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Abstract 

Accumulating evidence within the last two decades indicates the association between 
cardiovascular disease (CVD) and chronic inflammatory state. Under normal conditions 
fibrin clots are gradually degraded by the fibrinolytic enzyme system, so no permanent 
insoluble deposits remain in the circulation. However, fibrinolytic therapy in coronary and 
cerebral thrombosis is ineffective unless it is installed within 3-5 hours of the onset. We 
have shown that trivalent iron (FeIII) initiates a hydroxyl radical-catalyzed conversion of 
fibrinogen into a fibrin-like polymer (parafibrin) that is remarkably resistant to the proteo-
lytic dissolution and thus promotes its intravascular deposition. Here we suggest that the 
persistent presence of proteolysis-resistant fibrin clots causes chronic inflammation. We 
study the effects of certain amphiphilic substances on the iron- and thrombin-induced 
fibrinogen polymerization visualized using scanning electron microscopy. We argue that the 
culprit is an excessive accumulation of free iron in blood, known to be associated with CVD. 
The only way to prevent iron overload is by supplementation with iron chelating agents. 
However, administration of free radical scavengers as effective protection against persistent 
presence of fibrin-like deposits should also be investigated to contribute to the prevention 
of cardiovascular and other degenerative diseases. 
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INTRODUCTION 

Numerous epidemiological and large prospective studies have shown that hypercoagula-
bility [1] and the increased blood level of fibrinogen (FBG) are important risk factors for 
cardiovascular disease [2-4]. It is generally agreed that the higher content of fibrinogen in 
plasma the greater the chance of thrombus formation, therefore its level should be 
maintained as low as possible. It should be remembered, however, that critical factor in 
thrombosis is not the absolute amount of FBG, but the fate of its thrombin-generated 
product, fibrin. Under physiological conditions fibrin clots are gradually, albeit completely, 
removed from the site of vessel wall injury by the powerful fibrinolytic system of blood [5]. 

However, if for some reason the fibrinolytic system is inefficient, persisting thrombi will 
obstruct the flow of blood with all its pathological consequences. The best example of such 
a situation is the use of a thrombin-like enzyme of viper venom (Ancrod) for the prevention 
of thrombosis [6]. Thus, despite a complete conversion of all circulating FBG to fibrin, no 
persistent thrombi are produced due to the solid phase activation of fibrinolysis by fibrin [7]. 
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Disseminated intravascular thrombosis occur only when fibrinolysis is inhibited by eg. 
Aprotinin [8]. 

The presence of fibrin-like material in atherosclerotic plaques was first observed over 150 
years ago by Karl Rokitansky [8] and later confirmed by other researchers [1, 9-11]. In 1995 
Elspeth Smith documented the existence of fibrinogen-related antigens (FRA) the insoluble 
fraction obtained from atherosclerotic intima [12]. According to this author FRA is present at 
the surface as well as deep inside the plaques thus providing scaffolding for migration and 
proliferation of smooth muscle cells. It should be emphasized that this type of insoluble FGB 
deposits are morphologically different from fibrin present in thrombi formed as a result of 
plaque raptures [13]. This fact obscures identification of fibrin-like material present inside 
the arterial wall, and may perhaps explain why the attention of researches were drawn 
away and directed to a more popular concept of the role of cholesterol [14]. 

The presence of insoluble FBG deposits in atherosclerotic plaques was also attempted to be 
explained by the loss of negative charge of the arterial wall of subjects with CVD. It was 
demonstrated that the amount of acid mucopolysaccharides (AMPS) extractable from the 
arterial intima was significantly lower in CVD patients as compared to young and healthy 
subjects [15]. According to this idea AMPS would form soluble complexes with blood fibrin 
monomers thus preventing their anchoring and deposition on the endothelial cells. How-
ever, this mechanism would require a chronic activation of intravascular blood coagulation 
that has still to be proven. 

 

THE ROLE OF IRON 

Although atherosclerosis is also known to be associated with the inhibition of fibrinolysis, no 
specific mechanism and/or agent(s) have been identified. Studies by Undas and collabora-
tors shed some light on this problem by showing that the susceptibility of fibrin clot to lysis 
is affected by the structure and permeability of fibrin network [16]. This phenomenon is 
compatible with the observed thrombolytic resistance in patients with coronary and/or 
cerebral thrombosis [17]. 

Another important fact is that there is a relationship between body iron overload and 
pathogenesis of numerous degenerative diseases, including atherosclerosis [18-23]. 
Particularly relevant is the extensive review by D.B.Kell on the role of free blood iron in 
various pathological conditions. [24]. In addition, links have been found to exist between 
iron body stores, cardiovascular risk factors and hypercoagulability [25, 26]. Moreover, in 
experimental models the infusion of trivalent iron salts was shown to cause diffused 
thrombosis [27]. It is a common belief that free blood iron, via the Fenton-like reaction, is 
responsible for so-called oxidative stress that, in turn, leads to atherosclerosis and related 
cardiovascular diseases [28]. Yet, despite this attractive, albeit simplistic, concept no 
effectiveness of antioxidant therapy has been demonstrated [29]. As a result numerous 
natural products (specifically polyphenols) are not being clinically tried because they had 
been labeled as antioxidants. This highly controversial and, in fact, damaging notion was 
dealt with in a recent article, which emphasized the importance of polyphenolic substances 
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as iron chelating and free radical scavenging agents that may be neither oxidants nor 
antioxidants [30]. 

Iron-Induced Conversion of Fibrinogen to Parafibrin 

We have recently documented that trivalent iron ion (FeIII) generates in aqueous solutions 
powerful hydroxyl radicals that subsequently modify fibrinogen molecules converting them 
to insoluble fibrin-like polymer [31]. It should be emphasized that such a polymer is not only 
resistant to fibrinolytic dissolution, but also to proteolytic digestion, i.e. with chymotrypsin, 
that normally degrades fibrin(ogen) into smaller polypeptide fragments. Protein chemistry 
teaches us that undesirable molecular interactions in blood proteins are prevented by 
holding their hydrophobic groups inside the interior of protein tridimensional structures 
stabilized by intra-molecular disulfide bonds. Once these bonds are broken the polypeptide 
chains become unfolded with the exposure of hydrophobic domains which form inter-
molecular bonds resulting in the formation of large aggregates. It is of great importance to 
note that such aggregates cannot be degraded by the proteolytic enzymes as is the case 
with human prion proteins [32] and bacterial hydrophobins [33]. Consequently, it is often 
very difficult to identify insoluble fibrin deposits in pathologically affected organs in various 
chronic diseases, because no antigen can be released into the liquid phase of the extracted 
tissues. In concordance with this, the presence of insoluble fibrin(ogen) deposits can only be 
demonstrated by a direct immunochemical staining of the tissue sections. 

Parafibrin as an Inflammation Inducer 

The resistance of fibrin clots to enzymatic degradation can now be explained by our finding 
of the alternative iron-induced mechanism of blood coagulation (Fig. 11). According to this 
concept free iron of blood (Fe III) generates hydroxyl radicals, which in turn convert circu-
lating FBG into an insoluble fibrin-like material ( or parafibrin) without the action of 
thrombin [31]. It should be strongly emphasized that this pseudo or parafibrin is one of very 
few proteins, such as prions [32] and bacterial hydrophobins [33], that are totally resistant 
to enzymatic proteolysis. As a consequence such a dense fibrin polymer acquires the 
features of a foreign body and attracts macrophages resulting in a permanent state of 
inflammation known to be associated with atherosclerosis [34-37]. Also it is of interest to 
note the reports on the relationship between inflammation and blood coagulation. 
Moreover there are numerous experimental and clinical studies that indicate the rela-
tionship between inflammation, iron overload and cardiovascular diseases [20, 38-40]. 



4 
 

 

Fig. (1). Conversion of plasma fibrinogen into insoluble polymers catalyzed by thrombin (left panel), and the 
formation of dense fibrin deposits generated with iron (right panel). By contrast to the enzymatically formed 
fibrin susceptible to fibrinolysis, the iron-induced fibrin polymer is remarkably resistant to proteolytic 
degradation. Reprinted with permission from Pol Arch Med Wewn. Vol.122, p.120 (Fig.6), 2012. 

31
 

Protective Mechanisms Against Iron-Induced Pathology 

As shown in Fig. (11) the intravascular formation of modified fibrin can be inhibited at two 
stages. First, and perhaps the most important, is the inactivation of free iron, usually 
achievable by the administration of a variety of iron chelators [24, 41-47], as well as by 
other means of the reduction of body iron stores [48]. If this fails, the next step is elimi-
nation of hydroxyl radicals by means of a number of natural and/or synthetic scavengers. 
The hydroxyl radical scavenging reaction occurs by virtue of aromatic hydroxylation, as 
exemplified by the reaction with salicylic acid known to prevent inflammation and its 
consequences [47]. This reaction is believed to be responsible for the beneficial health 
effects of polyphenolic substances present in fruits and vegetables of the so-called 
Mediterranean diet [49]. Small molecular weight phenolic compounds such as chlorogenic 
acid, ferulic and coumaric acids, consumed with certain food products, become even more 
effective hydroxyl radical scavengers due to their enhanced absorption from the alimentary 
track. The larger molecules of polyphenols have to be first metabolized by the intestinal 
flora (probiotics) in order to achieve their in vivo health beneficial effect [50]. 

In concert with this observation it is the fact that the altered fibrin structure argued to be 
associated with cardiovascular disease (CVD) can be normalized by the pretreatment with 
hydrophilic substances e.g. high-density lipoprotein (HDL) [51] and/or human serum  
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Fig. (2). Effects of certain amphiphilic substances on the iron- and thrombin-induced fibrinogen (FGB) 
polymerization visualized USING scanning electron microscopy, A. Control: Purified fibrinogen (PF) and ferric 
chloride (FC); B. PF + Tween 20 + FC ; C. PF + high-density lipoprotein + FC; D. PF + low-density lipoprotein + FC; 
E. Low-albumin plasma (LAP)+ thrombin; F. LAP + purified human albumin + thrombin; G. Whole blood of a 
stroke patient; H. Normal whole blood + FC. Scale = 1 µm. 



6 
 

albumin known to be decreased in CVD [52-55]. The protective effect of such substances is 
documented here using SEM method for HDL (Fig. 2C2C), and for a non-ionic detergent 
Tween 20 (Fig. 2A2A and BB). These results stand in contrast with the potentiation of iron-
induced dense parafibrin formation exerted by low density lipoprotein (Fig. 2D2D). It is also 
possible that the health beneficial effect of human serum albumin (HSA), a highly hydro-
philic protein, is due to the restoration of normal fibrin strands generated with thrombin 
(Fig. 2E2E and FF). Therefore, it can be concluded that it is not just iron homeostasis, but the 
blood content of hydrophilic and polyphenolic agents that is important in the prevention of 
atherosclerosis. 

THE ROLE OF RED BLOOD CELLS 

Another pathologic process leading to atherosclerosis is the impaired blood flow caused by 
the intravascular aggregation of red blood cells (RBC). Although its mechanism is not 
completely understood, it is well known that the elevated erythrocyte sedimentation rate 
(ESR) is associated with inflammation and CVD. (56-59) We have shown for the first time 
that the abnormal RBC morphology induced by iron ions added to normal blood is strikingly 
similar to that observed in blood of stroke patients [60] as well as of subjects with diabetes 
mellitus [61]. These changes are shown here in Fig. (2G2G) (Stroke) and H (healthy blood 
with added ferric iron). It is argued that the close association between RBC and the modified 
fibrinogen molecules can be caused by the interaction between hydrophobic epitopes on 
the cell membranes and those of the soluble fibrin protofibrils generated with iron (Fig. 11). 
This mechanism may explain significant reduction of blood flow [62] and increased blood 
viscosity in patients with thrombotic arterial disease [63]. The relationship between inflame-
mation and elevated ESR was emphasized years ago by Zacharski and Kyle [64]. Finally, it 
should be noted that RBC aggregation and sedimentation were originally thought to be 
caused by blood soluble fibrin monomers by virtue of their interaction with hydrophobic 
epitopes on RBC membranes [65]. However, this concept was abandoned in view of the 
absence of any evidence of the link between chronic activation of intravascular blood 
coagulation and ESR. The concept of iron-induced parafibrin formation offers more plausible 
mechanism of the relationship between hemorheologic disturbances and inflammation. 

 

CONCLUSION  

In conclusion, we postulate in this paper that the excess of blood free iron is responsible for 
the non-enzymatic generation of insoluble fibrin-like material (parafibrin) that, when 
deposited on the arterial wall, initiates inflammatory reactions. This pathological process, 
very different from the classical activation of blood coagulation, can be prevented by 
substances that chelate iron, scavenge hydroxyl radicals, and inhibit hydrophobic inter-
actions in proteins. However, in view of the fact that, so far, there is no known agent or a 
biological process that can degrade parafibrin, an interdisciplinary research approach is 
needed to find an effective method for the elimination from the human body this unique 
inducer of chronic inflammation. 
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