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Abstract

A Failure Deterministic Finite Automaton (FDFA) o�ers a deterministic

and a compact representation of an automaton that is used by various algo-

rithms to solve pattern matching problems e�ciently. An abstract, concept

lattice based algorithm called the DFA - Homomorphic Algorithm (DHA) was

proposed to convert a deterministic �nite automata (DFA) into an FDFA.

The abstract DHA has several nondeterministic choices. The DHA is tuned

into four decisive and specialized variants that may potentially remove the

optimal possible number of symbol transitions from the DFA while adding

failure transitions. The resulting specialized FDFA are: MaxIntent FDFA,

MinExtent FDFA, MaxIntent-MaxExtent FDFA and MaxArcReduncdancy

FDFA. Furthermore, two output based investigations are conducted whereby

two speci�c types of DFA-to-FDFA algorithms are compared with DHA vari-

ants. Firstly, the well-known Aho-Corasick algorithm, and its DFA is con-

verted into DHA FDFA variants. Empirical and comparative results show

that when heuristics for DHA variants are suitably chosen, the minimality

attained by the Aho-Corasick algorithm in its output FDFAs can be closely

approximated by DHA FDFAs. Secondly, testing DHA FDFAs in the gen-

eral case whereby random DFAs and language equivalent FDFAs are carefully

constructed. The random DFAs are converted into DHA FDFA types and

the random FDFAs are compared with DHA FDFAs. A published non con-

cept lattice based algorithm producing an FDFA called D2FA is also shown

to perform well in all experiments. In the general context DHA performed
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well though not as good as the D2FA algorithm. As a by-product of general

case FDFA tests, an algorithm for generating random FDFAs and a language

equivalent DFAs was proposed.

Keywords: Failure deterministic �nite automaton, Failure transitions, Aho-

Corasick, Random FDFA algorithm.
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Chapter 1

Introduction

1.1 Motivation

This dissertation is concerned with certain types of �nite automata (FAs) to

be de�ned in Chapter 2. In general, FAs play an important role in many

applications involving character sequence processing1 of some kind, whether

on natural language, network tra�c, or biological sequence data. As stated

by Watson [1], such automata may be exceptionally large, e.g. millions of

states, and as a result consume much memory. Because of escalating amounts

of data to be processed and limited memory space (especially in embedded

devices), it is desirable to reduce the size of FAs.

One possible way of reducting memory requirements in FAs might be to

rely on non-deterministic FAs (NFAs) instead of deterministic FAs (DFAs).

However, reduction in space requirements should not incur a severe process-

ing speed penalty. Because backtracking (which is costly in terms of process-

ing time) is generally required when processing NFAs, they are probably not

good candidates for space saving strategies.

1In character sequence processing, FAs are typically used to test whether a given string
is a member of the associated language. The FA could also be used to generate one or
more strings in the language. These tasks of membership testing or string generation are
referred to here as language processing.
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Saving DFA representation space can be done either with or without

changing the structure of the DFA. By structure we mean the number of

states and the source and destination of arcs between states. Reducing DFA

memory space requirements without changing the arcs and/or states depends

both on the underlying abstract representation of the DFA's arcs as well as on

the data structure used to implement this representation. DFA transitions'

representations include: adjacency lists, transition matrices and transition

lists. They are described in detail by Crochemore and Hancart [2]. More-

over, the data structure to be used is typically associated with the DFA

representation selected. For example, a transition matrix is generally repre-

sented by a two dimensional array (which, in turn, is usually implemented as

a vector of vectors in a C/C++ environment). But there are other possible

ways to represent DFAs � for example, using linked lists, if the matrix is

very sparse. A transition list, on the other hand, is often stored in a hashing

table or linked list.

Of course, as the DFA size increases, even the best data structure for the

DFA will be limited by available computer memory space. In such contexts, it

may be desirable to reduce the DFA's spatial representation requirements by

reducing its number of arcs and/or states. In e�ect, this means replacing the

original DFA with a language-equivalent new one that has fewer states and/or

arcs. Two techniques to reduce the number states and/or arcs in a DFA, DFA

minimisation and failure functions, are brie�y described below.

Minimisation aims at transforming a deterministic automaton into a lan-

guage equivalent deterministic automaton containing the minimal number

of states. Note that this could also result in the removal of a substantial

number of arcs. In general, minimising a DFA involves merging equivalent

(non-distinct) states and removing unreachable states, resulting in a simpler

DFA2. There are several general DFAminimisation algorithms. These include

algorithms by Revuz [3], Brzozowski [4] and Hopcroft [5]. Some algorithms

2Essentially, states are equivalent if they have the same so-called right language. The
de�nition of a state's right language and the details of how to identify equivalent states is
beyond the scope of the present text.
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minimise speci�c kinds of DFAs. For example, [1, 6, 7, 8] described specialised

algorithms for converting acyclic DFAs to minimal acyclic DFAs. Because of

their acyclic nature, such DFAs do not contain paths that form cycles and it

is somewhat easier to determine whether states are equivalent.

An alternative approach to reducing DFAs memory requirements involves

the use of a failure function to reduce the number of arcs. Here, states that

share a set of outgoing regular arcs are identi�ed and one of the states in this

set is singled out as a destination. The common outgoing arcs at all the other

states in the set are deleted and substituted by a set of special arcs called

failure arcs (See [2, 9, 10].). See Figure 1.1 and Figure 1.2 for an example.

In Figure 1.1 states q1 and q2 each have two exiting arcs, each bearing the

same symbols as labels and leading to the same states. In Figure 1.2 state

q1's so-called symbol arcs have been replaced by a single failure arc from q1

to q2.

A failure function for a DFA de�nes a set of failure arcs on that DFA. A

DFA that contains a failure function is called a failure deterministic �nite

automaton (FDFA) or in short simply called failure-DFA.

q1 q3

q2 q4

a

a

b

b

Figure 1.1: DFA arcs

q1 q3

q2 q4

a

b

Figure 1.2: FDFA arcs

During language processing, if a state has no symbol arc for a given input

symbol but is the source of a failure arc, then the failure arc is taken and

the consumption of the input symbol at the current state is deferred. As

3
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stated in [11, 12], such a symbol is therefore said to be �consumed� at some

succeeding state. For example, consider Figure 1.2. Suppose that during

language processing, a control was at state q1 and a symbol a or b had to be

processed, then the failure arc to state q2 would be taken, and the symbol

would be processed from that position, taking the control in the next step to

either state q3 for a or state q4 for b.

Transforming a DFA into an FDFA by introducing failure arcs, results in

the removal of some symbol arcs, possibly reducing the total number of arcs.

For example, consider the two arcs from states q1 and q2 respectively that

each have a transition on symbol a to another state q3. (See Figure 1.1.)

Since both these arcs are labelled by a and go to q3, we can allow q1 to have

a default (failure) arc to q2. This will only delay the execution of a, only to

be processed at q2. (Refer to Figure 1.2.)

Many arcs could be eliminated by using this approach, depending on the

characteristics of arcs in the original DFA. Hence an FDFA may o�er a

compact space representation when compared to its source DFA. Moreover,

an FDFA preserves the deterministic nature of the parent DFA�there is

no ambiguity about what path to follow on a given symbol at any state.

The research described in this dissertation is extensively concerned with this

approach to reducing the size of a DFA.

In Kourie et al. [9], the term FDFA was introduced and it was pointed out

that a DFA may be viewed as an FDFA that contains no failure arcs, that is

a DFA may be viewed as a degenerate FDFA. Note, however, the use FDFAs

� i.e. of failure arcs in a specialised DFAs � predates Kourie et al. [9].

These specialised FDFAs have been extensively applied to �nd solutions to

a certain pattern matching problem, namely the problem of locating where

a �nite set of keywords occur in a given string. The classical Aho-Corasick

(AC) automata by Aho and Corasick [13] which solve this so-called multiple

keyword pattern matching problem may be viewed as specialised FDFAs.

They are applied in network intrusion detection (refer to [14, 15]), in compiler

construction (speci�cally in lexical analysis) (details in [16, 17]) and in text

4
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mining (see [18]).

The Aho-Corasick algorithm executes a linear sweep through an input

string to identify positions in the string where matches occur with elements

of the given keyword set. There are two variants of the Aho-Corasick au-

tomata that may be used. The one variant is a DFA and the other is an

FDFA. Details of how to construct the automata may be found in [19, Chap-

ter 3.9] and [13]. It is known that the FDFA is minimal in the sense that no

other language equivalent FDFA of the Aho-Corasick DFA can have fewer

arcs. This known FDFA property, which predates Kourie et al. [9], was an

important driver of the present research.

1.2 Problem Description

The basic objective of this research is to assess various concrete versions

of the so-called DFA-Homomorphic algorithm (DHA) described in Kourie et

al. [9]. The algorithm constructs from a complete3 DFA a language-equivalent

FDFA. The abstract version of the algorithm as reported in Kourie et al. [9]

contains several nondeterministic choices. As a result, a concrete implemen-

tation of the algorithm requires that speci�c deterministic choices should be

made at these points. Assessing the performance of various concrete versions

entails determining how well each version does at replacing symbol arcs in

the input DFA with failure arcs in the FDFA. The fewer the total number

of arcs in the FDFA, the better that version of the algorithm is deemed to

have performed.

The initial approach to assessing the performance of the DFA-homomorphic

algorithm (DHA) relies on the previously mentioned minimality property of

the Aho-Corasick FDFA. This minimal FDFA provides a convenient baseline

for assessing the performance of concrete variants of the algorithm. That is,

use an Aho-Corasick DFA as input to a variant of the DHA and compare the

resulting FDFA to the minimal FDFA derived by the classical Aho-Corasick

3A complete DFA is such that every state has an arc on every symbol in the alphabet.

5
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approach.

Subsequently, the performance of the algorithm and its variants (in terms

of generating a minimal FDFA from a given DFA) will also be investigated in

the general case. That is, in the case where the starting DFA has an arbitrary

structure, instead of being limited to the specialised structure required in the

Aho-Corasick case.

It should be noted that, at the start of this research, it had been assumed

that DHA was the only general algorithm for generating language-equivalent

FDFAs from DFAs. This appeared to be the perspective in the stringology,

formal language theory and pattern matching research communities and lit-

erature. The initial research plan therefore focused on benchmarking this

algorithm exclusively. However, well after many benchmark runs had been

made, as part of my routine literature surveillance and exploration, I dis-

covered references in the computer communications literature to algorithms

that converted DFAs to so-called D2FAs by Kumar et al. [12]. Closer exam-

ination showed that D2FAs coincide precisely with FDFAs. It was therefore

decided to include, as part of this research, some of the algorithms discussed

in Kumar et al. [12] in the various benchmarking exercises.

1.3 Outline of the Dissertation

Chapter 2 provides the formal/mathematical preliminaries that will be used

in this dissertation. These preliminaries include relevant de�nitions and no-

tation for this work. Background literature is also discussed, with a keen

focus on (failure) deterministic �nite automata and formal concept analysis

(FCA).

Chapter 3 presents the abstract DHA and its variants. A brief exploration

of the DFA to FDFA transformation is presented. The transformation is

explained based on how a DFA is represented as concepts of a concept lattice,

which is then used to transform the DFA into an FDFA. Content under
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discussion includes the modi�cations e�ected to the original algorithm to

allow deterministic choices in the variant algorithms.

The research methods, theories, techniques and tools employed in the

investigation of comparing FDFAs are described in Chapter 4. Problem

domain restrictions are also discussed.

The experimental results related to comparing Aho-Corasick (AC) au-

tomata and DHA-FDFAs are presented in Chapter 5. The empirical results

from all the variants of DHA are compared against the results of AC au-

tomata. Moreover, the FDFA results are discussed and critiqued.

An investigation of DHA-FDFAs built from general complete DFAs (as

opposed to Aho-Corasick type DFAs) is undertaken in Chapter 6. Details

are provided of how a language-equivalent complete DFA can be constructed

from an FDFA that is �randomly� generated in a certain way. These DFAs

are used as input to the DHA algorithm variants. The empirical results

obtained examine the extent to which the FDFAs generated by DHA variants

reconstruct the original �random� FDFA that was used to construct the DFA

in the �rst place.

Finally, Chapter 7 gives the overall conclusions and suggests future re-

search work ensuing from this dissertation.
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Chapter 2

Preliminaries

This chapter de�nes the basic terminology and notations that will appear in

the next chapters. Background research and related studies are also discussed

here.

2.1 De�nitions

In this section, de�nitions and notations are provided for concepts and terms

relating to three domains of study: stringology, �nite automata and formal

concept analysis.

2.1.1 Stringology

As stated by Holub [20], stringology is the term that was �rst used by Galil

in 1984 to describe the sub�eld of algorithmic research that is concerned with

the processing of text strings. Notations commonly used in the stringology

literature and adopted in this research is presented below.

De�nition 2.1. An alphabet is de�ned as a �nite non-empty set of symbols.

By convention, an alphabet is often denoted by Σ. The size of alphabet Σ is
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the number of symbols in Σ and it is denoted by |Σ|.

De�nition 2.2. A string (or word) over an alphabet is a �nite sequence of

symbols drawn from the alphabet. The length or size of a string s is denoted

|s|. An empty string is denoted by ε and |ε| = 0.

De�nition 2.3. Concatenation of strings: Given two strings p and q, the

concatenation of strings is represented as p.q; that is a new string is formed

in which string p is precedes string q.

Note that some literature sources use the form pq (without the dot nota-

tion) to denote concatenation of two strings p and q.

De�nition 2.4. Types of substrings of a string: If string s = p.q.v then

� q is a substring or a factor of s,

� p.q is a pre�x of s and

� q.v is a su�x of s.

� Moreover, q is a proper substring i� ¬((p = ε) ∧ (v = ε)).

� Similarly, p.q is a proper pre�x i� v 6= ε and

� q.v is a proper su�x i� p 6= ε.

(Of course, p and v are also pre�xes and su�xes of s respectively.)

De�nition 2.5. The Kleene closure of Σ is denoted by Σ∗ and is de�ned as

the set of all possible strings that can be formed from symbols in the alphabet

Σ, including the empty string ε. Moreover, we de�ne Σ+ = Σ∗ − {ε}

De�nition 2.6. The head operator (head ∈ Σ+ −→ Σ) on a string is

de�ned as:

head(a.v) = a,

for a ∈ Σ ∧ v ∈ Σ∗ .

De�nition 2.7. The tail operator (tail ∈ Σ+ −→ Σ∗) on a string is de�ned

as:

tail(a.v) = v,
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for a ∈ Σ ∧ v ∈ Σ∗.

De�nition 2.8. A language on alphabet Σ is de�ned as a �nite subset

of Σ∗.

De�nition 2.9. Concatenating two languages is de�ned as follows; given

two languages on an alphabet namely; U and V then

U.V = {u.v|u ∈ U ∧ v ∈ V }

2.1.2 (Failure) Deterministic Finite Automata

Since this research is principally concerned with failure deterministic �nite

automata and their relationship to deterministic �nite automata, the de�-

nitions below are limited to these kinds of automata. Speci�cally excluded,

therefore, are de�nitions of non-deterministic �nite automata or any other

kind of �nate state machine.

De�nition 2.10. A Deterministic Finite Automaton (DFA) is a quin-

tuple denoted by D = (Q,Σ, δ, F, qs), where:

� Q is a �nite set of states;

� Σ is an alphabet set (i.e. a �nite set of symbols);

� δ ∈ Q× Σ 9 Q is a (possibly partial) symbol transition function map-

ping state/symbol pairs to states;

� F ⊆ Q is a set of �nal states (alternatively called accepting states) and

� qs ∈ Q is the start state.

An example of a DFA is depicted in Figure 2.1. The DFA is de�ned by

Q = {q1, q2, q3, q4},Σ = {a, b, c, d}, F = {q4} and qs = q1. The start state,

the �nal states and the normal states are respectively colour coded as red,

green and orange. Throughout the dissertation an automaton will often be

interpreted as a directed graph, with transitions and states referred to as arcs

(edges) and nodes, respectively.
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q1 q2 q3 q4

c

a,b

d

a

b

c,d

a

b,d

c

a,d

b

c

Figure 2.1: A DFA, D = ({q1, q2, q3, q4}, {a, b, c, d}, δ, {q4}, q1)

De�nition 2.11. A DFA is a trie i� its transition graph is a tree rooted at

the start state qs.

For a symbol a ∈ Σ and states p, q ∈ Q the transition δ(p, a) = q indicates

a mapping from the source state p to a target state q on a symbol a. We use

⊥ to represent an invalid target state of a transition and it is also referred

to as an unde�ned state.

De�nition 2.12. A complete DFA is such that every state has a transition

on every symbol in the alphabet, that is, the transition function δ is total.

De�nition 2.13. Total function and Partial function: A function is a

total function if it is de�ned for all inputs of the correct type. For example,

the output symbol transition's target states for the total deterministic �nite

automata belong to Q for all domain transitions. However, if the function is

not de�ned for some inputs of the right type for some of the domain, then

the function is said to be a partial function. In our case we have partial

functions whereby unde�ned transitions are denoted by ⊥. A total function

is denoted → while a partial function is denoted by 9.

De�nition 2.14. Given a complete DFA, the Extension of δ is de�ned as

the function

δ∗ ∈ Q× Σ∗ −→ Q

where

δ∗(p, ε) = p
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and for a ∈ Σ, w ∈ Σ∗, δ(p, a) = q

δ∗(p, a.w) = δ∗(q, w).

De�nition 2.15. Acceptance of a string by DFA D A �nite string w is

accepted by the DFA i� δ∗(qs, w) ∈ F . Otherwise, w is rejected.

De�nition 2.16. Language of a DFA(D) is de�ned as L(D) = {w ∈ Σ∗|
w is accepted by D}.

The language of a DFA is the set of accepted strings. An algorithm that

uses a DFA to acccept or reject the membership of a string to a language is

shown in Algorithm 2.1.

In this dissertation, all algorithms are presented using the Guarded Com-

mand Language (GCL) style initiated by Dijkstra [21]. Its use for speci�cation-

based algorithm derivation is described in Kourie and Watson [22].

Algorithm 2.1 Test for string membership of a DFA's language

{ pre (D = (Q,Σ, δ, F, qs)) ∧ (x ∈ Σ∗) ∧ (|x| <∞) }
y, q := x, qs;
{ invariant : y is untested and the current state is q }
do ((y 6= ε) ∧ (δ(q, head(y)) 6= ⊥))→

q, y := δ(q, head(y)), tail(y);
od;
{ (y is untested and the current state is q) ∧ ((y = ε) ∨ (δ(q, head(y)) = ⊥)) }
accept := ((y = ε) ∧ (q ∈ F ));
{ post (accept⇔ x ∈ L(D)) }

De�nition 2.17. A Failure Deterministic Finite Automaton (FDFA

F) is a six-tuple (Q,Σ, δ, f, F, qs), where:

� D = (Q,Σ, δ, F, qs) is a DFA as de�ned above; and

� f ∈ Q9 Q is a (possibly partial) failure function.
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q1 q2 q3 q4
c

a,b

d

d

b,d d

Figure 2.2: An FDFA, F = ({q1, q2, q3, q4}, {a, b, c, d}, δ, f, {q4}, q1) derived
from the DFA in Figure 2.1.

Figure 2.2 shows an FDFA that is derived from the DFA in Figure 2.1.

The set of states Q, the alphabet set Σ, the set of accepting (�nal) states F

and the initial state qs have not been modi�ed from the source DFA. However,

notice that some symbol transitions (these are: directed, solid, labelled with

letters edges ) have been eliminated from the graph. It can also be noted

that some dotted, directed and unlabelled arcs have been introduced into the

graph. These arcs are the failure transitions, which are the elements of the

failure function f.

The failure function f, simply maps a state p to another state q. This

function is denoted by f(p) = q. The two functions δ and f have this relation:

if the transition δ(p, a) is not de�ned then f(p) = q is taken. That is, if the

current state has no symbol out-transition associated with the current input

symbol, the failure transition is executed and it does not consume the current

input symbol.

De�nition 2.18. Extension of δ in FDFA: In the case of an FDFA, δ∗

is de�ned as follows:

δ∗ ∈ Q× Σ∗ −→ Q ∪ {⊥}
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where

δ∗(p, ε) = p

and for a ∈ Σ, w ∈ Σ∗

δ∗(p, a.w) =

{
δ∗(q, w) if (δ(p, a) = q) ∧ (q 6= ⊥)

δ∗(q, a.w) if (δ(p, a) = ⊥) ∧ (f(p) = q)

De�nition 2.19. Acceptance of a string by FDFA F: An FDFA F is

said to accept string w ∈ Σ∗ i� δ∗(s, w) ∈ F .

De�nition 2.20. Language of an FDFA F is de�ned as L(F) = {w ∈ Σ∗|
w is accepted by F}.

An FDFA's language is the failure automata's set of accepted strings.

It can easily be shown that every complete DFA has a language-equivalent

FDFA and vice-versa. A string processing algorithm for an FDFA extracted

from Kourie et al. [11] is depicted in Algorithm 2.2.

Algorithm 2.2 Test for string membership of an FDFA's language

{ pre (F = (Q,Σ, δ, f, F, qs)) ∧ (x ∈ Σ∗) ∧ (|x| <∞) }
y, q := y, qs;
{ invariant: y is untested and the current state is q }
do (y 6= ε) ∧ (δ(q, head(y)) 6= ⊥) → q, y := δ(q, head(y)), tail(y);
[] (y 6= ε) ∧ ((δ(q, head(y)) = ⊥) ∧ (f(q) 6= ⊥)) → q := f(q);
od;
{ y is untested and the current state is q
∧ ((y = ε) ∨ ((δ(q, head(y)) = ⊥) ∧ (f(q) = ⊥))) }

accept := ((y = ε) ∧ (q ∈ F ));
{ post (accept⇔ x ∈ L(F)) }

De�nitions and notations that relates to failure functions are presented

below.

De�nition 2.21. A failure path is a consecutive series of FDFA states

〈p0, p1, . . . pn〉 from p0 to pn such that ∀i : [0, n) · f(pi) = pi+1 . It is denoted
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p0
f
; pn.

De�nition 2.22. A failure alphabet of a failure path. If p0
f
; pn is

a failure path, then we use Σ
p0

f
;pn

to denote its failure alphabet Σp0 ∩ Σp1 ∩
· · · ∩ Σpn. Note that for i = 0, . . . n, Σpi ⊆ Σ is the set of symbols that do

not have outgoing symbol transitions from a state pi.

De�nition 2.23. A failure cycle is a connected failure path, that is pj
f
;

pj.

De�nition 2.24. A divergent failure cycle is a cycle whose failure alpha-

bet is non-empty.

Divergent cycles must be avoided when constructing FDFAs. A diver-

gent cycle may be disastrous during string membership processing since it

may lead to an in�nite sequence of failure states being traversed. This is

because a symbol in its failure alphabet will inde�nitely not be consumed

while processing in the failure cycle.

Further information about DFAs and FDFAs is beyond the scope of this

dissertation and can be found elsewhere in the literature. Examples are: [2,

11, 23, 24].

2.1.3 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical theory of data analy-

sis. Some data sourced from a collection of objects and their characteristics

are organized into a meaningful hierarchy of information. The term formal

concept analysis was coined by Rudolf Wille in 1984. There are many pub-

lications from the FCA community which provide related basic de�nitions.

(See [25, 26].) We introduce FCA here because it is a technique that is

applied in this research. Further applications of FCA in stringology are sum-

marized in Kourie et al. [27]. Below we provide FCA de�nitions which relate

to the scope of this dissertation.

De�nition 2.25. A formal context is the triple (O,A, I), where O is a set
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of objects, A is a set of attributes possessed by the objects and I ⊆ O × A.

Thus, the relation I indicates which objects possess which attributes in

the particular context. For example, if 〈oi, aj〉 ∈ I, then this means that

object oi has the attribute aj. In general, objects refer to discrete entities

in any domain that are described by discrete attributes. This dissertation is

concerned with �nite automata, and so the objects and attributes will be in

reference to this domain.

A formal context may be represented by a cross-table. Table 2.2 below

is an example of such a cross-table. It has been constructed to represent

information about a complete DFA. Here is how we build a formal context

from a complete DFA. For a given symbol, a ∈ Σ, we identify all states p′s ∈
Q, with the same transition value (target state, q ∈ Q). An attribute in the

formal context becomes the combination of the symbol and the destination

state while its objects are the source states. For a given state, q ∈ Q, its

attributes are also known as its abilities, a term coined by Björklund et

al. [10].

To illustrate how a formal context can be derived from a complete DFA in

the manner described above, consider the transition table of a DFA as shown

in Table 2.1. This table represents the arcs of the DFA depicted in Figure

2.1. For example, since the entry in the second row (for state q2) and third

column (for alphabet symbol c) is q3, we infer that there is an arc from q2 to

q3 labelled by c.

Table 2.2 then gives the corresponding formal context for this DFA. The

rows represent the objects, in this case the states of the DFA. The columns

represent attributes of the context, in this case the 〈symbol, destination〉
pairs for arcs leaving the object (state) in the given row. The �rst row of

Table 2.2 shows, for example, that state q1 has a transition on a to q1, a

transition on b to q2, a transition on c to q3 and a transition on d to q1.

Such a formal context constructed from a given DFA will henceforth be

called the DFA's state/out-transition context.
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Table 2.1: A DFA transition table sourced from Figure 2.1

a b c d

q1 q1 q2 q3 q1

q2 q1 q2 q3 q2

q3 q1 q2 q3 q3

q4 q2 q2 q3 q4

Table 2.2: The State/out-transition context for the DFA from (Table 2.1)

q1, a q2, a q2, b q3, c q1, d q2, d q3, d q4, d

q1 X X X X
q2 X X X X
q3 X X X X
q4 X X X X

Note that an upper bound on the possible number of cells of a state/out-

transition context is |Q|2 × |Σ| � i.e. a row for every state (i.e. |Q| rows)
and maximally |Q| × |Σ| columns for di�erent attributes. Because we are

considering here only complete DFAs, a given object (state in a row) will

always have exactly |Σ| attributes (out-transitions).

The minimum number of cells of a state/out-transition context is |Q|×|Σ|,
which will be achieved when the out-transitions on each symbol at each state

end at the same target state, i.e. when

∀a ∈ Σ ∧ ∀q, p ∈ Q : δ(a, q) = δ(a, p).

De�nition 2.26. A formal concept c of a formal context (O,A, I) is a

pair 〈X, Y 〉, where X ⊆ O and Y ⊆ A such that:

� (X × Y ) ⊆ I;

� Y is the largest subset of A such that (X × Y ) ⊆ I and

� X is the largest subset of O such that (X × Y ) ⊆ I.

18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



The set X is called the extent of the concept (denoted by ext(c)), and the

set Y is called the concept's intent (denoted by int(c)). Note that the extent

and intent of a concept are related in a very particular way. A concept's

extent is maximal in the sense that objects in that set hold in common exactly

the attributes in concept's intent � there is no object outside of the extent

that also has those attributes as a subset of its attributes. Additionally, the

concept's intent is maximal: if an attribute is not in the concept's intent then

at least one of the objects in the extent does not possess this attribute.

In formal concept analysis, concepts are hierarchically related by a partial

ordering. The partial order is de�ned as follows.

Property 2.1.1. The partial order on concepts: Given two concepts ci

and cj of a context, if ext(ci) ⊆ ext(cj) then ci ≤ cj. (Equality holds if and

only if i = j) (Refer to van der Merwe et al. [28].).

By de�nition of a concept, if ci ≤ cj holds then it is also the case that

int(cj) ⊆ int(ci).

De�nition 2.27. A formal concept lattice is the set of formal concepts

derived from a formal context whose ordering is de�ned in Property 2.1.1.

Where clear from the context, the terms �lattice� or �concept lattice�

should be taken to mean a formal concept lattice. As it will be illus-

trated later, a lattice is often visually represented by a so-called Hasse dia-

gram.

Formal concept analysis based on formal concept lattices is an active re-

search and application area in the �eld of knowledge base intelligence. Lat-

tices are used to organize data in data mining and knowledge discovery ap-

plications, for example: Zhou et al. [29]. In Kourie et al. [27] an overview is

given of where FCA has been applied in stringology. The overview includes a

summary of a multiple keyword pattern matching algorithm that uses FCA,

which was proposed by Venter et al. [30].

In this work we apply concept lattices in stringology by using the state/out-
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Figure 2.3: A formal concept lattice derived out of the state/out-transition
in Figure 2.2

transition context from a complete DFA as input for the so-called DFA Ho-

momorphic Algorithm (DHA) proposed in Kourie et al. [9], in order to derive

a language-equivalent FDFA of the DFA. As explained below, the state/out-

transition context is used as input to a lattice construction algorithm that

returns a formal concept lattice. This will be called a state/out-transition lat-

tice. The Hasse digram (or line diagram) depicting the state/out-transition

lattice associated with the state/out-transition context shown in Table 2.2 is

given in Figure 2.3.

In Figure 2.3 the concepts (i.e. nodes) are circles labelled attached with

labeled grey boxes and white labelled boxes. Each node contains either a

combination of blue-and-black colors or blue-and-white colors. A black color

represent a concept's own objects, a white color denotes a concept's derived

objects and a blue color stand for a concept's own attributes. The own objects

of a concept are objects that belongs to the current concept and no other

concept at a lower level contains any of those objects. Derived objects of
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a concept are represented as a set of objects that share some attributes,

they are derived from objects of concepts at lower levels of the graph. The

own attributes of a concept are attributes of which none of its elements are

shared with any other parent (higher level) concept. From the graph, own

objects caption are the white boxes while own attributes are labels of the

grey boxes. The top node represent concepts where all the states (objects)

have shared attributes while the bottom node represents all the attributes

that are exclusive to a set of states.

Figure 2.3 provides elaborative details of the association of states and

state/out-transitions from the lattice diagram. The diagram is read from

bottom-up. At the bottom root node, none of the state/out-transitions is

exclusive to any state. In other words, there is no single object that contains

all the attributes. Moving one level up, there is a concept that has one

own object {q1} and possesses a single own attribute {(q1, d)}. It has to be

noted that other elements of the intent for the above stated concept include

all its parent attributes (i.e. (q1, a)) and ancestor attributes (i.e. (q2, b) and

(q3, c)). Similarly, the concept nodes that have own object/state {q2} and
{q3}, catagorically have {(q2, d)} and {(q3, d)} as own attributes. Their other
attributes are contained in connected higher level concepts. Meanwhile, for

the concept with own object: {q4}, there are two own attributes (q4, d) and

(q2, a) and two inherited attributes: (q2, b) and (q3, c). Going up to the second

layer of the latticce diagram, there is a concept that consists of a set of states

{q1, q2, q3} with an own attribute (q1, a) and parent attributes. Lastly, the

top level concept has an extent of {q1, q2, q3, q4} and exclusively has the intent
{(q3, c), (q2, b)}.

Each concept in a state/out-transition lattice is characterised by a certain

value, called its arc-redundancy, which is de�ned as follows:

Property 2.1.2. Arc Redundancy (AR) for a concept c is an integer

value, ar(c) = (|int(c)| − 1)× (|ext(c)| − 1).

In Kourie et al. [9] it is shown that a non-negative arc redundancy value

of a concept represents the number of arcs that may be reduced by doing the
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following:

1. singling out one of the states in the concept's extent;

2. at all the remaining states in the concept's extent, removing all out-

transitions mentioned in the concept's intent;

3. inserting a failure arc from each of the states in step 2 to the singled

out state in step 1

The expression, |ext(c)| − 1 represents the number of states in step 2 above.

At each such state, |int(c)| symbol transitions are removed and a failure arc

is inserted. Thus, |int(c)| − 1 is the total number of transitions removed at

each of |ext(c)| − 1 states so that ar(c) is indeed the total number of arcs

saved by the above transformation.

From Figure 2.3, the arc redundacy of the top node concept is 3 as its

|ext(c)| = 4 and its int(c)| = 2. And, for the second level concept, as

|ext(c)| = 3 and |int(c)| = 3 then AR = (3−1)× (3−1) = 4. The remaining

concepts have AR = 0.

De�nition 2.28. The Positive Arc Redundancy Set (PAR set) is the

set of concepts in a state/out-transition lattice that have arc redundancies

greater than 0.

The PAR set excludes all concepts with a negative or zero arc redundancy.

From the example provided in Figure 2.3 only the two concepts at the two

higher levels qualify to be elements of the PAR set.

For a given PAR set, the concept with the maximum arc redundancy value

is denoted by maxAR, the concept with the maximum intent size is denoted

by maxIntent and the concept with the minimum extent size is denoted by

minExtent.
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2.2 Background and Related Work

This section presents the background and literature review of failure-DFAs.

Firstly, the Aho-Corasick algorithms are introduced, because they play an

important role in this research. The section then goes on to highlight other

literature sources that have investigated FDFAs. And �nally, it discusses the

application of FDFAs in compiler construction.

A language that is accepted by a DFA is called a regular language. The

regular language is the simplest class of languages from the Chomsky hier-

archy, see: [31, Chapter 11], [32], [33, p. 281]. The Chomsky hierarchy ranks

languages ordered from the most restrictive to the most general: regular,

context-free, context-sensitive, and recursively enumerable. It is well known

that any �nite set of strings from an alphabet is a regular language, and can

therefore be represented by a DFA. String processing that is based on a DFA

is generally somewhat simpler and more e�cient than string processing of

languages higher up in the Chomsky hierarchy.

Suppose, then, that P is a �nite set ofN strings of �nite length drawn from

the alphabet Σ. This set is therefore a regular language. It can therefore

be represented by a DFA and, in this case, the transition graph is a tree

(referred to as a trie in the DFA context). As an example of a trie, consider

P = {he, her, him, she}. The corresponding trie for this set of strings is

shown in Figure 2.4. Notice that it is characterised by the fact that each

state (other than the start state) has exactly one inbound transition. Every

path from start state to some other state spells out a pre�x of one of the

keywords in P . As a result every state can be identi�ed with the proper

pre�x of the path that ends at that state. As a corollary to this observation,

an internal state will be a �nal state if this pre�x is a full keyword in P . It

has to be noted too that all the trie's leaves are �nal states.

Such a trie may therefore be used to represent a �nite set of �nite-length

keywords in a multi-keyword exact pattern matching task. In such a task,

a text string, T ∈ Σ+ is given, and all indices in the text are sought at
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Figure 2.4: An example of a trie with keyword set P = {he, her, his, she}

which patterns in the keyword set occur. In principle, Algorithm 2.1 can be

adapted to use T and the trie for P as input to indicate whenever a �nal

state is reached that the associated keyword of P has been detected in T .

However, in order to do this, the scanning of T should not terminate if no

progress can be made in the trie. Instead, transitions should be inserted

into the trie to appropriate states so that the remaining part of T can be

scanned.

The task in multi-keyword exact pattern matching can therefore be seen

as �nding a DFA whose language is Σ∗P . One type of the Aho-Corasick (AC)

algorithm proposed by Aho and Corasick [13] does precisely that, where the

DFA constructed is minimal. Each �nal state of this DFA corresponds with

one of the patterns in P . This AC variant then constructs a complete DFA

that has an arc from each �nal state going back to the start state on symbols

that do not lead to a pre�x of one of the patterns. This DFA is called the AC-

opt DFA. The �opt� stands for optimal. It is optimal because the DFA's string

processing algorithms (such as Algorithm 2.1) that are used for scanning the

text need not have to contain the additional logic of FDFA string processing

algorithms (refer to Algorithm 2.2) have in order to determine whether or not

to take a failure transition. However, it is not optimal in terms of memory

requirements, since it is a complete DFA and therefore has to provide storage
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Figure 2.5: An AC-fail automaton for the keyword set P = {he, her, his, she}

to record a transition from every state on every alphabet symbol.

The second version of AC algorithm constructs an FDFA that is language-

equivalent to the previously mentioned DFA. However, the FDFA is not

constructed from the minimal AC DFA mentioned in the previous paragraph.

Instead, it �rst constructs a trie (which, as discussed above, is itself a DFA

whose language is exactly the �nite language P ). And then it inserts failure

arcs using the �pre�x of a su�x� [23, Chapter 4] approach � that is, fail from

a su�x s of a word u.s that is a longest pre�x of another word s.v in the

trie. The Aho-Corasick failure automaton has the property of introducing the

maximum number of failure arcs, and it is called AC-fail FDFA. Note that

the word s.v could be any word in P including u.s. We now further illustrate

the notion of �pre�x of a su�x� by an example visualized in Figure 2.5.

Suppose p is a state in the trie representing the string and keyword she and

suppose q is another state representing the pre�x string he of the keyword

hers. Then a transition from p to q would indicate that he is the longest

su�x of she that matches a pre�x of some other keyword. An example of an
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AC-fail automaton is depicted in Figure 2.5.

The construction time for an AC-fail automaton is O(n log |Σ|), where n is

the number of words in the pattern set and Σ is the alphabet set [34]. More

details about the construction of an AC-fail automaton may be found in [13,

23, 18, 35]. Dori and Landau [34] mentioned that the runtime complexity

of multiple keyword pattern matching algorithms that make use of AC-fail

FDFA is O(m log |Σ|+k), where k is the number of all matching occurrences

of keywords in the input character sequence T , and m is the size of the input

text string, T . Björklund et al. [24] stated that the storage requirements of

a failure automaton are proportional to the total number of transitions, and

hence the need for a maximum transition reducing FDFA.

Several authors have proposed approaches to improve Aho-Corasick au-

tomata's execution time through e�cient hardware architectures. Examples

include: [36, 12]. Watson [23] classi�ed classical pattern matching algorithms

(including AC) into a taxonomy, and implemented a toolkit. Subsequently,

this toolkit was improved by Cleophas and Watson [37].

There is a body literature about FDFAs that are not AC-fail FDFAs. The

pioneers are Knuth et al. [38] who developed the Knuth-Morris-Pratt (KMP)

algorithm�a single-keyword exact pattern matching algorithm. The Aho-

Corasick algorithm generalized the KMP algorithm from single to multiple

keyword matching. Crochemore and Hancart [2] provided an overview of

various FDFA related research that has been conducted in speci�c contexts.

However, Kourie et al. [9] described a general algorithm for generating an

FDFA from any DFA. This generalises the AC algorithm which can only

construct an FDFA for a �nite language (i.e. a �nite set of patterns of �nite

length).

An alternative approach to constructing FDFAs from an arbitrary DFAs is

given by the Delayed-input DFA (simply called, D2FA) algorithms developed

by Kumar et al. [12]. This approach will be discussed in the succeeding

section.

Björklund et al. [24, 10] presented a couple of theoretical FDFA contri-
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butions. The �rst contribution is a proof that both the failure reduction

problem and the transition minimization problem are NP-complete. The

transition reduction problem is the construction of an FDFA by removing

some symbol transitions while adding failure transitions. Note that there are

many resulting DHA FDFA solutions from a given input DFA, we are merely

trying to obtain failure automata that can have relatively high transition

reduction. The transition minimization problem is the same as the former

but it has an extra property. The extra property is that additional states

may be included into the FDFA when required as long as the language of

the input DFA is preserved. This property allows the FDFA to have more

states than the language equivalent DFA. In their second contribution, the

authors sought for di�erent ways to trace transition reduction. This was

conducted by providing an algorithm which demonstrates that the failure re-

duction problem can be estimated at least two-thirds factor of the transition

size when compared with an optimal algorithm.

Recently Cleophas et al. [39] used ideas inspired by Kourie et al. [9] to

modify factor oracles (FO) constructing algorithms to introduce failure tran-

sitions and therefore generating failure factor oracles (FFO). A factor oracle

is a data structure that recognizes all factors of a single keyword. By in-

troducing failure arcs, the empirical results presented showed that up to 9%

failure transitions were saved. FOs have a compact and e�cient representa-

tion. Short natural language (English) words of length of up to 14 characters

were tested. Improvements on the FO algorithms were addressed in Cleophas

et al. [40]. The improved version of (F)FOs removes potential failure cycles

through transition minimization methods and optimization by partial mem-

oization techiques for larger input strings T to be processed by the FFs and

the FFOs. And, the (F)FO were tested with pattern matching on DNA se-

quences in this case. Lastly in [41], the authors included the FFO and FO

algorithms into the pattern matching taxonomies of [37, 23]. Moreover, the

authors compared the performances of FFO and FO in pattern matching and

found that FO performed better.

The application of failure transitions in the context of subsequence au-
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tomata has recently been discussed in Bille et al. [42]. A subsequence of a

�nite text string s is any string that is obtained from deleting zero or more

characters from s. A subsequence automaton is the minimal deterministic

�nite automaton accepting all subsequences of s. The authors demonstrated

that by using failure transitions, much smaller subsequence automata may

be formed. Moreover, the authors compared the performances of FFO and

FO in pattern matching and found that FO performed better.

One area of application for such DFAs and FDFAs is lexical analysis in

compiler construction. A lexical analyser in a compiler is essentially the soft-

ware module that uses DFA technology to verify that the input program's

� such as variable names, keywords, numbers, etc � conform to the lan-

guage's speci�cation and then outputs a string of tokens to be used by other

compiler modules. Software such as Lex (and Flex, a faster Lex) for C/C++

which was developed by Lesk and Schmidt [43] and Java's JFlex (see Klein

et al. [44]) have been developed to generate the code for a lexical analyser

from a given program.

2.3 A Description of the D2FA Algorithm

Kumar et al. [12] proposed an approach to change a DFA into an FDFA in

2006, prior to the publication of the DHA approach described by Kourie et

al. [9]. This so-called Delayed-input Deterministic Finite Automata (D2FA)

algorithm had not been discovered by the authors of the DHA algorithm be-

cause it was not published in the mainstream stringology literature sources,

but in literature relating to network security. Additionally, the term �delayed-

input� DFA (or D2FA) had been independently invented by the authors of

the algorithm, and consequently did not show up under literature searches

relating to �failure� DFAs. I discovered the literature describing this al-

gorithm quite late after carrying out the research for this dissertation. A

minor contribution of my research is therefore the bringing together of these

two avenues of research to solve the same problem that had until now been
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conducted independently. The algorithm has two variants and it is brie�y

described below. The �rst of these variants was implemented and will be

included throughout this study. In this text, it will be referred to as the

D2FA algorithm.

In order to derive a failure automaton from a DFA, an undirected graph

called the space reduction graph is constructed. Its nodes are de�ned by the

states of the DFA. Each edge connecting two states (qi and qj) is assigned a

weight which is the sum of all transitions such that δ(a, qi) = δ(a, qj) minus

1 (and qi, qj ∈ Q and a ∈ Σ). Meanwhile, all but one symbol transitions with

the property δ(a, qi) = δ(a, qj) are removed.

Failure transitions are determined as follows. Firstly, out of the above

discussed space reduction graph, a maximal weight spanning tree is gener-

ated. The D2FA algorithm builds a directed spanning tree to incrementally

generate failure transitions (the authors referred them as default transitions).

An algorithm by Kruskal [45] was used to generated the directed spanning

tree from the weighted space reduction graph.

Next, the algorithm arbitrarily selects a root node (state) for the spanning

tree. Then, for each edge of the spanning tree connecting two nodes/states,

that edge becomes a failure transition. For two connected nodes of the span-

ning tree qi and qj, a failure transition is created out of this spanning tree

node link such that the failure transition is directed towards the state that

has the least depth (i.e. the least number of edges from the selected root

node). It should be noted that under no circumstances does the FDFA pro-

duced by the D2FA algorithm have divergent failure cycles, as all failure arcs

are directed towards the root state.

Two variants of the algorithm were proposed. The �rst one is based on

the original maximal spanning tree and the other on a rede�ned maximal

spanning tree. The latter, allows tree nodes to be fairly distributed from the

root by setting all the nodes to be at a controlled diameter1 from the root

1A diameter (also known as a width) of a tree is the number of edges with the longest
path between two leaf nodes in the tree.

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



node. A small diameter helps in limiting the number of failure transitions

taken until a symbol is consumed by a symbol transition. With an aid of

hardware implimentation (for faster processing), the reduction on transitions

obtained reached 95%. An improvement to replace some failure transitions by

speci�c symbol transitions on D2FA was proposed by Ficara et al. [46].

Note that there is the following connection between the weights used in the

space reduction graph and the notion of �arc redundancy� described earlier.

It can easily be shown that if a concept in a state/out-transition lattice has

exactly two states in its extent, then the arc redundancy of that concept will

be the same as the weight assigned to the arc connecting those two states in

the space reduction graph.

2.4 Conclusion

In the current chapter de�nitions, notations and notes related to these three

research areas; stringology, �nite automata and formal concept analysis were

presented. A background study of failure automata and other related works

were presented and discussed. Notably, a kind of FDFA called D2FA was

singled out for a deeper discussion because it will be highly referenced in the

forthcoming chapters. The next chapter provide detailed description of the

DFA-homomorphic algorithm which is core algorithm that is studied by this

dissertation.
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Chapter 3

The Transformation of DHA

This research seeks to to examine how e�ective will various algorithms de-

rive FDFAs from complete DFAs. Our early trials of the original DFA-

homomorphic algorithm (DHA) using some heuristics so-called MaxArcRe-

dundancy as suggested by Kourie et al. [9] showed that the algorithm did

not produce FDFAs that remove the most possible symbol transitions out

of input DFAs. Here, the initial DHA is tuned into producing FDFAs that

are possibly the best transition savers. Four concrete variants of DHA are

proposed with a view to examining how e�ectively they produce FDFAs with

as small a number of transitions as possible. This chapter provides a detailed

description of these variants of DHA.

3.1 A Description of the DHA

For DHA to convert a DFA into an FDFA (as depicted in Figure 3.1), a three

stage transformation of the DFA has to be undertaken. Initially, the DFA is

represented as a state/out-transition formal context. Such a formal context

is the required standard input for formal concepts generating software. The

software for building formal concepts is called Formal Concept Analysis Re-

search Toolbox (FCART). FCART has been used in this research to build
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Start

DFA

FDFA
Gen-
erator:
DHA

FDFA

Stop

Figure 3.1: The DHA's DFA to FDFA Conversion Process

state/out-transition concepts from the provided context. This package will

be described in the Chapter 4. From the built concepts, the set of positive arc

redundancy concepts (i.e. PAR Set) is extracted to serve as input for a vari-

ant of the DHA, which then provides an FDFA that is language-equivalent

to the original DFA. This sequence of conversions is illustrated in a nutshell

in Figure 3.2.

The basic DHA proposed in Kourie et al. [9] is outlined in Algorithm 3.1.

Algorithm 3.1 is summarised in the next couple paragraphs.

The variable O is used to keep track of states that are not the source of

any failure transitions. This is to ensure that a state is never the source

of more than one failure transition. Initially all states are elements of O.

PAR is used to store the set of concepts with positive arc redundancy. The
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Start

DFA (input)

State/out-transition Context

Lattice
Builder:
FCART

State/out-transition Concepts: (PAR set)

Generate
FDFA:
DHA

FDFA (output)

Stop

Figure 3.2: The DHA based DFA-to-FDFA construction in detail
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following sequence of actions are taken for as long as O and PAR is not empty.

Algorithm 3.1 The Original DFA-Homomorphic Algorithm

{ pre (D = (Q,Σ, δ, F, qs)) ∧ (O 6= ∅) ∧ (PAR 6= ∅) }
O := Q; { States from which failure transition may start }
PAR := {c|ar(c) > 0}; { Set of concepts with ar(c) > 0 }
do ((O 6= ∅) ∧ (PAR 6= ∅))→

c = SelectConcept(PAR);
PAR := PAR\{c};
t = getAnyState(ext(c));
ext′(c) := ext(c)\{t};
for each (s ∈ ext′(c) ∩O)→

if a divergent failure cycle is not created →
for each ((a, r) ∈ int(c))→

δ := δ \ {〈s, a, r〉}
rof ;
f(s), O := t, O\{s} ;

f i
rof

od
{ post (F = (Q,Σ, δ, f, F, qs)) ∧ ((O = ∅) ∨ (PAR = ∅)) }

A concept c is selected from the PAR set for consideration. It is then

removed from the PAR set so that c is no longer available in subsequent iter-

ations. The speci�cation given in Algorithm 3.1 leaves open how this choice

will be made. The authors' initial version proposed speci�cally selecting a

concept, c, with maximum arc redundancy. This was based on the conjec-

ture that such a �greedy� selection would result in an FDFA with signi�cantly

fewer transitions than the original input DFA. However, the conjecture was

never con�rmed with real data.

From c's extent, one of the states, t, is chosen to be a failure transition

target state. Again, the initial version of DHA is nondeterministic on a

criterion for which a state in ext(c) can be selected. The selected state t is
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removed from ext(c) and the remaining set of states is called ext′(c). Then,

for each state s in ext′(c)) that quali�es to be the source of a failure transition

(i.e. that is also in O), the following action is taken.

Firstly, a check is made to verify that installing a failure arc from s to t

will not generate a divergent failure cycle. If it will, then s is ignored and

the next candidate state to be a possible source of a failure transition is

examined. If it is assured that a failure arc from s to t will not generate a

divergent failure cycle then the following actions are taken.

The transition function δ is updated so that all transitions exiting from

s that are mentioned in int(c) are removed. A failure transition is then

installed from s to t. Because state s has become a failure transition source

state whose target state is t, it may no longer be the source of any other

failure transition, and so is removed from O.

Repeatedly, these steps are carried out until it is no longer possible to

install any more failure transitions. Further details about the original DHA

are available in Kourie et al. [9, 11].

It should be noted that in this particular formulation of the abstract algo-

rithm, the PAR set is not recomputed to re�ect changes in arc redundancy as

the DFA is progressively transformed into an FDFA as suggested in Kourie et

al. [11]. This does not a�ect the correctness of the algorithm, but may a�ect

its e�ectiveness in reducing the overall number of transitions in the resulting

FDFA. Investigating such e�ects is not within the scope of this study.

3.2 Modifying DHA

Three changes to the DHA shown in Algorithm 3.1 have been applied to

adapt the algorithm so that it can be concretely implemented. Some of

these modi�cations were done as part of this research, while others were

suggested in [9]. Two modi�cations relate to the non-speci�c fourth and sixth

lines of the pseudo-code in original DHA version, Algorithm 3.1, namely the
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lines:

� c := selectConcept(PAR); and

� t := getAnyState(ext(c));

respectively. These changes are e�ected to address the algorithm's challenges

of non-determinism in choosing a concept and in selecting the target state of

the failure transition from the chosen concept's extent.

Algorithm 3.2 The Modi�ed DHA

{ pre (D = (Q,Σ, δ, F, qs)) ∧ (O 6= ∅) ∧ (PAR 6= ∅) }
PAR := {c | ar(c) > 0};
O := Q\qs;
do ((O 6= ∅) ∧ (PAR 6= ∅))→

c := MaxARConcept(PAR) ∨
MinExtentConcept(PAR) ∨
MaxIntentConcept(PAR) ∨
MaxIntMaxExtConcept(PAR);

PAR := PAR\{c}
t := ClosestToRoot(c)
ext′(c) := ext(c)\{t};
for each (s ∈ ext′(c) ∩O)→

if a divergent failure cycle is not created →
for each ((a, r) ∈ int(c))→

δ := δ \ {〈s, a, r〉}
rof ;
f(s), O := t, O\{s} ;

f i
rof

od
{ post (F = (Q,Σ, δ, f, F, qs)) ∧ ((O = ∅) ∨ (PAR = ∅)) }

As a consequence of the non-determinism in choosing a concept, we pro-

pose four variants of the algorithm. Each one involves a di�erent greedy1

1By greedy we mean that an element from the set is selected based on some maximal or
minimal feature, without regard to possible opportunities lost in the forthcoming iterations
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criterion for choosing concept c from PAR set. This is expressed in Algo-

rithm 3.2 as the assignment to c to the disjunction of four di�erent possible

calls to di�erently coloured functions parameterised by PAR. However, this

should not be regarded as a strict boolean operation and assignment, but

rather as a loose but compact way of saying that each variant uses a di�er-

ent function to determine which element from PAR should be assigned to

c.

In addition to these four alternative heuristics, a speci�c criterion is pro-

posed in the �fth line for choosing the target state, t for the failure transitions.

It will be seen below that this criterion also has two variants. Lastly, in the

second line O := Q, a modi�cation is made to reduce the execution time

of the algorithm. These changes are depicted as coloured assignment state-

ments in Algorithm 3.2. These modi�cations are explained in the subsections

that follow.

3.2.1 Select a Concept c from PAR

Firstly, we look at the greedy approaches that are used to select concepts out

of the positive arc redundancy set. All the heuristics used can, in principle,

a�ect the shape (transition-wise) of the FDFA created. The research aims to

�nd heuristics that remove the most symbol transitions from the DFA. The

MaxARConcept criterion was by Kourie et al. [9], early experimental trials

showed that it was not the best approach in reducing transitions of a DFA,

therefore, we proposed the three remaining approaches.

� c := MaxARConcept(PAR);

This is the initial criterion proposed in Kourie et al. [9], whereby a

concept with the maximum arc redundancy is preferred. It is a greedy

strategy that maximises the net change of transition size per iteration.

(That is, delete maximum regular transitions and insert maximum fail-

ure transitions per iteration.) Recall from the de�nition of AR, this

by making these selections.
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strategy targets concepts that have a middle-ground between the num-

ber of potential symbol transitions can be removed from a DFA and the

number of possible failure transitions that can be inserted. Preliminary

trials with this criterion did not yield impressive transition reduction

results. That suggested that alternative criteria might be more e�ective

and gave rise to the subsequent proposals.

To facilitate the implementation of this criterion, the concepts of the

state/out-transition lattice may be stored in a list data structure in

which elements are sorted in descending order of their arc redundancy

values. Each successive selection of a concept from the list is merely

taken from the head of the list.

� c := MaxIntentConcept(PAR);

The maximum intent approach simply selects a concept with maximum

intent size from the PAR set. The larger the intent size, the larger

the number of state/out-transitions shared by states in the extent of

the selected concept. This heuristic choice maximises the number of

symbol transitions to remove from each of the a DFA's relevant states

(namely those in the concept's extent) states and replaces them with a

failure transition at each state. However, it does not have to regard the

number of states at which such a transformation will occur � i.e. it

does not consider the size of the concept's extent. This approach is

directly related to the hierarchical structure of the concept lattice's

line diagram (the Hasse diagram), in that concepts with the largest

intents typically have smallest extents and are therefore displayed in

the lower parts of the diagram.

To facilitate the implementation, the input PAR set can be stored in a

list sorted in descending order of intent size.

� c := MinExtentConcept(PAR);

Like the previous criterion, this concept selection criterion is re�ected

in the hierarchical structure of a formal concept lattice's line diagram.

Generally, concepts with the least number of objects (states) in their
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extents tend to have more attributes (state/out-transitions) in their

intents � i.e. small sets of objects tend to have more common prop-

erties than larger sets. Although this criterion does not result into an

identical selection to MaxIntentConcept(PAR), it also aims to priori-

tise transformations on sets of states where there are likely to be larger

numbers of symbol transitions removed and replaced by a failure arc

per state.

To facilitate the implementation, a list sorted in descending order of

extent size is a suitable data structure for the PAR set.

� c := MaxIntMaxExtConcept(PAR);

This approach for symbol transition removal is based on re�ning the

idea of maximum arc redundancy � also is a derived and constrained

extension of the MaxIntentConcept criterion. It was proposed after

noting that the MaxIntentConcept criterion often requires a selection

from one of several concepts because their intents have the same size.

Rather than selecting one of these arbitrarily, a concept with maximum

extent is selected. At �rst, all concepts with tied maximum intent are

provisionally selected, and from them the concept with the maximal

extent is chosen. Clearly, this approach seeks a middle ground between

the MaxARConcept and the MaxIntentConcept criteria. The motiva-

tion is that in addition to selecting concepts with the largest attribute

size (for optimum transitions removed per state), we also seek to se-

lect concepts that can potentially allow the highest number states to

become sources for a failure transition.

For implementation purposes, the PAR set can be stored in two di-

mensional arrays. The �rst row contains an array with all concepts

having the highest intent size. The second row holding an array of all

concepts with the second highest intent size and so on. Furthermore,

in each row array the concepts can be sorted in descending order based

on the extent size.
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3.2.2 Select a Target State t from Concept c

Once any one of the foregoing criteria has been applied, an arbitrary state in

the extent of the selected concept c may, in theory, become the target state.

Failure transitions from each of the remaining states in the extent to the

selected target state will subsequently be installed provided that a divergent

failure cycle is not produced. The criterion proposed here for selecting the

target state of a failure transition t is to select a state in the extent closest

to the DFA's start state. This simple criterion was chosen over more com-

plicated possibilities for ease of implementation. In Algorithm 3.2 a line of

code states the criterion in abstract form as:

t := ClosestToRoot(c);

When the ClosestToRoot criterion is invoked in DHA with the trie-embedded

AC-opt DFA as input, t becomes the state in ext(c) with the least unit depth2.

However, with an arbitrary complete DFA as input to DHA, the notion of an

embedded trie falls away and therefore also the notion of �depth of a state�.

Instead, the state in ext(c) that has the shortest distance from the start

state is selected as t, and the computation of this distance is slightly more

complicated than computing the depth of a trie state. We therefore have the

following two variants of the ClosestToRoot criterion for selecting the target

state:

� t := StateWithLeastDepth(c);

The symbol transitions of an Aho-Corasick failure automaton form a

structure made of a forward trie. At an arbitrary state, AC-fail FDFA's

failure transitions are tailored to fail towards target states that have a

depth less than the current state. In fact, the AC-fail algorithm allows

a state to fail back to a state that holds the longest pre�x that is equal

to a su�x of the path that is traversed currently.

2The depth of a state in a trie is the total number of transitions on a path to that state
that begins at the start state.
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The �longest pre�x of a su�x� property can be demonstrated as such.

Given a string w = t.u.v, the AC-fail algorithm directs a failure tran-

sition from a state corresponding to the last character of word w, to

another state that corresponds to another word of the form (v.z) with

longest pre�x v that equals su�x v of w. The state is chosen so that

the length of v is at a maximum.

While using the StateWithLeastDepth criterion, failure transitions are

attached as follows. From the extent of the concept c, the state with

the least depth is selected to be target state, t, of a failure transition.

The remaining states become potential failure transition source states.

The di�erence between these two methods of selecting a target state

of failure transition criteria is described in this paragraph. Assuming

states p, q and r with depth(p) < depth(q) < depth(r) to be states in

ext(c) from a selected concept c's in PARset. The StateWithLeastDepth

approach will select p to be the failure transition target state ahead of

both q and r because p has the least depth. While, the Aho-Corasick

algorithm will direct failure arcs from r to q (and not p) when we as-

sumed that su�x to r is the longest pre�x to q. Cases of correspondence

between the AC-fail algorithm and the DHA criteria will be when the

state p is the longest pre�x corresponding to su�x r.

� t := StateWithLeastDistanceFromStartState(c);

Selecting a failure transition target state with minimum trie-depth is

restricted trie-based structures such as the AC-opt DFAs. As it will be

seen later, our �nal objective is not to be restricted with benchmarking

DHA FDFAs against the AC-fail FDFAs, but also to the general case

FDFA. As such, we select the failure transition target state by calcu-

lating the minimum/shortest distance from the start state. It should

be noted that in the Aho-Corasick automata, the expected shorted

distance from a root state to a state must be equal to the respec-

tive trie depth. Several known algorithms that calculate the shortest

distance between two states in an arbitrary graph and three examples
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include algorithms by Dijkstra [47], by Belman-Ford [48] and by Floyd-

Warshall [49]. A complete DFA must have all valid states reachable,

and because of that, in this research Dijkstra's shortest path algorithm

is employed, as given in Drozdek [50, p. 394].

3.2.3 A Minor Modi�cation

The new version of the algorithm will not delete any transition from the initial

state qs of the input DFA and this is because of the previously discussed

modi�cation: t := ClosestToRoot(c). It was therefore deemed desirable

to improve the e�ciency of DHA by modifying the following line from the

abstract DHA. The line O := Q is modi�ed to:

O := Q\qs;

Recall that the set O keeps track of the states that may still become the

source of a failure transition. In the AC-fail algorithm, the start state is

generally not assigned as the source of a failure transition. By excluding

the start state qs from being considered as a candidate to be the source of a

failure transition in DHA, it was hoped that the DHA would produce FDFAs

that are closer in structure to the AC-fail algorithm's FDFAs.

3.3 Summary

In this chapter, various modi�cations to adapt the DFA-homomorphic al-

gorithm to e�ectivelly and deterministically remove symbol transitions were

presented. The e�ected changes on DHA a�ect only the selection of concepts

from the input PAR set and the choosing of a failure transition target state.

A toolkit that implements DHA algorithms is available online3. The follow-

ing chapter describes the approaches of testing of currently discussed DHA

3http://madodaspace.blogspot.co.za/2016/02/a-toolkit-for-failure-deterministic.html
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FDFA variants against the well-known optimal symbol transition reducer

called AC-fail FDFA and against a generalised random FDFA.
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Chapter 4

Methods and Tools Used

In this chapter we present an exploratory research approach to compare the

Aho-Corasick (AC) failure machine against the DHA FDFA variants (de-

scribed in the previous chapter) and D2FA. As stated by Olivier [51], in

exploratory research, an experiment is designed, conducted and a theory

may be proposed to explain observations.

In the section below, the dissertation provides a number of new formal

propositions, proofs and properties that are relevant to the AC based experi-

ments. Subsequent sections present a detailed description of the quantitative

assessment approaches that are employed in the experiments. Additionally,

the software and hardware tools used in this research are summarised and

critiqued.

Much of the content covered in this chapter is tailored towards comparing

AC automata against DHA FDFA but some content is general and covers

details relating to the general case FDFA tests as well. Speci�c aspects of

the general case FDFA assessments that are not covered here will be looked

at in Chapter 6.
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4.1 AC-fail FDFA Arc Reduction Characteris-

tics

Formal propositions, proofs and properties are presented here that relate to

transition reduction of AC-fail FDFAs in comparison to their AC-opt DFA

counterparts. These AC preliminaries govern expectations of the empiri-

cal results when comparing the DHA automata against the AC automata.

These properties and their corollaries were derived speci�cally as part of this

research.

Proposition 4.1.1. If Q, δ and f are the set of states, symbol transition

function and failure transition function respectively of an FDFA generated

by the AC-fail algorithm, then:

|δ| ≤ (|Σ|+ (|Q| − 1)) (4.1)

and

(|δ|+ |f|) ≤ (|Σ|+ 2(|Q| − 1)) (4.2)

Proof. Let `1 be the number of looping symbol transitions at the start state qs
for an AC-fail FDFA (i.e. the count of transitions such that δ(qs, a) = qs, a ∈
Σ). Let `>1 be the number of remaining symbol transitions in AC-fail FDFA.

The `>1 symbol transitions form a trie. Therefore, for each state (excluding

the start state) there is exactly one inbound symbol transition. Thus, easily

obtaining (|Q| − 1) transitions, that is, `>1 = (|Q| − 1). The root state has

≤ |Σ| looping symbol transitions i.e. `1 ≤ |Σ|. The remaining start state

symbol transitions (which are of the form δ(qs, a) 6= qs) are associated with

the `>1 transitions � thus they have been counted from the �rst argument.

Hence AC-fail FDFA's symbol transitions size is;

|δ| = `1 + `>1

= `1 + (|Q| − 1)

≤ |Σ|+ (|Q| − 1)
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An AC-fail FDFA has (|Q| − 1) valid failure transitions, which are failure

transitions for all states excluding the initial state. The initial state cannot

have a failure transition because it is a root node of the trie so there is no

keyword P that can be formed by empty string ε. Finally, the total number

of AC-fail FDFA transitions is;

(|δ|+ |f|) = `1 + 2`>1

= `1 + 2(|Q| − 1)

≤ |Σ|+ 2(|Q| − 1)

Corollary 4.1.2. Without loss of generality, for AC-fail FDFA with a large

|Q|,
|δ| ≈ |Q| (4.3)

and

(|δ|+ |f|) ≈ 2|Q|. (4.4)

The complete DFA generated from the AC-opt DFA has the same number

of states as the AC-fail FDFA, it has |Σ| × |Q| symbol transitions. For

large |Q|, the proportion of symbol transitions saved by the AC-fail FDFA

over the symbol transitions of the AC-opt DFA is thus bounded from above

by Property 4.1.3. Similarly, the ratio of AC-fail FDFA symbol transitions

(the trie) over those of the AC-opt DFA is bounded from above by Property

4.1.4.

Property 4.1.3. The ratio R(|δ|+|f|) of the overall transition contained by

AC-fail FDFA over AC-opt DFA transition size is approximated by;

R(|δ|+|f|) ≈
(|Σ| − 2)

|Σ|

This can be easily be derived from Equation 4.4 and the AC-opt DFA size as
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follows.

R(|δ|+|f|) =
(AC-opt_|δ|)− (AC-fail_(|δ|+ |f|))

(AC-opt_|δ|)

≈ (|Σ| × |Q|)− 2|Q|
|Σ| × |Q|

=
(|Σ| − 2)× |Q|
|Σ| × |Q|

=
(|Σ| − 2)

|Σ|

Property 4.1.4. The proportion R(|δ|) of AC-fail FDFA symbol transition

size over AC-opt DFA symbol transitions is estimated by;

R(|δ|) ≈
(|Σ| − 1)

|Σ|

Similarly, this can be derived as shown below.

R(|δ|) =
(AC-opt_|δ|)− (AC-fail_|δ|)

(AC-opt_|δ|)

≈ (|Σ| × |Q|)− |Q|
|Σ| × |Q|

=
(|Σ| − 1)× |Q|
|Σ| × |Q|

=
(|Σ| − 1)

|Σ|

4.2 Comparing the Aho-Corasick Automata with

DHA FDFA

The work�ow for the experiment is depicted in Figure 4.1. Firstly, a key-

word set, P , is created characterised by some controlling constraints which

are detailed in the next subsection. Upon inputting the keyword set into
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SPARE Parts toolkit developed by [52, 53], two Aho-Corasick automata are

produced � an AC-opt DFA and a language-equivalent AC-fail FDFA, re-

spectively. The AC-opt DFA serves as input into any one of the DHA variants

and/or as input into an implementation of the D2FA algorithm. Addition-

ally, the AC-opt DFA is inputted into FCART (developed by Buzmakov and

Neznanov [54]) in a converted form as a state/out-transition context. Then

FCART produces concepts which are used as input into DHA. The resulting

FDFAs are DHA-FDFA (any variant) and D2FA, respectively. To convert

an AC-opt automaton into an FDFA, DHA implements the StateWithLeast-

Depth method for ClosestToRoot heuristic. Meanwhile, AC-fail FDFA be-

comes the experimental control FDFA, serving as the optimal standard. The

DHA FDFAs and D2FA are compared against it.

The failure transitions and symbol transitions of the AC-fail FDFA and

the other FDFAs are compared against one another. The comparison is both

in terms of the extent to which transitions match one another and in terms

of the overall number of transitions.

4.2.1 Building an AC-fail FDFA out of a Keyword Set

From a set of keywords (also referred to as a pattern set), P , we use the AC-

opt algorithm in the SPARE-Parts toolkit to construct an AC-fail FDFA that

recognises the language Σ∗P . Similarly, we use the AC-fail algorithm in the

SPARE-Parts toolkit to construct an optimal AC-opt DFA that recognises

the same language.

It can easily be demonstrated that if there are no overlaps between proper

pre�xes and proper su�xes of keywords in a keyword set, then the failure

transitions of the associated AC-fail FDFA will all loop back to its start

state. This is because such a keyword set will cause the AC-fail algorithm

to construct a trie that fans out from the start state with a branch for ev-

ery keyword in the keyword set. The ClosestToRoot / StateWithLeastDepth

heuristic implemented in DHA will result in FDFAs with similar properties.

49

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Start

Keywords Set

AC
SpareParts

AC-fail FA

AC-opt FAFCART

Concepts D2FA
AlgorithmDHA

DHA-FA D2FA

FDFAs
≡ AC-
fail?

Stop

Figure 4.1: Comparing DHA-FDFAs and D2FA against AC-fail FDFA.
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To avoid keyword sets that lead to such trivial AC-fail FDFAs, it is impor-

tant to create keyword sets that ensure variation in the failure transition

destinations of the AC-fail FDFAs that are generated.

Such keyword sets must cause the AC-fail algorithm to construct tries

which have several states containing more than one symbol out-transitions

� not only to limit this property to the start state only. The keywords

must also force the AC-fail algorithm to enforce the back-tracking failure

transitions to fail towards states other than the initial state. These AC-fail

FDFA characteristics are listed in the next paragraphs.

Given a pattern set P , and strings si, sj ∈ P with si = pi.qi.ri and sj =

pj.qj.rj. Accordingly, the p, q and r terms indicate strings that are pre�xes,

substrings and su�xes. Alternatives for adding a new keyword into the AC-

fail FDFA trie are listed below. Here, si is some keyword already belonging

to the acyclic AC-fail FDFA trie and sj is the new keyword to add into the

trie.

1. If si is a proper pre�x of sj i.e. pj = si = pi.qi.ri, then from the �nal

state of si = pj extend the path by qj.rj.

2. if sj is a proper pre�x of si i.e. pi = sj = pj.qj.rj, then change the last

state of the path labelled by pi to a �nal state.

3. If si is a substring of sj with pi = pj, at the last state of pi path then

create a new branch out of si extending pi to qj.rj.

4. Otherwise add sj as a completely new path from the initial state.

The `su�x of a pre�x' property for building AC-fail FDFA's failure arcs

is brie�y described. Let sk = pk.qk.rk to be a string which is recognized

by a path in a trie. In order to orient a failure arc from the state that

recognizes sk, the AC-fail algorithm �nds some pre�x pi from the trie such

that rk = longest pi. (Recall that rk is a su�x of sk.) Then a failure transition

is directed from the last state recognizing sk to last state of the pre�x pi.

Note also that the longest pi may be pk � a pre�x of sk.
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Further details for creating an Aho-Corasick machines are available from

[13, 23].

4.2.2 Measurements of Matching Transitions and Tran-

sition Reduction

Quantitative measurements of transition reductions entail measuring the

number of transitions saved by the FDFAs produced by the various algo-

rithms relative to the AC-opt DFA from which they were derived. On this

account, this research aims to measure the following: the number of symbol

transitions saved, and the overall transition reduction after introducing fail-

ure transitions. As a measure of the overall number of transitions saved by

the FDFA in comparison to the DFA, the ratio of FDFA transition size over

the DFA transition size (i.e. FDFA(|f|+|δ|) per DFA(|δ|)) is calculated.

As indicated by Corollary 4.1.2 and Property 4.1.3 an AC-fail FDFA con-

tains 2|Q| transitions and the ratio of AC-fail FDFA transitions to AC-opt

DFA transitions is bound from below by the expression; (|Σ|−2)/|Σ|. These
expressions, too, should serve as useful indicators of whether the DHA and

D2FA generated FDFAs have been e�ciently produced. For ease of reference,

results will be given as percentages.

After examining results obtained from Aho-Corasick automata, the afore-

mentioned measurements will be applied to FDFAs produced from general

DFAs. As will be described in Chapter 6 these general DFAs will not be

entirely randomly selected, since there will typically be limited opportunities

in such cases for replacing symbol transitions by failure transitions. Instead,

special e�orts will be made to select DFAs that are random in character

but nevertheless also o�er many opportunities for generating failure transi-

tions.

Additional quantitative measurement will be conducted in order to deter-

mine the correspondence between the DHA generated FDFAs in comparison

to AC-fail FDFAs. This is done by �nding the extent to which symbol tran-
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sitions and failure transitions match between the DHA generated FDFAs

and the AC-fail FDFAs. Notice that it is possible for two di�erent FDFAs

to have the same set of states, the same alphabet set, the same number of

failure transitions and to recognise the same language, but to locate these

transitions di�erently between states. This di�erence in FDFA transitions

correspondance is depicted as is, because expressing percentage ratios con-

ceals the extent of transition mismatches.

The empirical details for this are shown and discussed in the next chap-

ter. Note that the D2FA FDFAs will also be included in the comparative

study.

4.3 The Experimental Environment

The choice of software and hardware tools a�ect experiments in several ways.

They are potential determinants of the strengths and weaknesses of the re-

search study since they may enforce certain conditions on the experiments. In

computing experiments, software and hardware tools used will be restricted

by the �nancial costs for the study and may as a result be constrained and

limited in terms of the input data and the cost of execution times of the

programs. Table 4.1 lists all major tools used in this present study. This

section provides brief descriptions of the following softwares: SPARE Parts,

FCART and R.

Table 4.1: The Environment for Experimentation

Tool Speci�cation details

Computer Speci�cations Intel i5; Dual Core CPU machine
Operating System Linux Ubuntu version 14.4; 64 bits
Programming language C/C++
Compiler GCC version 4.8.2
Automata Generator SPARE Parts
Concept Lattice generator FCART version 0.9
Data Analyser R version 3.1.1
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SPARE parts is a software toolkit that provides an implementation of

keyword pattern matching algorithms. (Refer to [19, 52, 53] for more details.)

The toolkit provides implementation of �nite pattern set matching algorithms

such as Aho-Corasick, Commentz-Walter, Knutt-Morris-Pratt, and factor

oracles. The �rst version of SPARE parts was implemented in the C++

programming language in 1995 by Bruce Watson. Later, in 2003 together

with Loek Cleophas (refer to [19, Chapter 5]), they extended the toolkit and

coined a new name, SPARE time. The latter version was written in more

modern C++. The toolkit is available online1.

The software system used to build formal concept lattices is called Formal

Concept Analysis Research Toolbox (FCART). Refer to [55, 54, 56, 57] for

more details about FCART. FCART was developed at the National Research

University Higher School of Economics (Russia) and the project is led by

Alexey Neznanov. FCART is an integrated environment that can be applied

in many areas such as data mining and knowledge discovery. It has simple

means for importing and exporting of data and for data pre-processing. This

toolkit was developed within the Microsoft and Embarcadero programming

environments and di�erent programming languages such as C++, C#, Del-

phi, Python were used. For scripting purposes the developers used languages

such as Delphi Web Script and Python.

FCART was given preference because of several reasons that are discussed

below. FCART is able to display on screen the resulting concept lattice

line (Hasse) diagram, which is advantageous for visualizing the concept lat-

tice structure. Like many FCA tools such as Concept Explorer, FCART

accepts contexts as Comma Separated Value (csv) �les as a simple binary

relational table between objects and attributes. Moreover, FCART produces

the state/out-transition concepts, which are input to DHA, in an XML �le.

The XML format can be parsed by several XML parsers suitable for di�erent

programming languages � for example the xcerce XML parser library for

C++.

1SPARE Parts can be found at: http://fastar.org/main.php?button=spare_time
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R is a very useful quantitative data analysis tool. R is an open source

project with many contributors (collaborated by the R Core Team [58]) that

was initially developed by Robert Gentleman and Ross Ihaka. R can present

visualizations of data in several formats � for example in the form of tables,

bar charts, line graphs, etc. Moreover, R e�ectively and e�ciently provides

statistical summaries of data, for example calculating central tendencies of

data such as mean values, median. A very good feature of R is producing

boxplots from a set of data. In a boxplot, the median, range, quartiles and

'outliers' are visually represented. As a result, one obtains a clear visual

indication of the data's central tendencies, its distribution and the extreme

cases in the data. Such a summary of the data was found to be very in-

structive. Hence, by using boxplot, complex empirical data can sometimes

be interpreted in interesting ways. Throughout this dissertation, empirical

results are generally presented as graphs produced using R. More details

about R and its usage can be found online2 and from publications such as

[59, 58].

4.4 The Experimental Data

In the AC experiments of this dissertation, the primary input data are key-

word sets. These produce as output data, DFAs and the FDFAs. Since

the DFAs are important secondary data sources, their construction is well-

controlled by constructing the keyword input data as discussed in Section

4.2.1. We also take into account the need to generate a statistically justi�-

able number of (F)DFAs for the experiments.

To construct the keyword sets, alphabet sizes of four (Σ = 4) and ten

(Σ = 10) characters respectively were used. This selection ensured that the

resulting state/out-transition concept lattices could be generated with the

available hardware and software3. Further explanations about this factor is

2R is currently available at: https://www.r-project.org/about.html
3It was empirically determined that with an alphabet size of about 15 the available

software was stretched to its limits.
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given in the next section.

To construct a keyword set of size N , an initial N random strings are gen-

erated4. Each such keyword has random characters taken from the alphabet

and random length is within the range of a minimum of 5 characters and a

maximum of 60 characters. However, for reasons given below, only a limited

number of these N strings, sayM , are directly inserted into the keyword set.

Each keyword in the set is then incrementally grown to the desired size, N ,

crafted by setting the keyword to have any of properties of AC-fail FDFA

listed in Section 4.2.1. The aforementioned properties are summarized as

follows:

Select a pre�x of random length, say p, from a randomly selected

string in the current keyword set. Create a random string, say w,

from the set of strings not yet in the keyword set. Insert either

p.w or w.p into the keyword set.

The string concatenation p.w is generating a keyword that branches out from

pre�x a of another, already created keyword. The pre�x p may be an existing

keyword, and thus p is extended by w. The other concatenation w.p is for

creating failure transitions such that the �su�x of a pre�x� property is met.

Steps are taken to ensure that there is a reasonable representation of each

of these three di�erently constructed keywords in a given keyword set. After

obtaining these keywords, the SPARE Parts toolkit is used to create the

AC-fail automata and the AC-opt automata.

The Aho-Corasick automata are constructed from the pseudo-randomly

generated pattern set. The number of states for each (F)DFA is determined

by the nature of the associated Aho-Corasick trie. As a result, the number

of transitions cannot be de�ned before the Aho-Corasick automata (AC-fail

FDFA and AC-opt DFA) are fully constructed � i.e. the number of states

and transitions of the various (F)DFAs generated cannot be directly inferred

from the size of the keyword set. Nevertheless, in this study, we characterise

4Note that all random selections mentioned use the C++ pseudo-random number gen-
erator.
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the (F)DFA under test by the number of strings in its associated pattern set,

P , since the size of AC-opt DFA is not known a priori.

Thus, the pattern sets generating AC-fail automata and AC-opt automata

are produced in increments of �ve strings per pattern set � i.e. pattern sets

sizes generated are 5, 10, 15, . . . , 100 for |Σ| = 10. For each pattern set

size, twelve Aho-Corasick automata are produced. Thus, for pattern sets of

size �ve, twelve unique automata are produced, and each is created from �ve

unique words. By doing so, the intention is to gain an idea of the behaviour

of the automata at a given pattern set size. For example, an analysis of data

can be enhanced by obtaining the mean values per pattern set size |P | or by
observing the distribution of the results per |P |. Consequently, the number
of generated Aho-Corasick automata becomes 20×12 for each alphabet size,

i.e. |Σ| = 4 and |Σ| = 10. In the subsequent chapter we delve deeper into

the analysis of the data discussed in this section.

4.5 Constraints with Input Data

It is known that the trie of an AC-opt DFA has one inbound transition per

state. Therefore, during the construction of a state/out-transition context

table from such a DFA, it is most likely to produce many columns in the

context for new attributes all derived from a single state. This in turn makes

the states (objects) to have minor di�erences with each other � that is, many

states have common attributes. This results into generating a very larger

concept lattice. Consequently, this constrained our experimental exploration

to even larger FDFA sizes.

Three concept lattice tools were tried � namely: FCART software, Con-

Exp software and an implementation of the AddIntent algorithm. They were

tried in order to determine a toolkit that can produce the largest number

of concept lattices. They all have a limitation of performing poorly when

generating concepts and concept lattices for AC-opt DFA with |Σ| ≤ 15.

This limitation encountered is common challenge of all concept lattice con-
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struction algorithms. The concept lattice of a context can, in the worst case,

grow exponentially in size � exponential, that is, relative to the number of

attributes and objects. A further contributing factor for this disadvantage

is computer hardware � for example small amounts of RAM and slow pro-

cessors. Recently in Neznanov and Parinov [60], FCART have been tested

to work in a distributed environment and with the availability of distributed

computers this version of FCART can be helpful in processing big data sets.

Due to time constraints and limited resources we did not use this approach

to generate concepts.

4.6 Conclusion

This chapter described the techniques that are applied in this investigation.

Relevant theories and their proofs were presented, the methods of comparing

the failure automata were discussed as well as the tools used. Notably, the

size of the data is constrained by the hardware as well as the formal concept

software tools at our disposal. The next couple of chapters cover the empirical

results for the experimentation described in this chapter. The next chapter

compares the DHA and D2FA algorithm against the Aho-Corasick automata

types. The current chapter provided a foundation of the experimental results

presented in the subsequent chapter.
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Chapter 5

Transition Reduction for AC-opt

DFAs

5.1 Introduction

Empirical results that were obtained by comparing the FDFAs from DHA

variants with two Aho-Corasick automata types (AC-fail and AC-opt) are

presented. The introduction provides a brief summary of the experiment.

Four types of FDFAs are produced from an AC-opt DFA using DHA.

The DHA FDFAs characterised, respectively as the MaxArcRedundancy (in

short, MaxAR) FDFAs, the MaxIntent FDFAs, the MinExtent FDFAs and

the MaxIntent-MaxExtent FDFAs. The properties of these FDFAs are then

further examined. We also include in this investigation transition data of the

D2FA FDFAs and also of the experiment's control FDFAs that were derived

from the AC-fail algorithm.

For each experiment run, an AC-opt DFA and an AC-fail FDFA were

derived using the SPARE Parts toolkit. Each pair of AC automata was

recognising some keyword (pattern) set. The keyword sets were constructed

with reference to properties of AC-fail FDFAs which are listed in Section

4.2.1. Details of the steps followed to construct the keyword set were given
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in Section 4.4. It was pointed out that the maximum length of each key-

word is 60 characters and the minimum length is 5 characters. The sizes of

keyword sets are grouped in orders of �ve � that is, the number of strings

per experiment is [5, 10, 15, . . . , 100]. Moreover, experiments were carried out

with two di�erent alphabet sizes, these sizes being either |Σ| = 10 or |Σ| = 4.

The results are primarily referenced in the text below.

For each of the produced DHA and D2FA FDFAs, transitions are com-

pared against both types of AC automata.

� In the �rst tests, transition reductions are investigated. They cover the

following:

� symbol transitions removed from the AC-opt DFAs by the FDFA

algorithms;

� failure function size di�erences between the AC-fail FDFA and the

various FDFAs; and

� the sum of FDFA failure and symbol transitions (the overall FDFA

transitions) compared against the total number of DFA transi-

tions.

In the latter case, the overall transition reduction is assessed when using

an FDFA instead of a language-equivalent DFA.

� The second investigation is about measuring di�erences between the

transitions of AC-fail FDFAs and other FDFAs. For each keyword set,

the extent of transition equivalence between the AC-fail FDFA and the

other language-equivalent FDFAs is identi�ed. In this case, the focus

is on the equivalence of the placement of the transitions. This means

that an AC-fail FDFA and some other FDFA are equivalent in terms

of the symbol transition on a ∈ Σ at state q ∈ Q if and only if δ(q, a)

of the AC-fail FDFA is equal to δ(q, a) of the other FDFA. Similarly,

failure transitions are equivalent if and only if AC-fail FDFA's f(q) is

equal to the other FDFA's f(q).
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For further details about the nature of the experiments, refer to Chapter

3 and Chapter 4. Chapter 3 presented descriptive details of the DHA, indi-

cating how the four FDFA variants are generated. In Chapter 4 we provided

the background and the constraints of this experiment.

5.2 The Results

The transition comparisons outlined in the previous section are displayed in

the graphs in this section. Moreover, the graphs are discussed. In certain

cases the data of the various DHA FDFAs are practically the same. In such

cases we will use the data from one of these DHA FDFAs to represent the data

of all of remaining FDFAs in the graphs. This is will be common occurrence in

respect of the following three DHA FDFA heuristics: MaxIntent, MinExtent

and MaxInt-MaxExt. The presented results are for experimental runs in

respect of automata for which |Σ| = 10 and |Σ| = 4. Detailed examination

of the results will be provided in the next section.

5.2.1 Di�erences in Transition Sizes

This section is about presenting measurements of the transitions deleted from

AC-opt DFAs by the FDFA generating algorithms under investigation. The

number of symbol transitions removed by each of the di�erent FDFA gener-

ating algorithms is counted, the di�erences in number of failure transitions

between the AC-fail FDFAs and other FDFAs are measured, and lastly, a

comparison of FDFA sizes (as measured by the total number of transitions)

and AC-opt DFA sizes is given.

Symbol Transitions Removed

Since using an FDFA for string recognition potentially reduces computer

memory required to store the automaton, the more symbol transitions re-
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Figure 5.1: The average FDFA reduction in symbol transitions as a percent-
age of AC-opt DFA transition sizes (|Σ| = 10)

moved from a DFA by an FDFA-generating algorithm, the better the algo-

rithm can be said to have performed. This investigation seeks to determine

the extent to which the general DHA and D2FA algorithms remove symbol

transitions from AC-opt DFAs to produce FDFAs. The use of AC-opt DFAs

for this exercise, as opposed to randomly produced DFAs, is particularly

useful because it is known a priori that of all the possible FDFAs that are

language-equivalent to an AC-opt DFA for a given keyword set, the AC-fail

FDFA for the keyword set has the fewest possible symbol transitions.

Figure 5.1 shows the average percentage of symbol transitions removed

from the AC-opt DFAs by the various FDFAs for various keyword set sizes

that are based on an alphabet size |Σ| = 10. These FDFA variants are the

AC-fail FDFAs, the D2FA FDFAs and all the DHA FDFA variants. For each
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Figure 5.2: The average FDFA reduction in symbol transitions as a percent-
age of AC-opt DFA transition sizes (|Σ| = 4)

pattern set size in [5, 10, . . . 100], the average is computed over the 12 data

samples generated for that pattern set size.

Like the benchmark AC-fail FDFAs, D2FA FDFAs and three of the DHA

FDFA variants (the MaxIntent FDFAs, MinExtent FDFAs and MaxExtent-

MaxIntent FDFAs) show that the percentage of symbol transitions are re-

moved from AC-opt DFAs is more or less a constant at between 89% and

90%.

Figure 5.2 gives the corresponding graphs when |Σ| = 4. In this case, the

symbol transitions removed constantly stand at approximately three-quarters

for the FDFA types which were discussed in previous paragraphs. Note that

the DHA FDFAs have a slightly lower average of 74% symbol transitions
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removed.

The observations from the two previous paragraphs corroborate Prop-

erty 4.1.4. According to Property 4.1.4 the estimated percentage of symbol

transitions that are removed by AC-fail FDFAs compared to AC-opt DFAs

is (|Σ|−1)
|Σ| × 100. The other aforementioned FDFAs also match this property

very well.

The MaxAR DHA FDFAs did not e�ciently reduce the number of AC-

opt DFA symbol transitions, both for |Σ| = 10 and for |Σ| = 4. It was

by far no match for the other FDFAs under discussion. When |Σ| = 10,

the MaxAR DHA FDFAs removed an estimated ceiling of 60% of the DFA

symbol transitions, declining to a �oor of 20% symbol transition reductions.

When |Σ| = 4, the MaxAR DHA FDFA symbol transitions reductions remain

very low.

�Useless� Failure Transitions

Suppose that a state q ∈ Q of an AC-opt DFA is such that none of its

out-transitions qualify for replacement with a failure transition in a language-

equivalent FDFA. This would be the case if the out transition from q for every

a ∈ |Σ| has a target state that di�ers from the target state of every other

out-transition on that same symbol a from other states in the DFA. Under

such circumstances, the AC-fail algorithm as implemented by the SPARE

Parts toolkit nevertheless inserts a failure transition from q to the start state

� i.e. all AC-fail FDFA states have failure transitions. The initial state,

qs, which has |Σ| transitions is an exception from having a failure transition.

The failure function of every AC-fail FDFA is therefore of size |f| = (|Q|−1).

But some of the failure transitions, though valid, may be �useless� since a

failure transition is inserted at a state, even when there is no valid symbol

transition to be considered1.

1�Useless� failure transitions do not, of course, mean the �nite state machine is nonde-
terministic.
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Figure 5.3: The maximum di�erence in failure function sizes of DHA FDFAs
and D2FAs from AC-fail FDFAs when |Σ| = 10.

These so-called �useless� failure transitions are not generated by DHA.

DHA does not introduce a failure transition without removing at least two

symbol transitions. On the other hand the D2FA algorithm, like the AC-fail

algorithm, also allows for the generation of "useless" failure arcs.

The extent of these �useless� failure transitions is depicted in Figure 5.3

for |Σ| = 10 data sets and in Figure 5.4 for |Σ| = 4 data sets, respectively.

The �gures show cases of maximum di�erences in failure function sizes of

AC-fail FDFAs and DHA FDFAs per pattern set.

Figure 5.3 depicts the following for |Σ| = 10. For most pattern set sizes,

AC-fail FDFAs did not have any useless failure transitions. There are, how-

ever, several exceptions. Not a single one of the twelve AC-fail FDFAs of the
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Figure 5.4: The maximum di�erence in failure function sizes of DHA FDFAs
and D2FAs from AC-fail FDFAs when |Σ| = 4.

data sets with pattern set sizes between 5 − 50 contained a useless failure

transition. In the case of data sets with pattern set sizes of 55, 80, 85 and 100,

at least one instance of an FDFA that contained a useless failure transition

was encountered. Furthermore, Figure 5.3 shows that in some instances, two

(but no more than two) useless failure transitions were generated when using

SPARE Parts to construct AC-fail FDFAs for pattern set sizes 90 and 95

respectively. Since we were recording the maximum number of useless failure

transitions, we note in passing that there may be other AC-fail FDFA with

the pattern set sizes of 90 or 95 that have a single useless failure transition.

Furthermore, none of the pattern sets resulted in AC-fail FDFAs with more

than two useless failure transitions.

Referring now to Figure 5.4, it depicts the following for |Σ| = 4 data
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sets. In general, the graph shows that the maximum number of useless fail-

ure transitions that AC-fail FDFA possessed can be estimated to be linearly

dependent on the pattern set size. The data set recorded a maximum dif-

ference of 35 failure transitions for data with pattern set size of 150. The

data demonstrate that for smaller alphabet the chances of useless transitions

produced by the AC-fail algorithm are higher.

Overall Transition Reduction: Symbol and Failure Transitions
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Figure 5.5: The average FDFA reduction in total number of transitions as a
percentage of AC-opt DFA transition sizes (|Σ| = 10)

Figures 5.5 and 5.6 depict, for alphabet sizes 10 and 4 respectively, the

overall number of transitions by which the FDFAs under test reduce the total

number of AC-opt DFA transitions. By �overall number of transitions� in an
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Figure 5.6: The average FDFA reduction in total number of transitions as a
percentage of AC-opt DFA transition sizes (|Σ| = 4)

FDFA we mean sum of its symbol transitions and failure transitions.

As demonstrated in equation 4.4 of Corollary 4.1.2, when |Q| is large then
the total number transitions of AC-fail FDFAs is approximately given by

2|Q|. Thus, the expectation is an addition of |Q| failure transitions to AC-fail
FDFA's |Q| symbol transitions found in �rst subsection of Section 5.2.1. As is
suggested by Proposition 4.1.3, this is expected to lead to a reduction of AC-

opt transitions to FDFA transitions by approximately |Σ|−2
|Σ| × 100% = 80%

when |Σ| = 10 and approximately 50% when |Σ| = 4.

With |Σ| = 10 data sets, the minimal AC-fail FDFAs indeed attain this

predicated average transition reduction of about 80% over all sampled pattern

set sizes. The DHA FDFA variants (except for MaxAR FDFA) and D2FA
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FDFA generally track this performance identically for FDFAs with |Σ| =

10.

By way of contrast, at |Σ| = 10 data sets, the MaxAR heuristic produces

FDFAs barely achieve a 50% average reduction for small keyword set sizes.

This reduction declines with increasing keyword set size to below 20% for a

sample size of about 75, after which is there is some evidence that it might

improve slightly.

When we consider FDFAs with an alphabet size of 4, the overall transi-

tion reduction conforms to the same theoretical behaviour, becoming approx-

imately 50% average reduction for all failure automata. Again, the MaxAR

FDFAs are an exception.

5.2.2 Equivalence of Transitions

A failure transition in one FDFA is said to have a one-to-one mapping onto a

failure transition in another FDFA if the two transitions have the same source

state and same destination states in the two FDFAs. Similarly, a symbol

transition in one FDFA (or DFA) is said to have a one-to-one mapping with

a symbol transition in another FDFA (or DFA) if the two transitions have the

same source state and same destination states in the respective automata.

Such failure or symbol transitions may be regarded as equivalent.

This subsection compares one-to-one transition mappings of the various

DHA FDFA and D2FA FDFAs against the AC-fail FDFAs. This exercise

is conducted for general interest and to enhance the understanding of the

character of the FDFAs. Both symbol transitions and failure transitions are

measured for the degree of equivalence with AC-fail FDFAs.

Symbol Transition Inequivalence

It was seen above that in many cases the percentage transition reduction

over AC-opt transitions by the various FDFA variants closely corresponds to
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Figure 5.7: The number of non-equivalent symbol transitions between AC-
fail FDFAs and three DHA FDFAs types (MaxIntent, MaxInt-MaxExt or
MinExtent), |Σ| = 10.

that of AC-fail FDFAs. However, this does not necessarily mean that the

positioning of failure and symbol transitions should show a one-to-one equiv-

alence. Two symbol transitions δ and δ′ from two automata are equivalent if

and only if δ(q, a) = δ′(q, a).

The extent to which the symbol transitions do not precisely match one

another is shown in Figures 5.7 to 5.9 for |Σ| = 10 data sets and Figures 5.10

to 5.12 for |Σ| = 4 data sets. The �gures provide box-whisker plots showing

the number of non-equivalent symbol transitions between AC-fail FDFAs and

other FDFAs. These box-whisker plots show explicitly the median, 25th and

75th percentiles as well as outliers of each of the 12 sample keyword sets of a

given size.

As seen in Figure 5.7, the symbol transitions for the three DHA heuristics

� MaxIntent, MinExtent and MaxInt-MaxInt � are practically identical to
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Figure 5.8: The number of non-equivalent symbol transitions between AC-fail
FDFAs and MaxAR FDFA, |Σ| = 10.

those of AC-fail FDFA for |Σ| = 10 automata. Symbol transition matches

are exact in these cases and occasional deviations from AC-fail FDFAs are

only noted for pattern set sizes greater than 75. In the outlier cases, symbol

transition disparity is at most two symbol transitions. This demonstrates

that the aforementioned classes of DHA FDFAs are, in general, structurally

nearly equivalent to AC-fail FDFAs' symbol transitions.

In these outlier cases, the data showed that the symbol transition size of

AC-fail FDFAs is less than that of the DHA-FDFAs. AC-fail FDFA is the

minimal FDFA2 that can be obtained from AC-opt DFA.

Figure 5.8 and Figure 5.9 give box-whisker plots, for the |Σ| = 10 data,

showing the number symbol inequivalences in the cases of MaxAR FDFAs

and D2FA FDFAs, respectively. The di�erences are approximately linearly

2By a minimal FDFA, we mean an FDFA that has removed the maximum possible
number symbol transitions from the DFA.
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Figure 5.9: The number of non-equivalent symbol transitions between AC-
fail FDFA and D2FA, |Σ| = 10.

dependent on the size of the keyword set, reaching over 9000 for MaxAR

FDFAs and approximately 250 for D2FA FDFAs when the keyword sets of

size is 100.

Figures 5.10 to 5.12 give the same box whisker plots for |Σ| = 4 au-

tomata. Here the number of non-equivalent symbol transitions of the three

DHA FDFAs (which exclude MaxAR FDFA) is considerably larger than when

|Σ| = 10, but nevertheless still quite modest. Ignoring the outlier cases, the

maximum number of symbol transition inequivalences rises to about 20. In

respect of the MaxAR FDFAs and D2FA FDFAs, Figures 5.11 to 5.12 show

that the number of inequivalent transitions remains more or less linear with

the pattern set size, rising to 2000 for MaxAR FDFAs and reaching over 400

for D2FA FDFAs.
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Figure 5.10: The number of non-equivalent symbol transitions between AC-
fail FDFAs and three DHA FDFAs types (MaxIntent, MaxInt-MaxExt or
MinExtent), |Σ| = 4.

Failure Transition Equivalences

This investigation explores the equivalences of the FDFA failure transitions,

using the AC-fail FDFA failure transitions as the reference. Correspondence

of both the source state and target states of failure transitions are checked

between AC-fail FDFAs and other FDFA types. Figures 5.13 to 5.15 portray

the percentages of equivalent failure transitions between the AC-fail FDFAs

and the other FDFA types for |Σ| = 10 automata. Figures 5.16 to 5.18 show

similar results for |Σ| = 4 data sets.

For the |Σ| = 10 data sets, the diagrams for failure transition di�erences

in regard to MaxIntent FDFA, MinIntent-MaxExtent FDFA and MinEx-

tent FDFA show directly resembling images and thus the FDFAs are fully

equivalent. As seen in Figure 5.16, only in isolated instances they are 100%
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Figure 5.11: The number of non-equivalent symbol transitions between AC-
fail FDFAs and MaxAR FDFA, |Σ| = 4.

equivalent to those of AC-fail FDFAs. The equivalence levels range from a

median value of slightly more than 95% in the case of the smallest keywords

sets to a median of about 50% for the largest keyword sets. For FDFAs with

pattern set sizes up to 65, the median equivalence levels are 75% and above.

At pattern set sizes greater than 65, the results decline gradually, in some

cases falling below 40%.

Figure 5.14 shows that, in the case of MaxAR FDFA using the |Σ| = 10

data sets, the extent of equivalence is much lower. The median value percent-

age equivalence is, at best, just over 60% for small keyword sets, dropping

close to zero for medium range keyword set sizes, and then increasing slightly

to about 10% for the largest sized keyword sets.

Figure 5.15 gives, for the |Σ| = 10 data sets, the equivalence levels of

D2FA FDFA failure transitions compared to AC-fail FDFAs. The �gure
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Figure 5.12: The number of non-equivalent symbol transitions between AC-
fail FDFA and D2FA, |Σ| = 4.

shows that the median percentage equivalence is in the range of about 15 -

25% for pattern set sizes up to about 80, and tends to drop to between 10 -

15% as the pattern set size becomes larger.

Now we switch to observations with respect to automata built from an

alphabet size |Σ| = 4. (See Figures 5.16 to 5.18.) Figure 5.16 shows the

results with respect to the DHA FDFAs (excluding MaxAR). The results are

seen to be similar to |Σ| = 10 case. The median values are between about

75% - 90% for the data sets whose pattern set sizes are between 5 and 65.

For larger pattern set sizes, the median results drop, eventually declining

to below 40% for pattern set sizes of about 130 or larger. For the MaxAR

heuristic data sets, the median correspondence is between 11% and 40% (see

Figure 5.17). Meanwhile in Figure 5.18, for the D2FA FDFAs the highest

AC-fail FDFA failure transition equivalence median is just over 20% (for data

based on pattern set sizes of 35).
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Figure 5.13: Equivalent failure transitions between AC-fail FDFAs and three
DHA FDFAs (MaxIntent, MinExtent or MaxInt-MaxExt) in percentages of
|f| per pattern set, |Σ| = 10.

5.3 An Analysis of the Results

Overall, Section 5.2 reveals that there is a variety of ways in which failure

transitions may be positioned in an FDFA that lead to very good or in many

cases even optimal transition reductions. This is re�ected in the data for all

the FDFA types other than those FDFAs based on the MaxAR heuristic. It

is interesting to note that even for the D2FA FDFAs, the total number of

transition reductions is very close to optimal, despite relatively large di�er-

ences in the positioning of the transitions. However, the results also show

that this �exibility in positioning failure transitions to achieve a good reduc-

tion in the number of transitions eventually breaks down, as in the case of

the MaxAR FDFAs.

The heuristics used to generate FDFAs could be ranked in descending or-
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Figure 5.14: Equivalent failure transitions between AC-fail FDFA and DHA
MaxAR FDFA in percentages of AC-fail |f| per pattern set, |Σ| = 10.

der as follows to re�ect the extent to which their resulting FDFAs correspond

to their AC-fail FDFA counterparts:

MaxIntent_FDFA = MaxIntentMaxExtent_FDFA

= MinExtent_FDFA

> D2FA_FDFA

> MaxAR_FDFA

The two MaxIntent based FDFAs and MinExtent FDFAmost closely matched

the AC-fail FDFA failure transitions. MaxAR FDFAs did not provide desir-

able results. Since the original focus of this study was to explore heuristics

for the DHA, further comments about the D2FA algorithm are reserved for

the general conclusions in Chapter 7.

It was noted that the average percentage of symbol transitions removed
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Figure 5.15: Equivalent failure transitions between AC-fail FDFAs andD2FA
in percentages of AC-fail |f| per pattern set, |Σ| = 10.

for |Σ| = 4 data was about of 75%, whereas for Σ = 10 data it was about

90%. It is no surprise that the transition reduction is larger as the size of

the alphabet increases. It is in the nature of the problem domain that as

the alphabet set increases for a given number of patterns, the opportunity

increases to remove symbol transitions and replace them by a single failure

transition. Theoretically, the observed results conform to Proposition 4.1.1 -

Equation 4.1, which estimates the symbol transitions size of AC-fail FDFAs

to be |δ| ≈ |Σ| + |Q|. Assuming |Σ| = n where n ∈ N, then up to n

transitions can be removed from each state, irrespective of the number of

states |Q|. Hence, with larger alphabet sets, for example |Σ| = 128, the

transitions removed from a DFA's transitions may approach 100% (as shown

by Proposition 4.1.1). This explains why Kumar et al. [12] obtained up to

95% transition reduction with an ASCII symbol set using D2FA algorithm

to generate failure automata.
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Figure 5.16: Equivalent failure transitions between AC-fail FDFAs and three
DHA FDFAs (MaxIntent, MinExtent or MaxInt-MaxExt) in percentages of
AC-fail |f| per pattern set, |Σ| = 4.

All the heuristics used in the DHA approach are greedy: the heuristic is

used to make a selection that appears best immediately, without consider-

ing how this �greedy� choice might a�ect a subsequent selection. Such greedy

strategies are not guaranteed to produce optimal results. Nevertheless, it was

clearly seen that MaxIntent FDFAs, MinExtent and MaxIntent-MaxExtent

FDFAs practically reproduced AC-fail FDFAs in respect of symbol transi-

tions, despite their greedy nature.

On the other hand, the MaxAR heuristic failed in removing large numbers

of symbol transitions, paying an apparent price for following this opportunis-

tic selection strategy.

The rationale for the MaxAR heuristic is clear: it will cause the maximum

reduction in transitions in a given iteration. It was in fact the initial criterion

proposed by Kourie et al. [9]. It is therefore somewhat surprising that it did
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Figure 5.17: Equivalent failure transitions between AC-fail FDFA and DHA
MaxAR FDFA in percentages of AC-fail |f| per pattern set, |Σ| = 4.

not perform very well in comparison to other heuristics. It would seem that,

in the present context, it is too greedy � i.e. by selecting a concept whose

extent contains the set of states that can e�ect maximal reduction that in

one iteration, it unfavourably eliminates from consideration concepts whose

extent contain some of those states in subsequent iterations. Note that, being

based on the maximum of the product of extent and intent sizes, it will tend

to select concepts in the middle of the concept lattice diagram.

It was only when early trials in our data showed up the MaxAR heuristic's

relatively poor performance, that the MaxIntent, MaxIntent-MaxExtent and

MinExtent heuristics were introduced. These heuristics prioritise concepts

in the top or bottom regions, respectively, of the line diagram of the concept

lattice. The MaxIntent heuristics maximise the number of symbol transi-

tions to be removed per state when replacing them with failure transitions

(as opposed to the MaxAR heuristic which accounts for removal of symbol
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Figure 5.18: Equivalent failure transitions between AC-fail FDFAs and D2FA
in percentages of AC-fail |f| per pattern set, |Σ| = 4.

transitions across a set of states). By the partial order characteristic of con-

cepts, concepts with large intents tend to have small extents and vice-versa.

For this reason, the MinExt based heuristics are likely to select the same

concepts as the MaxInt heuristic when executing the DHA. This explains

why the results are similar, though not identical.

The di�erence between the MinExtent and MaxIntent heuristics lies in

the selection order of concepts during the iterations of DHA. For example,

a �rst chosen concept using the MaxIntent heuristic may be the nth chosen

concept using the MinExtent heuristic.

The MaxIntent-MaxExtent heuristic is a specialization of the MaxIntent

heuristic, with MaxInt-MaxExt heuristic implementing a secondary priority

criterion on the maximum extent. This explains the close correspondence

between their resulting FDFAs. Because of the close correspondence in the
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FDFAs they produce, we conjecture for the most part, the same concepts

are selected by these two heuristics to form their respective FDFAs. This

conjecture requires further study. Although such a relationship is, of course,

data-dependent, random data tends in that direction, as was con�rmed by

inspection of our data � resulting in similar graphs for the latter three

heuristics.

The occurrence of �useless� failure transitions is one of the reasons for

di�erences between AC-fail FDFAs and the DHA FDFAs. Such failure tran-

sitions are, of course, redundant. The graphs in Figures 5.3 and 5.4 showed

that some of the randomly generated keyword sets lead to �useless� failure

transitions, but they are so rare that they do not materially a�ect the overall

observations.

Aside from MaxAR, then, these various heuristics appear to be rather suc-

cessful at attaining AC-fail-like FDFAs. However, the ClosestToRoot heuris-

tic (implemented as StateWithLeastDepth variant for input AC-opt DFA) has

also played a part in this success.

It is worth re�ecting brie�y on the way in which the original AC-fail

algorithm (as implemented by SPARE Parts) works. In that algorithm, the

AC-fail FDFA failure transitions are designed to record that a su�x of a

state's string is also a pre�x of some other state's string. Thus, f(q) = p

means that a su�x of state q's string is also a pre�x of state p's string.

However, since there may be several su�xes of q's string and several states

whose pre�xes meet this criterion, the de�nition of f requires that the longest

possible su�x of q's string should be used. This ensures that there is only one

possible state, p, in the trie whose pre�x corresponds to that su�x. Thus,

on the one hand, AC-fail algorithm directs a failure transition �backwards�

towards a state whose depth is less than that of the current state. Put

di�erently, the AC-fail algorithm selects a failure transition's target state to

be as far as possible from the start state, because the su�x (and therefore

also the pre�x) used must be maximal in length.

The ClosestToRoot heuristic approximates the AC-fail FDFA action in
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that it also directs failure transitions backwards towards the start state.

However, by selecting a failure transition's target state to be as close as

possible to the start state, it seems to contradict AC-fail algorithm actions.

It is interesting to note in Figures 5.13 and 5.16 that MinExtent FDFA,

MaxIntent FDFA and MaxInt-MaxExt FDFA show a rapid and more or

less linear decline in failure transition equivalence with respect to AC-fail

FDFAs when pattern set size reaches about 65. We conjecture that for smaller

keyword sizes, the ClosestToRoot heuristic does not con�ict signi�cantly with

AC-fail algorithm's actions because there is little to choose in the backward

direction; and that when keyword set sizes become greater, there is more

choice, and consequently less correspondence between the failure transitions.

This is but one of several matters that has been left for further study.

5.4 Conclusion

Empirical results of the transition comparison of the various failure automata

against Aho-Corasick automata were presented and analysed. Generally,

the failure automata were impressive with their transition reduction. An

exception was MaxAR FDFA.

Inductively, based on the outcomes of this chapter's Aho-Corasick au-

tomata speci�c experimental �ndings, in the next chapter we apply the same

modi�cations to the DFA-homomorphic algorithm to produce FDFAs in the

general case out of `random' DFAs. Similar to the current chapter, transition

saving measurements are recorded and analysed.
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Chapter 6

Transition Reductions in the

General Case

6.1 Introduction

In Chapter 5 we found that some variants of DHA optimally removed sym-

bol transitions of AC-opt DFAs when generating FDFAs � i.e. the FDFAs

produced by these variants resembled their AC-fail FDFA counterparts. The

variants that performed the best were based on the heuristics we called Max-

Intent, MaxInt-MaxExt and MinExtent. The ClosestToRoot heuristic that

was used for selecting the target state of a failure transition was referred to as

the StateWithLeastDepth implementation. We found that both the symbol

transitions and the failure transitions of the FDFAs resulting from aforemen-

tioned DHA variants that relied on these heuristics corresponded very closely

to those produced by the AC-fail FDFA. This comparison of DHA FDFAs

against AC-fail FDFAs outlined in the previous chapter is a concrete but

only a limited starting point for assessing the performance of DHA.

The goal of this chapter is to investigate the e�ect on transition reductions

by the various DHA-related heuristics previously discussed in Chapter 3 for

building language-equivalent FDFAs from general complete DFAs. We con-
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tinue to consider the MaxIntent, MaxInt-MaxExt, MinExtent and MaxAR

heuristics. The D2FA algorithm also formed part of this investigation.

Instead of using the trie speci�c StateWithLeastDepth criterion for select-

ing the target state of failure transitions in DHA (which was used in the

previous chapter), the ClosestToRoot heuristic will be generalised by using

the StateWithLeastDistanceFromStartState criterion. This criterion relies on

Dijkstra's algorithm for calculating the shortest distance from the start state

to each DFA state. These heuristics were described in Chapter 3.

This study is confronted by the following dilemma. In this domain it is

known a priori that it is NP-complete to determine whether the a given

FDFA is optimal in the sense of having the fewest possible transitions while

remaining language-equivalent to the original DFA. This was proved by

Björklund et al. [24]. This means that, starting with some randomly gener-

ated complete DFA, there is no evident way of deciding how well or badly

DHA has performed in generating a language-equivalent FDFA.

Moreover, generating DHA FDFAs from DFAs that have been randomly

generated may not result in interesting transition reductions, simply because

such randomly generated DFAs do not o�er much scope for introducing fail-

ure transitions in the �rst place. Our early experiments along these lines

showed that the percentage reduction in transitions of DHA FDFAs from

random DFAs was generally less than 10%. An alternative way of generating

�interesting� DFA test data was therefore sought.

Our approach begins with generating �random FDFAs�1. Using such an

FDFA we then create a language equivalent DFA that, in turn, serves as an

input for DHA. By this approach, we at least have a basis for comparing the

performance of DHA, in that we can compare the number of transitions in

the generated DHA FDFA against the original FDFA that was used to create

the input DFA.

1The FDFAs are not entirely generated randomly, some FDFA properties are considered
when inserting random transitions. The properties will be discussed in the following
section.
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6.2 Generating `Random' FDFAs and DFAs

This section describes an algorithm that constructs random FDFAs and ran-

dom DFAs. These are the principal data elements for the experiment. Firstly,

a short literature survey about randomly generated automata is presented.

Then the algorithm is laid out and discussed. Lastly, an example is pre-

sented that demonstrates how the algorithm constructs an FDFA and its

DFA counterpart.

6.2.1 Random Automata Related Studies

There has been much work on generating random DFAs in the literature.

Research on random DFAs is actively conducted in the study of the compu-

tational learning theory, speci�cally from the topic of learning a DFA. The

learning DFA problem is generally known to be computationally hard [61,

62].

In learning DFAs the following topics are studied about random DFAs:

the probability distribution on sample strings read by the random DFA [63],

state complexity of a random DFA [64], random walks (the probability of

transition path traversal) on random DFAs [62], algorithms for learning ran-

dom DFAs [65] and their complexities, and other related topics. Nicaud [66]

gives a survey of some of the recent studies in this regard. However, as

pointed out above, the interest in this study is not so much in generating

random DFAs as test data. This is because generating FDFAs from random

DFAs results in very small transition reductions. For this reason, there will

be no further consideration given here to generating random DFAs for test

data.

A typical randomly generated DFA D = (Q,Σ, δ′, F, qs) must have the

following properties to allow uniformly distributed samples of the DFA struc-

ture [62, 64, 65]. A single state is chosen randomly over Q to be the initial

state, qs. Because of the symmetry property, Berend and Kontorovich [64]
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suggested that the choice of the start state, qs, can be simpli�ed by set-

ting qs to be the �rst state from a list of states � e.g. set qs = q0, where

Q = {q0, q1, . . . , qn}. In order to determine �nal state set F , we uniformly

assign binary values (either 0 or 1) to each state of Q. For the transitions set

δ made by the product Σ×Q, all the entries are also randomly assigned to

values in Q. All the above random choices are mutually independent.

In Björklund et al. [24, 10], the following observation is made about build-

ing an FDFA from a DFA.

Property 6.2.1. Given an arbitrary FDFA, an equivalent DFA

with the equal number of states can be built in polynomial time.

The proof of this observation (also provided by [24, 10]), reproduced below,

forms the base for us to develop an algorithm that generates a random FDFA

whilst concurrently building a language equivalent DFA.

Proof. Given an FDFA F = (Q,Σ, δ, f, F, qs), we construct an

equivalent DFA D = (Q,Σ, δ′, F, qs) as follows. Clearly, we see

that every part of D is in F save for the di�erences in δ and δ′.

Firstly, we assign δ′ = δ. Afterwards, we process the states in Q,

possibly by adding outgoing transitions. If q1 ∈ Q has no failure

transitions in f, the out-transitions from q1 remain unchanged. If

q1 has a failure transition, allow q1, q2, . . . qk be the failure path

from q1 i.e. build the composite failure transition functions such

that q2 = f(q1), q3 = f(f(q1)) and so on and so forth. Note that

the failure path is unique since f is a function. If the failure path

forms a failure cycle, then let qk be the last state before the cycle

closes (to avoid a divergent failure cycle). We view the states

on the path in some order, starting with state q2. When some

qi (from the failure path) is reached then for each a ∈ Σ such

that the q1 does not yet have an outgoing transition on a in δ′,

and such that there exists some qj ∈ Q with δ(qi, a) = qj, we set

δ′(qi, a) = qj.
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We use some details from the above proof to generate a random FDFA

F = (Q,Σ, δ, f, F, qs) and alongside it, a language equivalent DFA D =

(Q,Σ, δ′, F, qs). In our case we build transitions of the two language equiva-

lent automata in some random manner as it will be shown in the upcoming

sections.

6.2.2 The �Random� (F)DFA Algorithm

This algorithm (see Algorithm 6.1) constructs both a �random� FDFA F =

(Q,Σ, δ, f, F, qs) and its language equivalent DFA D = (Q,Σ, δ′, F, qs). This

algorithm is designed as part of this dissertation speci�cally for use in Sec-

tion 6.3. The two automata have the same sets of states, Q; a corresponding

start state qs; and equivalent sets of �nal states, F . These attributes for the

pair of automata are assumed to have been de�ned before the algorithm is

invoked. Only the transitions: δ, δ′ and f are not yet fully de�ned when the

algorithm starts executing.

Variables for Transition Functions

The transition functions (δ′ for the DFA, and δ and f for the FDFA) are repre-

sented by global variables. We assume that the assignment operation estab-

lishes the function value for the given parameters. For example, δ(qi, a) := qj

means that the value qj is assigned to the function δ for the parameter val-

ues (qi, a). The δ and δ′ functions can be implemented as 2D tables. The

foregoing assignment �lls the value qj in the cell whose row represents state

qi and whose column represents symbol a. Similarly, f may be represented

by a 1D array. For example, for a failure transition set by the assignment

f(qi) := qj, we store qj into the array entry representing qi and is indexed by

i.

A desirable postcondition for the algorithm is that it should deliver au-

tomata whose states are all connected to the start state. The algorithm is

designed so that if it is invoked with values already assigned to δ′ (and the
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Algorithm 6.1 The Random (F)DFA Algorithm

{ pre k ∈ [0, |Q|) }
proc (k)

for each (qi ∈ Q)→
for each (a ∈ Σ)→

if (δ′(qi, a) 6= ⊥)→ skip
[] (δ′(qi, a) = ⊥)→
h := qi;
T, l := {h}, random([0, k]);
{ Create a failure path starting from qi of length ≤ l. }
{ h is head of this failure path to date }
{ Path states are stored in T }
do ((|T | < l + 1) ∧ (δ′(h, a) = ⊥) ∧ f(h) /∈ T )→

if (f(h) = ⊥)→ f(h) := random(Q \ T );
[] (f(h) 6= ⊥)→ skip
fi;
h := f(h);
T := T ∪ {h};

od;
{ (|T | ≥ l + 1 ∨ δ′(h, a) 6= ⊥ ∨ f(h) ∈ T ) }
{ If δ′(h, a) is unde�ned, then �nd random value }
if (δ′(h, a) = ⊥)→ δ′(h, a) := random(Q);
[] (δ′(h, a) 6= ⊥)→ skip
fi;
δ(h, a) := δ′(h, a);
for (qk ∈ T )→

δ′(qk, a) := δ(h, a);
rof

fi
rof

rof
corp
{ post Complete D ∧ L(D) = L(F) }
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same values to δ) that ensures this connectivity, then the connectivity will

be retained when the algorithm terminates. The algorithm terminates when

all states of the resulting DFA have a symbol transition to some other state

(i.e. when δ′ is such that the DFA is �complete�). It ensures that upon ter-

mination δ and f for the FDFA are such that the FDFA de�nes the same

language as the DFA.

The connection of transitions can be implemented as follows. For each

i < (|Q| − 1), a randomly selected a ∈ Σ is drawn and we ensure that

δ(qi, a) = δ′(qi, a) = qi+1. That is, the transition 〈〈qi, a〉, qi+1〉 is added to

both sets δ and δ′. (Assume that q0 is taken as the start state, qs.)

The algorithm starts with some (or all) values of δ′, δ and f unde�ned. It

terminates with all values of δ′ de�ned and some (or all) values of both δ and

f de�ned. The symbol ⊥ is used to denote a so-called invalid or unde�ned

transition � e.g. δ(qi, a) = ⊥ means that there is no symbol transition on

a in state qi. Thus, if such a transition is not encountered at state qi, then

a failure transition should be taken. It is also possible for an FDFA to have

unde�ned failure transitions at one or more states. If f(qi) = ⊥, this means
that there is no failure transition exiting state qi.

Other Variables

To in�uence the number of failure transitions in the �nal FDFA, the algo-

rithm is invoked with an input parameter k ∈ N∧ k < |Q|, whose value is to
be pre-selected. The integer k serves an upper bound on the length of any

failure path that may appear in the FDFA. The role of k is thus to constrain

the number of failure transitions in the FDFA that need to be traversed be-

fore a symbol transition on any given symbol is encountered. Hence, when

k = 0 the result will be a degenerate FDFA (i.e. F = D). Note that, be-

cause of various random features built into the algorithm, the extent to which

the value of k in�uences the number of failure transitions is not known or

predictable a priori. All that can be said is that the larger the value of k,

the fewer symbol transitions and the more failure transitions are likely to be
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present in the �nal FDFA.

While k applies globally, whenever a given state, qi and a symbol a, are

to be considered, two local parameters are used: the variable l and the set

variable T .

We �rst indicate how l is used. This parameter speci�es the maximum

distance along a failure path to travel from state qi until a state that provides

a symbol transition on a is encountered. The variable l ∈ N must be de�ned

in the range [0, . . . , k]. Similarly to k, the variable l controls the potential

maximum failure transition path to traverse in order to consume the symbol

a when processing strings.

The role of l is explained as follows. When l = 0 and the symbol transition

is not yet de�ned, there is no failure transition to insert from the current

state. In the case when l = 1, a single failure transition may be taken from

the current state to some other state, provided that the current state has

an invalid symbol transition on the associated symbol. If l = 2 there must

be at most two failure transitions taken to consume a, and if l = 3 then a

maximum of three failure transitions to may be taken to consume the letter,

and so on.

The local variable T of the algorithm is of �set� type and recomputed for

each combination of state qi and symbol a that is considered. The set T is

used to accumulate states of the failure path to follow, starting from state

qi, and at whose head state the will be a symbol transition on a. The set

T serves two purposes. Firstly, by keeping track of all states of the failure

path one can avoid constructing divergent failure cycles. In addition T is

also used to determine how to direct symbol transitions on a in the various

DFA states.

Algorithm 6.1 gives the pseudocode. It builds the DFAD = (Q,Σ, δ′, F, s)

and language-equivalent FDFA F = (Q,Σ, δ, f, F, s) by assigning values to

δ′, δ and f without changing those values already assigned before invoking

the algorithm. In order to insert transitions, a function named random is

assumed that randomly selects an element from the set that is given as its
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parameter. For each state, the algorithm iterates over all possible alphabet

symbols. The algorithm is described in further detail below.

Inserting Transitions

The total number of the symbol transition table entries to be considered for

the FDFA's symbol transition function δ is (|Q| × |Σ|), some of which will

be valid and others, invalid. The table for symbol transition function, δ′, of

the complete DFA is the same size, but because the DFA is complete all its

entries have to be valid. To determine the symbol transition table entries for

each function, the algorithm iterates over each state (i.e. row of the transition

table) and over all possible alphabet symbols (i.e. column of the transition

table).

For a given a ∈ Σ and qi ∈ Q, the following four steps are executed by

the algorithm:

1. Firstly, the algorithm decides whether it is necessary to insert an entry

at the current transition δ′(qi, a) or not. If there is already a valid

symbol transition at δ′(qi, a) then there is no need to insert a symbol

transition and the algorithm moves on to execute the next transition;

otherwise steps 2, 3, and 4 are undertaken.

2. Secondly, the local variables h, l and T are initialized. The variable h

is used to represent the state at the head of a failure path that is under

construction in the algorithm. At this stage, therefore, it is set to the

current state, qi. The integer l is initialized by assigning a value from

the range [0, k]. The set T is also initialized by inserting state h as its

initial single element.

3. Thirdly, a loop is executed that builds a failure path of length l or less

in the FDFA.

4. Finally, symbol transitions into the FDFA and DFA are provided.

Step 3 is further elaborated in the next paragraph and then step 4 is described
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in more detail.

The loop's condition consists of three conjunct predicates to guide the

path of failure transitions starting from qi. The three conjuncts described

below are:

� δ′(h, a) = ⊥: In the DFA under construction, the symbol transition

δ′(h, a) must not yet have been assigned if we are to use the state h as

the current head of an FDFA failure path.

� |T | < (l + 1): Note that in general there are x + 1 states in a failure

path of length x. The number of states in the failure path, |T |, must
therefore be strictly less than the integer l + 1 for the loop to execute

and add another state into the failure path. If there are already l + 1

states in T , then we have reached the size limit of the failure path and

the loop should not be entered.

� f(h) 6∈ T : This conjunct ensures that the loop terminates if a failure

path has been built that is in fact a failure cycle.

If all three conjuncts are true then a failure transition from h to a random

target is created provided such a transition does not already exist. The

algorithm randomly selects a state from a speci�c set of states described

below. The failure transition target state is then inserted into the set T and

the head of the failure path, h, is updated to this target state.

The algorithm prevents the new head of the failure path from being a state

that is already on the existing failure path. This is so because the parameter

of the function random specifally excludes states in T . Note, however, that

it is possible that the newly selected head of the failure path h is the source

of a failure transition whose target is a state in T . In such a case, the states

collected in T constitute a failure cycle. We will argue below that any so-

formed failure cycle is nevertheless not a divergent failure cycle.

Once the above loop terminates, the algorithm checks if the DFA's δ′(h, a)

currently has a valid value. If not, then it inserts a randomly generated

symbol transition destination for δ′(h, a). The transition value δ′(h, a) is

94

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



copied to its FDFA counterpart, δ(h, a). Additionally, all states in the set

T have their symbol transition destinations on the symbol a updated to the

same value as δ(h, a). Then the algorithm executes an iteration based on the

next state / symbol pair to be considered.

In summary, the algorithm �rst selects a random number, l ∈ [0, k]. Then,

the entries in the failure function (starting from the start state) are �lled up

to generate a failure path consisting of randomly selected states. The failure

path length is maximally l and the failure path may possibly form a failure

cycle. The above steps are repeated, ensuring at each iteration step that

a state has maximally one exiting failure transition. When it is no longer

possible to generate any more failure paths of length l or less, then �ll in the

rest of the transition table in some random fashion. At this stage, a �random�

FDFA is generated. And �nally, the relevant FDFA transitions are used to

update the DFA transitions in an orderly manner.

Note that even though the �nally obtained FDFA may contain failure

cycles, no divergent failure cycles can be generated. To see this, recall that

a failure cycle is not divergent if and only if for every a ∈ Σ, there is at

least one state in the cycle, say qk, such that δ(qk, a) 6= ⊥. To prove the

non-divergent nature of any cycle that may be formed by the algorithm, it is

su�cient to consider the outcome at the end of each iteration of the inner for-

loop (over alphabet symbols). It is clear that for the state qi ∈ Q and a ∈ Σ

under consideration at that point, a failure path would have been generated

of maximum length l. The head of that failure path is denoted by state h

in the algorithm. The algorithm ensures that δ(h, a) has a valid value when

the end of the loop in question is reached. Since this holds for a given qi ∈ Q
for every iteration of the for-each loop over a ∈ Σ, it is guaranteed that on a

(possibly degenerate) failure path leading from qi there will be some state, h,

such that δ(h, a) has a valid value. And since this claim is also true for every

qi ∈ Q, it must be the case that all failure cycles are non-divergent.
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Table 6.1: An example: creating a `random' FDFA and a `random' DFA.

(a) Initialized DFA

Q/Σ a b c

0 1 ⊥ ⊥
1 ⊥ 2 ⊥
2 ⊥ ⊥ 3

3 ⊥ ⊥ ⊥

(b) Initialized FDFA

Q/Σ a b c f

0 1 ⊥ ⊥ ⊥
1 ⊥ 2 ⊥ ⊥
2 ⊥ ⊥ 3 ⊥
3 ⊥ ⊥ ⊥ ⊥

(c) DFA: After qi = 0 entries

Q/Σ a b c

0 1 1 3

1 ⊥ 2 ⊥
2 ⊥ 1 3

3 ⊥ 1 3

(d) FDFA After qi = 0 entries

Q/Σ a b c f

0 1 ⊥ ⊥ 3

1 ⊥ 2 ⊥ ⊥
2 ⊥ 1 3 ⊥
3 ⊥ ⊥ ⊥ 2

(e) DFA: After qi = 1 entries

Q/Σ a b c

0 1 1 3

1 1 2 3

2 ⊥ 1 3

3 ⊥ 1 3

(f) FDFA: After qi = 1 entries

Q/Σ a b c f

0 1 ⊥ 3 3

1 ⊥ 2 ⊥ 0

2 ⊥ 1 3 ⊥
3 ⊥ ⊥ ⊥ 2

(g) DFA: After qi = 2 entries

Q/Σ a b c

0 1 1 3

1 1 2 3

2 2 1 3

3 ⊥ 1 3

(h) FDFA: After qi = 2 entries

Q/Σ a b c f

0 1 ⊥ 3 3

1 ⊥ 2 ⊥ 0

2 2 1 3 ⊥
3 ⊥ ⊥ ⊥ 2

(i) Finally; DFA, qi = 3

Q/Σ a b c

0 1 1 3

1 1 2 3

2 2 1 3

3 2 1 3

(j) Finally; FDFA, qi = 3

Q/Σ a b c f

0 1 ⊥ 3 3

1 ⊥ 2 ⊥ 0

2 2 1 3 ⊥
3 ⊥ ⊥ ⊥ 2
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6.2.3 An Example

Tables 6.1 (a)-(j) show how a random FDFA and a random DFA are con-

structed using the above stated algorithm. This example is for inserting tran-

sitions for two language equivalent automata de�ned by Q = {0, 1, 2, 3},Σ =

{a, b, c}, qs = 0, F = Q. The assumed value for k is 3. Some transition en-

tries for the FDFA's δ and f as well as the DFA's δ′ are to be added by the

algorithm.

Note that in this example, a state is not represented by the letter q sub-

scripted by an integer, say i, but by the integer i itself. The start state is

represented by the integer 0. Furthermore, as is often the case in this do-

main, the transition functions δ and δ′ are represented as transition tables

whose cell entries represent destination states.

In Tables 6.1, the transition tables of δ′ and δ are presented as the al-

gorithm reaches di�erent stages of execution. The pair of automata are

presented side by side with the DFA on the left hand side and the FDFA on

the right hand side. They both contain three columns for the symbols of the

alphabet and four rows for the states. The FDFA table has an additional

column labelled f for failure transitions.

1. Firstly, to connect all the states, for each i ∈ {0 . . . 2} the DFA and

FDFA are provided with symbol transitions such that δ(i, g) = δ′(i, g) =

i+1. Note that g is randomly chosen from {a, b, c}. (See Tables 6.1 (a)
and (b).) The remaining transition cells remain invalid. These transi-

tion values are recorded in the tables for δ and δ′ before the algorithm

is invoked. The remaining transition are inserted by the algorithm as

described in the following paragraphs.

The algorithm now iterates over all states (i.e. rows), in each iteration

considering all alphabet symbols (columns).

2. Tables 6.1 (c)-(d) depicts the transition tables of the two automata

after the algorithm has iterated over the initial state 0.
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Starting with the column for symbol a, it is seen that the transitions:

δ(0, a) and δ′(0, a) already have values (namely 1), so there is nothing

more to do.

Thus, the next symbol, b, is considered. Since δ′(0, b) is not yet deter-

mined, a new value for l is determined randomly. Suppose this value

is l = 2. This means that the algorithm needs to generate a path of

failure transitions of maximum length 2. The algorithm adds the cur-

rent state 0 to the set T of states on this failure path and it assigns the

value h to be 0. State 0 is thus the origin of a failure transition that

terminates at a randomly selected state, say 3 in this case. Thus 3 is

entered into the f column. Additionally, state 3 is added to set T and is

set as the head h. To complete the creation of a failure path of length

2, the algorithm now moves to the row for state 3 and generates a new

random destination for this failure transition. Suppose it is 2. It indi-

cates this in column f of row 3. It then adds 2 to the set T . The head h

becomes 3. By now |T | = (l+ 1) so there are no additional transitions

to be added. Finally, at the head of this failure path, in state 2, the

algorithm creates a new random destination for a transition on symbol

b. Suppose this is 1. It then sets both δ′(2, b) and δ(2, b) to 1. And

then, based on δ(2, b) = 1, it also sets δ′(j, b) to 1 for each state j ∈ T ,
namely for δ′(1, b) and δ′(3, b).

To complete the iteration for row 0, the algorithm now has to provide an

entry for δ′(0, c). Again the algorithm randomly generates a value for

l. Suppose it is l = 2 as before. T is reinitialised and set to store state

0. From state 0 a failure transition to the target state 3 has already

been established. Since l = 2, we again have to follow a failure path

of length 2 when encountering a symbol c in state 0. The algorithm

thus moves one failure transition ahead to state 3. It also adds 3 to

T and assigns h to be 3. A destination state for a failure transition

starting state 3 had previously been generated, namely 2 and so state

2 is inserted into set T . Then 2 becomes h. The failure path of length

2 has now been reached in state 2 and an entry for δ(2, c) is required.
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Again it randomly generates a destination state, say 3 and sets δ(2, c)

and δ′(2, c) to 3. Following the same procedure as for symbol b, the

algorithm sets δ′(2, c), δ′(0, c) and δ′(3, c) to 3.

3. Tables 6.1 (e)-(f) illustrate the two automata after the algorithm has

inserted all transitions that arise when dealing with state 1.

The algorithm is considering to insert a transition at δ′(1, a). Because

this entry δ′(1, a) has an invalid value, a valid entry must be made.

Suppose that in considering column a the random failure path length

l turns out to be 1. As before, state 1 is stored in T and is assigned to

the head h. Suppose a new failure transition destination 0 is generated

randomly. The state 0 is added to T and the head h becomes 0. The

failure path has reached the limit l = 1 and since a valid transition des-

tination already exists for δ′(0, a), the addition of failure transitions is

aborted. Since there is an established symbol transition δ′(0, a) namely

1 at the current control state h, the algorithm simply leaves it in place

� i.e. it does not randomly generate a new FDFA symbol transition

destination at 0 on symbol a. Then δ′(0, a) is copied into δ(0, a). Now

for each state j ∈ T the algorithm sets δ′(j, a) to 1. Thus, δ′(0, a)

remains at 1 and δ′(1, a) is set to 1.

The algorithm now considers transitions on symbol b in state 1. Since

there is already a valid transition for δ′(1, b) (namely to 2), the algo-

rithm simply continues to execute the next transition entry δ(1, c).

Now column c for state 1 has to be considered, and this entry δ′(1, c) has

an invalid transition value. Suppose that at this stage, the algorithm

randomly generates l = 1. The algorithm adds state 1 to T and sets h

to be 1. Recall that when dealing with column a for state 1, a failure

transition to state 0 was created, so there is already a failure transition

from state 1. The algorithm therefore adds state 0 to T and sets the

head h to be state 0. Because |T | = (l+ 1), there are no further failure

transition destinations to consider. The algorithm generates a random

symbol transition at δ′(0, c). Suppose that the new transition is 3. The
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value 3 is copied to δ(0, a). Thus as usual, all values of T are updated

with 3 � i.e. δ′(0, c) and δ′(1, c) are all set to 3.

4. Tables 6.1 (g)-(h) show the status of the automata after all transitions

from state 2 have been generated by the algorithm.

We now look at the algorithm inserting a transition at δ′(2, a). This

entry is invalid so transitions must be added to the pair of automata.

Suppose a random value set for l is 0. The head h is initialized by the

current state value 2 and the set T is also initialized by the same value

2. Since l = 0, there are no failure transitions to be inserted. A new

symbol transition value is then randomly generated for δ(2, a). Let the

generated value be 2. As usual the newly generated DFA transition is

copied into the corresponding FDFA transition. Lastly, using the lone

value in T , the δ′ is updated such that is δ′(2, a) becomes 2.

The algorithm then continues with symbol transition iterations at state

2, �rst to δ′(2, b), and lastly to δ′(2, c). Since there are already estab-

lished valid symbol transitions at δ′(2, b) and δ′(2, c), there is no need

to replace them. Then the transitions from the next state will be con-

sidered.

At the end of iterating all transitions at state 2 there is no failure

transition is provided from this state. Thus, f(2) remains ⊥. This is a
case whereby a �useless� failure transition is not generated.

5. Transitions at state 3 are considered. The resulting transitions are

shown in Tables 6.1 (i)-(j).

The algorithm will now insert transitions starting at an entry for state

3 and symbol a. The transition δ′(3, a) currently contains an invalid

entry, therefore the algorithm must insert some transitions. The max-

imum failure path length l is generated randomly. Let l to be 1, set h

to be the current stat 3 and T is instantiated by adding state 3 into

itself. A previously de�ned failure transition from state 3 to 2 is taken.

The state 2 is added into T and it is assigned as the head h. Since a
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single failure transition has been taken and because δ′(2, a) is a valid

transition, namely 2, no further attempts to generate failure path gen-

eration are to be made. The transition value δ′(2, a) = 2 is copied to

the value at δ(2, a). As usual, for each state in T , the algorithm inserts

two of DFA symbol transitions, i.e. δ′(2, a) and δ′(3, a) become 2.

The remaining two entries to look at for state 3 are the columns b

and c, i.e. δ′(3, b) and δ′(3, c) . They both have existing valid DFA

symbol transitions namely: δ′(3, b) = 1 and δ′(3, c) = 3. Therefore, the

algorithm will simply skip these last two transition iteretions.

At this stage, the two automata have been created: a complete DFA and

a language equivalent FDFA. As expected, the complete DFA has 12 symbol

transitions. The FDFA has 9 transitions, 3 being failure transitions and 6

being symbol transitions. Thus the FDFA shows a transition reduction of 3

� i.e. it has 25% fewer transitions than the DFA. This example was provided

to facilitate an understanding the algorithm for the reader.

6.3 Measurements

In this investigation the structure of the random DFAs and corresponding

random FDFAs have to the following properties.

� The states of the set Q are indicated by natural numbers starting from

0.

� In all cases, |Σ| = 10, qs = 0, and F is a set of states randomly chosen

in Q.

� |Q| ranges over the interval [250, 500, 750, . . . , 2250, 2500]. There are
therefore 10 possible state set sizes.

� The maximum failure path size, k, allowed for the FDFAs ranges over

the interval [10, 20, . . . , 90, 100]. There are, therefore, 10 possible

maximum failure path size settings.
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� 100 pairs of random DFA and language equivalent FDFAs were gener-

ated using Algorithm 6.12 described above � one for each state size /

maximum failure path size combination.

In this experiment, our concern is the transition reductions resulting from

the FDFAs (i.e. DHA-FDFAs and D2FA) that are derived from random

DFAs. Speci�cally, we are interested in measuring the symbol transitions

removed and the overall transition reduction. Here, only the data for per-

centage transition reductions by the FDFAs from the random DFAs will be

provided. The �owchart in Figure 6.1 depicts the sequence of data measure-

ment activities in this experiment.

Unlike in the case of having an �optimal� FDFA in the form of an AC-

fail FDFA as described in the previous chapter, in the present case, no such

optimal FDFA is available. However, Algorithm 6.1 provides at least one in-

stance of a language-equivalent �randomly generated� FDFA of the original

DFA. Consequently, we are primarily concerned with comparing the num-

ber of transitions of the generated FDFAs against this �randomly generated�

FDFA, rather than with comparing the placement of transitions of the var-

ious FDFAs. This comparison relates to the failure transitions of the ran-

domly generated FDFA and the failure transitions of other FDFAs. It also

relates to symbol transitions between DFAs and their language-equivalent

FDFAs.

Note that the D2FA algorithm outputs will be included in the empirical

results to be compared.

6.3.1 The Results

Preliminary investigation showed that the percentage reduction in symbol

transitions in FDFAs remained largely una�ected by the size of the respective

automata, i.e. by |Q|. However, the ratio of transitions reduction by the

2Available online at:
http://madodaspace.blogspot.co.za/2016/02/a-toolkit-for-failure-deterministic.html
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Figure 6.1: Comparing DHA-FDFAs and D2FA against random FDFA for
transition reduction from a random DFA.
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FDFAs from random DFAs transition size is a�ected by the value of k. As

a result of this observation, we will plot the transition reduction graphs

by using k values as our x − axis and the percentage transition savings as

y − axis.

Hence, the initial data to be presented will be averages taken over all

automata sizes (i.e averaged over |Q| = [250, 500, . . . 2500] for various values

of k. As stated early in this section, the maximum failure path size has been

altered for various FDFAs with k = [10, 20, . . . , 100]. The percentage by

which transitions are reduced may be expected to increase as k grows. As

stated in Section 6.2.2, k is an input variable that is a maximum bounding

value that can be assigned to the internal positive integer variable `.

Symbol Transitions Removed

Figure 6.2 depicts the percentage of symbol transitions removed from the

original DFA, on average, by each type of FDFA for various values of k.

The percentage of symbol transition reduction in all linear plots in the �gure

(other than the graph for MaxAR) increases as k increases, up until when

k = 30. Thereafter, for k > 30, a near-horizontal trend is observed.

The graph for D2FA FDFA shows that this algorithm reduces the average

number of symbol transitions in the DFA by more than the DHA heuristics.

Indeed D2FA algorithm also reduces transitions by more than the average

reduction originally present in the randomly generated FDFA. The D2FA

FDFA's reached a maximum average of 85% for DFA symbol transitions re-

duction. In contrast, when k > 30, the DHA MaxIntent, MaxInt-MaxExt

and DHA-MinExtent automata show near constant symbol transition reduc-

tion at just above 75%. The percentage of symbol transition reductions of

the random FDFA grows more or less linearly when k > 30, and its graph

is bounded above by the D2FA graph and below by the three DHA-FDFAs

graphs. In contrast to these trends, the MaxAR criterion's output achieved

very low averages for percentages of symbol transition reductions. These

values are below 40% for all points plotted.
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Figure 6.2: The average symbol transitions removed from the random DFA
by the various FDFA types as a percentage of the transition size of random
DFAs for di�erent k values.

Overall Transition Reduction

The overall transition reductions brought about by the FDFAs over the ran-

dom DFAs will now be brie�y discussed. By overall transition reduction

we mean the di�erence between the total number of DFA transitions (all of

which are, of course, symbol transitions) and the total number of language-

equivalent FDFA transitions (some if which are failure transitions and the

rest, symbol transitions). This reduction is usually expressed as a percent-

age of DFA transitions. These percentage reductions, averaged over all DFA
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Figure 6.3: The average overall transition reduction by the various FDFA
types as a percentage of the transition size of random DFAs for di�erent k
values.

sizes, is shown in Figure 6.3 for di�erent k values. These graphs have the

same shape as the graphs in Figure 6.2.

To give an insight into how the results are distributed over the various

DFA sizes, Figure 6.4 depicts the same data, now no longer averaged over all

DFA sizes, but in box-whisker plot format.

The DHA MaxIntent or MaxInt-MaxExt box-whisker plots show that

there is minimal variation � most of the observations lie very close to their

median values. The MinExt, random FDFAs and D2FAs show slightly more
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Figure 6.4: The boxplot graphs for the overall transition reduction by the
various FDFA types as a percentage of the transition size of random DFAs
for di�erent k values.

variation, but the variation is still very modest. The MaxAR FDFAs show

fairly large variations.

6.3.2 An Analysis of Results

The results presented above were with respect to �ve di�erent ways of gener-

ating language-equivalent FDFAs from a DFA that was itself derived from a

�randomly� constructed FDFA. This random FDFA was not speci�cally de-

signed to be minimal (i.e. to be the smallest of all FDFAs that are language-
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equivalent to the DFA in the sense of having the least number of transitions).

It was therefore somewhat surprising to see that it generally had less tran-

sitions than the FDFAs produced by the DHA variants. That it was not

minimal was illustrated by the fact that the D2FA derived FDFAs had fewer

transitions.

The overall transition reduction performance for the various language-

equivalent FDFA may be expressed as follows:3

D2FA > random_FDFA

> MaxIntent_FDFA

= MaxInt-MaxExt_FDFA

> MinExtent_FDFA

> MaxAR_FDFA

The results showed that in no instance did a DHA FDFA variant obtain more

transition reductions than the D2FA algorithm.

It was interesting to note with respect to transition reductions that the

three DHA heuristics, namely MaxIntent, MaxInt-MaxExt and MinExtent

were able to produce FDFAs that were smaller than the random FDFAs,

for as long as a maximum failure path size of 30 or less was used to gener-

ate the random FDFA. For larger values of k, these heuristics were unable

to attain as many transition reductions as the original random FDFAs but

they nevertheless worked reasonably well. However, the MaxAR heuristic re-

mained the worst performer for generating FDFAs as close to the minimum

as possible.

The linear graphs plots for D2FA FDFA and DHA MaxIntent, MaxExtent

and MinExtent FDFAs are parallel. This observation also shows that there

is an approximate 10% di�erence between the graph for the FDFA produced

by the D2FA algorithm and the graphs for the three best performing DHA-

3The arithmetic operators are not used in their usual way but they are a notation for
a ranking the FDFA algorithms based on transition reduction.
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derived FDFAs. Given that |Σ| = 10 and the 10% transition di�erence

between the three DHA variants and D2FA then the di�erence in actual

number of symbol transitions is estimated to be |Q|. The rationale for this

observation stems from the following equation, where (|Σ| × |Q|) is the size
of a DFA transitions.

10% of (|Σ| × |Q|) =
10

100
× (10× |Q|) = |Q|

This suggests that the D2FA algorithm out-performs the three DHA variants

by an estimated di�erence of |Q| symbol transitions.

The fact that there is a 10% performance di�erence between the best

DHA heuristics and the D2FA algorithm indicates suboptimal e�ects of the

�greedy� approach used by the DHA variants. Whether this behaviour would

be sustained for di�erent values of |Σ| and whether there are better heuris-

tics that could be employed within the DHA context is left for future re-

search.

The gradual increase of the random FDFA transition reductions is caused

by the increase of the failure path sizes selected. With larger failure paths,

chances of landing into existing symbol transitions become minimal � thus,

reducing possibilities of generating new random symbol transitions.

6.4 Conclusion

The investigation was aimed at measuring the extent to which the DHA

variants remove transitions from a DFA in the general case. The supposed

general DFA to be used was a random DFA. Therefore, an algorithm was

devised for generating a `random' FDFA and its language-equivalent complete

DFA. The random FDFA and D2FA algorithms were included in comparing

the extent to which FDFAs generated by DHA and the D2FA algorithms

produced the highest DFA transition reduction results.
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Chapter 7

Conclusion and Future Work

The MaxAR strategy was the original heuristic proposed for the DFA ap-

proach [9]. It was used in initial tests because, based on theoretical consider-

ations, it was thought that it would probably be a reasonably good heuristic

for deciding where to replace symbol transitions with failure transition. This

turned out not to be so. This lead to the development of the three heuris-

tics (MaxIntent, MinExtent, Max Intent-MaxExtent) that modify DHA, and

these turned out to lead to better transition reductions.

Generally, the empirical results provided a comparison of various FDFA

types, and they were tested in di�erent domains. They were �rstly tested

against the AC-fail FDFAs and later against the general case FDFAs. As a

by-product of general case FDFA tests, an algorithm for generating a random

FDFA and a language equivalent DFA was proposed. An alternate failure-

DFA generating algorithm called D2FA algorithm was also included in all

experiments conducted. This algorithm had been missed by earlier FDFA

research that formed the basis of the DHA approach because it was published

in the network intrusion detection literature and was described in vocabulary

that did not show up in early keyword searches.

The empirical results revealed that the modi�ed DHA FDFAs bring about

reasonably good transition reduction of minimal Aho-Corasick DFAs, pro-
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ducing FDFAs that are very close to the AC-fail FDFAs. However, they also

perform satisfactorily in the general context, though not quite as well as the

D2FA algorithm.

The relatively small alphabet size of 10 was dictated by unavoidable

growth in the size of the associated concept lattices. Even though suitable

strategies for trimming the lattice without losing important information (for

example by not generating concepts with arc redundancy less than 2) are be-

ing investigated, it is recognised that use of DHA will always be constrained

by the potential for the associated lattice to grow exponentially. Neverthe-

less, from a theoretical perspective a lattice-based DHA approach to FDFA

generation is attractive because it encapsulates the solution space in which a

minimal FDFA might be found � i.e. each ordering of its concepts maps to

a possible language-equivalent FDFA that can be derived from a DFA and

at least one such ordering will be a minimal FDFA.

The MaxAR heuristic, initially thought to probably be quite good, turned

out to be not so e�ective in reducing transitions. Perhaps it could be used

to derive FDFAs that lies in between the minimal FDFA and a DFA. Such

FDFAs might have value in some applications in striking a balance between

reducing space and processing time e�ciency. This, of course, is a tradeo�

to be made.

All the proposed variants of DHA were surpassed by the Random (F)DFA

algorithm andD2FA algorithm in the general case FDFA experiments. Whether

di�erent DHA heuristics can be discovered that will produce smaller FDFAs

is a challenge for future research.

The D2FA generation approach is not as constrained by space limitations

as the DHA approach and in the present experiments it has performed reason-

ably well. A practical conclusion is to use the D2FA since it is not only very

e�ective in transition reduction, but it is also independent of concept lattices.

In the original publication, a somewhat more re�ned version is reported that

attempts to avoid unnecessary chains of failure transitions. Future research

should examine the minimising potential of this re�ned version using gener-
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alised DFAs as input and should explore more fully the relationship between

these D2FA based algorithms and the DHA algorithms.
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Appendix A

Acronyms

This appendix contains a list of acronyms that were used throughout the

dissertation. They are shown in list below. The listed acronyms are alpha-

betically sorted and their meanings are placed alongside them.

Acronym Meaning

AC Aho-Corasick

AR Arc Redundancy

ASCII American Standard Code for Information Inter-

change

DFA Deterministic Finite Automata

DHA DFA - Homomorphic Algorithm

D2FA Delayed-input Deterministic Finite Automata

FA Finite Automata

FCA Formal Concept Analysis

FCART Formal Concept Analysis Research Toolbox

FDFA Failure Deterministic Finite Automata

FFO Failure Factor Oracle

FO Factor Oracle

KMP Knuth-Morris-Pratt

MaxAR Maximum Arc Redundancy
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MaxInt Maximum Intent

MaxInt−MaxExt Maximum Intent - Maximum Extent

MinExt Minimum Extent

NFA Nondeterministic Finite Automata

PAR Positive Arc Redundancy

RAM Random Access Memory

XML Extensible Markup Language

1D 1 Dimension

2D 2 Dimension
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Appendix B

Symbols

This appendix contains a list of symbols used throughout the thesis. The

listed acronyms are ordered by the chapters they �rst appeared in and their

descriptions are placed alongside them.

Symbol Description

Chapter 2

Σ an alphabet

|X| number of elements in a set X

s a string

ε an empty string

Σ∗ The Kleene closure of Σ

Σ+ Σ∗ − {ε}
u.v - (dot) concatenation of strings u and v

D a DFA

Q a �nite set of states of an automaton

δ symbol transitions function mapping

F a set of �nal states of an automaton

qs a start state of an automaton
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⊥ an unde�ned state of an automaton

p an element of Q (a state)

q yet another state (q ∈ Q)
a an element of an alphabet (i.e. a ∈ Σ)

→ a total (complete) function

9 a partial function

L a language of an automaton

F an FDFA

f failure transitions function mapping
f
; a failure path

i an index of a list (or set)

j yet another index of a list

O set of objects

A set of attributes for the set of objects

I a subset product of I and O i.e. I ⊆ A×O
c a formal concept

ext(c) an extent of a concept c

int(c) an intent of a concept c

P a pattern set (a set of keywords)

N number of keyword in a pattern set P

T an input string to an automaton

Chapter 3

∅ an empty set

O variable in DHA for a set of states in Q (i.e O ⊆ Q)

Chapter 6

T a variable that stores the elements in a failure path

k a variable for maximum failure path size for an FDFA

l a variable for max. failure path size from at a transition
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Appendix C

Derived Publications

This appendix contains publications derived from the research done for this

thesis.

� M. Nxumalo, D. Kourie, L. Cleophas, and B. Watson, �An Aho-Corasick

based assessment of algorithms generating failure deterministic �nite

automata,� in Proceedings of the 12th International Conference on Con-

cept Lattices and their Applications (CLA 2015), (Clermont-Ferrand,

France), 2015.

� M. Nxumalo, D. Kourie, L. Cleophas, and B. Watson, �On Generating

a Random Deterministic Finite Automaton as well as its Failure Equiv-

alent�, To appear in the proceedings of the RuZA 2015 Workshop, 2016.
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