Phylogenomic re-assessment of the thermophilic genus *Geobacillus*

Habibu Aliyu¹, Pedro Lebre¹, Jochen Blom⁴, Don Cowan¹,²*, don.cowan@up.ac.za, Pieter De Maayer¹,³

¹Centre for Microbial Ecology and Genomics, University of Pretoria, 0028, South Africa

²Department of Genetics, University of Pretoria, 0028, South Africa

³Department of Microbiology, University of Pretoria, 0028, South Africa

⁴Bioinformatics & Systems Biology, Justus-Liebig-University Giessen, 35392 Giessen, Hesse, Germany

*Corresponding author at: Centre for Microbial Ecology and Genomics, University of Pretoria, 0028, South Africa.
ABSTRACT

Geobacillus is a genus of Gram-positive, aerobic, spore-forming obligate thermophiles. The descriptions and subsequent affiliations of the species in the genus have mostly been based on polyphasic taxonomy rules that include traditional sequence-based methods such as DNA-DNA hybridization and comparison of 16S rRNA gene sequences. Currently, there are fifteen validly described species within the genus. The availability of whole genome sequences has provided an opportunity to validate and/or re-assess these conventional estimates of genome relatedness. We have applied whole genome approaches to estimate the phylogenetic relatedness among the sixty-three Geobacillus strains for which genome sequences are currently publicly available, including the type strains of eleven validly described species. The phylogenomic metrics AAI (Average Amino acid Identity), ANI (Average Nucleotide Identity) and dDDH (digital DNA-DNA hybridization) indicated that the current genus Geobacillus is comprised of sixteen distinct genomospecies, including several potentially novel species. Furthermore, a phylogeny constructed on the basis of the core genes identified from the whole genome analyses indicated that the genus clusters into two monophyletic clades that clearly differ in terms of nucleotide base composition. The G+C content ranges for clade I and II were 48.8-53.1% and 42.1-44.4%, respectively. We therefore suggest that the Geobacillus species currently residing within clade II be considered as a new genus.

Keywords: Geobacillus; thermophile; Phylogenomic metrics; Average Nucleotide Identity; digital DNA-DNA hybridization
INTRODUCTION

The ultimate goal of microbial taxonomy is to unambiguously assign organisms to distinct taxa on the basis of a set of guidelines that are aimed at ascertaining the degree of relatedness among the organisms [42]. Various methods, which rely on the estimation of degree of sequence similarity between organisms, have been applied in the classification of microorganisms. Among the well-established and widely accepted methods, DNA-DNA hybridization (DDH) or re-association, together with estimates of G+C content deviation [4, 20] and 16S rRNA gene sequence analysis [4] have remained the conventional standards for microbial species circumscription and assignment of bacteria to higher taxa [26]. When a new strain shows DDH values of <70% or < 97% 16S rRNA gene sequence identity with a type strain of a given species, this new strain is judged to belong to different species [50]. The threshold for 16S rRNA gene sequence similarity for species delineation has been variously modified to a range of 98.2 and 99.0%, to accommodate discrepancies noted in the correlation of 16S rRNA sequence similarity with various DDH estimates [19, 29, 44]. Despite the discrepancies observed in species level circumscription [19, 29, 44], the use of the 16S rRNA gene marker remains the gold standard in assignments of strains to higher taxa [52].

A number of researchers have recently made extensive and logical arguments for the re-evaluation of the guidelines that are used in microbial taxonomy [11, 49, 51]. This comes, particularly, in the light of improvements in DNA sequencing technology which have resulted in an unprecedented reduction in sequencing cost and increase in quality and quantity of sequence data [27]. In particular, Vandamme and Peeters [51] highlighted the original intention behind the application of DDH methods, which was to exploit whole genome sequences for determining the level of relatedness between microorganisms. It is argued that genomic approaches provide superior tools for species delineation and phylogeny and should be included in polyphasic taxonomic practices [51]. Two of these methods, namely average nucleotide identity (ANI) [15, 21, 40] and the genome-to-genome distance method (GGDC) [29], have been shown to be robust in estimating the ‘true’ relatedness of any set of microbial genomes. ANI values of 95–96% and in silico DDH values of 70% estimated using GGDC formulae have been shown to accurately estimate the DNA-DNA re-association species boundary value of 70% [15, 29, 40]. However, to date no direct genomic thresholds have been agreed upon for higher taxa classification in bacteria. Unlike laboratory-based DDH methods, phylogenomic information determined from whole genome sequences has been shown to be highly reproducible, transferable and readily available for validation by other researchers [21].
In addition to ANI and GGDC, which are derived directly from DNA sequences, several other methods, based on the conserved amino acids sequences encoded on the genomes, have been described [20, 21].

Members of the genus Geobacillus are Gram-positive, aerobic and spore-forming thermophiles and are frequently isolated from hot environments, including hot springs, oil wells, compost and desert soils, although they have also been isolated from more temperate environmental sources [55]. Geobacillus species are of biotechnological and industrial importance as they produce an array of thermostable and thermoactive biomolecules with a wide range of applications [45, 55]. The genus Geobacillus was proposed following the emendation of the obligately thermophilic Bacillus species group 5 [32]. This original genus description included six species: G. kaustophilus, G. thermocatenulatus, G. thermodenitrificans, G. thermoleovorans, G. thermoglucosidasis and the type species G. stearothermophilus [32]. Subsequently, nine additional species have been validly described or transferred to the genus: G. caldoxylosilyticus [13], G. galactosidasi [38], G. icigianus [5], G. jurassicus [34], G. lituanicus [22], G. thermantarcticus [8], G. toebii [46], G. uzenensis [32], and G. vulcani [33].

The genome of ‘G. zalihae’ NBRC 101842 has been sequenced, but this species is not validly published [1]. Three species that were previously included in the genus: G. debilis, G. pallidus and G. tepidamans, have been reassigned as Caldibacillus debilis [8], Aeribacillus pallidus [31] and Anoxybacillus tepidamans [8], respectively. As of June 2016, a further 834 strains have been affiliated to the genus on the basis of 16S rRNA gene sequence analysis [7]. DNA sequences of the infB, rpoB and spo0A genes have also been shown to be useful for the affiliation of new strains in the genus Geobacillus [17, 23, 30]. However, the full gene sequence of recN has been demonstrated to be the most robust marker for assigning bacterial strains at the genus and species levels [54]. Currently, the genome sequences of sixty-three Geobacillus strains are available, many of which have not been classified at the species level. Here, we applied multiple phylogenomic strategies to assess the overall genomic relatedness of multiple Geobacillus strains and re-evaluate the current taxonomy of the genus.

MATERIALS AND METHODS

Geobacillus genomes
The genome data of sixty-three *Geobacillus* strains were retrieved from the GenBank assembly database [16] and the JGI IMG genome portal (Supplementary Table S1) [36]. These included twenty-three complete and forty draft genomes. The draft *Geobacillus* genomes were improved to high quality draft status by alignment against the closely related complete or higher quality draft genomes using the Multi-Draft based Scaffolder (MeDuSa) [3] and Mauve 2.3.1 [9]. The assembled genome sequences were subsequently structurally annotated using GLIMMER v 3.0.2 [10] as implemented in the RAST annotation pipeline [37].

Phylogenetic analyses

The GenBank files for each of the *Geobacillus* genomes from the RAST server [37] were uploaded to EDGAR 2.1 [2]. The core genome of the genus *Geobacillus* was determined in EDGAR using the BLAST Score Ratio Values (SRVs) of multiple genomes to assign orthologous gene sequences [25]. T-Coffee, which incorporates multiple aligners including Kalign [24], MAFFT [18] and MUSCLE [12], was implemented to generate high quality sequence alignments of the core genes [28]. The aligned core gene sets were concatenated using Phyutility v2.2.6 [43] and gaps were removed using the default setting in Gblocks v.0.91b [6, 48]. A maximum likelihood tree of the aligned concatenated sequences was constructed using the Mobyle server [35]. The *recN* gene sequences were extracted from the sixty-three *Geobacillus* genome sequences, aligned and used to construct a maximum likelihood phylogeny as described for the core genome tree.

Phylogenomic metric calculations

Average Nucleotide Identity (ANI) and Average Amino acid Identity (AAI) values were calculated using the ani.rb and aai.rb scripts included in the enveomics package, using the two-way ANI and AAI options [41]. The reciprocal best hits results are reported here. Digital DNA-DNA hybridization (dDDH) values were calculated using the Genome-to-Genome Distance Calculator (GGDC 2.0) web server, applying formula 2 [29]. Percentage of Conserved Proteins (POCP) values, which have been used for the circumscriptions of bacterial genera [39], were estimated for the type strains of the *Geobacillus* species for which genome sequences are available, as well as the type strains of species in the closely related genera *Anoxybacillus* and *Bacillus*. POCP values were calculated as \(\frac{(C1+C2)}{(T1+T2)} \times 100 \), where \(C1 \) and \(C2 \) represent the number of conserved proteins (E-value < 1e^{-5}, alignment coverage > 50 % and amino acid identity value >40 %). POCP values of <50% were used as the threshold for delineating novel genera [39].
RESULTS

Geobacillus genomes

A total of sixty-three Geobacillus genomes were analysed in this study, including those of the type strains of eleven validly described Geobacillus species (Supplementary Table S1). The draft genomes, with the exception of Geobacillus sp. ZGT-1 (66 contigs), were assembled to fewer than twenty-five contigs. The genome sequences range in size from 2,630,157 (G. stearothermophilus ATCC 12980T) to 3,993,793 (G. thermoglucosidans C56YS93) base pairs. The G+C contents of the Geobacillus genome sequences varied between 42.1% and 53.1% (Supplementary Table S1).

Phylogenomic analysis of the genus Geobacillus

A total of 1,048 orthologous genes were predicted for the sixty-three Geobacillus strains and Anoxybacillus flavithermus E13T (used as an outgroup). The core genes were used to infer a whole genome maximum likelihood phylogeny (Figure 1). The phylogeny showed that the Geobacillus strains grouped into two major monophyletic clades (I and II). Clade I incorporates fifty Geobacillus strains, including the type strains of seven Geobacillus species: G. icigianus DSM 28325T, G. jurassicus DSM 15726T, G. kaustophilus DSM 7263T, G. stearothermophilus ATCC 12980T, G. thermodenitrificans DSM 465T, G. subterraneus DSM 13552T and G. thermoleovorans DSM 5366T. ‘G. zalihae’ NBRC 101842, which has not been validly described, is also included in this clade. The second clade is comprised of fourteen strains including four type strains: G. caldoxylosilyticus DSM 12041T, G. thermantarcticus M1T, G. thermoglucosidans DSM 2542T and G. toebii DSM 14590T.

A maximum likelihood phylogeny of the recN gene was also congruent in clustering the strains into the two major clades (Figure 2). The two clades observed in the whole-genome and recN phylogenies could also be distinguished on the basis of the genomic G+C contents of the strains in each clade. Geobacillus strains in clade I showed higher genome G+C contents (48.8 - 53.1%) than those included in clade II (42.1 - 44.4%) (Supplementary Table S1).

Phylogenomic metric analyses of the genus Geobacillus
Figure 1: Whole genome phylogeny of the genus *Geobacillus*. The maximum likelihood tree was constructed based on the alignment of 1,048 concatenated core genes (total alignment length: 584,424 nucleotides) of sixty-three *Geobacillus* strains and *Anoxybacillus flavithermus* E13^T (used as outgroup). The values at the nodes indicate bootstrap values expressed as percentages of 1,000 replications while the bar length indicates 0.05 substitutions per site.
Figure 2: Maximum likelihood phylogenetic tree on the basis of the *recN* gene. The phylogeny was constructed based on the *recN* gene sequences (total alignment length 1,720 nucleotides) of sixty-three *Geobacillus* strains and the outgroup strain *Anoxybacillus flavithermus* E13^T. The values at the nodes indicate bootstrap value expressed as percentages of 1,000 replications while the bar length indicates 0.05 substitutions per site.
Evaluation of the ANI and dDDH scores (Supplementary Table S2) revealed that *Geobacillus* clades I and II could be further partitioned into eleven and five groups (Figure 3), respectively. ANI values for members of clade I ranged from 82.4 to 100% and between 83.0 and 100% in clade II (Supplementary Table S2). The dDDH values ranged from 28.3 to 99.8% in clade I and 28.8 to 99.8% for clade II and the confidence intervals for these values do not overlap between the two clades. ANI values of 76.3 to 82.6% and dDDH values of between 23.2 and 35.9% were observed for all *Geobacillus* strains analyzed (clades I and II combined).

Group I-1 consists of sixteen strains including the type strains *G. kaustophilus* DSM 7263^T and *G. thermoleovorans* DSM 5366^T. The ANI and DDH values between DSM 7263^T and DSM 5366^T were 98.6% and 86.6%, respectively. Group I-2 includes four non-type strains and ‘*G. zalihae*’ NBRC 101842. *G. jurassicus* DSM 15726^T is the only member of group I-6. The second largest group, group I-7, consists of thirteen strains that include the type strain of the genus, *G. stearothermophilus* ATCC 12980^T. Four strains each are clustered in groups I-8 and I-9, together with *G. icigianus* DSM 28325^T and *G. thermodenitrificans* DSM 465^T, respectively. *G. subterraneus* DSM 13552^T was the only strain in Group I-10. Group I-3, I-4, I-5 and I-11 did not contain any of the described type strains of validly described *Geobacillus* species (Figure 3).

Group II-1 in clade II includes *G. caldoxylosilyticus* DSM 12041^T and two non-type strains. Group II-3 consisted of six strains including the *G. thermoglucosidans* type strain, DSM 2542^T. *G. thermantarcticus* M1^T is the only strain in group II-4 while Group II-5 consisted of *G. toebii* DSM 14590^T and two non-type strains. The only group without a type strain of a validly described *Geobacillus* species in Clade II is Group II-2.

A dendrogram constructed on the basis of a distance matrix derived from the AAI values (Supplementary Table S3) showed similar clustering of the *Geobacillus* species as derived using the ANI and dDDH analyses (Supplementary Figure 1). Comparisons of the POCP values between type strains of species in the genus *Geobacillus* and selected type strains of *Anoxybacillus* and *Bacillus* species revealed that all pairwise POCP values between *Geobacillus* and *Anoxybacillus* species were greater than 50%. Considering the cut-off threshold suggested for genus circumscription using POCP, this would suggest that the compared *Geobacillus* and *Anoxybacillus* strains belong to the same genus. The highest POCP value between strains in the genus *Bacillus* and any strain in the genera *Anoxybacillus* and *Geobacillus* was 47.6%, suggesting that they do belong to two different genera. By contrast,
Figure 3: ANI and dDDH relationships among sixty-three strains of *Geobacillus*. The dendrogram was constructed using the distances matrices (derived from ANI and dDDH values) by using the web server DendroUPGMA [14]. The strains are numbered as follows:

Group I-1: *G. kaustophilus* DSM 7263\(^T\), HTA426 and GBlys, *Geobacillus* spp. CAMR5420,
Y4.1MC4, MAS1, FW23, A8, 10, C56-T3, Y412MC52, Y412MC61 and ZGT-1, G. thermoleovorans DSM 5366^T, B23 and CCB_US3_UF5, **Group I-2: Geobacillus** sp. GH01, WSUCF1, JS12 and **G. zalihae** NBRC 101842, **Group I-3: G. thermocatenulatus** GS-1, Geobacillus sp. T6 and BCO2, **Group I-4: Geobacillus** sp. Et2/3 and Et7/4, **Group I-5: G. jurassicus** DSM 15726^T, **Group I-6: G. stearothermophilus** ATCC 12980^T, ATCC 7953, D1, A1, P3, B4109, B4114, C1BS50MT1, Geobacillus sp. LC300, 12AMOR1, 53, 22 and Sah69 **Group I-7: Geobacillus** sp. PSS1, **Group I-8: G. icigianus** DSM 28325^T, Geobacillus sp. C56-T2, PSS2 and B4113_201601, **Group I-9: G. thermodenitrificans** NG80-2, DSM 465^T, PA-3 and Geobacillus sp. G11MC16, **Group I-10: G. subterraneus** DSM 13552^T, **Group I-11: Geobacillus** sp. JF8, **Group II-1: G. caldoxylosilicus** CIC9, B4119 and DSM 12041^T, **Group II-2: Geobacillus** sp. NUB3621, **Group II-3: G. thermoglucosidans** DSM 2542^T TNO-09.020, C56-YS93, M10EXG and YU and Geobacillus sp. Y4.1MC1, **Group II-4: G. thermantarcticus** M1^T and **Group II-5: G. toebii** DSM 14590^T, B4110 and Geobacillus sp. WCH70.

<table>
<thead>
<tr>
<th>Species</th>
<th>Group</th>
<th>Type Strain</th>
<th>Predicted POCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y4.1MC4</td>
<td>I-2</td>
<td>GH01</td>
<td>83.5</td>
</tr>
<tr>
<td>MAS1</td>
<td>I-2</td>
<td>WSUCF1</td>
<td>79.1</td>
</tr>
<tr>
<td>FW23</td>
<td>I-2</td>
<td>JS12</td>
<td>79.1</td>
</tr>
<tr>
<td>A8</td>
<td>I-2</td>
<td>B23</td>
<td>75.8</td>
</tr>
<tr>
<td>10</td>
<td>I-2</td>
<td>CCB_US3_UF5</td>
<td>75.8</td>
</tr>
<tr>
<td>C56-T3</td>
<td>I-2</td>
<td>Y412MC52</td>
<td>75.8</td>
</tr>
<tr>
<td>Y412MC52</td>
<td>I-2</td>
<td>Y412MC61</td>
<td>75.8</td>
</tr>
<tr>
<td>ZGT-1</td>
<td>I-2</td>
<td>GH01</td>
<td>75.8</td>
</tr>
<tr>
<td>G. thermoleovorans DSM 5366<sup>T</sup></td>
<td>I-3</td>
<td>T6</td>
<td>89.6</td>
</tr>
<tr>
<td>B23</td>
<td>I-3</td>
<td>BCO2</td>
<td>89.6</td>
</tr>
<tr>
<td>C56-T2</td>
<td>I-4</td>
<td>PSS2</td>
<td>89.6</td>
</tr>
<tr>
<td>PSS2</td>
<td>I-4</td>
<td>G11MC16</td>
<td>89.6</td>
</tr>
<tr>
<td>G. jurassicus DSM 15726<sup>T</sup></td>
<td>I-5</td>
<td>T6</td>
<td>90.4</td>
</tr>
<tr>
<td>G. stearothermophilus ATCC 12980<sup>T</sup></td>
<td>I-6</td>
<td>T6</td>
<td>90.4</td>
</tr>
<tr>
<td>ATCC 7953</td>
<td>I-6</td>
<td>A1</td>
<td>90.4</td>
</tr>
<tr>
<td>D1</td>
<td>I-6</td>
<td>P3</td>
<td>90.4</td>
</tr>
<tr>
<td>A1</td>
<td>I-6</td>
<td>B4109</td>
<td>90.4</td>
</tr>
<tr>
<td>P3</td>
<td>I-6</td>
<td>B4114</td>
<td>90.4</td>
</tr>
<tr>
<td>B4109</td>
<td>I-6</td>
<td>C1BS50MT1</td>
<td>90.4</td>
</tr>
<tr>
<td>B4114</td>
<td>I-6</td>
<td>LC300</td>
<td>90.4</td>
</tr>
<tr>
<td>C1BS50MT1</td>
<td>I-6</td>
<td>12AMOR1</td>
<td>90.4</td>
</tr>
<tr>
<td>53</td>
<td>I-6</td>
<td>22</td>
<td>90.4</td>
</tr>
<tr>
<td>22</td>
<td>I-6</td>
<td>Sah69</td>
<td>90.4</td>
</tr>
<tr>
<td>G. zalihae NBRC 101842</td>
<td>I-7</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>G. icigianus DSM 28325<sup>T</sup></td>
<td>I-8</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>C56-T2</td>
<td>I-9</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>PSS2</td>
<td>I-9</td>
<td>G11MC16</td>
<td>90.4</td>
</tr>
<tr>
<td>G. thermodenitrificans NG80-2</td>
<td>I-10</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>DSM 465<sup>T</sup></td>
<td>I-10</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>PA-3</td>
<td>I-10</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>Geobacillus sp. G11MC16</td>
<td>I-10</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>G. subterraneus DSM 13552<sup>T</sup></td>
<td>I-11</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>G. caldoxylosilicus CIC9</td>
<td>II-1</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>B4119</td>
<td>II-1</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>DSM 12041<sup>T</sup></td>
<td>II-1</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>G. caldoxylosilicus CIC9</td>
<td>II-2</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>B4119</td>
<td>II-2</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>G. thermoglucosidans DSM 2542<sup>T</sup></td>
<td>II-3</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>TNO-09.020</td>
<td>II-3</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>C56-YS93</td>
<td>II-3</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>M10EXG</td>
<td>II-3</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>YU</td>
<td>II-3</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>Geobacillus sp. Y4.1MC1</td>
<td>II-4</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>G. thermantarcticus M1<sup>T</sup></td>
<td>II-5</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>G. toebii DSM 14590<sup>T</sup></td>
<td>II-5</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>B4110</td>
<td>II-5</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
<tr>
<td>Geobacillus sp. WCH70</td>
<td>II-5</td>
<td>PSS1</td>
<td>90.4</td>
</tr>
</tbody>
</table>

Figure 4: Predicted POCP values between type strains of species in the genus **Geobacillus** and type strains of selected **Anoxybacillus** and **Bacillus** species.
POCP values between *Bacillus* species ranged from 34.8 to 69.8%, suggesting they belong to different genera (Figure 4). We therefore conclude that POCP may not be reliable for circumscription of members of the family *Bacillaceae* at the genus level.

DISCUSSION

At present, the description of novel species is based on a combination of phenotypic characterisation and molecular methods, including DNA-DNA hybridization and 16S gene sequences analysis. Zeigler [53, 54] has demonstrated that *recN* gene sequence show higher resolving power in discriminating *Geobacillus* and other bacterial taxa at the genus and lower taxonomic levels compared to the 16S rRNA gene. However, using single nucleotide variant genes in the core genome, Studholme [45] has shown that the use of whole genome data results in greater resolution of the phylogenetic relationships of *Geobacillus* species than the use of single house-keeping gene phylogenies. In an effort to gain a more accurate picture of the phylogeny of the genus *Geobacillus*, we applied a range of phylogenomic approaches.

Our analysis included the genomes of eleven type strains and a further fifty-two strains which have not been classified at the species level. The phylogenomic approaches employed in this study were able to discriminate all *Geobacillus* strains at the species level. In addition, we identified four potentially novel species; *Geobacillus* sp. nov 1 (*Geobacillus* sp. Et2/3 and Et7/4), *Geobacillus* sp. nov 2 (*Geobacillus* sp. JF8), *Geobacillus* sp. nov 3 (*Geobacillus* sp. PSS1) and *Geobacillus* sp. nov 4 (*Geobacillus* sp. NUB3621). ‘*G. zalihae*’ NBRC 101842, which has not been validly described previously [1], can also be considered as a distinct species. Furthermore, an ANI value of 98.6% and dDDH value of 86.6% were observed between *G. kaustophilus* DSM7263T and *G. thermoleovorans* DSM5366T. These values are above the 95-96% ANI and 79% dDDH thresholds [15, 29, 40], suggesting that the two strains belong to the same species. These findings agree with Sunna et al. [47], that *G. kaustophilus* and *G. thermoleovorans* are conspecific (DDH = 84%) and are at variance with Nazina et al. [33], who reported a DDH value of 54 % for the two strains. These results further highlight the imperative of applying phylogenomic metrics in microbial taxonomy. Such metrics are robust and clearly show greater resolution than single marker genes such as 16S rRNA gene sequences.

The *recN* and core gene phylogenies, and ANI, dDDH and AAI analyses, all showed the clustering of the sixty-three *Geobacillus* strains into two distinct clades. We particularly note the considerable discrepancy in genome base composition, with a mean G+C difference of
8.34%, between the strains belonging to the two clades. These data strongly support a contention that the current genus *Geobacillus* is actually composed of two distinct genera.

CONCLUSIONS

The increasing availability of genomic information and the inherent strength of phylogenomic approaches suggest that these methods should become standard applications in species delineation and description, at least for species where weaknesses in the use of single phylogenetic marker gene are evident. Here, we have shown that phylogenomic approaches provide sufficient resolution for the accurate delineation of strains within the genus *Geobacillus* and that such methods can potentially be used to identify novel species. The distinct clustering of *Geobacillus* species into two clades, showing low genomic similarity and distinct nucleotide based compositions, suggests that the extant genus *Geobacillus* may actually consist of two distinct genera.

DESCRIPTIONS

Geobacillus (Ge.o. ba.cil’lus. Gr. n. Gê the Earth; L. dim. n. bacillus small rod; N.L. masc. n. Geobacillus earth or soil small rod).

The genus comprises of the genomospecies *G. thermoleovorans*, *G. zalihae*, “*G. thermocatenulatus*”, *G. jurassicus*, *G. stearothermophilus*, *G. icigianus*, *G. thermodenitrificans*, *G. subterraneus* and *Geobacillus* genomospecies 1, 2 and 3. Morphological and biochemical features as described in the emended description of *Geobacillus* by Coorevits et al. [8]. The phylogenetic positions of members of the genus is shown in Figures 1 and 2. The genomic G+C content of the “genomospecies” ranges from 48.8 to 53.1%. The type species is *Geobacillus stearothermophilus*.

Description of *G. thermoleovorans* comb. nov.

The description of *G. thermoleovorans* comb. nov. is identical to that of the genus and to the description proposed by Sunna et al. [47]. The species includes strains from both *G. thermoleovorans* and *G. kaustophilus*.

Description of *Geobacillus* genomospecies 1
As delineation of the strains within group I-4 of clade I could be determined using AAI, ANI and dDDH (Figures 3 and Supplementary Figure S1), it is proposed to designate a novel genomospecies 1, represented by strains Et2/3 and Et7/4.

Description of Geobacillus genomospecies 2

As delineation of the strains within group I-7 of clade I could be determined using AAI, ANI and dDDH (Figures 3 and Supplementary Figure S1), it is proposed to designate a novel genomospecies 2, represented by strain PSS1.

Description of Geobacillus genomospecies 3

As delineation of the strains within group I-11 of clade I could be determined using AAI, ANI and dDDH (Figures 3 and Supplementary Figure S1), it is proposed to designate a novel genomospecies 3, represented by strain JF8.

Description of Parageobacillus gen. nov.

Parageobacillus (Pa.ra.ge.o.ba.cil’lus. Gr. prep. Para, beside or alongside of; n. Gê the Earth; L. dim. n. bacillus small rod; M.L. masc. n. Parageobacillus, a genus nearest to *Geobacillus*).

As delineation of strains within clade II (Figures 1 and 2) is possible based on several genome-based metrics highlighted in this work, it is proposed to designate a novel genus *Parageobacillus*. The genus incorporates five “genomospecies”, *P. caldoxylosilyticus*, *P. thermoglucosidans*, *P. thermantarcticus*, *P. toebii* and *Parageobacillus* genomospecies 1 (NUB3621). The phylogenetic positions of members of the genus is shown in Figures 1 and 2. The genomic G+C contents of the “genomospecies” ranges from 42.1 to 44.4%. The type species is *Parageobacillus thermoglucosidans*.

Description of Parageobacillus caldoxylosilyticus comb. nov.

The description of *Parageobacillus caldoxylosilyticus comb. nov.* is identical to that given for the new genus and to the description given by Fortina et al. [13].

Description of Parageobacillus thermoglucosidans comb. nov.

The description of *Parageobacillus thermoglucosidans comb. nov.* is identical to that given for the new genus and to the emended description given by Coorevits et al. [8].

Description of *Parageobacillus thermantarcticus comb. nov.*

The description of *Parageobacillus thermantarcticus comb. nov.* is identical to that given for the new genus and to the description given by Coorevits et al. [8].

Description of *Parageobacillus toebii comb. nov.*

Basonym: *Geobacillus toebii* Sung et al. 2002.

The description of *Parageobacillus toebii comb. nov.* is identical to that given for the new genus and to the emended description given by Coorevits et al. [8].

Description of *Parageobacillus genospecies 1*

As delineation of the strains within group II-2 of clade II could be determined using AAI, ANI and dDDH (Figures 3 and Supplementary Figure S1), it is proposed to designate a novel genospecies 3, represented by strain NUB3621.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the University of Pretoria (Habibu Aliyu – University of Pretoria Postdoctoral Fellowship funding), National Research Foundation (Pieter De Maayer – Research Career Advancement Fellowship, Grant # 91447) and the University of Pretoria Genomic Research Institute for funding this study.

REFERENCES

1. Abd Rahman RN, Leow TC, Salleh AB, Basri M. 2007. *Geobacillus zalihae* sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia. BMC Microbiol. 7: 77

