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Abstract

The management of energy-water nexus in buildings is increasingly gaining attention among do-
mestic end-users. In developing countries, potable water supply is unreliable due to increasing
demand, forcing end-users to seek alternative strategies such as pumping and storage in rooftop
tanks to reliably meet their water demand. However, this is at an increased cost of energy cost.
In this paper, the open loop optimal control model and the closed-loop model predictive control
(MPC) model, both with disturbances, are compared while minimizing the maintenance cost of the
pump. The open loop optimal model is suitable in instances where only random disturbances due
to measurement errors are present. However, in case the demand pattern changes for reasons such
as occupancy change in the house, the closed-loop MPC model is suitable as it robustly minimizes
the pumping cost while meeting the customer demand. Further, MPC proves its robustness as it
is able to overcome the turnpike phenomenon. Each of these two models has their own strengths.
The open loop model is cost effective and easy to implement for customers that have a steady
demand pattern while the closed-loop MPC model is more robust against demand pattern changes
and external disturbances. It is recommended that these two models are adopted according to the
specific application.

Keywords: demand management, energy-water nexus, model predictive control, optimal control,
time-of-use (TOU)

Nomenclature
Atank Cross-sectional area of the tank (m2)
Dtot Total water demand (m3)
h( j) Height of water in the tank during jth sampling interval (m)
hmin Minimum allowable height of water in the tank (m)
hmax Maximum allowable height of water in the tank (m)
J Objective function (currency)
k Iteration index
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N Total number of samples during the 24-h horizon
Np Total number of samples during the predicting horizon
pe Price of electricity using TOU tariff (currency/kWh)
pm Pump’s motor rating (kW)
po f f Off-peak electricity price in the TOU tariff (currency/kWh)
ppeak Peak electricity price in the TOU tariff (currency/kWh)
Q The volumetric flow rate of water in one sampling interval (m3/h)
TOU Time-of-use tariff
to, t f Time in the first and final samples respectively
ts and j Sampling period (h) and jth sampling interval
u State of the pump switch
V( j) Volume of water in the tank in the jth sampling interval (m3)
Vmin Minimum allowable water volume in the tank (m3)
Vmax Maximum allowable water volume in the tank (m3)
ω Weighting factor

Rand(R) South African currency ((1 Rand = 0.065 USD), as at 23 March. 2016)

1. Introduction

The rising global population is increasingly putting pressure on the limited source of potable
water [1], with 60% of the global demand estimated to be met by 2030 [2]. Actually, the world
bank estimates that global water demand will increase at a projected rate ranging from 43% in
North America to 283% in Sub-Saharan Africa from 2005 to 2030 [3]. The impact of water
insecurity is higher in the developing nations, like South Africa, due to high rate of economic
development and subsequent rise in living standards [4]. Management of water demand in build-
ings through efficient technology and behavioural changes has strong entailment in reducing the
demand for energy as well as conserving potable water supplies. Demand side management in
buildings has mainly focused on energy, such as demand response [5], energy efficient building
retrofitting [6, 7], renewable energy utilization [8] and control of efficient hot water systems [9].
Research has started to focus on the importance of demand management of energy-water nexus
such as system-based framework for assessing the nexus in cities [10], nexus at a micro-component
level using rain water tank [11], conservation in a building [12] and even in industries [13]. Al-
though water supply in developed nations is reliable [14], the supply in developing nations is quite
unreliable, and in some instances haphazard, where the end-users are forced to rely on other forms
of supply like trucks [15]. This is the case in some cities in Nigeria, Ghana, Mexico and Indonesia
[16].

South Africa, a semi-arid nation, is not only included in the worldwide trend of inefficient man-
agement of both energy and water but also has her demand far higher than the supply [17, 18]. The
population growth rates and trends in socio-economic development indicate that South Africa’s
freshwater resources cannot sustain the current patterns of water consumption and discharge. At
present, multiple regions in the country are experiencing water deficit [19], like KwaZulu-Natal
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province, whose severe water shortage has forced it to implement water rationing1. Similarly, the
energy deficit has forced the power utility, ESKOM, to implement national load shedding pro-
gram2. Despite this dire situation, there is little information on household water consumption
according to the department of water and sanitation [20]. A study by Jacobs et.al. [21, 22] found
out that for the urban families with lawns and gardens, the most significant water end uses were
garden irrigation (37%), toilet (21%), shower/bath (12%) and clothes washing machine (9%) of
the total water consumption. This research compares well with other studies conducted in United
States [23], Branz, New Zealand [24], Perth [25] and Melbourne in Australia [26].

The continual urbanization is increasing the adoption of decentralized water systems although
there is still technological challenges in their operation [27]. Previous studies show that the prob-
lem with water supply in developing nations is forcing end-users to pump and store their water.
Malik [28] looked at various coping strategies adopted by end-users in dealing with the uncertain-
ties, unreliability and shortages of water supply in India. End users are forced to have various
water storage means such as overhead tanks and having containers in the house. They are also
forced to change their water use pattern highly inconveniencing them. Vieira and Ghisi [29] con-
ducted a study on energy-water nexus for low income houses in Brazil and found out that the dis-
economies of scale associated with pumping and storage increased the energy intensity for water
services. Another study on residential rain water tanks showed that pumps increase the energy
intensity and the consequent bills to the end-users [11]. Research on pump scheduling has mostly
focused on industrial [30], agricultural [31] and large scale municipal pumping [32]. However,
for domestic users, pumping takes place with no consideration to the peak power consumption
negatively affecting the grid and increasing electricity bills incurred by the end-users.

This introductory paper reports the first attempt to design novel, practical and economically
attractive open loop optimal control and closed-loop model predictive control (MPC) strategies
for pumping and storing water in a tank to meet the hourly water demand in a house subject to the
time-of-use (TOU) electricity tariff. These control models ensure energy efficiency in cases where
either there is water rationing or the water supply is always there but it has low pressure and can-
not therefore be used directly in the house. We consider the latter case in this paper. The controls
are superior to the classical control methods such as proportional-integral-derivative (PID) con-
trols. PID controllers have low accuracy in processes which are either non-linear or have a large
time delay [33]. Further, PID controllers only handle effectively single input-single output (SISO)
systems. However, MPC can handle multiple input-multiple output (MIMO) systems, deal with
constraints [34], has higher accuracy, robustness against disturbances and has the ability to predict
the future behaviour of the plant [35]. It nonetheless comes at a higher computational cost [36].
The application of MPC and PID to water pumping and level control systems have been studied
by many researches, such as [37] and [38], who concluded that MPC is better than PID in terms
of Rise time, Settling time and maximum overshoot. It also intrinsically and quickly compensates
for disturbances in the system [39]. The aim of the controls presented in this study is to optimally
operate the pump in the pump-storage scheme such that the customer’s water demand can be satis-
fied with minimum electricity cost and maintenance cost of the pump. Two models, namely open

1Department of Water and Sanitation www.dwa.gov.za/default.aspx
2http://loadshedding.eskom.co.za/
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loop control and closed-loop MPC control, are introduced to cater for different application require-
ments. The open loop control is easy to implement and more cost effective and is more suitable for
applications where the water demand pattern is known to be relatively stable. However, in cases
where the demand pattern is known to be fluctuating in a way that is difficult to predict and/or
the external disturbances to the implementation of the control system is of significant impact, the
closed-loop control must be adopted. Although it has the ability to robustly control the system un-
der the aforementioned fluctuating demand and disturbances, it requires installation of additional
monitoring devices to the system such as water level measurement of the tank, which increases the
cost and complexity of the control system.

2. Model layout and formulation

2.1. Schematic model layout
The increasing water demand due to increasing population and urbanization is causing inad-

equate supply to the end-users. The situation is worsened by the fact that the existing supply
infrastructure is not expanding proportionately to the demand forcing end-users to resolve to alter-
native measures like pumping and storing the water [40]. Figure 1 shows the schematic diagram

h
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Figure 1: Schematic of domestic water supply system with pumping and storage.
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of the water supplying system in a house where water has to be pumped and stored for later use.
A fixed speed pump with a switch (u) pumps the water to a rooftop storage tank whose size is
restricted to the space available. From the tank, water flows by gravity with the required pressure
to various end uses. Two pump control models are considered in this paper. First, an open loop
control model is developed by using the predicted diurnal water demand. Secondly, a closed-loop
MPC model is developed whereby, the level of water in the tank is measured using level sen-
sors. This is used as the feedback signal to the controller, which then optimises the schedule for
pumping to meet the demand.

2.2. Open loop optimal control model
This model seeks to minimize the cost of energy used in pumping water to the tank while

simultaneously minimizing the maintenance cost of the pump and effectively maximizing its life
cycle. It is assumed that water is always flowing in the municipal pipe albeit at low pressure
and there is no water rationing. In case of water rationing, the same formulation is applicable,
but the controller would have the information on when the water will be present in order to start
pumping. In this paper, we consider an evaluation period of one day, or a full operation cycle of 24
h, from 0 to hour 24 with a sampling period, ts, of 10 min. This leads to a total number of samples
N = 24

ts
= 144. Therefore, to minimize cost of energy used in pumping the water, the objective

function is,

J =

N∑
j=1

pmts pe( j)u( j). (1)

where pm is the pump rating, pe( j) is the cost of electricity in the jth sampling interval using the
time-of-use tariff and u( j) is the on/off status of the pump during the jth sampling interval. This
objective is subject to the constraints discussed below.

2.2.1. Capacity of the water tank
The dynamics of the volume of water in the tank can be expressed in discrete-time domain by

a first order differential equation as follows:

V( j + 1) = V( j) + Qtsu( j) − Dtot( j), (2)

where Q is the flow rate of the water through the pump in m3/h and Dtot( j) is the total water
demand in the jth sampling interval in m3. Expressing this volume in terms of the initial volume
V(0) in the tank using recurrence manipulation gives,

V( j) = V(0) +

j∑
i=1

(
Qtsu(i) − Dtot(i)

)
, (1 ≤ j ≤ N). (3)

The water pumped into the tank must not spill from the tank as it would lead to wastage of water
and damage the house’s ceiling. Similarly, the tank should not be completely empty in order to
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prevent air from getting into the pipes [41], as well as to avoid inconveniencing the end-users [42].
Therefore, the amount of water in the tank is restricted by the tank’s dimensions as follows

Vmin ≤ V(0) +

j∑
i=1

(
Qtsu(i) − Dtot(i)

)
≤ Vmax, (1 ≤ j ≤ N). (4)

where Vmin and Vmax are the minimum and maximum allowable volumes of the water in the tank
respectively.

2.2.2. Tank’s terminal constraint
It is desired that at the end of the horizon, a certain volume, V f , of water is left in the tank.

From the state equation (2), then the volume of water in the tank during the last sampling interval
is;

V f = V(N) = V(0) +

N∑
j=1

(
Qtsu( j) − Dtot( j)

)
(5)

2.2.3. Pump maintenance cost
Minimum energy cost may be achieved by frequently switching the pump on and off during

the control period. Unfortunately, this frequent switching of the pump increases the pump main-
tenance cost due to high wear [43]. The number of pump switching can be used as an alternative
variable for measuring the pump maintenance cost [32].

Even though maintenance cost has not been considered in some studies [44], common methods
used to minimize it are; switching the pump for a pre-set minimum duration [45], and restricting
the maximum number of times a pump can switch during the control period [46]. These methods,
nonetheless, do not optimally control the pump while minimizing the maintenance cost. Actually,
if the water demand rises, the optimal solution would easily become infeasible as the controller is
restricted on the number of times it can switch instead of adapting accordingly. To overcome this,
the Pretoria method by Mathaba et al. [47] introduces an auxiliary variable s( j) represented by a
value 1 whenever the pump’s state is changed from off to on. This auxiliary variable is optimally
determined by the following optimization problem.

min
N∑

j=1

s( j), (6)

constrained by
u(1) − s(1) ≤ 0, (7a)

u( j) − u( j − 1) − s( j) ≤ 0, (7b)

with s( j) ∈ {0, 1}. The inequality (7a) initialises the auxiliary variable as the initial status of u
while the inequality (7b) favours the control that involves less switching. Using this method, the
overall objective that simultaneously minimizes the cost of energy and maintenance is

J =

N∑
j=1

(
(1 − ω)pmts pe( j)u( j) + ωs( j)

)
, (8)

where ω is a weighting factor.
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2.2.4. Pump’s switch
This paper focuses on fixed speed pumps which are commonly used in water pumping in urban

houses. This type of pump is ideal for the current task, unlike the more expensive variable speed
drives, because the water just needs to be pumped and stored. Therefore, under optimal operation,
the pump should not require additional investments on flow rate adjustment devices such as valves
and variable speed drives [30]. The pump controller only switches the pump on/off such that it can
be modelled as a switch control problem, where

u( j) ∈ {0, 1}, (1 ≤ j ≤ N). (9)

2.3. Algorithm for solving the open loop optimization problem
The objective function (8) is solved using the following canonical form [48].

min f T X (10)

subject to 
AX ≤ b (linear inequality constraint),
AeqX = beq (linear equality constraint),
LB ≤ X ≤ UB (lower and upper bounds).

(11)

Here, vector X contains the control variables, which are the pump switch u( j) and the auxiliary
variable s( j) used to minimize the frequency of pump switching. Thus,

X =
[
u(1), . . . , u(N), s(1), . . . , s(N)

]T

2N×1
. (12)

The vector f T in the canonical form (10) can be obtained from the objective function (8) as

f T =
[
(1 − ω)pmts pe(1) . . . (1 − ω)pmts pe(N) ω . . . ω

]
1×2N
. (13)

The linear inequality constraint (4) can be transformed into

A1X ≤ b1,

−A1X ≤ b2,
(14)

where,

A1 =


−tsQ 0 . . . 0 0 . . . 0
−tsQ −tsQ . . . 0 0 . . . 0
...

...
. . .

...
...
. . .
...

−tsQ −tsQ . . . −tsQ 0 . . . 0


N×2N

, (15)

b1 =



−Dtot(1) −
(
Vmin − V(0)

)
−

(
Dtot(1) + Dtot(2)

)
−

(
Vmin − V(0)

)
...

−

(
Dtot(1) + Dtot(2) + . . . + Dtot(N)

)
−

(
Vmin − V(0)

)


N×1

(16)
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and

b2 =



Dtot(1) +

(
Vmin − V(0)

)
(
Dtot(1) + Dtot(2)

)
+

(
Vmin − V(0)

)
...(

Dtot(1) + Dtot(2) + . . . + Dtot(N)
)

+

(
Vmin − V(0)

)


N×1

. (17)

Again, the linear inequalities (7a) and (7b) can be represented by

A3X ≤ b3, (18)

where

A3 =


1 0 0 . . . 0 0 −1 0 0 . . . 0
−1 1 0 . . . 0 0 0 −1 0 . . . 0
0 −1 1 . . . 0 0 0 0 −1 . . . 0
...
...
...
. . .
. . .

...
...
...
...
. . .

...
0 0 0 . . . −1 1 0 0 0 . . . −1


N×2N

,

b3 =
[
0 0 0 . . . 0

]T

1×N
.

(19)

Then, the canonical linear inequality constraint in (11) becomes A1

−A1

A3


3N×2N

X ≤

b1

b2

b3


3N×1

(20)

In similar veins, linear equality constraint (5) can be written as follows;

AeqX = beq, (21)

where

Aeq =


0 . . . 0 0 . . . 0
...
. . .

...
...
. . .
...

0 . . . 0 0 . . . 0
tsQ . . . tsQ 0 . . . 0


N×2N

(22)

and

beq =


0
...
0

(V f − V(0) +

(
Dtot(1) + . . . + Dtot(N)

)


N×1

. (23)

Finally, the canonical lower and upper bounds in (11) are written as

LB =
[
0, . . . , 0, 0, . . . , 0

]T

2N×1
UB =

[
1, . . . , 1, 1, . . . , 1

]T

2N×1
(24)
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This binary linear optimization problem is solved using the SCIP solver, available in the Matlab
interface OPTI toolbox. SCIP is currently one of the fastest non-commercial solvers for mixed
integer (linear and non-linear) programming [49].

The open loop controller is able to provide the optimal pump control schedule in vector X
throughout the whole control horizon using the predicted water demand. The results are discussed
later in the paper.

2.4. Closed-loop MPC model
Closed-loop MPC method uses the explicit model of the plant to optimize the future plant

behaviour [50]. The current control action is obtained by solving on-line a finite open loop optimal
control problem using the current state of the plant as the initial state. The optimization produces
an optimal control sequence, but only the first control step is applied to the plant [51]. This ability
to compute the control law on-line is a huge benefit of MPC over the conventional control in
instances where off line computation of the control law is difficult [35].

Taking measurements and feeding them back to the controller provides stability and robustness
against disturbances and inaccurate system modelling [52]. In this model, volume of water in the
tank is measured using sensors, and then fed back to the controller. The tank considered is assumed
to be cylindrical, such that level sensors, which are the most economical and easy to implement,
can be used to provide the height of the water in the tank. The tank dynamic equation (2) can then
be modified to give the height of the water, h, in the tank as;

h( j + 1) = h( j) +
1

Atank

(
Qtsu( j) − Dtot( j)

)
. (25)

Following the idea of MPC, the objective function (8), can now be modified to,

Jmpc =

k+Nc−1∑
j=k

(
(1 − ω)pmts pe( j)u( j|k) + ωs( j|k)

)
, (26)

where Nc is the control horizon, u( j|k) and s( j|k) are the predicted values at the jth sampling interval
based on the information available at time k. Although common MPC optimization problems
include both the predicting (Np) and control (Nc) horizons, such that Nc ≤ Np, this MPC problem
does not include Np because the above objective function does not have the state variable, h( j),
included.

In the optimization algorithm, the control vector, Xmpc will still contain the pump switch u( j)
and the auxiliary variable s( j) such that

Xmpc =
[
u(k|k), u(k + 1|k), . . . , u(k + Nc − 1), s(k|k), s(k + 1|k), . . . , s(k + Nc − 1)

]T

2Nc×1
(27)

Therefore, the vector f T in the objective function’s canonical form (10) can be derived form ob-
jective function (26) as,

f T =

[
(1 − ω)pmts pe(k), (1 − ω)pmts pe(k + 1), . . . , (1 − ω)pmts pe(k + Nc − 1),

ω, . . . , ω
]

1×2Nc

(28)
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This objective function is minimized subject to the same constraints modelled in section 2.2 albeit
with the following adjustments.

(1) Tank’s capacity: The volume of the water in the tank within the control horizon, Nc, is con-
strained by the tank’s capacity between the maximum and minimum allowable water volume.
Since the tank is assumed to be cylindrical, and the level sensor will give the height of water
in the tank, then,

hmin ≤ h(k) +

j∑
i=k

1
Atank

(
Qtsu(i|k) − Dtot(i)

)
≤ hmax, k ≤ j ≤ k + Nc − 1 (29)

where h(k) is the measured height of the water in the tank at time k having a cross-sectional
area Atank while, hmin and hmax are the minimum and maximum allowed water heights in the
tank respectively such that hmin = Vmin

Atank
and hmax = Vmax

Atank
. In the algorithm, the linear inequality

can be transformed into,
Ampc

1 Xmpc ≤ bmpc
1 ,

−Ampc
1 Xmpc ≤ bmpc

2 ,
(30)

where,

Ampc
1 =


−tsQ 0 . . . 0 0 . . . 0
−tsQ −tsQ . . . 0 0 . . . 0
...

...
. . .

...
...
. . .
...

−tsQ −tsQ . . . −tsQ 0 . . . 0


Nc×2Nc

, (31)

bmpc
1 =



−Dtot(k) − Atank

(
hmin − h(k)

)
−

(
Dtot(k) + Dtot(k + 1)

)
− Atank

(
hmin − h(k)

)
...

−

(
Dtot(k) + Dtot(k + 1) + . . . + Dtot(k + Nc − 1)

)
− Atank

(
hmin − h(k)

)


Nc×1

, (32)

and

bmpc
2 =



Dtot(k) + Atank

(
hmax − h(k)

)
(
Dtot(k) + Dtot(k + 1)

)
+ Atank

(
hmax − h(k)

)
...(

Dtot(k) + Dtot(k + 1) + . . . + Dtot(k + Nc − 1)
)

+ Atank

(
hmax − h(k)

)


Nc×1

. (33)

(2) Pump switching constraints: The constraint minimizing the switching frequency of the pump
now becomes,

u(1|k) − s(1|k) ≤ 0, (34a)
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u( j|k) − u( j − 1|k) − s( j|k) ≤ 0, (34b)

with s( j|k) ∈ {0, 1}. The inequality constraint (34a) initialises the auxiliary variable as the
initial status of u based on information available at time k while the inequality (34b) favours
the control involving less switching between adjacent sampling intervals based on information
available at time k. The constraints can be represented by,

Ampc
3 Xmpc ≤ bmpc

3 (35)

where

Ampc
3 =


1 0 0 . . . 0 0 −1 0 0 . . . 0
−1 1 0 . . . 0 0 0 −1 0 . . . 0
0 −1 1 . . . 0 0 0 0 −1 . . . 0
...
...
...
. . .
. . .

...
...
...
...
. . .

...
0 0 0 . . . −1 1 0 0 0 . . . −1


Nc×2Nc

,

bmpc
3 =

[
0 0 0 . . . 0

]T

Nc×1
.

(36)

Therefore, the linear inequality constraint (11) now becomes
Ampc

1

−Ampc
1

Ampc
3


3Nc×2Nc

Xmpc ≤


bmpc

1

bmpc
2

bmpc
3


3N×1

(37)

(3) Terminal constraint: At the end of the 24-h horizon, the height of water in the tank should be
h f such that,

h f = h(k) +

N−k+1∑
j=k

1
Atank

(
Qtsu( j|k) − Dtot( j)

)
(38)

In the algorithm, this constraint is written as the canonical linear equality constraint in (11) as,

Ampc
eq Xmpc = bmpc

eq , (39)

where

Ampc
eq =


0 . . . 0 0 . . . 0
...
. . .

...
...
. . .
...

0 . . . 0 0 . . . 0
tsQ . . . tsQ 0 . . . 0


Nc×2Nc

(40)

and

bmpc
eq =


0
...
0

(h f − h(k) +

(
Dtot(k) + . . . + Dtot(N − 1)

)


Nc×1

. (41)
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In this case, Nc is evolving all the time as Nc = N − k + 1.
(4) Upper and lower bounds: The on/off control of the pump is still modelled as switch control

problem such that,
u( j|k) ∈ {0, 1}. (42)

In the canonical lower and upper bounds in (11), they are written as

Lmpc
B =

[
0, . . . , 0, 0, . . . , 0

]T

2Nc×1
Umpc

B =
[
1, . . . , 1, 1, . . . , 1

]T

2Nc×1
(43)

The open loop optimal control problem (26) is solved, using SCIP solver in the Matlab interface
OPTI toolbox, during each iteration over the finite 24-h horizon. Although, in MPC, the optimal
vector, X contains the controls, using the principle of the receding horizon control, only the first
element in the control vector Xmpc is implemented after each iteration, ignoring the rest of the
elements [53]. The state of the plant (water level in the tank, h( j)) is also measured. At the next
iteration, k + 1, the objective function and the constraints are updated while h(k) is taken as the
initial state and the process of optimization is carried out in real time over the new control horizon
(Nc = N − k + 1) to give the receding horizon control law.

3. General data

3.1. Case study
A maisonette house in a gated community in Tshwane, South Africa was chosen for this study.

The house, with five occupants, has the following end-uses; two showers, a bath tub, two toilets,
two hand taps, a kitchen tap, a clothes washing machine, a dish washer, a grass lawn and an electric
water heater for all the hot water demand. The water from the municipal supply requires pumping
and storage due to its low pressure. The pump is currently controlled by two sensors in the tank
such that when the water level is low, the pump is switched on until the tank is full regardless of
the cost of electricity using the TOU tariff. This is used as the baseline in this paper. The water
flows from the storage tank to the various end-uses by gravity. Jojo’s3 1000 l cylindrical water tank
with a diameter and height of 1.1 and 1.3 m respectively is used and the lower and upper levels
of the water in the tank are set as 0.12 and 1 m, respectively to avoid spilling the water from the
tank as well as running it completely empty. In addition, Grundfos Leader EBS 800 pump4 rated
at 0.8 kW with a flow rate of 0.9 m3/h at a maximum head of about 30 m is used. This pump is
specifically designed for pressurised water supply in domestic and other small scale applications.

The water demand in the house was measured every hour by placing a digital flow meter
connected to a data logger, for a period of one week. From the measurements carried out, the
average hourly water demand is shown in Figure 2. The demand has the highest peak in the
morning between 7 and 10 AM. There is also another peak in the evening from 5 to around 9 PM.
The morning peak is attributed to people waking up and preparing to go to work or school with the
highest end-use demand being showering and the clothes washer. Likewise, the evening demand

3Water tank www.jojotanks.co.za/
4www.davisandshirtliff.com/categories/product/104-ebs-800
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Figure 2: Baseline average hourly water demand.

is attributed to people getting back home from work. The consumption during the day is attributed
to those at home during the day. Although this hourly demand is similar to the one obtained by
Willis et.al. [54], the extensive conservation awareness and measures carried out in their study
area made the daily water consumption to be less than what was obtained in our study.

3.2. Time-of-use electricity tariff
The TOU tariff is commonly used globally [55] and it can vary by time of day, day of week

and season [56]. Eskom’s TOU Homeflex structure5 for residential consumers given below is used
for the house.

pe(t) =

{
po f f = 0.5510 R/Kwh if t ∈ [0, 6] ∪ [10, 18] ∪ [20, 24]
ppeak = 1.7487 R/Kwh if t ∈ [7, 10] ∪ [18, 20] (44)

where pe(t) is the hourly price of electricity, po f f is the off peak price, ppeak is the peak time
price, R is the South African currency, Rand, and t is the time of day in hours. The tariff has
five charge components as service charge, network charge, environmental levy, peak charge and
off-peak charges [57].

5Eskom tariffs and charges booklet 2011/2012. www.eskom.co.za
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4. Simulation results and discussion

4.1. Control models without disturbance
This section compares both the open and closed-loop models with the intention of showing

that the closed-loop MPC model is just as effective as the open loop optimal model when there are
no disturbances, system inaccuracies or plant failures. In addition, the legend representing peak
time and off-peak time for the TOU tariff is the same throughout the paper.

It can be seen from Figure 3 that all the pump schedules take place during the off-peak pe-
riod, effectively shifting the load from the peak time. Figures 3a and 3b show the results without
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1
Off Peak Peak

(a) Open loop optimal, no maintenance
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Figure 3: Comparison of both open loop and MPC with the effect of minimization of the maintenance cost.

considering the pump’s maintenance cost. The frequent switching of the pump is undesired, as it
leads to high wear and tear of the pump’s motor as it tries to overcome the dead weight caused
by the stationary load (water), hence increasing the maintenance cost. Although not accounted for
in this model, the frequent starting of the pump could also lead to higher energy costs due to the
high start-up current required in overcoming the dead weight. Therefore, the strategy employed
to minimize the switching frequency and effectively minimize the maintenance cost works both in
open loop model (Figure 3c) as well as the MPC model (Figure 3d). All the four models, however,
incur the same cost of energy proving that both the open loop and MPC models are effective with
no disturbances.

The variation of the state variable, that is, water level in the tank (h( j)) due to the models in
Figure 3 is shown in Figure 4. It can be seen that none of the models violated the constraints for the
tank. In the optimal open loop model without consideration of the maintenance cost (Figure 3a),
the pump switches at 00:50 the first time for a duration of 10 minutes only, causing the water level
in the tank to increase in the tank. The pump switches on frequently between 04:30-06:00 hours
causing another rise of the water level in the tank to a height of 0.75 m. The pump is then switched
off through the peak time where the water level in the tank declines to 0.135 m due to the water
demand in the house. The controller then senses that the water level is declining and switches on
the pump at 10:20, again frequently with the longest duration being 20 min causing the water level
in the tank to vary. Similarly, the MPC schedule with no maintenance cost (Figure 3b) frequently

14



Time (h)

0 4 8 12 16 20 24

h
 (

m
)

0.06

0.56

1.05

D
em

an
d

 (
l)

0

40

Open loop, no Maintenance
MPC, no maintenance
open loop with maintenance
MPC with maintenance
Baseline
Demand without disturbances

Figure 4: Water level in the tank without disturbance.

switches the pump on starting at 05:30. This is after the water level in the tank declined to 0.13
m due to the early demand in the house. The pump is switched on twice before the peak time
where the tank is filled. This water is used up during the peak time with the level declining to 0.47
m before the pump is switched on at 10:00 hours, just after peak time, for a duration of 10 min.
Thereafter, the pump is switched on twice, for a duration of 10 min each, causing the rise of water
level in the tank at 17:20 and 20:10 hours. Unfortunately, these two schedules are undesirable for
the operation of the pump.

When the open loop optimal model with maintenance (Figure 3c) is considered, the two switch-
ing regimes at 00:10 and 12:40 hours, each lasting 50 minutes lead to the increase in the water level
in the tank to 0.95 m and 0.87 m respectively. This water is sufficient to meet the demand in the
house without violating the constraints. Identically, the closed-loop MPC model (Figure 3d) has
two switching regimes at 00:00 and 10:30 hours, 40 minutes and 1 hour long respectively. They
lead to a water rise in the tank to 0.80 and 1 m respectively. Thereafter, when the pump is off,
this water level declines due to the demand in the house. It is also important to note that all the
schedules were terminally constrained to also ease in comparison as seen in the graph.

4.2. Control models with disturbance
The models are tested for robustness using two likely disturbances to be experienced in dealing

with water demand. First, a random disturbance throughout the horizon is applied and then a
sudden spike in water demand is used.
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4.2.1. Random disturbance
Random disturbance can be caused by errors in accurately predicting the water demand, mea-

suring the water level in the tank or inaccuracies of the pump’s flow rate. By applying the random
error signal, ε( j), affecting the demand such that the new demand is,

Dd
tot( j) = Dtot( j) + ε( j) (45)

This demand in turn, affects the state equation (25). In this paper, the error signal is randomly
generated as ±50% of the demand, signifying a very inaccurate system. Figure 5 shows the com-
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Figure 5: Water level in the tank with random disturbances.

parison of the water level in the tank with such a disturbance. Since the disturbance signal is
randomly generated, the figure shows the average variation of the water level while using the two
models. The open loop model does not violate the boundary constraints in most cases. Even in
the cases where the open loop model violated the constraints, the violation was not very severe.
Further, the MPC model switches on the pump at 10:00 hours for 10 minutes in order to deal with
the disturbances. This extra switching also causes more water to be left in the tank. In order to
ensure the MPC model remained feasible, the terminal constraint is implemented as a soft con-
straint taking note of the increase of the height of water in the tank when the pump is switched
on during one sampling interval. The open loop and the MPC models incur pumping cost of 0.84
and 0.92 Rands respectively. This means that, in dealing with random disturbances arising from
system inaccuracies, the open loop optimal control model is better than the MPC, as it is cheaper
to implement and also incurs less running costs.
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4.2.2. Sudden spike in water demand
A sudden increase in water demand could be caused either by more people in the house during

some period, or some unforeseen demand for water. In this paper, we assumed that the water
demand suddenly increased by 70% between 18:00-20:00 hours. Figure 6 shows the comparison
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Figure 6: Water level in the tank with sudden increase in demand between 18:00-20:00 hours.

of the robust MPC and the open loop optimal control in the presence of disturbances. The open
loop control model does not react to the unforeseen increase in demand. This leads to the emptying
of the tank towards the end of the day effectively meaning the end-users would not have water to
use. On the contrary, the MPC model reacts to the increased demand by switching on the pump at
20:10 hours for just 10 minutes. The extra water pumped in this duration means that the tank has
enough water to meet the rest of the demand. The MPC model, however, incurs a pumping cost
of 0.92 Rands against 0.84 Rands incurred by the open loop optimal model. Although the cost of
using the MPC is slightly higher, it is more robust in dealing with sudden disturbances and it is
more reliable in ensuring that the end-users always have water.

4.2.3. Turnpike phenomenon
During implementation, the open loop optimal controller does not guarantee proper operation

in subsequent days as the water level in the tank at the end of the control horizon, which will be the
initial state for the following day, is not always the same as h(0) as seen in Figure 4. This problem
is called the turnpike phenomenon [58]. Turnpike property has been described by Faulwasser et
al. [59] as the phenomenon where the optimal solution in many finite-horizon optimal control
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problems for different initial conditions approach the purlieus of the best steady state but might
leave it towards the end of the control horizon. This phenomenon has been observed in optimiza-
tion problems with and without terminal constraints. The closed-loop MPC automatically corrects
this problem over several days as it uses the previous state in the tank instead of the initial state.
Since the sampling in this paper is done every 10 min, one day has 144 samples. Therefore, from
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Figure 7: MPC switching and water level variation for 3 days.

Figure 7, the water level in the tank at the end of each day is the same, at a height of 0.15 m.
The advantages of the MPC to handle constraints and disturbances while possessing closed-loop
stability and robustness makes it suitable for use in practical problems [60].

4.3. Discussion
The open loop and MPC models considering the maintenance cost of the pump are suitable

for optimally controlling the pump to meet the household water demand. Both can save up to
48.5% of the pumping energy cost with respect to the baseline assuming there are no disturbances.
However, this is never the case in reality. The open loop optimal model is suitable in cases where
the only disturbances are due to the measurements errors, such that demand pattern doesn’t change
significantly. This is because while it still efficiently controls the pump, it incurs 8.7% less cost
than the MPC model and it is cheaper to implement.

However, in reality, disturbances due to measurements uncertainties are not the only distur-
bances. There are instances when the house will either have more or less occupants, or need more
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water to perform some chores that are not performed daily, hence it is not possible to predict. The
open loop model is unable to respond to such kind of a disturbance, leading to emptying of the
tank even before the horizon is over. This model also runs at the danger of spilling the water if
the demand unexpectedly goes down when it was already pumping the water. To mitigate against
such disturbances, the MPC model has proved its robustness by adapting accordingly while ensur-
ing that none of the constraints are violated. This robustness is at the expense of 9.5% more cost
of energy than the open loop model, though it can still save 43.6% with respect to the baseline.
Therefore, the robustness of the MPC model makes it more suitable in pumping the water to meet
household water demand. In South Africa, the TOU period for different seasons was reviewed
in 2015 where winter peak periods start one hour earlier6. The MPC model, when tested in both
summer and winter periods, yields the same results indeed showing its robustness. If a different
tariff is used, the MPC would automatically adopt to it to ensure the pump is efficiently operated.

Table 1 shows the comparison of the energy costs incurred by the two models as compared to
the baseline model. The cost incurred in the baseline model is constant throughout because for the

Table 1: Comparison of the cost of pumping energy incurred

Pumping energy cost (Rands/day)
Baseline Open loop Robust MPC

No disturbance 1.63 0.84 0.84
Random disturbance 1.63 0.84 0.92
Spike disturbance 1.63 0.84 0.92

day chosen, the baseline model doesn’t need to pump extra water whether there are disturbances
or not, since enough water is left in the tank at the end of the day. Similarly, since the open loop
model is unable to predict and adapt to the disturbances, it also incurs the same energy cost in the
three cases. However, the robust MPC model’s cost of pumping energy increases by 9.5% due to
the disturbances that necessitate the model to switch on the pump for an extra sampling interval
in response to the disturbances. It is also noted that the extra switching pumps enough water to
counter both types of disturbances, hence the same cost in the presence of disturbances.

Both the open loop model and the robust MPC model can potentially lead to a cost saving of
48.5% and 43.6% respectively. The open loop model therefore leads to higher cost saving, and is
suitable in situations where only random disturbances are present. However, in practical situations,
the demand for water in the house is bound to change, either rise or drop, without prediction. The
ability of the robust MPC model to adapt to such a disturbance, unlike the open loop model, makes
it superior although at a slightly higher cost.

The two control models are applicable in situations with unreliable municipal water supply that
forces end-users to pump and store water such as cities in developing nations. This would enhance
energy efficiency through load shifting translating to lower electricity cost to the end-users while
ensuring reliability and convenience. The models are also useful for end-users using boreholes
as their source of water. In the case where water rationing exists, the models would be fed with

6www.eskom.co.za
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the time water is available so as to optimally control the pump. In scenarios where end-users
have more than one source of water, for example, stored rain water or bore hole and municipal
sources. In such cases, the models can be modified to accommodate the extra sources of water
in ensuring energy efficiency and reliability by means of properly modelling the new system with
extra components.

5. Conclusion

The increasing population and urbanization in developing nations is increasing pressure on
existing energy and water infrastructure causing insufficient and unreliable supply to end users.
Some of these end-users are forced to install water tanks in their houses to pump and store the
water for use. The pumping increases the load on the power utilities in the same economies where
the energy security is very low. In South Africa, for instance, the energy demand management
has steadily been developing, while leaving out the energy-water demand management among
domestic end users. This paper, therefore, presents the introductory research for energy-water
nexus demand management in urban houses through optimal operation.

Open loop optimal and closed-loop MPC models are developed to meet the water demand in
the house while minimizing the energy cost for pumping the water in the house. The models are
developed using the TOU tariff in South Africa. Both models can potentially lower the energy
cost by upto 48.5% when the demand is correctly predicted with no disturbances. This is never
the case in reality and therefore the robust MPC control model proves suitable in dealing with
all the disturbances, while still saving upto 43.6% of the energy cost. The open loop model can
still be used in cases where the only disturbances present are due to random errors arising from
measurements and the demand profile doesn’t change that much. If widely adopted, the models
would lead to lower energy costs to the consumers through lower electricity bills. Further, shifting
the peak load would improve the stability of the grid by shaving the peak. This in turn would
mean that some black outs experienced during peak time would cease as the demand from the grid
would not be more than its capacity.

Further research will involve optimal controls for water conservation strategies within house-
holds. The research can also be furthered to commercial buildings in developing nations where
the water needs to be pumped and stored. Energy efficiency can further be enhanced through the
incorporation of renewable energy to power the pump. This will lead to more economic benefits
to the end-users.
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[31] M. A. Jiménez-Bello, A. Royuela, J. Manzano, A. G. Prats, F. Martı́nez-Alzamora, Methodology to improve
water and energy use by proper irrigation scheduling in pressurised networks, Agricultural Water Management
149 (2015) 91–101.

[32] B. Barán, C. von Lücken, A. Sotelo, Multi-objective pump scheduling optimisation using evolutionary strategies,
Advances in Engineering Software 36 (1) (2005) 39–47.

[33] Y. A. Sha’aban, B. Lennox, D. Laurı́, PID versus MPC performance for siso dead-time dominant processes,
IFAC Proceedings Volumes 46 (32) (2013) 241–246.
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