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Abstract Hearing loss is the most common sensory deficit 

in humans with causative variants in over 140 genes. With 

few exceptions, however, the population-specific distribu- 

tion for many of the identified variants/genes is unclear. 

Until recently, the extensive genetic and clinical heteroge- 

neity of deafness precluded comprehensive genetic analy- 

sis. Here, using a custom capture panel (MiamiOtoGenes), 

we  undertook  a  targeted  sequencing  of  180  genes  in 
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a multi-ethnic cohort of 342 GJB2 mutation-negative 

deaf probands from South Africa, Nigeria, Tunisia, Tur- 

key, Iran, India, Guatemala, and the United States (South 

Florida). We detected causative DNA variants in 25 % of 

multiplex and 7 % of simplex families. The detection rate 

varied between 0 and 57 % based on ethnicity, with Gua- 

temala and Iran at the lower and higher end of the spec- 

trum, respectively. We detected causative variants within 27 

genes without predominant recurring pathogenic variants. 

The most commonly implicated genes include MYO15A, 

SLC26A4, USH2A, MYO7A, MYO6, and TRIOBP. Overall, 
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our study highlights the importance of family history and 

generation of databases for multiple ethnically discrete 

populations to improve our ability to detect and accurately 

interpret genetic variants for pathogenicity. 

 

 

Introduction 
 

Hearing loss (HL) is one of the most common sensory impair- 

ment in humans. It is estimated that one child in 1000 is born 

with a prelingual HL that can have a signifi impact on 

normal speech and language skills (Yoshinaga-Itano 2000). 

Approximately 10 % of the population is affected with disa- 

bling HL by the age of 60 years and ~50 % by the age of 

80 years (Davis 1995). HL can be due to environmental fac- 

tors, genetic factors, or a combination thereof. However, 

genetic factors are now regarded as the leading cause of 

childhood HL in developed countries, since other causes are 

generally prevented by vaccines, antibiotics, and workplace 

regulations (Nance 2003). It is estimated that approximately 

30 % of all genetic HL is syndromic in nature, i.e., (syndro- 

mic HL, SHL) (Online Mendelian Inheritance in Man; http:// 

www.ncbi.nlm.nih.gov/omim/), and approximately  70  % 

of genetic HL is non-syndromic (NSHL), wherein hearing 

impairment is the only feature observed (Gorlin et al. 1995). 

NSHL generally is due to mutations in single genes. Approxi- 

mately 80 % of NSHL is autosomal recessive (ARNSHL), 

20 % is autosomal dominant (ADNSHL), 1 % is X-linked, 

and <1 % is mitochondrial. Most ARNSHL is prelingual 

severe-to-profound, whereas ADNSHL is often post-lingual 

and progressive (Angeli et al. 2012). 

The genetic basis of HL is heterogeneous with numerous 

loci/genes already identifi in humans. Over 140 loci have 

been described for NSHL (Hereditary Hearing Loss Home- 

page; http://hereditaryhearingloss.org). Over 700 syndromes 

may feature HL (Online Mendelian Inheritance in Man; http:// 

www.ncbi.nlm.nih.gov/omim/). The same clinical syndrome 

can be caused by different genes and different mutations in the 

same gene may result in SHL and NSHL (Yan and Liu 2008). 

For some genes, there are both dominant and recessive alleles. 

Even the same variant in a single gene can be associated with 

quite variable phenotypes (Hutchin et al. 2000). 

Recent technical advances have revealed new molecu- 

lar mechanisms of HL and provided improved diagnostic 

methods. Molecular genetic testing for several HL-associ- 

ated genes is now part of the standard protocol for the eti- 

ologic diagnosis of HL (King et al. 2012). An immediate 

benefit is that the identification of the specific genetic vari- 

ant responsible for HL can establish or confirm a clinical 

diagnosis, and allow the implementation of personalized 

approaches to medical management. The information also 

facilitates risk assessment for affected families and enables 

reproductive decision making. 

Decades of experience have proven the diagnostic utility 

of Mendelian disorders by serial additive Sanger sequenc- 

ing of candidate genes (Maddalena et al. 2005; Richards 

et al. 2008). However, this approach is labor intensive and 

not cost effective for a disorder as heterogeneous as HL. 

An array-based method has also been developed, but it con- 

tains a limited number of genes, and is expensive, and only 

known mutations can be analyzed (Kothiyal et al. 2010). A 

disorder with high heterogeneity, such as HL, is often dif- 

ficult to dissect with these techniques because of the neces- 

sity of identifying the candidate genes for testing. Today, 

the revolutionary targeted capture and next-generation 

sequencing (NGS) technologies provide a viable alternative 

because of their massively parallel sequencing capability, 

which enables the simultaneous screening of multiple HL 

genes in multiple samples (Shearer et al. 2010; Brownstein 

et al. 2011; Yan et al. 2013; Tekin et al. 2016). Gene panels 

are useful when multiple genes are involved in a particu- 

lar disorder or when there is extensive phenotypic over- 

lap between different disorders. Panels are also more cost 

effective, and results can be obtained more rapidly than a 

traditional gene by gene approach. In this study, we under- 

took a targeted sequencing of 180 known and candidate 

HL-causing genes in a multi-ethnic cohort of 342 GJB2- 

mutation-negative probands. 

 

 

Materials and methods 
 

Subjects 

 

This study was approved by the University of Miami Insti- 

tutional Review Board (USA), the Madras ENT Research 

Foundation (P) Ltd (MERF) (India), the University Hos- 

pital of Mahdia (Tunisia), the Growth and Development 

Research Ethics Committee (Iran), the  Ethics  Commit- 

tee of University of Ibadan (Nigeria), the Ankara Univer- 

sity Medical School Ethics Committee (Turkey), the Uni- 

versity Hospital of Sfax Ethics Committee (Tunisia), 

University of Pretoria School of Medicine Ethics Commit- 

tee (South Africa), and Institute for Research on Genetic 

and Metabolic Diseases, INVEGEM (Guatemala). A signed 

informed-consent form was obtained from each participant 

or, in the case of a minor, from the parents. 

We have included in this study a total of 342 GJB2 

mutation-negative families of diverse ethnicity. Of these, 

185 were simplex and 157 were multiplex with at least 

two affected individuals. Since a three-generation pedi- 

gree was not available in some cases, we did not group 

multiplex families according to inheritance pattern. The 

multi-ethnic cohort was comprised of 91 indigenous fami- 

lies from South Africa, 90 from Nigeria, 53 from the USA 

(South Florida), 38 from Tunisia, 23 from India, 21 from 

http://www.ncbi.nlm.nih.gov/omim/
http://www.ncbi.nlm.nih.gov/omim/
http://hereditaryhearingloss.org/
http://www.ncbi.nlm.nih.gov/omim/
http://www.ncbi.nlm.nih.gov/omim/
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Iran, 19 from Turkey, and 7 from Guatemala. The diagnosis 

of SNHL was established via the standard audiometry in a 

soundproofed room according to the current clinical stand- 

ards. HL was congenital onset or prelingual onset with a 

severity ranging from mild to profound. Clinical evaluation 

included a thorough physical examination and otoscopy in 

all cases. Additional evaluations, including a high-resolu- 

tion, thin-section computed tomography (CT) and magnetic 

resonance imaging (MRI) of the temporal bone, were per- 

formed when possible. None of the recruited individuals 

were diagnosed with a syndrome. DNA was extracted from 

peripheral blood leukocytes of probands according to the 

standard procedures. 

 

Sequencing 

 

Using the Agilent SureDesign online tool (https://earray. 

chem.agilent.com/suredesign/), a SureSelect custom kit 

(Agilent, Santa Clara, CA, USA, https://www.agilent.com) 

was designed to include all exons, 5′ UTRs and 3′ UTRs 

of 180 known and candidate deafness causing genes (Sup- 

plementary Table S1) (Tekin et al. 2016). This custom cap- 

ture panel (MiamiOtoGenes), with a target size of approxi- 

mately 1.158 MB encompassing 3494 regions, covers 

genes associated with both syndromic and non-syndromic 

forms of HL. The targeted sequencing was processed at the 

Hussman Institute for Human Genomics (HIHG) Sequenc- 

ing core, University of Miami. The Agilent‟s SureSelect 

Target Enrichment (Agilent, Santa Clara, CA, USA) of 

coding exons and flanking intronic sequences in-solution 

hybridization capture system was used following the man- 

ufacturer‟s standard protocol. Adapter sequences for the 

Illumina HiSeq 2000 were ligated, and the enriched DNA 

samples were prepared using the standard methods for the 

HiSeq 2000 instrument (Illumina). Through the sample 

preparation, average insert size was 180 bp and paired end 

reads were used. Regions with lower coverage were not 

subjected to additional sequencing. 

 

Bioinformatics  analysis 

 

The Illumina CASAVA v1.8 pipeline was used to assemble 

99 bp sequence reads. Burrows–Wheeler Aligner (BWA) 

was applied for alignment of sequence reads to the human 

reference genome (hg19) (Li and Durbin 2010), and vari- 

ants were called using FreeBayes (Garrison and March 

2012). Genesis 2.0 (https://www.genesis-app.com/) was 

then used for variant filtering based on quality/score read 

depth  and  minor  allele  frequency  (MAF  thresholds  of 

0.005 for ARNSHL and 0.0005  for ADNSHL  variants) 

as reported in dbSNP141, the National Heart, Lung, and 

Blood Institute Exome Sequencing Project Exome Variant 

Server, Seattle, WA Project (Exome Variant Server 2012), 

Exome Aggregation Consortium (ExAC) browser (http:// 

exac.broadinstitute.org/), the 1000 Genome Project Data- 

base and our internal database of >3000 samples from 

European, Asian, and American ancestries. Variants meet- 

ing these criteria were further annotated based on their 

presence and pathogenicity information in Human Gene 

Mutation Database (HGMD; http://www.hgmd.cf.ac.uk), 

the Deafness Variation Database (DVD) (deafnessvariation- 

database.org), and ClinVar (http://www.ncbi.nlm.nih.gov/ 

clinvar/). In the final step, all variants were re-classified 

based on the American College of Medical Genetics and 

Genomics (ACMG) and Association for Molecular Pathol- 

ogy (AMP) guidelines (Richards et al. 2015). These guide- 

lines recommend the use of specific standard terminology 

for DNA variants in five categories to include pathogenic, 

likely pathogenic, uncertain significance, likely benign, and 

benign. They describe criteria using evidence from popula- 

tion data, computational data, functional data, and segrega- 

tion data for variant interpretation. Copy number variation 

(CNV) calling was performed using an R-based tool (Nord 

et al. 2011). This method normalizes read-depth data by 

sample batch and compares median read-depth ratios using 

a sliding-window approach. 

Sanger sequencing was used for the confirmation of 

variant calls and PCR for the CNVs. Family members, 

when available, were used for segregation, de novo status, 

and trans configuration of biallelic variants. During the 

interpretation, we also considered phenotypic correlations 

between the gene variants and their reported phenotypes. 

 

 

Results 
 

Targeted capture sequencing 

 

Targeted capture genome enrichment (TGE) and mas- 

sively parallel sequencing (MPS) were performed on all 

probands. An average of 99, 87, and 60 % of the targeted 

bases were covered at 10×, 50×, and 100×, respectively 

(Supplementary Fig. S1). 

 

Molecular findings among probands in the multi‑ethnic 
cohort 

 
After QC and filtration (read depth >8, Genotype Qual- 

ity >35, and QUAL >20), we detected 151 variants in 119 

families that we classified as likely pathogenic, pathogenic, 

or variant of uncertain significance based on ACMG guide- 

lines. Of these, 44 % (66/151) have been reported in at least 

one of the following three databases: ClinVar, HGMD, and 

DVD (Supplementary Table S2). 

https://earray.chem.agilent.com/suredesign/
https://earray.chem.agilent.com/suredesign/
https://www.agilent.com/
https://www.genesis-app.com/
http://exac.broadinstitute.org/
http://exac.broadinstitute.org/
http://www.hgmd.cf.ac.uk/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/


 

 
 

 

HL causative genes in the cohort 

 

When only pathogenic and likely pathogenic variants were 

taken into consideration, the underlying genetic cause was 

identified in 53 families, providing an etiologic diagnostic 

rate of 15 % (53/342) in the cohort. The detection rates in 

different groups were 0 % (0/7, Guatemala), 4 % (4/91, 

South Africa), 4 % (4/90, Nigeria), 17 % (9/53, South 

Florida), 26 % (10/38, Tunisia), 26 % (6/23, India), 42 % 

(8/19, Turkey), and 57 % (12/21, Iran) (Table 1; Fig. 1a). 

Causative variants were detected in 7 % (13/185) of the 

simplex families and 25 % (40/157) of the multiplex fami- 

lies (Fig. 1a). 

Of the 119 families, 66 (55 %) were classified as uncer- 

tain families. Those uncertain families had at least one 

allele with a variant of unknown significance (VUS) even 

if they had another allele classified as likely pathogenic 

or pathogenic. The uncertain family rates in the multiplex 

families were 22 % (6/27) in Nigeria, 38 % (8/21) in South 

Africa, 21 % (8/38) in Tunisia, 22 % (2/9) in India, 33 % 

(1/3) in Guatemala, 12 % (2/17) in Turkey, 8 % (1/13) in 

Iran, and 26 % (7/27) in USA (Supplementary Table S3). 

In this multi-ethnic cohort, sequence variants were iden- 

tified in a total of 48 genes (Supplementary Table S2), while 

27 different genes had variants in solved families. Genes 

identified in at least three solved families include MYO15A 

(MIM 602666) (13 %;  7/53),  SLC26A4  (MIM  605646) 

(9 %; 5/53), USH2A (MIM 608400) (9 %; 5/53), MYO7A 

(MIM 276903) (8 %; 4/53), TRIOBP (MIM 609761) (6 %; 

3/53), and MYO6 (MIM 600970) (6 %; 3/53) (Fig. 1b). 

Of the 57 unique HL-causing variants identified in 

solved families, 26 have previously been reported in the lit- 

erature (Table 1). The remaining 31 novel variations were 

considered pathogenic or likely pathogenic according to 

ACMG guidelines (Table 1). Of note in solved families, 

81 % (43/53) of the 53 probands found to carry causative 

variants were homozygous for the identified HL-causing 

variant (autosomal recessive), 11 % (6/53) were compound 

heterozygous (autosomal recessives), 6 % (3/53) were het- 

erozygous for a single causative variant (autosomal domi- 

nant), and 1 individual was hemizygous for an X-linked 

variant (Table 1). 

Two novel homozygous CNVs were identified in Tuni- 

sian families, one consisted of a large deletion of approxi- 

mately 86.3 kb with breakpoints within exons 21 and 22 of 

USH2A, and one deletion of approximately 12.3 kb, span- 

ning exons 12 and 13 of the PCDH15 gene (Supplementary 

Table S4). Deleted exons did not amplify with confirmatory 

PCR in probands. 

While we specifically queried parental  consanguin- 

ity when obtaining family history, we did not incorporate 

it into the analysis due to concerns regarding the reliabil- 

ity of self-reported consanguinity in different populations. 

When we reviewed the variants, we noted that all Indian 

and Iranian and most Turkish and Tunisian probands were 

homozygous for pathogenic, likely pathogenic, and VUS, 

indicating shared ancestry between their parents. 

 

 

Discussion 
 

In the present study, we have used a panel of 180 genes 

sequenced by NGS for variant detection in a multi-ethnic 

group of 342 probands. We identified causative variants 

in 27 genes without predominant recurring pathogenic 

variants in the identified genes. The most commonly impli- 

cated genes include MYO15A, SLC26A4, USH2A, MYO7A, 

MYO6, and TRIOBP. As expected, most of the identified 

variants are autosomal recessive. 

Use of the MiamiOtoGene panel established a genetic 

diagnosis for 28 % of all probands from non-sub-Saharan 

African countries, including Guatemala, USA, Tunisia, 

India, Turkey, and Iran. On the other hand, the etiologic 

diagnostic rate for families from sub-Saharan Africa (Nige- 

ria, South Africa) is 4 %. All the variants detected in the 

Guatemalan probands were  classified  as  VUS  resulting 

in a “solved” rate of 0 % in this ethnic group. Molecular 

diagnostic rates for Turkish and Iranian probands are very 

similar to those reported by Shearer et al. (2013) using Oto- 

SCOPE and Bademci et al. (2016) using the whole exome 

sequencing. It should be noted that a positive family history 

of deafness is an important indication for a genetic etiol- 

ogy. In our cohort, the distribution of simplex and multi- 

plex cases was remarkably diverse in different ethnicities. 

Moreover, parental consanguinity is traditionally common 

in Turkey, Iran, and Tunisia, which increases the chance 

of having rare autozygous mutations. The current study 

found solved rates of around 7 % for the simplex families 

compared to 25 % for multiplex families. Across a variety 

of studies utilizing NGS, the diagnostic rate overall aver- 

aged 41 % and ranged from a low of 10–83 % (Shearer 

and Smith 2015). In an analysis of simplex cases, Gu et al. 

(2015) found a diagnostic rate of 13 %. Direct compari- 

son between studies is difficult because of the fundamen- 

tal differences in study design. These include prescreening 

for GJB2 variations, and the number of genes included on 

a “comprehensive” test, ranging from 34 to 246 different 

genes (Shearer and Smith 2015). In addition, the genes 

selected for each platform vary based on whether only 

NSHL genes or also SHL genes are included (and which 

syndromes), and also whether candidate genes identified 

though animal models or human studies as in the case of 

our platform, the MiamiOtoGenes panel, are included. 

Overall, our data highlight the importance of family history 

and generation of databases with ethnically diverse sam- 

ples to improve our ability to detect and accurately evaluate 



 

 

 

 

Table 1  Identified likely pathogenic and pathogenic variants in the solved families 
 

ID M/S Country Gene Transcript cDNA Protein Zygosity References ACMG1
 

F15A S India ILDR1 NM_001199799.1 c.58+1G>A Splice HM Novel P 

F22A S India OTOF NM_194248.2 c.5669G>A p.W1890* HM Novel P 

F24A M India TMC1 NM_138691.2 c.236+1G>C Splice HM Yang et al. (2013) P 

F25A S India MYO7A NM_000260.3 c.4485G>A p.W1495* HM Novel P 

F27A M India MYO7A NM_000260.3 c.3978C>A p.C1326* HM Novel P 

F29A S India GIPC3 NM_133261.2 c.662C>T p.T221I HM Rehman et al. (2011) LP 

2075 M Iran TMPRSS3 NM_024022.2 c.46C>T p.R16* HM Novel P 

2081 M Iran TECTA NM_005422.2 c.651dupC p.N218Qfs*31 HM Naz et al. (2003) P 

2082 M Iran MYO15A NM_016239.3 c.2280delC p.S761Lfs*20 HM Novel P 

2083 M Iran SLC26A4 NM_000441.1 c.235C>T p.R79* HM Wu et al. (2010) P 

2085 M Iran MARVELD2 NM_001038603.2 c.1550delA p.K517Rfs*16 HM Babanejad et al. P 

        (2012)  
2088 M Iran MYO15A NM_016239.3 c.6273+1G>A Splice HM Novel P 

094 M Iran ESPN NM_031475.2 c.2440C>T p.Q814* HM Sloan-Heggen et al. P 

        (2015)  
2099 M Iran PTPRQ NM_001145026.1 c.4009G>T p.E1337* HM Novel P 

2105 M Iran CDH23 NM_022124.5 c.2192+1G>C Splice HM Novel P 

2109 M Iran MYO6 NM_004999.3 c.392-1G>A Splice HM Novel P 

2111 S Iran DFNB59 NM_001042702.3 c.547C>T p.R183W HM Delmaghani et al. LP 

        (2006)  
2113 S Iran USH2A NM_206933.2 c.1001G>A p.R334Q HM Baux et al. (2007) P 

1717 M Nigeria MYO7A NM_000260.3 c.287C>T p.T96M HT Novel LP 

1717 M Nigeria MYO7A NM_000260.3 c.1708C>T p.R570* HT Yoshimura et al. P 

        (2014)  
1746 M Nigeria MYO6 NM_004999.3 c.1477_1487delCAAGAACTCTA p.Q493Sfs*8 HM Novel P 

1768 M Nigeria SLC26A4 NM_000441.1 c.737delA p.N246Tfs*43 HM Novel P 

1869 M Nigeria SLC26A4 NM_000441.1 c.164+1G>C Splice HT Chu et al. (2015) P 

1869 M Nigeria SLC26A4 NM_000441.1 c.2171A>T p.D724V HT Novel LP 

BS066 S South Africa POU3F4 NM_000307.4 c.986G>C p.R329P HZ Lee et al. (2009) LP 

BS074 S South Africa SIX1 NM_005982.3 c.373G>A p.E125K HT Mosrati et al. (2011) LP 

TS005 M South Africa TRIOBP NM_001039141.2 c.572delC p.P191Rfs*50 HT Novel LP 

TS005 M South Africa TRIOBP NM_001039141.2 c.3510_3513dupTGCA p.P1172Cfs*13 HT Novel LP 

TS058 M South Africa MARVELD2 NM_001038603.2 c.1555-1G>A Splice HM Novel LP 

FT21 M Tunisia USH2A NM_206933.2 c.14586T>G p.Y4862* HM Baux et al. (2014) P 

FT22 M Tunisia MYO15A NM_016239.3 c.7395+3G>C Splice HM Riahi et al. (2014) LP 

FT23 M Tunisia USH2A NM_206933.2 c.14586T>G p.Y4862* HM Baux et al. (2014) P 

 



 

 

 

 
 

Table 1 continued  

ID M/S Country Gene Transcript cDNA Protein Zygosity References ACMG1
 

FT24 M Tunisia MYO15A NM_016239.3 c.5417T>C p.L1806P HM Riahi et al. (2014) LP 

FT25 M Tunisia EPS8 NM_004447.5 c.115delA p.T39Qfs*32 HM Novel P 

FT28 M Tunisia USH2A NM_206933.2 CNV CNV HM Novel LP 

FT33 M Tunisia CIB2 NM_006383.3 c.247_257delGAGGGGAACCT p.E83Hfs*30 HM Novel P 

FT36 M Tunisia PCDH15 NM_033056.3 CNV CNV HM Novel LP 

FT39 M Tunisia LRTOMT NM_001145308.4 c.242G>A p.R81Q HM Ahmed et al. (2008) LP 

FT42 M Tunisia LRTOMT NM_001145308.4 c.242G>A p.R81Q HM Ahmed et al. (2008) LP 

1384 M Turkey USH1G NM_173477.2 c.387dupC p.K130Qfs*5 HM Novel P 

1405 M Turkey MYO15A NM_016239.3 c.8309_8311delAGG p.E2770del HM Sloan-Heggen et al. P 

        (2015)  
1580 M Turkey TMIE NM_147196.2 c.250C>T p.R84W HM Naz et al. (2002) LP 

1583 M Turkey ILDR1 NM_001199799.1 c.583C>T p.Q195* HM Borck et al. (2011) P 

274 M Turkey MYO15A NM_016239.3 c.8090T>C p.V2697A HT Schrauwen et al. LP 

        (2013)  
274 M Turkey MYO15A NM_016239.3 c.10492-2dupA Splice HT Novel LP 

714 S Turkey OTOF NM_194248.2 c.3679C>T p.R1227* HM Novel P 

924 M Turkey SLC26A4 NM_000441.1 c.397T>A p.S133T HM Fugazzola et al. P 

        (2002)  
952 M Turkey TRIOBP NM_001039141.2 c.2521C>T p.R841* HM Novel P 

1087 S USA MYO7A NM_000260.3 c.999T>G p.Y333* HM Weston et al. (1996) P 

1088 S USA MYO15A NM_016239.3 c.7226delC p.P2409Qfs*8 HM Novel P 

1255 S USA SLC26A4 NM_000441.1 c.2162C>T p.T721M HM Usami et al. (1999) P 

1554 S USA USH2A NM_206933.2 c.2299delG p.E767Sfs*21 HT Eudy et al. (1998) P 

1554 S USA USH2A NM_206933.2 c.15200delT p.I5067Tfs*23 HT Novel P 

NSDF207 M USA DFNB31 NM_015404.3 c.1573_1574delAC p.T525Gfs*43 HM Novel P 

NSDF253 M USA MYO6 NM_004999.3 c.1452dupT p.N485* HT Novel P 

NSDF288 M USA TMC1 NM_138691.2 c.1939T>C p.S647P HM Brownstein et al. LP 

         (2011)  
NSDF362 M USA POU4F3 NM_002700.2 c.705delT p.L236Sfs*6 HT Novel LP 

NSDF431 M USA TRIOBP NM_001039141.2 c.2581C>T p.R861* HT Gu et al. (2015) P 

NSDF431 M USA TRIOBP NM_001039141.2 c.3089delC p.P1030Lfs*183 HT Novel P 

S simplex, M multiplex, P pathogenic, LP likely pathogenic, HM homozygous, HT heterozygous, HZ hemizygous, 1.ACMG standards, and guidelines for the interpretation of sequence variants 

(Richards et al. 2015) 

 



 

  

 

 
 

Fig. 1  Representation of solved, unsolved, and uncertain families, based on ethnicity and simplex/multiplex status (a). Number of solved fami- 

lies for each gene and ethnicity (b) 

 

 

genetic variants for pathogenicity. The type of mutations 

evaluated should also be taken into account when consid- 

ering a comprehensive genetic test. While all platforms 

include the analysis of point mutations and small deletions, 

not all the studies screened for large CNVs (Shearer et al. 

2013, 2014). In the current study, CNVs account for 4 % 

of causative alleles, yet rates as high as 13–19 % have been 

reported. 

As NGS technology is becoming more widespread in 

the diagnostic setting, interpreting the clinical meaning of 

newly discovered variants will be one of the major chal- 

lenges of „genomic‟, or „precision‟, medicine (Tsai and Liu 

2014; Aronson and Rehm 2015). Classifying variants is an 

important issue. The online prediction programs, such as 

PolyPhen2 and SIFT, can provide an indication of whether 

a variant that changes the amino acid at a certain position 

could be deleterious; but they are unreliable, can be incorrect 

and alone should not be used to determine whether a vari- 

ant is likely to be disease causing (Tchernitchko et al. 2004; 

Thusberg and Vihinen 2009). HGMD, ClinVar, and DVD 

are commonly checked to decide about the pathogenicity of 

a detected variant for HL. However, these databases are not 

always in agreement for the classifi of DNA variants. 

While the recent ACMG-AMP Guidelines provide a solution 

to this problem, some criteria suggested are subjective that 

would lead to disagreement between different labs (Richards 

et al. 2015). Recently nine molecular diagnostic laborato- 

ries which involved in the Clinical Sequencing Exploratory 

Research (CSER) tested ACMG-AMP guidelines for the 

variant interpretation. Interestingly concordance across labo- 

ratories was only 34 % and after consensus discussions and 

detailed review of the ACMG-AMP criteria, authors men- 

tioned that concordance increased to 71 % (Amendola et al. 

2016). 

In our study, the overall diagnostic rate is 15 %. 19 % 

of the families were classified as uncertain, because the 

probands in these families had at least one VUS. To solve 

these families, more functional, computational, or literature 

evidence is needed. 
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