mine, and the 
Penumbra underground operation. Ferreira closed at the end of 2012 but was a conventional 
opencast contract mining operation with an average RoM production of 55,000 tpm. Development 
of Penumbra commenced in September 2011, with first coal delivered in December 2012. Penumbra 
has an estimated gross saleable reserve of 5.4 Mt from a gross coal reserve of about 68.3 Mt. The 
mine aims to produce 64,000 tpm RoM of thermal coal for the export market 
(http://www.conticoal.com/). Mining is by bord and pillar mining methods utilising two continuous 
mining sections and one conventional (drill and blast) mining section (Telfer et al., 2013). 

Coal of Africa (http://www.coalofafrica.com) acquired an interest in the Mooiplaats Colliery in 2007. 
The company subsequently drilled an additional 581 boreholes, which led to the development of 
their Mooiplaats underground coal mine. The mine is located directly to the south of the Camden 
Power Station and was commissioned in June of 2007, with production commencing in November of 
2008. In 2014 the mine was on care and maintenance with various strategic restructuring 
alternatives being considered by the company. 

Majuba Colliery is the focus of a project by Eskom to validate the economic viability of employing 
Underground Coal Gasification (UCG) Technology on the large resource base and has a 6 MW 
thermal UCG pilot plant near Majuba. 

4.3.4. Research history 

Compared to the Witbank and Highveld coalfields the Ermelo Coalfield has been the focus of 
relatively little academic work.  Wybergh’s (1928) publication remains one of the most 
comprehensive accounts of the region. This work, coupled to the various explanations of the 
geological sheets (Visser et al., 1947; 1958), the account of the coalfield in De Jager (1976) and the 
various notes in Cadle and Hobday (1977) and Steyn and Beukes (1979) sum up the status of 
academic research prior to the 1980s. 

In an excursion guidebook for the Sedimentology Division of the Geological Society of South Africa, 
Stavrakis (1982) describes various aspects of the geology and sedimentology of the Ermelo Coalfield, 
including a detailed description of the sedimentology and depositional systems of the Sheepmoor 
area, where he recognized eight coal seams and seven clastic marker horizons. 

An undated report (from an undisclosed area) by van Alphen identifies 13 lithofacies and seven 
sedimentary units for the Vryheid Formation in the Ermelo Coalfield, noting their uniform thickness 
and the presence of a major west-east orientated palaeochannel. This work was based on 149 cored 
boreholes, six of which were drilled to basement. 

Greenshields (1986) provides the most comprehensive overview of the coalfield to date, including 
aspects of the stratigraphy, sedimentology and depositional environment, descriptions of the coal 
seams, coal qualities and the nature of the structure and dolerite intrusions. As part of a regional 
overview of the coal in the eastern sector of the MKB, Stavrakis (1989) also discusses aspects of the 
stratigraphy, sedimentology and depositional environments. 

De Oliveira (1997) provides details of the stratigraphic sequence encountered at the Majuba Colliery 
including a number of typical borehole logs. This study included work on the dolerites and led to a 
later publication by De Oliveira and Cawthorn (1999) that documented the dolerite intrusion 
morphology at Majuba Colliery. These authors used data from 88 boreholes to construct cross-
sections through the colliery, and showed that based on the texture, geochemistry, and mode of 
emplacement, four different dolerite types (T1 to T4) exist. 

http://www.conticoal.com/
http://www.coalofafrica.com/
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In his PhD thesis, Wakerman (2003) covers various aspects of the then Eyesizwe Coal’s Ermelo, 
Sheepmoor and Carolina exploration areas in the Ermelo Coalfield. For each of these areas he 
supplies a description of the general geology, as well as thickness ranges for the various seams 
included in the various resource statements. Raw and washed quality data is also supplied for each 
seam and area. 

4.3.5. Geology 

Rocks of the Permian Vryheid Formation and Jurassic aged dolerites dominate the surface exposures 
of the coalfield. A generalised stratigraphic section for the Ermelo Coalfield is provided below as 
Figure 20.  

As in the Witbank and Highveld coalfields the Vryheid Formation is the coal bearing horizon in the 
Ermelo Coalfield and five coal seams are also recognised within a 80-90 m thick sedimentary 
succession. Unlike in the Witbank and Highveld coalfields, the seams are given letters as codes (Fig. 
20) and are named from the top to bottom the A to E seams (Wyburgh, 1928).  

The basement to the Ermelo Coalfield is less well known than for the Witbank and Highveld 
coalfields, as few boreholes have been drilled through to it. Where documented it is formed mainly 
by Archaean basement granites, BIC intrusives, or metasedimentary strata of the Transvaal 
Supergroup (Greenshields, 1986). De Oliveira and Cawthorn (1999) document granitic gneiss 
basement at Majuba Colliery in the far southwest of the coalfield. Wakerman (2003) notes that in 
the Sheepmoor project area two boreholes intersected basement, one of which penetrated 
greenstone belt metavolacanics and the other, Archaean granite. 

The basement is overlain by rocks attributable to the Dwyka Group, which throughout the Ermelo 
Coalfield are only poorly developed, except in the far south where the unit exhibits variable 
thickness (Greenshields, 1986). Where developed the Dwyka is usually confined to palaeovalleys and 
consists of diamictites, sandstones and siltstones, attributed to glacial deposits, such as are formed 
as moraines and in glacial outwash fans and lakes, and on sandur plains. Wakerman (2003) notes 
that on the Sheepmoor project area the Dwyka Group is between 3-30 m thick, and consists of 
massive polymictic diamictite capped by interbedded siltstones and mudstones. He further notes 
that some units contain well-rounded dropstones of exotic provenance. 

The Pietermaritzburg Formation is not exposed in the Ermelo Coalfield and is rarely intersected in its 
entirety in any of the boreholes drilled during exploration programmes. According to Greenshields 
(1986) it is thinly developed or absent in the centre of the Ermelo Coalfield, but may reach a 
thickness of up to 75 m in the south of the coalfield. Van Alphen (1990) documents a thickness of 
12 m for the Pietermaritzburg Formation in his field area. Wakerman (2003) documents thicknesses 
of between 3-48 m for the Sheepmoor project area. 

Where present the strata of the Pietermaritzburg Formation effectively blanket and fill the glacial 
palaeotopography and as such topography does not have the strong control that it does in the 
Witbank and Highveld coalfields. As for the rest of the northern part of the MKB, the 
Pietermaritzburg Formation is formed by characteristically blue-grey, micaceous mudstone and 
siltstone. Wakerman (2003) documents the succession at Sheepmoor as being formed by massive to 
horizontally bedded carbonaceous mudstone that is often highly bioturbated. 

In the northern parts of the coalfield, where neither the Pietermaritzburg Formation nor the Dwyka 
Group are developed, the Vryheid Formation unconformably rests on basement. Elsewhere it 
disconformably overlies the Dwyka Group or the Pietermaritzburg Formation (Ecca Group). 
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Fig. 20. Stratigraphic column of the Karoo Supergroup in the Ermelo Coalfield including the underlying pre-
Karoo basement rocks (after Greenshields, 1986). 

In the Ermelo Coalfield the thickness of the Vryheid Formation varies between 170-350 m 
(Greenshields, 1986) and as mentioned above contains five coal seams. Two stratigraphic marker 
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horizons occur within the sequence that may be useful in exploration drilling (Stavrakis, 1991). These 
are a glauconitic sandstone unit, which overlies the B Seam package, and the bioturbated 
Siphonicnus-zone that occurs below the C Seam and which may be used as a marker to terminate 
exploration drilling. Wakerman (2003) documents a 3 m thick E “shale” marker (a sandy bioturbated 
mudstone) in the floor of the E Seam, which he felt made a prominent end of hole (EOH) marker 
when the D and E seams are being targeted. The overlying Volksrust Formation is only present along 
the western and southern escarpment areas, where it can achieve a thickness of up to 106 m 
(Greenshields, 1986). 

4.3.6. Coal seams 

The coal seams in the Ermelo Coalfield are generally flat-lying to slightly undulating and as for the 
Witbank and Highveld coalfields, are separated by fine- to coarse-grained sandstones, siltstones and 
mudstones. The A, D and E seams are usually too thin to be of economic interest and historically the 
C Seam group was the most important in the Carolina-Breyton area, and the B Seam group in the 
Ermelo area. Rapid seam thickness variations characterise the coalfield. 

The E Seam may reach a thickness of up to 3 m, but is of economic importance only in isolated 
patches in the north of the Ermelo Coalfield (Greenshields, 1986). The coal is mostly bright and 
banded, has a competent sandstone roof and floor and is sometimes split by a thin sandstone or 
carbonaceous fines parting (Greenshields, 1986). In the central and southern part of the coalfield, it 
is developed as a torbanite or as a carbonaceous siltstone or mudstone unit, and locally becomes 
too thin for mining (Greenshields, 1986). 

The coal of the D Seam is of good quality, but in general is too thin (0.1-0.4 m) to be of economic 
importance (Greenshields, 1986). The coal is not split by partings and consists of large amounts of 
vitrain and occasional durain bands (Greenshields, 1986; Jeffrey, 2005a). 

The C Seam group has been one of the main seam packages of economic importance throughout the 
Ermelo Coalfield. It is usually split by several partings which can lead to miscorrelation of the seams 
(Greenshields, 1986). In general the C Seam is subdivided into the C Upper (CU) and C Lower (CL) 
seams. The CU Seam is well-developed over the entire coalfield and is often split by partings of 
different lithologies, such as sandstone, siltstone or mudstone, reaching a composite thickness of 
0.7-4 m. It has historically been mined in several collieries of the Ermelo Coalfield, including the 
Golfview, Usutu, Goedehoop, Union, and Kobar collieries (Greenshields, 1986), as well as more 
recently at the Ferreira opencast mine. 

The CL Seam is not developed throughout the entire coalfield, but where developed is between 0.5 
and 2 m thick. It locally grades into carbonaceous siltstone and mudstone, which often form the roof 
of the seam, whereas the floor mostly consists of sandstone. It has historically been mined at the 
Savmore, Anthra, Ermelo, Golfview, and Wesselton mines (Greenshields, 1986; Paulsen and Stone, 
2002). Several other mines in and around the towns of Ermelo and Breyten have at times extracted 
coal from this seam including the Spitzkop, Bellevue, Grenfell, Usutu, Consolidated Marsfield, and 
Union collieries. The CL was also the main target seam at CCL’s Ferreira opencast mine and it is also 
currently being mined underground at their Penumbra mine, where it occurs at an average depth of 
around 100 m. It is the thickest of all the coal seams intersected here, reaching a thickness of more 
than 1.50 m over large parts of the project area. Locally seam floor rolls may negatively influence the 
thickness of the CL Seam in the Ermelo Coalfield. 

The B Seam group varies in thickness from 1-2.7 m and may be split into three units. Greenshields 
(1986) terms these the B1, B and BX seams, but they are more commonly referred to as the B Lower 
(BL), B Upper (BU) and BX seams. Greenshields (1986) notes, that the quality of the B Seam is in 
general inferior to that of the C Seam. This seam tends to be somewhat better developed in the 
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north-eastern and eastern parts of the Ermelo Coalfield and has historically been mined at the 
Droogvallei, Spitzkop, Savmore, and Consolidated Marsfield collieries, and was the seam mined at 
CoAL’s Mooiplaats Colliery, where it is between 0.6-2.87 m thick. The BU was mined at the end of 
the mine life at the old Usutu Colliery, and the BL at the Ferreira mine. At Mooiplaats the BU Seam 
occurs at depths of between 90 and 140 m and ranges in thickness between 0.15 m in the southeast 
to over 3 m in the north. 

The A Seam occurs only in the northern and central parts of the coalfield, where it varies in thickness 
from 0-1.5 m (Greenshields, 1986). Wakerman (2003) provides a weighted average thickness of 
0.94 m for the seam in the Sheepmoor exploration area. Over most of the Ermelo Coalfield however 
this seam has been removed by erosion. Like in the Witbank and Highveld coalfields for the No. 5 
Seam, the A Seam is overlain by a green glauconitic sandstone that forms a useful marker horizon 
and denotes the transition from a fluvio-deltaic to a marine depositional environment.  

4.3.6.1. Coal qualities 

The coal of the Ermelo Coalfield, while variable in quality, is generally of better quality than that of 
the Witbank and Highveld coalfields. Greenshields (1986) provides average air-dried raw quality 
parameters for all the economic seams as shown below in Table 1. 

Calorific Value 
(MJ/kg) 

Ash (%) Volatiles (%) Inherent 
Moisture (%) 

Fixed Carbon 
(%) 

Total Sulphur 
 

24 23 26 3 48 1.2 

Table 1 Raw coal qualities for the Ermelo Coalfield (from Greenshields, 1986). 

Wakerman (2003) provides raw coal qualities for the A Seam in the Sheepmoor area as being 11.93 
% Ash, 27.27 MJ/kg CV, 30.45 % VM, 3.85 % IM and 0.39 % TS. He notes that the most important 
feature of this coal was the low sulphur, which meant it could be used as a blend to reduce the 
higher sulphur values in the CL Seam. 

For the BU Seam at Mooiplaats a theoretical yield of 61% can be achieved for a bituminous product 
with CV of 27.5 MJ/kg. The average theoretical yield for a lean coal product with an equivalent CV is 
somewhat lower at 47%. Average TS contents for both coal types are moderate to relatively high, 
ranging from about 1.4-1.8% for the washed product. 

The CL Seam is generally of a good bituminous quality and beneficiates well. Historically the Golfview 
Colliery prime export product on the CL and CU seams was a 11.3 % Ash, 32.4 % VM, 0.9 % TS coal, 
at 27.38 MJ/kg gross as received (GAR), and 28.11 MJ/kg gross air dried CV. 

Telfer et al. (2013) provide grids for the raw CV, Ash and VM on the CL at Penumbra and note that 
the raw CV is variable, increasing from 16 MJ/kg in the east of the project to 28 MJ/kg in the west. 
The raw CV to the south of the project area is generally lower than 16 MJ/kg, with small isolated 
areas of over 26 MJ/kg. The raw Ash of the CL Seam for the majority of the project area is between 
15-35%, with an isolated high reaching up to 60%. In general, the raw Ash increases towards the 
south of the project area.  The raw VM increases from the south-western portion of the project area 
to the northeast. In the central portion of the area the VM content reaches up to 28%. 

4.3.7. Structure and intrusions 

As for the Witbank and Highveld coalfields, large areas of the Ermelo Coalfield are affected by 
Jurassic aged dolerite intrusions, and these intrusives are probably the single most disruptive aspect 
of the coalfield (Barker, 1999). The dolerites form thin sub-vertical dykes and thick (30-50 m) 
bedding parallel sills. Several have been identified and mapped based on cross-cutting relationships 
and petrological characteristics (Visser et al., 1958). In places thin stringers may occur within the coal 
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seam succession creating difficult mining conditions. Both the B4 and the B6 sills are present in this 
area, with the B6 sill normally underlying the CL Seam. The B4 sill often breaks through the coal 
seams to surface and causes dislocations of the coal seams into blocks. Associated with these 
intrusions is faulting that causes displacement of the coal seams (Greenshields, 1986). Faulting 
occurs with increasing frequency towards the south of the coalfield; with displacements of up to 
250 m. Faults are almost without exception intruded by dolerite. 

The dolerite intrusions have also caused large volumes of coal to have been converted to low volatile 
lean bituminous or anthracitic coals. In places the coal may also have been totally destroyed by 
burning due to the dolerite intrusions. Dolerite intrusions may also be the cause of methane and 
water build-ups, with the coalfield known to be gassy (Paulsen and Stone, 2002). 

At the Usutu Colliery the West Mine was separated from the East and South Mines by a dolerite sill, 
which caused a vertical displacement of the coal seams between these mining areas by some 50-60 
m. Many dykes occurred in the workings, some of which were grey and non-magnetic, others green 
and magnetic. Bad roof conditions were common in the vicinity of dikes, particularly in the case of 
the B Seam workings. Close to the major dolerite sill the coal was devolatilised and/or burnt. 
Dolerite intrusions are also very common in the Mooiplaats Colliery area and have been intersected 
in a number of boreholes and underground mining panels. 

To the east at the Sheepmoor projects area Wakerman (2003) notes that the entire area was 
overlain by a 115 m thick sill, which following the KZN nomenclature he named the Ingogo sill. He 
further notes that in places this sill bifurcates and in places transgressed the coal zone creating 
displacements of up to 100 m. 

4.4. Coalfields in the Free State 

Three main coalfields (Free State, Vereeniging-Sasolburg and South Rand) occur within the Free 
State Province and these are often grouped together leading to some confusion. Additionally, a 
misconception is presented in the literature that the coal occurs as continuous seams from the 
Kroonstad-Welkom area of the Free State Coalfield in the west, to the South Rand Coalfield in the 
east. Distinct pre-Karoo palaeohighs with no coal development separate the individual coalfields 
(Esterhuizen and Van Heerden, 2011) and even within the three coalfields smaller coal-bearing 
basins are generally present, such as the Cornelia, Sigma and Coalbrook sub-basins within the 
Vereeniging-Sasolburg Coalfield. We therefore describe each of these coalfields below as separate 
entities. 

4.4.1. Free State Coalfield 

4.4.1.1. Introduction 

To avoid confusion and to distinctly separate it from the other coalfields that occur in the Free State 
Province, various workers have suggested that the Free State Coalfield should rather be termed the 
Orange Free State (OFS)-Vierfontein Coalfield (Gilligan, 1986), the Vierfontein-Welkom-Reitz 
Coalfield (Barker, 1999) or the Kroonstad-Welkom Coalfield (Esterhuizen and Van Heerden, 2011; 
Meyes and Prevost, 2013). Whilst we here retain the term Free State Coalfield, we agree that this 
coalfield should be renamed.  

Although it is the single largest coalfield in South Africa and is the last remaining largely untapped 
coal resource in the MKB, the Free State Coalfield is less well-known than the other coalfields of the 
MKB. It was mined by small operators in the past, but no mining is currently taking place. Exploration 
activity has recently focussed on this coalfield and the potential for unlocking the deep (350-450 m) 
stranded coal deposits of this coalfield seems to lie with UCG technology. 
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4.4.1.2. Location 

The Free State Coalfield is located in the north-western Free State Province (Fig. 21) and covers an 
area of about 1 5000,000 ha (Gilligan, 1986). It stretches from the Vaal River in the north to 
Theunissen in the south, overlying nearly all of the Free State goldfields. The northern and western 
limits are subcrops against basement. The southern boundary is taken as the limit of coal deposition 
and is believed to be south of the town of Theunissen. The eastern boundary is a common boundary 
with the adjoining Vereeniging-Sasolburg Coalfield. 

 

Fig. 21. Aerial distribution map of the Free State and Vereeniging-Sasolburg coalfields showing the patchy 
nature of the coal occurrences. 

4.4.1.3. Exploration and exploitation history 

Mining of the shallow northern coal outcrop took place before any recorded investigations. This 
activity comprised a number of small mines of limited extent, including the Kroonstad Estate Mine, 
which supplied coal to De Beers in Kimberley. Gilligan (1986) provides coal production and quality 
figures for the Witkop (1911-1917) and Kroonstad Coal Estates (1911-1921) mines. 

Commercial deposits of deeper coal were discovered in the Free State Coalfield (Kroonstad-Welkom-
Virginia area) in the 1930s during gold exploration. Drilling for coal took place between 1936 and 
1937 in the vicinity of the present Vierfontein Colliery (Nel and Verster, 1962). Further exploration 
drilling in the same locality took place in the second half of the 1940s, prior to the sinking of the 
shaft for the Vierfontein Colliery. Production at Vierfontein Colliery began in 1951, with mined coal 
supplied directly to Eskom’s 360 MW Vierfontein Power Station. The discovery and establishment of 
the Vierfontein Colliery drove additional coal exploration work during the 1950s and 1960s. 
Exploration drilling was undertaken in the Welkom region, in an area immediately west of 
Odendaalsrus in the 1950s (Gilligan, 1986), with further prospecting work undertaken in the Mirage 
Siding area between 1964 and 1965, and then in the area north of Kroonstad during the 1970s. 
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Gilligan (1986) documents that some 46 Mt of coal had been supplied from the Vierfontein Colliery 
since production began. He further provides production figures for 1978 (which amounted to 1.47 
Mt of saleable coal) and notes that at the time the mine had reserves of about 15 Mt of coal. The 
Vierfontein Power Station was one of the casualties of Eskom’s closure programme, with the plant 
being decommissioned in November 1990. 

Trans-Natal began prospecting for coal in the Theunissen Coal deposit area in 1980, completing 
some 240 boreholes by 1981. By February 1982 a drilling programme at a borehole spacing of 1 
borehole per 100 hectares was completed, which took the total to some 534 boreholes drilled. As 
previously mentioned Trans-Natal eventually became part of the BHP Billiton stable and during 2008 
BHP drilled an additional 76 boreholes on these tenements. 

According to their web page (http://www.mega-africa.co.za) Groenfontein Collieries (Proprietary) 
Limited is the current holder of the new order mining rights over the area surrounding the old 
Vierfontein Colliery, and aims to revive this mine as a captive mine, for a 600 MW mouth-of-mine 
Independent Power Producer (IPP). 

4.4.1.4. Research history 

The Free State Coalfield has not been the focus of anywhere near as much academic study as for the 
Witbank, Highveld and Ermelo coalfields and to date only a very limited publication list exists. 
Previous reference to coal in the Free State Coalfield has been made in Wybergh (1922), Cousins 
(1950), Nel and Jansen (1957), Coetzee (1960), Nel and Verster (1962), Petrick et al. (1975), and De 
Jager (1976).  

Aspects of the sedimentology and stratigraphy of the Karoo Supergroup in the Free State Coalfield 
are described in Behr (1965), McKinney (1968), Vos and Hobday (1977), Van Vuuren and Cole (1979), 
Cadle (1982), Gilligan (1986), Stavrakis (1986), and Stavrakis and Smyth (1991). 

Behr (1965) describes heavy mineral concentrations in beach deposits in the Bothaville area. Hart 
(1966a) included the area as part of his biostratigraphic study on the lower Karoo Supergroup 
deposits of southern Africa. McKinney (1968) provides a palaeoenvironmental analysis of the Ecca 
Group in the Vierfontein-Bothaville area. As part of a large study on the coalfield of the northern 
MKB, Van Vuuren and Cole (1979) covered the general stratigraphy and depositional environments 
of the Free State Coalfield and this work formed the basis of the geology provided in the review 
paper by Gilligan (1986). 

Gilligan (1986) provides a detailed interpretation of the depositional environments of the Vryheid 
Formation in the Free State Coalfield based on two boreholes (DWN5 and DC2) drilled to the south 
and southwest of the town of Welkom. DWN5 was drilled to a depth of some 570 m, with the EOH in 
diamictites of the Dwyka Group. Stavrakis (1986) describes the sedimentary succession of the Dwyka 
and Ecca groups in detail, linking coal seam distribution and qualities to various depositional 
environments. Stavrakis and Smyth (1991) build on this work, also linking coal petrology to the 
depositional environment and providing maceral compositions for the various seams. 

4.4.1.5. Geology 

Few outcrop exposures exist and most of what is known about the Free State Coalfield comes from 
borehole data. The Free State Coalfield is underlain by a fairly rugged glacially-incised pre-Karoo 
basement, consisting generally of Transvaal (dolomites and metasedimentary rocks), Ventersdorp 
(lavas), and Witwatersrand supergroup (metasedimentary rocks) lithologies, separated from the 
low-lying granites and schists to the south by a massive palaeoscrap (Van Vuuren and Cole, 1979; 
Van Vuuren, 1983). These valleys and scarps effectively subdivide the Free State Coalfield into a 
number of distinct sub-basins (Van der Merwe, 2011; Fig. 22). 

http://www.mega-africa.co.za/Groenfontein.html
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Fig. 22. General basement structure of the Free State Coalfield (from Van der Merwe (2011), used with 
permission from Sasol). 

These basins and valleys were carved out during the Dwyka aged glaciation, and glacial conditioning 
prior to and during deposition in this coalfield, probably more than in any other, is the overriding 
control on sedimentation, the stratigraphy produced, and coal seam distribution (Stavrakis and 
Smyth, 1991). The valleys and channels can be 5-12 km in width and require high-tech exploration to 
delineate the topography in order to improve efficiency and accuracy in locating economic coal 
deposits. This makes for more costly exploration and provides various challenges for eventual 
extraction. This is one of the main reasons for the limited exploitation that has occurred in the 
coalfield compared to its neighbours. 

The lithology of the pre-Karoo floor also plays an important role in the floor dips (Van der Merwe, 
2011). In the lavas and metaquartzites the floor is relatively consistent, with only a gentle dip, which 
in turn provides for fairly stable mining conditions. Where the floor is formed by dolomites and 
cherts of the Transvaal Supergroup however, karst topography may be present, providing for a 
strongly undulating floor, with major and minor depressions. 

Stavrakis (1986) felt that the tectonic framework of the Free State Coalfield could be considered in 
terms of two structural blocks (which he termed the northern and southern facies), and which 
exhibited different sets of structural elements. The northern facies (or terrane) was made up of 
several large pre-Karoo synclines and anticlines, curvilinear with respect to the Vredefort Dome. The 
southern facies (terrane) is structurally different, being composed of horst and graben type 
topography, with a north-south elongation. These different terranes played an important role in the 
nature of the topography created by the Dwyka glaciation. The folding amplitude within the pre-
Karoo rocks in the northern terrane increases with increasing distance from the Vredefort Dome, 
and this trend is mirrored in the glacial valley pattern of the Karoo floor. For example, the width of 
the Koppies Valley is only 4 km, while the farthest concentric valley attains a width of 27 km in the 
synclinorium to the west of Kroonstad. This concentric system of ridges and valley appears to die out 
along the sub-outcrop position of the Malmani Subgroup between Bothaville and Kroonstad 
(Stavrakis, 1986). Exploration drilling in the Steynsrus, Edenville, and Villiers area, north-east of 



54 
 

Heilbron, appears to confirm the existence of a structural hinge line within the basement rocks that 
form the floor to the Karoo Supergroup fill.  

In the south the Dwyka valleys occupied the sites of Proterozoic grabens and half-grabens. Horst 
blocks and dome-like structures formed elevated palaeotopography prior to Karoo fill. In the area of 
the Free State Goldfields graben the Karoo floor topography varies in elevation by 770 m over a 
distance of 8 km. Linear depressions oriented at high angles to the main valley axes and occurring at 
higher elevations are evident on the Karoo floor. These are interpreted as palaeo-hanging valleys of 
the Dwyka glaciation (Cousins, 1950; Stavrakis, 1986). 

As mentioned above, coal does not occur as continuous seams across the entire Free State Coalfield, 
with smaller coal-bearing basins being generally present within the coalfield, separated by distinct 
areas where there is no coal development. Differential compaction and radial fracturing and jointing 
also make for difficult structural conditions and variable coal qualities. All of the above features 
impact on the geometry of any potential resource blocks, as well as on their potential economic 
extraction. 

The general stratigraphy of the Free State Coalfield has been described in detail by Stavrakis (1986) 
and is provided below as Figure 23. 

 

Fig. 23. Idealised stratigraphic section for the Free State Coalfield (after Stavrakis, 1986). Carb. = Late 
Carboniferous Period. 



55 
 

Within the Free State Coalfield the thickness of the Karoo Supergroup increases from Vierfontein in 
the north to Welkom in the south, mainly due to an increasing amount of the Volksrust Formation 
(Ecca Group) and Beaufort Group being preserved towards the south. This fact also leads to the coal 
seams of the Vryheid Formation being deeper in the south. 

Much of the pre-Karoo basement is not covered by Dwyka Group lithologies and must have been 
topographic highs during the deposition of the Dwyka. Where the Dwyka does occur it may be as 
much as 317 m thick where it fills in the north-south incised valleys (e.g. the Virginia Valley). This fill 
is described in detail in Visser and Kingsley (1982). 

As for the Witbank, Highveld and Ermelo coalfields, the Dwyka Group in the Free State Coalfield is 
dominated by diamictites, conglomerates, sandstones, interbedded mudstones, and in this coalfield, 
at least one coal seam (Stavrakis, 1986). The diamictites at the base of the Dwyka Group are 
postulated to have originated as subaqueous debris flows (Stavrakis and Smyth, 1991), with the 
interbedded mudstones representing the distal equivalents of the diamictites. The sandstone and 
conglomeratic facies are thought to represent fluvio-glacial, valley-fill, sandur type deposits 
(Stavrakis and Smyth, 1991). 

The Pietermaritzburg Formation is not present over the entire coalfield, but in the deeper parts of 
the basin in the south, it overlies the Dwyka Group and records a period of basinal transgression. 
Stavrakis and Smyth (1991) believe this transgression to be in the order of a 100-150 m rise in 
basinal water levels. The Pietermaritzburg Formation forms the base of a generally coarsening 
upwards cycle that culminates in the basal sandstones of the Vryheid Formation, on which the first 
peat swamps were developed. 

In the Free State Coalfield the Vryheid Formation consists of medium-grained, thickly bedded, 
arkosic sandstones, with subordinate bioturbated siltstone layers and occasional laminated 
siltstones and carbonaceous mudstones, and coals. Conglomerates are rare. Three major (upward-
coarsening) sedimentary successions (cycles 2 to 4 in Figure 23) have been identified (Stavrakis, 
1986), each capped by a coal seam (described individually below). In each unit basin-ward 
progradation is separated from the next cycle by a major coal seam. The total sequence is nowhere 
greater than 100 m thick and thins towards the south. Each of the coarsening-upward cycles grade 
upward from pro-delta carbonaceous siltstones into medium- to coarse-grained sandstones. 

Stavrakis (1986) documents four coal seams for the Free State Coalfield that he termed the Dwyka, 
Bottom, Middle and Top seams. Gilligan (1986) however only documents two coal seams within the 
coalfield, referring to them either as the Top and Bottom seams, or Upper and Lower seams. He 
notes that over the greater part of the coalfield only one seam is usually well-developed. In addition 
Gilligan (1986) notes that the Lower Seam develops a number of splits, particularly in the Welkom 
area. He further notes, that the Bottom Seam has a wider distribution than the Top Seam, forms the 
major part of the coal resources at Welkom and was the seam exploited at the Vierfontein Colliery.  

Within the limits of the Free State Coalfield, the Vryheid Formation is overlain by up to 300 m of 
generally upward-coarsening light to dark grey mudstones, siltstones and sandstones of the 
Volksrust Formation, in cyclic units between 30-50 m in thickness. Stavrakis (1986) recognises three 
subdivisions which he designated F1-F3. It is of interest to note that over the Theunissen-Heilbron 
palaeohigh, the Volksrust Formation rests directly on basement. 

4.4.1.6. Coal seams 

Various coal seam nomenclatures exist in the literature for the Free State Coalfield and different 
terminologies are used by the various exploration companies. Cadle (1982) used a No. 1 to No. 4 
seam terminology for the FreeState Coalfield and broadly correlated these seams with the No. 1, 2, 4 
and 5 seams in the Witbank Coalfield. Gilligan (1986) refers to the two seams of economic interest as 
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the Top and Bottom seam, whereas Stavrakis (1986) and Stavrakis and Smyth (1991) refer to the 
seams as the Dwyka, Bottom, Middle and Top seams (Fig. 23). Like Cadle (1982), Prevost (2011) also 
refers to the No. 1 to No. 4 seams. We here follow the nomenclature of Cadle (1982) with other 
seam names provided in parenthesis where applicable as parts of the seam descriptions come from 
Stavrakis (1986). We accept that this nomenclature may need to be changed in the future to 
standardise usage or if formal naming codes are designed for the South African coalfields. 

The No. 1 Seam (Dwyka Seam of Stavrakis, 1986) may be up to 13 m thick in places, and according to 
Stavrakis (1986) and Stavrakis and Smyth (1991) is found interbedded with, or overlying, lithologies 
of the Dwyka Group. If this is in fact the case, and the Pietermaritzburg Formation does in fact overly 
this seam stratigraphically (as depicted in Figure 23), then this would be the only positively 
documented occurrence of a well-developed coal seam in the Dwyka Group in South Africa. Dwyka 
aged coals are known from other sub-Saharan Karoo aged depositories and this aspect of the 
stratigraphy should be a focus of future research work. 

In many localities the No. 1 Seam rests directly on basement along the flanks of palaeovalleys 
(Stavrakis and Smyth, 1991). Intra-seam sandstone partings are common in the proximal reaches of 
the coalfield. In the middle of the coalfield the No. 1 Seam comprises a zone composed of bands of 
coal interbedded with laminated mudstone and siltstone, whereas in the most distal reaches it 
consists of only a very thin coal, or a carbonaceous or sapropelic mudstone (Stavrakis, 1986). 
Petrographic studies on the No. 1 Seam undertaken by Smyth (CSIRO, Australia) showed the seam to 
be comprised of highly laminated coal comprising thin (0.25 mm) vitrinite bands alternating with 
0.5 mm bands of clay containing scattered sporinite and inertodetrinite. 

The No. 2 Seam (Bottom Seam) occurs some 10-20 m above the No. 1 Seam at the top of Cycle 2 
(Supercylce A) of Stavrakis (1986). It is developed over most of the Free State Coalfield and ranges in 
thickness from 7-12 m. It is the most important seam from an economic perspective and together 
with the No. 1 Seam compromises over 85% of the coal resources of the Free State Coalfield 
(Stavrakis, 1986). Where mined at the Vierfontein Colliery the No. 2 (Bottom) Seam was up to 2.5 m 
thick and was a dull banded coal with some bright coal stringers, and rare bands of cannel coal. Here 
both the roof and floor conditions were good, being comprised of a hard sandstone floor and a 
competent sandstone roof. At Welkom, where the No. 2 (Bottom) Seam can be up to 8 m thick, it is 
dull to shaley coal, with a thick (2.75 m) siltstone parting towards the bottom of the seam. Floor 
conditions are considered good, but the nature of the roof is more variable, ranging from 
carbonaceous mudstone and siltstone through to a fine-grained sandstone. 

Petrographic studies have shown the No. 2 Seam to be comprised of laminated 
inertodetrinite/semifusinite with subordinate micrite and clay minerals. The sulphur content is 
variable, but often very low, with euhedral pyrite present. Based on his palynological assessment 
Hart (1966a) equated the No. 2 (Bottom or Lower) Seam with the No. 2 Seam in the Witbank area of 
the Witbank Coalfield. 

In places the No. 1 and No. 2 coal seams have coalesced, forming a coal zone of up to 22 m in 
thickness. Such thick seams are present in the Wolwehoek Valley and in depressions in the 
basement between Koppies and Viljoenskroon (Stavrakis, 1986). 

The No. 3 (Middle) Seam occurs stratigraphically some 20 m above the No. 2 Seam at the top of 
Cycle 3 of Stavrakis (1986). In the Free State Coalfield the No. 3 Seam ranges in depth below surface 
from about 200-500 m, is generally less than 3 m thick, and is of fairly poor quality. Petrographically 
the coal contains equal amounts of inertodetrinite, micrinite and clay minerals (Stavrakis, 1986). 
From an area south of the Koppies valley to Hennenman the seam has a high mudstone and sulphur 
content (up to 6%). The pyrite is framboidal and does not decrease substantially with beneficiation. 
The immediate roof to the No. 3 Seam is often comprised of glauconitic sandstone.  
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The No. 4 (Top) Seam occurs between 2-20 m above the No. 3 Seam in the Free State Coalfield and is 
not present over large areas. In small isolated sub-basins to the west of the town of Kroonstad it 
may attain a thickness of between 3-4 m. Where preserved the coal quality is generally better than 
for the No. 1, 2 and 3 seams. The quality of the No. 4 Seam is strongly controlled by depositional 
environment, with poor development of the seam in the Theunissen, Virginia, Hennenman, 
Steynsrus, Edenville and Heilbron valleys. Petrographic studies of the No. 4 Seam show layering and 
the preservation of woody structure in the coal (Stavrakis, 1986). Vitrinite makes up 30% of the 
macerals, inertodetrinite 20% and semi-fusinite 5%, with the balance being formed by micrinite 
(20%), clay and pyrite. 

In the southern Theunissen area only a single potentially economic seam (termed the No. 3 Seam) 
has been reported (Prevost, 2011) as well as a reference to an uneconomic No. 4 Seam. Here the 
parting thickness between the No. 3 and No. 4 seams is between 20-40 m. Elsewhere in the coalfield 
a composite of the No. 2 and No. 3 seams has been referred to. 

4.4.1.6.1. Coal qualities 

Stavrakis (1986) provides quality data for the No. 1 Seam (Dwyka Seam) for three of his seven sub-
areas of the Free State Coalfield and these are reproduced below as Table 2. Stavrakis (1986) further 
notes that the quality of the No. 1 Seam is downgraded by the numerous intraseam partings and is 
in general of very poor quality. 

Seam Area Thickness 
(m) 

CV 
(MJ/kg) 

Ash (%) VM (%) IM (%) TS (%) 

No.1 (Dwyka) Welkom 3.4 17.59 38.6 22.3 3.9 1.19 

No.1 (Dwyka) Hennenman 10.7 18.34 33.4 21.0 3.9 0.55 

No.1 (Dwyka) Kroonstad 3.2 15.77 43.5 18.6 3.8 1.12 

Table 2 Typical seam thickness and raw qualities for the No. 1 Seam in the Free State Coalfield. Areas are 
stated from west to east (from Stavrakis, 1986). 

The raw coal qualities for the No. 2 Seam (Bottom Seam) in the various sub-areas of the Free State 
Coalfield are provided below as Table 3.  

Seam Area Thickness 
(m) 

CV 
(MJ/kg) 

Ash (%) VM (%) IM (%) TS (%) 

No.2 (Bottom) Vierfontein 2.4 20.7 25.8 21.1 6.7 - 

No.2 (Bottom) Wesselbron 2.4 17.6 35.7 23.2 6.6 1.1 

No.2 (Bottom) Welkom 6.3 16.73 36.7 20.5 4.5 0.29 

No.2 (Bottom) Kroonstad 3.2 15.77 43.5 18.6 3.8 1.12 

Table 3 Typical seam thickness and raw qualities for the No. 2 Seam in the Free State Coalfield. Areas are 
stated from west to east (from Stavrakis, 1986). 

According to Stavrakis (1986) the No. 2 (Bottom) Seam has a flat wash curve and cannot be 
beneficiated to a 27.5 MJ/kg CV with a yield in excess of 30%. Gilligan (1986) also states that the 
washing characteristics are poor and that the No. 2 (Bottom) Seam coal is dull and is not amenable 
to beneficiation, nowhere being better than low grade thermal coal.  

The No. 2 Seam coal received at the Vierfontein Power Station was initially a 22.10 MJ/kg CV, 
however by the 1950s this had dropped to 20.93 MJ/kg. Over time the coal averaged a CV of 21 
MJ/kg, Ash content of about 22%, and a VM content of around 20%. The TS content is not 
mentioned. Qualities for Vierfontein crushed coal are also provided in Bulletin 68 (1964) and Bulletin 
102 (1987) of the Fuel Research Institute. For 1964 qualities are given as: 22.33 MJ/kg CV; 24.0% 
Ash; 20.5% VM; 6.5% IM; and 1.30% TS. In the 1987 Bulletin 102 these are given as: 20.4 MJ/kg CV; 
22.8% Ash; 22.3% VM; 8.9% IM and 1.43% TS. 
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Gilligan (1986) provides typical raw quality data for the No. 2 (Bottom) Seam at Vierfontein as being: 
20.53 MJ/kg CV; 27.7% Ash; 21.4% VM; 5.6% IM; and TS of 1.4%. He further supplies the Ash Fusion 
Temperature (Initial deformation – reducing atmosphere) as being +1400oC. Gilligan (1986) also 
provides typical quality data for the various plies (zones) of the No. 2 (Bottom) Seam at Welkom and 
these are presented below as Table 4. 

Seam Zone Thickness 
(m) 

CV 
(MJ/kg) 

Ash (%) V.M (%) I.M (%) TS (%) 

No.2 (Bottom) 3 1.5 17.7 39.4 18.1 4.1 - 

No.2 (Bottom) 2 4.2 16.0 44.8 18.5 2.9 - 

No.2 (Bottom) 1 1.5 14.9 49.7 18.1 2.6 - 

Table 4 Typical seam qualities, Saaiplaas, Welkom area (from Gilligan, 1986). 

As mentioned above, the No. 3 (Middle Seam) is of fairly poor quality and only one analysis is 
included in Stavrakis (1986), this being for the 2.3 m thick No. 3 (Middle) Seam at Hennenman. Raw 
qualities are given as: 15.95 MJ/kg CV; 31.4% Ash; 26.4% VM; 3.5% IM; and 0.74% TS. The No. 4 
(Top) Seam is of far superior quality to the No. 3 Seam. Stavrakis (1986) provides data for the 
Welkom, Hennenman and Kroonstad areas as presented below in Table 5. 

Seam Area Thickness 
(m) 

CV 
(MJ/kg) 

Ash (%) VM (%) IM (%) TS (%) 

No.4 (Top) Welkom 4.7 20.71 34.1 21.8 3.9 1.17 

No.4 (Top) Hennenman 1.2 21.3 28.8 24.3 3.8 2.41 

No.4 (Top) Kroonstad 3.7 22.36 24.6 26.0 3.4 1.49 

Table 5 Typical seam thickness and raw qualities for the No. 4 (Top) Seam in the Free State Coalfield. Areas are 
stated from west to east (from Stavrakis, 1986). 

Gilligan (1986) describes the 5 m thick No. 4 (Top) Seam in the Welkom area as being lustrous and 
banded, with some bright stringers, and provides typical raw qualities of: 24.0 MJ/kg CV; 37.9% Ash; 
19.0% VM; and 3.9% IM. It should however be noted that the Ash-CV relationship seems to be 
outside of the norm. 

Meyes and Prevost (2013) report average raw qualities for the southern deep sector of the coalfield, 
between Welkom and Theunissen, as being between 19-20 MJ/kg CV, 30-35% Ash, 20% VM and 
0.5% TS. They further noted that there was very poor upgrading potential and indicated theoretical 
yields of only 45% for a 24.5 MJ/kg CV coal. Van der Merwe (2011) described the coal as dull, and 
notes that the qualities are generally that of high inherent ash, yet with vitrinite contents of up to 
30%, but that the coals are not amenable to beneficiation. 

According to the Mega Africa website (http://www.mega-africa.co.za) the coal in their Groenfontein 
Collieries project area has a typical CV in the range of 16-23 MJ/kg on an adb, with an Ash content of 
between 16-30%, a VM content of between 16-30% and a TS content in the range of 1.0-1.4%. It is 
not mentioned which seam this refers to. 

From the above it is evident that in general the coals of the Free State Coalfield are of low to 
moderate quality, with high Ash and TS contents.  

4.4.1.7. Structure and intrusions 

Structurally the Free State Coalfield is fairly complex, due mainly to the inherited structural controls 
from the basement, as well as from the Jurassic dolerite intrusives. Pre-Karoo basement strata were 
subjected to extensive faulting and folding, mainly around the Vredefort Dome, and some of these 
faults were re-activated during Karoo deposition, providing a strong control on the nature of the 
glacial valleys created. Some of these faults were also re-activated during the Jurassic (Van der 
Merwe, 2011) resulting in small- to large-scale displacements. 

http://www.mega-africa.co.za/Groenfontein.html
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As for all of the other northern MKB coalfields, Jurassic aged dolerite dykes and sills are common 
throughout the Free State Coalfield. Stavrakis (1986) estimated that some 40% of the resources in 
the coalfield had been adversely affected by the dolerite intrusions. At least three major dolerite sills 
(No. 4, No. 5 and No. 6 sills) are present and vary in thickness between 20-150 m. According to Van 
der Merwe (2011) the No. 4 Sill (B4) is up to 120 m thick and is a coarsely crystalline dolerite, which 
has only a mild metamorphic effect, and which causes mainly horizontal joints. The No. 5 Sill (B5) on 
the other hand, whilst only being a medium crystalline dolerite some 60 m thick, causes vertical 
joints and has a severe metamorphic effect. The No. 6 Sill (B6), which is only 20 m thick, is more 
finely crystalline, causes vertical jointing and has an extreme metamorphic effect. Van der Merwe 
(2011) also notes that both true and pseudo dolerite dykes occur. True dykes have a consistent 
thickness, predictable strike and minor metamorphic effect, whereas pseudo-dykes (which are 
actually offshoots from sills) are irregular and unpredictable and have a severe metamorphic effect. 
Typical dolerite sill thicknesses and associated displacements in the Vierfontein Colliery area are 
noted as being about 30 m (Gilligan, 1986). 

4.4.2. Vereeniging-Sasolburg Coalfield 

4.4.2.1. Introduction 

The Vereeniging-Sasolburg Coalfield is historically important to South Africa as it was originally 
mined to supply the first feed for the Sasol One plant, for the conversion of coal to liquid (CTL) fuels 
and petro-chemicals via the Lurgi gasification process. It is also home to Eskom’s 3600 MW Lethabo 
Power Station. 

The Vereeniging-Sasolburg Coalfield has previously been described in some detail by Steyn and van 
der Linde (1986) and as little has changed since this time, this paper is the basis for this review. As 
for the Free State Coalfield, coal occurs mainly in isolated to partially isolated depositories. Steyn 
and van der Linde (1986) therefore sub-divided the Vereeniging-Sasolburg Coalfield into three 
basins, namely the Cornelia, Coalbrook, and Sigma basins (here referred to as sub-basins) and these 
are covered separately below. 

4.4.2.2. Location 

Like the Free State Coalfield, the Vereeniging-Sasolburg Coalfield (Fig. 21) also occurs in the Free 
State Province, extending from just south of the town of Vereeniging in the north, to approximately 
20 km north of Heilbron in the south, and from Sasolburg in the west to Deneysville in the east. The 
coalfield is around a maximum of 30 km wide and roughly 50 km long in a north-south direction and 
covers an area of 208,494 ha (Barker, 1999).  

4.4.2.3. Exploration and exploitation history 

There is some disagreement in the literature as to whether coal was discovered in the Vereeniging-
Sasolburg Coalfield in 1871 by Karl Gottlieb Mauch, or in 1878 by George William Stow. No matter 
the discoverer, coal was being commercially exploited during the 1880s and 1890s and supplied to 
the diamond and gold mining industries in Kimberley and the Witwatersrand. 

In 1880 Stow met the diamond magnate Sammy Marks, who realised the importance of Stow’s 
discovery and authorised him to purchase all the farms on which he considered coal to exist. Stow 
purchased the 5675 morgen (= 4860 ha) farm Leeuwkuil (meaning Lion’s pit) which lay on the 
northern bank of the Vaal River. This was the first mine to produce in the coalfield and was also the 
only colliery to mine coal commercially on the north side of the Vaal River. It was later to become 
known as the Bedworth Colliery and during 1884 produced 360 t of coal. By 1885 this figure had 
doubled to over 700 t, all of which was was dispatched to Kimberley. The discovery of gold on the 
Witwatersrand in 1886 dramatically increased the demand for coal and by 1889 the Bedworth 
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Colliery was producing 200 t of coal per week 
(http://www.vaaltriangleinfo.co.za/history/resources/coal_1.htm). 

Donald McKay, who had seen an outcropping of coal on the farms Kookfontein and Waldrift before 
Marks had registered his company, persuaded Cecil John Rhodes to purchase these farms (totalling 
5600 morgen or around 4800 ha) and in 1881 they became equal partners in the mine which was 
later to be known as Springfield Colliery. 

In July of 1892 better seams were found on the Free State side of the Vaal River approximately 60 m 
below the surface. Initial mining was difficult due to seeping water and shifting ground.  In March 
1894 President Reitz opened the sinking of a new shaft on the Free State side, named Cornelia in 
honour of his mother. A reasonable seam of coal was intersected at a depth of almost 140 m, but 
the seam was so intruded by dolerite dykes that a flood of water broke through, and eventually the 
mine was abandoned. The following year another shaft was sunk near the Vaal River, with the seam 
intersected at a depth of a little over 40 m. This was to become known as the Cornelia Colliery No. 2. 
Shaft and was to produce coal for the next 33 years. 

Between 1960 and 1985, the Anglo American Corporation of SA Limited (AAC), Iscor Limited (Iscor), 
Goldfields, and Sasol all explored in the coalfield, with numerous boreholes being drilled. After 2004 
most of the old order mineral rights to the northern part of the Sasolburg-Vereeniging Coalfield 
were converted to new order rights and are currently held by Sasol and Anglo. Only the deeper areas 
to the south of the Sigma and Coalbrook sub-basins became available for new exploration post 2004. 
Currently Absolute Holdings are focussed on exploration of a 14,500 ha area to the south of the 
Coalbrook sub-basin, providing gross tonnes in situ (GTIS) figures of some 1.4 Gt of Inferred 
Resource for their Heilbron Project (Venmyn, 2010). 

Only two mines are presently operational in the Vereeniging-Sasolburg Coalfield. The Sigma Colliery 
supplies coal to Sasol and the New Vaal Colliery, which is a modern surface (opencast) operation 
that supplies coal to the Lethabo Power Station. 

4.4.2.4. Sigma Sub-basin 

Whilst the Sigma sub-basin currently has only one producer, Sasol Mining Division’s Sigma Colliery, 
situated directly south of the town of Sasolburg, it is of importance to the South African economy in 
that since 1952 this mine has been the major supplier of low-grade coal as product feed to the 
original Sasol plant (later named Sasol One and now called Sasol Chemical Industries). It is owned by 
the Sasol Mining division and is made up of the Sigma/Mohlolo underground workings and the 
Wonderwater surface mining operations. It is from these workings that most of the knowledge of 
the geology and coal resources of the Sigma sub-basin has been documented. 

4.4.2.4.1. Location 

The Sigma sub-basin is situated along a north-south line at the western edge of the Vereeniging-
Sasolburg Coalfield. Geologically the western margin of the sub-basin is formed by a pre-Karoo 
outcrop of the Vredefort Dome and the eastern extremity by a ridge of Ongeluk Formation 
(Transvaal Supergroup) lava, which separates it from the Cornelia sub-basin to the east. 

 

4.4.2.4.2. Exploration and exploitation history 

Mining in the Sigma sub-basin began in the early 1950s at the Sigma Colliery. Early bord-and pillar 
extraction mining methods however left much of the resource unmined, and during the 1960s total 
extraction methods, such as long walling and pillar extraction, were introduced to improve 

http://www.vaaltriangleinfo.co.za/history/resources/coal_1.htm
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extraction (Cillie and Savage, 1961). These mining methods were however found to have limited 
application at the Sigma Colliery and the rib-pillar method was introduced in 1980 (Laybourne and 
Watts, 1990). Current exploration interest is focussed on the south-eastern portion of the Sigma 
sub-basin. 

4.4.2.4.3. Geology 

The Sigma sub-basin is underlain by rocks of the Ventersdorp and Transvaal supergroups (Nel and 
Jansen, 1957; Fig. 24). Lavas of the Ventersdorp Supergroup are predominantly found in an area in 
the central part of the sub-basin and prominent outcrops of Transvaal Supergroup dolomites extend 
from near the Klip River southwards to Vereeniging and beyond (Van der Linde, 1979). Along the 
north-eastern part of the Sigma sub-basin volcanic rocks of the Hekpoort Andesite Formation have 
been intersected in boreholes. The basement at Sasol’s Wonderwater surface mine is formed by 
lavas of the Ventersdorp Supergroup and the topography is relatively smooth, giving rise to flat lying 
coal seams. 

 

Fig. 24. West-east simplified stratigraphic profile at the Sigma Colliery showing the nature of the basement and 
the control on the thickness of the Dwyka Group and basal C1 Seam (from De Beer et al., 1991). 

The general palaeoslope is from north to south with an average dip of less than a degree. Dwyka 
Group diamictites occur at the base of the succession and are thickest in areas overlying dolomites 
(Fig. 24). 

4.4.2.4.4. Coal seams 

The coal zone in the Sigma sub-basin is between 30-40 m thick and contains three coal units, 
comprising four coal seams termed C1, C2A, C2B and C3 (De Beer et al., 1991; Fig. 24). The coal 
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seams extend over an area of approximately 300 km2 and occur at depths below surface of between 
20-250 m. The wide variation in depth results from a general southward dip in the strata, coupled 
with a northward-sloping land surface. 

The basal coal unit occurs directly on or near the Dwyka Group diamictites and is referred to as the 
C1 (De Beer et al., 1991) or Number (No.) 1 Coal Unit (Steyn and Van der Linde, 1986). This unit is 
only present in the deeper valleys and is thus not present over the entire sub-basin. The seam varies 
in thickness from being absent to 5 m, with an average thickness of 3 m. The No. 1 Coal Unit is 
frequently split into two coal seams by a sandstone parting. The parting between the No. 1A Seam 
(the basal seam) and the No. 1B Seam varies in thickness between 0 and 3.5 m and the parting 
between the Number 1B and 1C varies in thickness from 0-1.7 m. The No. 1A and 1B seams and the 
No. 1B and 1C seams in many cases form a single unit with no internal partings.  

The No. 1 and 2 coal units are separated by an upward fining clastic unit consisting of a basal 
conglomerate and very coarse sandstone, which grades upwards into finer sandstone. The 
conglomerate is present over the entire area of the sub-basin and is interpreted as a fluvio-glacial 
outwash deposit (Steyn and Van der Linde, 1986). The No. 2A, 2B, and 3 seams occur throughout the 
sub-basin. 

The No. 2 Coal Unit is generally divided into two coal seams by a brown mudstone layer rarely 
greater than a metre in thickness. The two coal seams are known as the No. 2A (C2A) and No. 2B 
(C2B) seams. In places the parting between the two seams does not exist and the two seams may 
form a composite seam in excess of 6-8 m in thickness (Steyn and Van der Linde, 1986).  

The parting between the No. 2B Seam and the No. 3 Coal Unit is of variable thickness and consists of 
a succession of mudstone, siltstone, and sandstone, with an average thickness of 13 m, increasing to 
the south. The No. 3 Coal Unit (C3) consists of one coal seam and varies between 0-5.0 m in 
thickness. This coal unit is present over most of the sub-basin and occurs at a depth of 60 m in the 
north and 200 m in the south. The No. 3 Seam is overlain by a laminated mudstone or siltstone layer 
which separates the No. 3 Seam from the No. 3 Coal Seam Marker. The No. 3 Coal Seam Marker is 
normally less than 1 m thick and is overlain by alternating sandstone and siltstone package. A thin 
glauconitic sandstone layer directly overlies the No. 3 Coal Seam Marker and serves as an additional 
guide for exploration and correlation. The sandstones above the coal seams are mainly white, fine- 
to medium-grained and horizontally stratified to massive (Steyn and Van der Linde, 1986). 

At Sasol’s Wonderwater mine the No. 2A and No. 3 seams are extracted together, along with the 
siltstone parting between them where developed. In the northern area of the mine the parting does 
not occur and the two seams coalesce and are mined as one unit. 

4.4.2.4.4.1. Coal qualities 

The raw qualities of the coal (adb) as provided in Steyn and Van der Linde (1986) are presented in 
Table 6 below.  

Seam CV (MJ/kg) Ash (%) VM (%) IM (%) FC (%) 

No. 3 19.3 29.8 21.0 5.2 44.0 

No. 2B 18.0 32.2 20.0 6.6 41.2 

No. 2A 18.2 30.9 21.9 6.6 40.6 

Table 6 Coal qualities for the Sigma sub-basin (from Steyn and Van der Linde, 1986). 

4.4.2.4.5. Structure and intrusions 

At Sasol’s Wonderwater opencast mine the structures observed are predominantly the result of 
regional horizontal stresses (Van Heerden, 2004a). At Wonderwater the predominant strike 
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direction of the dolerite dykes is northwest-southeast and their thicknesses are generally less than 
2 m. Faults are typically normal with throws of less than 2 m. A major fault strikes west-east across 
the mining area and downthrows the northern area by some 20 m. On either side of this fault is a 
zone of highly jointed rock (Van Heerden, 2004a). Jointing is common in all lithological units and 
three major joint sets have been identified, these being: bedding joints, shear induced joints, and 
vertical joints (Van Heerden, 2004a). 

Dolerite sills, up to 35 m thick, cover extensive areas in the Sigma sub-basin, and their presence has 
a profound influence on the volatile content of the coal in places. The dolerites also affect the rock 
mechanics conditions of the mining operations (De Beer et al., 1991). Two major dolerite sills are 
present in the Sigma sub-basin. Both of these intrusions are present in the southern sector, but only 
the younger one is present in the northern sector. There are two known occurrences where dolerite 
sills transgress the coal seams. The first is in the southern part where a dolerite sill intersected the 
No. 3 Seam causing a displacement of 85 m. The second is in the northern part where the 
displacement of the coal seams is approximately 65 m. 

Numerous dolerite dykes have also been encountered at the Sigma Colliery during underground 
mining operations, with the majority being located in the southern sector. Associated post-Karoo 
faults, with displacements of up to 4 m have been encountered during underground operations 
(Steyn and Van der Linde, 1986).  

4.4.2.5. Cornelia Sub-basin 

4.4.2.5.1. Introduction 

The Cornelia sub-basin hosts the New Vaal Colliery (NVC), an example of how a mined-out colliery 
was resuscitated by surface (opencast) mining methods. Lethabo was fully operational by December 
1990 and holds the distinction of being the power station in South Africa which burns the lowest CV 
(15-16 MJ/kg) and highest Ash (42%) coal. As for the Sigma sub-basin, most of what is known about 
the geology of the Cornelia sub-basin comes mainly from work at NVC. 

4.4.2.5.2. Location 

The Cornelia sub-basin forms the north-eastern sector of the Vereeniging-Sasolburg Coalfield and 
extends in a north-south direction from the town of Vereeniging in the north, to the northern 
margin of the Coalbrook sub-basin in the south. The western boundary with the Sigma sub-basin is 
formed by a palaeohigh of Ongeluk Formation lava and the eastern margin by the subcrop against a 
basement composed of the Chuniespoort Group. 

4.4.2.5.3. Exploration and exploitation history 

Mining commenced in the general area during the late 1800s using underground bord and pillar 
methods, and ceased in 1965 in the Maccauvlei east area of the now defunct Cornelia Colliery. 
Mining began in the NVC lease area in 1931 and continued until 1969, by which time some 61% of 
the area had been undermined. Early bord-and-pillar methods however left some 93% of the original 
resource underground and in the late 1970s feasibility studies were carried out on mining the 
remaining coal reserves by open-cast methods. Technical investigations continued through to the 
1980s, leading to the establishment of the NVC in 1983, with the first saleable coal being produced 
in December of 1985. NVC is a captive colliery and its main function is to supply coal to Eskom’s 3600 
MW Lethabo Power Station until 2030. 

The NVC is located in the Free State Province, immediately south of the town of Vereeniging. The 
site covers a land area of roughly 8 km by 6 km and operates as an open cast mine to a depth of 80 
m. The colliery consists of two distinct mine lease areas covering approximately 2800 ha. These two 
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resources are known as the Maccauvlei East (Mac east) Reserve Block and the Maccauvlei West 
(Mac west) Reserve Block. With the mine at full production some 17.8 Mtpa are produced from the 
two reserves. 

The Mac east reserve was the first to be mined in 1985 and the coal is mined by open-cast methods 
only. The mineable reserves are in three coal seams totalling 18.1 m on average in thickness, and the 
floor of the mine is at an average depth of 50 m below the surface topography. There are old 
underground workings present in this coal seam, averaging a height of 2.7 m. The mining method 
used for the historic underground workings was bord and pillar mining. 

The Mac west block is a reserve that was later secured by AATC, with mining beginning in 2008. An 
estimated 35% of the bottom seam and a portion of the middle seam were historically mined by 
Cornelia Colliery. The remaining Mac west reserves are currently also being extracted using open-
cast mining methods and are also entirely dedicated to Lethabo Power Station. NVC is currently the 
highest producer of RoM coal in the AATC group (Mothemela and Chabedi, 2013). The remaining 
reserves at Mac west, which amounted to approximately 95 Mt in 2004, are being mined over a 
period of approximately 24 years to tie in with the expected life of mine (LoM) of the Mac east coal 
mining operations, currently planned to cease in 2030. Eskom would however like to keep the 
Lethabo Power Station running until 2050, and needs to secure coal supply to this date. AATC can 
fulfil this requirement if the life of NVC is extended by 20 years. AATC proposes to extend its existing 
open-cast mining operations by mining new coal reserves located to the south of the existing 
colliery. These operations will include both open-cast and underground mining within the New 
Cornelia Block 1 and New Cornelia Vaalbank reserves (Golder, 2011). 

4.4.2.5.4. Geology 

For this review the historical use of the term coal unit (Steyn and Van der Linde, 1986) has not been 
retained and the terminology of Laybourne and Watts (1991) has rather been used. These authors 
also provide a typical stratigraphic column through the NVC mining area and this is provided below 
as Figure 25. 

The northern part of the Cornelia Basin is underlain by a basement of dolomites of the Chuniespoort 
Group and lavas of the Hekpoort Formation (both units of the Transvaal Supergroup). The thickness 
of the basal Dwyka Group generally varies between 3-4 m, but can reach thicknesses of up to 15 m in 
topographic lows. The basal portion of the Dwyka Group is formed by diamictite, with angular to 
well-rounded pebble sized clasts of dolomite, chert and metaquartzite, set in a brown argillaceous 
matrix. The diamictite facies is overlain by variable layers of reworked diamictite and sandstone, 
which varies in thickness between 4-5 m and forms the floor to the Bottom Seam. In the northern 
part of the sub-basin this succession contains a thin coal seam, which is referred to as the Lower 
Bottom Seam, and which may reach a thickness of up to 1.5 m. 
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Fig. 25. General stratigraphy of the New Vaal Colliery (NVC), from Laybourne and Watts (1991). 

 

4.4.2.5.5. Coal seams 

The main coal zone is in the order of 30 m in thickness and contains three coal seams, which are 
referred to as the Bottom, Middle and Top seams. The Bottom Seam, which in places is deposited 
directly on reworked diamictite, varies in thickness, but has an average of 4 m, of which the lower 
2.5 m was historically mined underground. The Bottom Seam may be correlated with the No. 1 Seam 
of the Sigma Colliery area, as well as the No. 1 Seam encountered at the Coalbrook Colliery in the 
Coalbrook sub-basin, as discussed below. 

The Middle Seam is separated from the Bottom Seam by an interbedded succession of conglomerate 
and siltstone up to 2 m in thickness. To the south, thin interlayered coal seams are also present. The 
Middle Seam may consist of two sub-seams, which are locally known as the Lower Middle Seam, and 
the Upper Middle Seam. A brown carbonaceous mudstone forms the parting between these two 
seams and varies in thickness between 0.6-0.9 m. The Lower Middle Seam is commonly thicker than 
the Upper Middle Seam and achieves its maximum thickness of 7.5 m in the southern section of the 
Cornelia mining area (Van der Linde, 1986). Most of the historic workings took place in selected 
horizons of the Middle Seam. 

The Middle Seam is separated from the Top Seam by a black micaceous siltstone, which grades 
upwards into mudstone. The Top Seam may also consist of two sub-seams, locally known as the Top 
Seam and the Coal Marker (Van der Linde, 1986) or Leader Seam. The Top Seam reaches a maximum 
thickness of 10 m, however where historically mined underground the average selected seam mining 
height was only 3.2 m. The Coal Marker Seam may reach a maximum thickness of 1 m. The quality of 
the Top Seam is generally the lowest of the three main seams. 
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4.4.2.5.5.1. Coal qualities 

Steyn and Van der Linde (1986) provide the raw coal qualities of the three main seams and these are 
presented below in Table 7. 

Seam CV (MJ/kg) Ash (%) VM (%) IM (%) FC (%) 

Upper 18.2 30.0 23.1 6.2 40.7 

Middle 20.6 26.4 20.0 1.8 51.8 

Lower 19.43 21.9 23.8 6.9 47.4 

Table 7 Raw coal qualities (adb) from the Cornelia Basin (from Steyn and Van der Linde, 1986). Note: the CV in 
the table in Steyn and Van der Linde (1986) reads 2.6. It should be noted that the Ash-CV relationship for the 
Lower Seam is unusual and further data should be sourced. 

At the NVC all three seams are mined simultaneously and blended to provide an average CV of about 
16 MJ/kg and a 37.5% Ash content. 

4.4.2.5.6. Structure and intrusions 

The nature of the palaeotopography is an important contributor to the structure of the Cornelia sub-
basin. Basement highs (Chuniespoort Group dolomite pinnacles and ridges) and lows (palaeokarst 
doline features) of varying scales result in changing dips, strikes and gradients over short distances 
(Van Heerden, 2004a). At NVC the highly undulating nature of the palaeofloor is also believed to be 
the controlling factor in terms of the observed joint patterns and structural discontinuities (Stewart 
and Letlotla, 2003; Van Heerden, 2004a). 

Two major faults with a regular east-west strike have produced a graben-type structure in the 
Cornelia sub-basin. The displacement of the coal units varies from 70 m in the west to only 5 m in 
the east. A high frequency of minor faulting is present in the Bottom Seam and a few of these faults 
can be traced up to the Middle Seam (Steyn and Van der Linde, 1986).  

A dolerite sill up to 60 m thick occurs in the upper part of the succession, but becomes thinner to the 
north due to erosion. It generally occurs some 40 m above the Top Seam. In the south it transgresses 
the coal seams in three areas, creating small areas of uplifted and devolatilised coal. The presence of 
the faults, floor dips, numerous sinkholes and the previously undermined areas makes for 
challenging mining conditions at NVC. 

4.4.2.6. Coalbrook Sub-basin 

4.4.2.6.1. Introduction 

The Coalbrook sub-basin can be viewed as a southerly extension of the Sigma and Cornelia sub-
basins. Whilst currently without an active colliery, the Coalbrook sub-basin was previously the host 
to the Coalbrook and Clydesdale collieries, both of which are now defunct. One of these, the 
Coalbrook Colliery, is infamous in South African coal mining history as being the site of the nation’s 
worst coal mining disaster, when on the 21st of January, 1960, 435 (some reports refer to 437) men 
died in an underground collapse (Van der Merwe, 2006). To this day this rates as the seventh worst 
coal disaster globally in terms of lives lost. 

4.4.2.6.2. Location 

The Coalbrook sub-basin extends from the southern edges of the Sigma and Cornelia sub-basins 
southwards towards Heilbron and eastwards to the Vaal Dam. 
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4.4.2.6.3. Exploration and exploitation history 

Initial exploration in the Coalbrook sub-basin was focussed on the north and central areas. Van der 
Merwe (2006) notes that the earliest borehole logs for Coalbrook date to the early 1900s, and that 
the first Coalbrook shaft was sunk in 1905. From 1932 onwards, attention turned to mining south 
and east of the original shaft. In 1950 the planning of a thermal power station in the district started. 
Coalbrook was awarded the contract for coal supply and in 1954 the first generators came on line. 
This had a dramatic impact on the mine, requiring a five-fold increase in the daily production rates, 
and in part leading to the disasterous roof collapse (van der Merwe, 2006). Coalbrook North was the 
sole supplier of coal to Eskom’s Taaibos Power Station; with the South Colliery providing coal to the 
Highveld Power Station. The Taaibos and Highveld power stations each had a capacity of 480 MW 
and were the largest and most up-to-date power stations in the Eskom system at that time. The 
process of closing down Taaibos and Highveld power stations began in 1986 and in 1994 a decision 
was made to decommission and dispose of them. 

AAC, Iscor, Goldfields and Sasol all explored for coal in this area between 1960 and 1985, with 49 
boreholes drilled between 1960 and 1985 according to the records of the Council for Geosciences 
(CGS). The greenfields Heilbron Project is currently being assessed in the south of the Coalbrook sub-
basin. These properties are located in the northern part of the Free State Province, approximately 
26 km south-southeast of the town of Sasolburg and 28 km north of Heilbron. Here the depth of the 
coal zone varies between 125-270 m. 

4.4.2.6.4. Geology 

The Coalbrook sub-basin was deposited on rocks of the Transvaal Supergroup, and in the east and 
west on rocks of the Ventersdorp and Witwatersrand supergroups, respectively (Nel and Jansen, 
1957). The Dwyka Group ranges in thickness between 0-45 m, being thickest in the palaeovalleys 
over dolomitic floors. The succession is generally formed by a basal diamictite unit, which grades up 
into coarse-grained sandstones. The overlying Vryheid Formation consists predominantly of 
sandstone, siltstone and mudstone, with coal seams in the lower parts. The succession becomes 
finer grained towards the east where it attains a maximum thickness of 263 m (Steyn and Van der 
Linde, 1986). According to the 1:250 000 geological map, surface outcrops within the Coalbrook sub-
basin consist mostly of argillaceous rocks (predominantly grey to black siltstones and mudstones) of 
the Volksrust Formation, which is approximately 100 m thick. 

4.4.2.6.5. Coal seams 

Three coal units (4 seams) are present in the succession and are numbered in ascending order the 
No. 1, No. 2 and No. 3 coal units. Of these coal units only the No. 3 has more than one seam and the 
term unit and coal seam may be used interchangeably for the No. 1 and No. 2 coal units. The No. 1 
and 2 seams are very intimately associated, being separated by only a sandstone or siltstone parting 
that ranges in thickness from 0-8.5 m in thickness. The average parting thickness between the No. 2 
Seam and the No. 3 Coal Unit is 20 m and the stratigraphic succession consists of interlayered 
sandstone, siltstone and laminated mudstone. 

The No. 3 Coal Unit consists of two separate seams, namely the No. 3 Upper (3U) and No. 3 Lower 
(3L) seams (Steyn and Van der Linde, 1986). They are separated by a thin, black or brown mudstone 
parting ranging in thickness between 0.5-7 m. The No. 3U Seam is overlain by a mudstone parting of 
between 1.0-3.2 m, which separates it from the overlying No. 3 Marker Seam, which ranges in 
thickness between 0.2-0.8 m. The immediate roofs of the No. 3L and 3U seams are composed of very 
weak friable brown mudstones. 

For the southern Heilbron area of the Coalbrook sub-basin the depth of the coal zone varies 
between 125-270 m, with the average for the area being between 180-220 m for the coal zone. 
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Borehole information from drilling done on the Heilbron farms supports the general geological 
description provided above. It was found that here the lower (No. 1) and middle (No. 2) coal units 
are separated by a clastic parting with a thickness of roughly 5 m, whereas the upper coal unit (No. 
3) is situated approximately 20 m above the middle unit.  

4.4.2.6.5.1. Coal qualities 

Steyn and Van der Linde, (1986) provide raw qualities for the three seams and these are presented 
below in Table 8. Similar raw coal qualities are provided by Absolute Holdings for their Heilbron coal 
assets (Venmyn, 2010). 

Seam CV (MJ/kg) Ash (%) VM (%) IM (%) FC (%) 

No. 3 19.9 29.3 19.8 4.3 46.6 

No. 2 19.6 28.9 21.3 5.8 44.0 

No. 1 21.7 24.3 23.4 5.6 46.7 

Table 8 Raw qualities (adb) for the coal seams of the Coalbrook Basin (from Steyn and Van der Linde, 1986). 

Little data is available concerning the wash characteristics of the coal from the Coalbrook sub-basin, 
but what does exist suggests that the yields are variable for the different seams, and that they are 
very low for an export quality product, with beneficiation required to even provide a constant 30% 
Ash product for Eskom. 

4.4.2.6.6. Structure and intrusions 

Over most of the Coalbrook sub-basin the sedimentary strata of the Karoo Supergroup are relatively 
flat, except for minor undulations (Steyn and Van der Linde, 1986). Due to the basin morphology, the 
general dip in the area is to the south-southeast. An increase in gradients occurs towards the edges 
of the sub-basin and is accompanied by the thinning and eventual pinching-out of the seams against 
the pre-Karoo basement palaeohighs. 

As for the other sub-basins of the Vereeniging-Sasolburg Coalfield, Jurassic aged dolerite intrusions 
are common. A dolerite sill, varying from a few metres to more than 125 m in thickness, is present 
throughout the Coalbrook sub-basin, and forms an undulating, intrusive mass above the coal seams 
(van der Merwe, 2006). Displacement of strata (by up to 85 m) by dolerite sills is a common 
occurrence in this part of the Vereeniging-Sasolburg Coalfield. In the central area of the coalfield the 
dolerite plunges beneath the coal seams, elevating an oval-shaped area of coal bearing strata 
2,500 m by 1,000 m in extent, by some 50 m above its original position (Burnton and Ferguson, 
1971).  

When the base of the sill is within 30 m or less of No. 3 Seam the effect of the dolerite intrusion (and 
the associated deformation stresses) become very noticeable. This includes a marked deterioration 
of the roof, numerous faults and fractures in the coal, and the volatile content of the coal 
decreasing. At the southern end of the Coalbrook sub-basin the coal of the upper unit has lower 
volatile content, which is a direct result of the position of a prominent dolerite sill, some 80-100 m 
thick, which is situated above the coal zone. 

Minor faults (maximum displacement of 5 m) are also encountered in the region related to dolerite 
dyke intrusions. Two major dolerite dykes, which strike northeast to southwest, traverse the 
Coalbrook Colliery area (van der Merwe, 2006). 
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4.4.3. South Rand Coalfield 

4.4.3.1. Introduction 

Coal was previously mined in the South Rand Coalfield on a small scale by various companies that 
are now defunct, and on a larger scale by AAC at their Springfield Colliery. At present there are no 
active mines in the coalfield and it remains a large, low grade coal resource. The surface area 
encompassed by the coalfield is also home to Eskom’s Grootvlei Power Station, which was 
commissioned in 1969 and has an installed capacity of 1200 MW. 

4.4.3.2. Location 

The South Rand Coalfield covers an area of some 60,000 ha (Henderson, 1986), lying within a 
southerly trending basin situated between the town of Heidelberg in the north and Villiers (Vaal 
Dam) in the south, in the Gauteng Province. 

4.4.3.3. Exploration and exploitation history 

Initial detailed exploration work in the South Rand Coalfield was undertaken by Sawyer (1898) and 
Moseley (1909), as summarised in Wybergh (1922). Initial investigations and mining were 
concentrated along the northern sub-outcrops of coal and comprised a series of adits and small-
working that were short lived due to ventilation difficulties and roof collapse. More intensive mining 
commenced at the turn of the century at the now closed Spes Bona, Transvaal Coal and 
Perseverance collieries. Mining progressed to the deeper portions of the coalfield, where the now 
defunct South Rand Colliery exploited an unusually thick (25 m) composite coal seam. 

The greatest concentration of exploration boreholes in the South Rand Coalfield have been drilled 
around the area of the now defunct South Rand and Springfield collieries, and most of what is 
known about the geology of this coalfield comes from this area. Springfield Colliery was started in 
1948 to supply the requirements of Eskom’s early Klip Power Station, at the rate of 200,000 tpm. In 
its later life it also supplied the Grootvlei Power Station. According to Henderson (1986) coal from 
the mine was particularly prone to spontaneous combustion problems. Underground sections at 
Springfield Colliery were eventually closed due to steep gradients and poor and unstable mining 
conditions caused by dolerite intrusions and faulting. The mineral rights to this resource currently 
reside with AATC and recent studies have sought to bring this large resource back into production. 

4.4.3.4. Geology 

As in the Free State and Vereeniging-Sasolburg coalfields, the South Rand Coalfield occurs within a 
large, deep, southerly trending palaeovalley on the northern margin of the MKB. It is effectively 
isolated from adjacent coal-bearing areas by basement palaeohighs of Ventersdorp and 
Witwatersrand Supergroup strata, and less commonly Archaean amphibolites and granites. A 
significant feature of the centre of the coalfield is the presence of large granite bosses, which form 
prominent topographic highs. 

Although not well documented for the coalfield, Dwyka Group lithologies form the base of the Karoo 
Supergroup succession. The three borehole logs provided in Henderson (1986) show the Dwyka 
Group lithologies in the centre of the basin to be between 20-30 m thick, and formed by a basal 
diamictite of up to 10 m, overlain by an upper unit of medium- to coarse-grained sandstone. 
Henderson (1986) further notes that conglomeratic strata along the southern margin of the basin 
may represent the distal equivalent of the Dwyka Group in the north of the coalfield. 
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The remainder of the sedimentary succession in the South Rand Coalfield is essentially comprised of 
Vryheid Formation sandstones, siltstones, mudstones and coal (Fig. 26), with occasional 
conglomeratic lenses, which may even occur within the coal seams themselves. 

 

Fig. 26. Generalised stratigraphy of the South Rand Coalfield (after Dempers, 2011). 
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The total thickness of strata above the coal zone may reach a maximum of 220 m, much of which 
may be attributed to the presence of an up to 150 m thick dolerite sill. 

4.4.3.5. Coal seams 

Three main seams occur in the coalfield, as well as a poorly developed uppermost Ryder Seam (Fig. 
26). The No. 1 Seam has an average thickness of 2.8 m (Henderson, 1986) and is composed of dull-
lustrous coal with scattered bright streaks and bands. The seam is usually of better quality than that 
of the overlying No. 2 Seam and generally has a competent sandstone roof and floor. The No. 1 
Seam was mined mainly in the central and north-eastern areas of the Springfield Colliery.  The 
interburden between the No. 1 and No. 2 (or Main Seam) seams is formed by a sandstone 
dominated succession up to 20 m thick. 

The No. 2 Seam (Main Seam) varies in thickness from over 20 m in the northern and central areas of 
the Springfield Colliery lease area to less than 2 m in the south-western parts, averaging 10 m 
(Henderson, 1986). The No. 2 Seam is the only regionally continuous mining horizon throughout the 
coalfield. Although the quality is fairly constant throughout the No. 2 Seam, mining regulations and 
restrictions at the time of exploitation only allowed for a maximum mining height of 5.5 m. 
Innovative mining methods will therefore need to be considered to make the extraction of this seam 
economic. Based on the presence of a glauconitic sandstone marker above the seam, the No. 2 Seam 
in the South Rand Coalfield has previously been tentatively correlated with the No. 4 Seam in the 
Witbank Coalfield (Henderson, 1986). In the central part of the South Rand Coalfield, siltstones and 
mudstones form the roof of the No. 2 Seam, while at the basin edge, erosively based fluvial channel 
sandstone units comprise the roof. Lateral to the thick composite seam of the central area, partings 
of conglomerate, sandstone, and mudstone are present, effectively splitting the No. 2 Seam into two 
or more thinner seams. 

The No. 3 Seam is on average 5 m thick and is a widespread coal seam that was mined extensively in 
various areas of the Springfield Colliery. In many places the No. 2 and No. 3 seams coalesce, or are 
separated by too thin a parting to allow the seams to be mined independently. In the South Rand 
Coalfield the uppermost Ryder Seam averages 2.3 m in thickness (Henderson, 1986) and is of inferior 
quality to the other seams, with a CV averaging 18 MJ/kg or less. Coupled to poor mining conditions, 
caused by an incompetent siltstone roof, this meant that this seam was of low priority, and it was 
not mined historically. The name “Ryder” was derived from a sub-economic seam of irregular 
distribution that occurs in the coalfields of South Wales. 

4.4.3.5.1. Coal qualities 

Henderson (1986) provides raw (and float F1.70) qualities for various plies of the typical seam 
sections in the Springfield Colliery area. These included a single ply for the No. 1 Seam, four plies for 
the No. 2 Seam and two plies for the No. 3 Seam. These raw coal quality values are provided below 
as Table 9. 

Seam CV (MJ/kg) Ash (%) VM (%) IM (%) FC (%) 

No. 3 (Ply 2) 15.59 42.6 17.2 3.9 36.3 

No. 3 (Ply 1) 22.21 20.3 23.0 5.2 51.5 

No. 2 (Ply 4) 22.70 21.9 25.1 4.5 48.5 

No. 2 (Ply 3) 24.17 16.8 26.0 4.8 52.4 

No. 2 (Ply 2) 22.52 21.4 20.9 4.8 52.8 

No. 2 (Ply 1) 17.87 35.4 18.5 3.8 42.3 

No.1 22.34 23.4 21.9 4.4 50.3 

Table 9 Raw coal qualities (adb) for the various seams and plies at the Springfield Colliery (from Henderson, 
1986). 
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According to Henderson (1986) the washability characteristics are poor and no low-Ash, higher 
grade fraction is recognisable in the seams. This seems to be borne out by the F1.70 data presented 
in Henderson (1986), which shows that whilst relatively high yields could be achieved (especially for 
the No. 1 Seam and the better plies of the No. 2 and lower No. 3 Seam), nowhere was a CV of 
greater than 24.60 MJ/kg obtained, and as such at the time it was not considered as export quality 
coal. 

The composite seam (No. 1, 2 and 3 seams) encountered at the Springfield Colliery may be divided 
into 11 zones, the qualities of which are provided in Henderson (1986; Figure 6, p. 1959). Henderson 
(1986) also provides coal quality values for the underground areas of the South Rand Coalfield as 
follows: 21.4 MJ/kg CV; 25% Ash; 21.1% VM; 5.4% IM; and 0.7% TS. For the open cast operations the 
figures are: 19.5 MJ/kg CV; 28.0% Ash; 23.3% VM; and 0.8% TS. Ash fusion temperatures are quoted 
as being +1400°C for all temperatures of deformation, for both underground and open cast areas. 

4.4.3.6. Structure and intrusions 

The area relative to other coalfields is structurally complex due to the numerous dolerite intrusions 
and relatively severe faulting throughout. A thick, coarsely-crystalline dolerite sill overlies most of 
the central part of the coalfield. Locally, this sill is in excess of 100 m thick, but thins out and is 
absent towards the eastern and western extremities. Sub-vertical to vertical fracturing of the sill is 
common throughout. Where the sill is within 30 m or less of the coal zone it has often caused 
devolatilisation of the coal, and for large areas of the coalfield the raw volatiles drop below 18%. 
Associated dolerite dykes are usually porphyritic. 

4.5. Coalfields of KwaZulu-Natal 

Whilst never being the largest producers by tonnage, the coalfields of KZN have historically played 
an important role in the coal industry of South Africa for the high quality of the coals produced. 
Historically the Klip River, Utrecht and Vryheid coalfields (Fig. 1) have been the most important and 
they were the subject of two pioneering surveys in the first half of the 20th Century (Wybergh, 1925; 
Blignaut and Furter, 1940), as well as follow up work by Blignaut (1951). They were also collectively 
the focus of much research by the Durban Coal Group of the University of Natal in the late 1970s 
(Tavener-Smith, 1979) and the 1980s, as summarised in Tavener-Smith et al. (1988). Since 2007 the 
Somkhele Coalfield has also become a significant contributor, which coupled with the Nongoma 
Coalfield (Fig. 1) represent the future for new mining in KZN. The locations of each coalfield are 
presented below under the individual coalfields, as are their individual exploration histories. 

Most of the major mining houses divested of their KZN coal assets in the early 2000s and activity in 
the KZN the coalfields are now dominated by junior to mid-tier mining and exploration companies. 
Presently only six medium scale collieries are operational, three in the Klip River Coalfield, one in the 
Vryheid Coalfield, one in the Nongoma Coalfield, and one in the Somkhele Coalfield. A number of 
new and advanced exploration projects may however see this number increase in the near future. 

Here we group the MKB foreland basin Klip River, Utrecht and Vryheid coalfields, and split them 
from the Somkhele and Nongoma coalfields (Fig. 1), which are rift related. Of these, the largest and 
historically the most important is the Klip River Coalfield (Snyman, 1998; Mintek, 2007). It is also the 
best documented and is covered here first to act as the basis for comparison with the Utrecht and 
Vryheid coalfields. 
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4.5.1. Klip River Coalfield 

4.5.1.1. Introduction 

The Klip River Coalfield was historically the most important anthracite and coking coal producing 
area of South Africa and according to the most recent overview of the coal resources of KZN 
(Mintek, 2007) the Klip River Coalfield still has the greatest percentage of high potential projects in 
the Province. 

4.5.1.2. Location 

The Klip River Coalfield has its apex in the north beyond the town of Newcastle and continues to 
Ladysmith in the south and to Dundee in the south-east. It covers an area extending from 25°30’ S to 
26°30’ S by 28°30’E to 30°E, and covers a total area of approximately 600,000 ha, of which roughly 
50% can be considered to be potentially coal bearing (Bell and Spurr, 1986). 

4.5.1.3. Exploration and exploitation history 

Although there is some evidence for coal extraction in KZN by the indigenous population, the earliest 
recorded discovery of coal by Europeans within the Klip River Coalfield was in 1838, with the 
Steenkoolstroom acquiring its name from outcrops of coal utilised by Commandant Andries 
Pretorius and his men in that year. The Talana Colliery opened near Dundee in 1860 and was South 
Africa’s first underground coal mine. Small quantities were also mined from outcrops in the Dundee 
area between 1860 and 1870. 

The earliest records of boreholes being drilled in the coalfield is by the Natal Administration 
between 1882-1885 (Bell and Spurr, 1986a). In 1889 Peter Smith founded the Dundee Coal Company 
and established it on the London Stock Exchange. By 1898 sinking of the first shaft at the Durnacol 
and Natal Steam collieries had begun and by 1903 more than 500,000 tpa were being produced from 
19 mines, mainly in the Dundee area (then referred to colloquially as Coalopolis). For the next half a 
century the Klip River Coalfield continued to expand, with various new collieries, such as Kilbarchan 
and Ballengeich (Natal Cambrian) opening, and some that had begun in the late 1800s, such as Natal 
Navigation, closing.  

During the mid-1960s, extensive exploration programmes were undertaken by many mining houses, 
and it was during this period that mines such as Indumeni and Ingagane were brought on stream. In 
1986, nine collieries were operative in the Klip River Coalfield (Bell and Spurr, 1986) with a combined 
annual sales tonnage of approximately 5.0 Mt. All of these have subsequently closed. They are listed 
below as Table 10. 

Colliery Average RoM (per month) Coal Type Produced 

Indumeni 30,000 Coking coal  

Northfield 55,000 Coking coal 

Kilbarchan 160,000 Thermal and Coking coal 

Ballengeich 36,000 Thermal coal 

Durban Navigation 120,000 Coking coal 

Newcastle Platberg 26,000 Thermal coal 

St George’s (opencast) 5-10,000 Coking coal 

Dewars Anthracite 20,000 Anthracite 

Natal Coal Exploration 14,000 Anthracite 

Table 10 Major collieries in the Klip River Coalfield that were operational in 1985 but are now defunct (from 

Bell and Spurr, 1986a). 
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Of these, probably one of the best known, and longest producing, is the Durban Navigation Collieries 
(Durnacol) mine. The history of Durnacol is well chronicled in Anthony Hocking’s 1995 book titled 
“Durnacol – The story of the Durban Navigation Collieries”, as well as in a number of papers and 
research articles (Smith, 1985). This operation, situated in the Dannhauser Magisterial District, 
supplied coking coal to Iscor. Smith (1985) notes, that at that time the Colliery was producing some 
225,000 tpm of RoM coal by conventional methods and long-walling. Both hand-got and mechanised 
methods were used to extract pillars in developed bord-and-pillar sections. The colliery stopped 
production in 2000, having operated for 75 years. 

Bell and Spurr (1986a; Table 1, p. 2037) also list over 40 defunct collieries in the Klip River Coalfield, 
the most significant of which (over 10,000 tonnes per month RoM) are included below as Table 11. 

Colliery Average RoM (per month) Coal Type Produced 

Elandslaagte 10,000 Thermal coal 

Natal Steam 11,000 Thermal coal 

Natal Navigation 40,000 Thermal and Coking coal 

St George’s 13,000 Coking coal 

Burnside 40,000 Coking coal 

Dundee 10,000 Thermal coal 

Wallsend 11,000 Anthracite 

Natal Cambrian 20,000 Steam coal 

Natal Coal Exploration 60,000 Thermal coal 

Ingagane 30,000 Thermal coal 

Table 11 Major defunct collieries in the Klip River Coalfield (from Bell and Spurr, 1986a). 

Coal was also mined in the southern Elandslaagte area of the Klip River Coalfield, being historically 
mined by the likes of Platberg, Elandslaagte and Natal Steam collieries. Of these, only the Newcastle 
Platberg Colliery was still operational at the time of the Bell and Spurr (1986a) paper. This colliery 
commenced operations in 1950 and produced both thermal and coking coal, mainly from the Top 
Seam, which was developed to a thickness of up to 1.6 m. 

Since 1986, the number of active collieries has dropped to three, two of which only opened post 
1986. Current operations include Shanduka Coal’s (www.shanduka.co.za) Springlake Colliery and 
Forbes Coal’s (http://www.forbescoal.com/) Magdalena and Aviemore collieries. Advanced stage 
exploration projects include Ikwezi Coal’s Newcastle Project (http://ikwezimining.com), Miranda 
Mineral Holdings Limited (http://www.mirandaminerals.com) Coal Division’s Seshikhona, Yarl and 
Burnside/Boschoek projects, and Keaton’s Braakfontein Project. 

Shanduka’s Springlake Colliery is situated to the immediate north of the town of Dannhauser. This 
colliery has been in operation for over 30 years and is one of South Africa’s largest producers of 
anthracite. Coal is mined from both the Top and Bottom seams, with the main production coming 
from the Bottom Seam, with a seam width of 1.8 m. The underground operation consists of one 
incline shaft and one vertical shaft, with the deepest mining taking place 120 m below surface. The 
surface operation comprises two opencast pits, which are mined to an average depth of 30 m. 
According to previous owner Petmin’s web site (http://www.petmin.com) the colliery has a resource 
base of some 24.44 Mt mineable in situ tonnes (MIST), and produces 1.04 Mt tonnes of RoM coal a 
year, with 413,000 t coming from underground and 628,000 t from the opencast operations. 
Dependent on the yield this provided for sales tonnages of around 570-600,000 tpa. By April 2014 
the opencast resources were nearly mined out and production was focussed on the Umnotho shaft 
underground sections (Van der Merwe, 2014). 

Forbes Coal provides all of their technical documents on their website, which may be freely 
downloaded. Their Magdalena Colliery’s opencast operation and decline are situated 22 km to the 
north-east of the town of Dundee. The Magdalena property, which consists of the Magdalena 

http://www.shanduka.co.za/
http://www.forbescoal.com/
http://ikwezimining.com/
http://www.mirandaminerals.com/
http://www.petmin.com/
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underground mine, the Hilltop exploration area, and the Magdalena opencast, has a compliant 
Measured and Indicated coal resource of 59.13 Mt, with an additional 13.43 Mt in the Inferred 
category for Hilltop (Muller et al., 2012). The average theoretical yield for both seams at a RD of 1.50 
is 80.31% (Muller, 2012). Press releases by Forbes Coal document average monthly RoM production 
at Magdalena of around 86,800 t during 2013-2014. The 2013 financial year sales figures are 
documented on the web site as being 958,000 t. 

Forbes Coal’s Aviemore Colliery is situated some 10 km to the north of the town Dundee. The mine 
footprint area has recently been significantly expanded and now has total Measured and Indicated 
GTIS resources of 41.59 Mt, with an additional 17.78 Mt in the Inferred category (Muller et al., 
2012). The original Aviemore mine area has only a small resource remaining. Coal is mined by 
underground bord and pillar methods on the 1.8-2.0 m thick Bottom Seam.  

Miranda Mineral Holdings Limited Coal Division (Miranda) is an exploration company which has 
focused its attention on the Klip River Coalfield around the Dundee, Glencoe and Dannhauser areas. 
Their Yarl Project lies some 10 km to the north of Dannhauser and is the subject of a Competent 
Person’s Report (CPR) by Peet Meyer (Meyer, 2008), who subdivided the resource into a southern 
Normal Block and northern Uplifted Block. Meyer (2008) provides an average width for the Top 
Seam of 1.18 m, and for the Bottom Seam 0.93 m, for the deeper Normal Block. The average depth 
for the Top Seam given is 141 m and for the Bottom Seam is 159 m. The limited analytical data 
suggests that both the Top and Bottom seams are low Ash bituminous coals. 

Miranda’s Sesikhona Project is located approximately 11 km west of the town of Dannhauser. This 
Project covers four contiguous farms namely Verdriet, Weltevreden, Kliprots and Kliprand, and 
covers an area of 864 ha. It is the first of the group’s exploration projects that will be converted to a 
mining operation. The deposit consists of high grade anthracite of which approximately 40% is 
mineable using surface mining techniques. The DMR granted Miranda a mining right for Sesikhona 
on the 8th of January 2009. Miranda also holds rights to the Burnside and Boshoek projects to the 
west of the town of Glencoe. Here both the Top (1.05-1.25 m) and Bottom (1.4-2 m) seams both 
occur at potentially mineable underground thicknesses. 

Ikwezi Mining’s holds a number of advanced exploration projects, the most advanced of these being 
their 70% held Ntendeka Colliery (Newcastle Phase 1 Project), which has a JORC compliant resource 
of 294 Mt of coal, predominantly on the Top Seam. 

Keaton’s Braakfontein Project area is located some 10 km east-southeast of the centre of the town 
of Newcastle. The complete succession of coal seams as previously documented for the northern 
Klip River Coalfield are present, but the project is focussed on the resources of the Top Seam. 

The southernmost areas of the Klip River Coalfield are also currently the focus of exploration activity, 
with renewed interest being taken in the area surrounding the defunct Platberg Colliery, as well as a 
new intergrated coal and power project in the Colenso area (James, 2014). 

In conclusions, exploration boreholes drilled in the Klip River Coalfield must now number between 
three and four thousand and many properties have also been investigated from surface outcrop by 
means of prospect adits. Currently a number of new exploration programmes are also being 
undertaken, many of which are fairly far advanced and may lead to new mines being opened. 

4.5.1.4. Research history 

Some forty years after the initial discovery North was commissioned to investigate and report on 
coal occurrences in the area. Since North’s (1881) report, a number of papers and memoirs have 
been written concerning Coal in the Dundee area, most notably those of Du Toit (1919), Wybergh 
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(1925), Blignaut et al. (1940) and Blignaut et al. (1952), who prepared a comprehensive report on 
the area for the Department of Mines and Economic Affairs. 

In the mid-1970s a resurgence of exploration interest occurred and it was in this period that Visser 
et al. (1976) published the then most comprehensive account of the area. Subsequent to this report 
four major references occur that have a bearing on the Klip River Coalfield. These are the seminal 
paper on the Klip River Coalfield in the Mineral Deposits of Southern Africa (Bell and Spurr, 1986a), 
Angus Christie’s PhD Thesis (Christie, 1988), a Geological Survey Bulletin on sedimentary models for 
coal formation in the Vryheid Formation of northern Natal (Tavener-Smith et al., 1988) and the 
overview of the Klip River Coalfield in Snyman (1998). 

Wakerman (2003) documents the Milnedale Project on the farm Yarl 2962, presenting an overview 
of the general geology of the area, as well as raw and wash qualities for the target seam. This area 
was subsequently the focus of exploration work by Miranda and others (Meyer, 2008). Various other 
CPR’s pertaining to Miranda’s properties in the Klip River Coalfield are availale on the companies 
website. 

4.5.1.5. Geology 

Unlike in the northern coalfields of the MKB, where palaeotopography played a major role, in the 
Klip River Coalfield (and in the Utrecht and Vryheid coalfields) the basement palaeotopography does 
not impact on coal seam development. This is due to the fact that the basement palaeotopography 
is either levelled out or covered by the filling of the Dwyka Group, Pietermaritzburg and lower 
Vryheid formations, prior to peat formation in middle Vryheid Formation times. 

No exposures of basement rocks occur in the Klip River Coalfield and few boreholes have penetrated 
through the Dwyka Group into basement. From the published geological map (1:250,000 2830 
Dundee map) it is evident that the basement to the Klip River Coalfield should be composed of 
metasedimentary and metavolcanic rocks of the Swazian System, pre-Pongola undifferentiated 
granites, and metasedimentary and volcanic rocks of the Namibian Natal Structural and 
Metamorphic Province.  

Outcrops of the Dwyka Group are rare in the Klip River Coalfield, with only two documented 
occurrences on the 1967 1:50,000 geological sheets 2829B (Elandslaagte) and 2830A (Dundee). In 
the Mazabeku River Valley some 91 m of massive bluish diamictite are exposed, and along the 
Sibindi River some 61 m (Visser et al., 1976). The diamictite is unstratified and has a fine-grained 
siltstone to mudstone matrix. Included clasts range from mm sized grains to boulders of over 1 m in 
diameter and the most common clast types are of pinkish granite and grey gneiss. In the few deep 
boreholes drilled through to the basement it is apparent that the thickness of the Dwyka Group 
varies considerably and that the floor topography is uneven. 

The Dwyka Group is conformably overlain by dark, blue-grey to black, micaceous siltstones and 
mudstones of the Pietermaritzburg Formation (Ecca Group), which in places rests unconformably on 
the basement. As for the Dwyka Group, very few exploration boreholes penetrate the entire 
thickness of the Pietermaritzburg Formation. The limited borehole information available shows a 
maximum thickness for the unit of around 90 m (Visser et al., 1976). The Pietermaritzburg Formation 
shows a general coarsening-upward trend, grading upwards into rhythmically alternating siltstones 
and bioturbated sandstones of the lower part of the Vryheid Formation.  

The total thickness of the Vryheid Formation in the Klip River Coalfield is approximately 310 m. 
Based on the original work of Blignaut and Furter (1940, 1952) Tavener-Smith (1988) and Christie 
(1988) proposed three informal lithostratigraphic subdivisions for the Klip River Coalfield (Fig. 27), 
these being: a Lower Sandstone unit dominated by medium- to coarse-grained sandstones deposited 
by prograding high-constructive lobate or braid deltas; a middle Coal Zone, which varies in thickness 
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between 30-80 m (Tavener-Smith et al., 1988) and has coal seams associated with fluvial deposits; 
and an Upper Zone once again dominated by prograding high-constructive lobate or braid deltas. 
The Lower and Upper zones may also be distinguished in the field by their trace fossil assemblages 
(Stannistreet et al., 1980; Christie, 1988). 

 

Fig. 27. Stratigraphic subdivision of the Klip River Coalfield (after Roberts, 1988). 

The upper sandstone unit is only 15 m thick in the north of the coalfield, but thickens and becomes 
progressively more sandstone rich to the south. The overlying Volksrust Formation in the Klip River 
Coalfield outcrops along the Biggarsberg range, on high ground around Dannhauser, Glencoe, and 
Newcastle, and in small outliers on Mpate Mountain. The Volksrust Formation has a maximum 
measured thickness of 183 m (Steart, 1920). 
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4.5.1.6. Coal seams 

Five seams are known (Fig. 27) and various nomenclatures exist for these seams. We here follow   
Bell and Spurr (1986), with the nomenclature of Christie (1988) in parenthesis. Only two seams, 
known as the Top (or No. 3 Seam) and Bottom (or No. 2 Seam) seams, are usually commercially 
exploited, with some resources also attributable to the Extra Bottom (or No. 1 Seam). These seams 
occur stratigraphically approximately 200 m above the top of the Pietermaritzburg Formation and 
120 m below the base of the Volksrust Formation.  

The Top and Bottom seams are separated by between 0.3-15 m of predominantly coarse-grained to 
pebbly, cross-stratified sandstone, which fines upwards into carbonaceous siltstone and mudstone. 
A number of minor seams are also impersistently developed. 

The Extra-Bottom Seam forms the stratigraphically lowest coal horizon in the coalfield. This seam is 
not usually targeted for economic extraction and as such is rarely intersected in boreholes. Due to 
this fact, its distribution is not as well-understood as that of the overlying, commercially exploitable 
seams. The Extra-Bottom Seam attains its maximum development to the north and northeast of 
Durnacol village. Immediately north of the town of Dannhauser it forms a single seam approximately 
0.60 m thick, whereas elsewhere it may be spilt by a sandstone parting of between 0.50-1.8 m. The 
Seam is only sporadically developed in the area between Dannhauser and Dundee (being complex 
and discontinuous). In the vicinity of Dundee and Wasbank (and immediately to the southeast of 
these towns) the Extra-Bottom Seam is developed as a zone of thin, discontinuous, dull and shaley 
coal, each up to 0.35 m thick, but more normally being less than 0.15 m. This zone is highly 
bioturbated by Siphonichnus traces (Christie, 1988). 

The Bottom Seam is one of the two major economic seams of the Klip River Coalfield. The thickest 
development of this seam occurs in the east central parts of the coalfield, and it thins towards the 
west and southwest, thickening again to the far south in the vicinity of the town of Colenso. This 
seam is also important in that it displays a characteristic and persistent internal macroscopic 
composition which has been used by previous workers as an aid to correlation (Christie, 1988). 
Between Dundee and Elandslaagte, and as far north as Dannhauser, the lower part of the seam 
comprises between 0.18-0.25 m of mixed, mainly bright or bright coal. This is overlain by a clastic 
parting which varies in thickness from 0.10-0.60 m (averaging 0.20 m). This parting is mainly 
comprised of a carbonaceous mudstone capped by a thin sandstone. The upper part of the seam is 
more complex than the lower interval, and in the area between Dundee and Dannhauser it is made 
up of bands of mixed- to mixed, mainly bright coal, separated by a clastic parting. 

Whilst variable, the immediate roof to the Bottom Seam is usually formed by a well-cemented 
medium- to coarse-grained sandstone (previously sometimes referred to as the Gus Sandstone in old 
AAC reports). The remainder of the parting to the floor of the Top Seam is variable in thickness, 
being up to 15 m in places. It is usually formed by a fining upward sequence dominated by massive 
to cross-stratified, coarse-grained sandstone, which in places where rapid abandonment of the 
fluvial system took place, also forms the immediate floor to the Top Seam. Where the abandonment 
phase was more gradual the immediate floor to the Top Seam may also be composed of 
carbonaceous sandstone.  

The Top Seam is the uppermost economic coal within the Klip River Coalfield. It attains its maximum 
thickness of 3.6 m to the northeast of Alcockspruit and Dannhauser (Christie, 1988) and is also 
thicker in the northern reaches of the coalfield. Elsewhere it is usually developed to a thickness of 
between 0.80-3.6 m. Southeast of the Dundee-Vryheid line the seam thickness decreases to 
between 1.2-1.8 m. The Top Seam comprises mainly dull coal. Clastic partings within the seam are 
rare and are only present to any real extent immediately north of the town of Dundee. It should be 
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noted that at places the Bottom Seam merges with the Top Seam to form the main economic 
horizon, which is informally referred to as the “Main” Seam. 

The immediate roof to the Top Seam is variable, but is often formed by a fine- to medium-grained 
sandstone with carbonaceous laminae or else a coarse-grained competent sandstone. Above the 
Top Seam, the succession comprises approximately 12-16 m of sandstone and very coarse sandstone 
to the floor of the Marker Seam (the No. 4 Seam of Christie, 1988). This regionally extensive thin 
seam (rarely thicker than 0.15 m) is referred to as the “Marker” Seam (Fig. 28) due to it being 
invaluable as delineating the uppermost level of the Coal Zone during exploration drilling. This seam 
is often capped by a thin glauconite rich sandstone. 

 

Fig. 28. The “Marker” Seam in the Klip River Coalfield. 

Thinning of the economic seams, both to the north and south of the Klip River Coalfield is evident. In 
the south, beyond Ladysmith and Pomeroy, no commercially exploitable coal seams have been 
intersected. In the northern part of the coalfield the Top Seam is thickest and has been most 
extensively worked, while in the central area, the Bottom Seam is thicker and contains better quality 
coal. Between Newcastle and Pomeroy area the Top Seam is again of greater importance, the 
Bottom Seam not being developed to an exploitable thickness.  

As noted above roof and floor conditions of the coal seams are highly variable, with mudstone, 
siltstone and micaceous sandstone being present. In general, the Top Seam roof is weaker than that 
of the Bottom Seam, as it more usually comprises micaceous sandstones. The coarse-grained, cross-
stratified sandstone that forms the parting between the seams creates a competent roof for the 
Bottom Seam. The floors to both the seams are commonly incompetent fine-grained sandstone or 
micaceous siltstone, or mudstone. No significant floor rolls have been recorded, but irregular roof 
contacts occur, particularly to the Bottom Seam, where they are related to channel scour. 

Gas is a common hazard in all mines in the coalfield and many disasters have resulted from methane 
explosions, most notably at the Old Campbell and St George’s collieries. Gas is most commonly 
found in fissures associated with dyke intrusions. 
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4.5.1.6.1. Coal qualities 

Historically the quality of the coal being produced from the Klip River Coalfield varied considerably 
according to the seam being mined and the proximity of the seam to dolerite intrusions. Bell and 
Spurr (1986a) provide a table of the typical qualities of some coals found in the coalfield. It should 
however be noted that these are not the qualities being mined today, nor those found in the 
majority of new exploration boreholes. 

The Bottom Seam, where it is developed to a mineable thickness, is generally higher in quality than 
the Top Seam. In the central part of the coalfield, where the Bottom Seam has been the most 
extensively mined, the best quality coals are still produced. To the north and south of this area, the 
quality deteriorates and the greater part of the production comes from the Top Seam. The quality of 
the coal in both Top and Bottom seams is quite variable, with changes in rank from bituminous to 
anthracite taking place over tens of metres. A notable feature of the Klip River Coalfield is the 
generally high sulphur and phosphorus content of the coal. 

Generally the coals of the Klip River Coalfield have fairly good washing characteristics in terms of 
reduction of Ash content, while still providing economically acceptable yield values. In certain parts 
of the coalfield (e.g. at Kilbarchan Colliery) it was possible, by a two-stage washing process, to 
produce both a blend coking coal fraction and a middlings thermal coal (Bell and Spurr, 1986a). In 
the central part of the coalfield at the Indumeni, Northfield, and Durban Navigation collieries, the 
Bottom Seam yielded a good coking coal, with an average swelling index (SI) in excess of 6.5 and a 
Roga index exceeding 60. At present no operational collieries in the Klip River Coalfield are 
producing coking coal, but some exploration potential still exist for small coking coal resources. 

For Springlake Colliery coal product qualities provided in the 2007 Mintek report show a CV of 
29.71 MJ/kg, Ash of 11.90%, VM of 4.9%, with a FC of 80.2% and TS of 1.99%. The current typical 
product is a 15% Ash, 8-10% VM, less than 1.8% TS coal (Van der Merwe, 2014). 

At the Magdalena Colliery coal qualities vary per area and per seam, but generally for the 
underground operations the washed coal (at a 1.5 RD) is a medium volatile (16.3% VM) bituminous 
coal with a high CV (29.60 MJ/kg) and a TS of 1.55%. The average theoretical yield for both seams is 
80.31% (Muller et al., 2012). Product qualities (at a 1.5 RD float) for the old Aviemore mine 
underground sections are a FC of 77.76%, Ash of 13.34%, VM of 7.19% and TS of 2.01, at a 74.31% 
theoretical yield. The theoretical yields for a similar product (although with a higher TS of around 
2.41%) are around 60% for the new resource areas at Aviemore (Muller et al., 2012). 

4.5.1.7. Structure and intrusions 

The coal zone has only a gentle dip to the south, usually being less than 3o. Steeper dips are however 
locally encountered in the vicinity of dolerite intrusions. Large scale dsiplacements are fairly 
common, with faulting related to the intrusion of dolerite dikes ans sills and extensional tectonics 
associated with the break-up of Gondwana. The maximum reported displacement in the Klip River 
Coalfield is 137 m, with an uplift of 229 m measured in an area to the north of the coalfield (Blignaut 
et al., 1940). 

Based on petrological and chronological grounds nine types of dolerite sill have been distinguished 
(Blignaut, 1952), the four major ones being, from oldest to youngest, the Zuinguin, Utrecht, Ingogo, 
and Talana dolerites. Feldspar phenocrysts are characteristic of certain sills (e.g. the Talana sill). 
Linear or slightly sinuous dykes are common and appear to be concentrated in certain areas. Two 
weakly developed alignment trends, northwest-southeast and northeast-southwest, are apparent. 
Dykes range in thickness from a few centimeters to tens of metres and may or may not be 
associated with small displacements. Metamorphic effects are confined to local bleaching and 
induration at contacts together with burning or devolatilisation of the coal seam. 
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4.5.2. Utrecht Coalfield 

4.5.2.1. Introduction 

Although coal was first produced from the Utrecht Coalfield in the late 1800s, this coalfield has 
played only a minor role in South Africa’s coal production, and at no time did it ever rival the 
importance of its neighbours, the Klip River and Vryheid coalfields (Fig. 1). Unlike the Klip River and 
Vryheid coalfields, coal from the Utrecht Coalfield (with the exception of coal from the Balgray 
Colliery), and some small coking coal deposits, has no special attributes that make it more 
marketable than other KZN coals. Development of the Utrecht Coalfield has furthermore been 
hampered by numerous problems including the lack of adequate infrastructure, the large amount of 
dolerite intrusions and certain quality problems intrinsic to the coal, most notably the moderately 
high sulphur and phosphorous contents, as well as the low ash fusion temperatures (Spurr et al., 
1986). 

4.5.2.2. Location 

The Utrecht Coalfield covers an area of 500,000 ha within the magisterial districts of Utrecht and 
Paulpietersburg (Spurr et al., 1986). The coalfield extends from the town of Paulpietersburg in the 
north-east, in a south-westerly direction through the Elandsberg and Schurweberg mountain ranges. 
The western limit is defined by a barren, dolerite intruded area, which separates the Utrecht 
Coalfield from the northern portion of the Klip River Coalfield. In the north, where the Utrecht 
Coalfield lies adjacent to the Ermelo Coalfield, the boundary is drawn along the Pongola River and 
the Loskop fault.  

4.5.2.3. Exploration and exploitation history 

According to Spurr et al. (1986) coal was first produced in 1889 and by 1896 the Welgedacht Colliery 
had begun production (Barker, 1999). After the incorporation of Utrecht into Natal (now KZN) in 
1902, coal exploration in the area increased and resulted in 1910 of the opening of the Utrecht 
Colliery. This was an adit mine driven into the hillside to the north of the town of the same name. 
Many other topographic adit mines sprang up but unfortunately the records of many of these small 
hillside adit operations were either never kept or have been lost. 

Exploration work for coking coal was carried out by Iscor between 1939 and 1945, and by the 
Irrigation Department (for the then Geological Survey) between 1952 and 1959 (Sehlke and Van der 
Merwe, 1959). Intense prospecting of the Utrecht Coalfield in the early and middle 1960s led to the 
opening up of collieries such as Balgray, and the Zimbutu and Umgala sections of the Welgedacht 
Exploration Company. Active exploration in the coalfield was continued during the 1970s by 
companies such as Iscor, Trans-Natal, Anglo American, Aloe Minerals, and the Rand London 
Corporation. During this period several new collieries were opened, all of which have since closed 
through depletion of resources or because of geological difficulties. At the end of 1981, there were 
eight collieries operating in this coalfield, four producing anthracite, three thermal (steam) coal, and 
one coking coal. None of these collieries are still active and are therefore included below in Table 12 
documenting the defunct collieries in the Utrecht Coalfield.  
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Colliery Average Product tonnes  
(per annum) 

Coal Type Produced 

Utrecht  235,000 Anthracite 

Dumbe (NNNC) 175,000 Thermal and Coking coal 

Makateeskop (NNNC) 365,000 Thermal coal 

Umgala (underground) 822,000 Thermal coal 

Umgala (surface) 522,000 Thermal coal 

Zimbutu 310,000 Thermal coal 

Balgray 370,000 Anthracite 

Longridge 400,000 Anthracite 

Kempslust 235,000 Coking coal 

Zoetmelksrivier 86 20,000 Anthracite 

Elandsberg Anthracite 84,000 Anthracite 

Boemendaal Consolidated 240,000 Anthracite 

Table 12 Major defunct collieries in the Utrecht Coalfield (from Spurr et al., 1986). NNNC = Northern Natal 

Navigation Collieries. 

From the time when mining started until the early 1960s no more than four or five collieries were 
operative at any one time and the bulk of production came from only three collieries, these being 
the Utrecht Colliery and the two Northern Natal Navigation operations (Dumbe and Makateeskop). 

Two mines, owned by D and G Mining (D and G Anthracite) and the Rand London Corporation 
(Zoetmelk Colliery), were operational in the area in the past, and were contiguous to each other. D 
and G Anthracite were active from 1979-1981 and produced approximately 240,000 product tpa of 
anthracite (Spurr et al., 1986). Exploration on the adjacent Zoetmelksrivier properties was 
undertaken in the 1940s by the Geological Survey of South Africa, with subsequent drilling 
undertaken by Clydesdale (TVL) Collieries Limited in 1964-1965. During the 1980s the Alfred Seam 

 

Fig. 29. Local stratigraphic succession in the historic contour surface mine (Pit A; old D and G workings) on the 
farm Vryheid 159, showing the holes in the lower part of the Alfred Seam left by the auguring operations. 
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was subsequently exploited by open-pit and underground mining on the farms Zoetmelksrivier 86, 
producing approximately 200,000 product tpa of anthracite (Spurr et al., 1986). Due to various 
setbacks and financial constraints the operation was placed under liquidation in 1991. Auger Mining 
(Pty) Limited used the opencast pit high walls left exposed on Vryheid 159 to extract a bulk sample 
from the coal seam using a 0.9 m diameter auger (Fig. 29). This coal was mined to provide 
information on the suitability of the machinery and the marketability of the coal. Zoetmelksrivier 86 
was one of the 18 farms identified in the 2007 Mintek report to have high potential, and to be 
worthy of additional exploration. 

The 1981 sales tonnage derived from the Utrecht Coalfield was just over 3.5 Mt, which possibly 
represents the highest level of production at any time since mining commenced in the 1890s (Spurr 
et al., 1986). The 2010 DMR coal report does not list any active collieries in the Utrecht Coalfield; 
although a number of old discard dumps are currently being re-processed and the senior author is 
aware of one small ope opencast n pit operation supplying a coking coal fraction to Arcellor-Mittal in 
Newcastle (Hill, pers. comm.). Current exploration is targeting fairly small (less than 10 Mt), fairly 
deep (150 m) anthracite resources, and collieries that previously closed with reserves. In mid-2014 a 
private exploration company was targeting the area to the northwest of the coalfield for anthracite 
and export thermal coal, and a number of other small exploration targets had been drilled out in the 
area to the east-northeast of the town of Wakkerstroom. 

4.5.2.4. Research history 

The first geological reference to the Utrecht Coalfield is that of Molengraaf (1898) with the coalfield 
being first mapped geologically by Humphrey (1912). The first authoritative account detailing with 
the coal occurrences is that of Wybergh (1925). Further mapping was undertaken between 1937 and 
1939, which eventually led to the publication by Blignaut et al. (1952). In a Bulletin of the Geological 
Survey of South Africa Selhke and Van der Merwe (1959) provide a record of boreholes 1 to 31 
drilled for the Department of Mines in the Utrecht Area. Following on a review of the coalfield by 
Visser et al. (1976), the most recent geological publication on the coalfield is the compilation of 
Spurr et al. (1986) and the various works of Roberts (1986, 1988b) who undertook the first detailed 
study of the parameters affecting coal distribution. Since this time little academic research has been 
taken on the Utrecht Coalfield. 

4.5.2.5. Geology 

As in the Klip River Coalfield the basement does not play a role on the development, distribution or 
quality of the coal seams. Dwyka Group rocks are absent or thinly developed over most of the 
coalfield, with mudstones and siltstones of the Pietermaritzburg Formation directly overlying the 
basement in most places. As for the Klip River Coalfield, the mudstones and siltstones of the 
Pietermaritzburg Formation coarsen towards the top, grading into delta front and delta plain 
bioturbated sandstones and siltstones of the lower part of the Vryheid Formation (Cadle and 
Hobday, 1977). 

The total thickness of the Vryheid Formation in the area ranges from approximately 300 m in the 
west, to 380 m in the east. The coal zone, including the sedimentary succession from the Coking to 
the Fritz seams (Fig. 30), comprises fluvially dominated, fining-upward, conglomeratic sandstone 
cycles, usually capped by carbonaceous fines or coal. One or more sandstone dominated, regressive 
deltaic depositional sequences overlie the coal zone. 

The overlying Volksrust Formation occurs at surface towards the northern part of the coalfield. Spurr 
et al. (1986) note it as being around 70 m thick in a borehole drilled on Schurvekopje 128, which was 
collared in Beaufort Group rocks. Like elsewhere in KZN this unit is dominated by dark gray siltstones 
and mudstones. 
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4.5.2.6. Coal seams 

From the base up the four economic seams present in the coal zone of the Utrecht Coalfield are the 
Coking, Dundas, Gus and Alfred seams (Fig. 30). Other seams such as the Targas, Rider, Fritz and 
Eland (Fig. 30) are too thin to be mined based on current mining equipment capabilities. 

 

 

Fig. 30. General stratigraphy of the coal zone in the Utrecht Coalfield (from Spurr et al., 1986). Older seam 
terminology is in parenthesis. 

The Coking Seam (Fig. 30) is generally thin, reaching a maximum thickness of 1.5 m at Makateeskop 
(Spurr et al., 1986), but with an average thickness of only 0.9 m. The seam generally comprises good 
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quality, mainly bright, thinly banded coal and includes intraseam partings of sandstone or siltstone 
where it thickens. Roof and floor rocks are normally competent, both being either medium- to 
coarse-grained or medium- to fine-grained sandstones. 

The Dundas Seam (Fig. 30) occurs approximately 15 m above the Coking Seam and has a maximum 
documented thickness of 2.6 m (Spurr et al., 1986). In the west of the Utrecht Coalfield the thickness 
of the Dundas Seam is highly variable and where exploited, the seam attained a thickness of 
approximately 2 m. It generally comprised of an upper mixed dull and bright ply, a central bright 
portion, and a bottom, mixed coal and fines zone. It yielded bituminous coal and was also worked by 
Kangra Holdings at Longridge as a source of export quality anthracite. According to the Mintek 
report (2007) the Dundas Seam accounts for only 8% of the remaining resource tonnage in the 
Utrecht Coalfield. Where mined historically the roof of the Dundas Seam was generally competent, 
being composed of medium-grained sandstone. The floor was incompetent carbonaceous siltstone 
and mudstone, which caused various mining problems. In the east of the coalfield the seam is thin, 
yet the absence of the bottom and poorer top portions improves its quality. Here both the roof and 
floor are of variable competence (Spurr et al., 1986). 

The Gus Seam (Fig. 30) occurs approximately 17 m above the Dundas Seam and was the most 
extensively worked seam of the Utrecht Coalfield. It has a maximum thickness of 3.3 m and attains 
an average thickness of over 1 m in the southern part of the coalfield. To the north the seam splits 
into an Upper and Lower sub-seam, separated by a 3-12 m thick sandstone parting. In the vicinity of 
the town of Utrecht the Gus Seam may be divided into three distinct quality zones or plies. The 
upper part of the seam is mainly dull coal, the central part predominantly bright coal, and the 
bottom part is generally poor quality dull coal, with a consistent siltstone or mudstone parting. The 
seam roof and floor competence is variable, being moderately high in the vicinity of the town of 
Utrecht, to extremely poor at the Kempslust Colliery, where thinly laminated fine-grained sandstone 
formed an extremely incompetent roof (Spurr et al., 1986). According to the Mintek report (2007) 
the Gus Seam accounts for 30% of the remaining resource tonnage in the Utrecht Coalfield, ranking 
it second behind the Alfred Seam. 

The Alfred Seam (Fig. 30) occurs approximately 14 m above the Gus Seam. The seam has a maximum 
thickness of 3.8 m and averages 1.9 m. At the now defunct Umgala and Zimbutu collieries the 
mineable section was some 3 m thick (Spurr et al., 1986). The coal is generally dull to dull-lustrous, 
with interbanded bright coal. In places e.g. at Zoetmelksrivier, the Alfred Seam is a composite seam 
(composed of three separate plies) which ranges in thickness from 1.5 m to 3.0 m. The upper part of 
the seam consists of carbonaceous mudstone and poor quality high ash coal (>40%). The roof to the 
Alfred Seam was generally reported to be moderately competent, except near areas of dolerite dyke 
intrusion. The floor was normally formed by a medium- to coarse-grained sandstone, strong enough 
to support mechanical equipment. Historically the Alfred Seam was not as extensively worked as the 
Gus Seam for reasons of quality. In 1981 however, the bulk of the Utrecht Coalfield production was 
being won from the Alfred Seam (Spurr et al., 1986) as it was worked by both the Zimbutu and 
Umgala collieries, as well as by the Zoetmelksrivier 86 Colliery. The Mintek report (2007) ranks the 
Alfred Seam as the most important in the Utrecht Coalfield with some 54% of the remaining 
resource tonnage attributed to it. 

4.5.2.6.1. Coal qualities 

The quality of the coal varies from high rank, low volatile anthracite to coking coal. Spurr et al. 
(1986) provide a table of typical colliery products, as well as raw borehole sample values, which 
illustrate the range of qualities. They further note that the Ash content is seam specific, with the 
Alfred Seam generally containing over 25% raw Ash, whilst the Gus and Dundas in places contained 
the lowest recorded Ash levels in South African coals, with raw values as low as 5%. As for the Klip 
River Coalfield the distribution of VM is controlled by dolerite distribution, sill thickness and 
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temperature of intrusion. TS in the borehole samples provided in Spurr et al. (1986) range from a 
low of 0.6 for the Gus and Coking seams, to a high of 7.5% for the Alfred Seam on Klipfontein 31. 

4.5.2.7. Structure and intrusions 

Five major dolerite intrusions are recognised within the Utrecht Coalfield (Spurr et al., 1986) and 
dolerite intrusions significantly affect the rank and quality of the coals in the coalfield. They are also 
the main cause of any structural discontinuities and faults, with throws of up to 150 m documented 
where dolerite sills (particularly the Zinguin Sill) intrude through the coal zone (Spurr et al., 1986). 
Sills that occur below the coal zone have a greater metamorphic effect on the coals than sills that 
occur above the coal zone. Of the dolerites of the Utrecht Coalfield the Zuinguin Sill appears to have 
had the lowest temperature of intrusion, as, even with its great thickness, it can approach within 50-
60 m of a seam and have relatively little effect on the coal (Spurr et al., 1986). 

4.5.3. Vryheid Coalfield 

4.5.3.1. Introduction 

Historically the Vryheid Coalfield was an important producer of high quality coking coal and 
anthracite, producing the highest quality anthracite in South Africa. It has however been extensively 
mined and in mid-2014 only one significant mine was producing, as well as some ongoing small scale 
topographic mining and dump reclamation. 

4.5.3.2. Location 

The Vryheid Coalfield is separated from the Utrecht Coalfield by an area that does not preserve coal 
due to Cenozoic to Recent erosion. The coalfield is oval in shape with an east-west long axis. The 
potential coal-bearing area extends from the town of Kingsley in the west to Louwsburg in the east 
and from Nkambule in the north to Gluckstadt in the south. The total area of the coalfield is some 
2500,000 ha, of which approximately 15% is considered to be coal bearing (Bell and Spurr, 1986b). 

4.5.3.3. Exploration and exploitation history 

According to Bell and Spurr (1986b) the earliest recorded commercial exploitation in the Vryheid 
Coalfield was in 1898, with coal being mined from the Hlobane and Zuinguin mountains. Unlike in 
the Dundee area the rail line only reached Vryheid in 1906 and it took the creation of a branch line in 
1908 to open up the development of the Hlobane sector. The expansion of the Vryheid Coalfield 
received a welcome boost in 1913 with the establishment of South Africa’s first coke oven to the 
east of the town of Vryheid. In 1916 Natal Ammonium opened its anthracite mine in the Ngwibi 
Mountain area and by 1923 the coalfield was producing around 2.0 Mtpa (Bell and Spurr, 1986b). 
Although Bell and Spurr (1986b) list 14 active collieries for the Vryheid Coalfield, none of these are 
still being mined and the most important of these are included below as now defunct collieries 
(Table 13). 

Colliery Average RoM tonnes (per month) Coal Type Produced 

Buffalo 12,000 Thermal and Coking coal 

Enyati  40,000 Thermal and Coking coal 

New Tendega 16,000 Thermal and Coking coal 

Hlobane 125,000 Coking coal 

Vrede (Vryheid Coronation) 50,000 Coking coal 

Vryheid Coronation 50,000 Coking coal 

Aloe Anthracite 12,000 Anthracite 

Alpha Anthracite 30,000 Anthracite 

Natal Ammonium 40,000 Anthracite 

Natal Anthracite 55,000 Anthracite 
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Leeuwnek 10,000 Coking coal 

S7L Rietvlei ±20,000 Anthracite 

Tselentis Rietvlei ±45,000 Anthracite 

H.C. Contractors 10,000 Coking coal 

Heritage ±25,000 Thermal coal 

Table 13 Major defunct collieries in the Vryheid Coalfield (from Bell and Spurr, 1986b). 

Of these the largest was the Hlobane Colliery, which began life in 1909, and mined coking coal for its 
own coke batteries. This mine was unfortunately also the site of a gas explosion in 1944 that killed 
57 people, as well as a second some 39 years later to the day, which killed 68, ranking it as the 
second worst coal mining disaster in South Africa after Coalbrook. Heritage Colliery began 
production in 1978 (Bell and Spurr, 1986b) and produced bituminous coal for the local and export 
markets on the Lower Dundas Seam. This defunct mine has recently become the focus of renewed 
exploration and exploitation interest. 

Presently only Keaton’s Vaalkrantz Colliery is operating in the coalfield. This underground mine is 
situated some 14 km east of the town of Vryheid near the southern end of the coalfield. It was 
historically mined, and has been in current production since 2003. At this time a small tonnage of 
anthracite from the Alfred and Gus seams is produced, with the primary product sold into the 
domestic metallurgical market and a secondary product sold into the Brazilian iron ore pelletising 
market. A coal briquetting plant has recently been brought into production on the Property. Keaton 
also owns the Koudelager Project, an advanced drilled out development property to the west of the 
mine. 

Through its acquisition of Riversdale Mining, Rio Tinto has a 74% stake in the Riversdale Anthracite 
Colliery (RAC), an undeveloped anthracite resource in the southern reaches of the Vryheid Coalfield. 
As for the Utrecht Coalfield current exploration is ongoing within the rest of the coalfield, but mostly 
targeting only relatively small tonnages of high quality anthracite. 

4.5.3.4. Research history 

The first geological report was written in the late 1800s (Molengraaff, 1898) and part of the area was 
later mapped by Humphrey (1912, 1913). Several other early contributors to the literature on this 
coalfield include those of Heslop (1917), Du Toit (1919), Steart (1920), Wybergh (1925), and Krige 
and Humphrey (1932). The most comprehensive historical report on the area is that of Blignaut et al. 
(1940). Bell and Spur (1986b) give a general overview of the stratigraphy and sedimentology of the 
lower part of the Karoo Supergroup, including the coal bearing Vryheid Formation. 

4.5.3.5. Geology 

The general stratigraphy of the Vryheid Coalfield is very similar to that of the Utrecht Coalfield. The 
basement to the Vryheid Coalfield is varied, being composed of metasedimentary rocks of the 
Archean Swaziland Supergroup, metaquartzites and lavas of the Mesoarchaean Pongola Supergroup, 
and post-Pongola aged granitic and diabase intrusions. 

The Dwyka Group is well developed, with an average thickness of some 150 m. It is however 
appreciably thicker in pre-Karoo glacial valleys and thinner or absent over pre-Karoo basement 
highs. It is not well known from borehole data but exposures occur to the north of the now defunct 
Vryheid Colliery and in the valley between the Enyati and Thabankulu mountains (Bell and Spurr, 
1986b). Good outcrop sections of the Dwyka Group also occur along the R34 road to Melmoth, and 
are well exposed in the valley en route to the old Denny Dalton gold mine. Like elsewhere in the 
MKB the Dwyka Group is composed of a basal sequence of diamictites, with various basement clasts 
up to 3 m in diameter. This is overlain by a cross-stratified sandstone unit, which grades upwards 
into dark grey siltstones and mudstones (Bell and Spurr, 1986b). 
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The overlying Pietermaritzburg Formation also averages 150 m in thickness (Johnson et al., 1975). It 
is well exposed in the Zuinguin (Zungwini) tunnel (Barker, 2014) and as for the Klip River and Utrecht 
coalfields, is dominated by blue-grey siltstones and mudstones attributed to deposition in deep 
water. The upper contact of this formation is transitional into delta front and delta plain siltstones 
and sandstones of the basal Vryheid Formation, which commonly have abundant trace fossils 
present. The overlying coal bearing succession of the Vryheid Formation ranges in thickness from 
150-220 m and comprises a stacked succession of upward-fining, coal-capped cycles. These cycles 
begin with cross-stratified coarse-grained sandstones, which fine upwards into siltstone, 
carbonaceous mudstone and coal. 

4.5.3.6. Coal seams 

At least nine discrete seams have been identified in the main coal zone. These are identical in name 
and character to those found in the Utrecht Coalfield (Fig. 30), with the addition of the Bonas Seam. 
Several have been exploited historically, with varying degrees of economic success. The greatest 
number of superimposed coal seams worked simultaneously was at the now defunct Enyati Colliery, 
where four seams were extracted (Bell and Spurr, 1986b). The change in thickness and character of 
the seams and of the associated roof and floor strata is one of the most striking features of the 
Vryheid Coalfield. Intra-seam partings are discontinuous over short distances and complicate seam 
correlation and coal seams “shale out” into carbonaceous siltstones and mudstones over short 
distances. 

As for the Utrecht Coalfield, from the base up the most important seams are the Coking, Dundas, 
Gus and Alfred seams. Most minor seams, such as the Targas Seam, which is situated beneath the 
Coking Seam, are only sporadically developed with little lateral extent. The Fritz Seam could possibly 
be economic because of its good quality, bright coal, but it is generally too thin for economic 
extraction. 

The Coking Seam is generally thin (rarely thicker than 1 m) and although it is of a high grade (as it is 
in Utrecht Coalfield) it has not been exploited over the entire coalfield. The roof to the Seam is fairly 
competent, being mainly formed by cross-stratified, medium-grained sandstones. The floor is usually 
composed of fine-grained micaceous sandstones, which grade laterally to grey carbonaceous 
siltstones and mudstones, forming a moderate to poor mining floor (Bell and Spurr, 1986b). 

The overlying Dundas Seam in the Vryheid Coalfield often contains two splits in the northern and 
central parts, namely the Lower and Upper Dundas seams (Bell and Spurr, 1986b). The Lower 
Dundas Seam reaches a maximum thickness of 2.5 m and is composed of interbedded bright and dull 
coal that often has a thin siltstone and sandstone parting in the top portion. Historically both coking 
and thermal coal were produced from this seam. Roof and floor conditions were variable, with the 
floor often comprising a weak micaceous mudstone. Where the Lower Seam split thickens to 1.5 m 
the quality drops. The Upper Dundas Seam is around 1 m thick and historically produced a good 
coking coal. Micaceous siltstone and mudstone generally composed the roof and floor, giving rise to 
incompetent conditions. In the south, the Upper Dundas Seam is often replaced by carbonaceous 
mudstone (Bell and Spurr, 1986b). 

The Gus Seam ranges in thickness from 0.5-2 m. The coal is finely interbedded and bright and 
lustrous, often with a thin sandstone or siltstone lens near the top (Bell and Spurr, 1986b) that 
historically gave rise to extraction problems. No exploitable coal resources exist in the east of the 
coalfield as the coal grades into carbonaceous siltstone and mudstone. Whilst variable in places, in 
general the immediate roof of the Gus Seam is formed by coarse-grained, well-stratified sandstone, 
which forms a competent beam and good roof. The floor however is fairly poor, consisting of fine- to 
medium-grained sandstone often interbedded with thin, siltstone rich bands. 
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The Alfred Seam is of a poorer quality than the other seams. Moderate quality thermal coal and low-
grade coking coal were historically produced and anthracite is currently produced from this seam at 
the Vaalkrantz Colliery. The immediate floor is composed of medium-grained and well-stratified 
sandstone. The roof however is poor, being formed by fine-grained sandstones and carbonaceous 
siltstones. 

4.5.3.6.1. Coal qualities 

Bell and Spurr (1986b) provide a table of typical product qualities for various coal types in the 
Vryheid Coalfield, including raw screened values for bituminous and anthracitic Gus and Alfred. 
These are provided below as Table 14. 

Coal Type Seam CV (MJ/kg) Ash (%) VM (%) IM (%) FC (%) TS (%) P (%) 

Bituminous Gus 28.9 16.5 20.8 2.0 60.7 0.85 - 

Anthracite Gus 31.5 10.7 10.0 1.7 77.6 0,80 0.003 

Lean bituminous Alfred 28.3 18.0 15.0 1.8 65.2 1.0 0.018 

Anthracite Alfred 27.4 18.6 7.5 3.2 70.7 1.2 0.018 

Table 14 Typical coal qualities for the Gus and Alfred seams in the Vryheid Coalfield (from Spurr et al., 1986). 

The Coking Seam is not presently being exploited, but where worked historically, such as at Zuinguin 
Mountain, it was unaffected by dolerite intrusion and was of high grade, yielding a good coking coal, 
commonly with a raw ash content of 7-8%. As for the Utrecht Coalfield the Gus Seam is generally of 
better quality than the Alfred Seam. 

4.5.3.7. Structure and intrusions 

As for the Klip River and Utrecht coalfields, numerous dolerite dykes and sills intrude the Vryheid 
Coalfield and the surface geology is a mix of dolerite exposures and sedimentary rocks of the Vryheid 
Formation. Displacements of up to 150 m are associated with these intrusions. Dolerite dykes may 
negatively affect the coal qualities and preferentially intrude into coal seams at places. 

4.5.4. Nongoma Coalfield 

4.5.4.1. Introduction 

Barker (1999) includes both the Nongoma and Somkele (Somkhele) coalfields as the southern 
extension of the Kangwane-Swaziland (Beaufort Group) coalfields, and whilst they are genetically 
related, they are here treated as separate entities, with the Nongoma covered first as it has both 
Ecca and Beaufort group coals, whilst the Somkhele Coalfield is hosted only in the Beaufort Group. 

Apart from at Rio Tinto’s Zululand Anthracite Colliery (ZAC), the main part of Nongoma Coalfield is 
yet to be exploited on a commercial basis, being mined to date only on an artisanal level. Because of 
its comparatively limited mining and exploration history, the Nongoma Coalfield is one of the most 
poorly understood in South Africa. A number of internal reports are known to exist, but the authors 
do not have access to these. The coalfield is therefore best known from what little that is freely 
available about ZAC, and from various reports and company announcements from when ZYL 
(http://www.zyllimited.com.au/) explored the Mbila Project. 

4.5.4.2. Location 

The Nongoma Coalfield is situated in central KZN and stretches from east of Gluckstadt in the west, 
where it shares a common boundary with the Vryheid Coalfield, to a north-south running boundary 
in the east, where it abuts against the Somkhele Coalfield (Fig. 1). Its southern boundary is formed 
by the Pongola River and it extends northwards to a common boundary with the northern extent of 
the Somkhele Coalfield, which then continues into Swaziland (Fig. 1). 

http://www.zyllimited.com.au/
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4.5.4.3. Exploration and exploitation history 

In 1940 F.A. Stuart first expressed the view that substantial tonnages of anthracite existed at 
Nongoma. Reconnaissance exploration specifically for coking coal was later undertaken in 1949 by 
Fred Furter in the area for Natal Navigation Collieries. Furter concluded that only anthracite would 
be found in the area.  

Exploration interest in Mbila first began in 1958, but unfortunately the records of this work no 
longer exist. Substantial exploration activity occurred on the Mbila Project in the 1970s. In 1974 
Trans-Natal and South Cape Exploration commenced large scale work, which included field mapping, 
98 cored boreholes and six bulk sampling pits. This work was described in an unpublished internal 
report of May 1975 on the prospecting undertaken in Bantu Reserve No. 12, and confirmed the 
presence in the Nongoma/Mbila area of four distinct blocks of coal in the lower Ecca Group, and two 
blocks within the overlying Beaufort Group. 

Between 1970 and 1980, when Ubombo Mines (Trans-Natal) and subsequently BHP Billiton (who 
took over a major stake in Trans-Natal) took over, some 439 boreholes were drilled on the property. 
In February of 1982 a geological report on the Msebe anthracite prospect was undertaken for the 
Mining Corporation Limited. In 1988 a joint venture agreement between Trans-Natal and Southern 
Sphere gave Trans-Natal three leases totalling approximately 24,000 ha, and Southern Sphere a 
further three leases amounting to 63,000 ha. Randcoal Limited and Trans-Natal merged in 1994 to 
form Ingwe (which is now wholly owned by BECSA) and exploration continued under this company. 

Mbila Resources (Pty) Limited (Mbila) became involved in the project in 2004 and in 2006 the first 
independent CPR on the Mbila project was authored by Dawie van Wyk (ZYL Investor update 
presentation). Since this time much exploration has been undertaken on the project area with a 
series of 81 boreholes drilled within the potential opencast portions of the S Block between 2006 
and 2008, and 44 boreholes drilled during 2010 and 2011. In April of 2013 an updated CPR was 
authored on the resources and reserves of the Mbila Mining area (Meyer, 2013; ZYL Investor update 
May 2013). Hatherly and Sexton (2013) provide a combined Measured and Indicated Resource for 
the Mbila Project area (Mbila Ecca Group and Mbila and Msebe Beaufort Group) of 87.42 Mt, with 
an additional 37.52 Mt in the Inferred category. 

Rio Tinto’s Zululand Anthracite Colliery (ZAC) is the only operating mine in the Nongoma Coalfield. 
The colliery complex is located approximately 48 km northeast of Ulundi within the magisterial 
districts of Nongoma and Mahlabatini. Exploration activity in the vicinity of ZAC occurred in 1976 and 
the early 1980s and showed the deposit to be structurally complex and extensively intruded by 
dolerite. ZAC was opened in 1985 to supply low Ash, high carbon anthracite to the domestic and 
export markets. In February 2005 Riversdale Mining announced that it had entered into a 
conditional agreement to acquire 74% in ZAC together with its Black Economic Empowerment (BEE) 
partner. Following the conversion of the mineral rights from old-order to new-order rights in 
December 2005, settlement of the ZAC acquisition was completed. Between this time and 2010 the 
mine was operated by Riversdale and produced high grade anthracite from low seam heights in a 
number of separate structural blocks (Engelbrecht, 2008). This was achieved by underground bord-
and-pillar extraction methods at six separate shafts, as well as some historic surface mining. Mining 
depths vary between 25-270 m. In 2010, when it was taken over by Rio Tinto, ZAC has an output of 
700,000 tpa and is currently the largest producer of high quality anthracite in South Africa. 

4.5.4.4. Research history 

In his seminal works on the geology of Natal and Zululand, Anderson (1901, 1904, 1907) lists 
Nongoma amongst his eight coalfields of coastal Zululand and provides general descriptions of the 
Dwyka and Ecca Group rocks and their included coals. Following on this work, for many years little to 
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no academic interest was taken in this coalfield, and it was only in the early 1980s that research 
refocussed on this coalfield, with Whateley (1980a, b) and Turner et al. (1981) discussing various  
sedimentological aspects of the Nongoma graben. 

Thirion (1982) published the first comprehensive report on the coals of the Nongoma Coalfield. This 
report covered the results of exploration undertaken in the Msebe area of the coalfield, including 19 
cored boreholes. At the time a small (25.0 Mt) high Ash, medium rank anthracite deposit was 
outlined. A 1:10, 000 scale map of the area is provided and the geology of the area is discussed in 
some detail.  

Collinson (1983) published on the structural and sedimentological controls of coal deposition in the 
Nongoma graben, noting that sedimentation was contemporaneous with graben formation. Since 
this time little to no work has been published on the coalfield, other than internal reports and 
conference proceedings relating to ZAC and the Mbila Project area. 

4.5.4.5. Geology 

The Nongoma graben, which hosts the Nongoma Coalfield, developed in response to crustal thinning 
and the first phase of extensional tectonics (rifting) prior to continental break-up and the separation 
of east and west Gondwana (Whateley, 1980a, b; Turner et al., 1981). It is unique in KZN for hosting 
potentially mineable coals in both the Vryheid and Emakwezini formations. Contemporaneous 
sedimentation led to the deposition of a thick sequence of coal-bearing fluvio-deltaic rocks (Fig. 30). 
According to Whateley (1980b) and Turner et al. (1981) the Ecca Group in the Nongoma Graben 
comprises a lower progradational deltaic sequence, a middle fluviatile sequence and an upper 
transgressive deltaic sequence. Detailed descriptions of these sequences and their lithofacies 
components are presented in Whateley (1980b). 

The coalfield may be divided into the Nongoma West and Nongoma East sections (Mintek, 2007) 
each containing distinctly different lithologies. Individual coal bearing areas are separated from each 
other and coal is not continuously developed across the coalfield. Nongoma West is unique and 
displays no characteristics similar to any other coalfield in KZN. Within this area coal is restricted to 
three seams within the Vryheid Formation of the Ecca Group. A generalised stratigraphic profile of 
the Karoo Supergroup fill of the Nongoma Graben in the Masebe area of the Nongoma Coalfield is 
provided below as Figure 31. 

Dwyka Group lithologies occur at the base of the succession and are documented as being 10 m 
thick in the Mbila area (Hatherly and Sexton, 2013). The Pietermaritzburg Formation does not seem 
to occur. The Vryheid Formation is around 100 m thick and is sandstone dominated, becoming 
interbedded with carbonaceous siltstones and mudstones towards the top, near its transition into 
the overlying Volksrust Formation, which like in the rest of KZN is formed by grey to dark grey 
siltstones and mudstones. 

4.5.4.6. Coal seams 

Three coals, the M-1, M and M+1 are recognised in the Ecca Group in the Mbila area (Fig. 31), and 
these have been termed the Lower, Middle and Upper seams in the southern reaches of the 
Nongoma coalfield near ZAC (Barker, 1999). At Mbila the M-1 Seam overlies a weak siltstone floor 
and averages only 0.2 m in thickness. It is only viably extracted using surface mining methods. 
Overlying this seam is a 1 m parting, which in turn is overlain by the M Seam. This seam is the only 
economical seam present in the western area, where it is 1-1.2 m thick. The interburden between 
this seam and the overlying M+1 Seam is formed by siltstone. As with the M-1 Seam, this seam only 
averages 0.2 m. A weak siltstone roof overlies this, followed by a more coherent sandstone roof. 
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Fig. 31. Generalised stratigraphic profile of the Karoo Supergroup fill of the Nongoma Graben in the Masebe 
area, Nongoma Coalfield (from Hatherly and Sexton, 2013). 

 

In the southern reaches of the Nongoma coalfield the Lower Seam is up to 3.28 m thick, the Middle 
Seam up to 5.71 m thick and the Upper Seam 2.44 m (Barker, 1999). At ZAC the seam mined is 
referred to as the Main Seam and is confined to a sandstone dominated unit, with the immediate 
roof to the Main Seam formed by a 11 m thick sandstone. Engelbrecht (2008) notes, that the Main 
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Seam is between 2-2.4 m thick where it is extracted at ZAC, with extraction heights as low as 1.2 m 
having been recorded. Here the coal seams dip at ± 2o to the east. 

In parts of the Nongoma Coalfield an additional two coal seams (referred to as the A1a and A1b) are 
documented as occurring either in the uppermost Volksrust Formation (Fig. 31) or in the lower 
Emakwezeni Formation. They occur approximately 80-100 m above the M+1 and unless closely 
associated with the A2 Seam are not targeted for economic extraction. 

In the eastern sector of the Nongoma Coalfield, coal seams are hosted within the Emakwezini 
Formation (Adelaide Subgroup) of the Beaufort Group. The seams have been grouped into three 
zones (the A, B and C) based on thickness and geological character (Fig. 31). The coals do not form 
discrete seams but are rather interbedded coals and mudstones, more similar in nature to the 
Waterberg Coalfield (Fig. 1) thick interbedded coals than any other KZN seams.  

The lowermost A Zone contains the prominent and thick (up to 4 m) A Seam. In some places this 
seam is split into an A1 and A2 seam, with the latter being the thicker of the two. Separating this 
zone from the overlying B Zone is a sandstone succession and a weak carbonaceous siltstone floor. 
The B Zone is often referred to as the Mining Zone and is characterised by thick seams, however 
with a weak floor and roof. Four seams exist within this zone, namely the B1, B2, B3 and B4 seams, 
with the interburden between the seams being mainly black carbonaceous siltstone and mudstone. 
The B1 Seam averages the greatest thickness of 4 m, with the remaining seams averaging around 
2.5 m. The overlying C Zone coal seams are minor, irregularly spaced and tend to be laterally 
discontinuous. These seams may be locally mineable by opencast means. Stringers above this zone 
are sometimes classified into a fourth, D Zone. 

4.5.4.6.1. Coal qualities 

Thirion (1982) provides raw quality data for the Emakwezini Formation coals in the Msebe area as 
being 24.98% Ash and 7.5% VM. In the Ecca Group the M Seam is generally metallurgical anthracite 
with low phosphorus content. Raw RD’s are around 1.5 and yields of between 71-77% may be 
obtained for a 10% Ash, sub 6% VM, 82-83% FC product. Beaufort Group qualities are not as high. 
Table 15 below provides yields and quality data for the washed coal product specifications at the 
Mbila project area. 

 Ecca Seam Beaufort Seam – 
Primary Product 

Beaufort Seam – 
Secondary Product 

Yield % 64.3 51.2 17.3 

Ash % 9.7 14.9 22.0 

IM % 2.1 1.1 1.0 

VM % 5.1 5.8 5.5 

FC % 83.1 78.2 71.4 

Gross CV MJ/kg 31.58 29.45 25.4 

TS % 1.04 0.65 0.84 

Phosphorous % 0.008 0.012 - 

 
Table 15 Mbila Anthracite Properties (from ZYL ASX Release 29 August, 2012). 

 
4.5.4.7. Structure and intrusions 

The Nongoma Coalfield is fault bounded and there is intense faulting within the coalfield. At Mbila 
major faults strike southwest, sub-parallel to the stratigraphy and repeat the eastwards dipping 
succession. Subsidiary faults follow a variety of directions. Each of the resource blocks is fault 
bounded. In general the strata dip towards the east at angles varying from 10-15o, except where 
dolerite sills may cause a localised steepening of the dip up to 25o. 
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In the south of the coalfield at ZAC the entire area is structurally complex, with faults with throws of 
up to 170 m documented between resource blocks, creating both horst and graben structures 
(Engelbrecht, 2008). Numerous Jurassic aged dolerite intrusions intersect the succession and in 
places also the coal seams. These occur as both massive (90 m thick) sills and smaller transgressive 
off-shoot dykes. At ZAC they occur mainly above the Main Seam and have not negatively affected 
the coal. These dolerite intrusions have burnt the coal beyond economic potential in some other 
parts of the coalfield and a thorough understanding of their occurrence and morphology is critical to 
any exploration project. 

4.5.5. Somkhele Coalfield 

4.5.5.1. Introduction 

The Somkhele (sometimes referred to as Somkele after the spelling of the village from which it gets 
its name) was formerly referred to as the Hlabisa and Lake St. Lucia Bay Coalfield (Anderson, 1901). 
Along with Nongoma, the Somkhele Coalfield is more complex than the other coalfields of KZN, and 
because of its comparatively limited mining history, is not as well-understood (Jeffrey, 2005a). As in 
the Nongoma Coalfield, the coals in the Somkhele Coalfield differ from those in the rest of KZN in 
that they are hosted in the Upper Permian Emakwezini Formation (Adelaide Subgroup) of the 
Beaufort Group (Jourbert, 1994; Bordy and Prevec, 2008). 

4.5.5.2. Location 

Geographically the Somkhele Coalfield covers a 5-8 km wide zone that extends from the Swaziland 
border in the north, to Dukaneni in the south. The southern sector, which hosts the Somkhele Mine, 
is bounded on the eastern side by a line extending north-south through the towns of Somkele, 
Emakwezeni and Heatonville. The western boundary is formed by the eastern boundary of the 
Nongoma Coalfield (Fig. 1) and is faulted. 

4.5.5.3. Exploration and exploitation history 

Coal was first discovered in the Somkhele area in 1892 by a gold prospector, David Brown. This led a 
decade later to the opening of a small mine within the confines of the current Petmin 
(http://www.petmin.co.za/) lease area, with the first coal being exported in 1903. By 1907 some 
20,000 tonnes had been mined via two underground workings on the 400 feet and 600 feet levels 
(Anderson, 1907). Historic records suggest eventual production of some 40,000 tonnes, with the 
mine closing in 1909 due to harsh working conditions and severe outbreaks of malaria. 

Exploration for coal in the area resumed in the 1960s (Marshall, 1966) and since this time 
Johannesburg Consolidated Investments (JCI), Purity Investments (Pty) Limited, Mining Corporation, 
and Afriore South Africa Limited have actively explored the area. JCI went as far as developing a 
small test shaft in the 1970s in part of Somkhele collieries Area 1, which is now Petmin’s North Pit 1. 

Only one colliery, Petmin’s (http://www.petmin.co.za/) Somkhele mine is currently operative in the 
coalfield. The mine is situated 85.0 km northwest of Richards Bay and produces a standard grade, 
low sulphur, and low phosphorus anthracite for both the domestic ferroalloy and the export market. 
According to their website the mine is currently South Africa’s largest producer of metallurgical 
anthracite. Somkhele has a current 20-year LoM at annual production of more than 1.2 Mtpa of 
saleable coal. As of the 30th of June 2012 management estimates were 56.5 Mt of opencast reserve, 
which equated to approximately 30.0 Mt of saleable product. 

Exploration is currently also being undertaken in the Somkhele Coalfield by various junior 
companies, some of which are at an advanced stage and may lead to further mining operations in 
the not too distant future. The most advanced of these is the Fuleni Reserve One Project (Fuleni), 

http://www.petmin.co.za/
http://www.petmin.co.za/
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which is situated approximately 45 km north east of Richards Bay and immediately 5 km south west 
of the Somkhele mine (Tovela, 2011). 

4.5.5.4. Research history 

The earliest documentation on the sedimentology and palaeontology of the Somkhele Coalfield is 
contained in the seminal works of Anderson (1901, 1904, 1907), who describes various aspects of 
the “St. Lucia Bay” coalfield, and who provided various plant fossils to Etheridge at the Sydney 
Musuem of New South Wales (Etheridge, 1903). Most early works dealt with the plant fossils found 
near Somkele (Etheridge, 1903; Seward, 1907; Plumstead, 1970) and few other academic works 
exist, other than the recent work of Bordy and Prevec (2008) and Tovela (2011). 

Bordy and Prevec (2008) provide a brief review of the earlier accounts of the lithology and flora of 
the Emakwezini Formation, as well as descriptions of new plant fossils from the area. The 
sedimentology and environments of deposition of the Emakwezini Formation are covered in detail 
and this work is followed below for the overview of the general geology. 

From a study of 17 boreholes and several outcrop sections on the Fuleni project area, Tovela (2011) 
established a sequence stratigraphic framework for the Emakwezini Formation and discusses the 
controls on cyclicity and provenance of the sedimentary sequence. A useful reference borehole log 
(UR 1348) is presented in this work, as well as a number of east-west and north-south profiles. A full 
description of the various sedimentary facies and units is also provided. 

4.5.5.5. Geology 

The general stratigraphy of KZN as pertains to the Somkhele Coalfield is provided below in Figure 32.  

The general geology of the coal bearing succession is best known from various descriptions available 
for the Somkhele mine area (Snowden, 2009; Bordy and Prevec, 2008) as well as for the Fuleni 
project to the south (Tovela, 2011). The general stratigraphy, sedimentology and palaeontology 
presented below are amalgamated from these publications. 

The Lebombo Basin (which is home to the Somkhele, Swaziland and Kangwane coalfields) is an 
elongated Phanerozoic depression that stretches in a north-south direction from the Limpopo River 
in the north, to Empangeni in the south, for a total of some 700 km. Within the Somkhele Coalfield 
some 600-900 m of Ecca Group and Dwyka Group lithologies underlie the coal bearing Emakwezini 
Formation (Fig. 32). These are not however described here as they are not known in much detail and 
are not relevant to the description of the producing coal seams in the coalfield. 

The Emakwezini Formation, which is the sole representative of the Beaufort Group in the southern 
half of the Lebombo Basin, is restricted to a narrow, faulted, meridional outcrop and subcrop belt in 
Swaziland and north-eastern KZN. The unit is also present in the subsurface along the western side 
of the Lebombo Basin from Empangeni to at least as far north as Komatipoort (Bordy and Prevec, 
2008). It is estimated that the Emakwezini Formation attains a thickness of ±490 m near the village 
of Somkele (Marshall, 1966), although Bordy and Prevec (2008) provide a figure of 570 m, which is 
more similar to the figures of ±550 m to the west of Somkele and at Emakwezini (Watson and 
McGeorge, 1977). Genis (1961) notes that it thins southwards to ±370 m west of Empangeni; 
however, according to Du Preez (1982), the Emakwezini Formation is ±500 m thick in this area. North 
of the Somkele Coalfield the Emakwezini Formation thins dramatically, attaining a thickness of only 
130-150 m in Swaziland (Davies, 1961) and near Komatipoort (Du Toit, 1918). 

Lithologically the Emakwezini Formation is dominated by fossiliferous, grey, greenish-grey and 
brown mudstones, with intercalated coal seams, subordinate white or yellow-white, and medium- to 
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coarse-grained feldspathic sandstones. The coal seams are associated mainly with the mudstones 
and whilst usually less than 1 m thick, they may locally attain thicknesses of up to 15 m. 

 

Fig. 32. Stratigraphic nomenclature of the Karoo Supergroup in the Somkhele Coalfield (from Snowden, 2009). 
It should be noted that certain of the unit names are informal and have not yet been accepted by the South 
African Committee for Stratigraphy (SACS). 

4.5.5.6. Coal seams 

Unlike in the Vryheid Formation hosted coalfields, where up to eight coal seams (or coal zones) are 
recognized within sandstone dominated package, in the Somkhele Coalfield only four coal seams (or 
coal zones) exist (Fig. 33). The seams are named in ascending order the: A (or Lower Seam), B (or 
Main Seam), C (or Upper Seam 1), and D (or Upper Seam 2). At the Somkhele mine all of the seams 
dip at approximately 22° to the southeast (Fig. 34). The B Seam coal zone is the main seam packages 
of economic importance in the Somkhele Coalfield, and is the only seam targeted at the Somkhele 
mine. 
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Fig. 33. Stratigraphy of the Emakwezini Formation at Somkhele mine (from Bordy and Prevec, 2008). 
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Fig. 34. Somkhele opencast mine showing the steep dip of the coal seams and intervening sandstone units. 

The lowermost A Seam occurs at the boundary between the Lower and Middle Emakwezeni 
formations. The B Seam occurs some 50 m above the A Seam within the Middle Emakwezini 
Formation, and some 60 m below the base of the Upper Emakwezini Formation, which hosts the D 
Seam. The C Seam occurs at the contact between the Middle and Upper Emakwezeni formations, 
and following sequence stratigraphic concepts, should rather be included in the Middle Emakwezeni 
Formation at the top of the sedimentary cycle (Tovela, 2011). 

4.5.5.6.1. Coal qualities 

Somkhele metallurgical anthracite typically has a low sulphur content (<1 %), low calcium, and low 
phosphorus contaminants (<0.01 % in seams B1 and B3, and 0.018 – 0.022 % in Seam B2, producing 
a weighted average of 0.015 %). The sized product is therefore a viable reductant for the titanium 
and ferrochrome industries in South Africa, and competes with bituminous coals, chars and cokes as 
a carbon feedstock in the metallurgical industry. The unsized product is used for the pelletizing and 
sintering of iron ore. 

Grobler (2006) provide coal qualities at a 1.6 RD float density for the coal only components of the 
Somkhele Colliery, as he believed this would best approximate the product. Whilst these have now 
changed significantly due to practical mining constraints they are provided below as Table 16. 

Coal Seam FC (%) Ash (%) CV (MJ/kg) IM (%) VM (%) TS (%) P (%) Yield (%) 

B (Main) Seam 72.53 16.54 29.2 1.83 9.1 0.66 0.0199 72.33 

Table 16 Average coal qualities for Somkhele Area 1 at a 1.6 RD float density (after Grobler, 2006). 
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4.5.5.7. Structure and intrusions 

The Somkhele Coalfield is developed on the south-eastern margin of the MKB and forms part of the 
Natal Monocline, a structure associated with the rifting of Gondwana in the Jurassic and Lower 
Cretaceous periods. The strata are inclined fairly consistently eastwards to south-eastwards at 
angles up to 30° (average 15-20°). 

Large areas of the Somkhele Coalfield are affected by dolerite intrusions of Jurassic age and these 
intrusives are probably the single most disruptive aspect of the coalfield (Barker, 1999). The area is 
characterised by a relatively high frequency of dyke intrusions, with cross-cutting dykes in nearly all 
directions present. The dolerites form sub-vertical dykes and bedding parallel sills. In places a major 
sill some 90 m thick occurs, between 110-130 m above the B Seam. Dolerite intrusions can 
negatively influence the coal qualities and disrupt mining. Faults with throws of up to 1300 m are 
documented in the coalfield. 

4.6. Kangwane Coalfield 

4.6.1. Introduction 

Although previously referred to as a sector of the Lebombo Coalfield (a narrow, elongate, north-
south trending tract of coal-bearing rocks which extends several hundred kilometres from Zululand 
in the south, through Swaziland, to Pafuri in the north), the Kangwane (Kangwane, Nkomati or 
Komatipoort) Coalfield is here discussed as a separate entity, although one with certain similarities 
to the Nongoma Coalfield and the coalfields of Swaziland. It has historically been mined to only a 
limited extent and is currently the focus of some acquisition and exploration activity. 

 4.6.2. Location 

The Kangwane Coalfield forms a 72 km long (south-north oriented), 33 km wide area situated in the 
eastern part of the Mpumalanga Province. Geographically it extends from near Komatipoort in the 
north, to the Mananga Border Post at the Swaziland border in the south, and covers an area of some 
210,000 ha. 

4.6.3. Exploration and exploitation history 

Exploration history in the Kangwane Coalfield may be traced back into the early 1900s when four 
boreholes and a trial shaft were sunk to the north of the town of Kangwane. Unfortunately the 
results from this early exploration were not encouraging and no further work was undertaken until 
the 1950s when the Geological Survey (now the Council for Geoscience) mapped the entire area and 
drilled fifteen boreholes, also to the north of the town of Kangwane. 

In the late 1970s the Mining Corporation Limited identified the coal potential of the Nkomazi Region 
(Kamhlushwa) and between 1979 and 1981 explored the area and delineated a substantial 
anthracite resource (Schutte and Ehlers, 1981) from a total of 243 diamond drill holes. During 1975, 
the Geological Survey drilled an additional two boreholes, which were situated only 3.5 km north of 
the Swaziland border. One of these boreholes, which was collared to test the Volksrust Formation 
coals, intersected dolerite and minor sedimentary strata, but no coal. The second borehole 
intersected good quality coals of the Vryheid Formation at a depth exceeding 200 m. 

In 1982, the mineral rights over some 40,000 hectares was registered in the name of Kangwane 
Mineral Exploration (Pty) Limited. This area was sub-divided into three sub-areas, each of which had 
a strike extent of approximately 11 km. These blocks were termed from north to south, the 
Kangwane Anthracite, Nkomati Anthracite and Southern Anthracite blocks. Randel (1989) notes that 
Iscor drilled 43 core boreholes in the Southern Anthracite block. 
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In 1984, Messina Limited entered into an agreement with Kangwane Mineral Exploration to exploit 
the Nkomati Anthracite block on a 60/40 share arrangement and a box-cut was undertaken. The 
planned mining operation was however never realised. Messina Limited’s shareholding in Kangwane 
Mineral Exploration was purchased by the Dania Corporation Limited in June of 1991 and a small 
operation was established, with 50,000 tonnes produced by the end of that year. Various problems 
were however encountered and mining operations halted by 1992. In 1993 Benicon Coal 
Proprietary Limited (Benicon) purchased Nkomati from Dania Corporation and fairly small amounts 
of anthracite (less than 200,000 tpa) were sporadically mined from sequential opencast pits 
between 2003 and 2006 by Benicon. In 2007 Sentula Mining (http://www.sentula.co.za/), who were 
formerly known as Scharrighuisen Mining, bought Benicon. Mining continued at surface and an 
underground operation was established via two adits driven from a box-cut. Operations at the mine 
were placed on care and maintenance at the end of May 2011 pending the resolution of regulatory 
and environmental issues. At the time of the publication of this article Sentula were disposing of this 
asset to a consortium led by Miranda Minerals. 

The central and southern blocks were acquired by ZYL and have recently been the focus of 
exploration work on what they term the Kangwane Central and Kangwane South areas. The 
company has previously documented Joint Ore Reserves Committee (JORC) compliant resources of 
177.7 Mt for the Kangwane Central project, and 99.7 Mt for the Kangwane South project. 

4.6.4. Research history 

Academic work on the Kangwane Coalfield is very limited and the senior author is not aware of any 
masters or doctoral studies that have been undertaken on the sedimentology or coal geology of this 
coalfield. Coal outcrops in this coalfield were first recorded to the north of Kangwane in 1897 by 
Molengraaff (in Snyman, 1998), which were subsequently described by Kynaston in 1906 (noted in 
Wybergh, 1928) as a memoir on the Komatipoort Coalfield. Half a century later Schutte and Ehlers 
(1981) documented the Nkomati Anthracite deposit in an interim report for the CGS, and in an open 
file CGS report Randel (1989) documents the geology and coal potential of the Southern Anthracite 
(Pty) Limited Block. 

4.6.5. Geology 

Representative outcrop sections of the Karoo Supergroup rocks are rare in the area due to the 
extensive weathering and recent alluvial and fluvial cover. The Karoo Supergroup succession in the 
Kangwane Coalfield consists of, from bottom to top, the Dwyka Group (which may be absent in 
places), and the Vryheid and Volksrust formations of the Ecca Group. Locally Beaufort and 
Stormberg Group equivalents may occur, and the succession is capped by the Lebombo Group 
volcanics, which are the temporal equivalent of the Drakensberg Group in the MKB. 

The exploitable coal seams are hosted in the fine- to coarse-grained sandstones and subordinate 
mudstones and siltstones of the Vryheid Formation. These strata strike essentially north-northeast 
south-southwest and dip to the east at between 5-15o, with a more gentle (2o) southerly dip. They 
occur unconformably on either Archaean basement granites or on diamictites of the Dwyka Group. 
This easterly dip is accentuated in places by minor faulting with down-throws to the east. 

4.6.6. Coal seams 

Seam nomenclature is not standardised. Up to 14 coal seams were delineated during the various 
drilling programmes and these are hosted in the Vryheid and Volksrust Formation equivalents. In the 
far northern part of the coalfield the coal seams are found concentrated over a narrow zone with 
subordinate partings, however, these partings tend to thicken south- and eastwards. 

http://www.sentula.co.za/
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Generally there are only four to five discrete coal seams present within the Kangwane Coalfield and 
they are usually relatively thin, but may reach mineable widths in places. Where they reach 
mineable heights up to four thicker, potentially exploitable seams occur, generally towards the 
bottom of the package, which following the ZYL terminology are numbered from the bottom to top, 
the No. 1 to No. 4 seams (Fig. 35). 

 

Fig. 35. General Stratigraphy of the coal bearing succession in the Kangwane Coalfield.  

The No. 1 Seam, which is best known from the northern Nkomati Anthracite block, occurs at the 
bottom of the sedimentary succession, where it lies unconformably on either basement granites or 
Dwyka Group lithologies where present. At the Nkomati mine it is restricted to the Nkomati 
anthracite Matadeni resource area, where it averages approximately 1.1 m in thickness. According 
to Snyman (1998) it may be up to 10 m thick in places. 

At the Nkomati mine area the No. 2 Seam may be split into a No. 2 Lower (No. 2 L) and No. 2 Upper 
(No. 2 U) seam. The No. 2 L (also known as the Main) Seam is the most prominent coal seam and 
ranges from 2.0-8.7 m in thickness. The No. 2U Seam lies approximately ten metres higher in the 
succession than the No. 2 L Seam, with the parting formed by a dark grey mudstone to siltstone. It 
averages 2.4 m in thickness in the Madadeni area, but is more erratic in the Mangweni area where it 
reaches over 6 m, but averages only 0.9 m. It is also more frequently disrupted and devolatilised by 
the overlying dolerite sill. 
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The No. 3 Seam occurs approximately ten metres above the No. 2 U Seam, with the parting between 
the two formed by medium- to coarse-grained sandstone, or interbedded sandstone and mudstone 
unit. The immediate floor to the No. 3 Seam may therefore be either medium-grained sandstone or 
dark grey carbonaceous siltstone. The seam itself is only present in restricted areas, and where 
developed consists of a 1 m thick seam of bright coal. The immediate roof to the No. 3 Seam is 
normally formed by medium- to coarse-grained sandstone, which fines upwards into dark grey 
mixed sandstone and siltstone, and dark grey carbonaceous mudstone. Where present the No. 4 
Seam is usually less than 1 m in thickness and is normally too thin to be considered economic. In the 
ZYL Kangwane southern block area their No. 4 Seam is divided into a No. 4 Lower (No. 4 L) that 
averages 1.43 m in thickness, and a No. 4 Upper (No. 4 U) Seam that averages 1.2 m thickness. 

Aston (2011) provides a different nomenclature for the Vryheid Formation hosted coal seams in 
Sentula’s Nkomati mine area, referring to them as the 3 Seam (Lower or No. 1 Seam), 5/6 Seam 
(Middle or No. 2 Seam), 7 Seam (Upper or No. 3 Seam) and 9 Seam (Top or No. 4 Seam). He further 
notes that they occur over a total thickness of ±70 m of sandstone and that regionally the up to 8 m 
thick Lower Seam, and the Middle Seam are the most prominent, while the Upper and Top seams 
are sporadic and excluded from resource calculations. 

In the northern sector, approximately 300-400 m above the No. 1 Seam, an additional set of thin 
(rarely greater than 2 m in thickness) set of coal seams occur, which are hosted in a mudstone 
dominated succession that is considered to be the Volksrust Formation equivalent. Ashton (2011) 
refers to these as the 2/4, 6 and 8 seams. 

4.6.6.1. Coal quality 

Coal qualities are similar to those in the Somkhele Coalfield, but with a higher Ash content (Barker, 
1999). Snyman (1998) notes that the raw coal normally has an Ash content of between 20-25%, with 
a mean theoretical yield of 67% at a 1.7 RD. The No. 1 Seam is generally of low grade (Ashton, 2011) 
and is not included in reports or resource estimations. Based on the June 2012 CPR (Meyer, 2012) 
ZYL provide the following raw qualities for the combined No. 2, 3, 4L and 4U seams (Table 17). 

FC (%) Ash (%) C V (MJ/kg) VM (%) IM (%) TS (%) Phos. (%) 

57.57 23.61 21.03 6.27 1.60 0.22 0.032 

Table 17 Raw coal qualities for the Kangwane southern sector (from ZYL Investor presentation, June 2012). 
Phos. (%) = percentage phosphorous in coal. 

Washed for a 16% Ash product only the No. 1, No. 2 and No. 4 L seams provide for theoretical yields 
of above 60% (Table 18). 

 Kangwane Anthracite 
Project 

Neighbouring 
Nkomati Anthracite 

Mine 

Ash (%) 16 - 22 20.3 

VM (%) 4.8 – 7.8 7.6 

FC (%) 74.75 – 78.10 75.1 

TS Average (%) 0.52 0.7 

Phos. Content (%) 0.02 – 0.002  

CV (MJ/kg) 27.78 – 28.10 28.4 

Table 18 Washed coal specifications based on exploration to date (from ZYL Investor presentation, June 2011). 
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4.6.7. Structure and intrusions 

As for the Nongoma and Somkhele coalfields, the Kangwane Coalfield is structurally complex due to 
the tectonic control on its formation, as well as late stage extensional tectonics related to the break-
up of Gondwana. Most of the faults which have affected the coal zones appear to run parallel to the 
general strike of the Vryheid Formation sedimentary rocks and the fold axis of the Lebombo 
monocline. It is suggested that the east-west tensional forces, which prevailed during the formation 
of the Lebombo monocline, played a major role in the faulting pattern and also gave rise to the 
graben structures (block faulting). Prominent faults, which have affected the coal horizons, appear 
to be strike faults with vertical throws of up to 100 m. These faults dissect the coal measures into 
various isolated blocks. 

A dominant feature of the geology in the Kangwane Coalfield is the presence of major Jurassic aged 
dolerite dykes and sills, which transgress the sedimentary package in a complex and irregular 
fashion, displacing or eliminating the coal seams. The sills in particular seem to transgress from a 
position below the No. 1 Seam to a level above the No. 4 Seam and may be up to 40 m thick. 
Delineating the areas of sill breakthrough is important as they tend to cause seam displacement and 
burning. A major transgressive dolerite sill outcrops in two geographic areas in the northern part of 
the Sentula Nkomati Mine lease area, known as the Mangweni Block, and numerous sub-vertical 
north-south trending dolerite dykes of variable thickness have been delineated by an aeromagnetic 
survey (Ashton, 2011). For Sentula’s Nkomati mine area the structural interpretation from the 
aeromagnetic data show a vast amount of north-northeast trending dykes of the Rooi Rand Dyke 
Swarm, and the structural complexity in the northern block has discouraged exploitation in that 
region (Ashton, 2011). These dolerite dykes also occasionally intersected the coal seams in the 
underground operations, consequently limiting such operations due to loss of coal and bad ground 
conditions. 

4.7. Springbok Flats Coalfield 

4.7.1. Introduction 

The Springbok Flats Coalfield occurs outside of the boundaries of the MKB and may be considered as 
the first of the northern coalfields to be described here. A number of large exploration projects have 
been undertaken that have shown significant coal resources to occur within the Springbok Flats 
Coalfield, mainly hosted within the Warmbad Formation of the Ecca Group (Fig. 36).  

Whilst being amenable to surface and underground mining, none of these have however been put 
into production, mainly due to the co-occurrence of uranium, and concerns about whether coal 
containing uranium can be burned, or if the uranium can be extracted from the coal. Due to the 
depths of the coal in parts of the coalfield, CBM exploration activity has increased in the past few 
years. 
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Fig. 36. Generalised stratigraphy of the Karoo Supergroup in the Springbok Flats Coalfield showing the position 
of the main coal bearing succession within the Warmbad Formation (after Myburg, 2010). 

4.7.2. Location 

The Springbok Flats Coalfield covers an area of some 800,000 ha within an elongate basin extending 
some 200 km in a northeast-southwest direction and is approximately 50 km wide, in the Limpopo 
Province (Fig. 1). Various authors have split the coalfield into several distinct sub-basins for 
descriptive purposes (Linning et al., 1983; De Jager, 1986). These may be divided into three separate 
coal resource areas, called the Tuinplaats, Warmbaths (or Bela Bela) and Roedtan areas as indicated 
in Figure 37 below. 

4.7.3. Exploration and exploitation history 

Borehole data in the CGS database show that over two thousand boreholes have previously been 
drilled by the Geological Survey, Trans-Natal and Anglo American Exploration.Many of these have 
however been drilled for uranium exploration as well as coal. 

Wagner et al. (1927) compiled one of the earliest reports on the Karoo Supergroup in the Springbok 
Flats Coalfield. Unfortunately the drilling on which this report was based was done with a jumper 
drill and therefore no analyses for the coal were reported. During the thirty year period following 
World War II, the coalfield was drilled extensively by the then Government Geological Survey and 
between 1951 and 1957 the Geological Survey of South Africa drilled an additional 27 boreholes in 
the north-eastern part of the Springbok Flats Coalfield.  A further investigation was conducted by the 
Geological Survey between 1970 and 1973, which delineated a large (nearly 2.5 Gt) coal resource in 
the south-western sector of the coalfield. During this investigation an attempt was made to correlate 
the various coalfields in the then Northern Transvaal (now Limpopo Province) however subsequent 
investigations have shown some of these early correlations to be inaccurate.  
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Fig. 37. Resource areas in the Springbok Flats Basin. 

Trans-Natal embarked on a large-scale coal and uranium exploration program during 1973, which 
covered the entire Springbok Flats Coalfield. The program included the drilling of more than 1400 
boreholes and 300 deflections, but was put on hold in 1982 due to surplus energy capacity in South 
Africa at the time, as well as a collapse in the uranium price. Canyon Springs Investments 82 (Pty) Ltd 
(CSI), that has HolGoun (http://holgoun.co.za/holgoun-thermal-coal-project) as the controlling 
shareholder, has been granted a mining right for coal in respect to an area of some 20,590 ha that 
was previously covered by the exploration undertaken by Trans-Natal. During 2009, an additional 
drilling programme was completed by HolGoun in order to increase the confidence in the resource. 
According to their website, Canyon Springs will initially be developed as a surface mine to produce 
1.5 Mtpa of coal to local power stations and the domestic market, with CV’s ranging from 20-26 
MJ/kg. 

Most recently, the CGS has drilled an additional five boreholes, which are to form the basis of a PhD 
study on the uranium mineralisation and provenance of the sedimentary rocks of the Springbok Flats 
Basin. 

4.7.4. Research history 

Due to the presence of both coal and uranium various aspects of the Springbok Flats Coalfield have 
been covered academically. As part of explanation sheet No. 17 (Springbok Flats) Wagner (1927) 
described various aspects of the Karoo stratigraphy in the north-eastern part of the Springbok Flats 
geographic area, including the first map of the “coal measures shale”. Since this time various 
workers have addressed academic topics and a few of the more important for understanding the 
coal bearing sequence are provided below. 

Visser and Van der Merwe (1959) report on the boreholes drilled by the Geological Survey between 
1951 and 1957 in the north-eastern Springbok Flats Coalfield (Roedtan area). De Jager (1986) 
provides a number of borehole logs for boreholes drilled by the Geological Survey between 1970 and 
1985 and Christie (1989) compiled an internal report for the Geological Survey on the demonstrated 
coal resources of the Springbok Flats Coalfield. This report is however still classified by the CGS and 
was therefore not available for scrutiny. 

http://holgoun.co.za/holgoun-thermal-coal-project


106 
 

4.7.5. Geology 

The basement to the Springbok Flats Coalfield is known from a number of boreholes drilled by Trans-
Natal in the 1970s and is composed of granites and felsites of the BIC as well as older 
metasedimentary rocks of the Pretoria Group (Transvaal Supergroup). Like in some of the coalfields 
of the northern part of the MKB, the nature and palaeotopography of the basement relief plays an 
important role in the quality and distribution of the coal seams, with the coal zone known to pinch-
out in the vicinity of palaeohighs. Both the Molteno Formation (north of Roedtan) and the Clarens 
Formation are known to occur resting directly on basement rocks, thereby effectively limiting the 
extent of the Permian aged coal repository. 

SACS (1980) and Johnson et al. (2006) both recognise the full development of the Karoo Supergroup 
in the Springbok Flats Coalfield, although in a markedly reduced form (Fig. 38). Presently however no 
formal nomenclature or general stratigraphy has been accepted by SACS. 

 

Fig. 38. Variously proposed stratigraphic nomenclature for the Karoo Supergroup in the Springbok Flats 
Coalfield (from Myburg, 2012). 

In several areas of the Springbok Flats, the Dwyka Group forms the basal part of the Karoo 
Supergroup. The thickness of this unit varies from a few cm to a maximum of 34 m and consists 
mainly of poorly sorted diamictites. The diamictites are matrix supported with both argillaceous and 
arenaceous occurring. In certain areas these deposits are stratified and accompanied by rhythmites. 
Extrabasinal clasts range in size from a few mm to as much as 1.5 m in diameter. The pebbles 
comprise fragments of angular to sub-rounded felsite, granite and metaquartzite that originated 
from the pre-Karoo basement in the vicinity. 

The Ecca Group was deposited unconformably on an uneven pre-Karoo basement surface or directly 
onto the Dwyka Group lithologies. The Ecca Group was originally sub-divided into three main 
lithological units, which from the base upwards have variously been called the Lower Coal Bearing 
Unit or Lower Ecca Shale Stage (Du Toit, 1954), the Middle Ecca “Coal Measures”, and the Upper 
Coal Bearing Unit or Upper Ecca Shale Stage. Various authors have split these into various 
formations (the Warmbad, Turfpan and Merinovlakte formations) however Johnson et al. (2006) 
lump them into the Hammanskraal Formation, in which he recognises a Lower and Upper Coal Zone. 
Recent work by Myburg (2012) allows for the Lower and Middle stages to be grouped together 
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under the Vryheid Formation, with the old Upper Ecca stage equating to the Volksrust Formation. 
Where present and documented the average thickness of the Beaufort Group in the Springbok Flats 
Coalfield area varies between 25 m on the farm Roodekoppies 167JR and 35 m on Troya 151JR. 

4.7.6. Coal seams 

From the bottom upwards the coal seams in the Springbok Flats Coalfield have previously been 
referred to as the: Lower Seam, Middle Seam (comprising the Lower Middle Seam, Upper Middle 
Seam and Top Marker Seam), and Upper Seam (Fig. 39). 

 

Fig. 39. Generalised stratigraphic column of the coal bearing succession in the Tuinplaats area of the Springbok 
Flats Coalfield (after Myburg, 2010). 

Two coal horizons, as much as 12 m thick in the deeper parts of the basin, have been reported at 
depths between 10-1200 m below surface. This coal zone thins where it approaches the flanks of 
palaeohighs or where it was eroded away by the overlying Molteno Formation sandstones. Uranium 
is known to occur in coal and carbonaceous mudstones in the upper part of the Coal Zone. 

The Lower Seam is sporadically and poorly developed in the Tuinplaats area and is of no economic 
interest. The overlying Middle Seam constitutes the main coal resource target and may in places be 
split by a carbonaceous mudstone parting (with intercalated thin coal bands) into a Lower Middle 
Seam and Upper Middle Seam. In the northern and western parts of the Tuinplaats area this parting 
thins and the full Middle Seam package is potentially mineable. To the south, where the parting 
thickens, the Lower Middle Seam is the selected potentially economic horizon. 
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4.7.6.1. Coal quality 

Very little publically available information exists regarding the coal qualities in the Springbok Flats 
Coalfield and the general qualities presented in Table 18 below are taken from Linning et al. (1983). 

Seam CV (MJ/kg) Ash (%) VM (%) IM (%) TS (%) 

Upper Middle Seam 23.5 27.8 30.2 2.1 2.86 

Lower Middle Seam 20.6 34.6 26.8 2.5 2.41 

Table 18. Raw coal analyses for the Upper Middle Seam and Lower Middle Seam, Northern Block, Settlers-
Tuinplaats area (from Linning et al., 1983). 

De Jager (1986) notes that the analysis carried out on coarse crushed material (-51 mm) of the coal 
seams in the boreholes drilled by the Geological Survey in the early 1970s, gave raw values of 
between 30-55% Ash, CV’s of sub 22 MJ/kg,  IM of up to 6%, and VM of 28% and higher. He further 
notes that the coal responded well to beneficiation at a RD of 1.65. Sulphur may be highly variable 
and nuggety, with values as high as 4.82% documented for coals on the farm Berlin 643 KR. The 
sulphur does however respond to beneficiation and is below 0.84% for a 1.7 RD float (Linning et al., 
1983). 

4.7.7. Structure and intrusions 

Except for in the proximity of basement highs, where dips of up to 7o are known, the coal seams 
within the Springbok Flats Coalfield have a regional dip of between 1-2o to the north. The coalfield is 
structurally complex due to it being a fault bounded basin and various faults transect and 
compartmentalise the coalfield. 

Few dolerites are documented within the coalfield and according to Linning et al. (2003) no dolerites 
were encountered in any of the Trans-Natal boreholes. A 30 m thick dolerite sill is however known 
around the periphery of the coalfield. 

4.8. Waterberg Coalfield 

4.8.1. Introduction 

The Waterberg Coalfield contains between 40-50% of South Africa’s remaining coal resources and is 
considered to be the last major coal resource in the country. It should therefore be the basis of the 
republic’s power generation industries long-term future as the current mining areas in the MKB 
become depleted over the next 15 years. Only Exxaro are currently extracting any meaningful coal 
from this coalfield, from their Grootegeluk Mine, which is situated some 17 kms west of the town of 
Lephalale. It is the largest opencast coal mine in the world and operates the world’s largest coal 
beneficiation complex, producing some 18.8 Mtpa of coal products from 38.0 Mtpa RoM, using a 
conventional truck and shovel operation. 

The coalfield is also the home to Eskom’s Matimba Power Station, the largest direct dry cooling 
power station in the world. Construction is also currently underway on Medupi, a second dry-cooled, 
base load station in the coalfield. The planned operational life of this new station is 50 years 
(http://www.eskom.co.za/). 

4.8.2. Location 

The Waterberg Coalfield is situated 400 km northwest of Johannesburg in the Limpopo Province (Fig. 
1), immediately north of the Waterberg mountain range. The coalfield strikes approximately 90 km 
east-west and 40 km north-south, and covers an area of some 360,000 ha. It extends from the Palala 
shearzone and basement outcrop in the east, to the Botswanan border in the west. The northern 
boundary is defined by the Melinda Fault Zone, with basement outcrops of the Limpopo Belt 

http://www.eskom.co.za/
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outcropping to the north of this zone. The southern boundary is formed by the Eenzaamheid Fault 
Zone, to the south of which Waterberg Group rocks occur (Fourie et al., 2009). The Daarby Fault 
essentially seperates the deposits within the coalfield into shallow and deep resource areas (Fig. 40).  

 

Fig. 40. Schematic overview of the extent of the Waterberg Coalfield showing the areas of shallow and deep 
coal and the main faults (after Jeffrey, 2005b). 

4.8.3. Exploration and exploitation history 

In March 1920 the intersection of thick coal seams was reported from a water-boring operation on 
the farm Grootegeluk 459LQ, 25 km west of the town of Lephalale (formerly Ellisras) in the Limpopo 
Province. This was the discovery hole for the Waterberg Coalfield, following which a reconnaissance 
study of the area was undertaken by A.L. Du Toit and H.F. Frommurze. A few other boreholes were 
drilled in the vicinity and the coals samples were sent for analysis. The results of this drilling were 
published in 1922 in the South African Journal of Industries (Trevor and Du Toit, 1922). As coal of 
coking quality was of no significance and there was more than sufficient supply for electricity 
generation, the coalfield was largely ignored and no additional boreholes were drilled for the next 
twenty years. 

During the period 1941 to 1952, the Geological Survey Division of the Department of Mines 
determined the extent of the Waterberg Coalfield and the qualities of the coal by means of 
geological mapping, 143 boreholes, and two prospecting shafts (Cillié and Visser, 1945; Cillié, 1951, 
1957). The first extensive drilling subsequent to the Geological Survey work was exploration drilling 
undertaken in 1955 in a joint program by Iscor and Sasol. Samples of coal for coking tests were 
obtained from 22 large diameter boreholes (254 mm core), drilled along a line between the 
prospecting shafts on Grootegeluk 459LQ and Hieromtrent 460LQ during 1959/1960. Sasol 
undertook an additional 120 borehole programme during 1965/66 and since this time Sasol, Anglo 
Coal, Goldfields, and Iscor/Kumba (Exxaro) have over various periods conducted coal exploration 
programmes in the Waterberg Coalfield, which resulted in over 450 boreholes having been collared 
and drilled. 
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In May of 1973 Iscor began an intensive exploration program on six farms originally purchased in 
1957 for a final assessment of the resource and quality of metallurgical coal on these properties. 
Following on a positive feasibility study the Iscor board approved the opening of the Grootegeluk 
mine in February 1974, with the commissioning date set for the 1st of July, 1978 (Alberts, 1982). 
Difficult economic conditions in South Africa in the early 1970s, coupled to Iscor’s commitment to 
other capital projects saw the postponement of the commissioning to the middle of 1980. The coal 
mine and beneficiation plant at Grootegeluk were commissioned on the revised schedule, with the 
first train of metallurgical coal loaded and dispatched to the Vanderbijlpark works on the 23rd of July, 
1980 (Alberts, 1982). 

Iscor was privatised in 1989, and in 2001 unbundled as Kumba Resources and Iscor (which was 
bought by Mittal in 2005). Kumba Resources separated into Kumba Iron Ore and Exxaro Resources in 
2006, with the coal assets owned by Exxaro. According to the Exxaro website 
(http://www.exxaro.com/) of the 18.8 Mtpa production, some 14.8 Mt is thermal coal, which is 
transported directly to Eskom’s Matimba power station via a 7 km conveyor belt. An additional 
1.5 Mtpa of metallurgical coal is sold domestically to the metals and other industries. Grootegeluk 
produces 2.5 Mtpa of semi-soft coking coal, the bulk of which is railed directly to Mittal SA under a 
long-term supply agreement. Approximately 1 Mtpa of semi-soft coking coal and thermal coal is 
exported through the Richards Bay Coal Terminal (RBCT) or sold domestically. Exxaro plan on 
escalating Grootegeluk's production to 36 tpa by 2017. According to Dreyer (2011) at the end of 
2010 Grootegeluk had reserves of 2,986 Mt from a total resource base of 4,887 Mt. Sasol has the 
exploration right to nine properties in the Steenbokpan area, about 10 km west of the Grootegeluk 
Mine. 

Apart from four prospecting shafts, no underground mining has ever been undertaken in the 
Waterberg Coalfield and given the huge open-pit resources it is unlikely that the coalfield will see an 
underground operation in the near future. The potential for CBM production in the deeper eastern 
portion of the Waterberg Coalfield was identified by Anglo Coal in the early 1990s where the seams 
contain higher volumes of CBM gas, which have the potential to be economically exploited. Anglo 
Coal, initially in partnership with Shell, was involved in exploration for CBM and AATC currently holds 
exploration rights for gas (CBM) covering an area of approximately 110,000 ha in the Waterberg 
Coalfield. This is the leading CBM play in South Africa with five test wells that are currently flaring 
methane. Exxaro have also conducted limited CBM investigations with Batepro as a partner. 

A number of juniors have recently entered the coalfield and exploration activity is at an all-time high. 
The most advanced of all of these projects is Resource Generation’s Boikarabelo Project, which 
according to a release on their website (http://resgen.com.au/) should see first production in 2015. 

4.8.4. Research history 

Whilst not the subject of as much academic interest as the Witbank, Highveld and northern KZN 
coalfields, the Waterberg Coalfield has been the focus of considerable academic research research. 
The lack of exposure has however meant that most of this work has been mostly based on either 
borehole cores or opencast pit faces at the Grootegeluk mine. 

The earliest available report documenting the lithological succession of the Waterberg Coalfield 
seems to be a Department of Mines publication by François Alwyn Venter dated 1944/45. The work 
provides records of the first twenty boreholes sunk in the coalfield for the Department of Mines and 
documents the earlier work undertaken in 1920 as well. The work undertaken by the Department of 
Mines during the 1940s and 1950s is well documented in the works of Cillié and Visser (1945), and 
Cillié (1951, 1957). 

http://www.exxaro.com/
http://resgen.com.au/
http://www.google.co.za/search?tbo=p&tbm=bks&q=inauthor:%22Fran%C3%A7ois+Alwyn+Venter%22
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Alberts (1982) documents the conception, planning and establishment of the Grootegeluk mine. In it 
he documents the history of the development of the Waterberg Coalfield and provides the first 
stratigraphic zonation of the coal bearing succession, as well as qualities for a primary and secondary 
product for each of zones 5-11 and raw coal qualities for zones 1-4. The Waterberg Coalfield was not 
addressed as a separate entity in the 1986 Mineral Deposits work, being covered as part of the 
overview of the coal occurrences of the then Transvaal Province (De Jager, 1986), which in turn was 
largely based on his earlier work (De Jager, 1983). Siepker (1986) provides a complete overview of 
the stratigraphy, sedimentology and depositional environments of the Karoo fill of the Ellisras 
(Waterberg) sub-basin, including aspects of the various controls on the accumulation and this work 
provides the most comprehensive academic coverage of the sub-basin to date. 

For the western part of the coalfield Spears et al. (1988) document what they believed to be the first 
recorded occurrence of a tonstein in the coalfields of South Africa and which they placed 
stratigraphically in the Volksrust Formation. 

During a wave of genetic stratigraphy studies of the Karoo Supergroup, Beukes et al. (1991) 
established a genetic stratigraphy for the Waterberg Coalfield built on seven genetic increments of 
sedimentation (GIS1-7). Faure et al. (1996a) provide additional work on the sedimentology and 
palaeoenvironments of the Karoo Supergroup in the Waterberg Coalfield and coupled with organic 
chemistry data, link the facies and sedimentology to aspects of the thermal history. Faure et al. 
(1996b) provide various geochemical data on the mudstones of the Karoo Supergroup in the ‘Ellisras 
Basin’ and use this data to discuss the provencance. 

In early 2008 a high-resolution airborne geophysical survey was completed across the Waterberg 
Coalfield covering the Ellisras sub-basin completely, as well as small parts of the adjacent area. The 
work was described as part of a Coaltech research project (Fourie, 2008). The survey was flown at 
200 m line spacing at an altitude of 80 m and recorded magnetic, total count radiometric, uranium, 
thorium and potassium count data, and points for a digital terrain model (Fourie, 2009) and the data 
was used to re-interpret the structure of the Ellisras sub-basin (Fourie et al., 2009), and showed the 
Karoo Supergroup fill to be twice the thickness originally believed. 

Based on the logs of some 830 boreholes supplied by the CGS, Mtimikulu (2009) undertook a 
provisional basin analysis study of the Waterberg sub-basin. The main aim of this work was to relate 
the formation and fill of the Karoo Supergroup strata to their syn-sedimentary controls. Roux (2011) 
relates the coal wash table data and analysis obtained from exploration drill core with the RoM 
material being processed in Grootegulk’s beneficiation plants. Wagner and Tlotleng (2011) studied 
four RoM coals and density fractioned samples to determine their trace element content and 
showed that the concentrations of most trace elements in the RoM coals exceed the global averages 
and certain global ranges, and generally exceed values reported for other South African coalfields. 

Chabedi (2013) looked at the issue of the deep coal resources within the Waterberg Coalfield and 
notes that the deep eastern part of the coalfield will need to be exploited by multi-seam 
underground mining on a scale never before attempted in South Africa, concluding that the best 
mining method would be total extraction using longwall mining. 

In the most recent work on the coalfield Sullivan et al. (2013) investigated the practical application 
of vectar processed densities from geophysical logs in proving coal seam lateral continuity. This work 
showed that the correlation between measured densities derived and those derived from vectar 
processed derived densities is better than 95%, and that further manipulation of shuch data allows 
for the various coal seams and zones to be correlated to a high degree of certainty. 
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Fig. 41. Stratigraphic column of the geology of the Waterberg Coalfield (modified from Faure et al., 1996). Fm. 
= Formation. 
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4.8.5. Geology 

Geologically the Waterberg Coalfield occurs in the fault-bounded Ellisras sub-basin, considered to be 
an embayment of the much larger Kalahari Basin, which underlies a vast area of Botswana 
(Catuneanu et al., 2005). This sub-basin is variously considered as a half-graben (Fourie et al., 2009) 
or graben structure (Sullivan et al., 2013). The basement consists of Archaean Beit Bridge Complex in 
the north and Proterozoic Waterberg Group in the south (Brandl, 1996). To the northeast and east, 
the Constantia Suite and BIC (Villa Nora and Nebo granites) are developed. A comprehensive 
description of the various floor rocks to the coalfield may be found in Johnson et al. (2006). 

The stratigraphic sequence in this sub-basin therefore consists of a basement of Late 
Palaeoproterozoic metaconglomerates and metaquartzites of the Waterberg Group (Transvaal 
Supergroup), and/or basic rocks of the BIC. These are unconformably overlain by sedimentary rocks 
equivalent of the Dwyka, Ecca, Beaufort and Stormberg groups (Fig. 41) in the MKB. Some authors 
prefer to use different terminology, with the Waterkloof, Wellington, Swartrant, Goedgedacht, 
Grootegeluk, Eendragtpan, Greenwich, Lisbon, Clarens and Letaba formations recognised from 
bottom to top (Brandl, 1996; Johnson et al., 2006). We here follow Beukes et al. (1991) and Faure et 
al. (1996) in using equivalency with the lithostratigraphic nomenclature of the MKB, with the 
substitution of the Grootegeluk Formation as the correlative of the Volksrust Formation. 

The Dwyka Group (Waterkloof and Wellington formations of Brandl, 1996; and GIS1 of Beukes et al., 
1991) represents the base of the Karoo Supergroup and comprises diamictite, conglomerates and 
mudstone. It rests unconformably on Waterberg Group and pre-Waterberg Group basement and 
according to borehole data (Wakerman, 2003) is only well-developed in the southern half of the 
Ellisras sub-basin. It is generally 20-30 m thick, but reaches a maximum thickness of 160 m in the 
southwest and 180 m in the southeast. Where the unit is fully developed, the base comprises a unit 
of diamictites, with dark-grey, horizontally laminated mudstone and siltstone containing sandstone 
lenses and scattered millimetre-sized grains. This unit becomes more siltstone rich and lighter 
coloured towards the top. 

Beukes et al. (1991) describe their GIS 1 (Dwyka Group equivalent) as comprising diamictite, poorly 
sorted conglomerate, granulestone to medium-grained sandstones, laminated mudstones and 
intercalated mudstones and granulestones. These authors attribute these lithologies to ground 
moraine; braided outwash systems, splay deposits; lacustrine varves and turbidites and subaqueous 
debris flows.  

Wakerman (2003) notes that in Eyesizwe’s Waterberg South Project area the best reference section 
of the Dwyka Group lithologies can be observed in the detailed borehole log of GK2 on the farm 
Kleinpan, and from boreholes GK59 and GK28 on the farm Kalkpan. He documents these lithologies 
as being presented by diamictite, carbonaceous siltstone and finely laminated graded mudstone. He 
notes that the diamictite is usually very thinly developed (being less than 60 cm thick), unstratified, 
ungraded and matrix supported. The matrix consists of off-white to greyish white and silt-sized 
grains with partially sub-rounded small pebbles scattered throughout the unit.  Wakerman (2003) 
further notes that the laminated mudstones comprise repetitions of individual units approximately 
4 cm in thickness. Each unit consists of a basal light-coloured siltstone, which forms approximately 
60-80% of the unit. Towards the top, the layers become finer-grained, dark mudstone. The contacts 
between the individual units are sharp. Collectively, units form a sequence up to 6 m thick. The 
carbonaceous off-white laminated siltstones are often associated and inter-laminated with the 
laminated mudstone and diamictite. The siltstone attains a maximum thickness of 10 m. Soft-
sediment deformation is present in the lower part of the carbonaceous siltstone.  Wakerman (2003) 
attributes these lithologies to lacustrine (varved) deposition. 



114 
 

In the Waterberg North Project area the Dwyka Group is composed predominantly of diamictite with 
large pebbles, cobbles and even boulders scattered in off-white to grey coarse arkosic sandstone-
rich matric (Wakerman, 2003). The pebbles consist mainly of quartz and are angular to sub-rounded. 
The pebbles size decreases towards the top of the unit (Siepker, 1986b). 

Pietermaritzburg Formation equivalent strata overlie the Dwyka Group (De Jager, 1986; Beukes et 
al., 1991). Beukes et al. (1991) document this as their GIS 2, which they felt represented a coarsening 
upward sequence of prodelta siltstone with interbedded glaciogenic debris flow and debris rain 
deposits, delta front coarse sandstones; and delta plain coarse- to very coarse-grained sandstone 
channel deposits, and sandstone/siltstone splay deposits. 

The Vryheid Formation equivalents in the Waterberg Coalfield are dominated by sandstones and 
predominantly dull seams of coal (Fig. 42). The Ecca Group coals of the Waterberg Coalfield were 
originally divided into zones 1, 2, 3, 4A, 4, 5A, 5B, 5C, 6A, 6B, 6C and 7, numbered from the bottom 
up (De Jager, 1976). Most subsequent authors have accepted the numbering for the seams in the 
Vryheid Formation (the predominantly dull coal seams 1, 2, 3, 4A and 4); however the coals in the 
overlying Grootegeluk Formation have generally been named as zones 5-11. 

The Vryheid Formation in the Waterberg Coalfield is approximately 55 m thick, and like its 
counterpart in the Witbank and Highveld coalfields, is dominated by coarse sandstones, 
carbonaceous mudstones and coal seams that range in thickness from 1-6 m thick. This lower part of 
the succession is typical of the multiple seam deposits as defined by SANS 10320 (2004). 

Beukes et al. (1991) note that the succession from the sandy upper part of GIS 2 to the top of GIS 5 is 
the lithological equivalent to the Vryheid Formation of the MKB. The coal-bearing strata of the 
Vryheid Formation were formed in a shallow east-west trough with the inflow of sediments from an 
east-northeast direction. 

The overlying Grootegeluk Formation of the Waterberg Coalfield is between 70-90 m thick and 
consists of relatively thin bright coal seams interbedded with numerous mudstone and 
carbonaceous mudstone layers. This is the equivalent of GIS 6 of Beukes et al. (1991), which these 
authors equate to the Volksrust Formation in the MKB. It should be noted that Dreyer (2011) reverts 
to using the Volksrust Formation for the sedimentary succession containing the upper coal zones. 
The coal and mudstone occur in seven identifiable cyclical repetitions of mudstone and coal 
sequences, which, based mainly on the work of the geologists at Grootegeluk Coal Mine, have been 
numbered as coal zones 5-11 (De Jager, 1976; Alberts, 1982; Botha, 1984). The coal deposits of the 
Grootegeluk Formation in the Waterberg Coalfield are typical of the thick interbedded seam deposit 
type as defined in SANS 10320 (2004). The vitrinite reflection of the Grootegeluk Formation (mean 
0.72%) and palynological evidence indicate that the unit was subjected to post depositional 
temperatures of ±100°C (Dreyer, 2011). 

In the northern part of the Ellisras sub-basin the Goedgedacht Formation occurs between the 
Vryheid and Grootegeluk formations, and consists of mudstone, gritty mudstone and subordinate 
sandstone with only thin sub-economic coal seams present (Snyman, 1998). Beaufort Group 
equivalent strata however usually overly the Grootegeluk Formation. Beukes et al. (1991) describe 
this unit as their GIS 7 and note that is comprised dominantly of medium to light grey massive 
mudstones. Stormberg and Drakensberg group equivalent rocks also occur at surface within the 
coalfield. Whilst these units form the overburden and roof rocks to the coal seams they do not 
however contain any coals, and as such are not described here. For detailed descriptions of these 
lithologies the interested reader is referred to the works of Wakerman (2003), Johnson et al. (2006) 
and Bordy et al. (2010). 
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Fig. 42. Stratigraphic column of the geology of the coal-bearing sequences of the Waterberg Coalfield showing 
the nature and coal qualities of the 11 coal zones (modified from Botha, 1984). 

4.8.6. Coal seams 

Unlike in the coalfields of the Witbank, Highveld and Ermelo coalfields, where five coal seams are 
present, and are restricted to the Vryheid Formation, in the Waterberg Coalfield eleven coal zones 
are identified, four of which occur in the Vryheid Formation, and the remaining seven in the 
overlying Grootegeluk Formation (Fig. 42). 
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4.8.6.1. Coal qualities 

Little published information exists regarding the overall coal qualities of the Waterberg Coalfield, 
although it is known that the coal rank increases steadily from west to east (De Jager, 1986). It is 
usually assumed that the qualities encountered at Grootegeluk Coal Mine are potentially 
representative of the entire coalfield, and these have been presented in the works of Alberts (1982) 
and Faure et al. (1996) and in various conference presentations, including one of the most recent by 
Dreyer (2011). 

In the Waterberg Coalfield there is no noticeable increase in rank with increasing depth. The air 
dried volatile content of the coal remains at 35-36% from the sub-outcrop to a depth of 400 m 
(Dreyer, 2011). The swelling indices (which show the potential of the semi-soft coking coal) are 
however strongly dependant on depth of weathering 

Zones 1 to 4 consist mostly of dull coal, with brighter coal at the base of each seam. There is 
however a large variation of coal qualities and thicknesses due to lateral facies changes. At 
Grootegeluk the Zone 1 coal is described as being a 1.55 m thick seam of dull coal with very few 
bright laminae and some thin mudstone intercalations (Alberts, 1982; Dreyer, 2011). Zone 2 is 
3.73 m thick and described as a dull coal, with the note that the lower 2 m yields lower ash coal. At 
7.82 m Zone 3 is the thickest. It is described as a dull coal with bright laminae in the lower 1.8 m that 
yields a better lower Ash coal, which has some coking properties. Zone 4 is a composite zone (4A, 
interbeds and 4) around 10 m thick. Zone 4A is described as a dull coal with a few bright laminae and 
Zone 4 as a dull, heavy coal, with bright coal laminae in the lower 2 m that yields a coking fraction. In 
general however the lower zones at the Grootegeluk mine have very little coking coal potential. 
Zones 1 and 2 do however have a low phosphorous content and coal from these zones can be used 
in the metallurgical industry. The ash content of the four lower seams increases upward from 
approximately 20% to 45% and these lowermost coals are used primarily as a steam coal in the 
Matimba power station, without any beneficiation. The same zones can also be beneficiated to a 
15% Ash content suitable as metallurgical coal for different markets (e.g. corex and char) depending 
on the phosphorous content. In the case of Coal Zones 2 and 3, in-seam selective mining is also 
possible to extract the basal portions of these coal zones with their lower phosphorous content. 

The qualities in the upper seven zones (zones 5-11) are similar to one another, except for Zone 6, 
which can only be used for the production of thermal coal which has higher phosphorus content. 
Due to the high ash content of the bright coal from coal zones 5-11 all the coal must be beneficiated 
(washed). The primary wash of these zones yields an excellent blend semi-soft coking coal of around 
10.3% ash content. The secondary wash produces a middlings product of approximately 35% ash 
content, which is suitable for power generation. 

4.8.7. Structure and intrusions 

The structural history of the Ellisras sub-basin has been well summarised by Mtimkulu (2009) and 
Fourie et al. (2009). The Waterberg Coalfield is heavily faulted, with major faults striking east-west 
and a conjugate set striking northwest-southeast (Snyman, 1998). The Eenzaamheid, Zoetfontein 
and Daarby faults (Fig. 40) control the regional fault pattern. The Daarby fault is the most significant 
fault structure and has caused displacements ranging from 240-300 m and effectively separates the 
coalfield into a shallow, potential opencast mine-able, and deep underground area (Fig. 40). It 
affects this by the juxtaposition of Ecca Group lithologies and the Clarens Formation, such that west 
of the fault strata of the Grootegeluk Formation are exposed at surface, whereas to the east of the 
fault the surface geology is dominated by rocks of the Stormberg Group. 
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As for the Springbok Flats Coalfield, but unlike the majority of the coalfields of South Africa, dolerite 
intrusions seem to be rare in the Waterberg Coalfield, with no sills yet reported and only a few 
narrow dykes dcumented. 

4.9. Soutpansberg Coalfield (Mopane, Tshipise and Pafuri sub-basins) 

4.9.1. Introduction 

Sometimes referred to as the forgotten basin (Sparrow, 2012), with only one active colliery, which is 
winding down, the Soutpansberg Coalfield has recently become the focus of significant new 
exploration for both thermal and coking coal and CBM, with a number of new mines planned in the 
near future. 

The Soutpansberg Coalfield may be sub-divided into three separate smaller sub-basins (sometime 
referred to as coalfields) namely the Pafuri (Eastern Soutpansberg), Tshipise (Central Soutpansberg) 
and Mopane (Western Soutpansberg) sub-basins (Fig. 1). Barker (1999) refers to these three sub-
basins as the Venda-Pafuri, Mutamba and Mabelebele coalfields. Sparrow (2012) defines seven sub-
basins for the Soutpansberg Coalfield, from west to east these being the Waterpoort, Mopane, Sand 
River, Mphefu, Tshipise South, Tshipise North and Pafuri sub-basins, however at present we have 
retained only the three better known sub-basins for the descriptions that follow. 

4.9.2. Location 

The Soutpansberg Coalfield is situated to the north of the Soutpansberg Mountain Range in the 
Limpopo Province, extending for ± 190 km from Waterpoort in the west, to the Kruger National Park 
in the east (Brandl, 1981). It lies between latitudes 22o S and 23o S and longitudes 28o E and 32oE 
(Malaza, 2013). 

4.9.3. Exploration and exploitation history 

The coalfield has been known since the late 1800s and commercial mining began in 1911 when the 
Messina Transvaal Copper Company developed the Lilliput Colliery to supply coal to the copper 
smelter in Messina. This mine was situated on the farm Cavan, and mining was terminated in 1918, 
leaving an inclined shaft system. The coal was sampled by the Fuels Research Foundation in 1947 
and the report indicated that coal of "significant coking propensity" existed (Sparrow, 2012). 

From the late 1950s to the late 1970s, the Tshipise Basin was fairly extensively prospected for coal 
by the Department of Mines of the Geological Survey (now the CGS) and Iscor (de Villiers, 1959; De 
Jager, 1976). During the 1970s to 1980s, Iscor undertook a detailed exploration of the whole of the 
Soutpansberg Coalfield, drilling in excess of 2000 boreholes.  In 1978/79, Iscor developed the Fripp 
box cut to assess the coking coal resources. This project was however later shelved in favour of the 
Tshikondeni project.  

Iscor further prepared a pre-feasibility document in 1983 for the Jutland project in the Mopane sub-
basin for the underground mining of coking coal on the Middle Lower and Bottom Upper coal 
horizons. Trans-Natal was also active in the Mopane sub-basin, drilling in the region of 200 
boreholes. Although the logs were submitted to the CGS, the coordinates were corrupted and it is 
not clear exactly where these boreholes were collared. 

The underground Tshikondeni mine is situated on the north eastern edge of the Coalfield, some 140 
km east of the town of Musina in Limpopo Province. It began operations in 1984 and is the only 
colliery currently operating in the Coalfield. It is currently owned by Arcellor Mittal 
(http://www.arcelormittalsa.com/) and operated under contract by Exxaro. The mine produces 
316,000 tpa of premium hard coking coal (from between 500,000 and 580,000 tpa RoM) via 

http://www.arcelormittalsa.com/
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conventional board and pillar extraction methods. The coal is accessed by four surface declines, and 
is processed through a single coal preparation plant with an operating capacity of 75,000 tpm. The 
coal yields high-grade coking coal for ArcelorMittal’s steel mill in Vanderbijlpark. The mine is 
however near the end of its life with production is scheduled to stop in 2015. 

In 2002, Rio Tinto and Kwezi initiated an exploration project around the town of Waterpoort (the 
Chapudi Project) and drilled in excess of 140 boreholes (Sparrow, 2012). The Iscor dataset pertaining 
to the Tshipise sub-basin (containing information from 1250 boreholes) was purchased by Coal of 
Africa Limited (http://www.coalofafrica.com/) (CoAL) in 2007. CoAL started exploration drilling on 
the farm Fripp in 2007 and by February of 2010 a total of 144 boreholes had been completed, 
including 24 large diameter boreholes for bulk sampling purposes. To date CoAL has completed 
some 198 boreholes, a large-scale exploration sample pit, and various other exploration techniques. 

CoAL’s Makhado Project is now an advanced feasibility-stage project with a 344.8 Mt MTIS resource. 
This resource is to be extracted by opencast methods and should allow for a 16 year LoM at an 
extraction rate of 12.6 Mtpa RoM coal (yielding 2.3 Mtpa) hard coking coal and 3.2 Mtpa thermal 
coal for domestic or export markets. 

4.9.4. Research history 

The most detailed published work directly concerning the geology of the Soutpansberg Coalfield are 
those of McCourt and Brandl (1980), Brandl (1981) and Van de Berg (1980). This work was followed 
by the likes of De Jager (1986), Sullivan (1995) and Thabo and Sullivan (2000). The descriptions which 
follow utilise these works. Bordy (2006) notes, that the work of McCourt and Brandl (1980) was 
based on limited borehole and outcrop data from the eastern extreme (Pafuri sub-basin) and that it 
may not be applicable to the basin as a whole. 

4.9.5. Geology 

Like the other northern coalfields the Soutpansberg Coalfield is preserved within various down-
faulted, half-grabens, at the north-eastern edge of the Kaapvaal Craton (Fig. 43). McCourt and 
Brandl (1980) recognised that the location and shape of the Soutpansberg Coalfield were controlled 
by east-northwest and west-southwest orientated faults that follow the trend of the Limpopo 
Mobile Belt. The coal-bearing Karoo Supergroup rocks dip between 3-20° northwards, terminating 
against east-west trending strike faults on the northern margin (Brandl, 1981). Even within a 
particular sub-basin, coal-bearing strata may occur in separate areas (termed Valleys by Telfer and 
Njowa, 2012) (Fig. 43). 

 

Fig. 43. Schematic cross section through the greater Soutpansberg Coalfield (from Sparrow, 2012). 

http://www.coalofafrica.com/
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The Karoo aged rocks, containing the Soutpansberg Coalfield, overly the ±1850 Ma Soutpansberg 
Group (Malaza, 2013) and rock of the Beit Bridge Complex. The full stratigraphy of the Karoo 
Supergroup is preserved, although in a much reduced form from than in the MKB. The descriptions 
and formational nomenclature below follows that of McCourt and Brandl (1980), and Brandl (1981). 
It should be pointed out however that Bordy (2006) notes that detailed geological studies by van der 
Berg (1980) in the Soutpansberg Coalfield seem to indicate that the applicability of this 
lithostratigraphic nomenclature is limited, as the various formations are not mappable in the all 
parts of the coalfield. For this reason she suggested a practical informal subdivision, which places all 
the lower Karoo Supergroup strata (below the regionally traceable Fripp Formation) in the Basal Unit 
(which would include the Tshidzi, Madzaringwe and Mikambeni formations as described below). 

Like elsewhere in South Africa the basal part of the Karoo succession is formed by Dwyka Group 
equivalents. In the Soutpansberg Coalfield these are referred to as the Tshidzi Formation and occur 
as a unit between 5-20 m in thickness. It is composed of diamictite and coarse-grained sandstone. 
According to McCourt and Brandl (1980) these deposits reflect glacial and fluvioglacial depositional 
environments. The upper contact of the Tshidzi Formation is currently defined as being gradational 
into the overlying Madzaringwe Formation, which forms the basal part of the Ecca Group in the 
coalfield. 

The Madzaringwe Formation comprises up to 200 m of alternating feldspathic, often cross-bedded 
sandstone, siltstone and shale containing coal seams (Brandl, 1981). The basal part of the Formation 
consists of a 30 m thick unit of carbonaceous siltstone and mudstone, shaly coal and thin coal seams. 
This unit is overlain by a succession of alternating layers of coal, grey black siltstone and 
carbonaceous mudstone, and very fine- to medium-grained sandstone. In the upper third of the 
Formation prominent coal seams occur interlayered with carbonaceous mudstone (Malaza, 2013). 

The Madzaringwe Formation is overlain by the Mikambeni Formation, which attains a thickness of 
between 20-150 m, and is composed predominantly of medium to dark grey siltstone, minor 
carbonaceous mudstone and khaki-red to grey sandstone. Scattered thin coal seams occur 
throughout.  

The overlying Fripp Formation is the subject of some debate considering its equivalency in the MKB. 
McCourt and Brandl (1980) equate it to the lowermost Beaufort Group, a correlation followed by 
Malaza (2013). According to van der Berg (1980) the Fripp Formation should be correlated with the 
Molteno Formation, both on lithological and palaeontological grounds. The Fripp Formation is up to 
110 m thick and comprises medium- to coarse-grained feldspathic sandstones with thin pebble 
layers. The sandstone is interbedded with thin siltstone and mudstone and trough cross-
stratification is present. The sandstones were probably deposited by braided river systems flowing 
towards the northwest and west (McCourt and Brandl, 1980). 

The overlying Solitude Formation generally consists of purple to grey mudstones with a maximum 
thickness of approximately 170 m. At the type locality on the farm Solitude 30 m of grey shale is 
overlain by 80 m of alternating purple and grey mudstone with three intercalated siltstone units. In 
other parts of the basin, the lower unit of the Formation may consist of black shale with occasional 
bands of bright coal and greenish or reddish fine- to coarse-grained sandstone up to 5 m thick 
(Johnson et al., 2006). The Formation represents the overbank deposits of meandering rivers with 
extensive floodplains. The dark shale and associated coals accumulated in flood basins and marshes 
under reducing conditions (Brandl and McCourt, 1980). 

The Klopperfontein Formation disconformably overlies the uppermost Solitude Formation, with a 
prominent erosional surface in places. The Formation attains a maximum thickness of 20 m (Brandl, 
2002) and comprises medium- to coarse-grained, cross-stratified, feldspathic sandstones. According 
to Brandl and McCourt (1980) deposition was from braided river channels. This unit has previously 
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been equated to the Late Triassic Molteno Formation in the MKB, but this assignation is obviously 
questionable if the work of van der Berg (1980) is accepted. 

The overlying Bosbokpoort Formation comprises up to 100 m of mainly red mudstones to very fine-
grained sandstones. The red colours and abundance of concretions suggest deposition on the 
floodplains of meandering rivers under dry oxidising conditions. This unit is generally equated to the 
Elliot Formation in the MKB and is overlain by typical Clarens Formation sandstone. 

The Clarens Formation has been divided into the Red Sandstone Member and Tshipise Member. The 
Red Member forms an up to 150 m thick unit of very fine to fine-grained light red sandstone, with 
occasional irregular patches and thin cream-coloured sandstone layers. The Tshipise Member 
consists of fine-grained, well sorted, white or cream-coloured sandstone (Brandl, 1981). The Clarens 
Formation is considered to be aeolian, but water-lain deposits may be present in the lower part of 
the succession (Brandl and McCourt, 1980). The Clarens Formation is overlain by volcanics of the 
Letaba and Jozini formations. The Letaba Formation is composed of basaltic lava with subordinate 
andesite, and rhyolite flows and tuffs. The Jozini Formation is composed of pink to reddish rhyolite 
(Brandl, 1981). 

4.9.6. Coal seams 

The nature of the coal deposits gradually changes from a multi-seam coal-mudstone association, 
approximately 40 m thick in the west and comprising up to seven discrete coal seams (Mopane 
Coalfield in the Waterpoort area), to two individual seams in the east (Pafuri Coalfield in the 
Tshikondeni area), with a 3 m thick Upper Seam and a 2 m thick Lower Seam approximately 100 m 
deeper. The transition from multiseam to discrete is very sudden adjacent to the farm Gaandrik 
162MT, with argillaceous rocks to the west and arenaceous lithologies to the east (Sparrow, pers. 
comm.). 

4.9.6.1. Coal qualities 

Where developed, the coal is generally bright and high in vitrinite and the coal rank increases 
towards the east, as does the coke strength after reaction and yield (Sparrow, 2012). Dull coal occurs 
locally at the base of the multi-seam coal-mudstone association in the Waterpoort area as well as in 
the upper part of the lower seam at Tshikondeni. The volatile content in the west (Waterpoort) is 
approximately 35% which decreases to 25% in the east (Tshikondeni). 

4.9.7. Structure and intrusions 

The region is faulted, becoming more severe in the far east, and has throws of between 60 m and 
200 m, leading to the formation of horst and graben structures. A further subordinate set of faults, 
orientated at right angles to that mentioned above, subdivides the eastern portion of the 
Soutpansberg Coalfield region into a set of irregular blocks. Brandl (1981) documents three notable 
faults within the Soutpansberg Coalfield, these being the Tshipise, Klein Tshipise and Bosbokpoort 
faults. All the faults which affect the coalfield appear to be normal and probably of post-Karoo age 
(Brandl, 1981). 

4.9.8. Sub-basins 

4.9.8.1. Mopane sub-basin 

The Mopane sub-basin is the most westerly of the three recognised depositories, being situated 
northwest of Waterpoort. The area is 140 km from east to west and is 26 km from north to south at 
its widest. There has never been any commercial mining within the Mopane Coalfield, and the fill of 
the sub-basin is best known from the Chapudi Project (Bordy, 2006) and the reader interested in a 
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detailed description of this succession is referred to this paper. In 2008 this project made headlines 
when Rio Tinto released an open-pit Measured and Indicated Resource of 1.04 Gt. 

The Mopane Coalfield comprises a number of east-west trending half-graben structures in which 
upper Ecca Group sedimentary rocks are preserved. The geology is generally broken up into fault 
blocks by a number of parallel strike faults (Telfer and Njowa, 2012). Rocks of the Karoo Supergroup 
strike east-west and dip towards the north at angles of up to 12o. The area has been broken up into 
fault blocks into a number of strike faults. South of the area the Karoo rocks are absent due to uplift 
and erosion, leaving Beit Bridge Complex and Waterberg Group rocks exposed at surface. 

Bordy (2006) notes that three of the boreholes in her study intersected the basal Tshidzi Formation, 
which in the Chapudi Project area comprises mostly clast- and matrix-supported breccias and 
conglomerates, with a maximum recorded thickness of 4.62 m. Note should be made however that 
none of the boreholes in her study were drilled though to the basement. She felt that the peculiar 
soft sediment deformations observed around the clasts of the matrix-supported breccias and 
conglomerates may be taken as a reliable evidence of the glacial origin, and that the presence of 
dropstones clearly suggests a landscape probably dotted by glacial lakes. 

Bordy (2006) further notes that based on the limited number of boreholes available for the study, 
the coal-bearing strata of the Chapudi area are on average ±130 m thick. Two major lithofacies 
associations were identified, these being a subordinate arenaceous facies and a dominant 
argillaceous facies. She felt that the application of the formal lithostratigraphic subdivision of the 
coal-bearing strata into the Madzaringwe and Mikambeni formations was impossible in this area, as 
the lithological properties of the mudstones are identical throughout the sequence, and the 
sandstones that occasionally divide the mudstones into a relatively coal-rich lower interval, and a 
less carbonaceous, upper mudstone interval, are not developed in the area. 

The coal bearing succession is regionally overlain by texturally sub-mature sandstones of the Fripp 
Formation, which comprises at least two distinct cycles of fining-upward successions in the Chapudi 
area (Bordy, 2006). 

4.9.8.2. Tshipise sub-basin 

The Tshipise sub-basin stretches from east of Mopane to the area of the town of Tshipise. This sub-
basin is best known form the work undertaken at CoAL’s Makhado Project (Fig. 44).  

Outcrops of Soutpansberg Group metaquartzites and Beit Bridge Complex rocks occur in the middle 
of the Tshipise sub-basin area, and these rocks are known to make up the immediate floor to the 
Karoo sedimentary succession. The best exposures of Dwyka Group equivalents (Tshidzi Formation) 
occur on the farm Bluebell 480 MS (Brandl, 2002) where the succession is around 5 m thick, with a 
basal unit consisting of angular to rounded clasts up to 0.50 m in diameter set in a sandy matrix. 

Based on the work undertaken at CoAL’s Makhado Project six potentially mineable composite coal 
seams (or zones) have been identified within a 30-40 m thick carbonaceous zone of the 
Madzaringwe Formation. These are named from the bottom up the Bottom Lower Seam, Bottom 
Middle Seam, Bottom Upper Seam, Middle Lower Seam, Middle Upper Seam and Upper Seam. The 
seams comprise interbanded carbonaceous mudstones and coal. The coal component is usually 
bright and brittle and contains a high proportion of vitrinite. The coal bands exhibit the same trend 
of decreasing vitrinite content (from 80-90%) with increasing depth as for the Mopane sub-basin. 
The raw coal has an ash content of approximately 25%. Seam dips average 12° and a number of 
major faults have been identified. 
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Fig. 44. North-south cross section through CoAL’s Makhado Project showing the northerly dip and structural 
control to the hosting sub-basin. 

4.9.8.3. Pafuri sub-basin 

The Pafuri sub-basin extends from a point midway between the towns of Makhado and Musina 
eastwards, terminating at the northern limit of the Kruger National Park (KNP) in the east. The area 
is 109 km from east to west and is 26 km from north to south at its widest. The eastern boundary 
beneath the KNP is with the border with Mozambique. The Pafuri sub-basin is home to Exxaro’s 
Tshikondeni Colliery and the geology of the area is best known from work associated with this mine. 
The basement in the area is formed by rocks of the Soutpansberg Group. The overlying basal part of 
the Karoo succession is formed by diamictites of the Tshidzi Formation. 

Within the coal-bearing Madzaringwe Formation (Ecca Group), two coal seams are locally 
developed. At Tshikondeni, the seams are referred to as the Main Coal Seam and the Lower Coal 
Seam (Fig. 45). Due to its good coking properties and medium phosphorous content, the 2.6 m thick 
Main Seam (sample 7B and 7C) has been exploited at Tshikondeni. The Lower Seam also has coking 
properties, but the high phosphorus content renders the coal unacceptable to steel manufacturers. 

 

At Tshikondeni the Main Seam dips relatively steeply at between 2° and 18° to the north. Although 
mining has followed the seam down to a maximum of 350 m at the Nyala Shaft, most mining takes 
place in difficult conditions at depths of between 200-300 m. 

Structurally, the Tshikondeni Mine is very complex, with faulting and dolerite intrusions having a 
significant impact on mining in terms of displacement and devolatolisation of the coal. Steps and 
grabens delineate mining blocks and dykes and sills have been identified as having thicknesses of up 
to 15 m to 30 m, respectively. The Mutale sill in the northern areas of the mining authorisation has 
devolatilised large areas of the coal as it closely follows the dip of the Main Seam. 
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Fig. 45. General profile through the mining cut of the Main Seam at Tshikondeni (after Sullivan et al., 1994). 

4.10. Limpopo (Tuli) Coalfield 

4.10.1. Introduction 

The Limpopo Coalfield is the northernmost coalfield in South Africa (Fig. 1). It generally hosts a 
higher-grade coal than the coalfields of the MKB, containing a valuable percentage of South Africa’s 
coking coal, which is important for the country’s metallurgical and steel industries. Although the 
Limpopo Coalfield has been known since 1895 and some small exploration shafts were sunk on the 
Zimbabwean side of the Limpopo in the 1920s, it took well over a century for this coalfield to 
become a producer, and currently only one mine, CoAL’s opencast Vele colliery, is in operation. 

4.10.2. Location 

The Limpopo Coalfield is situated in the northernmost extremity of the Limpopo Province, some 70 
km west of the town of Messina. The coalfield has an east-west strike length of ±80 km, extending 
from Pontdrif in the west, to Beit Bridge in the east. It is small relative to most of the other coalfields 
of South Africa and rocks of the Karoo Supergroup cover an area of about 120,000 ha of which about 
11,000 ha on the southern limb are considered to be underlain by workable coal-bearing horizons 
(Ortlepp, 1986). 

Geologically the Limpopo Coalfield forms part of the greater Tuli Coalfield (greater Tuli block/Bubye 
River Coalfield) that extends northwards from South Africa into Zimbabwe and Botswana (Fig. 1). It is 
represented in South Africa by only a relatively narrow deposit of Karoo Supergroup rocks on the 
right hand bank of the Limpopo River between latitudes 21.80° S and 22.50° S and longitudes 29o E 
and 30o E (Malaza, 2013).  

4.10.3. Exploration and exploitation history 

No real systematic exploration of the Limpopo Coalfield occurred until the 1960s and 1970s. 
Exploration work on the then AngloCoal owned portion of the Limpopo Coalfield started in the 
1960s (Ortlepp, 1986). Reconnaissance drilling was conducted in an area 15 km by 15 km, with 
subsequent detailed exploration confined to an area approximately 15 km by 10 km in the eastern 
part of the coalfield. A total of 160 boreholes were drilled and detailed surface mapping and ground 
magnetometer surveys over the many intrusive dykes were undertaken. The prospecting phase 
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culminated in 1970 with the sinking of a prospect shaft from which a bulk sample of 12 tonnes was 
obtained. This material was sent to Japan for beneficiation test work and coking coal analysis. 

Southern Sphere Mining and Development (a division of Utah Mining) undertook a detailed 
exploration program in the late 1970s and early 1980s. This exploration took the form of cored and 
percussion drilling, down-hole geophysical logging and airborne magnetic and gravity surveys. 
During the period 1979 to 1983 Southern Sphere Mining and Development drilled a total of 61 
boreholes on the farms Overvlakte 125 MS and Almond 120 MS. Other exploration programmes in 
the 1980s were undertaken by AAC and Union Carbide. 

CoAL commenced exploration on their Vele Project in January of 2008 and by 2010 a total of 188 
slim core boreholes and 28 large diameter boreholes had been completed. Aerial magnetic and 
radiometric surveys have also been undertaken. The mine opened in 2011 on a JORC compliant 
362.5 Mt mineable tonnes in situ (MTIS) resource. 

4.10.4. Research history 

The Karoo aged rocks of the Limpopo Basin were first described by Trevor and Mellor (1908) 
following a reconnaissance of the region in 1907. At this time however the presence of coal 
remained undetected. General geological work in the Limpopo Coalfield has subsequently been 
undertaken by Chidley (1985), Brandl (2002), Bordy (2000) and Bordy and Catuneanu (2001; 2002a, 
b and c). Most of what is currently known about the Limpopo Coalfield comes from this work and 
from various reports and presentations concerning CoAL’s Vele Project. 

Bordy and Catuneanu (2001) investigated the sedimentology of the fluvial upper unit, which they felt 
was correlatable to the alternating sequences of fine- to medium-grained sandstones and 
argillaceous beds of the Elliot Formation in the MKB. Bordy et al. (2004) document Early Jurassic 
Termite (Insecta: Isoptera) nests from the Clarens Formation in the Limpopo basin. 

4.10.5. Geology 

The pre-Karoo basement to the Limpopo Coalfield consists of the metamorphic and meta-
sedimentary rocks of the Limpopo Mobile Belt. Deposition of the Karoo sediments occurred with 
concurrent movement on the pre-existing fault planes. This has resulted in a highly truncated 
sequence (to that encountered in the MKB) of the Ecca and Beaufort groups, as well as of the 
Molteno Formation (Fig. 46), with a maximum thickness estimated at between 450-500 m. 

Various authors have used various nomenclatures for the stratigraphic succession in the Limpopo 
Coalfield. Until new formal nomenclature is accepted for the coalfield we here prefer to follow 
Chindley (1985), Johnson et al. (1996) and Malaza (2013), and retain the same stratigraphic 
nomenclature as for the Soutpansberg Coalfield (McCourt and Brandl, 1980). It should however be 
noted that Bordy (2000) and Bordy and Catuneanu (2001, 2002a, b and c) do not follow this 
approach for reasons provided in these references. 

The pre-Karoo Basement surface was scoured during the Dwyka glaciation creating a rugged 
palaeotopography, which coupled to the load release from the melting ice (which re-activated 

basement faults) had a strong control on the subsequent sedimentary fills. Like in the Soutpansberg 
Coalfield, the basal part of the Karoo succession generally comprises diamictite interbedded with 

relatively coarse-grained sandstones in places (Chidley, 1985). The overlying Madzaringwe 
Formation comprises up to 120 m of alternating feldspathic, cross-stratified sandstone, and siltstone 

and shale containing thin coal seams. Three distinct coal horizons are developed within the 15 m 
thick Main Coal Zone. They occur at depths varying from a few metres in the far south of the basin, 
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to over 300 m northwards towards the Limpopo River. All three coal horizons are interbedded coal a

 

Fig. 46. Generalised stratigraphic column for the Karoo Supergroup in the Limpopo Coalfield (after Sparrow, 
2006). 

and clastic units, with varying coal percentages.  Within the coal horizons the coal thicknesses are 
generally greater than the clastic partings, and the interburden thickness are significantly greater 
than the thickness of the individual coal horizons. 

The overlying Mikambeni Formation attains a thickness of about 80 m and consists of alternating 
black shale, sandstone and coal (Chidley, 1985). The Fripp Formation comprises 5-10 m of well-
sorted, medium- to coarse-grained, white, arkosic sandstone and course conglomerates (Chidley, 
1985). The Solitude Formation consists of siltstones and very fine sandstones with grey mudstones. 
Its maximum thickness is about 25 m in the western part of the Limpopo Coalfield, but in some 
places is only 3.5 m thick (Chidley, 1985). Shallow cross-lamination is common in the siltstones. The 
Klopperfontein Formation comprises coarse sandstone and subordinate conglomerate. It is only  
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Fig. 47. General stratigraphy as encountered at CoAL’s Vele Colliery (from Sparrow, 2012). 

present in the central part of the coalfield and attains a maximum thickness of 10-12 m. The 
Bosbokpoort Formation consists of red to purple mudstones with subordinate white siltstone layers 
and some occasional conglomerates. It attains a thickness of up to 60 m (Chidley, 1985).  

The Clarens Formation is subdivided into a lower Red Rocks Member and an upper Tshipise 
Member. The Red Rocks Member is composed of very fine to fine-grained, pinkish to red, 
argillaceous sandstones and attains a maximum thickness of about 60 m. The Tshipise Member has a 
thickness which ranges from 5-140 m and consists of fine to very fine-grained, khaki to yellowish 
sandstones. 
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4.10.6. Coal seams 

In the area of exploitable coal three distinct coal horizons are developed in the Madzaringwe 
Formation. Ortlepp (1986) refers to them as the Basal, Middle and Upper sections. We here follow 
CoAL’s terminology and name the seams the Bottom, Middle and Top Seam Coal (Fig. 47). The Top 
and Bottom Seams can be further differentiated into sub-seams, these being the Bottom Lower, 
Bottom Upper, Top Lower (TL), Top Middle (TM) and Top Upper (TU). 

All three coal horizons are interlaminated carbonaceous mudstones and coal in varying proportions. 
The dip of the coal seams is generally gentle (1° to 2°) towards the north and northwest, but may 
increase up to 10° in the vicinity of faults. Steeper dips are also encountered close to the edge of the 
basin in the south and utheast and south. The Main Coal Zone is located at depths of less than 50 m 
along the southern margin, but attains a depth of over 300 m near the Limpopo River, and this depth 
probably increases to the north of the river.  

The base of the 1.5-3.5 m thick Bottom Seam tends to be best developed in the palaeovalleys and 
mirrors the pre-Karoo Basement topography, generally occurring within 5-15 m of the pre-Karoo 
basement. It usually consists of between 65-80% of coal. The overlying 3-5.5 m thick Middle Seam is 
the most consistent of the three coal zones and is the main economic target and normally tends to 
consist of between 20-45% coal. The Top Coal, which is 2-3 m thick, is more sporadically developed 
and generally tends to consist of between 55-65% of coal. The predominant coal maceral occurring 
in the coal horizons is vitrinite, which gives rise to the high reflectance and Free Swelling Index of the 
coals.  

In general individual seams and sub-seams can be correlated over the entire area, however 
significant drilling is usually required to confirm the correlation of the Top Col Zone. Correlation is 
aided by the presence of a distinct bioturbated marker band which occurs between the Bottom and 
Middle Seams and also by the position of the Bottom Lower Seam which immediately overlies 
glaciogenic sediments of the Dwyka-age Tshidzi Formation or, where the latter is absent, granites 
and gneisses of the pre-Karoo basement. 

4.10.6.1. Coal qualities 

According to Ortlepp (1986) the clean coal has the following characteristics (Table 19). 

Relative Density Yield % Ash (%) VM (%) TS % Swell Index 

1.43 47 10.0 36.5 1.1 8.5 

1.46 50 11.0 36.0 1.1 8.5 

1.49 53 12.0 35.5 1.2 8 

Table 19 Coal qualities for the Limpopo basin (from Ortlepp, 1986). 

The raw coal contains about 7% vitrinite, 3% exinite, 7-14% and 16% visible mineral matter. When 
crushed to 3 mm the vitrinite content of the washed coal is greatly increased, and the exinite, 
inertinite and mineral matter decreases. According to Sparrow et al. (2013) the vitrinite content of 
the 10% ash product is in the order of 86%. These authors also showed that reactivation of faulting 
post coalification generated pseudo-vitrinite in close proximity to the faults. 

4.10.7. Structure and intrusions 

The Limpopo Coalfield is structurally controlled. The southern edge of the basin is defined by a large 
basin edge normal fault, which has a general west-east trend and a dip to the north. This fault has 
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also resulted in a number of sympathetic faults with smaller throws. The trend of the sympathetic 
faulting is generally northeast to southwest. According to Smith (1984) a half-graben structure for 
the Tuli Basin is suggested by the general gentle (<5°) northward dips of the Karoo Supergroup beds, 
coupled to the nature of the northern boundary fault, which is a major, east-northeast trending 
tectonic line. Watkeys and Sweeney (1988) however define the entire Tuli Basin as a pull-apart 
rhombochasm. Generally the basin has a broad plunging synclinal nature with the axis of the 
syncline trending northwest with a bearing of 312o.  

The Karoo strata are intruded by dolerite and porphyritic andesite dykes of Jurassic age. Ortlepp 
(1986) notes that a number of large dykes (some 15-17 m wide), strike east-west across the coalfield 
and that the larger dykes are porphyritic andesites containing large feldspar phenocrysts. There does 
not appear to be any significant displacement associated with the dykes. Coal occurring in proximity 
to the intrusions is however invariably devolatilised. At the Vele Colliery a 15 m thick dolerite 
intrusive has a metamorphic aureole of only 3 m (Sparrow, pers. comm.). Interpretation of the 
regional magnetics indicates that the majority of the fault planes are expected to carry dolerite 
intrusions. A number of independent dykes have also been interpreted from ground magnetics and 
they tend to have an east to west trend. 

4.11. Molteno Coalfield 

4.11.1. Introduction 

Unlike all of the other coalfields discussed in this paper the Molteno Coalfield is Triassic in age (Fig. 
1). It was one of the earliest coalfields exploited and was South Africa’s principal coal supplier from 
1900-1904, becoming abandoned with the discoveries of better quality coal in KZN and the Free 
State and, Gauteng. With the development of high efficiency circulating fluidized-bed (CFB) 
technology, the low grade Molteno coal seams have again become attractive for a range of industrial 
and power generation applications. Recently a small operation has been established near the town 
of Indwe, which at present is the only operational mine in the coalfield. The Molteno Coalfield is also 
actively being explored for its CBM potential. 

4.11.2. Location 

The Molteno Coalfield extends in an arc from Aliwal North and Jamestown in the west, through 
Molteno, Dordrecht, Indwe and Elliot, to north of Maclear in the east (Fig. 48) and covers an aerial 
extent of some 1 3000,000 ha (Christie, 1986; MacDonald, 1993) making it the largest single coalfield 
in South Africa. The majority of the coalfield falls within the Eastern Cape Province. 

4.11.3. Exploration and exploitation history 

Driven by the need for coal in the Cape Colony (and a reward of £100), coal was first discovered in 
the Molteno Coalfield on the farm Cyphergat in 1860 by a Mr. George Vice. In 1864 Vice formed his 
own mining company and commenced the sinking of the Penshaw Mine, from where he started 
shipping wagons of coal to Cradock and Kimberley. Soon afterwards other mining companies sprang-
up in the area. These included The Great Stormberg Coal Company and Cape Collieries Limited. Full 
scale commercial mining for coal in the Indwe area began in 1895 and the town of Indwe was 
formally laid out in 1896. Production peaked at about 175,000 tpa between 1900 and 1904. After 
1904 production declined, mainly due to the discovery of better coals in KZN and the Free State. The 
Cape Collieries closed in 1905, while the Penshaw Mine stayed in production until 1913. By 1917 
production from this coalfield had fallen to only 7,500 tpa. Prior to its recent revival, the last 
recorded historic production in the Molteno Coalfield was in 1948. A contributing factor to the 
closure of this coalfield was the inferior quality of its coal compared to that from other of South 
Africa's coalfields.  
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Fig. 48. Map of the extent of the Molteno Coalfield in the Eastern Cape Province (after Barker, 1999). 

From 1942 to 1944 B.J. Botha carried out fieldwork for the Geological Survey in the Molteno-
Sterkstroom area. This was followed by Geological Survey drilling between 1944 and 1947, with 12 
boreholes drilled at the town of Molteno, two at Elliot, and one each at Indwe and Sterkstroom. 
These results were summarised in a report by Van der Westhuizen (1948). In 1960 Federale Mynbou 
Bpk prospected from Dordrecht eastwards and concluded that only coal in the Guba Sector was of 
economic value. Interest in the Molteno Coalfield was renewed in the 1980s (MacDonald and 
Bredell, 1984) and led to the 1985/86 drilling programme undertaken by the Geological Survey in the 
Molteno, Dordrecht and Indwe sectors of the coalfield. Concurrently (1985-1988), the Transkei 
Mining Corporation (TMC) conducted extensive drilling in the Guba Sector of the coalfield. This work 
is described in MacDonald (1988a, b). 

Intensive studies from 2000 to 2004 led to the conclusion that the Indwe/Dordrecht area would 
sustain a viable long-term coal mining programme to fuel a new IPP. A rigorous drilling programme 
was mounted in 2006 to prove the resource in accordance with internationally accepted reporting 
codes, with over 50,000 m drilled by 2008. This year saw the official re-opening of the Molteno 
Coalfield for commercial production, with the start of a small scale mine at Indwe 
(http://www.elitheni.co.za/). 

4.11.4. Research history 

Surprisingly, given the poor quality of its contained coals, the Molteno Coalfield has been the subject 
of a fairly large body of academic work. The oldest records of prospecting in the Molteno area refer 
to a somewhat discouraging report on the coal deposits by the government geologist A.J. Wyley 
(Wyley, 1856). Dunn (1873, 1878) referred to more promising coal occurrences near the town of 
Indwe. Green (1883) presented a pessimistic assessment of the coal, however Galloway (1889) 
recommended the opening of a colliery at Indwe, which subsequently took place. From 1902 to 1929 
A.L. du Toit carried out extensive research from Dordrecht eastwards towards Elliot and Maclear, 
undertaking a special survey of the Indwe Sector (DuToit, 1905, 1954). 

Rust (1959) investigated the Molteno Formation in the vicinity of the town of Molteno and provides 
a detailed description of the stratigraphy exposed in the Old Bushmanshoek Pass, where the 

http://www.elitheni.co.za/
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Bamboesberg Member is at its thickest. Ryan (1963) utilised the results from the Federale Mynbou 
exploration in the compilation of his work on the geology of the Indwe area. Further mapping was 
undertaken by B.J. Brits in the Molteno District in 1965 and in 1966 by C.B. Coetzee and was used to 
compile an unpublished report on the economic potential of the north-eastern Cape’s mineral 
resources (Coetzee, 1966). 

Between 1965 and 1967 Turner researched the coal potential of the northern-eastern Cape (Turner, 
1969a, b), and this led to a Geological Survey Bulletin of the geology and coal resources of the north-
eastern Cape Province (Turner, 1971), which included a review on the early investigations 
undertaken between 1856 and 1948, as well as work carried out by Federale Mynbou in 1960-61, 
and the Geological Survey between 1965-67. Turner’s work culminated in a PhD study (Turner, 1975) 
which covered aspects of the entire Molteno Formation outcrop area, as well as the stratigraphy of 
the Bamboesberg Member. 

Christie (1981) further investigated the stratigraphy and sedimentology of the Bamboesberg 
Member (and its contained coals) in the Indwe and Elliot areas and erected an informal stratigraphic 
subdivision for the Formation. Christie (1986) also covered the Molteno Coalfield for the Mineral 
deposits of southern Africa volume. 

The TMC drilling formed the basis of a study of the Molteno coal seams in what was then the 
independent homeland of the Transkei (Heinemann, 1988). This work suggested that there were 
sufficient coal resources to power a small power station for twenty five years. 

MacDonald (1993) undertook a re-assessment of the coal resources in the western part of the 
Molteno Coalfield, including the area around the towns of Molteno, Dordrecht and Indwe. This work 
was based to a large extent on the work previously undertaken by the Geological Survey, coupled to 
the results of the 1985-86 drilling project, and provides detailed descriptions of both the Indwe and 
Guba seams, including tables of the cumulative yields at various RDs. Hancox (1998) covers aspects 
of the Bamboesberg and Indwe members of the Molteno Formation, including the nature of the 
basal contact, palaeontology, sedimentology, stratigraphy, coal seam nomenclature and spatial and 
temporal variability. 

4.11.5. Geology 

The general geology of the Molteno Formation is covered in a previous section and is not repeated 
here. This section therefore concentrates on the nature and nomenclature of the economic coal 
seams within the Bamboesberg Member. The Bamboesberg Member (Turner, 1975; SACS, 1980) is 
named after the Bamboesberg Mountains in the Eastern Cape Province and is the basal member of 
the Molteno Formation. It lies stratigraphically between the Burgersdorp Formation (Beaufort 
Group) and the Indwe Sandstone Member of the Molteno Formation. The type locality for the 
Bamboesberg Member is situated in the hills above Grootdoringhoek Pass (Turner, 1975). A 
neostratotype for the Bamboesberg Member was proposed and the member was formally defined in 
Hancox (1998). 

Where the Bamboesberg Member is preserved to its maximum extent, the basal contact with the 
Burgersdorp Formation is usually sharp and erosional. The top contact is at all localities marked by 
the base of the overlying Indwe Sandstone Member and in many places coincides with a 
concentration of extra-formational clasts informally named the "Kolo Pebble Bed" (Turner, 1975). 
The erosive nature of this basal contact has a strong control on the thickness of the Guba Seam. A 
description of the sedimentology of the Bamboesberg Member at the type locality is given by Turner 
(1975) and for the area around Indwe and Cala by Christie (1981). Hancox (1998) provides a more 
detailed description of the member over its entire outcrop area. 



131 
 

Lithologically the Bamboesberg Member is composed of up to five stacked fining upward sequences, 
each of which is composed of laterally extensive sandstones, capped by thin lenticular siltstones, 
mudstones and more rarely, coal. Well preserved fossil plant remains, including silicified tree 
trunks, are frequently concentrated on bedding plains, as well as randomly interspersed within the 
siltstones and mudstones. 

4.11.6. Coal seams 

Six coal seams are sporadically developed in the Molteno Formation over a vertical interval of some 
400 m (Fig. 49). These have previously been recorded and described by Du Toit (1905), Turner (1971, 
1975), Christie (1981), Heinemann (1988), Thamm (1998), MacDonald (1993) and Hancox (1998). 

 

Fig. 49. Composite stratigraphic column for the Molteno Formation between Elliot and Indwe (after Christie, 
1986). 

All the seams cap upward-fining fluvial sequences of sandstone and mudstone and only the three 
lower seams are reasonably persistent. Of these six seams only two are considered to be economic. 
Both occur within the Bamboesberg Member and have had a complex historic nomenclature and 
correlation history (Fig. 50). We here follow the nomenclature of Christie (1981, 1986) and 
MacDonald (1993), as it is the most entrenched in the literature. It should however be noted that 
the Indwe Seam should not be renamed. This is due to the fact that the use of the same geographic 
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name to describe two lithological units of different status within the same formation is at odds with 
international stratigraphic nomenclature. Confusion may also be created due to the fact that the 
Indwe Seam actually occurs within the Bamboesberg Member, and the fact that this seam does not 
actually even underlie the Indwe Sandstone Member. 

 

Fig. 50. Comparison of the nomenclature and stratigraphic placement of the coal seams in the Bamboesberg 
Member (from Hancox, 1998). 

The coal seams of the Bamboesberg Member are typically horizontally zonated, with bands of dull 
(inertinite/fusinite) and bright (vitrinite) coal alternating with carbonaceous siltstone and mudstone. 
The Indwe Seam varies in lithology and thickness over short distances and is a composite seam 
consisting of alternating coal and shale, of which the coal percentage varies between 30-65 %. It 
attains a maximum thickness of 4.5 m at the town of Indwe (Christie, 1981). Christie (1986) notes 
that it is not a laterally continuous seam, but rather a number of coals formed in discrete settings at 
the same stratigraphic horizon. The Guba Seam is also a composite seam but generally contains 
fewer mudstone partings than the Indwe Seam. It varies considerably in thickness across the 
coalfield, attaining a maximum height of about 3 m. This thickness variability is due mainly to the 
fact that the upper portion of the seam has frequently been eroded away by the overlying Indwe 
Sandstone Member. Whilst forming a competent roof, this unit causes extreme roof rolls in places, 
effectively compartmentalising coal resources. 

4.11.6.1. Coal qualities 

The rank of coals in the Molteno Coalfield generally increases from west to east and also fluctuates 
on a local scale according to proximity to igneous intrusions (Saggerson, 1991). High volatile 
bituminous coals are present but sparse in the west, with the coals in the east more commonly being 
low volatile bituminous to anthracitic. 

The following coal properties are compiled from reports by Christie (1981), Heinneman (1986) and 
MacDonald (1993). The coals are durain to cladodurain rich, with high ash values, ranging from 30-
85% for the raw material. The mineral component consists of clay, calcium and magnesium 
carbonates, pyrite, marcasite and trace amounts of chloride, fluoride and phosphorous (Turner, 
1971). They range in rank from low-volatile bituminous to anthracite and are generally fairly vitrinite 
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rich. The fixed carbon content ranges from 30-41% (MacDonald, 1993). Analyses show that the 
Indwe and Guba seams have high raw Ash contents of between 31–51% (and between 26–27% 
when washed), high IM content of 7–11% and low VM of 7 to 12% (Prevost, 2002). They have the 
highest phosphorous levels of any South African coal (Turner, 1971). Generalised coal characteristics 
of the Molteno Formation, washed at a RD of 1.8, are provided below in Table 20. 

Seam CV (MJ/kg) Ash (%) VM (%) IM (%) FC (%) TS (%) 

Guba 21.25 32.45 8.87 2.22 40.03 0.64 

Indwe 23.25 30.06 14.89 1.65 53.40 0.45 

Table 20 Generalised coal characteristics of the Molteno Formation, washed at a RD of 1.8 (from Thamm, 
1998). 

4.11.7. Structure and intrusions 

As for most of the other coalfields in South Africa numerous Jurassic aged dolerite dykes and sills 
intrude the Molteno Formation, effectively dividing the coalfield into a western and eastern sector in 
the area of Penhoek Pass. 

5. Coals as palaeoclimate archives 

Other than being used by industry, coal deposits are also unique sedimentary archives of climate 
change and the coal-bearing formations of the Karoo Basin of South Africa play a crucial role in the 
study and interpretation of Gondwana's climate history and biodiversity. A continuous climate 
amelioration succeeding the Permo-Carboniferous glaciation was first inferred from palynological 
data by Falcon et al. (1984) and Falcon (1986c), showing that subsequent to the melting of the 
Dwyka ice sheets, cold to cool-temperate climate conditions prevailed during the Early Permian, 
with a continuous change to hot and dry climate conditions occurred during the Late Permian and 
Triassic (Fig. 51).  

So far, palaeofloral evidence of climate change during the Permo-Triassic is based on data from 
these few sources (for a review see Falcon, 1989). Whereas new palynostratigraphic zonation 
schemes were established in other parts of southern Africa (D’Engelbronner, 1996; Nyambe and 
Utting, 1997; Stephenson and McLean, 1999; Modie and Le Hérissé, 2009), no recent works address 
high-resolution palynostratigraphy of the Permian-Triassic coal-bearing formations in South Africa 
and our knowledge of the Permian and Triassic palynology of the Karoo Basin is based on 
fundamental research carried out in the 1970s and 1980s by Anderson (1977) and Falcon (1989). 
Later, palynological studies were carried out only in a few selected sites of Early and Middle Permian 
age in the Waterberg and Pafuri coal basins (MacRae, 1988), the Witbank and Highveld coalfields 
(Aitken, 1994; 1998), and near Vereeniging (Millsteed, 1994; 1999). From this limited background, 
our understanding of vegetational changes related to climate change is still very poor, and the study 
of the palynological record of coal seams with respect to establishing a high-resolution climate 
history of the Permo-Triassic of the Karoo is a challenge for the future. 

One milestone in deciphering high temporal resolution climate change was achieved by a recent 
study of the No. 2 Seam of the Witbank Coalfield (Götz and Ruckwied, 2014), which documents the 
switch from icehouse to greenhouse conditions in the Early Permian, and the use of palynological 
data and their climatic signatures for cross-basin correlations (Ruckwied et al., 2014). The most 
striking signal is the change from a horsetail/fern spore and gymnospermous monosaccate pollen 
grains dominated assemblage of No. 2L Seam, to a gymnospermous bisaccate (taeniate and non-
taeniate) pollen grains dominated assemblage of the No. 2U Seam. This change in the palynomorph 
assemblages indicates a change in vegetation from a horsetail/fern wetland community (together  
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Fig. 51. Gondwana's climate history inferred from the palynological record of the Karoo coal-bearing deposits 
(modified from Falcon, 1986c). The switch from Icehouse to Greenhouse is documented in the No. 2 Coal Seam 
(Lower Ecca Group), reflected by a major vegetational change (Götz and Ruckwied, 2014). 

with an upland conifer community dominated by monosaccate-producers) to one replaced by cycad-
like and lycopsid lowland vegetation and a gymnospermous upland flora of bisaccate-producers. This 
change is interpreted to document a shift from cold to cool-temperate climate conditions. 
Previously, the precise stratigraphic position of this shift within the Early Permian was not identified 
due to the lack of high-resolution palynological analyses of key sections in the MKB. 

The potential of palynology applied to correlation by climatic signatures of different assemblages 
from different sub-basins was proved for the first time by the recent study of Ruckwied et al. (2014). 
Samples from a drill core in the northern MKB yielded the first palynological data of the upper Prince 
Albert and Whitehill formations, pointing to a late Early Permian to early Middle Permian age. This 
allows for direct temporal correlation beyween the uppermost Prince Albert and Whitehill 
formations with the Vryheid Formation. This new palynostratigraphic data will strongly effect the 
interpretation of the Permian basin-fill history of the MKB, the intercontinental comparison of 
palaeofloral diversity patterns in adjacent sub-basins (e.g., Botswana, Mozambique, etc.), and intra-
Gondwanan correlations of coal-bearing basins (e.g., Australia, Brazil). 

6. Discussion and Conclusions 

6.1. Nomenclature 

Most of the coalfields of South Africa are named for a major town in the area, the area itself or the 
Province (and as such are geographically linked). Whilst not in itself a problem, some of these names 
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are also taken by formal lithostratigraphic units, which creates confusion in the literature, and in 
electronic search engines. For this reason, whilst it was not the purpose of this review, this work has 
highlighted some of the inconsistencies of nomenclature used for the various coalfields. New names 
should be sought for the Free State, Waterberg, Soutpansberg, Limpopo and Molteno coalfields in 
particular, with the proviso that any new geographic names have not been used for any previously 
named stratigraphic unit. Use of a purely numerical system (with No. 1 at the base) creates 
correlation issues and confusion between coalfields, especially where the basal seam is not the 
same. Robust stratigraphies and seam nomenclature for each coalfield should be established and 
preferably formalised. 

6.2. The role of the basement 

This review has hopefully shown that an understanding of the nature of the pre-Karoo basement and 
its control on palaeotopography is critical to understanding various aspects of the sedimentary fill 
and coal qualities of many of the coalfields under discussion. This is particularly the case where 
palaeotopography has created anomalous accommodation space and thicker sedimentary profiles, 
or where palaeohighs have precluded deposition or created increased dips. Identifying major 
palaeovalleys is important as they acted as conduits for fluvial activity and it is within their axes that 
coal seams will be the subject of more intra-seam partings, with the concomitant drop in qualities. 
Irregular basement topography may also play a role in the position of later igneous intrusions. 

6.3. The role of sedimentology 

Autocyclic variability is to be expected in sedimentologically complex depositional environments 
such as braided rivers, deltas and peat swamps, and fluvial input into the peat mire may cause 
depositional hiatuses, pinch-outs, and seam-splitting and peat erosion. Understanding this variability 
and the nature of the depositional system is a crucial aspect of understanding the history of the 
seam development, although an aspect that seems to have been forgotten following on the heydays 
of academic research in the 1980s. It is not only the coal seams that are of importance – 
understanding the intra-seam successions are just as important, especially the roof and floors to the 
seams. 

6.4. Correlation of the various coal bearing horizons 

6.4.1. Main Karoo Basin 

The present literature is split on the question of whether or not the various coal bearing successions 
in the MKB can be correlated, with authors such as Van Vuuren and Cole (1979), Cadle (1982), Van 
Vuuren (1983), Falcon (1986a-c), Cadle et al. (1993) and Catuneanu et al. (2002) believing that they 
can be, and Tavener-Smith (1983) questioning the validity of using coal seams for correlation. The 
senior author is of the opinion that Van Vuuren and Cole (1979) and Van Vuuren (1983) have 
however shown that detailed sedimentological and stratigraphic research, coupled with 
palynological and petrographic data, allows for informative and useful seam correlations. By relating 
the various allocyclic controlled transgressions (and their transgressive surfaces) these authors 
showed that correlation between the various coalfields of the MKB was indeed possible. 

Whilst autocyclic variability is the norm rather than the exception, allocyclic variability is much less 
so, and given the strong allocyclic control on the nature of the deposits, such genetically related 
sequences should indeed be correlatable. The numbering, naming and correlation of the seams does 
however still need to be addressed as disparate nomenclature has previously led to the concept that 
the geology of the various coalfields differs significantly from one another, which is not necessarily 
true (Prevost, 2012). A precise correlation of coal-bearing horizons of the different coalfields can 
however only be performed once a high-resolution palynostratigraphy is established for the Permo-
Triassic successions in the South African MKB. In this context, recent studies on palynofacies 
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patterns and palaeoclimate signatures recorded in palynomorph assemblages proved to be a 
powerful tool for cross-basin correlation (Götz and Ruckwied, 2014; Ruckwied et al., 2014). 

6.4.2. Northern basins 

Due to the difference in the tectonic development of the containing basins, the Karoo Supergroup 
sedimentary succession in the northern basins of South Africa is much thinner than in the MKB, and 
correlation is often difficult across the region. The senior author is however of the opinion that there 
is a linkage between the tectonics affecting the MKB and the northern basins, and that the 
stratigraphic nomenclature as applied to the MKB may in fact be applied throughout the northern 
basins as well. 

6.5. Sequence stratigraphy  

Whilst sequence stratigraphic principles for non-marine and marginal marine successions are now 
firmly entrenched (Catuneanu 2006; Catuneanu et al., 2009), in South Africa only two papers have 
considered this aspect of coal seam development (Catuneanu et al., 2002; Tovela, 2011). If the 
various depositional successions can indeed be correlated as discussed above, then sequence 
stratigraphic principles for the fills of the MKB may be applied to all of these coalfields. 

Catuneanu et al. (2002) undertook a third-order sequence stratigraphic analysis of the Early Permian 
marine to continental facies of the northern margin of the MKB. These authors document a 
succession of five basin wide regressive systems tracts, with each regressive systems tract (RST) 
terminated by a basin wide transgressive system tract (TST). In terms of this model the evolution of 
the transgressive-regressive cycles was controlled by normal (sediment supply driven) regressions in 
the distal shorelines of the Ecca interior seaway. Tovela (2011) utilised boreholes and outcrop 
studies to fit the coal seams of the Emakwezeni Formation of the Somkhele Coalfield into a 
sequence stratigraphic framework, placing the Emakwezeni depositional cycles as fourth order 
cycles. 

The senior author has been involved in a number of studies on projects in the far western region of 
the Witbank Coalfield that has shown that the various plies that compose the seams in this area may 
be analysed in a sequence stratigraphic framework. The basal plies of both the No. 2 and No. 4 
seams have the maximum aerial extent during the TST, with the upper plies being far less aerially 
developed and much more fragmented in their distribution. This is believed to be a response to the 
rate of base level rise beginning to increase (lowering the water table and causing fluvial incision) as 
one reaches the top of the TST. Whilst this data cannot be made public at present it is an avenue of 
research which should be looked into. 

6.6. Impact on exploration practices 

This work has shown that one needs to understand the nature of the pre-Karoo basement if one is to 
understand the nature of the early accommodation space created, the sedimentary fill and 
subsequent coal formation. Due to cost implications, too many exploration boreholes stop short of 
the basement. It is however vitally important to fully understand the palaeotopography (and its 
controls on the succession), not only for sedimentological work, but also for geotechnical 
considerations and in modelling (both for dolerites and basement elevations). 

This work has also highlighted the need for exploration geologists to get back to the basics of 
sedimentology (not just seam and interburden logging). Detailed sedimentological logging and facies 
interpretations allows for an understanding of the depositional environment and aids in the 
interpretation of the geotechnical environment, allowing for better understanding of the rock mass 
behaviour during mining operations (Van Heerden, 2004a). It is the senior author’s experience that 
far too few borehole logs have sufficient detail to correctly interpret the depositional environment.  
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As the entire coal seam is sampled and most exploration boreholes for coal are not retained, high 
resolution photography is a crucial element of the documentation of the core. Too often this aspect 
of the core description is either not undertaken, or undertaken poorly. 

Coal has anomalously low density compared to its host rock successions and down the hole 
geophysical readings should be routinely taken, primarily to check for coal recoveries. The full suite 
may include three-arm calliper, gamma, density, P-wave sonic, neutron, resistivity, dipmeter and 
acoustic scanner (Jeffrey, 2004). Van Heerden (2004b) has shown that only three probes, density, 
optical televiewer and acoustic televiewer are required in order to identify geotechnical features, 
and that non-orientated core only really allows for an assessment of rock quality data (RQD). Both 
the optical and acoustic televiewer produce a 360o orientated image of the borehole wall. The 
optical televiewer works only in air, and the acoustic televiewer only in water filled holes. In the 
Springbok Flats Coalfield the use of the gamma probe may also be used to delineate the co-
occurrence of uranium. 

This review has shown that two major styles of coal seams are developed in South Africa, which 
SANS (10320) refers to as multiple seam and thick interbedded deposits. These two styles require 
different exploration techniques to be applied. By way of example it is noted that in the Limpopo 
Coalfield both down the hole wireline and televiewer is required for positive correlation. Borehole 
core sizes must also be adequately matched to the type of coals being explored for, with larger 
diameter holes required for vitrinite rich successions. 

Except in the Springbok Flats and Waterberg coalfields the presence of dolerites is ubiquitous. They 
occur as both magnetic sills and magnetic and non-magnetic dykes. Their presence may hamper 
exploration drilling, with issues ranging from access to scree covered rubble slopes, through to 
difficult drilling conditions including poor core recoveries due to faulted and fractured ground and 
baked and metamorphosed contacts. These dolerite intrusions have devolatilised and in places burnt 
the coal seams, impacting on their qualities. Furthermore they are often the cause of gas and water 
issues. A thorough understanding of their occurrence and morphology is therefore critical to any 
exploration project. During exploration it is also important to document the contact angles of the 
intrusions and to state the degree of weathering of any dolerites encountered in the borehole as this 
is important from a structural and mining perspective. A standardisation of the nomenclature for the 
dolerite sills of the MKB would also be of practical use. 

6.7. Impact on exploitation practices 

The thickness of the seam, its ply qualities, the nature of the roof and floor, and the style of coal 
(multi-seam or thick interbedded) all have a significant impact on the method and rate of extraction, 
and on the beneficiation requirements. A thorough understanding of each of these areas will allow 
for the selection of the correct mining cut as well as for the correct exploitation method. For 
example floor rolls in thin seam heights preclude the effective use of otinous mining equipment.  

The five coalfields containing thick interbedded coal seams require the beneficiation of the 
intercalated fine carbonaceous material, with the associated materials handling issues. Underground 
extraction of these coal zones will remain a serious challenge for the future. Underground extraction 
in the Somkhele and Limpopo coalfields will probably not happen due to the high dips encountered. 
Meaningful structural and geotechnical data may only be acquired from televiewers (Van Heerden, 
2004b); data which are crucial in understanding the nature of high and low wall stability during 
mining. 

6.8. Impact on utilisation 

 All of the qualities of the various coals impact on the utilisation or potential utilisation, and the 
exploration geologist and coal resource estimator should be aware of the potential markets and 
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their constraints, both technical and economic. The phosphorous percentage, for example, is a 
critical factor in the marketing of metallurgical coals and one must understand the product 
phosphorous. Due to its environmental impact thee sulphur percentage is an important criteria in 
most contracts, and the form and species of the sulphur needs to be understood in order to 
understand the beneficiation characteristics. 

6.9. The future role of coal mining for South Africa’s energy mix 

Although it is never a good idea to predict the future, it would seem that for the next 40-50 years, 
and barring some major other energy breakthroughs, coal will continue to dominate South Africa’s 
energy mix. Large resources of high Ash, low volatile coal exists that need to be brought to account. 
The primary challenges for the unlocking of the resource potential of all of South Africa’s coalfields 
are similar. Geologically these include that the remaining resources are more marginal in quality 
than those historically mined, and are also often more geologically complex, requiring additional 
exploration work and closer spacing of points of observation. These lower quality coals also often 
require beneficiation even to make local power market specifications. Coal will also only fulfil its role 
with social and environmental buy-in, and issues such as the handling of legislative, environmental 
and community matters are common to all the coalfields, as are the real infrastructural and logistical 
constraints. 

Acknowledgements 

A review of this nature draws on many different sources and people that are too numerous to be 
individually listed and our indebtedness to these colleagues is noted en masse. The authors would 
however like to thank various individuals and companies: Sasol for permission to incorporate Figure 
22; Keaton Energy Holdings for permission to publish various photographs; Dr. Johann Neveling and 
Lorraine van der Merwe (Council for Geoscience) for sourcing various open file reports and for 
providing the senior author with copies of Anderson’s reports; Peet Meyer for providing hard to find 
references on the Kangwane Coalfield; John Sparrow for providing various images for the 
Soutpansburg and Limpopo coalfields and for proof reading these sections; Yeolanda Harris for 
typing up reams of old references; and Dr. Eva Schneiderhan for proof reading and editing an earlier 
draft of this manuscript. Finally, the constructive comments of an anonymous reviewer and the 
editor C. Özgen Karacan are gratefully acknowledged. 

 

References 

Adendorff, R., 2005. A revision of the ovuliferous fructifications of glossopterids from the Permian of 

South Africa. Unpublished PhD thesis, University of the Witwatersrand, Johannesburg, 421 pp. 

Aitken, G.A., 1993. Palynology of the Number Five Seam in the Witbank/Highveld coalfields. 
Unpublished M.Sc. Thesis, University of the Witwatersrand, 231 pp. 

Aitken, G.R., 1994. Permian palynomorphs from the Number 5 Seam, Ecca group, Witbank/Highveld 
Coalfields, South Africa. ntologia africana 31, 97–109. 

Aitken, G.R., 1998. A palynological and palaeoenvironmental analysis of Permian and early Triassic 
sediments of the Ecca and Beaufort groups, northern Karoo basin, South Africa. Unpublished PhD 
Thesis, University of the Witwatersrand, Johannesburg, pp. 499 pp. 

Alberts, B.C., 1982. The planning and establishment of the Grootegeluk Coal Mine. Journal of the 
South African Institute of Mining and Metallurgy 82(12), 341–352. 



139 
 

Anderson, A.M., 1981. The Umfolozia arthropod trackways in the Permian Dwyka and Ecca Series of 
South Africa. Journal of Palaeontology 55, 84–108. 

Anderson, A.M., McLachlan, I.R., 1976. The plant record in the Dwyka and Ecca Series (Permian) of 
the southwestern half of the Great Karoo Basin, South Africa. Palaeontologia africana 19, 31–42. 

Anderson, H.M., 1974. A brief review of the flora of the Molteno Formation (Triassic), South Africa. 
Palaeontologia africana 17, 1–10. 

Anderson, H.M., 1976a. A Revision of the genus Dicroidium from the Molteno Formation. 
Unpublished PhD Thesis, University of the Witwatersrand, Johannesburg, 146 pp. 

Anderson, H.M., 1976b. A review of the Bryophyta from the Upper Triassic Molteno Formation, 
Karoo Basin, South Africa. Palaeontologia africana 19, 21–30. 

Anderson, H.M., 1978. Pedozoites and associated cones and scales from the Upper Triassic Molteno 
Formation, Karoo Basin, South Africa. Palaeontologia africana 21, 57–77. 

Anderson, J.M., 1977. The biostratigraphy of the Permian and Triassic. Part 3. A review of Gondwana 
palynology with particular reference to the northern Karoo Basin, South Africa. Memoirs of the 
Botanical Survey of South Africa 4, 1–33. 

Anderson, J.M., 1979. Palaeoflora of southern Africa Molteno Formation (Triassic), Volume I. A.A. 
Balkema, Rotterdam. 

Anderson, J.M., 1983. Palaeoflora of southern Africa Molteno Formation (Triassic), Volume II. A.A. 
Balkema, Rotterdam. 

Anderson, J.M., 1984. The fossil content of the Upper Triassic Molteno Formation, South Africa. 
Palaeontologia africana 25, 39–59. 

Anderson, J.M., 1989. Palaeoflora of Southern Africa Molteno Formation (Triassic), Volume 2, The 
Gymnosperms (excluding Dicroidium). A.A. Balkema, Rotterdam. 

Anderson, J.M., Anderson, H.M., 1983. The palaeoflora of southern Africa: Molteno Formation 
(Triassic), Vol. 1, Part 1, Introduction, Part 2A, Dicroidium, 227 pp. A.A. Balkema, Rotterdam. 

Anderson, J.M., Anderson, H.M., 1984. The fossil content of the Upper Triassic Molteno Formation, 
South Africa. Palaeontologia africana 25, 39–59. 

Anderson, J.M., Anderson, H.M., 1985. The Palaeoflora  of southern Africa. Prodomus of southern 
African megafloras Devonian to Lower Cretaceous. A.A. Balkema, Rotterdam, 423 pp. 

Anderson, J.M., Anderson, H.M., 1989. The Palaeoflora of southern Africa: Molteno Formation 
(Triassic), Vol. 2: The Gymnosperms. A.A. Balkema, Rotterdam. 

Anderson, J.M., Anderson, H.M., 1995. The Molteno Formation: window onto the Late Triassic floral 
diversity, in: Pant, D.D. (Ed.), Proceedings of the International Conference on Global Environment 
and Diversification of Plants through Geological Time (Birbal Sahni Centenary Vol. 1995). Society of 
Indian Plant Taxonomists, Allahabad, India, pp. 27–40. 

Anderson, J.M., Anderson, H.M., 1997. Towards new paradigms in Permo-Triassic Karoo 
palaeobotany (and associated faunas) through the past 50 years. Palaeontologia africana 33, 11–21. 

Anderson, J.M., Anderson, H.M., 1998. In search of the world’s richest flora: looking through the Late 
Triassic Molteno window. Journal of African Earth Science 27, 6–7. 



140 
 

Anderson, H.M., Anderson, J.M., 2008. Molteno ferns: Late Triassic biodiversity in Southern Africa. 
Strelitzia 21, 258 pp. Botanical Institute, Pretoria. 

Anderson, J.M., Anderson, H.M., Cruickshank, A.R.I., 1998. Late Triassic ecosystems of the 
Molteno/Lower Elliot biome of southern Africa. Palaeontology 41, 387–421. 

Anderson, W., 1901. First Report of the Geological Survey of Natal and Zululand. Survey General’s 
Department, Natal. Davis and Sons, Pietermaritzburg, 138 pp. 

Anderson, W., 1904. Second Report of the Geological Survey of Natal and Zululand. Survey General’s 
Department, Natal. West, Newman and Company, London, 167 pp. 

Anderson, W., 1907. Third and Final Report of the Geological Survey of Natal and Zululand. Survey 
General’s Department, Natal. West, Newman and Company, London, 300 pp. 

Anhausser, C.R., Maske, S., 1986. Mineral Deposits of southern Africa. Volume II. The Geological 
Society of South Africa, 1021–2335. 

Ashton, H., 2011. An Independent Competent Persons’ Report on the Material Assets of Sentula 
Mining Limited. Unpublished report by SRK Consulting for Sentula Mining Limited, 38 pp. 

Atkinson, E.L., Leach, G.W., 1979. The replacement of conventional gathering-arm loaders and 
shuttle cars with diesel-operated load-haul-dump units at Greenside Colliery. Journal of the South 
African Institute of Mining and Metallurgy, 241–248. 

Bamford, M., 1999. Permo-Triassic woods from the South Africa Karoo Basin. Palaeontologia africana 
35, 25–40. 

Bamford, M., 2011. Desktop study Palaeontology Ermelo to Empangeni – Eskom powerline. Internal 
report Bernard Price Institute for Palaeontological Research. University of the Witwatersrand, 4 pp. 

Bangert, B., Stollhofen, H., Lorenz, V., Armstrong, R., 1999. The geochronology and significance of 
ash-fall tuffs in the glaciogenic Carboniferous-Permian Dwyka Group of Namibia and South Africa. 
Journal of African Earth Sciences 29(1), 33–49. 

Bangert, B., Stollhofen, H., Geiger, M., Lorenz, V., 2000. Fossil record and high resolution 
tephrostratigraphy of Carboniferous glaciomarine mudstones, Dwyka Group, southern Namibia. 
Communications of the Geological Survey of Namibia 12, 235–245. 

Barker, O.B., 1999. A Techno-economic and historical review of the South African Coal Industry in 
the 19th and 20th centuries, in: Pinheiro, H.J. (Ed). A Techno-economic and historical review of the 
South African Coal Industry in the 19th and 20th centuries and analyses of coal product samples of 
South African collieries 1998-1999. Part 1. Bulletin 113 South African Bureau of Standards, pp. 1–63. 

Barker, O.B., 2014. The geological and geotechnical setting of the Zungwini Tunnel and how the 1987 
failures occurred. Presentation at the 8th KZN Coal and Energy Indaba. Fossil Fuel Foundation of 
South Africa. 

Behr, S.H., 1965. Heavy mineral beach deposits in the Karoo System. Memoir Geological Survey 
South Africa 56, pp. 1–116. 

Bell, K., Spurr, M.R., 1986a. The Klip River Coalfield of Northern Natal, in: Anhausser, C.R., Maske, S. 
(Eds), Mineral Deposits of Southern Africa, II. Geological Society of South Africa, pp. 2033–2046. 

Bell, K., Spurr, M.R., 1986b. The Vryheid Coalfield of Northern Natal, in: Anhausser, C.R., Maske, S. 
(Eds), Mineral Deposits of Southern Africa, II. Geological Society of South Africa, pp. 2023–2032. 



141 
 

Bergh, J.P., 2010. The Partitioning of Trace Elements in the No. 4 Seam of the Witbank Coalfield. 
Research Paper for Master of Science in Engineering (Metallurgy and Materials), University of the 
Witwatersrand, Johannesburg, 87 pp. 

Beukes, N.J., 1969. Die Sedimentologie van die Etage Holkranssandsteen, Sisteem Karoo. 
Unpublished MSc Thesis, University of the Orange Free State, Bloemfontein. 

Beukes, N.J., Siepker, E.H., Naudé, F., 1991. Genetic Stratigraphy of the Waterberg Coalfield. 
Unpaginated Abstract, Conference on South Africa’s Coal Resources, Witbank November 1991, 
Geological Society of South Africa. 

Blignaut, J.J.G., 1951. Coal provinces in the Natal coalfields. Transactions of the Geological Society of 

South Africa 54, 27–32. 

Blignaut, J.J.G., 1952. Field relationships of dolerite intrusions in the Natal coalfields. Transactions of 

the Geological Society of South Africa 55, 19–31. 

Blignaut, J.J.G, Furter, F.J.J., 1940. The Northern Natal Coalfield, Area No. 1, Parts 1 and 2. Coal 
Survey Mem., 1. Department of Mines and Economic Affairs, Union of South Africa. 

Blignaut, J.J.G, Furter, F.J.J., Vogel, J.C., 1940. The northern Natal Coalfield (Area 1). The Vryheid-
Paulpietersburg area. Coal Memoirs of the Geological  Survey of South Africa 1, 336 pp. 

Blignaut J.J.G., Furter, F.J.J., Savage W.H.D., 1952. The Northern Natal Coalfield (Area No. 2). The 
Utrecht-Newcastle Area. Coal Memoirs of the Geological  Survey of South Africa 2, 228 pp. 

Bordy, E.M., 2000. Sedimentology of the Karoo Supergroup in the Tuli Basin (Limpopo River area, 
South Africa). Unpublished PhD Thesis, Rhodes University, Grahamstown, 266 pp. 

Bordy, E.M., 2006. Sedimentological Investigation of the Lower Karoo in the Chapudi Coal Project 

Area (Tshipise Basin, Limpopo Province, South Africa). Unpublished Research Report, 28 pp. 

Bordy, E.M., Catuneanu, O., 2001. Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, 

South Africa. Journal of African Earth Sciences 33(3–4), 605–629. 

Bordy, E.M., Catuneanu, O., 2002a. Sedimentology of the lower Karoo Supergroup fluvial strata in 
the Tuli Basin, South Africa. Journal of African Earth Sciences 35, 503–521. 

Bordy, E.M., Catuneanu, O., 2002b. Sedimentology of the Beaufort - Molteno Karoo fluvial strata in 
the Tuli Basin, South Africa. South African Journal of Geology 105, 51–66. 

Bordy , E.M., Catuneanu , O., 2002c. Sedimentology and palaeontology of upper Karoo aeolian strata 
(Early Jurassic) in the Tuli Basin, South Africa . Journal of African Earth Sciences 35, 301–314. 

Bordy, E.M., Bumby, A., Catuneanu, O., Eriksson, P.G., 2004. Advanced Early Jurassic Termite 
(Insecta: Isoptera) Nests: Evidence from the Clarens Formation in the Tuli Basin, Southern Africa. 
Palaios 19, 68–78. 

Bordy, E.M., Hancox, P.J., Rubidge, B.S., 2004a. Basin development during the deposition of the Elliot 
Formation (Late Triassic – Early Jurassic), Karoo Supergroup, South Africa. South African Journal of 
Geology 107, 395–410. 



142 
 

Bordy, E.M., Hancox, P.J., Rubidge, B.S., 2004b. Fluvial style variations in the Late Triassic - Early 
Jurassic Elliot Formation, main Karoo Basin, South Africa. Journal of African Earth Sciences 38, 383–
400. 

Bordy, E.M., Hancox, P.J., Rubidge, B.S., 2004c. Provenance study of the Late Triassic–Early Jurassic 
Elliot Formation, main Karoo Basin, South Africa. South African Journal of Geology 107, 587–602. 

Bordy, E.M., Hancox, P.J., Rubidge, B.S., 2004d. A description of the sedimentology and 
palaeontology of the Late Triassic–Early Jurassic Elliot Formation in Lesotho. Palaeontologia Africana 
40, 43– 58. 

Bordy, E.M., Hancox, P.J., Rubidge, B.S., 2005. Turner, B.R. and Thomson, K., Discussion on ‘Basin 
development during deposition of the Elliot Formation (Late Triassic – Early Jurassic), Karoo 
Supergroup, South Africa’ (South African Journal of Geology 107, 397–412) – A Reply. South African 
Journal of Geology 108, 454–461. 

Bordy, E.M., Prevec, R., 2008. Sedimentology, palaeontology and palaeo-environments of the Middle 
(?) to Upper Permian Emakwezini Formation (Karoo Supergroup, South Africa). South African Journal 
of Geology 111, 429–456. 

Bordy, E.S., Knoll, F., Bumby, A., 2010. New data on the palaeontology and sedimentology of the 
Lower Jurassic Lisbon Formation (Karoo Supergroup), Ellisras Basin, South Africa. Neues Jahrbuch für 
Geologie und Paläontologie Abhandlungen, DOI: 10, 1-11. 

Boshoff, H.P., Bergh, C.E., Kruszewska, K.J., 1991. Analyses of coal product samples of producing 
South African collieries. Bulletin, Division of Energy Technology, CSIR, Pretoria, South Africa, 105, 56 
pp. 

Botha, P.A., 1984. Die eienskappe van die Waterbergsteenkool met special verwysing ne 
stratigrafiese korrelasie. Unpublished MSc thesis, University of Pretoria. 167 pp. 

Botha, B.J.V., 1968. The stratigraphy of the Red Beds Stage, Karoo System, at Elliot. Transactions of 

the Geological Society of South Africa 71, 101–117. 

Botha, B.W., 2009. Management of the mineral resource risk associated with near-density material 
in the beneficiation plant at Leeuwpan coal mine. Unpublished MSc Thesis, University of Pretoria, 
103 pp. 

Brandl, G., 1981. The geology of the Messina area. Explanation, sheet 2230, Messina, Geological 
Survey of South Africa, 35 pp.  

Brandl, G., 1996. The geology of the Ellisras area: Explanation to sheet 2326, Geological Survey of 
South Africa, 49 pp. 

Brandl, G., 2002. The geology of the Alldays area. Explanation sheet 2228, Alldays, Geological Survey 
South Africa, 71 pp.  

Bredell, J.H., 1987. South African coal resources, explained and analysed. Geological Survey of South 
Africa Report, 39 pp. 

Buchan, I.F., Baars, L.F., Northcote, C.S., 1980. Opencast coal mining at Kriel Colliery. Journal of the 
South African Institute of Mining and Metallurgy 80(1), 46–55. 

Busio, J.P., 2012. Effect of dolerite intrusions on coal quality in the Secunda Coal Fields of South 
Africa. Unpublished MSc Thesis. University of Pretoria, Pretoria, 90 pp. 



143 
 

Cadle, A.B., 1974. A subsurface sedimentological investigation of parts of the Ecca and Beaufort 
Groups in the north-eastern Karoo Basin. Unpublished MSc Thesis, University of Natal, 
Pietermaritzburg, 144 pp. 

Cadle, A.B., 1982. Controls on coal distribution, in: A.B. Cadle (Ed.), Coal Exploration, Economics and 
Assessment. University of the Witwatersrand, Johannesburg, 36 pp. 

Cadle, A.B., 1995. Depositional systems of the Permian Vryheid Formation, Highveld Coalfield, South 
Africa. Their relationship to coal seam occurrence and distribution. Unpublished PhD Thesis, 
University of the Witwatersrand, Johannesburg, 316 pp. 

Cadle, A.B., Cairncross, B., 1993. A sandy, bed-load dominated fluvial system deposited by lateral-
accretion: Permian Karoo Sequence, South Africa. Sedimentary Geology 85, 435–455. 

Cadle, A.B., Cairncross, B., Christie, A.D.M. and Roberts, D.L., 1990. The Permo-Triassic coalbearing 
deposits of the Karoo Basin, Southern Africa. Economic Geology Research Unit-Information Circular 
No. 218: Geology Department, University of the Witwatersrand, 38 pp. 

Cadle, A.B., Cairncross, B., Christie, A.D.M., Roberts, D.L., 1993. The Karoo Basin of South Africa: type 
basin for coal-bearing deposits of southern Africa. International Journal of Coal Geology 23, 117–
157. 

Cadle, A.B., Hobday, D.K., 1977. A subsurface investigation of the Middle Ecca and Lower Beaufort in 
Northern Natal and South-eastern Transvaal. Transactions of the Geological Society of South Africa 
80, 111–115. 

Cairncross, B., 1979. Depositional framework and control of coal distribution and quality, Van Dyks 
Drift area, northern Karoo basin. Unpublished MSc Thesis, Natal University, Pietermaritzburg, 83 pp.  

Cairncross, B., 1980. Anastomosing river deposits: palaeoenvironmental control on coal quality and 

distribution, northern Karoo Basin. Transactions of the Geological Society of South Africa 83, 327–

332. 

Cairncross, B., 1986. Depositional environments of the Permian Vryheid Formation in the East 
Witbank Coalfield, South Africa: A framework for coal seam stratigraphy, occurrence and 
distribution. Unpublished PhD Thesis, University of the Witwatersrand, Johannesburg, 232 pp. 

Cairncross, B., 1989. Paleodepositional environments and tectono-sedimentary controls of the 
postgacial Permian coals, Karoo Basin, South Africa. International Journal of Coal Geology 12, 365– 
380. 

Cairncross, B., 1990. Tectono-sedimentary settings and controls of the Karoo Basin Permian coals, 
South Africa. International Journal of Coal Geology 16, 175–178. 

Cairncross, B., 2001. An overview of the Permian (Karoo) coal deposits of southern Africa. Journal of 
African Earth Sciences 33, 529–562. 

Cairncross, B., Beukes, N.J., Coetzee, L.L., Rehfeld, U., 2005. The Bivalve Megadesmus from the 

Permian Volksrust Shale Formation (Karoo Supergroup), northeastern Karoo Basin, South Africa: 

implications for late Permian Basin development.  South African Journal of Geology  108, 547–556. 

Cairncross, B., Cadle, A.B., 1987. A genetic stratigraphy for the Permian coal-bearing Vryheid 
Formation in the east Witbank Coalfield, South Africa. South African Journal of Geology 90, 219– 
230. 



144 
 

Cairncross, B., Cadle, A.B., 1988a. Palaeoenvironmental control on coal formation, distribution and 
quality in the Permian Vryheid Formation, East Witbank Colfield, South Africa. International Journal 
of Coal Geology 9, 343–370. 

Cairncross, B., Cadle, A.B. 1988b. Depositional palaeoenvironments of the coal-bearing Permian 

Vryheid Formation in the east Witbank Coalfield, South Africa. South African Journal of Geology 

91(1), 1–17. 

Cairncross, B., Winter, M.F.W., 1984. High-constructive lobate deltas in the Lower Permian Vryheid 

Formation, Rietspruit, South Africa. Tansactions of the Geological Society of South Africa 87, 101–

110. 

Cairncross, B., Stannistreet, I.G., McCarthy, T.S., Ellery, W.N., Ellery, K., Grobicki, T.S.A., 1988. 
Palaeochannels (stone-rolls) in coal seams: Modern analogues from fluvial deposits of the Okavango 
Delta, Botswana, southern Africa. Sedimentary Geology 57, 107–118. 

Cairncross, B., Hart, R.J., Willis, J.P. 1990. Geochemistry and sedimentology of coal seams from the 
Permian Witbank Coalfield, South Africa, a means of identification. International Journal of Coal 
Geology 16, 309–325. 

Campbell, G., 1994. Geophysical contributions to mine-development planning. A risk reduction 
approach. XV CMMI Congress, SAIMM 1994. 

Catuneanu, O., 2004. Basement control on flexural profiles and the distribution of foreland facies: 
The Dwyka Group of the Karoo Basin, South Africa. Geology 32(6), 517–520. 

Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam. 375 pp. 

Catuneanu, O., Hancox, P.J., Rubidge, B.S., 1998. Reciprocal flexural behaviour and contrasting 
stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa. 
Basin Research 10, 417–439. 

Catuneanu, O., Hancox, P.J., Cairncross, B., Rubige, B.S., 2002. Foredeep submarine fans and 
forebulge deltas: orogenic off-loading in the underfilled Karoo Basin. Journal of African Earth 
Sciences 35, 489–502. 

Catuneanu, O., Wopfner, H., Eriksson, P.G., Cairncross, B., Rubidge, B.S., Smith, R.M.H., Hancox, P.J., 
2005. The Karoo basins of south-central Africa. Journal of African Earth Sciences 43, 211–253. 

Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, 
C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, 
C.G.St.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, 
H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E., Winker, C., 2009. 
Towards the Standardization of Sequence Stratigraphy. Earth Science Reviews 92, 1–33. 

Chabedi, C.K., 2013. Analysis of technical factors for underground mining of deep Waterberg coal 
resources. Unpublished MSc Thesis, University of the Witwatersrand, Johannesburg, 149 pp. 

Chapman, G., Cairncross, B., 1991. The sedimentology of the Permian Majuba Colliery. Abstract. 
Conference on South Africa’s Coal Resources: Their Origin, Characterisation and Exploitation. Eastern 
Transvaal Branch Sedimentology, Division Economic Geology, Geological Society of South Africa, 
Witbank, November 1991, 4 pp. 



145 
 

Chidley, C.M., 1985. The geology of the country around Evangelina and Pontdrift (1:50,000 sheets 
2228BD and 2229A). South African Geological Survey Report, Pietersburg, South Africa. 22 pp. 

Christie, A.D.M., 1981. Stratigraphy and sedimentology of the Molteno Formation in the Elliot and 
Indwe area, Cape Province. Unpublished MSc Thesis, University of Natal, Durban, 182 pp. 

Christie, A.D.M., 1986. Molteno Coalfield, in: Anhauser, C.R., Maske, S (Eds), Mineral Deposits of 
Southern Africa. Vol II. Geological Soceity of South Africa, Johannesburg, 2063–2069. 

Christie, A.D.M., 1988. Sedimentary Models for Coal Formation in the Klip River Coalfield. 
Unpublished PhD Thesis, University of Natal, Durban, 284 pp. 

Christie, A.D.M., 1989. Demonstrated coal resources of the Springbok Flats Coalfield. Internal Report 
No. 1989–0069, Geological Survey. 

Cillie, J.F., Savage, W.H.D., 1961. Die Steenkoolveld Vereeniging-Clydesdale. Memoirs of the 

Geological  Survey of South Africa 50, 133 pp. 

Cillié, J.F., 1951. Waterberg coalfield, records of boreholes 41−100. Bulletin, Geological Survey of 

South Africa  21, 381 pp. 

Cillié, J.F., 1957. Waterberg coalfield, records of boreholes 101−143. Bulletin, Geological Survey of 

South Africa  23, 276 pp. 

Cillié, J.F., Visser, H.N., 1945. Waterberg coalfield, records of boreholes 21−40. Bulletin, Geological 

Survey of South Africa 16, 132 pp. 

Claassen, M., 2008. A note on the biostratigraphic application of Permian plant fossils of the 

Normandien Formation (Beaufort Group, Northeastern Main Karoo Basin), South Africa. South 

African Journal of Geology 111, 263–280. 

Coetzee, C.B., 1966. The economic possibilities of coal in the Eastern Cape Province. Unpublished 

report of the Geological Survey of South Africa. 

Cole, D.I., 1992. Evolution and development of the Karoo Basin, in: De Wit, M.J., Ransome, I.G.D. 
(Eds.), Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa. 
A.A. Balkema, Rotterdam, 87–99. 

Coney, L., Reimold, W.U., Hancox, P.J., Mader, D., Koeberl, C., McDonald, I., Struck, U., Vajda, V., 
Kamo, S.L., 2007. Geochemical and mineralogical investigation of the Permian–Triassic boundary in 
the continental realm of the southern Karoo Basin, South Africa: Palaeoworld, v. 16, p. 67–104, doi: 
10.1016/j.palwor.2007.05.003. 

Cousins, C.A., 1950. Sub-Karoo contours and notes on the Karoo succession in the Odendaalsrus area 

of the Orange Free State. Transactions of the Geological Society of South Africa 53, 229–242. 

Cox, K.G., 1992. Karoo igneous activity, and the early stages of the break-up of Gondwanaland, in: 
Story, B.C., Alabaster, T. and Pankhurst, R.J. (Eds), Magmatism and the causes of continental break-
up. Geological Society Special Publication 68, 137–148. 

Crowell, J.C., Frakes, L.A., 1975. The late Palaeozoic glaciation, in: Campbell, K.S.W., (Ed.), Gondwana 
Geology: Papers from the 3rd Gondwana Symposium. Australian National Univ. Press, 313–331. 



146 
 

Dale, L. S., 1995. Trace elements in internationally traded coals. ACARP Project C3096. End of Grant 
Report, 25 pp. 

Dale, L. S., 2003. Review of trace elements in coal. ACARP Project C11020. CSIRO Energy Technology 
Investigation Report ET/IR599. End of Grant Report, 59 pp. 

Davies, D.N., 1961. The Karoo System Sediments of Eastern Swaziland. Bulletin of the Swaziland 
Geological Survey and Mines Department 1, 15–22. 

D’Engelbronner, E.R., 1996. New palynological data from Karoo sediments, Mana Pools basin, 

northern Zimbabwe. Journal of African Earth Sciences 23(1), 17–30. 

De Beer, J.J.S., Hunter, F., Neethling, A.F., 1991. Rib- pillar mining at Sigma Colliery. Journal of the 

South African Institute of Mining and Metallurgy 91(6), 209–218. 

De Jager, F.S.J., 1976. Coal, in: Coetzee, C.B. (Ed), Mineral Resources of the Republic of South Africa. 
Handbook of the Geological Survey of South Africa 7, 478 pp. 

De Jager, F.S.J., 1983. The Geology of the Springbok Flats, Waterberg, Soutpansberg and Limpopo 
Coal Fields (with an addendum on the geology of the Komatipoort coal field). Unpublished Report, 
South African Geological Survey Pretoria 1983-0120, 11 pp. 

De Jager, F.S.J., 1986. Coal occurrences of the central, north-western, northern and eastern 
Transvaal, in: C.R. Anhaeusser, S. Maske (Eds.), Mineral Deposits of Southern Africa. Geological 
Society of South Africa, 2047–2055. 

De Oliveira, D.P.S., 1997. The Dolerites on Majuba Colliery, South-Eastern Transvaal. Unpublished 
MSc Thesis, University of the Witwatersrand, Johannesburg, 172 pp. 

De Oliveira, D.P.S., Cawthorn, G.C., 1999. Dolerite intrusion morphology at Majuba Colliery, 
northeast Karoo Basin, Republic of South Africa. International Journal of Coal Geology 41, 333–349. 

De Wit, M.J., Ransome, I.G.D., 1992. Regional inversion tectonics along the southern margin of 
Gondwana, in: de Wit, M.J., Ransome, I.G.D. (Eds.), Inversion Tectonics of the Cape Fold Belt, Karoo 
and Cretaceous Basins of Southern Africa. Balkema, Rotterdam, pp. 15–21. 

Dekker, K., van Wyk, D., 2008. The Sterkfontein and Delmas Coal Projects. Independent Competent 
Person’s Report. Prepared by Coffey Mining (South Africa) (Pty) Ltd on behalf of: Keaton Energy 
Holdings Limited. 

Department of Minerals and Energy, 2009. Operating and developing Coal Mines in the Republic of 
South Africa. Directory D2/2009, pp. 1–67. 

Directorate: Mineral Economics (DME), 2010. Operating and Developing Coal Mines in the Republic 
of South Africa 2010. Compiled by M. Ikaneng. Department of Mineral Resources, Republic of South 
Africa. 77 pp. 

Dempers, J., 2011. South Rand Coalfield: Geology, Resources, Mining and Future potential of the 
South Rand Coalfield. Presentation at the 1st Free State Coal Indaba. Fossil Fuel Foundation of South 
Africa. 

Dineen, A.A., Fraiser, M.L., Isbell, J.L., 2013. Palaeoecology and sedimentology of Carboniferous 
glacial and post-glacial successions in the Paganzo and Río Blanco basins of northwestern Argentina, 
in: Gąsiewicz, A., Słowakiewicz, M. (Eds), Palaeozoic Climate Cycles: Their Evolutionary and 
Sedimentological Impact. Geological Society, London, Special Publications 376, 109–140. 



147 
 

Dreyer, C., 2011. An overview of the geology of the Waterberg Coalfield: implications for future 
exploitation. Unpublished Conference Abstract, FFF Waterberg Coal Conference. 

Duncan, R.A., Hooper, P.R., Rehacek, J., Marsh, J.S., Duncan, A.R., 1997. The timing and duration of 
the Karoo igneous event, southern Gondwana. Journal of Geophysical Research 102, 127–138. 

Dunn, E.J., 1873. Report on the Stormberg coalfield. Parlimentary Report G31, Cape of Good Hope. 

Dunn, E.J., 1875. Geological Sketch Map of South Africa: 2nd Edition, Stanford. 

Dunn, E.J., 1878. Geological report on the Stormberg coalfield. Parlimentary Report G4, Cape of 
Good Hope. 

Du Plesiss, G.P, 2008. The relationship between geological structures and dolerite intrusions in the 
Witbank Highveld Coalfield. Unpublished MSc Thesis, University of the Free State, 144 pp. 

Du Plesiss, J.J., 2008. Petrochemical characterization of dolerites and their influence on coal in the 
Witbank Highveld Coalfield, South Africa. Unpublished MSc Thesis, University of the Free State, 143 
pp. 

Du Preez, J.W., 1982. The Geology of the Area West of Richards Bay. Explanation to Sheets 2831D 
and 2832C. Unpublished Open File Report Geological Survey of South Africa, 1982-0010, 
Pietermaritzburg, South Africa, 143 pp. 

Du Toit, A.L., 1905. Geological Survey of Glen Grey and parts of Queenstown and Wodehouse, 
including the Indwe area. Annual Report of the Geological Commission of the Cape of Good Hope, 
71-181. 

Du Toit, A.L., 1919. The zones of the Karoo system and their distribution. Proceedings of the 
Geological Society of South Africa 21, XVII–XXXVIII. 

Du Toit, A.L., 1921. The Carboniferous glaciation in South Africa. Transactions of the Geological 

Society of South Africa 24, 188–227. 

Du Toit, A.L., 1937. Our Wandering Continents. An Hypothesis of Continental Drifting. Oliver & Boyd, 
Edinburgh, 611 pp. 

Du Toit, A.L., 1954. The Geology of South Africa. Oliver & Boyd, Edinburgh, United Kingdom, 611 pp. 

Engelbrecht, A., 2008. Zululand Anthracite colliery: Development of an Anthracite Mine. 
Presentation at the Fossil Fuel Foundation, KZN Coal Indaba, 21 August. 

Eriksson, P.G., 1981. A palaeoenvironmental analysis of the Clarens Formation in the Natal 
Drakensberg. Transactions of the Geological Society of South Africa 84, 7–17. 

Eriksson, P.G., 1983. Palaeoenvironmental study of the Molteno, Elliot and Clarens Formations in the 
Natal Drakensberg and northeastern Orange Free State. Unpublished PhD Thesis, University of Natal, 
South Africa, 209 pp. 

Eriksson, P.G., 1985. The depositional environment of the Elliot Formation in the Natal Drakensberg 
and north-east Orange Free State. Transactions Geological Society of South Africa 88, 19–26. 

Eriksson, P.G. 1986. Aeolian dune and alluvial fan deposits in the Clarens Formation of the Natal 
Drakensberg. Transactions of the Geological Society of South Africa 89, 389–394. 



148 
 

Eriksson, P.G., McCourt, S., Snyman, C.P., 1994. A note on the petrography of upper Karoo 
sandstones in the Natal Drakensberg: implications for the Clarens Formation palaeoenvironment. 
Transactions of the Geological Society of South Africa 97, 101–105. 

Esterhuizen, G., Van Heerden, G., 2011. Free State Coalfields: Geological characteristics of the 
depositional environment, structural-geological features and the distribution of coal seams. 
Extended Abstract presented at the First Free State Coal Indaba, Fossil Fuel Foundation, 1–16. 

Etheridge, R. Jr., 1901. Notes on fossil plants from the Saint Lucia Bay Coalfield, Enseleni River, 
Zululand. in: Anderson, W., 1901. First Report of the Geological Survey of Natal and Zululand. Survey 
General’s Department, Natal. Davis and Sons, Pietermaritzburg, 69-76. 

Etheridge, R. Jr., 1903. The fructification of Schizoneura australis, Etheridge fil. Geological Survey of 
New South Wales Record 7, 234–235. 

Fabianska, M.J., Kruszewska, K.K.J., 2003. Relationship between petrographic and geochemical 
characterisation of selected South African coals. International Journal of Coal Geology 54, 95-114. 

Falcon, R.M.S., 1978.  Coal in South Africa, Part II. The application of petrography to the 
characterization of coal. Minerals Science and Engineering 10(1), 28–53. 

Falcon, R.M.S., 1986a. The Coalfields of Southern Africa: An Introduction, in: Anhaesser, C.R., Maske, 
S. (Eds), Mineral Deposits of Southern Africa, Vol. II, Geological Society of South Africa, 
Johannesburg, pp. 1875–1878. 

Falcon, R.M.S., 1986b. Classification of coals in southern Africa, in: Anhaesser, C.R., Maske, S.  (Eds.), 
Mineral Deposits of Southern Africa, Vol. II, Geological Society of South Africa, Johannesburg, pp. 
1899–1921. 

Falcon, R.M.S., 1986c. A brief review of the origin, formation, and distribution of coal in southern 
Africa, in: Anhaesser, C.R., Maske, S.  (Eds.), Mineral Deposits of Southern Africa, Vol. II, Geological 
Society of South Africa, Johannesburg, pp. 1879–1898. 

Falcon, R.M.S., 1989. Macro and micro-factors affecting coal-seam quality and distribution in 
southern Africa with particular reference to the No. 2 seam, Witbank Coalfield, South Africa. 
International Journal of Coal Geology 12, 681–731. 

Falcon, R.M.S., Pinheiro, H., Sheperd, P., 1984. The palynobiostratigraphy of the major coal seams in 
the Witbank Basin with lithostratigraphic, chronostratigraphic and palaeoclimatic implications. 
Comunicações dos Serviços Geológicos de Portugal 70, 215–243. 

Falcon, R.M.S., Ham, A.J., 1988. The characteristics of Southern African coals. Journal of the South 

African Institute of Mining and Metallurgy 88(5), 145–161. 

Falconer, K.W., 1990. Spotlight on 100 years of coal mining in Witbank. Journal of the South African 

Institute of Mining and Metallurgy 90(4), 78 p. 

Faure, K., Willis, J.P., Dreyer, J.C., 1996a. The Grootegeluk Formation in the Waterberg Coalfield, 
South Africa: facies, palaeoenvironment and thermal history evidence from organic and clastic 
matter. International Journal of Coal Geology 29, 147–186. 

Faure, K., Armstrong, R.A., Harris, C., Willis, J.P., 1996b, Provenance of mudstones in the Karoo 
Supergroup of the Ellisras Basin, South Africa: Geochemical evidences. Journal of African Earth 
Sciences 23, 189–204. 



149 
 

Fourie, C.J.S., 2008. Interpretation of the Waterberg airborne geophysical data, Coaltech Steering 
Committee, October, 2008. 

Fourie, C.J.S., 2009. Interpretation of the Waterberg Coalfield airborne geophysical data final report. 
Coaltech 2020 Task 1.5.2a, 165 pp. 

Fourie, C.J.S., Henry, G., Marè, L.P., 2009. The structure of the Karoo-age Ellisras Basin in Limpopo 
Province, South Africa in the light of new airborne geophysical data: a preliminary report. 11 th SAGA 
biennial technical Meeting and Exhibition, Swaziland, 27–32. 

Galloway, W., 1889. Report on the coal deposits in the Indwe basin and Stormberg range of 
mountains. Parliamentary report G50, Cape of Good Hope. 

Geel, C., Schulz, H.-M., Booth, P., de Wit, M., Horsfield, B., 2013. Shale gas characteristics of Permian 
black shales in South Africa: results from recent drilling in the Ecca Group (Eastern Cape). Energy 
Procedia 40, 256–265. 

Genis, L.M., 1961. Die geologie van die gebied teen noordweste van Empangeni, Zoeloeland, met 
spesiale verwysing na die voorkoms van steenkool. Unpublished Geological Survey of South Africa 
Report ‘Open File’ KZ31. 2831 DB, Pietermaritzburg, 21 pp. 

Gilligan, R.H., 1986. OFS - Vierfontein Coalfield, in: C.R. Anhaesser, S. Maske (Eds.), Mineral Deposits 
of Southern Africa, Vol. II, Geological Society of South Africa, Johannesburg, pp. 1929–1937. 

Golder and Associates, 2011. Proposed life extension of the New Vaal Colliery – Environmental 
Impact Assessment. Draft Scoping Report for Anglo American Thermal Coal. 71 pp. 

Goldschmidt, A., van Wyk, D., Lomberg, K., 2010a. The Brakfontein Project. Independent Competent 
Persons Report. Prepared by Coffey Mining (South Africa) on behalf of Universal Coal Plc, 46 pp. 

Goldschmidt, A., van Wyk, D., Lomberg, K., Dekker, K., 2010b. Kangala (ELOF) Coal Project. 
Independent Competent Persons Report. Prepared by Coffey Mining (South Africa) on behalf of 
Universal Coal Plc, 59 pp. 

Götz, A.E., 2014a. The Permian Whitehill Formation (Karoo Basin, South Africa): deciphering the 
complexity and potential of an unconventional gas resource. Geophysical Research Abstracts, Vol. 
16: EGU2014-1399, Abstracts of the Contributions of the EGU General Assembly; Vienna. 

Götz, A.E., 2014b. Sub-Saharan nonmarine-marine cross-basin correlations based on climate 
signatures recorded in Permian palynomorph assemblages. Abstracts CPC-2014 Field Meeting on 
Carboniferous and Permian Nonmarine – Marine Correlation; Freiberg. 

Götz, A.E., Ruckwied, K., 2014. Palynological records of the Early Permian postglacial climate 
amelioration (Karoo Basin, South Africa). Palaeobiodiversity and Palaeoenvironments 94(2), 229–
235. 

Grant, D., Snelling, M., 2005. The geology and proposed mining of the Somkhele Coalfield. Abstract 
GEO2005 Geological Society of South Africa, 88–89. 

Greb, S.F., DiMichele, W.D., Gastaldo, R.A., 2006. Evolution of wetland types and the importance of 
wetlands in Earth history, in: DiMichele, W.A., Greb, S. (Eds), Wetlands Through Time. Geological 
Society of America, Special Publication 399, 1–40. 

Green, A.H., 1883. Report on the coals of the Cape Colony. Parliamentary Report, Cape of Good 
Hope, 33 pp. 



150 
 

Greenshields, H.D., 1986. Eastern Transvaal Coalfield, in: C.R. Anhaeusser, S. Maske (Eds.), Mineral 
Deposits of Southern Africa. Vol. II. Geological Society of South Africa, Johannesburg, pp. 1995–2010. 

Grobler, F., 2006. Petmin Ltd: Petmin CPR. Snowden Project No. J919, October 2006. Issued by the 
South African Office. 

Grodner, M.W., 2002. A Regional, 3-D Computer-based sedimentological model of the Permian 
Witbank Coalfield, South Africa. Unpublished MSc Thesis, Rand Afrikaans University, South Africa, 82 
pp. 

Grodner, M.W., Cairncross, B. 2003. A Regional Scale 3-D Model of the Witbank Coalfield, Northern 
Karoo Basin, South Africa. South African Journal of Geology 106, 249–264. 

Hagelskamp, H.H.B., 1987. The influence of depositional environment and dolerite intrusions on the 
quality of coal. Unpublished PhD Thesis.  University of Pretoria, 224p. 

Hagelskamp, H.H.B., Snyman, C.P., 1988. On the origin of low-reflecting inertinites in coals from the 
Highveld coalfield, South Africa. Fuel 67, 307–313. 

Hancox, P.J., 1998. A Stratigraphic, Sedimentological and Palaeoenvironmental synthesis of the 
Beaufort-Molteno contact in the Karoo Basin. Unpublished PhD. Thesis, University of the 
Witwatersrand, Johannesburg, 404 pp. 

Hancox, P.J., 2000. The Continental Triassic of South Africa. Zentralblatt für Geologie und 
Paläontologie. Teil I, Heft 11-12 (Vol 3), 1998, 1285–1324. 

Hancox, P.J., 2011. Independent geological report on the Eloff Project coal development, exploration 
and resources. Prepared For: Homeland Energy Group Limited by CCIC Coal (Pty) Limited, 106 pp. 

Hancox, P.J., Rubidge, B.S., 1997. The role of fossils in interpreting the development of the Karoo 
Basin. Palaeontologia africana 33, 41–54. 

Hancox, P.J., Rubidge, B.S., 2001. Breakthroughs in the biodiversity, biogeography, biostratigraphy 
and basin analysis of the Beaufort Group. Journal of African Earth Sciences 33 (3/4), 563–577. 

Hart, G.F., 1963. A probable pre-Glossopteris microfloral assemblage from Lower Karoo sediments. 

South African Journal of Science 59, 135–146. 

Hart, G.F., 1964a. A review of the classification and distribution of the Permian miospore: disaccate 
striatiti. International Congress of Carboniferous Stratigraphy and Geology 5, Paris, 1171–1199. 

Hart, G.F., 1964b. Chomotriletes from the Lower Permian of South Africa. Annals of the Geological 
Survey of South Africa 3, 149–157. 

Hart, G.F., 1965. The systematics and distribution of Permian miospores. Witwatersrand University 
Press, Johannesburg, 252 pp. 

Hart, G.F., 1966a. Lower Karoo biostratigraphy of parts of Southern Africa. Unpublished Report, 
Bernard Price Institute for Palaeontological Research, University of the Witwatersrand. 305 pp. 
 
Hart, G.F., 1966b. Vittatina africana, a new miospores from the Lower Permian of South Africa. 
Micropalaeontology 12(1), 37–42. 

Hart, G.F., 1969a. Micropalaeontology of the Karoo deposits in South and Central Africa. I.U.G.S. 
Gondwana Symposium 1, Buenos Aires, 161–172. 



151 
 

Hart, G.F., 1969b. A variation study of Lueckisporites nyakapendensis. J. Sen Memorial Volume, 17– 
31. 

Hart, G.F., 1969c. Lower Karoo (Permian) Acanthomorphitae acritarchs fom South Africa. 
Palaeontologia africana 12, 53–73. 

Hart, G.F., 1970. The biostratigraphy of Permian palynomorphs. American Association of 
Stratigraphic Palynologists, Meeting 1. 

Hart, R.J., Leahy, R., 1983. The geochemical characterization of coal seams from the Witbank Basin. 
Geological Society of South Africa Special Publication 7, 169 pp. 

Hatherly, B., Sexton, J., 2013. Independent Valuation of the Mbila Mining Area and Msebe 
Exploration Project.  Report prepared by the MSA Group (Pty) Ltd on behalf of Zyl Mining Sa (Pty) Ltd 
and Stantons International Securities, 42 pp. 

Haughton, S.H., 1969. Geological history of southern Africa. Geological Society of South Africa, 535 
pp. 

Heinemann, M., 1988. Appraisal of the Molteno coal seams in Transkei (South Africa) with special 
emphasis on the Guba coalfield. Unpublishec PhD Thesis, University of Montana, pp. 404. 

Henderson, R.E., 1986. South Rand Coalfield, in: Anhausser, C.R., Maske, S. (Eds), Mineral Deposits of 
Southern Africa, II. Geological Society of South Africa, pp. 1953–1961. 

Heslop, W.T., 1917. The Natal Coalfields. Journal Chemical and Metallurgical and Mining Society of 
South Africa 17, 9 pp. 

Hobday, D.K., 1973. Middle Ecca deltaic deposits in the Muden–Tugela Ferry area of Natal. 

Transactions of the Geological Society of South Africa 76, 309–318. 

Hobday, D.K., 1978. Fluvial deposits of the Ecca and Beaufort Groups in the eastern Karoo basin, 
southern Africa, in: Miall, A.D. (Ed.), Fluvial Sedimentology. Canadian Society of Petroleum 
Geolologists Memoir 5, 413–429. 

Hobday, D.K., 1986. Gondwana coal basins of Australia and South Africa: tectonic setting, 
depositional systems and resources, in: Scott, A.C. (Ed.), Coal and Coal-bearing Strata: Recent 
Advances. Geological Society Special Publication 32, 219–233. 

Hobday, D.K., Tavener-Smith, R., 1975. Trace Fossils in the Ecca of Northern Natal and their 
Palaeoenvironmental Significance. Palaeontologia Africa 18, 47–52. 

Hocking, A., 1995. Durnacol – The story of the Durban Navigation Collieries. Hollards, Free State, 376 
pp. 

Holzförster, F., 2007. Lithology and depositional environments of the Lower Jurassic Clarens 
Formation in the Eastern Cape, South Africa. South African Journal of Geology 110, 543–560. 

Holland, M.J., Cadle, A.B., Pinheiro, R., Falcon, R.M.S., 1989. Depositional environments and coal 
petrography of the Permian Karoo Sequence: Witbank Coalfield, South Africa. International Journal 
of Coal Geology 11(2), 143–169. 

Isbell, J.l., Cole, D.I., Catuneanu, O., 2008. Carboniferous-Permian glaciation in the main Karoo Basin, 
South Africa: Stratigraphy, depositional controls, and glacial dynamics, in: Fielding, C.R., Frank, T.D., 



152 
 

and Isbell, J.L., (Eds), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of 
America Special Paper 441, 71–82. 

James, J., 2014. Colenso Intergrated Coal and Per Project KwaZulu-Natal, South Africa. Presentation 
at the 8th FFF KZn Coal Indaba Conference, March 2014. 

Jansson, E., 2010. What lies under the Kalahari sand? U/Pb dating of Dwyka tillites, South Africa. 
Unpublished MSc thesis, University of Gothenburg, 54 pp. 

Jeffrey, L.S., 2004. A preliminary investigation into the geotechnical interpretation of geophysical 
logs. Task 2.15 COALTECH 2020, 117 pp. 

Jeffrey, L.S., 2005a. Characterization of the coal resources of South Africa. Journal of the South 
African Institute of Mining and Metallurgy, 95–102. 

Jeffrey, L.S., 2005b. Challenges associated with further development of the Waterberg Coalfield. 
Journal of the South African Institute of Mining and Metallurgy, 106, 453–457. 

Johnson, M.R., 1976. Stratigraphy and sedimentology of the Cape and Karoo sequences in the 
Eastern Cape Province. Unpublished PhD Thesis, Rhodes University, Grahamstown, 336 pp. 

Johnson, M.R., 1991. Sandstone petrography, provenance and plate tectonic setting in Gondwana 
context of the southeastern Cape-Karoo Basin. South African Journal of Geology 94, 137–154. 

Johnson, M.R., Botha, B.J.V., Hugo, P.J., Keyser, A.W., Turner, B.R., Winter, H., 1975. Preliminary 
report on the first stratigraphic nomenclature in the Karoo sequence. Unpublished Report of the 
South African Stratigraphic Commission (Karoo Working Group).  

Johnson, M.R., Van Vauuren, C.J., Hegenberger, W.F., Key, R., Shoko, U., 1996. Stratigraphy of the 
Karoo Supergroup in southern Africa: an overview. Journal of African Earth Sciences 23, 3–15. 

Johnson, M.R., Van Vuuren, C.J., Visser, J.N.J., Cole, D.I., Wickens, H. de V., Christie, A.D.M., Roberts, 
D.L., Brandl, G., 2006. Sedimentary rocks of the Karoo Supergroup, in: Johnson, M.R., Anhaeusser, 
C.R. and Thomas, R.J. (Eds), The Geology of South Africa. Geological Society of South Africa, 
Johannesburg/ Council for Geoscience, Pretoria, 461-499. 

Johnson, M.R., Van Vuuren, C.J., Visser, J.N.J., Cole, D.I., Wickens, H. DE V., Christie, A.D.M., Roberts, 
D.L., 1997. The Foreland Karoo Basin, South Africa, in: Selly, R.C. (Ed.), African Basins. Sedimentary 
Basins of theWorld 3, 269–317. Amsterdam, Elsevier Science B.V. 

Jordaan, J., 1986. Highveld Coalfield, in: Anhaesser, C.R., Maske, S. (Eds.), Mineral Deposits of 
Southern Africa, Vol. II, Geological Society of South Africa, Johannesburg, pp. 1985–1994. 

Jourbert, M.R., 1994. Emakwezini Formation, in: Johnson, M.R. (Ed.), Lexicon of South African 
Stratigraphy: Part 1: Phanerozoic Units, South African Committee for Stratigraphy, Council for 
Geoscience, South Africa, 56 pp. 

Jourdan, F., Feraud, G., Bertrand, H., Kampunzu, A.B., Tshoso, G., Watkeys, M.K., Le Gall, B., 2005. 
Karoo large igneous province: Brevity, origin, and relation to mass extinction questioned by new 
40Ar/39Ar age data. Geology 33, 745–748. 

Jubb, R.A., 1973. Brief synthesis of present information on the geographical and statigraphical 

distribution of fossil fish within the Stormberg Series, South Africa. Palaeontologia Africana 16, 17–

32. 



153 
 

Kalenga, P.M., 2011. Determination and characterization of sulphur in South African coal. Unpubl. 
MSc Thesis, University of the Witwatersrand, Johannesburg, South Africa, 142 pp. 

Kitching, J.W., 1977. The distribution of the Karroo vertebrate fauna. Mem. Bernard Price Inst. 
Palaeont. Res., University of the Witwatersrand 1, 131 pp. 

Kitching, J.W., Raath, M.A., 1984. Fossils from the Elliot and Clarens Formations (Karoo Sequence) of 
the northeaster Cape, Orange Free State and Lesotho, and a suggested biozonation based upon 
tetrapods. Palaeontologica africana 25, 111–125. 

Kovacs-Endröy, É., 1976. Notes on some Glossopteris species from Hammanskraal (Transvaal). 
Palaeontologica africana 19, 67–95. 

Kovacs-Endröy, É,. 1991. On the Late Permian age of the Ecca Glossopteris floras in the Transvaal 
Province with a key to the descriptions of twenty five Glossopteris species. Memoir Geological 
Survey 77, 1– 11. 

Lacy, W.S., Van Dijk, D.E., Gordon-Gray, K.D., 1974. New Permian Glossopteris flora from Natal. 

South African Journal of Science 70(5), 154–156. 

Laybourne, R.A., Watts, R., 1990. The development and application of strip mining to previously 

mined underground coal workings. Journal of the South African Institute of Mining and Metallurgy 

90(8), 187–197. 

Le Blanc Smith, G., 1980a. Genetic Stratigraphy of the Witbank Coalfield. Transactions of the 

Geological Society of South Africa 83 (3), 313–326. 

Le Blanc Smith, G., 1980b. Genetic Stratigraphy and palaeoenvironmental controls on coal 
distribution in the Witbank Basin Coalfield. Unpublished PhD thesis, University of the 
Witwatersrand, 242 pp. 

Le Blanc Smith, G., 1980c. Logical-Letter coding system for facies nomenclature: Witbank coalfield. 
Transactions of the Geological Society South Africa 83, 301–311. 

Le Blanc Smith, G., Eriksson, K.A., 1979. A fluvioglacial and glaciolacustrine deltaic depositional 
model for Permo-Carboniferous coals of the northeastern Karoo Basin, South Africa. 
Palaeogeography, Palaeoclimatology, Palaeoecology 27, 67–84. 

Le Roux, J.S., 1974. Paleogeologiese en Paleogeografiese Aspekte van die Etage Rooilae van die 
Sisteem Karoo. Unpublished MSc Thesis, Univiversity of the Orange Free State, Bloemfontein, 295 
pp. 

Leslie, T.N., 1903. The fossil flora of Vereeniging. Transactions of the Geological Society Vol. VI, 82–
88. 

Lindeque, A., De Wit, M.J., Ryberg, T., Weber, M., Chevallier, L., 2011. Deep crustal profile across the 
southern Karoo Basin and Beattie Magnetic Anomaly, South Africa: An integrated interpretation with 
tectonic implications. South African Journal of Geology 114(3/4), 265–292. 

Linning, K., Erasmus, B.J., Lombard, C., Nel, L., Lippold, H.R., 1983. Unpublished Trans-Natal 
Geological Progress Report, 86 pp. 

Lock, B.E., 1980. Flat-plate subduction and the Cape Fold Belt of South Africa. Geology 8, 35–39. 



154 
 

Lucas, S.G., Hancox, P.J., 2001. Tetrapod based correlation of the Upper Triassic of southern Africa. 
Albertiana 25, 5–9. 

Macdonald, A.J., 1988a. Results of the Geological Survey’s 1985-1986 drilling in the western part of 
the Molteno coal province. Open File Report of the Geological Survey of South Africa, 367, 235 pp. 

Macdonald, A.J., 1988b. Demonstrated in situ coal resources in the Molteno Coalfield: Report of the 
Geological Survey of South Africa, 28 pp. 

Macdonald, A.J., 1993. A reassessment of Coal Resources in the Western part of the Molteno Coal 
Province. Bulletin Geological Survey South Africa 116, 1–33. 

Macdonald, A. J., Bredell, J.H., 1984. A review of the economic potential of the Molteno Formation 
coal province, Republics of South Africa and Transkei. Open File Report of the Geological Survey of 
South Africa, 328, 14 pp. 

Macfarlane, N.G., 1985. Floor rolls No. 2 seam at Tavistock Group Collieries. Unpublished Student 
Report. University of the Witwatersrand, 32 pp.  

MacRae, C.S., 1988. Palynostratigraphical correlation between the Lower Karoo sequence of the 
Waterburg and Pafuri coal basins and the Hammanskraal plant macrofossil locality, Republic of 
South Africa. Memoirs of the Geological Survey of South Africa 75, 1–217. 

Mahanyele, P.J., 2010. Interpretation of airborne magnetic data over selected areas of Witbank 
Coalfield, South Africa: An aid to mine planning. Unpublished MSc Thesis, University of Pretoria, 118 
pp. 

Malaza, N., 2013. Basin analysis of the Soutpansberg and Tuli coalfields, Limpopo Province of South 
Africa. Unpublished PhD Thesis, University of Fort Hare, 270 pp. 

Marshall, C.G.A., 1966. Final report on the bore-hole at Somkele, Hlabisa District, Zululand. 
Unpublished Geological Survey of South Africa Report ‘Open File’ RE11, 23 pp. 

Mason, T.R., Christie, A.D.M., 1986. Palaeoenvironmental significance of ichnogenus Diplocraterion 
torell from the Permian Vryheid Formation of the Karoo Supergroup, South Africa. Palaeogeography, 
Palaeoclimatology, Palaeoecology 53(3-4), 249–265. 

Mathew, D., 1974. A statistical and palaeoenvironmental analysis of the Ecca Group in northern 
Natal. Unpublished M.Sc. Thesis, University of Natal, Pietermaritzburg, 158 pp. 

Mayes , G., Prévost, X., 2013. Free State Coalfield Southern Sector  – is it Exploitable? Presentation at 
the 2nd Free State Coal Conference, 15th March, 2013. 

McCourt, S., Brandl, G., 1980. A lithostratigraphic subdivision of the Karoo Sequence in the north-
eastern Transvaal. Annals Geological Survey of South Africa 14, 51–56. 

McKinney, J.S., 1968. Palaeoenvironmental analysis of the Ecca Series, Vierfontein-Bothaville 
Coalfied, Orange Free State, South Africa. Unpaginated Unpublished Report. 

McLachlan, I.R., Anderson, A., 1973. A review of the evidence of marine conditions in Southern 

Africa during Dwyka times. Palaeontologia Africana 15, 37–64. 

McPhee, B., Yates, A.M., Choiniere, J.N., Abdala, F., 2014. The complete anatomy and phylogenetic 

relationships of Antetonitrus ingenipes (Sauropodiformes, Dinosauria): implications for the origins of 

Sauropoda. Zoological Journal of the Linnean Society 171, 151–205. 



155 
 

Mehliss, A.T.M., 1987. Sulphur in South African Coal. The Minerals Bureau of South Africa Report 

9/87, 18 pp. 

Mellor E.T., 1906. The geology of the Transvaal coal measures with special reference to the Witbank 
Coalfield. Memoir of the Geological Survey of the Transvaal 3, 60 pp. 

Meyer, P.C., 2003. Feasibility of thin seam coal mining at Dorsfontein Coal Mine. Unpublished MSc 
Thesis, University of Pretoria, 107 pp. 

Meyer, P.C., 2008. An Independent Competent Person’s report of the Yarl 2962 coal project. 
Prepared for Miranda Mineral Holdings Limited by P.C. Meyer Consulting, 31 pp. 

Meyer, P.C, 2013. Updated independent competent persons report on the resources and reserves of 
the Mbila mining area and the Msebe exploration project. P.C. Meyer Consulting. 

Millsteed, B.D., 1994. Palynological evidence for the age of the Permian Karoo coal deposits near 

Vereeniging, northern Orange Free State, South Africa. South African Journal of Geology 97(1), 15–

20. 

Millsteed, B.D., 1999. Palynology of the Early Permian coal-bearing deposits near Vereeniging, Free 
State, South Africa. Bulletin of the Council for Geoscience South Africa 124, 1–77. 

MINTEK, 2007. Assessment of KwaZulu-Natal Province’s coal mining and coal resources. Compiled 
for Trade and Investment KwaZulu-Natal, 101 pp. 

Modie, B.N., Le Hérissé, A., 2009. Late Palaeozoic palynomorph assemblages from the Karoo 
Supergroup and their potential for biostratigraphic correlation, Kalahari Karoo Basin, Botswana. 
Bulletin of Geosciences 84(2), 337–358. 

Moseley, F.A.D.H., 1909. The coals of the Transvaal: their occurrence, value, economy, and 
application. Transactions of the Institution of Mechanical Engineers, August, 1909. 

Mothemela, P.R., Chabedi, K., 2013. Campaign mining set-up for waste stripping at New Vaal 
Colliery. Journal of the South African Institute of Mining and Metallurgy 113, 311–316. 

Mtimkulu, M.N., 2009. A provisional basinal study of the Waterberg-Karoo, South Africa. MSc 
dissertation, University of Pretoria, South Africa. (http://upetd.up.ac.za/thesis/available/etd-
08172010-191251/). 

Muller, C.J., van Heerden, D., Odendaal, N.J., Clemente, D., 2012. An Independent Qualified Persons’ 
Report on Forbes Coal Dundee Operations in the KwaZulu-Natal Province, South Africa. Prepared by 
Minxcon for Forbes Coal, 205 pp. 

Myburg, C., 2012. Basin Analyses of Springbok Flats. Coaltech 2020 presentation 31st  August 2012. 

Nel, L.T., Jansen H., 1975. The geology of the country around Vereeniging. Expl. Sheet 62, Geological 
Survey of South Africa, 90 pp. 

Nel, L.T., Verster, W.C., 1962. Die geologie van die gebied tussen Bothaville and Vredefort. Inligting 
van Blaaie 2726B (Bothaville) en 2727A (Vredefort). Geological Survey of South Africa. 

North, F.W., 1881. Natal. Report on the coalfields of Klip River, Weenen, Umvoti and Victoria 
Counties, 102 pp. 

http://upetd.up.ac.za/thesis/available/etd-08172010-191251/
http://upetd.up.ac.za/thesis/available/etd-08172010-191251/


156 
 

Nyambe, I.A., Utting, J., 1997. Stratigraphy and palynostratigraphy, Karoo Supergroup (Permian and 

Triassic), mid-Zambezi Valley, southern Zambia. Journal of African Earth Sciences 24(4), 563–583. 

Olsen, P.E., Galton, P.M., 1984. A review of the reptile and amphibian assemblages from the 
Stormberg of southern Africa, with special emphasis on the footprints and age of the Stormberg. 
Palaeontologica Africana 25, 87–110. 

Ortlepp, G.J., 1986. Limpopo Coalfield, in: C.R. Anhaeusser, S. Maske (Eds.), Mineral Deposits of 
Southern Africa. Vol. II. Geological Society of South Africa, Johannesburg, pp. 2057–2061. 

Paulson, C.H., Stone, J.D., 2002. A venure into the unknown: the challenge that was Ermelo Mines. 
Ermelo Mines Services, 191 pp. 

Peatfield, D., 2002. Coal and coal preparation in South Africa – a 2002 review. Journal of the South 
African Institute of Mining and Metallurgy. July/August 2003, 335–372. 

Petrick, A.J., Van Rensburg, W.C.J., Vos, A.D., 1975. Report of the Commission of Enquiry into the 
resources of the Republic of South Africa. Government Printer, Pretoria, 202 pp. 

Pinetown, K.L., Ward, C.L., van der Westhuizen, W.A., 2007. Quantitative evaluation of minerals in 
coal deposits in the Witbank and Highveld Coalfields, and the potential impact on acid mine 
drainage. International Journal of Coal Geology 70(3), 166–183. 

Plumstead, E.P., 1952. Description of two new genera and six new species of fructifications borne on 
Glossopteris leaves. Transactions of the Geological Society of South Africa 55, 281–328. 

Plumstead, E.P., 1956. Bisexual fructifications borne on Glossopteris leaves from South Africa. 
Palaeontographica B 100, 1–25. 

Plumstead, E.P., 1957. Coal in southern Africa. Johannesburg, Witwatersrand University Press, 24 pp. 

Plumstead, E.P., 1958. Further fructifications of the Glossopteridae and a provisional classification 
based on them. Transactions of the Geological Society of South Africa 61, 1–58. 

Plumstead, E.P., 1969. Three thousand million years of plant life in Africa. Alex L. Du Toit Memorial 
Lectures 11. Geological Society of South Africa, 72 pp. 

Plumstead, E.P., 1970. Recent progress and the future of palaeobotanical correlation in 
Gondwanaland, in: Haughton. S.H. (Ed.), Proceedings 2nd IUGS Symposium on Gondwana 
Stratigraphy and Palaeontology. Council for Scientific and Industrial Research, South Africa, 139–144. 

Prevec, R., 2011. A structural re-interpretation and revision of the type material of the glossopterid 
ovuliferous fructification Scutum from South Africa. Palaeontologia Africana 46, 1–19. 

Prevec, R., McLoughlin, S., Bamford, M.K., 2008. Novel double wing morphology revealed in a South 
African ovuliferous glossopterid fructification. Review of Palaeobotany and Palynology 150, 22–36. 

Prevec, R., Labandeira, C.C., Neveling, J., Gastaldo, R.A., Bamford, M.K., Looy, C.V., 2009. Portrait of a 
Gondwanan ecosystem: a new Late Permian locality from Kwazulu-Natal, South Africa. Review of 
Palaeobotany and Palynology 156, 454–493. 

Prevec, R., Gastaldo, R.A., Neveling, J., Reid, S.B., Looy, C.V., 2010. An autochthonous glossopterid 
flora with latest Permian palynomorphs and its depositional setting in the Dicynodon Assemblage 
Zone of the southern Karoo Basin, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 
292(3-4), 391–408. 



157 
 

Pysklywec, R.N., Mitrovica, J.X., 1989. The role of subduction induced subsidence in the evolution of 
the Karoo Basin. Journal of Geology 107, 155–164. 

Raath, M.A., Kithing, J.W., Shone, R.W., Rossouw, G.W., 1990. Dinosaur tracks in Triassic Molteno 
sediments: the earliest evidence of dinosaurs in South Africa? Palaeontologia Africana 27, 89–95. 

Randel, R.P., 1989. A report on the Southern Anthracite (Pty) Limited Block. Iscor Limited. Council for 
Geoscience. Open file report 1988 – 0258, 29 pp. 

Rayner, R.J., Coventry, M.K., 1985. A Glossopteris flora from the Permian of South Africa. South 

African Journal of Science 81, 21–32. 

Reid, D.L., Rex, D.C., Brandl, G., 1997. Karoo basalts in the Ellisras sub-basin, Northern Province. 

South African Journal of Geology  100 (2), 151–156. 

Reisz, R.R., Evans, D.C., Roberts, E.M., Sues, H-D., Yates, A.M., 2013. Oldest known dinosaurian 
nesting site and reproductive biology of the Early Jurassic sauropodomorph Massospondylus. PNAS 
109(7), 2428–2433. 

Rillett, M.P.H., 1954. Plant microfossils from the coal seams near Dannhauser, Natal. Transactions of 

the Geological Society of South Africa 57, 27–37. 

Roberts, D.L., 1986. Depositional framework and controls on peat accumulation in the Vryheid 
Formation of northern Natal (Utrecht and Newcastle areas). Unpublished PhD Thesis, Natal 
University, Durban, 233 pp. 

Roberts, D.L., 1988a. The relationship between macerals and sulphur content of some South African 
Permian coals. International Journal of Coal Geology 10, 399–410. 

Roberts, D.L., 1988b. Controls on peat accumulation in the Permian Vryheid Formation in a part of 
northern Natal, South Africa. International Journal of Coal Geology 9(4), 315–341. 

Roberts, D.L., 1991. The Nitrogen content of Permian coals in the Main Karoo Basin. Conference on 
South Africa’s Coal Resources. Geological Society of South Africa, 6 pp. 

Rowsell, D.M., Connan, J., 1979. Oil generation, migraton and preservation in the Middle Ecca 
Sequence near Dannhauser and Wakkerstroom. Geological Society of South Africa Special 
Publication 6, 131–150. 

Rubidge, B.S., (Ed.) 1995. Biostratigraphy of the Beaufort Group (Karoo Supergroup). South African 
Committee for Stratigraphy, Geological Survey of South Africa Biostratigraphic Series No. 1. 46 pp. 

Rubidge, B.S., 2000. Permo-Triassic fossil vertebrates from the Karoo of South Africa and their use in 
basin analysis. Journal of African Earth Sciences 30(4A), 76. 

Rubidge, B.S., 2005. Re-uniting lost continents – Fossil reptiles from the ancient Karoo and their 
wanderlust. South African Journal of Geology 108 (3), 135–172. 

Rubidge, B.S., Hancox, P.J., Catuneanu, O. 2000. Sequence analysis of the Ecca-Beaufort contact in 

the southern Karoo of South Africa. South African Journal of Geology 103(1), 81–96. 

Rubidge, B.S., Erwin, D.H., Ramezani, J., Bowring, S.A., de Klerk, W.J., 2013. High-precision temporal 
calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo 
Supergroup, South Africa. Geology 41 (3), 363–366. 



158 
 

Ruckwied, K., Götz, A.E., Jones, P. 2014. Palynological records of the Permian Ecca Group (South 
Africa): Utilizing climatic icehouse-greenhouse signals for cross basin correlations. Palaeogeography, 
Palaeoclimatology, Palaeoecology. http://dx.doi.org/10.1016/j.palaeo.2014.05.003. 

Rust, I.C., 1975. Tectonic and sedimentary framework of Gondwana basins in southern Africa, in: 
Campbell, K.S.W., (Ed.), 1975. Gondwana Geology. Australian National University Press, Canberra, 
pp. 537–564. 

Rutherford, A. 2009. Geology, stratigraphy and palaeoenvironment of the area around Thaba 
Nchu, Free State. Unpublished MSc Thesis, University of the Witwatersrand, Johannesburg. 

Ryan P.J., 1968. Stratigraphic and palaeocurrent analysis of the Ecca Series and lowermost Beaufort 
beds in the Karoo basin of South Africa. Unpublished PhD Thesis, University of the Witwatersrand, 
Johannesburg, 218 pp. 

Saggerson, E.P., 1991. Distribution of coal rank in South Africa. Conference on South Africa's Coal 
Resources. Geological Society South Africa, Witbank, 6-9 November, 1991 (Abstracts). 

SAMREC, 2007. The South African Code for the Reporting of Exploration Results, Mineral resources 
and Mineral Reserves (The SAMREC Code). South African Mineral Resource Committee, 1–22. 

SANS 10320, 2004. South African National Standard: South African Guide to systematic evaluation of 
coal resources and coal reserves. Standards South Africa, 140 pp. 

Sawyer, A.R., 1898. The South Rand Coalfield and its connection with the Witswatersrand Banket 
Formation. Transactions of the Institute of Mining Engineers, 14, 312–327. 

Schalenkamp, E.E., 2006. The financial viability of coal reserves within previously mined areas of the 
Witbank Coalfield. Unpublished MSc Thesis, University of Pretoria, 156 pp. 

Schutte, D.J., Ehlers, D.L., 1981. Nkomati Anthracite Interim Report. Unpubl. STK report No. 1574. 12 
pp. 

Schutte, D.J., Ehlers, D.L., Monareng, I., 1982. Southern Anthracite (Pty) Limited. Unpubl. STK report 
No. 3155. 49 pp. 

Scott, A.C., Anderson, J.M., Anderson, H.M., 2004. Evidence of Plant-insect interactions in the Upper 
Triassic Molteno Formation of South Africa. Journal of the Geological Society, 161(3), 401–410. 

Scott, R., 1998. Kuyasa Mining: South Africa’s first black owned and managed mining company. 
Journal of the South African Institute of Mining and Metallurgy October 1998, 273–276. 

Sehlke, K.H.L., Van der Merwe, S.W., 1959. Northern Natal Coalfield (Area No. 2). The Utrecht Area. 
Record of boreholes 1 to 31 drilled for the Department of Mines. Bulletin Geological Survey South 
Africa 29, 1–125. 

Seward, A.C., 1907. On a collection of Permo-Carboniferous plants from the St. Lucia (Somkele) Coal-
field, Zululand, and from the Newcastle District, Natal. Transactions of the Geological Society of 
South Africa 10, 81–89. 

Sibiya, Z.E., 2001. The controls on coal seam thickness and quality at Elders Block, northern Karoo 
Basin. Unpublished Honours Thesis, University of the Witwatersrand, 47pp. [plus Appendixes] 

Sidor, C.A., Hancox, P.J., 2006. Elliotherium kersteni, a new tritheledontid from the Lower Elliot 
Formation (Upper Triassic) of South Africa. Journal of Vertebrate Paleontology 80 (2), 333–342. 



159 
 

Siepker, E.H., 1986. Genetiese stratigrafie en sedimentology van die Opeeenvolging Karoo in die 
westelike en nordelike deel van die Waterbergsteensoolveld. Unpublished MSc Thesis, Rand 
Afrikaans University, Johannesburg, South Africa. 177 pp. 

Skinner, E.M.W., Clement, C.R., Gurney, D.B., Apter, D.B., Hatton, C.J., 1992. The distribution and 
tectonic setting of South-African Kimberlites. Russian Geology and Geophysics 33 (10), 26–31. 

Smith, A., 1985. The mechanization of pillar extraction at The Durban Navigation Collieries (Pty) Ltd. 
Journal of the South African Institute of Mining and Metallurgy 85(5), 151–155. 

Smith, D.A.M., 1970. The distribution of coal quality in the Witbank and Highveld coalfields of South 
Africa. Proc. Pap. Second Gondwana Symposium (IUGS), CSIR, Pretoria, 461–468.  

Smith, D.A.M., Whittaker, R.R.L.G., 1986a. The coalfields of southern Africa: an introduction, in: 
Anhausser, C.R., Maske, S. (Eds.), Mineral Deposits of Southern Africa – Volume II, The Geological 
Society of South Africa, 1875–1878. 

Smith, D.A.M., Whittaker, R.R.L.G., 1986b. The Springs-Witbank Coalfield 1969-1994, in: Anhausser, 
C.R., Maske, S. (Eds.), Mineral Deposits of Southern Africa – Volume II, The Geological Society of 
South Africa, 1969–1984. 

Smith, R.A., 1984. The lithostratigraphy of the Karoo Supergroup in Botswana. Botswana Geological 
Survey Bulletin 26, 184–205. 

Smith, R.M.H., 1990. A review of stratigraphy and sedimentary environments of the Karoo Basin of 

South Africa. Journal of African Earth Sciences 10(1/2), 117–137. 

Smith, R.M.H, Kitching, J.W, 1997. Sedimentology and vertebrate taphonomy of the Tritylodon Acme 
Zone: a reworked palaeosol in the Lower Jurassic Elliot Formation, Karoo Supergroup, South Africa. 
Palaeogeography, Palaeoclimatology, Palaeoecology 131, 29–50. 

Smith, R.M.H., Eriksson, P.G., Botha, W.J., 1993. A review of the stratigraphy and sedimentary 
environments of the Karoo-aged basin of Southern Africa. Journal of African Earth Sciences 16, 143-
169. 

Snyman, C.P., 1961. A comparison between the petrography of South African and some other 
Palaeozoic coals. Publications of the University of Pretoria 15 (N Series), 1–37. 

Snyman C.P., 1989. The role of coal petrography in understanding the properties of South African 
coal. International Journal of Coal Geology 14, 83–101. 

Snyman, C.P., 1998. Coal, in: Wilson, M.G.C., Anhaeusser, C.R. (Eds.), The Mineral Resources of South 
Africa. Handbook 16, Council for Geoscience, South Africa, 136–205. 

South African Committee for Stratigraphy (SACS), 1980. Stratigraphy of South Africa. Part 1 (Comp. 
L.E. Kent). Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia and the 
Republics of Bophuthatswana, Transkei and Venda. Handbook of the Geological Survey of South 
Africa 8, 1–690. 

Sparrow, J., 2006. An Independent Competent Person’s Report on the Overvlakte Project. Prepared 
for the Shareholder’s Zingaro Trade 39 (Pty) Ltd by Gemecs (Pty) Limited, 23 pp. 

Sparrow, J., 2012. The Soutpansberg Coalfield “The Forgotten Basin”. Presentation at the inaugural 
FFF Limpopo Conference, October 2012. 



160 
 

Spears, D.A., Duff, P.McL.D., Caine, P.M., 1988. The West Waterberg tonstein, South Africa. 
International Journal of Coal Geology 9, 221–233. 

Spurr, M.R., Gillard, T.D., Bell, K., 1986. The Utrecht Coalfield of Northern Natal, in: Anhausser, C.R., 
Maske, S. (Eds), Mineral Deposits of Southern Africa, II. Geological Society of South Africa, pp. 2011–
2022. 

SRK, 2013. Environmental impact assessment and environmental management programme for Anglo 
American Inyosi Coal Elders Colliery project, near Kriel, Mpumalanga Province. Background 
Information Document and Invitation to Register, MDEDET Number: 17/2/3 GS-154, February, 2013. 

Stanimirovic, J., 2002. Geological controls on No. 4 Seam roof conditions at New Denmark colliery, 
Highveld Coalfield, Karoo Basin, South Africa. Unpublished MSc Thesis. Rand Afrikaans University, 
Johannesburg, 154 pp. 

Stanistreet, I.G., Le Blanc Smith, G., Cadle, A.B., 1980. Trace fossils as sedimentological and 

palaeoenvironmental indices in the Ecca Group (Lower Permian) of the Transvaal. Transactions of 

the Geological Society of South Africa 83, 333–344. 

Stavrakis, N., 1982. Itinerary and generalised geology of the Eastern Transvaal coalfield. Excursion 
guidebook, Sedimentology Division, Geological Society of South Africa, Special Publication 
(Unpaginated). 

Stavrakis, N., 1986. Sedimentary Environments and Facies of the Orange Free State Coafields, in: 
Anhaeusser, C.R., Maske, S. (Eds.), Mineral Deposits of Southern Africa. Geological Society of South 
Africa, 1939–1952. 

Stavrakis, N., 1989. Sedimentology of the Karoo coal-measures in the Eastern Transvaal, South 
Africa. Unpublished PhD Thesis, University of Strathclyde, Glasgow, Scotland, 201 pp. 

Stavrakis, N., 1991. Regional study of Eastern Transvaal coalfields.  Conference on South Africa’s Coal 
Resources. Geological Society of South Africa, 2 pp. 

Stavrakis, N., Smyth, M., 1991. Clastic sedimentary environments and organic petrology in the 
Orange Free State, South Africa. International Journal of Coal Geology 18, 1–16. 

Steart, F.A., 1920. Some notes on the geology of the north-western portion of the Natal Coalfield. 
Transactions of the Geological Society of South Africa 22, 90–111. 

Stephenson, M.H., McLean, D., 1999. International correlation of Early Permian palynofloras from 
the Karoo sediments of Morupule, Botswana. South African Journal of Geology 102, 3–14. 

Stewart, R.S., Letlotla, S., 2003. The impact of geotechnical factors on high- and low-wall stability. 
Coaltech 2020 Task 1.4, Sub-task 1. CSIR Miningtek, Johannesburg, 43 pp. 

Steyn, J.G.D., Smith, W.H., 1977. Coal petrography in the evaluation of S.A. coals. Coal, Gold and 
Base Minerals, 107–117. 

Steyn, P.P.A., van der Linde, P.J., 1986. Vereeniging-Sasolburg Coalfield, in: Anhausser, C.R., Maske, 
S. (Eds.), Mineral Deposits of Southern Africa. Vol. II, The Geological Society of South Africa, pp. 
1923–1927. 

Stratten, T., 1968. The Dwyka glaciation and its relationship to the pre-Karoo surface. Unpublished 
PhD Thesis, University of the Witwatersrands, Johannesburg, 196 pp. 



161 
 

Stratten, T., 1970. Tectonic framework of sedimentation during the Dwyka period in South Africa. 
Proceed. 2nd International Gondwana Symposium, I.U.G.S., South Africa, 483–490. 

Stuart-Williams, V., 1986. The Syferfontein Colliery – an example of a karstic coal, in: Anhaesser, C.R., 
Maske, S.  (Eds.), Mineral Deposits of Southern Africa, Vol. II, Geological Society of South Africa, 
Johannesburg, pp. 1963–1968. 

Sullivan, J.H., 1995. The geology of the coal-bearing rocks of the Karoo Sequence in the Tshikondeni 
mine area, northern Transvaal. Unpublished MSc Thesis, University of Pretoria, Pretoria. 

Sullivan, J., Brink, V., Sullivan, D., 1994. The Soutpansberg Coalfields. The Geological Society of South 
Africa, pp. 165–170. 

Sullivan, J.H., Camisani-Calzolari, F.A., Eriksson, P.G., 2013. The practical application of vectar 
processed densities in proving the lateral continuity of coal zones and samples in the Ellisras Basin, 
South Africa. South African Journal of Geology 116 (2), 323–345. 

Sutherland, P. C., 1870. Notes on an ancient boulder-clay of Natal. Geological Society London 
Quarterly Journal 26, 514 pp. 

Tankard, A.J., Jackson, M.P.A., Eriksson, K.A., Hobday, D.K., Hunter, D.R., Minter, W.E.L., 1982. 
Crustal evolution of southern Africa: 3.8 billion years of earth history. Berlin, Springer-Verlag, 523 p. 

Tankard, A., Welsink, H., Aukes, P., Newton, R., Stettler, E., 2009. Tectonic evolution of the Cape and 
Karoo basins of South Africa. Marine and Petroleum Geology 26(8), 1379–1412. 

Tankard, A.J., Welsink, H., Aukes, P., Newton, R., Stettler, E., 2009. Tectonic evolution of the Cape 
and Karoo basins of South Africa. Marine and Petroleum Geology 26, 1379–1412. 
Tavener-Smith, R., 1979. Regional control on coal seam occurrence in the north-east Karoo basin. 
South African Journal of Science 75, 353–355. 

Tavener-Smith, R., 1983. Recent geological research on the Vryheid Formation in the northeast part 
of the main Karoo basin. South African Journal of Science 79, 328–332. 

Tavener-Smith, R., Cooper, J.A.G., Rayner, R.J., 1988. Depositional environments in the Volksrust 
Formation (Permian) in the Mhlatuze River, Zululand. South African Journal of Science 91(2), 198–
206. 

Taverner-Smith, R., Mason, T.R., Cristie, A.D.M., Roberts, A.M., van der Spuy, A., 1988. Sedimentary 
models for coal formation in the Vryheid formation, northern Natal. Bulletin of the Geological Survey 
of South Africa 94, 1–46. 

Telfer, C.A., Njowa, G., 2012. Independent Geologist Specialist Report On the Principal South African 
Operating and Non-Operating Mineral Assets of Coal of Africa Limited. Unpublished report by 
Venmyn Deloitte for Coal of Africa Limited, 346 pp. 

Telfer, C.A., Njowa, G., McKenna, N., Myburg, J.A., Dyke, S., Dikgole, L., Orford, T.C., 2013. 
Independent Competent Persons’ Report on the Material Mineral Assets of Continental Coal Limited 
South Africa (CCL SA). Unpublished report by Venmyn Deloitte for Continental Coal Limited, 485 pp. 

Thabo, F.E., Sullivan, J.H., 2000. The geotechnical aspects of Tshikondeni coal mine. Journal of 
African Earth Sciences 31 (1A), 78–79. 



162 
 

Thamm, A.G., 1998. A summarised mineral profile of the Eastern Cape Province, in: Hammerbeck, 
E.C.I., Wilson, M.G.C. (Eds.) A Summarised Mineral Profile of the Provinces in South Africa. Council 
for Geoscience. 

Thirion, N.C., 1982. Geological report on the Msebe Anthracite Prospect, Nongoma, KwaZulu. 
Unpublished report by the Mining Corporation Limited, Pretoria. 

Tovela, S., 2011. The sequence stratigraphy of the Emakhwezini Formation, Lower Beaufort Group, 
Northern KwaZulu-Natal. Unpublished Honours Project, University of KwaZulu-Natal, Westville, 
Durban, 50 pp. 

Trevor, T.G., Mellor, E.T., 1908. Report on a reconnaissance of the north-west Zoutpansberg District. 
Spec. Publ., Geol. Transvaal, 40 pp. 

Trevor, T.G., Du Toit, A.L., 1922. Coal in the northern Waterberg. South African Journal of Industrial 
Engineering 4, 164–170. 

Turner, B.R., 1969a. The stratigraphy and sedimentological history of the Molteno stage in part of 
the North East Cape Province. Unpubl. MSc Thesis, University of the Witswatersrand, Johannesburg. 

Turner, B.R., 1969b. Use of the Indwe sandstone as a stratigraphic marker in the Molteno stage of 

the Karoo System. Palaeontologia Africana 12, 203-204. 

Turner, B.R., 1975. The stratigraphy and sedimentary history of the Molteno Formation in the main 
Karoo basin of South Africa and Lesotho. Unpublished PhD Thesis, University of the Witwatersrand, 
Johannesburg, 314 pp. 

Turner, B.R. 1978. Trace fossils from the Upper Triassic fluviatile Molteno Formation of the Karoo 
(Gondwana) Supergroup, Lesotho. Journal Paleontology 52, 959–963. 

Turner, B.R., 1983. Braidplain deposition of the upper Triassic Molteno Formation in the main Karoo 
(Gondwana) Basin, South Africa. Sedimentology 30, 77–89. 

Turner, B.R., 1999. Tectonostratigraphical development of the Upper Karoo foreland basin: Orogenic 
unloading versus thermally induced Gondwana rifting. Journal of African Earth Sciences 28, 215–238. 

Turner, B.R., Stanistreet, I.G., Whaetley, M.K.G., 1981. Trace fossils and palaeoenvironments in the 
Ecca Group of the Nongoma graben, northern Zululand, South Africa. Palaeogeography, 
Palaeoclimatology, Palaeoecology 36, 113–123. 

Uys, J., 2007. Lithostratigraphy, depositional environments and sedimentology of the Permian 
Vryheid Formation (Karoo Supergroup), Arnot North, Witbank Coalfield, South Africa. Unpublished 
MSc Thesis, University of Johannesburg, 1–112. 

Van Alphen, C., 1990. A sedimentological and Economic study of an Eastern Transvaal Coalfield. 
Unpublished Honours Thesis, 55 pp. 

Van der Berg, H.J., 1980. Die sedimentologie van die Soutpansberg-steenkoolveld met spesiale 
verwysing na steenkoolvorming. Unpublished MSc Thesis, University of Orange Free State, 
Bloemfontein, 127 pp. 

Van der Merwe, J.N., 2006. Beyond Coalbrook: what did we really learn? Journal of the Southern 
African Institute of Mining and Metallurgy 106, 857–868. 



163 
 

Van der Merwe, K., 2011. The geology of the Free State Coalfield. Presentation at the 1st Free State 
Coal Indaba. Fossil Fuel Foundation of South Africa. 

Van der Merwe, K., 2014. Springlake Colliery: an update and new developments. Presentation at the 
8th KZN Coal and Energy Indaba. Fossil Fuel Foundation of South Africa. 

Van Der Westhuizen, M.J., 1948, Steenkoolvoorkomste van die Oos-Kaapprovince. Unpubl. Report of 
the Geological Survey of South Africa, 37 pp. 

Van Dijk, D.E., 1981. A study of the type locality of Lidgettonia africana Thomas, 1958. 
Palaeontologia Africana 24, 43–61. 

Van Heerden, G., 2004a. Geotechnical factors affecting high- and low-wall stability in opencast coal 
mines. Coaltech 2020 Task 1.4, Sub-task 3a. CSIR Miningtek, Johannesburg, 14 pp. 

Van Heerden, G., 2004b. Geotechnical factors affecting high- and low-wall stability in opencast coal 
mines. Coaltech 2020 Task 1.4, Sub-task 3b. CSIR Miningtek, Johannesburg, 16 pp. 

Van Vuuren, C.J., 1981. Depositional models for the Vryheid Formation in the north-eastern part of 

the Karoo Basin – a review. Annals Geological Survey of South Africa 15(1), 1–11. 

Van Vuuren, C.J., Cole, D.I., 1979. The stratigraphy and depositional environments of the Ecca Group 
in the Northern part of the Karoo Basin, in: Anderson, A.M., Van Biljon, W.J. (Eds.), Some 
Sedimentary Basins and Associated Ore Deposits of South Africa, Special Publication, Geological 
Society of South Africa 6, 103–111. 

Veevers, J.J., 2004. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 
185100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth 
Science Reviews 68, 1–132. 

Veevers, J.J., Cole, D.I., Cowan, E.J., 1994. Southern Africa: Karoo Basin and Cape Fold Belt, in: J.J. 
Veevers, J.J., Powell, C.McA. (Eds.), Permian Triassic Pangean basins and foldbelts along the 
Panthalassan margin of Gondwanaland. Geological Society of America Memoir 184, 223–279. 

Venter, F.A., 1934. The geology of the country between Springs and Bethal. Expln. Sheet 51 (Bethal), 
Geological Survey of South Africa, 87 pp. 

Visser, H.N., Krige, L.J., Truter, F.C., 1947. The geology of the country south of Ermelo. Explan. Sheet 
64 (Ermelo). Geological Survey of South Africa, 110 pp. 

Visser, H.N., Cillie, F., Furter, F.J.J., 1958. Die geologie van die gebied om Volksrust. Explan. Sheet 69 
(Volksrust). Geological Survey of South Africa, 134 pp. 

Visser, H.N., Van der Merwe, S.W., 1959. The North-eastern Springbok Flats Coalfield. Records of 
boreholes 1-27. Bulletin of the Geological Survey of South Africa 31, 97 pp. 

Visser, J.N.J., 1986. Lateral lithofacies relationships in the glacigenic Dwyka Formation in the western 
and central parts of the Karoo Basin: Transactions of the Geological Society of South Africa 89, 373–
383. 

Visser, J.N.J., 1987a. The palaeogeography of part of southwestern Gondwana during the Permo-
Carboniferous glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 61, 205–219. 



164 
 

Visser, J.N.J., 1987b. The Influence of topography on the Permo-Carboniferous glaciation in the 
Karoo Basin and adjoining areas, Southern Africa, in: Elliot, D.H., Collison, J.W., McKenzie, G.D., 
Haban, S.M. (Eds), Gondwana Six. American Geophysical Union, 123–129. 

Visser, J.N.J., 1989. The Permo-Carboniferous Dwyka Formation of Southern Africa; deposition by a 
predominantly subpolar marine ice sheet. Palaeogeography, Palaeoclimatology, Palaeoecology 70, 
377–391. 

Visser, J.N.J., 1990. The age of the late Palaeozoic deposits in southern Africa. South African Journal 

of Geology 93, 366–375. 

Visser, J.N.J., 1991a. Self-destructive collapse of the Permo-Carboniferous marine ice sheet in the 
Karoo Basin: Evidence from the southern Karoo. South African Journal of Geology 94, 255–262. 

Visser, J.N.J., 1991b. The paleoclimatic setting of the late Paleozoic marine ice sheet in the Karoo 
Basin of southern Africa, in: Anderson, J.B., Ashley, G.M. (Eds.), Glacial marine sedimentation: 
Paleoclimatic significance. Geological Society of America Special Paper 261, 181–189. 

Visser, J.N.J., 1992. Basin tectonics in southwestern Gondwana during the Carboniferous and 
Permian, in: De Wit, M.J., Ransome, I.G.D. (Eds), Inversion tectonics of the Cape Fold Belt, Karoo and 
Cretaceous basins of southern Africa, 109–115. 

Visser, J.N.J., 1993. A reconstruction of the late Palaeozoic ice sheet on southwestern Gondwana. 
International Gondwana Symosium 8, 449–458. 

Visser, J.N.J., 1994. The interpretation of massive rain-out and debris-flow diamictites from the 
glacial marine environment, in: Deynoux, M., Miller, J.M.G., Domack, E.W., Eyles, N., Fairchild, I.J., 
and Young, G.M., (Eds), Earth’s Glacial Record. Cambridge, Cambridge University Press, 83–94. 

Visser, J.N.J., 1995. Post-glacial Permian stratigraphy and geography of southern and central Africa: 
boundary conditions for climatic modelling. Palaeogeography, Palaeoclimatology, Palaeoecology 
118, 213–243. 

Visser, J.N.J., 1996. Controls on Early Permian shelf deglaciation in the Karoo Basin of South Africa. 
Palaeogeography, Palaeoclimatology, Palaeoecology 125, 129–139. 

Visser, J.N.J., 1997. Deglaciation sequences in the Permo-Carboniferous Karoo and Kalahari basins of 
southern Africa: a tool in the analysis of cyclic glaciomarine basin fills. Sedimentology 44, 507–521. 

Visser, JH.N., Bishopp D.W., Rossouw P.J., 1976. The geology of the Newcastle area and a detailed 
description of the Klip River Coalfield of Northern Natal. Explan. Sheets 2729D (Newcastel), 2730C 
(Utrecht) and 2829B (Elandslaagte), 2830A (Dundee). Memoir Geological Survey of South Africa 68, 
1–198. 

Visser, J.N.J., Kingsley, C.S., 1982. Upper Carboniferous glacial valley sedimentation in the Karoo 

Basin, Orange Free State. Transactions of the Geological Society of South Africa 85, 71–79. 

Visser, J.N.J., Loock, J.C., Colliston, W.P., 1987. Subaqueous outwash fan and esker sandstones in the 
Permo-Carboniferous Dwyka Formation of South Africa.  Journal of Sedimentary Petrology 57 (3), 
467–478. 

Visser, J.N.J., Botha, B.J.V., 1980. Meander belt, point bar, crevasse splay and aeolian deposits from 
the Elliot Formation in Barkly Pass, northeastern Cape. Transactions Geological Society of South 
Africa 83, 55–62. 



165 
 

Visser, J.N.J., Young, G.M., 1990. Major element geochemistry and paleoclimatology of the Permo–
Carboniferous glacigene Dwyka Formation and postglacial mudrocks in southern Africa: 
Palaeogeography, Palaeoclimatology, Palaeoecology. 81, 49–57. 

Von Brunn, V., 1987. A facies analysis of Permo-Carboniferous glaciogenic deposits along a 
Paleoscarp in Northern Natal, South Africa, in: McKenzie, G.D. (Ed.), Gondwana Six: Stratigraphy, 
Sedimentology, and Paleontology, 41. American Geophysical Union, Geophysical Memoir, 113–122. 

Von Brunn, V., 1996. The Dwyka Group in the northern part of Kwazulu/Natal, South Africa; 
sedimentation during late Palaeozoic deglaciation. Palaeogeography, Palaeoclimatology, 
Palaeoecology 125, 141–163. 

Von Brunn, V., Stratten, T., 1981. Late Paleozoic tillites of the Karoo Basin of South Africa, in: 
Hambray, M.J., Harland, W.B. (Eds), Earth's Pre-Pleistocene Glacial Record. Cambridge University 
Press, London, 1004 pp. 

Von Brunn, V., Gravenor, C.P., 1983.  A model for late Dwyka glaciomarine sedimentation in the 
eastern Karoo Basin. Transactions of the Geological Society of South Africa 86, 199–209. 

Von Brunn, V., Talbot, C.J., 1986. Formation and deformation of subglacial intrusive clastic sheets in 
the Dwyka Formation of Northern Natal, South Africa. Journal of Sedimentary Research 
56(1), 35–44. 

Vos, R.G., Hobday, D.K., 1977. Storm beach deposits in the Late Palaeozoic Ecca Group of South 
Africa. Sedimentary Geology 19, 217–232. 

Wagner N.J., Hlatshwayo, B., 2005. The occurrence of potentially hazardous trace elements in five 
Highveld coals, South Africa. International Journal of Coal Geology 63, 228–246. 

Wagner, P.A., 1927. The Geology of the north-eastern part of the Springbok Flats and surrounding 
country. An explanation of Sheet 17 (Springbok Flats), 104 pp. 

Wakerman, B.W., 2003. Geological and mineral economic evaluation and assessment of the Permian 
Karoo Supergroup owned by Eyesizwe Coal (Pty) Ltd, a Black Empowerment Company, South Africa. 
Unpublished PhD Thesis, Rand Afrikaans University, Johannesburg, 290 pp. 

Warren, A.A., Damiani, R.J., 1999. Stereospondyl amphibians from the Elliot Formation of South 
Africa. Palaeontologica Africana 35, 45–54. 

Watkeys, M.K., Sweeney, R.J., 1988. Tuli-Lebombo volcanism and Gondwana rifting. Extended 
abstracts, Geocongress 88, Durban: University of Natal, vol. 38, 725–728.  

Watson, A.D., McGeorge, I.B., 1977. Report on the Geology of 2831B Hlabisa. Unpublished Report for 
the Geological Survey of South Africa, 37 pp. 

Weeber, S.L., Cairncross, B., Falcon, R.M.S., 2000. Mineralogical, petrographic and geological 
controls on coal ash fusion temperature from New Clydesdale Colliery, Witbank Coalfield, South 
Africa. Journal of the South African Institute of Mining and Metallurgy May/June 2000, 181–190. 

Whateley, M.G.K., 1980a. Deltaic and fluvial deposits of the Ecca Group, Nongoma Graben, northern 

Zululand. Transactions of the Geological Society of South Africa 83(3), 345–351. 

Whateley, M.K.G., 1980b. Structural controls of sedimentation in the Ecca Group in northern 
Zululand. Unpublished MSc Thesis, University of the Witwatersrand, Johannesburg, 149 pp.  



166 
 

Winter, M.F., 1985. Lower Permian paleoenvironments of the Northern Highveld Coalfield and their 
relationship to the character of the coal seams. Unpublished PhD Thesis, University of the 
Witwatersrand, Johannesburg, 254 pp. 

Winter, M.F., Cairncross, B., Cadle, A.B., 1987. A genetic stratigraphy for the Vryheid formation in 

the northern Highveld Coalfield, South Africa. South African Journal of Geology 90(4), 333–343. 

Wood, I.D., 1979. The geostatistical evaluation of low-ash coal reserves in No. 2 seam, Witbank area. 

Journal of the South African Institute of Mining and Metallurgy, July 1979, 348–354. 

Wybergh, W.J., 1922. The coal resources of the Union of South Africa. Vol. 1. The coalfields, of 
Witbank, Springs and Heidelberg, and of the Orange Free State. Memoirs of the Geological Survey of 
South Africa 19, 134 pp. 

Wybergh, W.J., 1925. The coal resources of the Union of South Africa, 2: The inland coalfields of 
Natal. Memoirs of the Geological Survey of South Africa 19, 1–180. 

Wybergh, W.J., 1928. The coal resources of the Union of South Africa. Memoirs of the Geological 
Survey of South Africa 19(III), 181 pp. 

Wyley, A., 1856. Report on coal in the Stormberg and adjoining districts. Parliamentary Report G6, 
Cape of Good Hope. 

Xaba, D.S., 2004. Evaluate the remaining resources of low phosphorus coal in Mpumalanga Province. 
Coaltech 2020 Task 1.2.1. CSIR Miningtek, Johannesburg, 32 pp. 

Yates, A. M., Kitching, J. W., 2003. The earliest known sauropod dinosaur and the first steps towards 
sauropod locomotion. Proceedings Royal Society B 270, 1753–1758. 

Yates, A.M., Hancox, P.J., Rubidge, B.S., 2004. First record of a sauropod dinosaur from the upper 
Elliot Formation (Early Jurassic) of South Africa. South African Journal of Science 100, 504–506. 

 

URL’s 

http://www.angloamerican.com/  

http://www.bhpbilliton.com/home/businesses/coal/ 

http://www.bullion.org.za/ 

http://www.coaltech.co.za/ 

http://www.conticoal.com/ 

http://www.dmr.gov.za/ 

http://www.eskom.co.za/ 

http://www.exxaro.com/ 

http://www.forbescoal.com/Projects/Technical-Reports/default.aspx 

http://www.fossilfuel.co.za/ 

http://www.angloamerican.com/business/thermal%20coal.aspx
http://www.bhpbilliton.com/home/businesses/coal/
http://www.bullion.org.za/
http://www.coaltech.co.za/
http://www.conticoal.com/
http://www.dmr.gov.za/
http://www.eskom.co.za/
http://www.exxaro.com/
http://www.fossilfuel.co.za/


167 
 

www.fossilfuel.co.za/conferences/2012/John_Sparrow.pd 

http://www.homelandenergygroup.com/ 

http://www.keatonenergy.co.za/  

http://www.mega-africa.co.za/                                   

http://www.miningweekly.com/ 

http://www.petmin.co.za/somkhele-mining-operations.php 

http://resgen.com.au/ 

http://www.sasol.co.za/ 

http://www.sablemining.com/ 

http://signetcoal.com/projects.html 

http://www.universalcoal.com/ 

http://www.vaaltriangleinfo.co.za/history/resources/coal_1.htm 

 

http://www.fossilfuel.co.za/conferences/2012/John_Sparrow.pd
http://www.homelandenergygroup.com/
http://www.keatonenergy.co.za/keatonenergy/home.html
http://www.mega-africa.co.za/Groenfontein.html
http://www.miningweekly.com/
http://www.petmin.co.za/somkhele-mining-operations.php
http://resgen.com.au/
http://signetcoal.com/projects.html
http://www.universalcoal.com/
http://www.vaaltriangleinfo.co.za/history/resources/coal_1.htm

	Highlights

