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Abstract  
This paper, the second of a two part article, expands on an idea that appeared in literature 

in the 1950s to show that by resticting the domain to those complex numbers that map 

onto real numbers, representations of functions other than the ones in the real plane are 

obtained. In other words, the well-known curves in the real plane only depict part of a 

bigger whole. This expanded representation brings new insight into visualising complex 

roots. The suggestion is that this new approach be introduced to students firstly through 

relating the path in history and secondly by imparting the visual presentation as exposed 

in the paper to offer a richer teaching and learning approach to the topic. Furthermore this 

approach provides a new way of employing technology to visualise concepts and curves 

that were previously not noticed.  

 

1. Background  
   

In the first part of this article, we traced the development of complex numbers and 

followed the quest for finding roots of functions, both algebraically and graphically, 

through millennia. The three attempts at giving visual interpretation to the existence of 



complex roots for polynomial equations, discussed in the first part of this paper, are all 

informative but at the same time somewhat artificial. In a first approach the Argand plane 

had to be superimposed onto the Cartesian plane to make the complex roots 'visible'. In 

the second approach the two planes were drawn next to each other and the complex roots 

could be traced by moving from the one plane to the other. The third approach is 

probably the most 'natural' of the three ways of visualising complex roots, but even here 

the approach is still somewhat contrived. Because it was difficult to visualize the 4-

dimensional graph, the modulus of the function value was taken (a real number) to 

eliminate the fourth dimension and make a picture of a 3-dimensional surface possible. 

This journey through history brought us to a point where we can expand our vision of 

functions and their complex roots. 

 

2. Working with real-valued functions  
   

Without much ado and seemingly almost unobserved, an idea appeared in print in 1951, 

in an American secondary school textbook 1. The author, Howard Fehr, is a past 

president of the National Council for Teachers in Mathematics in the USA and was, at the 

time, professor at Columbia University. The idea is elegant and under-explored, and it is 

the intention of this paper to expand on and run with the idea. 

 

In short: For a function f that maps complex numbers onto complex numbers, we restrict 

the domain to those complex numbers that map onto real values. On the new domain the 

function has real values and can be represented in three dimensions with the domain in 

the horizontal plane and the range along the vertical axis. 

 



2.1. The quadratic function  

   

          
at the points where the sibling curve cuts the complex plane and obviously form a 

conjugate pair. 

 

 

   

 

Figure 1. Quadratic function .  



 

The ideas of Fehr, exposed here, were picked up more than 30 years later by Vest 2 in 

1985 and reiterated for the general case of  , but have remained 

dormant since, to the best of our knowledge. In a recent article by Ballew 3, 18 ways to 

solve quadratic equations by analytic and graphic methods were discussed, sub-headed by 

'Including those you may never have seen'. It was noticeable that although there is a 

passing reference to Fehr's book, this approach is absent. Another recent discussion in the 

Teacher2Teacher forum on the internet 4 speculates about the existence of what the 

enquirer refers to as phantom curves, which seem to be what we call sibling curves, but 

no definite conclusion was reached as to their existence. 

 

2.2. The cubic function  

The next obvious step in following Fehr's idea is to investigate the cubic function and 

trace its lesser-known siblings. The general cubic function is given by   

(obtained through a linear transformation as mentioned in the first part of this paper). 

 
Since we restrict ourselves to real values in the range of the function, the imaginary part 

must be zero, which requires that  (as was shown in Ward 5). The 

first condition gives us the well-known cubic curve in the Cartesian plane, and the second 

condition tells us that there are two more sibling curves, each with one of the two 

branches of the hyperbola as domain in the xw-plane. These curves 

therefore lie in the two hyperbolic cylinders parallel to the y-axis. An example is 

appropriate. 

 

Consider the function  

 

By setting  we can derive that, apart from the big brother curve in the Cartesian 

plane, there are two other siblings, defined on the hyperbolic cylinders 

 



Figure 2(a) is a plan view showing the domain curves and figure 2(b) shows a 3-D view 

of the three sibling curves of   on the domain curves. 

 

   

 

Figure 2. (a) Domain of the function . (b) Siblings of the function 

.  

Note the following:  

• The curve in the Cartesian plane, the big brother curve (bold), is increasing in the 

x-direction and the other two siblings are decreasing.  

• The new curves are symmetrical about the xy-plane (twin curves).  

• The conjugate complex roots of the twin curves are visually obvious.  



• The example illustrates curves for a positive p-value. For a negative p-value the 

hyperbolic domain of the new twin curves will be symmetric about the w-axis.  

• Ward 5 identified the two hyperbolic domain curves (as discussed) but without 

identifying the sibling curves.  

• There are three different cases for the domain curves of the cubic, the first with 

the x-axis as transverse axis, the second with the w-axis as transverse axis and the 

degenerate case where the domain curves are two straight lines 6.  

 

An immediate thought that comes to mind is that if the quadratic and cubic polynomials 

have sibling curves, what about higher degree polynomials such as the quartic, the 

quintic? If the quadratic function has one sibling curve and the cubic has two, will the 

quartic have three? How about the other functions such as the trigonometric functions, 

the exponential, the circle, the hyperbola? 

 

We will systematically go about addressing some of this host of questions. 

 

2.3. Quartic polynomials and beyond  

We show here that by following the same process for the quartic polynomial, there are 

three domain curves in the xw-plane onto which three more sibling curves, in addition to 

the big brother in the Cartesian plane, are defined. The general quartic is given by 

  (again through a linear transformation). By setting we 

obtain  

   

For the i-term to vanish,  (and we get the Cartesian curve) or 

 
which implicitly defines domain curves in the xw-plane. Note that x cannot be zero for 

 
The sibling curves are obtained by substituting 

 



into  

 t 

o obtain y as a function of x. 

 

We look at the example  . Following the same procedure, the big 

brother curve   in the Cartesian plane is obtained. The domain 

curves of the other siblings are given by   and the actual siblings 

are given by  . Figure 3(a) shows the domain 

curves of all four siblings and figure 3(b) shows the four siblings on the domain curves. 

   

Figure 3. (a) Domain of the function . (b) Siblings of the function 

.  

 



Note the following:  

• The big brother curve (bold) does not intersect the x-axis, so there are no real 

roots.  

• The other three siblings do have roots and these can be graphically seen to form 

two conjugate pairs  

 

For the quintic polynomial one is led to expect five sibling curves in total and the roots 

should also be visually obvious. The intention is to investigate this premise and other 

features of polynomial siblings in a subsequent paper. 

 

2.4. Exponential functions  

Having demonstrated the existence of sibling curves for polynomials, it is natural to 

speculate about the existence of sibling curves for the other well-known functions. Would 

it be possible, for example, for the exponential function to have siblings that we have not 

previously been aware of? We investigate. 

 

If   and we are only interested in that part of the domain 

where f(z) is real valued, then  

 
so that   The answer is positive, there are many siblings in the family.  

 

The sibling curves of the exponential function (including the big brother curve) are given 

by  

 
and shown in figure 4. 



   

Figure 4. Siblings of the exponential function.  

 

The understanding is that the exponential function as we know it in the Cartesian plane is 

just one of infinitely many siblings, evenly spaced along the w-axis and reversing sign 

every π-units. None of the sibling curves of the exponential function ever cuts the xw-

plane, so there are no roots, real or complex. 

 

2.5. Trigonometric and hyperbolic functions  

We know the cos function as a periodic function in the Cartesian plane that has roots 

every π units. We also know that the cos function has real roots only but is it possible that 

it still has sibling curves and if so, would these also be trigonometric functions? 

 

If   then     

                                                      
If, once again, we only consider that part of the domain of the function f for which f(z) is 

real valued, then sin x sinh w =0. 

So either sin x = 0 which happens when x=nπ ( ) or sinh w=0 which happens only 

when w=0. The latter case gives the normal Cartesian curve. For the first case, it appears 

that there are sibling curves in the planes x=nπ ( ). These curves are obtained by 

substituting x=nπ into equation (3): 

 



We now realize that the cos function is part of a much larger family. The cos function has 

infinitely many siblings, all joined to the function at its turning points. From the visual 

representation in figure 5 we see why the cos function has only real roots, the other 

sibling curves do not have any roots. We also see that the siblings of the cos function are 

not trigonometric functions, but hyperbolic functions. 

   

Figure 5. Function f(z)�=�cos�z.  

The observed alliance between the cos function and the cosh function leads to the 

question whether, if we had started with the cosh function, would we have obtained the 

cos function as its sibling? 

If 

 
it follows that  . For the function to be real valued 

either sin w=0 for which   rendering 

 
or sinh x=0 for which x=0 and which renders y=cos w. So for the cosh function in the 

Cartesian plane there is a cos sibling in the yw-plane and many other cosh siblings 

running parallel to the big brother. 



 

The answer to the question is yes, the cosh function does indeed have the cos function as 

one of its siblings and the alliance holds both ways. But there are other siblings of the 

cosh function too, it repeats itself and changes sign every π units on the w-axis. 

It can be shown that the sin-function has sibling curves when  , that is 

at the turning points of the function with the sibling curves given by 

 
Another surprising result is that the siblings of sinh-function behave similarly to those of 

the exponential function f(z)=ez. The sinh function repeats itself and changes sign every 

π-units on the w-axis. This means that the sinh-function does not only have a root at zero, 

it has complex roots at   

 

2.6. The circle  

The circle is known to have only real roots but as we now know that does not exclude 

itself from having sibling curves. We investigate the possibility. 

If  

 
 

For y to be real it is necessary and sufficient that y2 be real and positive. The coefficient 

of i must be zero, so  

 
For w�=�0 we obtain the circle in the Cartesian plane y2+x2=r2 and for x=0 we obtain 

the sibling curve   which is a hyperbola in the yw-plane with the y-axis as 

transverse axis. 

 

The circle not only has sibling curves but, once again, there is an unexpected alliance 

with another, seemingly unrelated, function, the hyperbola. Figure 6 shows a circle and 

its two perpendicular sibling curves which together form a hyperbola. 



   

Figure 6. Function y2�+�z2�=�25.  

 

The alliance between the circle and the hyperbola, of course, leads to the question 

whether the alliance holds both ways. In other words, had we started with a hyperbola in 

the Cartesian plane, would it similarly produce a circle as a sibling? 

 

This is indeed the case as can be verified. However, it is only the hyperbola with the x-

axis as transverse axis that has the circle as sibling, the 'vertical' hyperbola has no 

siblings. 

 

Finally, we give new insight into a familiar topic. 

 



2.7. Solutions of zn=1  

De Moivre's theorem is standard to the content of any introductory course in complex 

numbers and in any such course students come to learn that the n complex roots of 

  lie on a circle in the Argand plane and are evenly spaced. We will try to 

give a new graphical representation of these complex roots by tracing the sibling curves 

of this function. 

 

We start by looking at the function   which renders 

 
 

For f to be real valued, either w=0 or 3x2-w2=�0. The first condition gives the Cartesian 

curve y=x3-1. The second condition tells us that the domain of the sibling curves consists 

of two straight lines   Substituting w2=3x2 into (4) gives the function 

  defined on the two lines and shown in the figure 7. 

   

Figure 7. Function f(z)�=�z3�-�1.  



Notice that the Cartesian curve is accompanied by two siblings, all of them intersecting 

the y-axis at -1 and intersecting the xw-plane at the real root 1 and the two complex roots 

 . The three siblings curves come together like a bunch of flowers at -1 on 

the y-axis. 

 

The picture becomes even more spectacular when n has a bigger value. For example, for 

n�=�6 there will be six siblings, altogether, all intersecting the y-axis at -1 and 

symmetrically spaced around this axis as shown in figure 8. The bunch of flowers 

becomes bigger as n increases. This illustration of the roots of zn�-�1 is both 

mathematically and aesthetically pleasing. 

 

   

Figure 8. Function f(z)=z6-1.  

 



3.  In conclusion  
Graphical function and root representation has developed over centuries, from primitive 

calculations to formulae in closed form to the multiple of possibilities of the technology 

era. The approach outlined here gives a fresh view to graphical representation of complex 

roots and general understanding of the functions that we deal with every day. It opens up 

the world of functions and, once aware of the existence of the so-called sibling curves, it 

is hard to look at functions in their previously perceived solitary way. This visual 

interpretation of complex roots, unlike the other attempts discussed in the first part of the 

paper, is the natural way of representing these roots visually. This approach, especially 

for comprehending the Fundamental theorem of Algebra and the positioning of complex 

roots is not only recommended, it is deemed as essential for teaching and learning. This 

exposition lifts the visualisation of complex roots into the new technology era. Not only 

is technology used for visualisation of complex roots but it enables us to have a more 

comprehensive view of the well-known functions. 
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