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Abstract

This paper investigates the robustness of the shrinkage Bayesian estimator for the

relative potency parameter in the combinations of multivariate bioassays proposed

in Chen et al.(1999), which incorporated prior information on the model parame-

ters based on Jeffreys’ rules. This investigation is carried out for the families of

t-distribution and Cauchy-distribution based on the characteristics of bioassay the-

ory since the t-distribution approaches the normal distribution which is the most

commonly used distribution in the applications of bioassay as the degrees of freedom

increases and the t-distribution approaches the Cauchy-distribution as the degrees

of freedom approaches 1 which is also an important distribution in bioassay. A real

data is used to illustrate the application of this investigation. This analysis further

supports the application of the shrinkage Bayesian estimator to the theory of bioassay

along with the empirical Bayesian estimator.

Key Words: Bayesian analysis; Noninformative Prior; Posterior likelihood func-

tion; Posterior mode; Relative Potency.
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1 Introduction

Estimation of relative potency in biological assay (i.e. bioassay) is very important in phar-

maceutical and toxicological sciences. A variety of methods for estimating relative potency

can be found in the literature and the references in Finney (1978) and Govindarajulu

(2001). Most of these methods can be formulated in terms of a general linear model for

data following a normal distribution, or in a generalized linear model for other types of

data. In the situation of multi-response experiments, multivariate statistics can be used as

in Laska et al. (1985), Srivastava (1986) and Chen et al. (1999).

The combination of bioassays arises when the same or similar experiment is performed

by multi-laboratories and multi-centers in the calibration of national/international stan-

dards for a particular substance (Rose and Gaines-Das, 1998). With the studies of com-

bination of bioassays, most results appear in Bennett (1962), Armitage (1970), Meisner et

al. (1986), William (1988), Chen et al. (1999), Xiong and Chen (2007), and Chen (2007).

Chen et al. (1999) proposed a novel empirical Bayesian estimator (EBE) and a shrink-

age Bayesian estimator (SBE) for the relative potency from the combination of several

multivariate bioassays by incorporating prior information on the model parameters based

on Jeffreys’ rules. The EBE can account for any extra-variability among the bioassays,

and if the extra-variability is zero, the EBE reduces to the maximum likelihood estimator

for combinations of bioassays. The SBE estimator turned out to be a weighted average of

the prior information and the estimator from each bioassay with the weights depending on

the prior variance, which is not uncommon in Bayesian framework. The key advantage of

this shrinkage Bayesian estimator is that it can be written in closed form and therefore no

iterative process is involved to yield the estimate.

However any prudent Bayesian analysis should include an investigation of the robustness

of the posterior distribution to the specifications of commonly used prior distributions.

For the proposed shrinkage Bayesian estimator, Chen et al.(1999) embedded the Bayesian
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theory into a bioassay framework by using the Jeffreys’ theory for the model parameters.

This technique takes the advantage that some information is known about the log relative

potency parameter µ, while little information is known about the other parameters from

the model specification of the combination of multivariate bioassays. Therefore, the robust

investigation for the shrinkage Bayesian estimator is given to different specifications of the

prior distribution for the parameter of µ.

In this paper, the families of t- and Cauchy-distributions will be investigated for the

robustness analysis since practically t-distribution is considerably important, especially

for the heavy-tail distribution. As the degrees of freedom increases, the t-distribution ap-

proaches the normal distribution, which is the most commonly situation in the applications

of bioassay as illustrated in Finney (1978) and Chen et al. (1999). On the other hand, as

the degrees of freedom approaches 1, the t-distribution approaches the Cauchy distribution,

which is also an important distribution in bioassay since the log relative potency estimator

is a ratio of two normal variables, which is distributed as a Cauchy distribution.

This paper is organized as follows. Section 2 introduces the bioassay model and shrink-

age Bayesian estimator based on Jeffreys’ prior from Chen et al. (1999) and the investiga-

tion of two families of t-distribution and Cauchy-distribution is given in Section 3. A real

data analysis is illustrated in Section 4 with further discussions given in Section 5.

2 Combinations of Bioassays and Shrinkage Estimator

2.1 Model Specification

The experimental model for ith (i = 1, · · · , k) multivariate bioassay in the combinations of

k multivariate bioassays to estimate the relative potency of the test (t) preparation to the

standard (s) preparation is usually of the following form:

ysi = αsi + βsixsi + εsi
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yti = αti + βtixti + εti (2.1)

where ysi ,yti ∈ Rp, p ≥ 1, are multivariate responses in the dose-response relationship,

αsi, αti, βsi, βti ∈ Rp are the multivariate parameters, and xsi, xti are the scalar inputs

as function of dose levels.

This model can then be casted in a multivariate regression framework

Yi = ΨiXi + εi, (2.2)

where Yi = (ys1, . . . ,ysnsi ,yt1, . . . ,ytnti) is the p×ni matrix of responses with ni = nsi+nti,

where nsi, nti are the number of observations in the ith bioassay for the standard and test

preparations, respectively; and Ψi = (αi, δi,βi) is the p × 3 matrix of parameters. For

all i = 1, . . . , k, ε′i s are assumed i.i.d. ∼ Np(0,V), where V is p × p positive definite

symmetric matrix.

Different assumptions on the model parameters can produce different bioassay models.

There are two commonly-known bioassays with one as parallel-line bioassay and another

as slope-ratio bioassay. In the parallel-line bioassays where the two slopes in equation (2.1)

on both test preparation (i.e. βti) and standard preparation (i.e. βsi) are equal (denoted

by βi) where βi = βsi = βti, (see for example, Carter and Hubert (1985) for the test of

the parallelism), but with different intercepts so that αi = αsi; δij = αtij−αij = µijβij, for

all bioassays i = 1, . . . , k, and all responses j = 1, . . . , p , where µij are scalar parameters,

which are the log relative potencies of the ith bioassay and jth response variable. The

slope-ratio bioassay has slightly different parameterizations where the slopes are different

but the intercepts are the same, such that αi = αsi = αti, δi = δti = µijβsi where µij

are the relative potencies in ith bioassay and jth response variable. We will illustrate

parallel-line bioassay in this paper and the similar discussions can be made for slope-ratio

bioassay.

In the situation of homogeneity, µij = µ for all i and j which can be tested by the

likelihood-ratio test. The p × ni random matrix εi consists of ni columns of multivariate
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normal random vectors Np(0,V); and Xi is the 3 × ni design matrix defined as Xi =
1 · · · 1 1 · · · 1

0 · · · 0 1 · · · 1

xs1 · · · xsnsi xt1 · · · xtnti

 , where x’s are log dose levels. Then the multivariate

regression technique can be used to obtain the estimators

Ψ̂i = YiX
′
i(XiX

′
i)
−1 (2.3)

Si = m−1i Yi

[
I−X′i ( XiX

′
i )
−1 Xi

]
Y′i (2.4)

as independent estimators of Ψi and V, where mi = ni−3 and X′ is the transpose of matrix

X. Since our interest is in the relative potency parameter µij, the second and third columns

of Ψ̂i will be the relevant ones, while the parameters in the first column, α̂i, are the nuisance

parameters. Therefore, we will restrict our attention to

 δ̂i
β̂i

 ∼ N2p

 δi
βi

 ,V ⊗Ai

 ,

where Ai is the lower 2× 2 portion of (XiX
′
i)
−1.

To block diagonalize the matrix V ⊗Ai in order to make δ̂i and β̂i independent, let’s

define Ti =

 t11i t12i

0 t22i

, such that TiAiT
′
i = I. Then, t11i =

a
1/2
22i

(a11ia22i−a212i)1/2
, t12i =

−a12ia
−1/2
22i

(a11ia22i−a212i)1/2
and t22i = a

−1/2
22i . Let ui = t11iδ̂i+t12iβ̂i and vi = t22iβ̂i, then the distribution

of ui and vi is ui
vi

 ∼ N2p

 t11iδi + t12iβi

t22iβi

,V ⊗ I2

 . (2.5)

In addition, Si in equation (2.4) is distributed as Si ∼ m−1i Wp(V,mi) = Wp(V/mi,mi),

which is the Wishart distribution, a multivariate generalization of the Chi-square distribu-

tion, with the pdf given by Ci|V|−
mi
2 |Si|

mi−p−1

2 etr(−mi
2

V−1Si), where etr is the notation

for exponent of the trace, |V| is the determinant of matrix V and Ci is a constant of inte-

gration chosen so that the total probability is 1 (Srivastava and Carter, 1983). The pooled

estimator for V is then S = (
∑k
i=1miSi)/

∑k
i=1mi.
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2.2 Shrinkage Bayesian Estimator for the Log Relative Potency

The shrinkage estimator was derived in Chen et al. (1999) based on Jeffreys’ prior (Hoadley,

1970) of π(µ,βi,V) ∝ h(µ)

|V|(p+1)/2 with h(µ) ∼ N(µ0, τ
2), for some µ0 and τ 2 > 0.

It was shown that µ|Xi, Yi,βi,V ∼ N(µp, τ
2
p ) , where

µp =
τ 2
∑k
i=1 t11iβ

′
iV
−1(t11iδ̂i + t12iβ̂i − t12iβi) + µ0

τ 2
∑k
i=1 t

2
11iβ

′
iV
−1βi + 1

τp =

(
k∑
i=1

t211iβ
′
iV
−1βi +

1

τ 2

)− 1
2

.

Then the shrinkage Bayesian estimator(SBE) for the log relative potency, µ, can be

obtained using the estimates in equations (2.3) and (2.4) for βi and V as follows:

µSBE =
τ 2
∑k
i=1 t

2
11iβ̂i

′
S−1i δ̂i + µ0

τ 2
∑k
i=1 t

2
11iβ̂i

′
S−1i β̂i + 1

(2.6)

τSBE =

(
k∑
i=1

t211iβ̂i
′
S−1i β̂i +

1

τ 2

)− 1
2

. (2.7)

Therefore the credible region with (1-α)100% coefficient for µ can be expressed as µSBE ±

zα/2 τSBE where zα/2 is the usual percentile point such that 1 - Φ(zα/2) = α/2, and where

Φ(·) is the cumulative distribution function for a standard normal random variable.

The corresponding noninformative shrinkage Bayesian estimator can be obtained by

letting τ approaches infinite as follows:

ˆ̂µ =

∑k
i=1 t

2
11iβ̂i

′
S−1i δ̂i∑k

i=1 t
2
11iβ̂i

′
S−1i β̂i

(2.8)

ˆ̂τ =

(
k∑
i=1

t211iβ̂i
′
S−1i β̂i

)− 1
2

. (2.9)

Similar (1-α)100% credible region for µ can be expressed as ˆ̂µ± zα/2 ˆ̂τ .

The advantage for this shrinkage Bayesian estimator and its interval estimator described

above is that they can be calculated explicitly from the model parameter estimates which

have been obtained from equations (2.3) and (2.4). No iterative process is involved.
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3 Robust Analysis for the Shrinkage Bayesian Esti-

mator

Since, in most practical situations, some information can be known about the relative

potency, µ and relatively little information is known about βi and V, then by Jeffreys’

rules, a suitable prior distribution would be π(µ,βi,V) ∝ h(µ)

|V|(p+1)/2 , where h(µ) is a proper

prior distribution for µ. Then the posterior distribution of µ, conditional on X i , Y i , βi

and V can be shown from equation (2.5) as follows:

µ|X i,Y i,βi,V ∝ π(µ,βi,V) L(µ,βi,V)

∝ h(µ)exp

{
−1

2

k∑
i=1

(t11iδ̂i + t12iβ̂i − t11iµβi − t12iβi)′V−1(t11iδ̂i + t12iβ̂i − t11iµβi − t12iβi)
}
.

(3.1)

The posterior function (3.1) incorporates all the information from the data by the

likelihood function and prior information from h(µ). Parallel to the maximum likelihood

theory, an estimate of the log relative potency can be obtained by maximizing the posterior

likelihood function, i.e. estimating the log relative potency parameter by the mode of the

posterior likelihood function. Another alternative is to estimate the log relative potency

parameter by the median or mean of the posterior likelihood function. This estimator

is usually referred as the posterior Bayesian estimator (Mood et al. 1973). However if

the prior distribution is normal, these two alternatives produce same estimators, since

the posterior distribution is also normally distributed. Actually, if h(µ) is the normal

distribution N(µ0, τ
2) and after simple manipulations, the same results in Section 2.2 can

be derived.

For the posterior Bayesian estimator, numerical integration is involved to obtain this

estimator. Therefore, to be concise for this robustness analysis and also parallel to the con-

ventional likelihood estimation, the mode of the posterior likelihood function (3.1) is used

in this paper for the robustness analysis to different specifications of the prior distribution.
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This estimator is then referred to as the shrinkage estimator (SBE). The same analysis can

be carried out for posterior Bayesian estimator.

3.1 Robustness of Shrinkage Estimator under t-Prior Density

If µ is distributed as a t-distribution with n(n > 0) degrees of freedom, location parameter

µ0 and scale parameter τ , then the density function is:

h(µ) =
Γ(n+1

2
)

Γ(n
2
)

1√
nπ

1

τ

1[
1 + 1

n
(µ−µ0

τ
)2
]n+1

2

, −∞ < µ <∞, (3.2)

where E(µ) = µ0 and V ar(µ) = n
n−2 τ

2 ( −∞ < µ0 <∞ , τ > 0). It can be shown that the

larger n value or the smaller τ value, the more peaked for the distribution and as n→∞,

V ar(µ) → τ 2, which is the smallest value for V ar(µ). Theoretically, for sufficient larger

value of n, the t-distribution is back to normal distribution.

The shrinkage estimator can be obtained by taking the derivative of (3.1) with respect

to µ and letting it to be zero. The following equation is obtained:

2aµ3+(−b−4aµ0)µ
2 +(−1−n+2bµ0+2anτ 2 +2aµ2

0)µ−bnτ 2 +nµ0 +µ0−bµ2
0 = 0 . (3.3)

It can be shown that there is only one real root for this equation which is

µ(n;µ0, τ) =
1

6

J(n;µ0, τ)
2
3 − 6ag2 + g21 − g1J(n;µ0, τ)

1
3

aJ(n;µ0, τ)
1
3

, (3.4)

where:

J(n;µ0, τ) = 9ag1g2 − 54a2g3 − g31 + 3
√

3 a (8ag32 − g21g22 − 36ag1g2g3 + 108a2g23 + 4g31g3)
1
2

g1 = −b− 4aµ0

g2 = −1− n+ 2bµ0 + 2anτ 2 + 2aµ2
0

g3 = −bnτ 2 + nµ0 + µ0 − bµ2
0

a = −1

2

k∑
i=1

t211iβi
′V−1βi

b = −
k∑
i=1

t11iβi
′V−1(t11iδ̂i + t12iβ̂i − t12iβi) .
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Since the parameters βi and V are unknown, the true value of this shrinkage estimator

is unknown. However, independent estimates of βi and V are available from (2.3) and

(2.4). Thus, an empirical shrinkage estimator can be formed by replacing the estimators

from (2.3) and (2.4) into (3.4) as follows:

µ̂(n;µ0, τ) =
1

6

Ĵ(n;µ0, τ)
2
3 − 6âĝ2 + ĝ21 − ĝ1Ĵ(n;µ0, τ)

1
3

âĴ(n;µ0, τ)
1
3

, (3.5)

It can be easily proven from (3.5) that

µ̂(n;µ0, τ)→ b̂τ 2 − µ0

2âτ 2 − 1
=
b̂− µ0/τ

2

2â− 1/τ 2
as n→∞. (3.6)

which is the shrinkage Bayesian estimator (µSBE) obtained in equation (2.6). Therefore

µ̂(n;µ0, τ) → b̂
2â

= ˆ̂µ (i.e. the estimator in equation (2.8)) as n → ∞ and τ → ∞ which

is insensitive to the different specifications of the prior density and is just a function of

the data. That is to say, in this situation, this empirical shrinkage estimator from t-family

is very robust to various specifications of the prior parameters. In fact, as n → ∞, the

t-distribution is back to normal distribution and also, as τ → ∞, the empirical shrink-

age estimator µ̂(n;µ0, τ) approaches the noninformative shrinkage Bayesian estimator, ˆ̂µ,

proposed in Chen et al. (1999), which is

ˆ̂µ =

∑k
i=1 t

2
11iβ̂i

′
S−1i δ̂i∑k

i=1 t
2
11iβ̂i

′
S−1i β̂i

. (3.7)

This estimator ˆ̂µ represents a noninformative or uniform prior and can be rewritten as

ˆ̂µ =
∑k
i=1

t2
11i

ˆβi
′
S−1

i
ˆβi∑k

i=1
t2
11i

ˆβi
′
S−1

i
ˆβi
µ̂i, which is the weighted average of estimators of log relative

potency from ith bioassay, µ̂i, with the weights depending only on the maximum likelihood

estimates of the model parameters. Therefore, in the situation of no prior information, this

estimator (ˆ̂µ) is recommended.

The above outcomes strongly suggests that in the t-distribution and normal distri-

bution, the shrinkage Bayesian estimator proposed in Chen et al. (1999) is robust for

different specifications of prior distributions and approaches the noninformative shrinkage
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Bayesian estimator. However, the noninformative shrinkage Bayesian estimator ˆ̂µ is prior-

independent and possesses the advantages that ˆ̂µ is the weighted average of estimators of

log relative potency from each bioassay with the weights depending only on the maximum

likelihood estimates of the model parameters. It can be used to estimate the log relative

potency in the bioassay theory.

3.2 Robustness of Shrinkage Estimator under Cauchy Distribu-

tion

Not only is the Cauchy prior distribution the extreme situation in the Section 3.1 when

n = 1, but also it is special in the theory of bioassay. The well-known fact in bioassay

theory is that the estimated log relative potency is the ratio of two normal variables. But

the ratio of two normal variables is distributed as a Cauchy distribution. From this point

of view, the Cauchy distribution is relatively more important. In this section, the Cauchy

distribution is considered as the prior for the robustness analysis.

If µ is distributed by a Cauchy distribution, then the density function is h(µ) =

1

πτ{1+(
µ−µ0
τ

)2} , where τ > 0 is the scale parameter and µ0 (−∞ < µ0 < ∞) is the lo-

cation parameter. The same procedures as in Section 3.1 yields the shrinkage estimator:

µ(µ0, τ) = −1

6

−J
2
3
µ0,τ − 12a+ 12a2τ 2 − 4a2µ2

0 + 4abµ0 − b2 − 4aµ0J
1
3
µ0,τ − bJ

1
3
µ0,τ

aJ
1
3
µ0,τ

, (3.8)

where:

Jµ0,τ = −[36a2µ0 − 18ab+ 72a3τ 2µ0 − 36a2bτ 2 + 8a3µ3
0 − 12a2bµ2

0 + 6ab2µ0 − b3

−6
√

3a(−16a+ 4abµ0 + 80a3τ 2µ2
0 + 20aτ 2b2 + 32a4τ 4µ2

0 + 8a2b2τ 4

+16a4τ 2µ4
0 + τ 2b4 + 48a2τ 2 − 4a2µ2

0 − b2 − 48a3τ 4 + 16a4τ 6 − 80a2bτ 2µ0

−32a3τ 2bµ3
0 + 24a2τ 2µ2

0b
2 − 8aτ 2b3µ0 − 32a3τ 4bµ0)

1
2 ]

a = −1

2

k∑
i=1

t211iβi
′V−1βi

b = −
k∑
i=1

t11iβi
′V−1(t11iδ̂i + t12iβ̂i − t12iβi) .
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Then the empirical shrinkage estimator can be obtained by replacing the estimators

from (2.3) and (2.4). This results in:

µ̂(µ0, τ) = −1

6

−Ĵ
2
3
µ0,τ − 12â+ 12â2τ 2 − 4â2µ2

0 + 4âb̂µ0 − b̂2 − 4âµ0Ĵ
1
3
µ0,τ − b̂Ĵ

1
3
µ0,τ

âĴ
1
3
µ0,τ

, (3.9)

Similarly, it can be proven that

µ̂(µ0, τ)→ ˆ̂µ as τ →∞. (3.10)

In this case the empirical shrinkage estimator again approaches the noninformative shrink-

age Bayesian estimator proposed in Chen et al. (1999).

3.3 The Ideal Shrinkage Estimator

The results from both Sections 3.1 and 3.2 imply that as µ0 → ˆ̂µ, the empirical shrinkage

estimator µ̂(n;µ0, τ) in (3.5) and µ̂(µ0, τ) in (3.9) will both be robust irrespective of the

prior variance τ 2. That is to say, if the data contain sufficient information to make the

prior distribution concentrate on the prior means, or the prior distribution is chosen to

match the data “perfectly”, then the empirical shrinkage estimator is very robust to differ-

ent specifications of prior. Otherwise, if the prior disagrees sharply with the information

contained in the data, the empirical shrinkage estimator is less robust.

Therefore, to estimate the log relative potency in combination of bioassays, the plausible

procedure is to use the estimators from (2.3) and (2.4) to estimate a prior mean and

prior standard deviation on any k − 1 of k bioassays. Next utilize them as the prior

information to form the final shrinkage estimator for the last bioassay, which is robust

and has all the properties previously described. Hence, it is named as the ideal shrinkage

estimator. This ideal shrinkage estimator is superior to the general shrinkage estimator

and the noninformative shrinkage estimator because the prior distribution is formulated

from the data, yielding a more accurate estimator.
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4 Data Analysis

Data was originally from Finney (1978). In illustrating the combination of multivariate

bioassays, Meisner, Kushner and Laska (1986) artificially broke up the data into two mul-

tivariate bioassays with the first bioassay using the twelve bivariate responses from lines 1

and 3 and the second bioassay using the twelve bivariate responses from lines 2 and 4. The

summary statistics are given in Table 1 for the two assays.

Table 1: Summary Statistics of the Two Assays

Assay i β̂i δ̂i

 t11i t12i

0 t22i

 miSi

1

 16.625

−3.125

  −8.5

2.3333

 
√

3 0

0
√

8

  1475.0417 126.625

126.625 68.5417


2

 27.125

−2.5

 −15.8333

1.16667

 
√

3 0

0
√

8

  6042.7083 218.5

218.5 80.8333



As seen in Chen et al (1999), the test for equality of covariance can not be rejected

since the test statistic is 4.107, which is less than χ2
3,0.05=7.815. Consequently we can use

the pooled variance-covariance as follows:

S =

 417.653 19.174

9.174 8.299

 .

Based on these values, the noninformative shrinkage estimate for the overall log relative

potency ˆ̂µ in equation (2.8) can be calculated to be -0.590 with 95% CI as (-1.039, -0.141),

suggesting the test preparation is significantly less potent than the standard preparation

in this combination of bioassays.

To graphically illustrate the robustness analysis in Section 3, Figure 1 displays this

empirical shrinkage estimator µ̂(n; 0, τ) in equation (3.5) versus n and τ for fixed µ0 = 0

based on this data. It can be seen from Figure 1 that even though the shrinkage estimator

µ̂(n;µ0, τ) differs for different specifications of values of n, µ0 and τ , but as n and τ are
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sufficiently large enough, the empirical shrinkage estimator µ̂(n;µ0, τ) quickly approaches

the noninformative empirical Bayesian estimator ˆ̂µ in equation (2.8) and appears to be

robust irrespective of the specifications of n, µ0 and τ in t-distribution family.

n

2

4

6

8

10

tau

0.0
0.2

0.4

0.6

0.8

1.0

hatm
u

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Figure 1: µ̂(n ; 0 , τ ) as the function of n and τ with the prior of t-distribution.

Similar conclusion can be made for the empirical shrinkage estimator µ̂(µ0, τ) in equa-

tion (3.9) versus µ0 and τ as shown in Figure 2. It can be seen from Figure 2 that if

τ is sufficiently large, µ̂(µ0, τ) quickly approaches the noninformative empirical Bayesian

estimator ˆ̂µ in equation (2.8) and appears to be robust irrespective of the value at µ0. If

the prior mean µ0 → ˆ̂µ, µ̂(µ0, τ) is robust regardless of the values for τ .
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m
u0

−0.4

−0.2

0.0

0.2

0.4
tau

0.2

0.4

0.6

0.8

1.0

m
uhat

−0.5
−0.4

−0.3

−0.2

−0.1

0.0

Figure 2: µ̂(µ0, τ) as the function of µ0, τ with the prior of Cauchy distribution.
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To numerically illustrate the robustness, Table 2 gives the values of the empirical shrink-

age estimator µ̂(n, µ0, τ) in equation (3.5) for several specifications of n, µ0 and τ . In the

table, four values of n = 1, 5, 10, 50 are illustrated which are column-headed by µ̂(1, µ0, τ),

µ̂(5, µ0, τ), µ̂(10, µ0, τ) and µ̂(50, µ0, τ). The first column µ̂(1, µ0, τ) is in fact µ̂(µ0, τ) in

equation (3.9) since whenever n = 1, the t-distribution becomes the special case of Cauchy

distribution and therefore µ̂(n, µ0, τ) in equation (3.5) would be µ̂(µ0, τ) in equation (3.9).

The last column µ̂(50, µ0, τ) illustrates the empirical shrinkage estimator with large degrees

of freedom from t-distribution which would be very similar to the normal prior. Therefore

this last column would mimic the shrinkage Bayesian estimator µSBE in equation (2.6)

as proposed in Chen et al (1999). The middle two columns illustrate the t-distribution

between Cauchy and normal distributions.

In Table 2, three values of µ0 are chosen where µ0 = −0.5 is close to the noninformative

empirical estimator ˆ̂µ = −0.590 and other two values of 0 and 0.5 are chosen farther

away from ˆ̂µ. Five values of τ are chosen from 0.1 (small), 0.5, 1, 2 to 3 (large). It can be

clearly seen from Table 2 that all µ̂(1, µ0, τ), µ̂(5, µ0, τ), µ̂(10, µ0, τ) and µ̂(50, µ0, τ) rapidly

approach the ˆ̂µ = −0.590 irrespective of the different specifications of µ0 and τ . This is

especially true with µ0 = −0.5 which again indicates that when an appropriate prior is

selected, the three shrinkage estimators of µSBE in equation (2.6), µ̂(n, µ0, τ) in equation

(3.5) and µ̂(µ0, τ) in equation (3.9) could all approximate the noninformative shrinkage

Bayesian estimator ˆ̂µ in equation (2.8).

This leads to the ideal shrinkage estimator proposed in Section 3.3 to use any k − 1 of

the k bioassays as the prior information to compute a prior mean µ̂0 using equation (2.8)

and prior standard deviation τ̂0 using equation (2.9) and then utilize these values to form

the final shrinkage estimator using equations (2.6) and (2.7) with the kth bioassay. This

can be easily implemented for this data. We take the first bioassay to compute a prior

mean µ̂0 using equation (2.8) and prior standard deviation τ̂0 using equation (2.9) which

are µ̂0 = −0.654 and τ̂0 = 0.351. We can then use these values as in the normal prior to

14



Table 2: Numerical illustration of the empirical Bayesian estimator µ̂(n, µ0, τ) for different

specifications of n = 1, 5, 10, 50, µ0 = −0.5, 0, 0.5 and τ = 0.1, 0.5, 1.0, 2.0, 3.0. The

bolded values indicate µ̂(n, µ0, τ) approaches the noninformative shrinkage estimator ˆ̂µ =

−0.590.

µ0 τ µ̂(1, µ0, τ) µ̂(5, µ0, τ) µ̂(10, µ0, τ) µ̂(50, µ0, τ)

-0.5 0.1 -0.508 -0.512 -0.513 -0.514

-0.5 0.5 -0.564 -0.572 -0.573 -0.574

-0.5 1.0 -0.582 -0.585 -0.585 -0.586

-0.5 2.0 -0.588 -0.589 -0.589 -0.589

-0.5 3.0 -0.589 -0.590 -0.590 -0.590

0.0 0.1 -0.079 -0.093 -0.094 -0.094

0.0 0.5 -0.485 -0.487 -0.488 -0.488

0.0 1.0 -0.546 -0.557 -0.559 -0.561

0.0 2.0 -0.576 -0.581 -0.582 -0.583

0.0 3.0 -0.584 -0.586 -0.587 -0.587

0.5 0.1 -0.485 -0.165 0.274 0.319

0.5 0.5 -0.507 -0.451 -0.431 -0.408

0.5 1.0 -0.538 -0.537 -0.536 -0.536

0.5 2.0 -0.569 -0.574 -0.575 -0.576

0.5 3.0 -0.579 -0.583 -0.584 -0.584
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calculate a final estimate using equations (2.6) and (2.7) from the second bioassay. In this

situation, these two equations are actually reduced to:

µIdeal =
τ̂ 20 t

2
112β̂2

′
S−1δ̂2 + µ̂0

τ̂ 20 t
2
112β̂2

′
S−1β̂ + 1

(4.11)

τIdeal =

(
t2112β̂2

′
S−1β̂2 +

1

τ̂ 20

)− 1
2

. (4.12)

And they are estimated as µIdeal = −0.590 and τIdeal = 0.229 with associated 95% CI as

(-1.039,-0.141). Similarly if we take the second bioassay to compute the prior mean µ̂0 and

prior standard deviation τ̂0, we can get µ̂0 = −0.543 and τ̂0 = 0.302. Using these values

in the normal prior to calculate the final estimate using equations (4.11) and (4.12) on the

first bioassay, we can obtain µIdeal = −0.590 and τIdeal = 0.229 with associated 95% CI as

(-1.039,-0.141) which yields the exact numeric values.

All the calculations in this section are done in R (a free software available from http://www.r-

project.org) and the R program can be requested from the author.

5 Discussion

In this paper the investigation of the robustness of the shrinkage Bayesian estimator was

conducted for two commonly-known families of t-distribution and Cauchy-distribution. It

was shown that the shrinkage estimator would change for different specifications of differ-

ent prior distributions. But if the prior variance is large enough or the prior information

matches the “data”, the shrinkage estimator is robust and approaches the noninformative

shrinkage Bayesian estimator which is insensitive to different specifications of prior distri-

bution and is only data-dependent. A real data analysis demonstrated these conclusions.

As seen from the data analysis, the three shrinkage estimators from the normal distribu-

tion (in Chen et al. 1999), the t-distribution and the Cauchy-distribution approached to

the noninformative shrinkage Bayesian estimate of ˆ̂µ = −0.590 within wide range of prior

variance τ 2.

16



If the prior information is indeed available, the shrinkage Bayesian estimator proposed

in Chen et al. (1999) can be readily applied to the prior information directly and hence

a Bayesian estimator can be calculated using the procedures in this paper. Otherwise,

the ideal shrinkage estimator proposed in Section 3.3 could be adopted for the estimation

of the relative potency for combination of bioassays. This ideal shrinkage estimator was

demonstrated to be valid and applicable which also produced the same results as the

noninformative shrinkage Bayesian estimator from the real data analysis.

In fact, the procedure in this paper is very general and can be used for any specification

of the prior density. Not only can it be used for robust analysis, it can also be used to

propose different Bayesian estimators under different prior specifications. As a summary, it

can be concluded that the Bayesian approach is a recommended in the theory of bioassay.

Furthermore, this newly-developed Bayesian procedure is applicable for the combination

of univariate bioassays (Xiong and Chen 2007), combination of multivariate bioassays,

parabolic bioassays (Chen 2010), as well as combination of parabolic bioassays. It has

been shown that it is superior to some conventional methods. The robust investigation in

this paper makes a good conclusion for its properties and provides a strong recommendation

for its use. Hence, the Bayesian method is a natural way to improve the theory of bioassay.
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