The First Case of Genetically Confirmed Monozygotic Twinning in the Dog

Carolynne J. Joonè^{1,3}

Kurt G.M. De Cramer^{2,3}

Johan O. Nöthling¹

¹Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria,

Pretoria, South Africa.

²Rant en Dal Animal Hospital, Mogale City, South Africa.

³Contributed equally to this study.

Corresponding author

Email: carolynne.joone@jcu.edu.au

Present address: College of Public Health, Medical and Veterinary Sciences, Division of Tropical

Health and Medicine, James Cook University, 1 James Cook Drive, Townsville, Queensland, 4811,

Australia

Contents

Monozygotic twinning has not previously been genetically confirmed in the dog. This case report

describes the finding of two viable male monozygotic foetuses within one placental site during

caesarean section. Their umbilical cords attached to a single placenta. Genetic profiling using a

total of 38 microsatellite markers, as well as amelogenin and SRY for sex determination, revealed

identical DNA profiles, whether derived from blood or tissue (buccal swabs) samples. To the best

of our knowledge, this is the first report of monozygotic twinning in the dog confirmed using DNA

profiling.

Keywords: canine, genetic, monozygous, monochorionic

1

Introduction

Monozygotic twinning has been reported in the horse (Govaere et al. 2009), cow (Del Rio et al. 2006) and pig (Bjerre et al. 2009), and is presumed to be extremely rare in the mouse (McLaren et al. 1994) and rabbit (Bomsel-Helmreich and Papiernik-Berkhauer 1976). In contrast, the nine-banded armadillo (*Dasypus novemcinctus*), and possibly other species of the genus *Dasypus* (Loughry et al. 2015), consistently produces genetically identical quadruplets through binary fission events, lending itself to the study of the mechanism behind monozygotic twinning which is currently poorly understood (Blickstein and Keith 2007). In humans, spontaneous monozygotic twinning occurs at the rate of approximately one in 330 livebirths (Hall 2003).

Monozygotic twinning has not previously been genetically confirmed in the dog. Duke (1946) described two dog embryos within one placental site. A presumptive diagnosis of monozygotic twinning was based on the finding of a single chorion and yolk sac; each embryo having possessed its own amnion. The embryos had not yet undergone sexual differentiation.

Conjoined twinning has been reported rarely in the dog (Mainland 1929, Mazzullo et al. 2007, Nottidge et al. 2007, Paquet et al. 2011, House et al. 2012). Furthermore, the sharing of a single placental site by dizygous dog foetuses has been described rarely (Urhausen et al. 2013, Joonè et al. 2015).

Case report

A four year old, multiparous Irish wolfhound bitch was presented to a veterinary facility during second-stage labour. The bitch had had one previous litter of 10 puppies, the last five of which were delivered by emergency caesarean section. At presentation, the owner reported that the bitch had been showing tenesmus for two hours without the expulsion of a foetus. No vulvar discharge was present. Due to the extended period of unproductive tenesmus, a caesarean section was performed.

Upon exposure of the uterus, the surgeon noticed a bulge near the base of one of the uterine horns, approximately the length of a single foetus. Via a longitudinal incision into the body of the uterus, one foetus (twin A) was delivered from this section of uterus. A second foetus (twin B) was immediately noticed within the same chorionic bag. Without rupturing either pup's umbilical cord, the second pup and the placenta were delivered from the uterus. Both pups' umbilical cords, which were similar in length to the rest of the litter's, attached to the same placenta (Figure 1). Five more live, normal puppies were delivered with different placentae.

Fig. 1. Monozygotic twins A and B photographed after delivery while still connected to the single placenta via their umbilical cords.

At two weeks of age, blood samples from twins A and B were collected via jugular venipuncture into EDTA vacutainer tubes for genetic analysis. At six weeks of age, blood was similarly collected from the five non-twin members of the litter. In addition, buccal swabs were collected from twins A and B by twirling a dry swab against the inside of the cheeks for at least 15 s.

Genetic analyses were performed by the Veterinary Genetics Laboratory (VGL; University of Pretoria, South Africa). Extraction of DNA from whole blood and buccal swabs was performed using the PrepfilerTM Forensic DNA Extraction Kit (Applied Biosystems, Foster City, USA) and the Gentra Puregene Tissue Kit (Qiagen, Valencia, USA), respectively, according to the manufacturers' instructions. Genetic profiles were generated using a panel of 24 short tandem repeat (STR) microsatellite markers and the amelogenin marker for sex determination. Twenty-one of these markers and the amelogenin marker are recommended by the International Society of Animal Genetics (ISAG; http://www.isag.us/Docs/consignmentforms/2005ISAGPanelDOG.pdf, accessed 3 June 2016) for dog parentage verification. A further three markers augmented the panel. Primer design, chromosome position, number of alleles and fragment size ranges have been described previously (Pedersen et al. 2012). Polymerase chain reaction (PCR) for this panel consisted of an initial activation step of 10 min at 95°C, followed by 30 cycles of 95°C for 60 s, 56°C for 30 s and 72°C for 60 s. A further panel consisting of 14 tetranucleotide STR microsatellite markers and a marker for the SRY gene was also utilised. Primer design and PCR conditions were as previously described (Wictum et al. 2013). Polymerase chain reaction was performed using a 9800 Fast Thermal Cycler (Life Technologies, Johannesburg, South Africa), followed by capillary electrophoresis by an ABI 3500 XL Genetic Analyser (Life Technologies). Fragment sizes for each marker were evaluated using the software program STR and Version 2.4.49 (University of California, Davis, USA; Toonen and Hughes 2001).

Results

Twins A and B were phenotypically normal males. At birth, twins A and B weighed significantly less (t test; P < 0.001) than their five littermates, however this difference had lost statistical significance by the age of 6 weeks (P = 0.32; Table 1). Although remarkably similar in physical appearance, they showed slight differences in terms of the size and shape of white markings on the chest, lower legs and the tip of the tail (Figure 2).

Table 1. Weights of twins A and B and their littermates, at birth and at the age of six weeks.

Puppy	Weight (g) at birth	Weight (kg) at six weeks of age		
Brindle male	755	6.0		
Brindle female	743	5.9		
Light female	723	5.5		
Dark brindle male	790	6.9		
Dark brindle female	777	6.1		
Twin A	450	5.5		
Twin B	530	5.8		
Mean (Twins A and B)	$490^{\rm a}$	5.7 ^a		
Mean (Non twins)	758^{b}	6.1 ^a		

Means bearing different superscripts within a column differ significantly (P < 0.05)

Fig. 2. Monozygotic twins A and B photographed with their dam at six weeks of age. Note the differences in the white markings on the chest and paws.

The DNA profile derived from whole blood matched that derived from tissue (buccal swabs) for each twin, A and B. Further, the DNA profiles of twins A and B were identical at all 40 genetic markers. The DNA profiles of all seven littermates are shown in Table 2. Excluding the comparison between twins A and B, at which no loci were different, the genetic profiles of the littermates differed at a median of 14 loci (range 8 to 20), excluding amelogenin and SRY.

Table 2. Genetic profiles derived from seven littermates including monozygotic twins A and B

Locus	Light female	Brindle male	Brindle female	Dark brindle male	Dark brindle female	Twin A*	Twin B*
AHT121	104	96,104	96,104	96,104	96,104	96,104	96,104
AHT137	131	131	131	_	131	131	131
AHTh130	129	129	129	129	129	129	129
AHTh171	219	219	219	219	219	219	219
AHTh260	244	244	244	_	244	244	244
AHTk211	91	91	91	91	91	91	91
AHTk253	288,292	288,292	288,292	288,292	288,292	288	288
AMEL	XX	XY	XX	_	XX	XY	XY
CXX279	118,122	122,124	122	122	122,124	122	122
FH2001	136,148	148	136,148	136,148	136,148	148	148
FH2054	156,172	156,172	156,172	156,172	172	172	172
FH2328	200	200,204	200	200,204	200	200	200
FH2848	_	_	_	_	_	238,242	238,242
INRA21	99,101	99,101	99,101	99,101	99,101	99,101	99,101
INU005	124,132	124,132	124,132	132	124,132	132	132
INU030	144,152	144,152	144	_	144,152	144,152	144,152
INU055	214,218	214,220	214,220	_	214,220	218,220	218,220
LEI004	95	95	95	_	95	95	95
REN105LO3	231,241	231	231,241	_	231,241	231	231
REN162C04	202	202	202	202	202	202	202
REN169D01	216	216	216	_	216	216	216
REN169O18	164,168	162,164	164,168	164,168	162,164	164,168	164,168
REN247M23	268,278	268,278	278	_	268,278	278	278
REN54P11	228,236	228,240	228,236	228,236	228,240	228,240	228,240
REN64E19	147,153	145,149	145,149	145,149	149,153	145,147	145,147
SRY	_	Y	_	Y	_	Y	Y
VGL0760	21.1	21.1	21.1	21.1	21.1	21.1	21.1
VGL0910	17.1	17.1	17.1	17.1	17.1	17.1	17.1
VGL1063	17.3,18.3	13,18.3	13,18.3	13,18.3	13,18.3	13,17.3	13,17.3
VGL1165	29,30	16,30	29,30	29,30	29,30	16,30	16,30
VGL1541	18	17,18	17	17,18	18	17	17
VGL1828	20	20,21	20	20	20,21	20,21	20,21

VGL2009	9	9,15	9,15	9	9	15	15
VGL2136	15	15,16	15,16	15	15	15,16	15,16
VGL2409	19	18,19	19	18,19	19	18,19	18,19
VGL2918	21,22	22,24	21,23	23,24	21,22	21,23	21,23
VGL3008	12	12	12	12	12	12	12
VGL3112	14	13	13	13	13	14	14
VGL3235	13,16	13,16	12,13	12,13	13,16	12,13	12,13
VGL3438	14	14,17	14,17	14	14	14,17	14,17

Data shows DNA fragment lengths, in base pairs, produced for 40 genetic markers including amelogenin and SRY for sex determination. *The profiles generated from blood and tissue samples for twins A and B were identical, therefore no distinction is made between blood or tissue samples for these individuals. –, indicates a marker that failed to amplify.

Discussion

The current study describes the finding of viable, monochorionic, monozygotic littermates in the dog. In polytocous species such as the dog, all littermates are essentially twins, triplets, quadruplets and so on, depending on the size of the litter. Thus the term "twin", herein used to refer to the monozygotic "twins" only, should be used with care in these species.

This study made use of 38 STR microsatellite markers as well as markers for amelogenin and SRY, exceeding the eight and twelve microsatellite markers previously used to determine monozygosity in bovine and equine twins, respectively (Del Rio et al. 2006, Govaere et al. 2009). All 40 loci showed absolute identity between twins A and B. This, together with the finding of both foetuses within one placental site during caesarean section, provides strong evidence for monozygosity.

The profiling of DNA derived from buccal swabs, essentially tissue samples, ruled out the possibility of blood chimaerism as an explanation for identical genetic profiles derived from two blood samples. In a previous report of blood chimaerism in two dog foetuses, the finding of more than two alleles at multiple loci on DNA profiles derived from blood samples alerted workers to the possibility of cross-foetus mixing of the blood supplies *in utero*. Subsequent profiling of tissue

samples provided dissimilar genetic profiles, with no more than two alleles present per marker (Joonè et al. 2015). In the current study, the blood- and tissue-derived profiles for each individual were identical. In addition, no loci in either the blood- or tissue-derived profiles showed more than two alleles.

In human monozygotic twins, examination of the foetal membranes has been suggested to indicate the timing of the twinning event (Hall 2003). Due to time constraints involved in the delivery of living puppies, the surgeon was unable to assess whether twins A and B were within a single amnion at delivery—precluding any useful estimation of the timing of embryonic fission in the current study.

Conjoined monozygotic twins are believed to arise from the incomplete splitting of an embryo after formation of the primitive streak has begun. In humans, one in 400 monozygotic twins are reportedly conjoined (Hall 2003). According to Gupta et al. (2001), one to 2 percent of human conjoined twins are asymmetric (referred to as heteropagus). Logrono et al. (1997) found that, in a case of human heteropagus conjoined twinning, the parasite and autosite were dizygous; presumably resulting from the fusion of two conceptuses. Thus, conjoined twins may be monozygotic due to fission, but need not be. Conjoined twinning has been reported rarely in the dog (Mainland 1929, Mazzullo et al. 2007, Nottidge et al. 2007, Paquet et al. 2011, House et al. 2012) and no DNA analyses were performed in the described cases. Nevertheless, the small number of cases of conjoined twins in dogs reported in the literature, most of which describe symmetrical conjoined twinning involving a degree of posterior duplication, suggest that monozygotic twinning in the dog is rare or that splitting events giving rise to conjoined monozygotic twins are rare in this species.

The monozygotic puppies described in the current study were viable and vigorous at birth, despite having shared a placental site. This finding contrasts to previous reports of two dog foetuses within one placental site, where death of the foetuses was detected 52 days after ovulation (Urhausen et al.

2013) and at term (Joonè et al. 2015). Therefore, the sharing of a placental site may not be incompatible with survival to term and beyond, as suggested previously (Joonè et al. 2015).

Of interest in this case report is the slight differences observed between the monozygotic twins in the white markings on the paws, the tip of the tail and the chest. Similar findings have been described in monozygotic twin horses and cattle (Ozil 1983, Allen and Pashen 1984), as well as in cloned dogs (Hossein et al. 2009). Woolf (1995) concluded that stochastic events during development resulted in different white colour markings among the legs of horses in spite of the legs having had the same genotype and having developed in the same environment. We do not know whether such stochastic events caused the phenotypic differences between the twins of the current case. Wong et al. (2005) concluded that variation in phenotype due to epigenetic differences is smaller in monozygotic twins than in isogenic dizygotic twins because monozygotic twins share an oocyte and, thereby, have a larger shared epigenomic background than isogenic dizygotic twins. Wong et al., nevertheless, concluded that epigenetic differences between monozygotic twins do occur. It is not known whether epigenetic differences would explain the colour differences between the monozygotic twins in the current case. Given that dog littermates often look strikingly similar, slight phenotypic differences between monozygotic dogs would effectively mask their monozygosity, and may have played a role in this phenomenon having gone undetected until now.

For genetic identification and parentage analysis purposes, this study shows that dogs with identical genetic profiles, although likely rare, do exist. Bitches may have more conceptuses in the litter than they have corpora lutea (Andersen and Simpson 1973, Bysted et al. 2001). One cause for this may be multiovular follicles (Telfer and Gosden 1987, Reynaud et al. 2009) from which more than one oocyte may be fertilised. The current case confirms that monozygotic twins is another possible reason for finding more conceptuses than corpora lutea in bitches.

Conclusion

This report describes the finding of monozygotic twinning in the dog, confirmed by DNA

profiling. To the best of our knowledge, this is the first report of confirmed monozygotic twinning

in the dog.

Acknowledgements

The authors would like to thank the National Research Foundation of South Africa for funding the

cost of the DNA analysis.

Author contributions

CJ Joonè wrote the manuscript. KGM De Cramer and JO Nöthling assisted in drafting manuscript

up to the final drafts. KGM De Cramer performed data collection.

Conflicts of interest

Conflicts of interest: none

References

Allen W, Pashen R, 1984: Production of monozygotic (identical) horse twins by embryo micromanipulation.

J Reprod Fert **71**, 607-613.

Andersen CA, Simpson ME, 1973: The ovary and reproductive cycle of the dog (beagle). Geron-X, INC.,

Los Altos, California.

Bjerre D, Thorup F, Jørgensen CB, Vejlsted M, Fredholm M, 2009: A study of the occurrence of

monochorionic and monozygotic twinning in the pig. Anim Genet 40, 53-56.

Blickstein I, Keith LG, 2007: On the possible cause of monozygotic twinning: lessons from the 9-banded

armadillo and from assisted reproduction. Twin Res Hum Genet 10, 394-399.

Bomsel-Helmreich O, Papiernik-Berkhauer E, 1976: Delayed ovulation and monozygotic twinning. Acta

Genet Med Gemel 25, 73-76.

Bysted B, Dieleman S, Hyttel P, Greve T, 2001: Embryonic developmental stages in relation to the LH peak

in dogs J Reprod Fertil Suppl 57, 181-186.

10

- Del Rio NS, Kirkpatrick B, Fricke P, 2006: Observed frequency of monozygotic twinning in Holstein dairy cattle. Theriogenology **66**, 1292-1299.
- Duke KL, 1946: Monozygotic twins in the dog. Anat Rec 94, 35-41.
- Govaere J, Hoogewijs M, De Schauwer C, Van Zeveren A, Smits K, Cornillie P, De Kruif A, 2009: An abortion of monozygotic twins in a warmblood mare. Reprod Domest Anim **44**, 852-854.
- Gupta D, Lall A, Bajpai M, 2001: Epigastric heteropagus twins–a report of four cases. Pediatr Surg Int 17, 481-482.
- Hall JG, 2003: Twinning. Lancet 362, 735-743.
- Hossein MS, Jeong YW, Park SW, Kim JJ, Lee E, Ko KH, Kim HS, Kim YW, Hyun SH, Shin T, 2009:

 Cloning missy: obtaining multiple offspring of a specific canine genotype by somatic cell nuclear transfer. Cloning Stem Cells 11, 123-130.
- House J, Barrand K, Cornillie P, 2012: A case of epigastric heteropagus twinning with other congenital abnormalities in a Chihuahua puppy. Vlaams Diergen Tijds **81**, 168-173.
- Joonè CJ, De Cramer KGM, Nöthling JO, 2015: Dizygotic monochorionic canine fetuses with blood chimaerism and suspected freemartinism. Reprod Fert Develop.
- Logrono R, Garcia-Lithgow C, Harris C, Kent M, Meisner L, 1997: Heteropagus conjoined twins due to fusion of two embryos: report and review. Am J Med Genet **73**, 239-243.
- Loughry WJ, Superina M, McDonough CM, Abba AM, 2015: Research on armadillos: a review and prospectus. J Mammal **96**, 635-644.
- Mainland D, 1929: Posterior duplicity in a dog, with reference to mammalian teratology in general. J Anat **63**, 473.
- Mazzullo G, Monteverde V, Macri F, Partanna S, Caracappa S, 2007: Incomplete caudal duplication in a puppy: gross and radiological observations. J Small Anim Pract **48**, 410-413.
- McLaren A, Molland P, Signer E, 1994: Does monozygotic twinning occur in mice? Genet Res 66, 195-202.
- Nottidge H, Omobowale T, Olopade J, Oladiran O, Ajala O, 2007: A case of craniothoracopagus (monocephalus thoracopagus tetrabrachius) in a dog. Anat Histol Embryol **36**, 179-181.
- Ozil J, 1983: Production of identical twins by bisection of blastocysts in the cow. J Reprod Fert 69, 463-468.
- Paquet M, El-Warrak AO, Laguë M-N, Boerboom D, 2011: Atypical caudal duplication with phenotypic sex reversal in a dog. J Vet Diagn Invest 23, 1037-1040.

- Pedersen NC, Liu H, Greenfield DL, Echols LG, 2012: Multiple autoimmune diseases syndrome in Italian Greyhounds: Preliminary studies of genome—wide diversity and possible associations within the dog leukocyte antigen (DLA) complex. Vet Immunol Immunop **145**, 264-276.
- Reynaud K, Viaris de Lesegno C, Chebrout M, Thoumire S, Chastant-Maillard S, 2009: Follicle population, cumulus mucification, and oocyte chromatin configuration during the periovulatory period in the female dog. Theriogenology **72**, 1120-1131.
- Telfer E, Gosden RG, 1987: A quantitative cytological study of polyovular follicles in mammalian ovaries with particular reference to the domestic bitch (*Canis familiaris*). J Reprod Fert **81**, 137-147.
- Toonen RJ, Hughes S, 2001: Increased throughput for fragment analysis on an ABI Prism® 377 automated sequencer using a membrane comb and STRand software. Biotechniques **31**, 1320-1325.
- Urhausen C, Wolf K, Frohn N, Bolling A, Beineke A, Barthel Y, Piechotta M, Dierks C, Philipp U, Einspanier A, 2013: Monochorial-diamniotic twins in a German Shepherd Dog: A case report. Reprod Biol 13 34-35.
- Wictum E, Kun T, Lindquist C, Malvick J, Vankan D, Sacks B, 2013: Developmental validation of DogFiler, a novel multiplex for canine DNA profiling in forensic casework. Forensic Sci Int-Gen **7**, 82-91.
- Wong AH, Gottesman II, Petronis A, 2005: Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum Mol Genet **14**, R11-R18.
- Woolf C, 1995: Influence of stochastic events on the phenotypic variation of common white leg markings in the Arabian horse: implications for various genetic disorders in humans. J Hered **86**, 129-135.