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Abstract
The technique of Minimized Integrated Exponential Error for Low Dispersion and Low 
Dissipation, (MIEELDLD) was introduced in Appadu and Dauhoo (2011), Appadu and 
Dauhoo (2009) and extensive work on this technique is reported further in Appadu (In 
Press), Appadu (2012). The technique enables us to assess the shock-capturing properties of 
numerical methods. It also allows us to find suitable values for parameters present in 
numerical methods in order to optimise their dissipative and dispersive properties (Appadu 
2012). This technique basically makes use of a physical quantity called the Integrated Ex-
ponential Error for Low Dispersion and Low Dissipation, IEELDLD.
In this work, we obtain the IEELDLD for some explicit, quasi-implicit and implicit meth-
ods. We use MIEELDLD to obtain an explicit scheme with more effective shock-capturing 
properties than Gadd and Carpenter’s numerical schemes. Also, an implicit method is con-
structed which is almost similar to the one derived by Dehghan (2005) and which has also 
better shock-capturing properties as compared to the Crank-Nicolson method.

keyword:
dispersion, dissipation, cfl number, Minimized Integrated Exponential Error for Low Dis-
persion and Low Dissipation.

Nomenclature:
I =

√
(−1); k: time step; h: spatial step (in 1-D); β: advection velocity; r: cfl/Courant

number; r =
βk

h
; θ: wave number (in 1-D); w: phase angle in 1-D; w = θh; n: time level;

RPE: relative phase error per unit time step; AF : amplification factor; AFM : Modulus
of Amplification Factor; AFM = |AF |; IEELDLD: Integrated Exponential Error for Low
Dispersion and Low Dissipation; MIEELDLD: Minimised Integrated Exponential Error
for Low Dispersion and Low Dissipation.

1 Introduction

Finite difference methods (Anderson et al. 1984) are probably the most popular and
often the most simple numerical approach to solve partial differential equations. They
have been applied to most computational fields of science and engineering such as fluid
dynamics, physical oceanography, mathematical biology, computational aeroacoustics and
electromagnetics. Despite their simplicity and popularity, the design of both accurate and
efficient difference methods is nontrivial.
The pioneering work of the theoretical study of finite difference scheme was made by Courant
et al. (1928). Kreiss (1968) proposed the dissipation and dispersion of finite difference
schemes with Fourier method. Von Neumann and Richtmyer (1950) developed Fourier
analysis method of finite difference scheme. Hirt (1968) introduced the remainder analysis
approach of finite difference scheme and introduced the idea of modified partial differen-
tial equation of finite difference scheme. Liu (1995) proposed the remainder-effect analysis
method which combines the study of the accuracy, consistency, stability, dissipation, dis-
persion and group velocity effect of finite difference schemes. The remainder-effect analysis
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method has been used to reform unstable schemes, control numerical dissipation, dispersion
and group velocity effect in order to design and optimise finite difference schemes. Unsta-
ble schemes cannot be regarded as uninteresting as they can be reformed into stable ones.
Many unstable difference schemes like Richardson scheme of the model parabolic equation
can be changed under the remainder effect analysis method. Also, Wang (2010) has devised
a designing algorithm which enables the construction of accurate and efficient difference
methods for the 1-D linear advection-diffusion equation. His idea is based on the modified
equation devised by Warming and Beam (1976).

In Computational Fluid Dynamics, shock-capturing methods are a class of techniques for
computing inviscid flows with shock waves. Computation of flow through shock-waves is
an extremely difficult task because such flows result in sharp, discontinuous changes in flow
variables namely pressure, temperature, density, and velocity across the shock.
From an historical point of view, shock-capturing methods can be classified into two general
categories namely classical methods and modern shock capturing methods (high-resolution
schemes). Some examples of classical shock-capturing methods are Lax-Wendroff, Beam-
Warming, Lax-Friedrichs and Fromm’s schemes. Modern shock-capturing schemes include
high order Total Variation Diminishing (TVD) scheme first proposed by Harten et al.
(1987), Flux-Corrected Transport scheme introduced by Boris and Book (1976) and Es-
sentially Non-Oscillatory Schemes (ENO) proposed by Harten et al. (1987).

This paper is devoted to the study of some classical numerical schemes to the 1-D linear
advection equation,

ut + βux = 0. (1)

The paper is organised as follows. In section 2, we explain briefly the terms associated
with the dissipation/dispersion of numerical methods. In section 3, we describe briefly
our technique of optimisation namely, the Minimised Integrated Exponential Error for Low
Dispersion and Low Dissipation MIEELDLD used to minimise dispersion/dissipation in
regions of shocks. In section 4, we consider the weighted explicit finite difference formula.
Based on the quantity, IEELDLD, we deduce that explicit methods such as Third-order
Upwind, Rusanov’s third order, Rusanov’s fourth order and Carpenter’s method are quite
good shock-capturing methods. However, the Gadd (Gadd 1978) and Crowley methods
(Crowley 1968) can be improved. In section 5, we propose a new explicit method baptised
as AR scheme with improved shock-capturing scheme as compared to the Carpenter and
Gadd schemes. In section 6, we study the shock-capturing properties of quasi-implicit
schemes such as Box, Roberts and Weiss schemes. Some implicit methods are discussed in
section 7. We then optimise the second order implicit scheme in section 8. In section 10, we
are able to optimise a general implicit scheme which is termed as the Implicit AR scheme
and show that this method is almost equivalent to the scheme proposed by Dehghan (2005)
which is discussed in section 9. Lastly, concluding remarks about the salient features of this
paper are included in section 11.

2 Damping and Oscillatory characteristics of numerical schemes approximating the
1-D Linear Advection Equation

All linear numerical schemes are either dispersive or dissipative (Trac and Pen 2003).
In the case of dispersive schemes, oscillations are generated in regions of discontinuity. The
relative phase error (RPE) is a measure of the dispersive character of a scheme. This
quantity is a ratio and measures the velocity of the computed waves to that of the physi-
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cal waves. It is calculated as RPE = −arg(ξ)

rw
(Morton and Mayers 1994), where arg(ξ)

denotes the argument of the amplification factor, r is the cfl number and w is the phase
angle of the numerical scheme under consideration. If the RPE is greater than one, the
computed waves appear to move faster than the physical waves thus causing phase lead,
hence post-shock oscillations (Hirsch 1988) in regions of discontinuity. A ratio less than
one implies that computed waves will move slower than physical waves, causing phase lag
hence pre-shock oscillations in regions of discontinuity. A ratio of one indicates that the
finite difference solution has no phase error and therefore non-physical oscillations are not
present.

Dissipation is defined as the constant decrease with time of the amplitude of plane waves as
they propagate in time. This causes damping behaviour to be induced especially in regions
of discontinuity. If the modulus of the amplification factor is equal to one, a disturbance
neither grows nor damps (Hirsch 1988). This is an ideal property for an approximation of
pure convection. The modulus of the amplification factor is also a measure of the stability of
a scheme. If this value is greater than one, this creates instability while damping is present
whenever the value is less than one (Hirsch 1988). When the modulus of the amplification
factor exceeds one, this indicates an unstable mode. The modulus of the amplification factor
is denoted by AFM and is calculated as AFM = |ξ|, where ξ is the Amplification Factor.

3 Technique of Minimized Integrated Exponential Error for Low Dispersion and Low
Dissipation

In this section, we describe briefly the technique of Minimized Integrated Exponential
Error for Low Dispersion and Low Dissipation (MIEELDLD). This is described in great
details in Appadu and Dauhoo (2011) and further work is listed in Appadu (In press), Ap-
padu (2012), Appadu and Dauhoo (2009).
The Von Neumann method is used to obtain the amplification factor of the numerical
scheme approximating the linear advection equation. This method is based on the Fourier
transform. We shall consider a single harmonic of the form uni = ξn eIθih with ξn being
the amplification factor, θh is the phase angle and I =

√
−1. The amplification factor is

obtained as ξ =
ξn+1

ξn
.

A difference scheme is considered stable for a chosen value of the Courant number, r if the
modulus of the amplification factor, ξ is less than or equal to unity, for all phase angle,
w ∈ (0, π), over one complete time-step.
The Integrated Exponential Error for Low Dispersion and Low Dissipation, IEELDLD (in
its simplest form) when used to find the optimal cfl of a numerical scheme is described as:

IEELDLD =

∫ w1

0
eeldld dw,

where

eeldld = exp
(∣∣∣|1−RPE| − (1−AFM)

∣∣∣)+ exp(|1−RPE|+ (1−AFM))− 2.0, (2)

and w1 is a constant.

For a stable numerical scheme, the dispersion and dissipation errors are calculated as
|1−RPE| and (1−AFM) respectively.
We now explain briefly how we have devised the concept of MIEELDLD as a technique
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to control dissipation and dispersion in numerical schemes.
For a scheme to have Low Dispersion and Low Dissipation, we require

|1−RPE|+ (1−AFM) −→ 0.

Also when dissipation neutralises dispersion optimally, we have,∣∣∣|1−RPE| − (1−AFM)
∣∣∣ → 0.

Thus on combining these two conditions, we get the following condition necessary for dis-
sipation to neutralise dispersion and for Low Dispersion and Low Dissipation character to
be satisfied: ∣∣∣|1−RPE| − (1−AFM)

∣∣∣+ (|1−RPE|+ (1−AFM)) −→ 0.

Similarly, we expect

eeldld = exp
(∣∣∣|1−RPE| − (1−AFM)

∣∣∣)+ exp(|1−RPE|+ (1−AFM))− 2 −→ 0,

in order for Low Dispersion and Low Dissipation properties to be achieved.
We next explain how the integration process is performed in order to obtain the optimal
parameter.
Only one parameter involved
If the cfl number is the only parameter, we compute∫ w1

0
eeldld dw,

for a range of w ∈ [0, w1], and this integral will be a function of r. The optimal cfl is the
one at which the integral quantity is closest to zero.

Two parameters are involved
We next consider a case where two parameters are involved and whereby we would like to
optimise these two parameters.

Suppose we want to obtain an improved version of the Fromm’s scheme which is made
up of a linear combination of Lax-Wendroff (LW) and Beam-Warming (BW) schemes. Sup-
pose we apply BW and LW in the ratio λ : 1− λ. This can be done in two ways.

In the first case, if we wish to obtain the optimal value of λ at any cfl, then we com-
pute the double integral, ∫ r1

0

∫ w1

0
eeldld dw dr, (3)

which will be in terms of λ.

The value of r1 is chosen to suit the region of stability of the numerical scheme under
consideration while w1 is chosen such that the approximated RPE ≥ 0 for r ∈ [0, r1]. In
cases where phase wrapping phenomenon does not occur, we use the exact RPE instead of
the approximated RPE and in that case, w ∈ [0, π].

The second way to optimise a scheme made up of a linear combination of Beam-Warming
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and Lax-Wendroff is to compute the IEELDLD as
∫ w1

0 eeldld dw and the integral ob-
tained in that case will be a function of r and λ. Then, a 3-D plot of this integral with
respect to r ∈ [0, r1] and λ ∈ [0, 1] enables the respective optimal values of r and λ to be
located. The optimised scheme obtained will be defined in terms of both a cfl number and
the optimal value of λ to be used.

In Appadu and Dauhoo (2011), we have obtained the optimal cfl for some explicit methods
like Lax-Wendroff, Beam-Warming, Crowley, Upwind Leap-Frog and Fromm’s schemes. In
Appadu and Dauhoo (2009), we have combined some spatial derivatives with an optimised
time derivative proposed by Tam and Webb (1993) in order to approximate the 1-D linear
advection equation. The results from some numerical experiments were quantified into dis-
persion and dissipation errors and we have found that the quality of the results is dependent
on the choice of the cfl number, even for optimised methods. In Appadu (2012), we use
the technique to understand why not all composite methods can be effective to control dis-
sipation and dispersion in regions of shocks. In Appadu (In press), we consider the family
of third order methods proposed by Takacs where we optimize two parameters, namely the
cfl number and another variable which also controls dispersion and dissipation. Also, the
optimal cfl for some multi-level schemes has been obtained.
In this work, our aim is to compare shock-capturing properties of some numerical schemes.
The phenomenon of phase wrapping can occur and hence we have to work with the approx-
imated RPE when computing the IEELDLD. Since, at times we have to limit the range
of w to be less than π so that the approximated RPE ≥ 0, therefore, in this work we limit
w ∈ [0, 1.0] when computing the IEELDLD as this range of w will allow the approximated
RPE to be calculated such that it is always greater or equal to zero.

4 Two-Level Explicit Schemes

We consider the weighted explicit finite-difference formula approximating Eq. (1) as
described by Dehghan (2005):

un+1
i = − r

12
(6ϕ+ γ1) u

n
i−2 +

r

6
(3 + 3θ + 9ϕ+ γ1) u

n
i−1

−r

6
(3− 3θ − 3ϕ+ γ1) u

n
i+1 +

rγ1
12

uni+2 +
1

2
(2− 3rϕ− 2rθ) uni ,(4)

where r =
βk

h
.

4.1 θ = 1 and γ1 = 0

For the case, θ = 1 and γ1 = 0 in Eq. (4), the only method treated in Dehghan (2005)
corresponds to ϕ = 0 and the method is the Upwind scheme. The scheme is stable for
0 < r ≤ 1. Our aim here is to fix the value of θ as one and γ1 as zero and use the technique
of MIEELDLD to find the optimal value of ϕ.
The amplification factor for the method described by Eq.(4) for the case θ = 1 and γ1 = 0
is given by

ξ = 1 + (cos(w)− 1) r + (−1 + 2 cos(w)− cos2w) rϕ+

I r sin(w)
(
ϕ(cos(w)− 1)− 1

)
.(5)
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We then compute the IEELDLD as∫ 1

0
eeldld dw.

The approximated RPE is given by

1 +
1

6
(−1 + 3ϕ+ 3r − 2r2) w2 +( 1

120
− 1

8
ϕ+

(1
2
ϕ− 1

8

)
r +

(
− 1

2
ϕ+

5

12

)
r2 − 1

2
r3 +

1

5
r4
)
w4.(6)

We obtain the contour plot of the IEELDLD vs ϕ vs r in Fig. (1(a)) and it is seen that
the IEELDLD values are closest to zero for ϕ = 0 and r = 1. We also examine whether
there exists a relationship between ϕ and r which corresponds to an optimised method.
Thus, we obtain a contour plot of the IEELDLD vs ϕ vs r for the least possible values
of IEELDLD, in that case, IEELDLD ∈ [1 × 10−4, 1 × 10−3]. The plot is shown in Fig.
(1(b)) and we see that a possible relationship can be ϕ = 1− r.
Thus, we can conclude the following. If we fix θ = 1 and γ1 = 0, we get an optimised
method when r −→ 1 and ϕ −→ 0. Also, for r −→ 1 and ϕ −→ 0, we observe that the
optimal relation can be described by ϕ = 1− r.

4.2 θ = r and γ1 = 0

For the case θ = r and γ1 = 0, four explicit methods have been described in Dehghan
(2005). These are:
(a) Leith or Lax-Wendroff (Lax and Wendroff 1960) with ϕ = 0 and the range of stability
is 0 < r ≤ 1.
(b) Beam-Warming (Warming and Beam 1976) with ϕ = 1− r and r ∈ [0, 2].

(c) Fromm (Fromm 1968) with ϕ =
1− r

2
and r ∈ [0, 1].

(d) Third order Upwind (Leonard 1984) scheme with ϕ =
1− r2

3
and r ∈ [0, 1].

In this section, we fix θ = r and γ1 = 0 in Eq. (4) and find out whether any of the numerical
schemes described above in (a), (b), (c), (d) can be recovered when we use MIEELDLD.
The amplification factor of the method described in Eq. (4) for the case θ = r and γ1 = 0
is given by

ξ = 1 + (− cos2w + 2 cosw − 1) rϕ+ (cos(w)− 1)r2

+I r sin(w)
(
(cos(w)− 1)ϕ− 1

)
.(7)

The approximated RPE is

1 +
1

6
(3ϕ− 1 + r2) w2 +

1

120
(1− 15 ϕ+ 30 ϕ r + 5r2 − 6r4) w4. (8)

We next compute the IEELDLD which is a function of r and ϕ. We obtain contour
plot of the IEELDLD vs r vs ϕ in Fig. (2(a)). Zoomed plot for the least possible values
of IEELDLD, in that case, IEELDLD ∈ [1× 10−4, 5× 10−4] is shown in Fig. (2(b)).
We also observe that a linear relationship between ϕ and r exists which gives rise to an

optimised scheme for r → 1 and ϕ → 0 as shown in Fig. 2(b). This relationship is ϕ =
1− r

2
which actually corresponds to the Fromm’s scheme.
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To summarise, four methods are possible for θ = r and γ1 = 0. By fixing θ = r and γ1 = 0
in Eq.(4) and applying MIEELDLD, we observe that an optimised scheme is possible and
it corresponds to the Fromm’s method for the special case: ϕ → 0 and r → 1.

4.3 Third order Upwind

The third-order upwind scheme (Leonard 1984) is described by Eq. (4) for the case

θ = r, ϕ =
1− r2

3
and γ1 = 0. It has been described as being a very robust and efficient

algorithm for computational fluid mechanics.

On replacing θ by r and ϕ by
(1− r2

3

)
, the amplification factor of the resulting method is

given by

ξ = 1 +
r

3
(− cos2w + 2 cos(w)− 1) + r2 (cos(w)− 1) +

r3

3
(cos2w − 2 cos(w) + 1) + I

r sin(w)

3(
(cos(w)− 4 + γ1(cos(w)− 1) + r2 sin(w)(1− cos(w))

)
.(9)

A contour plot of the IEELDLD vs γ1 vs r is illustrated in Fig. (3(a)) and we
observe that the values are least as γ1 −→ 0. By limiting the range of IEELDLD ∈
(1 × 10−3, 9 × 10−3), we observe that the IEELDLD is least especially for γ1 −→ 0 and
r −→ 1, as depicted in Fig. (3(b)). However, it is quite difficult to find a relationship for
γ1 as a function of r which defines the least possible values of IEELDLD.

4.4 Rusanov’s third order scheme

On plugging θ = r, ϕ =
2(1− r4)

15 r
and γ1 =

(r2 − 1) (1− 2r) (2− r)

5 r
in Eq. (4), we

obtain the Rusanov’s third order method (Rusanov 1970).

We fix θ = r and ϕ =
2 (1− r4)

15r
in Eq. (4) and use MIEELDLD to study the dependency

of γ1 on r which optimises the shock-capturing property of the method.
The amplification factor for the method described by Eq. (4) for the case θ = r and

ϕ =
2(1− r4)

15r
, is given by

ξ =
1

15
(13 + 4 cos(w)− 2 cos2w) + (cos(w)− 1) r2 +

2

15
r4(1− 2 cos(w) + cos2w) +

I
((γ1 sin(w)

3
(cos(w)− 1)− sin(w)

)
r +

2

15
r2 sin(w)(cos(w)− 1) +

2

15
r4 sin(w)(1− cos(w))

)
.(10)

The approximated RPE is

1 +
1

30

(2
r
− 5 + 5γ1 + 5r2 − 2r3

)
w2

+
1

120

(
− 2

r
+ 5(1− γ1)− 4r + 5(1− 2γ1)r

2 + 2r3 − 10r4 + 4r5
)
w4.(11)
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We plot the variation of IEELDLD vs γ1 vs r in Figs. (4(a)) and (4(b)), we observe
that the least values of IEELDLD lie
(i) close to γ1 = −3 and r = 0.05.
(ii) close to γ1 = −1 and r = 0.2.
(iii) close to γ1 = −0.5 and r = 0.3.
(iv) close to γ1 = 0 and 0.4 ≤ r ≤ 1.

We now plot the variation of γ1 vs r for the Rusanov third order scheme. Interestingly,
based on Figs. (4(b)) and (9(a)), we can conclude that the variation represented by γ1 =
(r2 − 1)(1− 2r)(2− r)

5 r
fits into the region for very low IEELDLD values. Thus, we expect

the Rusanov’s third method to be quite an efficient shock-capturing method.

4.5 Rusanov’s fourth-order method

On plugging θ = r, ϕ =
r(1− r2)

6
and γ1 =

(2− r) (1− r2)

2
in Eq. (4), we obtain the

Rusanov’s fourth-order method.

We replace θ by r and ϕ by
r(1− r2)

6
in Eq. (4). The amplification factor of the resulting

method is

ξ = 1 +
r2

6
(− cos2w + 8 cos(w)− 7) +

r4

6
(cos2w − 2 cos(w) + 1)

+I
(
− r sin(w) +

1

3
rγ1 sin(w)(cos(w)− 1)

+
r2

6
sin(w)(cos(w)− 1) +

r4

6
sin(w)(1− cos(w))

)
.(12)

A contour plot of the IEELDLD vs γ1 vs r is shown in Fig. (5(a)). To gain more insight,
we obtain a contour plot of the least possible values of IEELDLD ∈ [1× 10−3, 1× 10−2] in
Fig. (5(b)) and we observe that the lowest values of IEELDLD can be obtained for curves
approximating the line γ1 = 1 − r. We plot the variation of γ1 vs r in Fig. (9(b)). Based

on Figs. (5(b)) and (9(b)), we can conclude that the variation of γ1 =
(2− r) (1− r2)

2
results in a scheme with quite good shock capturing properties. Hence, we conclude that
the Rusanov fourth order scheme is effective to resolve discontinuities.

4.6 Carpenter’s method

The Carpenter’s method (Carpenter 1979) is obtained on substituting θ by r, ϕ by
r(1− r2)

3
and γ1 by (1− r2) (1− r) in Eq. (4).

Our aim here is to replace θ by r and ϕ by
r (1− r2)

3
in Eq. (4). We then obtain the

amplification factor of the resulting scheme and use MIEELDLD to seek whether the
relationship given by γ1 = (1 − r2)(1 − r) optimises the shock-capturing properties of the
scheme.
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The amplification factor of the resulting method is

ξ = 1 +
r2

3
(− cos2w + 5 cos(w)− 4) +

r4

3
(cos2w − 2 cos(w) + 1)

+I
(
− r sin(w) +

γ1
3

r sin(w)(cos(w)− 1) +
r2

3
sin(w)(cos(w)− 1)

+
r4

3
sin(w)(1− cos(w))

)
.(13)

We then obtain the contour plot of the IEELDLD as a function of γ1 and r.
The contour plot of IEELDLD vs γ1 vs r is shown in Fig. (6(a)). We obtain a contour
plot of the least possible values of IEELDLD, (in that case we have IEELDLD ∈ [1 ×
10−3, 9× 10−3]) in Fig. (6(b)).
We also plot also the variation of γ1 vs r which defines the Carpenter’s method in Fig.
(9(c)).
There is an interesting connection between the graphs of Figs. (6(b)) and (9(c)) which
indicates that the variation of γ1 vs r which defines the Carpenter’s method yields an
optimised method with good shock-capturing properties.

4.7 Gadd’s technique

The Gadd method (Gadd 1978) is described by Eq.(4) for the case θ = r, ϕ =
r (1− r2)

2

and γ1 =
3(1− r2) (1− r)

2
.

On replacing θ by r and ϕ by
r(1− r2)

2
in Eq. (4) and applying the Von Neumann Stability

Analysis, we obtain the amplification factor of the resulting method as

ξ = 1 + (−0.5 cos2w + 2 cosw − 1.5)r2 + 0.5(cos2w − 2 cos(w) + 1)r4

+I
(r sin(w)

3
(−3− γ1 + γ1 cos(w)) + 0.5r2 sin(w)(cos(w)− 1) +

0.5r4 sin(w)(2− cos(w))
)
.(14)

A contour plot of IEELDLD vs γ1 vs r is shown in Fig. (7(a)). A contour plot for
IEELDLD ∈ [2 × 10−3, 1.2 × 10−2] is shown in Fig. (7(b)). A plot of γ1 vs r is shown
in Fig. (9(d)). On comparing the plots, we observe that the variation of γ1 vs r in Fig.
(9(d)) does not correspond to very low values of IEELDLD. So, we conclude that the
Gadd’s scheme does not have very good shock-capturing properties. Hence, the variation of

γ1 =
(1− r2)(1− r)

2
vs r is not an optimal variation which optimises the shock-capturing

properties of the method.

4.8 Crowley

The Crowley scheme (Crowley 1968) can be obtained from Eq. (4) on fixing θ = r,

ϕ = −r

2
and γ1 =

3r(2− r)

4
. On replacing θ by r and ϕ by −r

2
in Eq. (4) and using Von

Neumann stability, we obtain the amplification factor of the resulting method as:

ξ = 1− 0.5 r2(1− cos2w)

+I
(r
3

sin(w)(−3 + γ1 cos(w)− γ1) + 0.5 r2 sin(w)(1− cos(w))
)
.(15)
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The approximated RPE is given by

1 +
1

12
(−2 + 2γ1 − 3r + 2r2) w2 +( 1

120
− γ1

24
+

1

16
r − 1

12
(1 + γ1) r

2 +
1

8
r3 − 1

20
r4
)
w4.(16)

A contour plot of IEELDLD vs γ1 vs r is shown in Fig. (8(a)). To get more information
on the contour plot, we obtain a contour plot with the least possible values of IEELDLD, in
that case we have, IEELDLD ∈ [0.04, 0.065] and the plot is shown in (8(b)). The variation
of γ1 vs r which defines the Crowley method is shown in Fig. (9(e)) and we can observe that
it is not one which optimises the shock-capturing property of the Crowley scheme. Hence,
the existing Crowley method can be improved to generate an improved method in terms of
shock-capturing properties.

5 Explicit AR scheme

We can see that there is a connection between the Carpenter’s scheme and the Gadd
scheme. They can both be obtained from Eq. (4) on replacing θ by r and ϕ and γ1 as
functions of r.

In the case of Carpenter’s method we have γ1 = (1 − r2) (1 − r) and ϕ =
r(1− r2)

3
while

in the case of Gadd, we have γ1 =
3 (1− r2)(1− r)

2
and ϕ =

r(1− r2)

2
. From the work in

sections 4.6 and 4.7, we have deduced that the Gadd’s method can be improved.
So, we try to obtain an improvement over these two methods. We consider Eq. (4) and
replace θ by r, ϕ by ar(1− r2) and γ1 = b(1− r2) (1− r) where a and b are parameters to
be determined using MIEELDLD.

We note that for a =
1

3
, b = 1 we recover Carpenter’s method and for a =

1

2
and b =

3

2
,

the Gadd’s scheme is obtained.
We compute the IEELDLD for the numerical method described by Eq. (4) with θ = r,
ϕ = ar(1− r2) and γ1 = b(1− r2)(1− r). The IEELDLD is computed as∫ 1

0

∫ 1

0
eeldld dw dr. (17)

A contour plot of the IEELDLD with respect to a and b is shown in Fig. (10(a)).
The contour plot in Fig. (10(b)) shows contour lines for very low values of IEELDLD ∈
[6× 10−3, 7× 10−3].

We observe that the optimal values of a and b are approximately 0.4 and 1.0 respectively.
We baptise the optimised method as the explicit AR scheme.
We now compare the variation of the IEELDLD vs r for the Carpenter’s method, the
Gadd’s scheme and the explicit AR scheme, for phase angles, w ∈ [0, 1.0] in Fig. (11). We
observe that the Explicit AR scheme is slightly better than Carpenter’s method. Also, the
Explicit AR method is much better than the Gadd’s scheme. We compare the dissipative
and dispersive properties of the Explicit AR scheme and the Carpenter’s scheme at some
different cfl numbers. We choose w ∈ [0, π] to have a better idea of the shock-capturing
property of the methods over a wider range of phase angles. Since the RPE is a function of
only the phase angle when the cfl number is fixed, the phase wrapping phenomenon can be
alleviated when using the exact RPE. The plots are shown in Figs. (12(a)) and (12(b)). It
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is observed that the AR scheme and Carpenter’s scheme have almost the same variation for
the plot of the AFM vs phase angle, at the cfl numbers 0.25 and 0.50. However, the AR
scheme is less dissipative than Carpenter’s method at cfl 0.75. The variation of the RPE
vs phase angle is shown in Fig. (12(b)). We observe that the AR scheme is slightly less
dispersive at cfl 0.25 and also less dispersive at cfl 0.50, as compared to the Carpenter’s
method. However, the AR scheme is slightly more dispersive as compared to Carpenter’s
method at cfl 0.75. Based on Fig. (11), we can conclude that the AR Explicit method is
in general slightly better than the Carpenter’s method.

6 Quasi-implicit methods

We consider two quasi-implicit schemes namely the box scheme and the Roberts and
Weiss scheme (Roberts and Weiss 1966). Our aim is to check how efficient these methods
are in terms of shock-capturing properties on plotting the variation of IEELDLD vs cfl
number for both methods, as shown in Fig. (13).

6.1 Box method

The amplification factor is

ξ =

(
(1− r) + (1 + r) cos(w)

)
− I (1 + r) sin(w)(

(1 + r) + (1− r) cos(w)
)
− I (1− r) sin(w)

. (18)

The method is regarded as quasi-implicit. This is because, though the method is implicit,
the values of un+1

i can be computed in an explicit manner using the formula:

un+1
i = uni−1 +

(1− r

1 + r

)
(uni − un+1

i−1 ). (19)

The method is unconditionally stable. Fig. (13(a)) shows that the method is most
efficient at cfl 1.0. On plugging, r = 1 in Eq. (4), we get un+1

i = uni−1. Hence, the method
becomes explicit at r = 1 and also shift condition is satisfied at r = 1.

6.2 Roberts and Weiss scheme

We use
∂u

∂t
≈

un+1
i − uni
2 k

and
∂u

∂x
≈ 1

2

(un+1
i − un+1

i−1

h
+
uni+1 − uni

h

)
to obtain the Roberts

and Weiss scheme as:

−r un+1
i−1 + (2 + r) un+1

i = (2 + r) uni − r uni+1. (20)

Its amplification factor is given by

ξ =
A− I B

A+ I B
, (21)

where

A = 1− r

2 + r
cos(w)

and

B =
r

2 + r
sin(w).
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The scheme is unconditionally stable. Based on the plots in Fig. (13), we can conclude
that the Box scheme has in general superior shock-capturing properties than the Roberts
andWeiss scheme. Also, the Roberts andWeiss scheme is less effective at larger cfl numbers.

7 Implicit methods

We compare the shock-capturing properties of some existing implicit methods such as
Backward in Time and Centred in Space Scheme (BTCS), Crank-Nicolson (Crank and
Nicolson 1947) and a second-order implicit method (Dehghan 2005). We then propose
some implicit methods and analyse how effective these methods are, in order to control
computational noise in regions of shocks.

7.1 Backward in Time and Centred in Space Scheme

On approximating the time derivative by a backward approximation and using a centred
approximation for the spatial derivative, we get the following implicit method:

r un+1
i+1 + 2 un+1

i − r un+1
i−1 = 2 uni . (22)

The amplification factor of the scheme is given by

ξ =
1− (r sin(w)) I

1 + r2 sin2w
. (23)

The method is unconditionally stable. A plot of IEELDLD vs r is shown in Fig. (14).
The values of IEELDLD are rather large and this indicates that the method is not a very
effective shock-capturing method.

7.2 Crank-Nicolson method

On approximating
∂u

∂t
by (un+1

i − uni
k

)
(24)

and
∂u

∂x
by (uni+1 − uni−1

2h
+

un+1
i+1 − un+1

i−1

2h

)
, (25)

the Crank-Nicolson scheme is obtained. A single expression for the Crank Nicolson method
when used to discretise the linear advection equation is

r un+1
i+1 + 4 un+1

i − r un+1
i−1 + r uni+1 − r uni−1 − 4 uni = 0. (26)

The amplification factor of the method is given by

ξ =
1− 0.5I r sin(w)

1 + 0.5 I r sin(w)
. (27)

A plot of the RPE vs r vs w is shown in Fig. (15(a)) and we observe that for a given
value of w, RPE is almost independent of the cfl number. A plot of the IEELDLD vs
r is shown in Fig. (15(b)) and we observe that the IEELDLD values are very close to



A Note on the Shock-Capturing Properties of Some Explicit and Implicit Schemes 13

zero and also independent of the cfl number. Hence, the method is very efficient to control
computational noise at any value of cfl. We can explain why the IEELDLD is independent
of the cfl. This is because we have AFM = 1 and also the RPE is almost independent of
the cfl at a given value of w, as depicted in Fig. (15(a)).

7.3 The second order implicit method

A second order implicit method is described in Dehghan (2005). The partial derivative
∂u

∂t
is approximated by

1

6

(un+1
i−1 − uni−1

k

)
+

1

6

(un+1
i+1 − uni+1

k

)
+

2

3

(un+1
i − uni

k

)
, (28)

while
∂u

∂x
is approximated by

1

4

(uni+1 − uni−1

h

)
+

1

4

(un+1
i+1 − un+1

i−1

h

)
. (29)

The method is described as

2(un+1
i−1 − uni−1 + un+1

i+1 − uni+1) + 8 (un+1
i − uni ) + 3r(uni+1 − uni−1 + un+1

i+1 − un+1
i−1 ) = 0. (30)

A single expression for the second-order implicit scheme is given by:

(2− 3r) un+1
i−1 + (2 + 3r) un+1

i+1 + 8 un+1
i = (2 + 3r) uni−1 + 8 uni + (2− 3r) uni+1. (31)

8 Optimising the second order implicit method

In this section, we attempt to modify the parameters in the scheme described in section

7.3 in an attempt to optimise its dispersive and dissipative properties. We approximate
∂u

∂t
as

α
(un+1

i−1 − uni−1

k

)
+ α

(un+1
i+1 − uni+1

k

)
+ (1− 2α)

un+1
i − uni

k
, (32)

where α is a parameter to be determined.

The spatial derivative,
∂u

∂x
is approximated by

(uni+1 − uni−1

2h

)
+

(un+1
i+1 − un+1

i−1

2h

)
. (33)

On combining Eqs. (32) and (33), we obtain

(
α+

r

4

)
un+1
i+1 + (1− 2α)un+1

i +
(
α− r

4

)
un+1
i−1 =(

α− r

4

)
uni+1 + (1− 2α)uni +

(
α+

r

4

)
uni−1.(34)

The amplification factor of the numerical scheme given by Eq. (34) is given by

ξ =
2α(cos(w)− 1) + 1− I (r/2) sin(w)

2α(cos(w)− 1) + 1 + I (r/2) sin(w)
. (35)
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Clearly, the method is unconditionally stable. The approximated RPE is

1 +
(
− 1

6
+ α− 1

12
r2
)
w2. (36)

We compute the IEELDLD as ∫ 1

0
eeldld dw.

Plots of the IEELDLD vs α vs r are shown in Figs. (16). Contour plot with the least
possible values of IEELDLD, in that case, IEELDLD values ∈ [2×10−3, 2×10−2] is shown
in Fig. (16(b)). This study shows that the scheme given by Eq. (34) can be optimised for
α close to 0.5 and r close to 2. However, it is not possible to determine an optimal value
of α at a general value of cfl that enables the method to have very good shock-capturing
properties.

9 Construction of an Implicit scheme by Dehghan (2005)

The linear advection equation is approximated such that

∂u

∂t
≈

(2 + r2

12

)(un+1
i−1 − uni−1

k

)
+

(4− r2

12

)(un+1
i − uni

k

)
+

(2 + r2

12

)(un+1
i+1 − uni+1

k

)
(37)

and

∂u

∂x
=

1

2

(uni+1 − uni−1

2h
+

un+1
i+1 − un+1

i−1

2h

)
. (38)

The implicit method developed by Dehghan (2005) to approximate Eq. (1) is given by

(r2 + 3r + 2) un+1
i+1 + 2(4− r2) un+1

i + (r2 − 3r + 2) un+1
i−1 =

(r2 − 3r + 2) uni+1 + 2(4− r2) uni + (r2 + 3r + 2) uni−1.(39)

The amplification factor of the method is given by

ξ =
A− I B

A+ I B
, (40)

where
A = 4 (2 + cos(w)) + 2 r2(cos(w)− 1) and B = 6r sin(w).

The method is unconditionally stable. An approximation to the RPE is

1 +
(
− 1

180
+

1

144
r2 − 1

720
r4
)
w4. (41)

A plot of the IEELDLD vs r is shown in Fig. (18). We observe that the IEELDLD
values ∈ [0, 0.023] for r ∈ [0, 2.2] for all phase angles ∈ [0, 1.0]. We deduce that this method
has better shock-capturing properties than the Crank-Nicolson method for phase angles,
w ∈ [0, 1] and r ∈ [0, 2.2]. We observe that the optimal cfl is 1 or 2. But, since the method
is not solvable for r > 1 as pointed out in Dehghan (2005), we conclude that the method is
most effective at cfl = 1.
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10 Construction of an implicit scheme using the technique of MIEELDLD

Based on the numerical scheme proposed by Dehghan (2005) in section 9, we set the
approximation for the time derivative as

∂u

∂t
≈ (a+ b r2)

(un+1
i−1 − uni−1

k

)
+ (1− 2 a− 2 b r2)

(un+1
i − uni

k

)
+(a+ b r2)

(un+1
i+1 − uni+1

k

)
,(42)

and

∂u

∂x
=

1

2

(uni+1 − uni−1

2h
+

un+1
i+1 − un+1

i−1

2h

)
.). (43)

We note that for the case a =
2

12
, b =

1

12
, Eq.(42) corresponds to the time derivative

used by Dehghan (2005).

On combining Eqs. (42) and (43), we obtain our proposed numerical scheme as

(a+ br2) (un+1
i−1 − uni−1) + (1− 2 a− 2 br2) (un+1

i − uni ) +

(a+ b r2) (un+1
i+1 − uni+1) +

r

4
(uni+1 − uni−1) +

r

4
(un+1

i+1 − un+1
i−1 ) = 0.(44)

We obtain the amplification factor as

ξ =
A− I B

A+ I B
,

where A = (4a+ 4 b2) cos(w) + (2− 4a− 4b r2) and B = r sin(w).

We compute
∫ 2.0
0

∫ 1.0
0 eeldld dwdr. This integral will be a function of a and b. We obtain

contour plots of IEELDLD vs b vs a in Figs. (17(a)) and (17(b)). Fig. (17(b)) shows the
least possible values of IEELDLD ∈ [0.00155, 0.004]. The range of optimal values of a and
b obtained using MIEELDLD include the values used by Dehghan. Clearly, the numerical
scheme given by Eq. (42) with a and b equal to 0.1692 and 0.0814 respectively have smallest
IEELDLD values approximately equal to 0.00155 whereas the smallest IEELDLD values
for Crank-Nicolson are 0.08, for r ≤ 2.0. The plot of the IEELDLD vs r for the Implicit
AR scheme is almost identical to that obtained in the case of the Implicit scheme derived
by Dehghan, as illustrated in Fig. (18).

11 Conclusions

This study reveals that implicit numerical methods like Crank-Nicolson and the implicit
scheme constructed by Dehghan (2005) are very good numerical methods as compared
to other implicit schemes like Box, Roberts and Weiss, second-order implicit methods to
control numerical noise in regions of discontinuities for the 1-D linear advection equation.
The choice of the cfl number affects explicit schemes and some implicit methods like Box
scheme and Roberts and Weiss scheme. However, the choice of cfl number is not very
important for implicit methods like Crank-Nicolson. We have optimised the parameters
for a general implicit scheme and able to demonstrate that the new method termed as
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implicit AR method has noticeably improved dissipation/dispersion properties as compared
to Crank-Nicolson method for cfl numbers less than 2.0. the Implicit AR scheme has
better shock-capturing properties than the scheme devised by Dehghan for 0 < r < 1.8.
Moreover, we have been able to obtain an improved explicit method over the Gadd and
Carpenter numerical schemes. In a nutshell, we conclude that the technique of Minimised
Integrated Exponential Error, MIEELDLD enables parameters to be chosen to improve
shock capturing properties of numerical schemes. Moreover, MIEELDLD can also be
used to gauge the shock capturing property of a numerical scheme better as compared
to individual plots of AFM and RPE with respect to the phase angle since it is known
that the inherent dissipation neutralises the inherent dispersion for a numerical scheme
under consideration. We are currently using the technique to construct high order methods
with low dispersion and low dissipation properties which approximate linear and non-linear
equations in Computational Aeroacoustics.
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(a) Contour Plot (b) Zoomed plot for least values of
IEELDLD

Figure 1 Contour Plot of IEELDLD vs ϕ vs r for the case θ = 1 and γ1 = 0 for the numerical scheme
described by Eq. (4).

(a) Contour plot (b) Zoomed plot with least values for
IEELDLD

Figure 2 Contour Plot of IEELDLD vs ϕ vs r for the case θ = r and γ1 = 0 for the numerical scheme
described by Eq. (4).

(a) (b) Zoomed contour plot

Figure 3 Contour Plot of IEELDLD vs γ1 vs r for the case θ = r and ϕ =
1− r2

3
for the numerical

scheme described by Eq. (4).
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(a) Contour plot (b) Zoomed plot with least values of
IEELDLD

Figure 4 Contour plot of IEELDLD v/s γ1 vs r for the case θ = r and ϕ =
2(1− r4)

15r

(a) Contour Plot (b) Zoomed plot for least values of
IEELDLD.

Figure 5 Contour Plot of IEELDLD v/s γ1 vs r for the case θ = r and ϕ =
r(1− r2)

6
, for the numerical

scheme described by Eq. (4).

(a) Contour Plot (b) Zoomed plot for least values of
IEELDLD

Figure 6 Contour Plot of IEELDLD v/s γ1 vs r for the case θ = r and ϕ =
r(1− r2)

3
, for the numerical

scheme described by Eq. (4).
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(a) Contour Plot (b) Zoomed Plot for least values of
IEELDLD

Figure 7 Contour Plot of IEELDLD vs γ1 vs r for the case θ = r and ϕ =
r (1− r2)

2
, for the numerical

scheme described by Eq. (4).

(a) Contour Plot (b) Zoomed plot for least values of
IEELDLD

Figure 8 Contour Plot of IEELDLD v/s γ1 vs r for the case θ = r and ϕ = − r

2
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(a) Rusanov’s third order
scheme

(b) Rusanov’s fourth order
scheme

(c) Carpenter’s scheme (d) Gadd’s scheme

(e) Crowley scheme

Figure 9 Contour Plot of γ1 vs r for some explicit methods with θ = r

(a) (b) zoomed plot for least values

Figure 10 Contour Plot of IEELDLD vs a vs b for the new optimised scheme obtained on modifying
Carpenter’s and Gadd numerical schemes.
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(a) Carpenter’s scheme (b) Gadd’s scheme

(c) Explicit AR scheme

Figure 11 Plot of IEELDLD vs r for the Carpenter, Gadd and the explicit AR schemes.
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Figure 12 Plots of AFM and RPE, both vs phase angle at some different values of cfl for the Carpenter
and AR schemes.

(a) Box scheme (b) Roberts and Weiss scheme

Figure 13 Plot of IEELDLD vs r for the Box scheme and Roberts and Weiss scheme.
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Figure 14 Plot of IEELDLD vs r for the Backward in Time and Centred in Space Scheme.

0
5

10
15

20
r

0
0.5

1
1.5

2
2.5

3

w

0

0.2

0.4

0.6

0.8

1

(a) RPE vs r vs w

(b) IEELDLD vs r

Figure 15 Plots of the RPE and IEELDLD for the Crank Nicolson method.

(a) (b) Zoomed plot for smallest values of
IEELDLD

Figure 16 Plot of IEELDLD vs α vs r for the α-optimised second order method.
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(a) (b)

Figure 17 Contour plot of IEELDLD vs b vs a.

Figure 18 Plot of IEELDLD vs r for the second order implicit scheme derived by Dehghan (2005) and
our new implicit scheme.




