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Abstract – Small hive beetles (SHBs) are generalists native to sub-Saharan Africa and reproduce in association
with honeybees, bumblebees, stingless bees, fruits and meat. The SHB has recently become an invasive species, and
introductions have been recorded from America, Australia, Europe and Asia since 1996. While SHBs are usually
considered a minor pest in Africa, they can cause significant damage to social bee colonies in their new ranges.
Potential reasons for differential impact include differences in bee behaviour, climate and release from natural
enemies. Here, we provide an overview on biology, distribution, pest status, diagnosis, control and prevention to
foster adequate mitigation and stimulate future research. SHBs have become a global threat to both apiculture and
wild bee populations, but our knowledge of this pest is still limited, creating demand for more research in all areas of
its biology.
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1. INTRODUCTION

In recent decades, the frequency of biological
invasions and their impact on both agriculture and
natural ecosystems have increased to an unprece-
dented level, thereby stimulating a multitude of
research projects (Nentwig 2007). The small hive
beetle (SHB), Aethina tumida (Coleoptera:
Nitidulidae; Figure 1) constitutes an example of
such an invasive species, and it can have a signif-
icant impact on apiculture as well as on wild and
feral bee populations. Prior to 1998, there was
only very limited knowledge of SHB (reviewed
by Hepburn and Radloff 1998). This has changed

dramatically since the first significant damage to
apiculture was noted outside its endemic range
(cf. Neumann and Elzen 2004). Here, we review
the recent literature on the SHB. Please refer to
Hood (2004), Neumann and Elzen (2004), Ellis
and Munn (2005), Calderón Fallas et al. (2006)
and Ellis and Hepburn (2006) as sources of refer-
ences up to December 2005. We will focus on
examining the more proximate aspects of the bi-
ology of the beetle as well as on diagnosis and
control, which is crucial to understand the inva-
sion process and to mitigate its consequences.

2. THE LIFE CYCLE OF SMALL HIVE
BEETLES

The SHB belongs to the coleopteran family
Nitidulidae, which consists of >2500 described
species globally (Habeck 2002). Nitidulid beetles
can reproduce on a large variety of different food
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sources, mostly of plant origin and most often
after fungal invasion, such as trees with fungi,
fresh, rotten and dried fruits and grain, plant
fermented juices; however, many Nitidulids are
associated with flowers and very rarely with min-
ing of leaves, carrion and crops (Kirejtshuk
1994a, b, 1997; cf. Neumann and Elzen 2004).
While some Aethina species visit and develop in
blooming plants (mainly anthophagous species of
the subgenus Circopes Motschoulsky 1858, e.g.
Aethina concolor , Buchholz et al. 2008), others

are feeding on fungi (mycetophagous, e.g.
Aethina suturalis , Park et al. 2014), but most of
them are connected with a variety of decaying
substrates of plant origin (Kirejtshuk 1994a, b,
1997; Kirejtshuk and Lawrence 1999). It is there-
fore not surprising that SHB can also exploit a
range of different food sources for maintenance
and reproduction. Here, we focus on aspects
necessary to control the beetle; other features
on morphology and natural history are report-
ed in more detail elsewhere (Lundie 1940;
Schmolke 1974; Hepburn and Radloff 1998;
cf. Hood 2004; cf. Neumann and Elzen 2004).
An overview of the SHB life cycle and of the
biotic and abiotic factors influencing adult
beetle maintenance and reproduction is given
in Table I and Figures 2 and 3. In brief, adult
SHBs emerging from the soil can infest colo-
nies of social bees as individuals or swarms
(Neumann and Elzen 2004; see Figure 3 and
Table II). Alternatively, but not mutually ex-
clusive, SHBs can utilize food sources outside
of colonies. Both inside and outside of colo-
nies, adult SHB can maintain themselves and
reproduce. When SHB larvae have reached
the post-feeding, so-called wandering stage,
they leave the food sources for pupation in
the soil. After pupation, adult SHBs leave the
soil to complete their life cycle.

Evidence has emerged that various factors can
impact the survival and reproduction of SHBs
(Figure 2): Intraspecific factors are competition
for food (Meikle et al. 2012), cannibalism (both
adults and perhaps larvae can eat dead and weaker
conspecifics and eggs; Neumann et al. 2001b),
multiple mating (both males and females have
been observed to copulate multiple times; J.
Pe t t i s and P. Neumann , unpub l i s hed
observations; Mustafa 2015, but genetic
evidence for polyandry is lacking), aggregation
of adults (Neumann and Elzen 2004; Spiewok
et al. 2007; Mustafa et al. 2006; Torto et al.
2010a; Mustafa 2015) and larvae (on combs and
in corners of brood box; Hood 2011). Interspecific
biotic factors include interactions with adult and
immature host bees (cf. Neumann and Elzen
2004; Neumann et al. 2013; Pirk and Neumann
2013), human activity (e.g. IPM; Ellis 2005a, b;
Hood 2011), low sanitation in honey houses

Figure 1. Small hive beetle life stages. a Adult: 5–7-
mm long and 2.5–3.5-mm wide, characteristic Bclub-
shaped^ antennae, short elytra (wing buds) = abdomen
is exposed (picture: Nelles Ruppert). b Eggs laid in
capped honeybee worker brood: creamy white, about
1/3 the size of honeybee eggs (picture: M. Schäfer). c
Wandering larvae: ~1-cm long, creamy white, three
pairs of long forelegs, a row of spines on the dorsal side
of each body segment and two large spines protruding
from the rear (picture: M. Schäfer). d Pupae: creamy
white to light brown, ~5-mm long (picture: Anna
Röttger).
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Table I. Small hive beetle life stages.

Life stage Duration Comments

Adults 1–12, probably up to 16 months in
laboratories (Somerville 2003)

Females die quickly when ovipositing
on a daily basis

Eggs 24 h to 3 days Optimal humidity of >65 % and >30 °C leads to rapid
egg hatch in as little as 24 h; relative humidity of 34 %
prevented egg survival (Annand 2011b)

Feeding larvae 3–10 days Protein composition of diet dictates feeding and growth rate

Wandering larvae May live for up to 61 days without
food (Meikle and Diaz 2012)

Aggregating larvae have been observed to stay
in colonies for more than 20 days prior to
moving to soil

Pupae 13 to 25 days Temperature and soil moisture and type
determine length of pupation

Figure 2. Life cycle of the small hive beetle (SHB). Adult maintenance and reproduction (dotted lines and dotted
boxes ) occur inside and outside of social bee colonies and pupation in the soil (dark brown ). Biotic factors (green
boxes ) and abiotic factors (orange boxes ) can impact SHB survival and reproduction. Adult SHBs emerging from
the soil (1 .) infest colonies of social bees (2. ) as individuals or swarms or approach food sources outside of colonies
(3. ), where they feed and reproduce. Then, wandering larvae leave the food sources for pupation in the soil (4. ).
After pupation, adult SHBs leave the soil and close the life cycle. Biotic factors such as intraspecific SHB
interactions (dotted lines ; a. ), interspecific interactions (solid lines ) with adult and immature host bees (b. ), humans
(c. ), natural enemies (d. ) and competitors (e. ) as well as abiotic factors (temperature, humidity, soil texture, salinity,
pH value) can enhance or limit SHB survival and reproduction.
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(Spiewok et al. 2007), natural enemies (e.g.
Buchholz et al. 2008; Arbogast et al. 2010) and
competitors (e.g. wax moth (Spiewok et al.
2006b) or fruit flies (Buchholz et al. 2008).
Abiotic factors are temperature, texture, salinity,
pH value and humidity, particularly during pupa-
tion (Ellis et al. 2004d; Meikle and Diaz 2012).

2.1. Inside colonies

Nests of social bees not only provide compar-
atively rich food resources for SHBs but also
protection from a range of environmental hazards
(Michener 1974; Hepburn and Radloff 1998), e.g.
almost half of the SHB population (44 %) was
recorded outside hives during hot months, but

during cooler times, SHB populations were pre-
dominantly within hives (Annand 2011b).
However, in such nests, SHBs are facing defences
from the host workers (Figure 3), thereby
resulting in a trade-off scenario between highly
rewarding food and the danger of injury.
Therefore, it appears as if behavioural interactions
between host bees and SHBs (Tables II and III)
are of prime importance to understand the biology
of A. tumida .

2.1.1. Apis spp.

It is well established that SHBs can maintain
themselves and reproduce in colonies of African
(Lundie 1940), Africanized (Loza et al. 2014) and

Figure 3. Schematic overview of small hive beetle (SHB) infestation of a virtual honeybee nest in a tree with honey
frames, brood nest and debris. An overview of behavioural interactions between host bees and SHBs is given: 1 .
SHB intrudes vs. guard bees (first line of colony defence); 2 . SHBs roam and bees attack in the colony; 3 . SHBs
retreat into hiding, bees guard, feed SHBs and build prisons; 4 . SHBs try to intrude honey frames and/or brood nest
for food and reproduction and patrolling bees intercept SHBs (second line of colony defence); 5 . Intruded SHBs lay
eggs on frames and bees eat eggs, remove/kill larvae and carry larvae out of colony (third line of colony defence). 6 .
Cryptic SHB reproduction in sealed honeycomb; 7 . SHB destructive mass reproduction = colony defence failed or
absent; 8 . Majority of adult SHBs on the bottom; 9 . SHBs feed and reproduce in debris. 10 . During cooler weather,
SHBs get closer into nest. 11 . Overwintering in winter cluster, bees both feed and attack beetle. Arrows indicate
movement directions (SHB: black irregular = adult, light grey = larva, white ovals = eggs; dark grey irregulars =
honeybee workers; black oval = propolis). Please note that events are not simultaneous, e.g. 7. and 11.

430 P. Neumann et al.



Table II. Overview of small hive beetle behaviours. Please refer to Neumann and Elzen (2004) and Neumann et al.
(2013) for further references. A brief description is provided.

Adults

Behaviour Description

Flying Actively flying. Accurate estimates of speed and maximum
possible distance are lacking so far

Host colony finding Detection of host colonies, possibly under stress (disease,
management) from a distance of ~13–16 km

Host colony intrusion Intrusion of strong colonies as well as weak ones with equal impunity

Aggregation Flying as swarms and non-random distribution among infested colonies
(not correlated with colonial phenotypes, Spiewok et al. 2007). Aggregating
inside infested hives (Spiewok et al. 2007), especially on bottom boards
(Neumann and Hoffmann 2008; Torto et al. 2010b). Attractions of adults
to each other (Mustafa et al. 2006) and mating in aggregations (Mustafa 2015),
but possible cues are unknown (pheromones?)

Hiding In small cracks, under bottom boards or in cells. During inspections, adult
SHB are quickly moving from one hiding place to another one nearby.

Mating Males mount females, then copulation occurs, both males and females
may mate multiple times and SHBs only copulate in aggregations
and sexual behaviours reaches its peak at the ages from 2 to
3 weeks (Mustafa 2015)

Turtle defence posture Attacked SHB retreat head underneath pronotum, press antennae and
legs tightly to the body

Walking Moving around (<5 mm/s without being chased by a SHB or worker)

Running Moving fast (>5–10 mm/s), without being chased by a SHB or worker

Flee Moving fast (>5–10 mm/s), while being chased by (a) a fellow SHB,
(b) by a worker and (c) by more than one worker

Dropping from frame Deliberately dropping from combs to escape pursuit by (a) a fellow SHB,
(b) by a worker and (c) by more than one worker

Antennating with a SHB Antennal contact with one or more SHB

Antennating with worker Antennal contact with any bee (e.g. with a guard bee at a confinement
site or prison, Ellis 2005c)

Trophallactic contact Obtaining a drop of food from an adult honeybee worker that is presenting
food between its mandibles (Ellis et al. 2002d), which is innate and success
increases with experience (Neumann et al. 2015)

Interfering with other SHB
trophallactic contact

Obtaining food while another SHB gets fed, similar to Braula coeca
(Neumann et al. 2015)

Oviposition In batches (10–30 plus, Stedman 2006) in nests of Apis mellifera :
cracks and crevices, cells with pollen cells preferred, underneath sealed
brood cells (Ellis et al. 2003a, e; Ellis and Delaplane 2008a, b); Bombus
impatiens nests: attached to brood pots (Hoffmann et al. 2008); on fruits
(Buchholz et al. 2008), and on decaying meat (Buchholz et al. 2008);
Oviposition can be stimulated by proteins (pollen and yeast) in SHB diet
(Haque and Levot 2005)

Feeding Feeding on (a) pollen, (b) honey/nectar, (c) honeybee larvae, (d) a dead honeybee,
(e) a dead conspecific SHB, (f) a freshly emerged live honeybee worker
(Pirk and Neumann 2013) and (g) fruits (Buchholz et al. 2008)

Mount a bee Mounting a honeybee workers’ abdomen and
cutting with the mandibles
through the tissue between the tergites
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European honeybees, Apis mellifera (cf.
Neumann and Elzen 2004). SHBswere also found
in Apis cerana colonies in the Cairns area of
Australia (an established incursion, as this species
is not endemic there) but is no longer monitored
for (R. Spooner-Hart, personal communication).
However, it is currently unknown what the poten-
tial impact on the other cavity nesting or open
nesting species will be. So far, besides Australia,
there is also an overlap between SHBs and Apis
florea in Africa (Bezabih et al. 2014) and recently
with other Apis species in Asia (Brion 2015; see
Figure 4), but to date, there is no information
available on the potential impact of SHBs on these
other Apis species.

In contrast to African honeybee subspecies,
even strong colonies of European honeybee
subspecies can be taken over and killed by
SHBs within less than 2 weeks (Neumann
et al. 2010). Thus, successful SHB reproduc-
tion seems to be more common in strong
European colonies compared to African ones.
Even though the SHB larvae are the most
destructive life stage, the presence of adult
SHBs also reduces flight activity in Western
honeybees (Ellis et al. 2003b; Ellis and

Delaplane 2008a). Differences between honey-
bees of European origin have been reported in
the USA, with higher mortality of colonies of
Italian origin compared to those with a
Russian origin in October, when SHB peak
infestations were observed (de Guzman et al.
2006, 2010). However, Russian and Italian
bees did not differ significantly with respect
to detection and removal of brood infested
with eggs and larvae of SHBs (de Guzman
et al. 2008).

Tug of war: interactions between host bees and
small hive beetles An overview of SHB and host
bee behaviours is given in Figure 3 as well as in
Tables II and III. Colonies can rely on three lines
of defence:

First line of defence: guard bees at the hive
entrance
Although SHBs usually invade weak and
strong colonies with equal impunity (Lundie
1940), fewer adult SHBs were reported from
colonies with modified entrances (Ellis et al.
2002a). This suggests that guard bees can, in
principal, limit SHB invasion (Figure 3).

Table II (continued)

Adults

Behaviour Description

Larvae

Behaviour Description

Phototaxis Feeding phase: negative; wandering phase: positive and
negative once in soil (P. Neumann, unpublished data)

Mining Larvae mine sealed combs similar to wax moth larvae (Neumann
and Hoffmann 2008)

Feeding choice Migration towards preferred food stuff (Buchholz et al. 2008)

Feeding Feeding on (a) pollen, (b) honey/nectar, (c) honeybee larvae,
(d) a dead honeybee, (e) alive or dead conspecific eggs, larvae or
adult SHBs (P. Neumann, K. Merkel, D. Hoffmann, J. Pettis,
unpublished data; but see Meikle et al. 2012), (f) fruits
(Keller 2002; Buchholz et al. 2008) and (g) beef schnitzel (Buchholz et al. 2008).

Migration Wandering larvae leave food source for pupation in the soil singly

Aggregation Accumulating on combs or in corners of infested hives
(Hood 2011) or mass migration out of hives (P. Neumann,
unpublished observations)
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Thus, efficacy of African guard bees to inter-
cept SHB might be enhanced, not only
because they can be more aggressive towards
SHB (cf. Neumann and Elzen 2004) but also
because those subspecies use ample propolis
to limit the size of the entrance and chances
of colony invasion (Hepburn and Radloff
1998). The Cape honeybee, Apis mellifera
capensis , exhibits a unique fan-blowing
behaviour to repel ants at the nest entrance,
but SHB adults were removed by mauling
and expulsion (Yang et al. 2010). In
Australia, the greatest number of SHBs entered
hives in the 2 h prior to nightfall (Annand
2011b), which is in line with earlier reports of
activity at dusk (cf. Neumann and Elzen 2004).

Second line of defence: host workers patrol-
ling the nest and guarding combs
The protection of combs (patrolling behav-
iour) seems particularly well expressed in the
brood area of the colony but less well
expressed in the outer frames and honey su-
pers (Schmolke 1974; Solbrig 2001;
Figure 3). In colonies, SHB distribution is
influenced by the presence of bees with more
SHBs in the brood nest in the absence of bees
(Spiewok et al. 2007). We conclude that pro-
tection of the comb area via patrolling bees
and thus the ratio of bee numbers to nest area
are key factors for host colony resistance.
Third line of defence: removal of eggs and
larvae by host workers

Table III.Overview of honeybee behaviours towards small hive beetles. Please refer to Neumann and Elzen (2004)
and Neumann et al. (2013) for further references. A brief description is provided.

Behaviour Description

Aggression Workers attack both the adults and larvae trying to bite or sting, but
usually with only little success for SHB adults (<1 % Neumann et al. 2015).
However, risk of SHB injury is not zero (decapitation and/or
extremities removed)

Guarding Fewer SHB intruded colonies with reduced entrances, suggesting
that guard bees can limit SHB intrusion

BCorralling^ SHB are confined into specific corners, preventing them from moving freely
over the combs

Social encapsulation SHBs are often encapsulated in propolis confinements. While some
workers add propolis around detected hidden or corralled SHB
and can completely encapsulate them, others are continuously guarding
(Ellis et al. 2004a, b, c)

Trophallactic feeding See Table II

Patrolling Only few SHB can be seen on the combs of strong colonies, indicating
that such colonies are able to prevent SHB intrusion in the comb area
at least to some degree by guarding this area. This comb-guarding behaviour
(patrolling) seems to be more efficient in strong colonies due to the higher
density of bees in the nest and particularly well expressed in the brood area
of the colony but less well expressed in the outer frames and honey supers
(Spiewok et al. 2007). This might explain why adult beetles may oviposit
on outer frames and why larvae can appear on them after transport to the honey
house. It appears as if the host becomes alerted by newly intruded beetles

Removal of eggs SHB eggs are eaten by workers (Neumann and Härtel 2004), both
protected underneath cell cappings (Ellis et al. 2003a, e) or in gaps
and unprotected ones

Removal of larvae Workers can carry larvae out of the hive at some distance
(Neumann and Härtel 2004). Appears to be efficient in strong colonies

Absconding When heavily infested with SHBs, both African and European
honeybee colonies abscond (Hepburn and Radloff 1998; Villa 2004)
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Given that adult SHBs were able to bypass
patrolling workers and intrude the comb area,
they may oviposit on the combs (Figure 3 and
Table II). Honeybeeworkers can then remove
eggs or hatched larvae (Table III), but SHBs
may oviposit in gaps thereby protecting their
offspring (Neumann and Härtel 2004). Given
that the third line of colony defence fails,
SHBs may start the so-called mass reproduc-
tion which can result in the full structural
collapse of the entire nest (Hepburn and
Radloff 1998; Neumann et al. 2010).
To prevent mass reproduction, adult bees can
either prevent egg laying all together or detect
and remove eggs once laid. One means to
prevent egg laying is the social encapsulation

of Bcorralled^ SHBs (Neumann et al. 2001b),
which may be due in part to more abundant
propolis usage by African honeybees.
Indeed, the numbers of confinements per col-
ony and encapsulated beetles in these prisons
were lower in European colonies (Ellis et al.
2003c) than in African ones (Neumann et al.
2001b). However, European honeybees
guard beetle prisons significantly longer than
Cape honeybees (Ellis et al. 2003d). African
bees are more aggressive towards SHBs
(Neumann and Elzen 2004). Therefore,
African prison guards may be more efficient
in preventing beetle escape.
Even if aggression by host workers is not
very effective in killing beetles, it seems to

Figure 4. Global distribution and reported introductions of small hive beetles up to November 2015. Please refer to
Neumann and Elzen (2004) and Neumann and Ellis (2008) for further references up to December 2008. Endemic
distribution range in sub-Saharan Africa (dark grey areas ), countries with well-established invasive populations
(USA,Mexico, Cuba, Jamaica, Australia (medium grey areas ), Canada (only Essex county, Ontario, Dubuc 2013; P.
Giovenazzo, personal communication, dark grey circle ) and not well established ones (Egypt, light grey area); new
records in endemic range (black areas : Benin, Mensah et al. 2007; Burkina Faso, M'Peindagha Bongho 2009;
Madagascar, Rasolofoarivao et al. 2013) and introductions (white circles ) are shown: (1 ) 1996, Charleston, South
Carolina, USA, (2 ) 2000, Itay-Al-Baroud, Egypt, (3 ) 2001, Richmond, NSW, Australia, (4 ) 2002, Manitoba,
Canada, (5 ) 2004, Lisbon, Portugal, (6 ) 2005, Jamaica (FERA 2010), (7 ) 2006, Alberta andManitoba, Canada, (8 )
2007, Coahuila, Mexico, (9 ) 2007, Kununurra, North Australia (Annand 2008), (10 ) 2008, Perth, Australia (R.
Spooner-Hart, N. Annand, personal communication), (11 ) 2008, 2009, Quebec, Canada (Dubuc 2013), (12 ) 2008,
2013 Ontario, Canada (Giovenazzo and Boucher 2010; Dubuc 2013), (13 ) 2010, Pana‘ewa, Big Island, Hawaii
(Robson 2012), (14 ) 2012, Cuba (Peña et al. 2014), (15 ) 2012, Naracoorte in Eastern South Australia (R. Spooner-
Hart, N. Annand, personal communication); (16 ) 2013, El Salvador (Arias 2014), (17 ) 2014, Nicaragua (Gutierrez
2014; Calderón Fallas et al. 2015), (18 ) Sovereto, Calabria, Italy (Mutinelli 2014;Mutinelli et al. 2014; Palmeri et al.
2015), (19 ) 2014, Renmark, Australia (R. Spooner-Hart, N. Annand, personal communication), (20 ) 2014, Lupon,
Philippines (Brion 2015).
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contribute to colony resistance. Since African
honeybees can show more aggression to
adult SHBs than European ones (Neumann
and Elzen 2004),A. tumida probably is under
constant harassment in an African colony,
which may minimize beetle reproduction.
However, even though data suggest that
European honeybees may treat A. tumida
more defensively than they treat any other
beetle species (Atkinson and Ellis 2011), the
level of bee defensiveness can vary by colony
(Atkinson and Ellis 2011). Indeed, another
comparative study between European and
African honeybees suggests that workers of
European subspecies can be more aggressive
toward the SHBs compared to African ones
(Neumann et al. 2016b).

Colony mobility: absconding and migration
African honeybee colonies respond to heavy
SHB infestations by absconding (non-reproduc-
tive swarming; Hepburn and Radloff 1998). In
general, African honeybee subspecies are more
mobile compared to European ones (Hepburn
and Radloff 1998) and absconding and subse-
quent colony mergers are common (Hepburn et
al. 1999; Neumann et al. 2001c; Neumann and
Hepburn 2011). However, it has also been shown
that strong African colonies can tolerate large
SHB infestations with only minor colony level
effects (Ellis et al. 2003a). Similar to other bee
diseases, there might be an upper limit of infesta-
tion that can be tolerated by the colonies (damage
threshold), which can be exceeded in a few colo-
nies due to SHB aggregations. Such a damage
threshold appears to be different between
African and European colonies.
Absconding is also induced in SHB-infested
European honeybee colonies (Ellis et al. 2003a;
Villa 2004). Because African subspecies are more
prone to absconding than European subspecies
(Hepburn and Radloff 1998), this may be yet
another reason for better SHB resistance/less pest
severity in African bees as they are more efficient
in preparation for absconding (Spiewok et al.
2006a). Abandoned honeybee nests can serve as
a breeding substrate for SHBs and subspecies
differences in preparation for absconding appear

to influence the reproductive success of SHB
(Spiewok et al. 2006b). Absconding African
colonies left significantly less brood and stores
behind than European ones whichwould lead to less
SHB reproduction (Spiewok et al. 2006b).

2.1.2. Other social bees

Bombus spp. Bumblebees do not occur in sub-
Saharan Africa, but are native to the Americas,
Europe and Asia (Michener 2000). Bumblebee
colonies, Bombus impatiens , artificially infested
with SHBs in the laboratory had fewer live bees,
more dead adult bees and greater comb damage
than controls (cf. Neumann and Elzen 2004).
Moreover, a new SHB generation was produced
in each unit (cf. Neumann and Elzen 2004). Adult
beetles are also able to naturally infest commercial
B. impatiens colonies in the field (Spiewok and
Neumann 2006b) and in greenhouses (Hoffmann
et al. 2008), probably because odour cues from
bumblebee nests are attractive to adult SHBs
(Spiewok and Neumann 2006b; Graham 2009;
Graham et al. 2011a). After infestation, SHB fe-
males readily oviposit into B. impatiens nests,
preferentially next to brood pots (Hoffmann et al.
2008). Contrary to earlier reports (cf. Neumann and
Elzen 2004), B. impatiens workers were able to
defend colonies against SHB by removing and
attacking both adults and larvae. Such defence
was not correlated with any B. impatiens colony
phenotype (Hoffmann et al. 2008). Due to the
similarities within the genus Bombus , it is most
likely that nests of other bumblebees can also
be infested. However, at present, field data are
too scarce to draw definitive conclusions about
the general role of bumblebees as alternative
hosts.

Stingless bees Anecdotal reports of SHB inva-
sions of both reasonably healthy and weakened
stingless bee colonies, Tetragonula carbonaria ,
from Australia (Wade 2012; A. Dollin and R.
Spooner-Hart, personal communication)
prompted studies to elucidate the ability of sting-
less bees to defend themselves against this inva-
sive species. Experiments with T. carbonaria
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colonies using diagnostic radioentomology
showed that workers of this bee species mummify
all invading adult SHB alive in <10 min by coat-
ing them with a mixture of resin, wax and mud
(Greco et al. 2010). The rapid live mummification
strategy of T. carbonaria seems to effectively
prevent beetle advancements and removes their
ability to reproduce (Greco et al. 2010). The term
mummification appears justified because honey-
bees do not coat live SHBs directly with propolis
but instead confine them in prisons (Neumann
et al. 2001b; Ellis et al. 2003c). Similar to
T. carbonaria , non-invasive experiments with
colonies of Austroplebeia australis (Halcroft
et al. 2008) also showed that adult SHBs were
entombed alive by workers within 6 h (Halcroft
et al. 2011). Moreover, SHB eggs were efficiently
destroyed, larvae and 59 % of the adults ejected
(Halcroft et al. 2011). It has also been stated that
colonies of Dactylurina staudingeri are hosts of
SHBs in West Africa (Mutsaers 2006). SHB in-
festations of wild and managed Melipona
beecheii colonies have been reported from
Cuba, where 7 out of 258 surveyed hives had
SHB adults and two had both adults and larvae
(Peña et al. 2014). SHB infestations were also
associated with damage to recently founded
M. beecheii colonies (Peña et al. 2014). Taken
together, these observations show that SHBs can
naturally infest stingless bee colonies in the field
and further indicate that disturbed and/or newly
founded colonies maybe at special risk.
Undisturbed colonies of stingless bees seem to
have evolved efficient defence mechanisms
(Greco et al. 2010; Halcroft et al. 2011). In the
stingless bee T. carbonaria , a control of SHBs
after relocation of nests can be achieved via a
screened mesh preventing beetle intrusion until
the bees have rebuilt their defences (Wade
2012). Similar to bumblebees, more field data
are urgently needed to conclude about the general
role of stingless bees as alternative hosts of SHBs.

2.1.3. Colony defence, stress and a Bsit-and-
wait^ strategy of patient beetles?

Low level SHB reproduction without obvious
damage to the colonies (Spiewok and Neumann

2006a; Arbogast et al. 2012) often remains unno-
ticed by beekeepers and probably also by the bees.
The important point is what is actually governing
the switch from low level to overt SHB mass
reproduction, because the latter can cause the full
structural collapse of a strong honeybee colony
within <10 days (Neumann et al. 2010). Contrary
to common belief, SHBs do not always reproduce
in colonies with adult beetles present. Indeed,
field surveys often reveal only SHB adults, but
no eggs and larvae in infested colonies (Spiewok
et al. 2008; Lawal and Banjo 2007, 2008;
Neumann and Hoffmann 2008; Mutinelli et al.
2014). Since female SHBs obviously cannot pro-
duce an indefinite number of eggs, it appears
adaptive to limit reproduction to time windows/
opportunities, when their offspring actually have
the best chance to escape removal and/or attack.
These timewindows provide an opportunity to lay
eggs when overall conditions are suitable. Such
SHB reproductive options might be linked to
overall colony well-being and management.
Indeed, even in Africa, successful SHB reproduc-
tion appears most successful in weak and stressed
honeybee colonies and is far less common in
strong ones (Lundie 1940; Schmolke 1974;
Hepburn and Radloff 1998). Queen loss as one
potential stressor had no significant impact on
removal of SHB eggs and larvae in African hon-
eybee colonies A. m. capensis (Spiewok and
Neumann 2006c). Similarly, it has been reported
that queenless colonies of European subspecies in
Australia were no more attractive or susceptible to
SHBs, when bee populations were high (Annand
2011a, b). However, an Australian beekeeper re-
ported losing 400 (20 %) hives due to SHB after
re-queening his hives in the summer 2006/2007
(Annand 2011b). Nevertheless, healthy, strong
hives attracted more SHBs than weak hives, but
when hive populations decreased to very low
numbers, probably as a direct result of being
queenless, these hives became far more suscepti-
ble to SHB damage (Annand 2011a). These ob-
servations are in line with Mustafa et al. (2014),
also reporting a higher susceptibility of smaller
European-derived honeybee colonies. African
honeybee colonies undergoing preparation for
absconding did not completely remove SHB off-
spring (Spiewok et al. 2006b), also supporting the
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idea of a susceptibility time window during
colony life.

Other colony stressors could impact SHB ovi-
position and/or reproductive success, e.g. bee-
keeping management of colonies. The transporta-
tion of bee colonies would likely disrupt the bal-
ance of SHB and worker bee policing, potentially
allowing egg laying and larval growth, but migra-
tory beekeepers in the USA have not reported
SHB damage following colony movement. This
lack of obvious damage after transportation might
be explained by observations that adult SHB tend
to leave colonies when transported (N. Annand,
personal communication). However, it is known
from field experience that the manipulation of
combs during hive inspections can result in larval
damage in the following days (J. Pettis and P.
Neumann, personal observations), e.g. SHB re-
production has been observed when combs are
pushed too close together (J. Pettis, unpublished
data). Adult SHBs are probably able to detect such
areas, because they can escape pursuit by the
workers. There, SHB reproduction can happen
without inference by host workers. This is, how-
ever, strictly limited to managed colonies and
beekeepers quickly learn to correctly space
brood combs in their boxes. Meikle et al. (2015)
artificially infested honeybee colonies with SHB
eggs or adults and tried to weaken colonies/induce
Bstress^ by removing brood frames. However,
despite those efforts, no larvae were observed
exiting from, or during the inspection of, any
hives (Meikle et al. 2015), thereby suggesting that
the triggers of destructive SHBmass reproduction
can be more complex.

In conclusion, it appears as if a colony size, in
particular the ratio of workers to nest area (Lundie
1952), e.g. decreased due to queenloss (Annand
2011a), or other pathogens can play a role in SHB
mass reproduction. For example, interactions be-
tween SHBs and the ubiquitous mite Varroa
destructor have been suggested to play a role
(Connor 2011a; Martin 2013). However, two sys-
tematic studies found no significant evidence
(Delaplane et al. 2010; Schäfer et al. 2010c),
suggesting that such combined effects of
A. tumida and V. destructor are rather weak. In
Victoria, Australia, SHBs can be found in healthy
strong European-derived honeybee colonies, but

seemingly without having any impact (N. Annand
and R. Spooner-Hart, personal communication).
However, SHBs may seriously impact Australian
honeybee colonies that are Bcompromised^/dis-
eased/drone layers or subject to poor beekeeping
management practices (Annand 2011b). This
again supports the idea that colony management
by humans can be a trigger for SHB reproductive
success.

Since SHBs are trophallactically well fed in
honeybee colonies (Ellis et al. 2002d; Ellis
2005c), they can stay within sheltered host nests
for long time (B6 months and probably even
longer^ Lundie 1940). It therefore appears as if
SHBs use a Bsit-and-wait^ strategy. At least, adult
SHB females live apparently long enough (up to
16months, Somerville 2003) to be physically able
to wait for any event/development compromising
colony defence. The female biased sex ratio of
adult SHBs in African, Australian and US field
populations (Schmolke 1974; Ellis et al. 2002b;
Spiewok and Neumann 2012) points in that direc-
tion. The compromise of colony defence is anal-
ogous to down-regulation of immune functions in
individual insects (Schmid-Hempel 2005) and
might be triggered by a whole range of factors
such as queenstate, infections with other patho-
gens, season (colony migration, Hepburn and
Radloff 1998), colony management or any factors
resulting in disturbance-induced absconding
(Spiewok et al. 2006a). Then, given sufficient
protein-rich food remaining, to ensure ovary acti-
vation and reproduction, SHBs are able to ade-
quately exploit that time window, even if limited,
with a less defended (or not in case of absconding)
rewarding food source by quickly laying a high
number of eggs per day. The capability of SHB
mass reproduction is well documented, e.g. 80
parental SHB adults produced >36,000 adult off-
spring in 63 days (Mürrle and Neumann 2004).
The long adult longevity of SHBs seems to con-
stitute a k -component of an overall r -strategy
(Ibler 2013), associated with short-term windows
of reproductive bursts either in colonies or other
temporarily available food stuff, except low-level
reproduction (Spiewok and Neumann 2006a).

However, as in most other cases of our knowl-
edge of SHB biology and control, more data are
required to pinpoint the actual reasons for the

Biology and control of small hive beetles 437



breakdown of colony defence fostering the highly
destructive mass reproduction of SHB. In partic-
ular, long-term studies will be required to be able
to monitor natural time windows (e.g. colony
migration) or more experimental disturbances.

2.1.4. Beetles in colonies, other than
A. tumida

A number of other beetle species can be asso-
ciated to a varying degree with social bee colonies
(Hepburn and Radloff 1998; Ellis et al. 2008;
Atkinson and Ellis 2011; Krishnan et al. 2015)
and may range from harmless associates (e.g.
Cychramus luteus , Coleoptera: Nitidulidae,
Neumann and Ritter 2004) to damaging parasites
(e.g. Oplostomus /Hoplostoma fuligineus in
A. mellifera , Hepburn and Radloff 1998). While
some beetle species only seek shelter and/or food
in social bee colonies (e.g. C. luteus in
A. mellifera , Neumann and Ritter 2004), others
also reproduce in the host colonies (e.g.
Cryptophagus hexagonalis in A. mellifera ,
Haddad et al. 2008). Large hive beetles
(Oplostomus /H. fuligineus , Coleoptera:
Scarabaeidae) are not reproducing in colonies
(Donaldson 1989; Torto et al. 2010b), but adults
of this beetle feed on bee brood, pollen and honey
(Hepburn and Radloff 1998) and can cause sig-
nificant damage and induce absconding in Apis
mellifera scutellata (P. Neumann, personal obser-
vations). The larvae of this species reproduce in
cattle dung outside of colonies (Donaldson 1989).
In contrast, SHB adults are comparatively harm-
less to colonies (Neumann and Elzen 2004). It is
the larval stage of this species, which can cause
considerable damage. A few Brachypeplus spp.
in Australia have larvae and adults that feed on the
wax and honey in colonies of stingless bees
Tetragonula spp. (Lundie 1940; Habeck 2002).
Brachypeplus sp. adults can also occasionally be
found in honeybee colonies, and even larvae have
been found in a hive (Gillespie et al. 2003).

None of these beetle species have been report-
ed to pupate in host colonies. The Nitidulid
Haptoncus luteolus therefore represents a novel
degree of beetle association with social bee colo-
nies (see Ellis et al. 2008), because it apparently
can pupate within colonies after feeding on pollen,

thereby separating this species from the previous-
ly reported cases (Krishnan et al. 2015).
Preliminary observations suggest that heavy in-
festations with H. luteolus may cause colony
collapse in the stingless bee Tetragonula
laeviceps (Krishnan et al. 2015). Comparative
studies with those other beetles (e.g. Atkinson
and Ellis 2011) may also enable to better under-
stand the biological mechanisms driving the inter-
actions between A. tumida and host bees.

2.2. Outside of colonies

2.2.1. Apicultural facilities

SHBs may use a variety of protein sources in
beekeeping storage facilities and or honey extrac-
tion facilities (Hood 2011). Combs containing
stored pollen and or dead bee brood in stored
combs can be utilized by SHBs to reproduce.
Honey removed from colonies is particularly vul-
nerable to SHB reproduction if the combs contain
pollen or brood. Additionally, even if the honey is
extracted, the supers containing the remaining
honey (wet supers) can allow for SHBs to repro-
duce if small amounts of pollen and or brood are
present. Potentially, the yeast Kodamaea ohmeri
may provide some protein to supplement the SHB
larval diet (see below). Lastly, any combs, wax or
debris that is present in the beekeeping facility
could serve as a source for SHB reproduction.
General sanitation in beekeeping facilities is a
major means to limit SHB reproduction and pop-
ulation build-up (see below).

2.2.2. Alternative food sources

SHBsmay use fruits as alternative food sources
both in the presence and absence of honeybee
colonies in the field (cf. Neumann and Elzen
2004; Buchholz et al. 2008). Moreover, a com-
plete life cycle can be achieved in the laboratory
on fruits (Kei apples (Ellis et al. 2002c); banana,
cantaloupe, pineapple and mango (Keller 2002);
mango, banana and grapes (Buchholz et al. 2008);
green grapes, oranges, inoculated oranges and
cantaloupe (Arbogast et al. 2009b, 2010); and on
decaying meat (beef schnitzel, Buchholz et al.
2008). SHBs were also able to successfully
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reproduce on an artificial Bmanduca^ diet (Keller
2002). However, the number of offspring per
breeding couple is lower than on bee products
such as pollen (Ellis et al. 2002c; Keller 2002;
Buchholz et al. 2008). Adult SHBs were rarely
observed on fruit buckets in the field, reproduced
only when caged and in much smaller numbers
than Drosophilidae and other Nitidulidae
(Buchholz et al. 2008). Moreover, less than 2 %
of adult SHB survived on blooming pot plants and
no reproduction was recorded, suggesting that
flowers are unlikely to serve as an alternative food
and breeding substrate (Buchholz et al. 2008).
This contrasts A. tumida to A. concolor , which
is a regular flower visitor in NSW, Australia
(Buchholz et al. 2008). There are no reports so
far that the SHB is a pest of stored products (e.g.
cheese or meat), suggesting that this is a rare event
or even absent. Nevertheless, reproduction on al-
ternative diets, which may even include fungi or
other food resources (Arbogast et al. 2010), ap-
pears to be sufficient for SHB population growth
(Arbogast et al. 2009b). Given that SHBs are able
to exploit such alternative resources regularly, this
affects active dispersal and range expansion, be-
cause reproduction in the absence of bees would
facilitate long-range dispersal by flight through
successive generations (Arbogast et al. 2009b).
Although successful SHB reproduction is in prin-
cipal possible on a large variety of different diets,
they should prefer social bee colonies whenever
possible to maximize their reproductive output.
However, our knowledge of the actual amount of
SHB reproduction on alternative food sources
outside of colonies is still limited. The presence
of A. tumida larvae in fruit, fungi or other alter-
native foods collected in natural settings lacking
bees would provide positive proof (Arbogast et al.
2010). One approach might be to collect SHB
adults in woodlands and to test their gut contents
for evidence of feeding on materials other than
bee products (Arbogast et al. 2010).

In conclusion, the current data clearly show
that SHBs are in principle able to exploit a variety
of alternative food resources, but there is very
little evidence that they actually do so in the field.
Nevertheless, at the current stage of knowledge,
we cannot exclude that the presence of an abun-
dant food source other than social bee colonies

may serve as a refuge for the SHBs and as a source
of further infestations.

2.3. Pupation in the soil

Wandering larvae can migrate long distance to
reach the soil (>200 m, Sanford 1998). Pettis and
Shimanuki (2000) showed that when soil sur-
rounding hives in Florida was sandy and loose in
consistency, most wandering larvae were found
within 1 m of the hive and at a depth of no more
than 10–20 cm. Laboratory data on more dense
clay soils indicate that wandering larvae would
most likely try and reach less compact soil in order
to facilitate burrowing and pupation and increase
pupation success (Ellis et al. 2004d; Meikle and
Diaz 2012). SHB populations successfully devel-
oped in various types of soil, and vertical move-
ment of larvae in the soil was not influenced by
soil type (de Guzman et al. 2009).

In soil, the duration of SHB pupation can range
between 2 weeks and 2 months (Lundie 1940;
Schmolke 1974; Neumann et al. 2001a; Mürrle
and Neumann 2004; Haque and Levot 2005;
Meikle and Patt 2011; Meikle and Diaz 2012;
Bernier et al. 2014) and abiotic factors are known
to play a key role. Indeed, it is well known that
both duration and success of SHB pupation are
governed by temperature, soil texture and humid-
ity (Lundie 1940; Schmolke 1974; Neumann et al.
2001a; Ellis et al. 2004d; Mürrle and Neumann
2004; Haque and Levot 2005; de Guzman and
Frake 2007; de Guzman et al. 2009; Meikle and
Patt 2011; Meikle and Diaz 2012; Bernier et al
2014). Sandy, moist soil and warm temperature
(24.6±1.3 °C) seem to provide good conditions
with only 23 days needed to complete pupation
and only 8.5 % mortality (Ellis et al. 2004d).
There may be as many as six generations per year
under moderate US and South African climatic
conditions (cf. Neumann and Elzen 2004), but this
could potentially be even higher under tropical
conditions. Indeed, de Guzman and Frake (2007)
showed that almost 16 complete life cycles could
be achieved in a year, with constant 34 °C.

An entire life cycle of a SHB can be achieved
in a single Eppendorf tube (Neumann et al. 2013).
Therefore, intraspecific competition for space is
rather unlikely in the soil, unless severe space
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limitations may interfere with the construction of
SHB pupation chambers (e.g. in laboratory
rearing, Mürrle and Neumann 2004). However,
subterranean mating of SHB adults is most likely
because they reach sexual maturity after 7 days
(cf. Neumann and Elzen 2004) and often remain
jointly underneath the soil surface without emerg-
ing for up to 35 days (Mürrle and Neumann
2004). What factors trigger adult SHB emergence
from the soil is currently unknown, but light rain
maybe involved (simulated with water and a man-
ual pump sprayer in the laboratory, P. Neumann,
unpublished data). The impact of salinity and pH
value on SHB pupation are currently unknown.

2.4. Natural enemies

The ability of entomopathogenic fungi to kill
SHBs was already reported by Lundie (1940).
Since, various fungi were isolated from and/or
have proven effective against SHBs (Table III;
Richards et al. 2005; Cabanillas and Elzen 2006;
Muerrle et al. 2006; Ellis et al. 2010). Recently,
isolates of both Metarhizium and Beauveria
showed good efficacy against SHBs in laboratory
and field assays (Leemon and McMahon 2009;
Leemon 2012), where the Metarhizium isolates
showed best results against larvae (three isolates
were able to kill more than 70 % of larvae in
1 week), while the Beauveria isolates performed
best against adult beetles (99–100 % adult SHB
mortality in 2 weeks). Susceptibility of SHBs was
also shown to entomopathogenic nematodes
where several Heterorhabditis and Steinernema
strains have provided adequate SHB control with
88–100 % mortality (Table III; de Guzman et al.
2009; Cabanillas and Elzen 2006; Ellis et al. 2010;
Shapiro-Ilan et al. 2010; Cuthbertson et al. 2012).
Three different Bacillus thuringiensis Berliner
strains (B. thuringiensis var. aizawai ,
B . t h u r i n g i e n s i s v a r . k u r s t a k i a n d
B. thuringiensis var. San Diego tenebrionis )
showed no effect on reproductive success of
SHBs (Buchholz et al. 2006). Ants are generally
considered a potential biological control agent,
and the ant Pheidole megacephala was identified
as a key predator of larvae in Kenya (Torto et al.
2010a). Furthermore, a protozoan pathogen was
discovered in the Malpighian tubules of adult

SHBs (Wright and Steinkraus 2013), and Strauss
et al . (2010) reported the storage mite
Caloglyphus hughesi on laboratory-reared SHBs
in South Africa.

The impact of pathogens and predators may be
less severe in the rather protected environment of
social bee colonies due to host defence and sani-
tation (e.g. propolis, Evans and Spivak 2010)
compared to food sources outside of colonies,
but there are no comparative data in this regard.
Likewise, the impact of natural enemies has never
been compared between endemic and invasive
populations. Therefore, release from natural ene-
mies cannot be excluded as one key factor driving
SHB invasion success.

2.5. Competitors

Since SHBs are the only known species to be
able to induce trophallactic feeding in honeybees
(Ellis et al. 2002d), there is most likely no com-
petitor with adult SHBs in colonies. In sharp
contrast to A. tumida , the bee louse, Braula
coeca , is not able to induce trophallaxis in hon-
eybees. Instead, the bee louse takes advantage of
two bees feeding each other (Morse and
Nowogrodzki 1990). Sitting on the head or abdo-
men of a worker or the queen, the louse quickly
moves forward and steals food during the food
exchange between the two bees (Morse and
Nowogrodzki 1990). When colonies are less well
defended or honeybees abscond, SHBs can take
advantage of the then unprotected food (brood,
honey and pollen, see above). Such food will also
be consumed by other species such as ants, which
can therefore be both natural enemies (Arbogast
et al. 2010) as well as competitors for reproduc-
tion (Spiewok et al. 2006b). Likewise, wax moths
and SHBs can compete for the same resource and
may negatively influence the reproductive success
of each other (Spiewok et al. 2006b). On fruits and
other food resources outside of colonies,
Drosophilidae and other Nitidulidae would com-
pete with SHBs (Buchholz et al. 2008).

In conclusion, our knowledge of natural ene-
mies and competitors is still fairly limited, e.g. the
role of tropical subterranean army ants for SHB
pupation success (Kronauer 2009) and of
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nocturnal predators (Williams-Guillén et al. 2008)
of flying adult SHBs is unknown.

2.6. Small hive beetles as vectors

A. tumida has been shown to act as a vector for
Paenibacillus larvae , the causative agent of
American foulbrood (AFB; de Graaf et al.
2013), with both adults and larvae becoming in-
fected with spores when exposed to honeybee
brood combs with clinical symptoms (Schäfer
et al. 2010b). The subsequent field test, where
honeybee colonies were infested with contaminat-
ed adult beetles, resulted in higher numbers of
P. larvae spores in adult workers and honey
(Schäfer et al. 2010b). Adult SHBs have also
shown the potential to act as vectors for honeybee
viruses (Eyer et al. 2009a, b). It has been demon-
strated that adult SHBs can be infected with de-
formed wing virus (Eyer et al. 2009a) and
sacbrood virus (Eyer et al. 2009b) via food-
borne transmission.

2.7. Beneficial yeast associated with small
hive beetles

During larval reproduction, combs become
covered in a slimy material that is part honey
and part larval in origin (Lundie 1940). From this
Bslime^ and adult beetles, researchers isolated a
yeast that appears to function as an attractant to
SHB adults (Benda et al. 2008). The yeast,
K. ohmeri, produces substances that are similar
to bee pheromones, and a dough containing the
yeast has been tried in traps to increase attractive-
ness to adult beetles (Arbogast et al. 2007; Torto
et al. 2007a; Hayes et al. 2015). K. ohmeri has
also been found in both managed and wild colo-
nies of bumblebees (Graham et al 2011b). Organic
acids used for mite control were shown to inhibit
the growth of K ohmeri (Schäfer et al. 2009).
While initially very promising as an attractant
(Torto et al. 2005), additional research is needed
to fully realize the potential of this yeast in the
management of SHBs.

Besides control, it appears as if there is more of
a relationship between K. ohmeri and the SHB
than just the release of volatiles that are attractive
to SHBs (Torto et al. 2007c). It may well be that

there is a symbiotic relationship between the two.
So contaminating the honey withK. ohmeri allows
the yeast to grow by fermenting honey and may
thereby provide some protein to supplement the
SHB larval diet when feeding predominantly on
honey. Moreover, there might be a human health
risk with this yeast as well (Santino et al. 2013).

2.8. Small hive beet le aggregat ion
pheromone?

Analogous to bark beetles (Byers 1989),
pheromone-mediated aggregations of adult
SHBs might be adaptive to overcome host de-
fence (Neumann and Elzen 2004). Mustafa et al.
(2006) showed SHB aggregation in laboratory
plastic cages, and field studies have shown that
SHB distribution among honeybee colonies at an
apiary is different from a random distribution
(Neumann and Elzen 2004; Spiewok et al.
2007). In a single A. m. scutellata colony, 491
adult SHBs were found, while all other colonies at
the same apiary showed low infestation levels
(Neumann and Elzen 2004). The maximum num-
bers of adult SHBs in European honeybee colo-
nies so far recorded in functional colonies in the
invasive ranges were 1071 in Umatilla, Florida
(USA) and 2029 (P. Neumann, unpublished data)
and 3027 (N. Annand, unpublished data) in
Richmond, NSW, Australia. However, colony
phenotypes (number of bees, amount of brood or
stores) do not significantly influence infestation
levels with adult SHBs (Spiewok et al. 2007),
thereby indicating that cues other than host colony
size and food stores are responsible for their at-
tractiveness. Aggregation pheromones have been
described for a variety of Nitidulidae species and
are widely used as control agents (Petroski et al.
1994; James et al. 2000). We consider it very
likely that a similar pheromone plays a role for
long-range host finding and aggregations of
SHBs. Observations that males tend to infest be-
fore females (Neumann and Elzen 2004) indicate
that the aggregation pheromone might be male
produced as in Carpophilus obsoletus and is at-
tractive to both sexes (Petroski et al. 1994), but no
sex-specific differences in SHB brain structure
were found (Kollmann et al. 2015). Moreover,
the sex ratios did not significantly differ between
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recently infested apiaries and longer infested ones
in another study (Spiewok and Neumann 2012).
Synergistic effects between food odours and ag-
gregation pheromones for attracting SHB might
also play a role as shown for Carpophilus
lugubris (Lin et al. 1992). More research is need-
ed to identify and evaluate the potential impact of
different compounds such as aggregation phero-
mones, food volatiles or any synergism between
pheromone and food volatiles on the short- and
long-range dispersal and host finding of SHBs.

2.9. Seasonality in small hive beetle
reproduction

Most beetles captured in baited traps near La
Crosse, FL, USAwere captured during the spring
and summer months, with peak captures during
May and June (Arbogast et al. 2010). In St.
Gabriel, Louisiana, USA, SHB populations varied
throughout the year, with peak infestations ob-
served in September and November (de Guzman
et al. 2010). Similarly, SHB populations in
Georgia seem also to rise by July/August and
reach their peak by September/October (Berry
2009). In Louisiana, SHB abundance was signif-
icantly correlated with the proportion of hot days,
but not with the proportions of cool, dry or humid
days or the percentage of days with rainfall (de
Guzman et al. 2010). On the other hand, trap
captures in Kenya indicated that SHB was present
in honeybee colonies in low numbers all year
round, but it was most abundant during the rainy
season and with over 80 % trapped during this
period (Torto et al. 2010a). Likewise, traps
installed in Kenya in front of infested hives over
an entire year showed that more wandering larvae
were leaving infested colonies associated with the
Bkusi monsoon^ (Arbogast et al. 2012). In con-
trast, in Nigeria, both adult and larval SHBs were
more often found inside colonies (N =437) during
the dry season (28,057 adults, 5210 larvae) com-
pared to the wet season (7869 adults, 831 larvae;
Lawal and Banjo 2008).

In South Africa, mated adult SHB females
provided in the laboratory with adequate food
did not readily oviposit in July/August unless
incubated at 30 °C for a week (P. Neumann,
unpublished data). Similarly, Australian

beekeepers reported almost no damage by SHB
larvae in June/July/August (Rhodes and
McCorkell 2007). In Australia, SHB populations
in hives followed a cyclical pattern, which peaked
in late autumn then declined through winter to a
minimum in late spring (Annand 2011b). Most
SHB movements in NSW, Australia occurred in
April and May; however, a major spike was also
observed in October (Annand 2011b). Differences
between years have also been reported, e.g. SHB
numbers in Gauteng, South Africa were consider-
ably higher in winter 2011 compared to winter
2010 (Strauss et al. 2013).

In conclusion, several observations suggest
considerable seasonal variation in SHB reproduc-
tion. Therefore, it appears as if season might also
play an important role, e.g. by triggering host
colony migration (Hepburn and Radloff 1998),
fostering SHB reproduction (e.g. pupation) and
inducing high SHB mortality over winter
(Schäfer et al. 2011), with subsequent conse-
quences of higher/lower infestation levels
(Spiewok et al. 2007).

2.10. Dispersal

2.10.1. Natural range expansion

Adult SHBs are strong fliers and are capable of
flying several kilometres (>10 km being possible,
cf. Neumann and Elzen 2004). However, not a
single study has systematically addressed this
matter and how far a SHB could actually fly
within a given time period is unknown. Apiary
density, SHB population levels and ongoing mass
reproduction seem to govern infestations of newly
installed apiaries (Spiewok et al. 2008). In
Australia, those apiaries located in forested habi-
tats showed higher infestation levels, possibly due
to the presence of feral colonies (Spiewok et al.
2008), but in Uganda, A. tumida appeared to
favour hives in the open (Kugonza et al. 2009).
After emergence from the soil, adult SHBs seem
to prefer long-range flights, because they tend to
ignore neighbouring host colonies of both
A. mellifera and B. impatiens (Neumann et al.
2012). It has been reported from the USA that
SHB males tend to fly earlier than females
(Neumann and Elzen 2004), but this was not
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found in Australia and Africa (Spiewok and
Neumann 2012). The sex ratio was biased towards
females confirming earlier reports (Schmolke
1974; Ellis et al. 2002a), but did not significantly
differ between recently infested apiaries and lon-
ger infested ones (Spiewok and Neumann 2012).
Adult SHB can potentially disperse between man-
aged honeybee colonies within an apiary and be-
tween apiaries (Spiewok et al. 2007, 2008), api-
cultural facilities (e.g. honey houses, Spiewok
et al. 2008), feral honeybee nests (Neumann
et al. 2012), nests of other social bees (Bombus
spp.: Spiewok and Neumann 2006b; Hoffmann
et al. 2008; stingless bees: Mutsaers 2006; cf.
Greco et al. 2010; cf. Halcroft et al. 2011; Peña
et al. 2014; etc.) as well as fruits (Buchholz et al.
2008) and even potentially other food stuff out-
side of colonies (Buchholz et al. 2008). There is
an urgent need to use the existing marking
methods for adults (de Guzman et al. 2012;
Neumann et al. 2013) to trace back the actual
dispersal pathways of adult SHB.

2.10.2. The small hive beetle Hitchhiker’s
guide: human-assisted dispersal

The rapid range expansion of SHBs is likely to
result from migratory beekeeping and movement
of package bees and beekeeping equipment
(Neumann and Elzen 2004; Gordon et al. 2014;
Annand 2011b). In the USA, the more southern
states (North Carolina, Georgia, South Carolina
and Florida) became infested between 1996 and
1998 and then the states bordering Canada only
2 years later in 2000 (Neumann and Elzen 2004).
This large jump in dispersal is most parsimoni-
ously explained by migratory beekeeping, since
managed colonies over winter in Florida before
they are transported north for pollination in the
spring (Pettis et al. 2014).

2.11. What is the small hive beetle?

Within the literature, several different defini-
tions have been put forward ranging from scaven-
gers (Hepburn and Radloff 1998) over parasites
(Neumann and Elzen 2004) to symbionts (Ellis
and Hepburn 2006). Data have emerged that SHB
actually fit several ecological definitions. They

can feed on dead animals (scavenger; honeybees;
conspecifics = cannibalism (Neumann et al.
2001b); beef schnitzel (Buchholz et al. 2008))
and live animals (predator; Pirk and Neumann
2013) as well as on fruits (phytophagous (Keller
2002; Ellis et al. 2002c; Buchholz et al. 2008;
Arbogast et al. 2009a, 2009b, 2010). Moreover,
they are able to steal food from their hosts via
trophallactic mimicry (kleptoparasite; Ellis et al.
2002d; Ellis 2005c; Neumann et al. 2015). In
conclusion, the authors agree with the line of
thoughts initially developed by Arbogast et al.
(2009b): A. tumida can be considered as an eco-
logical generalist.

3. GLOBALDISTRIBUTIONAND PEST
STATUS

3.1. Endemic range in sub-Saharan Africa,
including Madagascar

The two new SHB records from West Africa
(Benin and Burkina Faso, Figure 3) are well in
line with previous records from sub-Saharan
Africa (El-Niweiri et al. 2008; Neumann and
Ellis 2008). In Madagascar (Figure 3), A. tumida
appears to be widespread and well established
since it was found in all honeybee colonies of
three districts from the BHighlands^ and on the
eastern coast (Rasolofoarivao et al. 2013). Since
there are no reports of any introductions or of any
serious damage to local colonies, it seems as if the
SHB is endemic to Madagascar.

In its native range, the SHB is usually only a
minor pest (Pirk and Yusuf 2015), because suc-
cessful reproduction appears most often in weak,
stressed honeybee colonies or in recently aban-
doned ones and is far less common in strong
colonies (Lundie 1940; Schmolke 1974;
Hepburn and Radloff 1998; Neumann and Elzen
2004). Strong African honeybee colonies can usu-
ally prevent or postpone successful beetle repro-
duction (Neumann and Elzen 2004). In such col-
onies, SHBs usually have to wait until absconding
(non-reproductive swarming) for various reasons,
possibly including heavy SHB infestations
(Hepburn and Radloff 1998; Neumann and
Elzen 2004). However, there might be regional
differences within its endemic range. Indeed,
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while SHBs appear to be rare in Kenya (Torto
et al. 2010a) and in Uganda (Kugonza et al.
2009), it seems to be the most common honeybee
pest in Nigeria (40.5 % of hives infested with
adults, 9.6 % with larvae; Lawal and Banjo
2007), where a total of 28,057 adult SHB were
sampled from 437 colonies (Lawal and Banjo
2008). Accordingly, the SHB seems to be a bigger
problem for beekeepers in West Africa compared
to East Africa or the Horn of Africa (Mutsaers
2006; Akinwande et al. 2013). During South
African winter, SHB pupation success is rather
unlikely, at least in the Eastern and Western
Cape provinces and in the Highveld.

3.2. Invasive populations

3.2.1. The Americas

So it begins: USA In November 1996, the first
unidentified SHB specimens were collected in
Charleston, South Carolina (Hood 2000). Two
years later, SHBs were well established and
caused considerable damage to apiculture in
Florida (~$3 million only in 1998, Ellis et al.
2002c). It was thus far too late for any eradication
measure, when the beetles were confirmed to be
A. tumida in St. Lucie, Florida (June 1998, Hood
2000). Since then, the SHB has well established
across the continental USAwith all 48 contiguous
states having had some positive finds (J. Pettis,
personal observations). Even strong colonies of
local European-derived honeybee subspecies can
be taken over and killed by SHBs in the USA
(Neumann and Elzen 2004). A survey on man-
aged colony losses in the winter of 2006–2007
revealed that commercial beekeepers believed in-
vertebrate pests (V. destructor , Acarapis woodi
and/or SHBs) were the leading cause of colony
mortality (Van Engelsdorp et al. 2007). Besides
that, SHBs can interfere with honey harvest and
storage (Spiewok et al. 2007; Hood 2011).
In April 2010, a beekeeper in Pana‘ewa, on the
Big Island of Hawaii, found adult specimens,
which were confirmed to be SHBs (Robson
2012). Since then, the SHB has well established
and has spread from the Big Island to Oahu
(2010), Molokai (2011) and Kauai (2012)
(Martin 2013). It had devastating effects on the

local honeybee industry with European-derived
colonies (Connor 2011a). In a survey, 55 % of
managed colonies were reported to be lost; 80 %
of such losses were attributed by the beekeepers to
SHBs or a combination of V. destructor and SHBs
(Connor 2011a). The abundant and unmanaged
feral European-derived honeybee colonies (thanks
to the absence of V. destructor prior to 2010) may
have been a considerable source of the massive
numbers of beetles (Connor 2011a) similar to
Australia (Neumann et al. 2012). Finally, the en-
vironmental conditions on Hawaii are perfectly
suited for SHB pupation (Connor 2011b). The
establishment of SHBs has resulted in lost export
markets to the local major queen bee industry due
to quarantine restrictions in some countries
(Robson 2012).
Besides Hawaii, the states most severely affected
by the SHB have been Florida and the southeast-
ern USA (cf. Neumann and Elzen 2004) and
queen breeders in various states (J. Pettis, personal
observations). So far, there are no confirmed re-
ports of SHBs in Alaska and Puerto Rico.

Up to the northern limits: Canada There have
been SHB outbreaks in Canada in 2002
(Manitoba), 2006 (Alberta and Manitoba), 2008
(Quebec and Ontario), 2009 (Quebec), and 2013
(Ontario) (Clay 2006; Neumann and Ellis 2008;
Giovenazzo and Boucher 2010; Kozak 2010;
Dubuc 2013). Ontario has had an established
SHB population in the Essex county since 2010
(P. Giovenazzo, personal communication). This is
the most southern point of Ontario, and the local
strategy has been to declare this region SHB pos-
itive and enforce no movement of colonies or
apicultural material out of this region. When
SHB is found elsewhere in the province, the
infested colonies are either exterminated or colo-
nies transported inside the quarantine area of the
SHB positive Essex region (Dubuc 2013; P.
Giovenazzo, personal communicat ion) .
Movement of bees from Ontario to Quebec (and
all other Canadian provinces) is under strict vet-
erinary surveillance. Still ongoing surveys along
the Quebec–US border over the past 6 years have
not detected SHB since 2012 (Giovenazzo and
Bernier 2015; P. Giovenazzo, personal
communication), with the exception of a single
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case in Ormstown, Quebec, in 2013 (Dubuc
2013). Interestingly, SHBs appear to be absent in
southern British Columbia, the most western
C a n a d i a n p r o v i n c e w i t h a n a lmo s t
Mediterranean climate, although SHB is well
established in the US state of California.
In conclusion, SHB is not well established in
Canada (except Ontario), probably thanks to
unfavourable climatic conditions, and can be eas-
ily managed, but the commercial impact (trade
regulations, movement restrictions, etc.) can nev-
ertheless be serious for local beekeepers and their
industry.

On the front line: Central America and the
Caribbean Since its first report in 2007 (Del
Valle Molina 2007), the SHB is now well
established in at least eight states of Mexico.
Especially in the tropical states (e.g. Yucatan),
infestation levels can be extremely high with hun-
dreds or even thousands of adult SHBs in a single
infested hive (Loza et al. 2014). This is most
surprising since the local honeybees are
Africanized and thought to be less susceptible to
SHB infestations. Either local Africanized bees
support more SHB reproduction than African
ones and/or reproduction in local hosts other than
honeybees is crucial (e.g. in colonies of stingless
bees). Alternatively, but not mutually exclusive,
enemy release (Torchin et al. 2003) might enhance
pupation success compared to the endemic range
of SHBs in Africa. More detailed data from
Mexico are urgently required to clarify this ques-
tion, which would also be relevant for the tropical
parts of Central and South America and possibly
even Southeast Asia.
In 2013, SHBs have also been detected in El
Salvador (Arias 2014). A follow-up survey in
December 2014 detected SHBs in only 68 out of
1700 hives suggesting a rather localized outbreak
(V. Landaverde, personal communication). From
Nicaragua, SHBs were reported in February 2014
in Rivas, which is bordering Costa Rica (Gutierrez
2014; Calderón Fallas et al. 2015). However, it is
currently unknown, whether it is established in
this country or localized. In Costa Rica, two
SHB surveys in 2012 and 2014 yielded negative
evidence and since then no SHB outbreaks have
been reported (Ramírez et al. 2014; R. A.

Caldéron, personal communication). Given that
SHBs are now well established in the Yucatan
region of Mexico bordering Belize and
Guatemala on the north (Loza et al. 2014), it is
just a question of time until the SHB invasion
front will reach Belize and Guatemala.
The SHB was introduced into Jamaica in 2005
(FERA 2010) and has spread across the entire
island since (H. Smith, personal communication).
Although earlier reports state that it can be a very
serious pest of local European honeybees (FERA
2010), the well-established SHB populations are
seemingly not causing problems for apiculture (H.
Smith, personal communication). This is most
astonishing since local beekeepers apparently rely
only on the natural ability of the honeybees to
keep the SHB population under control and do
not use any measures, except placing apiaries on
concrete surfaces (H. Smith, personal communi-
cation). Maybe the local bees are Africanized, but
still retain some desired European traits (e.g. gen-
tleness, Rivera-Marchand et al. 2012). Then, it
would not be surprising that they can better cope
with SHB infestations.
In Cuba, the SHB has been confirmed in 2012
(Milián 2012; Darias 2014). A. tumida is current-
ly present in the provinces of Villa Clara,
Cienfuegos, Matanzas, La Havana, Mayabeque,
Artemisa and Pinar del Rio and expected to ex-
tend to the whole country (Darias 2014). So far,
no major effects on local honeybees have been
reported (Borroto et al. 2014), which might be due
to low initial infestation rates (Spiewok et al.
2007). Indeed, it took 2 years in the USA for
SHB population build-up before significant dam-
age to apiculture occurred (Sanford 1998). There
are no further published reports of SHB from the
Caribbean.

3.2.2. Egypt

In summer 2000, SHB was detected in Itay-Al-
Baroud and subsequently in other apiaries along
the Nile Delta (cf. Neumann and Elzen 2004).
However, a latter extensive survey could not con-
firm it (Hassan and Neumann 2008), and no SHB
damage to local apiculture has been reported since
(Y. Ibrahim, personal communication). It seems as
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if the SHB is not well established in Egypt, but the
underlying reasons remain unknown.

3.2.3. Australia

In July 2002, SHB damage was noticed in
Richmond, New SouthWales, Australia. The bee-
tles were only identified as A. tumida in October
2002 (Minister for Agriculture 2002). The
Australian government decided against an eradi-
cation program, because SHB reproduction was
already found in feral honeybee colonies
(Gillespie et al. 2003). Since then, nomadic bee-
keeping and transport of beekeeping equipment/
bee food appeared to play a key role for SHB
spread (Annand 2008, 2011a, b; Gordon et al.
2014; Spooner-Hart et al. 2016). Indeed, several
long-range introductions into previously SHB-
free areas have been reported (e.g. 2007,
Kununurra; 2007, Perth; 2012, Naracoorte;
2014, see Figure 3). In Kununurra, it appears as
if SHB has become established (Annand 2008).
Hives infested with SHB were transported to the
Perth area in 2008 and destroyed by burning,
which appears to be a successful eradication be-
cause no more SHBs have been found in this area
since. The only known finding of SHBs in the
Northern Territory was one adult found in a queen
bee shipment from eastern states in 2010–2011
(N. Annand and R. Spooner-Hart, personal
communication).

In Australia, it took about 4 years (2002–2006;
P. Neumann, personal observations) before heavy
damage occurred to strong colonies (USA only
2 years 1996–1998, Neumann and Elzen 2004).
This remarkable time delay compared to the USA
might be due to the historic drought that Australia
has had at the time (Horridge et al. 2005). A
survey in Queensland has shown that more than
3000 hives had been lost to the SHB resulting in
economic damage of ~$1,200,000 (Mulherin
2009). Another survey in New South Wales esti-
mates that between 2002 and 2006 alone, more
than 4500 honeybee colonies died out due to SHB
infestation (Rhodes and McCorkell 2007). This
clearly illustrates that SHB has become a serious
economic threat to Australian apiculture given
suitable conditions, at least in eastern Australia
(Annand 2008, 2011b; Spooner-Hart et al. 2016).

3.2.4. Europe

Portugal SHBs were intercepted in a shipment of
queens into Portugal in 2004 (Murilhas 2004).
Larvae were found in queen cages and the rigor-
ous sanitation measures (killing of all bees and
destruction of destination apiaries) successfully
prevented this introduction (Murilhas 2004;
Neumann and Ellis 2008; Valério da Silva
2014), probably because very few specimens were
introduced and the detection was early.

Italy In September 2014, SHBs were confirmed in
Calabria (Palmeri et al. 2015), where larvae, pu-
pae and adults were found (Mutinelli et al. 2014).
So far, 83 infested apiaries were confirmed in
Calabria, one in Sicily and an infested feral colony
was also found in Gioia Tauro municipality (3
November 2015, Istituto Zooprofilattico
Sperimentale delle Venezie 2015). Taken together,
these reports indicate that SHBs have been present
and reproduced in Italy long before their first
detection in September 2014 (Neumann 2016).
No cases have been reported between 30
December 2014 and 16 September 2015, but since
then, 24 new infested apiaries were officially con-
firmed in Calabria (3 November 2015, Istituto
Zooprofilattico Sperimentale delle Venezie
2015). Hence, despite the comprehensive efforts
of the local stakeholders, the chances of SHB
establishment in Italy are not zero. Indeed, irre-
spective of the success of any eradication measure
associated with apiculture whatsoever, SHBs are
known to be able to survive outside of apiculture.

3.2.5. Asia

In June 2014, an SHB outbreak was document-
ed in Lupon, Philippines (Brion 2015). Managed
colonies of introduced European honeybees were
severely infested, and the majority of them col-
lapsed (Brion 2015). So far, SHBs were not ob-
served in non-managed colonies and the potential
impact on native A. cerana and stingless bees is
currently unknown. Control measures are current-
ly being undertaken, e.g. prohibiting the inter-
island movement of bees (C. R. Cervancia, per-
sonal communication). Data from the Philippines
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are urgently required to evaluate the potential
consequences on the unique native bee fauna of
Southeast Asia under the local tropical conditions,
favouring SHB reproduction.

3.3. Invasion pathways and origins of
invasive populations

Knowledge about the likelihood of different
invasion pathways is essential to limit the further
spread of the SHB via adequate legislation and
border control measures. SHBs can potentially
reach new shores via trade associated with apicul-
ture, including package bees, queen cages, whole
honeybee colonies as well as apicultural tools,
combs and processed or non-pressed wax.
Imports of Bombus spp. and stingless bees might
also be an alternative route as well as import of
fruits and soil (e.g. for potted plants with soil,
FERA 2014; Chauzat et al. 2015). Introductions
near major harbours (Charleston, USA, Hood
2000; Gioia Tauro, Italy, Mutinelli et al. 2014) or
on islands (Jamaica (FERA 2010), Hawaii
(Connor 2011a, b), Cuba (Peña et al. 2014),
Philippines (Brion 2015)) indicate that trade via
ships may play a role (possibly via fruit import, H.
Smith, personal communication).

In almost all cases, migratory beekeeping and
or active dispersal of SHB might be involved
(Québec, Canada (Evans et al. 2003, 2008;
Giovenazzo and Boucher 2010); Coahuila,
Mexico (Del Valle Molina 2007)). In Australia,
hives that moved from New South Wales into
Victoria in 2003 and in Victoria in 2005 as well
as from Kimberley to Perth in 2008 were found to
be carrying SHB (N. Annand, R. Spooner-Hart,
personal communication). In May 2011, adult
SHBs were found in a conservation park on the
South Australia–Victoria border on illegally
moved hives and, in May 2012, SHB beetles and
larvae were found in hives and supplementary
pollen in close-by Naracoorte, South Australia
(N. Annand, R. Spooner-Hart, personal commu-
nication). National and international apicultural
trade seems to play a key role too (Alberta,
Canada, Australian package bees, Lounsberry
et al. 2010; Itay-Al-Baroud, Egypt, import of col-
onies from Ethiopia? A. M. Mostafa, personal
communication). Survival of adult and/or

immature SHB life stages obviously depends on
both storage conditions during transport and food
availability. Moreover, inspections prior to and
after trade (e.g. border controls) should also be
considered. However, rather unlikely routes such
as processed wax (Manitoba, Canada, cf.
Neumann and Elzen 2004) and queen cages
(Portugal 2004: Murilhas 2004; Northern
Territory, Australia 2010: R. Spooner-Hart, per-
sonal communication) have also been reported,
although beetle survival in the former may be
compromised and inspections prior to export
should be rather efficient in the latter case.

Genetic tools enable to trace back the origin
of invasive populations, which can be helpful to
better mitigate future introductions. SHB mt-
DNA sequence analyses of SHBs from the
USA and South Africa indicate that the popu-
lations on both continents belong to a single
species, although it is not clear whether a single
or multiple introductions occurred (Evans et al.
2000, 2003). SHBs in Australia have a different
origin than beetles in North America and the
initial North American beetles shared the same
source (Evans et al. 2008; Lounsberry et al.
2010). The outbreaks in Quebec, Canada appear
to originate from the USA (Evans et al. 2003,
2008), and all have been found close to the US
border. The SHBs confirmed in Alberta
(Canada) in 2006 were a new introduction via
Australian package bees (Lounsberry et al.
2010).

Taken together, the current evidence clearly
shows that international apicultural trade and/or
migratory beekeeping were involved in all inva-
sion cases, where clear signs could be found. So
far, there is no evidence whatsoever that imports
of soil and fruits have resulted in any invasion of
this pest. From an economic point of view, it
appears therefore prudent to focus on legislation
and even stricter control of international bee trade
to limit the future global spread of SHBs.

4 . DIAGNOSIS , CONTROL AND
PREVENTION

Efficient diagnostic methods for SHBs are
less required in the endemic range, but essential
in introduced ones, especially in those which
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are at high risk of introduction (e.g. surround-
ing new introductions in former SHB-free re-
gions), in order to detect new SHB infestation
at an early stage and have a chance to eradi-
cate it. Furthermore, a growing number of
countries have installed trade regulations for
bees and bee products that depend on the
infestation status with A. tumida . These coun-
tries need to install efficient diagnosis methods
into surveillance programs, to declare that they
are BSHB-free^ and enable trade without re-
strictions. However, also in areas where
A. tumida has already established populations,
accurate information on the level of infestation
is needed to give beekeepers a measure of the
actual SHB infestation of their colonies to
make treatment decisions. This is especially
true for areas with elevated conditions for
SHB reproduction, e.g. tropics in Central and
South America and Southeast Asia. For pre-
vention of SHB infestations, beekeepers need
to constantly monitor their colonies for the
presence of SHBs, maintain strong colonies
and keep their facilities clean (Hood 2011).
Numerous methods to diagnose and/or control
SHB infestation were invented by beekeepers
and scientists since the SHB has become an
invasive species. In the coming passage and in
the Tables IV and V, we will summarize and
assess the most important control concepts,
methods and inventions.

4.1. Diagnosis

Diagnosis of A. tumida in the laboratory is
either based on morphological criteria (Neumann
et al. 2013) or by molecular identification (Evans
et al. 2000, 2008; Ward et al. 2007; Lounsberry
et al. 2010). The life stages of A. tumida are
shown in Figure 1. Adult SHBs are 5–7 mm long
and 2.5–3.5 mmwide. Head, thorax and abdomen
are well separated. Key features of A. tumida are
its Bclub-shaped^ antennae and its elytra, which
are smaller than the abdomen, so the end of the
abdomen is exposed. Special attention should be
given to body coloration, because freshly emerged
adult A. tumida look very similar to C. luteus
(Neumann and Ritter 2004), thereby bearing the
possibility of false positive results. SHB larvae

grow to ~1-cm long, are creamy white and can
easily be distinguished from the wax moth larvae
(Galleria mellonella ) due to the presence of three
pairs of long forelegs, a row of spines on the
dorsal side of each body segment and two large
spines protruding from the rear and in the field the
absence of webbing in the combs.

Several molecular techniques to diagnose
SHBs have been described (Table II; Evans et al.
2000, 2008; Ward et al. 2007; Lounsberry et al.
2010). Real-time PCR in conjunction with an
automated DNA extraction protocol was used to
screen hive debris for the presence of SHBs (Ward
et al. 2007). The method was shown to be able to
detect DNA from SHB eggs, larvae and adult
specimens collected from Africa, Australia and
North America and to successfully detect SHB
DNA extracted from spiked and naturally
infested debris. Evans et al. (2008) described 15
microsatellite loci, which are polymorphic in the
native as well as in the introduced ranges of this
species, showing from two to 22 alleles. Such
polymorphic microsatellite loci for SHB are nec-
essary to map the increase in distributions, but
they are also useful to explore the SHB mating
system and local gene flow patterns. These loci
have also proven useful inmapping the movement
of SHBs in the Americas (Lounsberry et al. 2010).
Especially if only eggs or larvae are available, the
molecular techniques are essential as these live
stages are impossible to be diagnosed visually.
Another advantage is that samples can be collect-
ed over time and as long as they stored appropriate
molecular analyses are always possible. For ex-
ample, screening of hive debris (Ward et al. 2007)
was used in a surveillance study in Spain to eval-
uate the possible presence of SHB in the country
(Cepero et al. 2014). However, our limited knowl-
edge of the A. tumida genome currently con-
strains the full diagnostic power of molecular
tools. Indeed, limited resolution and false negative
results are likely (e.g. using conventional primers;
Evans et al. 2008). Therefore, it appears crucial to
get the A. tumida genome sequenced to foster the
usage of molecular tools for both research and
diagnostics.

Monitoring of sentinel apiaries that are located
in zones at risk for SHB introduction (e.g. seaport
or airport) is recommended to detect SHB
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Table IV. Overview of small hive beetle diagnostic methods. None of them have been standardized and only few
have been evaluated for their reliability. Please refer to Neumann and Elzen (2004) and Neumann et al. (2013) for
further references. Brief descriptions and challenges are given.

Method Description Challenges

Visual inspections Colonies are carefully
examined for the presence
of SHB (Spiewok et al. 2007;
Neumann and Hoffmann 2008;
Mutinelli et al. 2014). A control
to estimate the numbers of
SHB that might be missed
during visual inspections
resulted in an average of 8.4 %
adults that were not found
(Spiewok et al. 2007)

Thorough screenings are
labour-intensive and
time-consuming (depending
on colony size and experience
of the inspectors). The level
of detail of the inspection
determines its accurateness.
To obtain reliable results,
training is required

Olfactory inspections Heavy SHB infestations
are characterized by a
typical rotten smell, resulting
from fermented honey
(Schäfer and Ritter 2014),
which can be easily recognized

Smell is in general unreliable
and rather unsuitable, especially
because it is subjective and rotten
honey is not always occurring
in infested colonies

Traps inside colonies Diagnostic strips are placed
on the bottom board, by
sliding them through the
entrance. They have a mean
capture efficacy of 30 % of
the colony SHB population
(Schäfer et al. 2008; 2010a, b, c).
All kinds of control traps
may be also used for
diagnostics (see Table V)

Sensitivity might be compromised
by screened bottom boards,
cold weather and low
infestation levels and should
be applied in association with
visual inspection (Mutinelli et al. 2014).
Eggs cannot be detected, but
nevertheless, it is a quick approach,
which can be applied in a wide area

Baited traps outside
colonies

Please refer to Table V Please refer to Table V

Inspection after killing
the colony

The most accurate approach
for counting SHB is to
examine beetles in freshly
killed colonies. One can,
presumably, find 100 %
of the SHB (all live stages)
inhabiting a colony if all
SHB and bees are dead
(Schäfer et al. 2011;
Neumann et al. 2013)

Even very useful for method
validation (gold standard),
this approach cannot be
widely applied because
it requires destruction of
the entire colony

Post hoc analyses Collapsed or absconded
colonies are characterized
by fermented honey, often
dripping out of hive entrances,
destroyed combs
(Schäfer and Ritter 2014).
Dark, crusty traces from
wandering larvae on the
outside of the hive can be found
(Schäfer and Ritter 2014)

If colonies absconded/died
some time ago, ants and
wax moths may have destroyed
clinical signs inside and
rain/storm outside of hives

Digging soil Soil around infested colonies
can be successfully screened

This is very labour-intensive
and may produce false
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infestation at an early stage in order to eradicate it
(Chauzat et al. 2015), and several countries have
initiated this method (Australia (Annand 2011b),
Italy (Mutinelli et al. 2014), Switzerland (Elena di
Labio, personal communication)). The most rudi-
mentary and time-consuming method to estimate
the infestation level of a colony in the field is
screening of the entire colony (Spiewok et al.
2007; Neumann and Hoffmann 2008). However,
this method is also highly accurate, if done by
specially trained personnel and therefore the
method of choice for new introductions with low
infestation rates. A very fast, cheap and easy
quantitative diagnosis for SHB in the field is the
use of diagnostic strips made of corrugated plastic
(Schäfer et al. 2008, 2010a), which are placed on

the bottom board via the entrance, without the
need to open or manipulate the colonies. A test
at five apiaries in Richmond, NSW, Australia
showed that the number of SHBs found in the
transparent strips correlated significantly with the
total number of SHBs in the hives (detected by
screening of the entire colony), and the average
efficacy was 34.5 % (Schäfer et al. 2008). It is
recommended to leave the diagnostic strips inside
the colonies for at least 48 h to give the beetles a
chance to find the refuges and it is not recom-
mended to use them during cold seasons, when
bees form winter clusters, because adult SHBs
might leave the bottom board seeking shelter in
bee clusters (Figure 3; Pettis and Shimanuki
2000).

Table IV (continued)

Method Description Challenges

for SHB wandering larvae,
pupae and adults
(Pettis and Shimanuki 2000)

negative results because
wandering larvae
can crawl long distances
(Sanford 1998), low-level
reproduction (Spiewok and Neumann 2006a)
is likely to remain unnoticed
and SHB mass reproduction
occurs only irregularly

Molecular

Screening hive
debris for SHB

Real-time PCR can
be used to screen
hive debris for the
presence of SHB (Ward et al. 2007)

Molecular methods require
sophisticated equipment,
and trained personnel. The
experimental setup has to be
validated and in-house and
inter-laboratory comparative
tests should be accomplished
to ensure the accuracy of results.
The limited knowledge of the
SHB genome currently constrains
the full diagnostic power of
molecular tools. False negative
results are not unlikely, e.g.
due to variable primer regions
in different SHB populations

Microsatellite
analyses

Microsatellite loci
which are polymorphic
in the native as well as
in the introduced ranges
of SHB were described (Evans et al. 2008).
These loci have also proven
useful in mapping the
movement of SHB in
the Americas (Lounsberry et al. 2010)

Mitochondrial DNA
analyses

Two oligonucleotide primers
that amplify a region of the
SHB mitochondrion
were described (Evans et al. 2000)

Sequencing Sequences can be aligned
against numerous SHB
haplotypes in public
sequence databases
(Neumann et al. 2013)
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Table V.Overview of small hive beetle control methods. None of the methods have been standardized and only few
have been evaluated for their efficacy. Please refer to Neumann and Elzen (2004) and Neumann et al. (2013) for
further references. Brief descriptions and challenges are given.

Method Description Challenges

In hives

Manual removal Sucking aspirators (exhausters, pooters) are
used to manually remove SHB adults and
larvae (Spiewok et al. 2007, 2008; Neumann
and Hoffmann 2008).

Very labour-intensive. Works best with
two persons, one working the colony
and the other collecting SHB.
Efficacy might be compromised (see
Table IV). Keeping colonies open for
long time may promote robbing

Kitchen cleaning wipes Kitchen cleaning wipes are placed on top of the
frames, where they are shred into fibres by the
bees and the beetles become trapped in the
fibrous material (Zacchetti 2015)

The authors have no experience with
this very economical method yet

Traps for adults Exploit adult SHB thigmotaxis and/or harass-
ment by bees. Small openings (~3 mm) ex-
clude bees but allow SHB to hide inside

SHB may hide elsewhere. Bees may
close the openings with propolis or
wax and the containers have to be
checked periodically and exchanged
when sealed and/or crowded (Bernier
et al. 2015)

(a) Bottom boards SHB come in contact with killing agents placed
onto the bottom board, e.g. with CheckMite
+TM strips (Ellis and Delaplane 2007;
Neumann and Hoffmann 2008; Bernier et al.
2015); fipronil (Levot 2008); diatomaceous
earth (Buchholz et al. 2009; Cribb et al. 2013)
or entomopathogenic fungi (Ellis et al. 2004e)

During cooler weather, adult SHBs tend
to leave the bottom boards (Schäfer et
al. 2011). Chemicals can have a high
efficacy (possibly up to 100 %, Levot
2008, 2012) but should not be used
prior to honey harvest (possible resi-
dues). Chemicals used in traps are
potentially spread to honeybees with
side effects on bees. Resistant SHB
strains may develop as in the case of
V. destructor mites (Spreafico et al.
2001)

(b) Between top bar frames Small containers (usually filled with oil), which
lids have openings that allow SHB to enter
are placed on top of the frames, e.g. Beetle
EaterTM with oil (Bernier et al. 2015), with
diatomaceous earth (Cribb et al. 2013); Beetle
BlasterTM (Mutinelli et al. 2014)

Pendingweather and colony conditions,
majority of adult SHB tend to stay on
bottom boards (Neumann and
Hoffmann 2008; Torto et al. 2010a).
Needs to be positioned next to brood
nest to be more effective and efficacy
is not known (Bernier et al. 2015)

(c) Instead of frames The Hood TrapTM attaches to a frame and has 3
compartments for attractant and/or killing
liquids (Hood 2006, 2009; Nolan and Hood
2008, 2010; Bernier et al. 2015)

The Hood TrapTM requires replacing
one frame and creates empty space in
the frame around the trap. Efficacy is
not known (Bernier et al. 2015)

(d) Modified bottom boards Devices with screened or tubed anti-Varroa
bottom board (Keshlaf and Spooner-Hart
2013) and with slatted (e.g. West TrapTM),
screened (Freeman Beetle TrapTM Freeman
2009; Harman 2005; Hood 2011) or a baited
bottom board trap with oil-filled container
underneath (Torto et al. 2007b) replace the
regular bottom board

Hives have to be even standing because
the oil may otherwise spill over. Some
of these traps require modification
and are not for use with screened
bottom boards
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Table V (continued)

Method Description Challenges

Traps for larvae Traps in front of hive entrances intercept
wandering larvae as they exit the hive for
pupation in the soil (Arbogast et al. 2012)

Small number of larvae caught in low-
level reproduction (Arbogast et al.
2012). Occurrence of SHB mass re-
production is often unpredictable. If
larvae emigrate, the damage to the
colony has already happened. The
trap is recommended primarily as a
research tool for SHB population dy-
namics

Modified entrances Wooden entrance reducers (Frake et al. 2009)
or upper hive entrances (Ellis et al. 2002a;
Hood 2004; Hood and Miller 2005) are
installed to limit invasion success of intruding
SHB

SHBs usually enter colonies without
problems (Lundie 1940), but less
adult SHBs were reported from colo-
nies with upper hive entrances (Ellis
et al. 2002a) or entrance reducers
(Frake et al. 2009). Hood and Miller
(2005) found no significant effects of
upper hive entrances. Bees may also
be affected, e.g. reduced brood in
colonies having an upper hive en-
trance (Hood and Miller 2005)

Killing the entire colony Destruction of infested colonies (Murilhas
2004; Neumann and Hoffmann 2008;
Mutinelli et al. 2014; Perth Australia, 2008,
N. Annand and R. Spooner-Hart, personal
communication)

This probably is the most efficient
control as evidenced by the Portugal
(Murilhas 2004) and Perth cases (N.
Annand and R. Spooner-Hart, per-
sonal communication), but both the
bee colonies and the hive materials
get lost

Outside of hives

Baited traps Baited pole traps (Arbogast et al. 2007, 2009a)
are placed at the bee yard. As bait, a combi-
nation of honey, pollen, brood and adult bees
(cf. Neumann and Elzen 2004) or pollen
dough, inoculated with the yeast Kodamaea
ohmeri (Torto et al. 2007a, b, 2010a), is used.
White traps captured more SHB than black
ones and most SHB were caught, when traps
were positioned at the same height as the hive
entrance (de Guzman et al. 2011)

As these traps generally do not catch
high numbers of beetles, further bait
improvements are necessary as yet no
bait was found to be more attractive
than a honeybee colony. Catch
numbers also depend on
environmental conditions as more
SHB move out of the hive in hot
summer conditions (Annand 2011a).
Nevertheless, they are a quick ap-
proach which can be applied in a wide
area

UV lights to attract SHB
wandering larvae in honey
houses

Lights are placed close to the ground in the
honey house to attract positive phototactic
wandering larvae (cf. Neumann and Elzen
2004; Duehl et al. 2012). The highest re-
sponse of SHB larvae and adults was shown
to UV light with 390 nm wavelength (Duehl
et al. 2012)

If wandering larvae are observed in the
honey house, the larvae have already
done their damage in the colonies, but
light shows promise for SHB control
in all locations where comb is stored
or honey extracted

Sterile insect technique Male SHBs are laboratory-reared, radiated for
sterilisation and released (Downey et al.
2015; Neumann et al. 2016a)

Doses required obtaining SHB male
sterility (>75 Gy) resulted in 100 %
mortality after 7 days (Neumann et al.
2016a). Irradiation of pre-
reproductive adults of both sexes at
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The most accurate diagnosis method is to kill
the entire colony with bees and the pest followed
by a visual inspection, including dissection of

each frame (Neumann and Hoffmann 2008;
Neumann et al. 2013). However, this can of
course not be applied systematically in the field.

Table V (continued)

Method Description Challenges

45 Gy under low oxygen (1–4 %)
caused a high level of sterility
(>99 %) while maintaining moderate
survivorship for several weeks, which
might suffice for sterile insect releases
(Downey et al. 2015). However, SHB
mating system (Mustafa 2015) may
reduce chances of success

Soil

Concrete Hives are set on concrete grounds to prevent
pupation in the soil as the wandering larvae
cannot penetrate the concrete surface

Efficacy is probably low because SHB
wandering larvae are able to migrate
long distances (>200 m, Somerville
2003; Hood 2011)

Drenching The soil around infested colonies is drenched
with pesticides (pyrethroids) to kill all live
stages of SHB (Hood 2000, 2011; Mutinelli
2014). It is recommended to treat the area
within a radius of 0.90–1.80 m around the
hive (Pettis and Shimanuki 2000)

Pyrethroids can harm bees and other
non-target insect species. Therefore,
they should only be used when SHB
larvae are in the colony as it is not
known how long pyrethroids remain
lethal to SHB in the soil. Moreover,
resistant SHB strains may develop

Slaked lime and
diatomaceous earth

Mixtures of soil with slaked lime or
diatomaceous earth should prevent pupation
due to dehydration. Slaked lime reduced the
reproductive success of SHB only in high
dosages (10 and 15 g/100 g soil) and diato-
maceous earth only in the most hydrophobic
formulation (Buchholz et al. 2009)

Efficacy of slaked lime or diatomaceous
earth against the soil dwelling stages
of SHB in the field is unknown, as
only laboratory experiments were
conducted so far

Natural enemies Entomopathogenic fungi or nematodes are
applied to the soil surrounding infested
colonies to kill all SHB life stages (Richards
et al. 2005; Cabanillas and Elzen 2006;
Muerrle et al. 2006; Leemon and McMahon
2009; de Guzman et al. 2009; Ellis et al.
2010).Metarhizium added to soil killed large
proportions of larvae in the soil (Leemon
2012). Recently, the nematodes Steinernema
carpocapsae and S. kraussei were shown to
provide 100 %mortality of larvae pupating in
sand pots (Cuthbertson et al. 2012). It is rec-
ommended to treat the area within a radius of
0.90–1.80 m around the hive (Pettis and
Shimanuki 2000)

Generally, these soil treatments are only
effective when timed appropriate to
when larvae are migrating (Pettis and
Shimanuki 2000), but SHB mass re-
production is unpredictable and usu-
ally only few larvae leave the colonies
(Spiewok and Neumann 2006a;
Neumann and Hoffmann 2008;
Arbogast et al 2010). Since nema-
todes are susceptible to dehydration,
preventive treatment might be less
efficient, but no field data are avail-
able

Removal The top soil layer of infested apiaries is
removed and treated or deep buried into the
ground (Murilhas 2004)

As this requires heavy equipment or is
very labour-intensive, it is
recommended only after entire apiary
destruction
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Nevertheless, this method seems to be Bgold
standard^, because its efficacy is virtually 100 %
if applied correctly and can thus be used to validate
other diagnostic methods. It could also be applied
for wild swarms and other research purposes.

4.2. Control

Efficient control of SHBs should not rely on a
single method; it requires pest management deci-
sions based on adequate diagnosis methods to
assess which control measures will lead to maxi-
mum efficacy and simultaneously produce results
with the fewest environmental impacts. Integrated
pest management (IPM) should be considered
(Ellis 2005a, b; Hood 2011), using a combination
of all available control methods (mechanical, bio-
logical and chemical) in a responsible matter.
Manual removal of SHBs (screening of entire
colonies, see above) could also be regarded as a
control option, but it is very labour-intensive.
Different kinds of SHB traps can be installed in
or outside of the colonies that should be checked
regularly during apiary visits. The functional prin-
ciple of most SHB traps is creating a refuge or
space, which is large enough for SHBs and too
small for bees to pass through at once to enter the
trap which contains a reservoir for the killing
product (veterinary medicine, oil, diatomaceous
earth, etc.). Another way of trapping is currently
in use in Australia, where kitchen cleaning wipes,
placed on top of the frames, are shred into fibres
by the bees and the beetles become trapped in the
fibrous material (Zacchetti 2015).

Among the products that are used to control
V. destructor mites, CheckMite+TM strips were
shown to also have broad toxicity against SHBs,
killing both larvae and adults, when placed under-
neath corrugated cardboard or plastic sheets on the
bottom board (Ellis and Delaplane 2007;
Neumann and Hoffmann 2008). However, when
wandering larvae were exposed to CheckMite+TM

for 24 h, they still burrowed successfully, which
will minimize the efficacy to control SHB larvae
in the field (Ellis and Delaplane 2007). Another
easy to install bottom board trap (Beetle BarnTM

with CheckMite+TM) also showed high efficacy
against adult SHBs and the position of the trap,
whether in the front or the back of the bottom

board, had no effect on the number of captured
SHBs (Bernier et al. 2015). In Australia, a refuge
trap was developed comprising of two-piece rigid
plastic shells encasing a fipronil-treated corrugat-
ed cardboard (ApithorTM) insert (Levot 2008;
Levot and Somerville 2012). In a 36-day-long
field trial conducted in a beetle-infested apiary at
Richmond, NSW, Australia, live adult beetles
were eliminated from hives containing
ApithorTM while beetle numbers increased by
approximately 20 % in co-located control hives
The residues in honey ripened inside the test hives
over 1 month while the devices were in place did
not exceed 1 μg/kg, and no ill effects on the bees
were observed (Levot 2012). Despite earlier ob-
servations of lively SHBs emerging from a hive,
unscathed by a formic acid treatment (Amrine and
Noel 2006), Schäfer et al. (2009) tested the effects
of formic (60%) and acetic acid (70%) treatments
on SHB in nucleus boxes with two honey/pollen
frames each. Formic acid decreased the number of
SHB larvae-infested areas on the combs, and
acetic acid treatments showed higher SHB adult
mortality compared to controls (Schäfer et al.
2009). However, further evaluation of evaporating
formic acid in field colonies did not significantly
increase mortality in SHBs, and thus neither
formic nor acetic acid treatments are suitable to
control SHBs (Buchholz et al. 2011).

Kanga and Somorin (2011) assessed the sus-
ceptibility of SHBs to 14 selected insecticides and
four insect growth regulators in the laboratory.
Their results indicated that SHBs are selectively
susceptible to several classes of insecticides.
Chemicals are always the first choice in control-
ling a new pest because they are mostly easy to
use and effective, but there are reported problems,
for example with the residues of coumaphos pres-
ent in wax (Mullin et al. 2010), which can con-
taminate honey and besides the product does not
seem to work well in cooler temperatures
(Mostafa and Williams 2000). Moreover, SHBs
may develop resistance to any chemical used for
their control because of their high mobility and
fecundity (De Guzman et al. 2011). In conclusion,
chemicals are fraught with difficulties in the end.

A diverse range of alternatives to chemical
control have been developed and tested in labora-
tory and field assays. There have been mixed
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results with alternations of the hive entrance. The
use of entrance reducers had a significant effect on
the average number of invading SHBs (Frake
et al. 2009), whereas an upper hive entrance was
not effective against SHB invasion and resulted in
a reduction in bee brood, demonstrating their in-
feasibility (Hood 2004; Hood and Miller 2005).
The use of slaked lime and diatomaceous earth
was tested in the laboratory and in honeybee field
colonies (Buchholz et al. 2009). In diagnostic tray
traps in the field, about a third of the adults of
infested colonies were caught with slaked lime
and diatomaceous earth (Fossil Shield® FS
90.0s) and caused 100 % adult mortality inside
the traps, where more than 50 % died within 48 h
(Buchholz et al. 2009). Cribb et al. (2013) per-
formed laboratory tests with diatomaceous earth
as killing agent inside top frame bar traps (Beetle
EaterTM) and reported 100 % SHBmortality com-
pared to 8.6 % mortality in controls without dia-
tomaceous earth. In these and similar traps (Beetle
BlasterTM), the reservoirs are usually filled with
oil, in which entering SHBs eventually drown
(Bernier et al. 2015) which is also the case in
many bottom board traps (e.g. West TrapTM,
Freeman Beetle TrapTM). A bait, consisting of
pollen dough (mixture of pollen and honey) that
was conditioned either by the feeding of adult
SHBs or by inoculation with the yeast
K. ohmeri (Benda et al. 2008), has been used
successfully in bottom board traps in the USA
and Kenya to monitor SHB populations (Torto
et al. 2007b, 2010a).

All these traps only provide adequate con-
trol when the position of the trap in the hive
is adapted to the environmental situation.
This is important, as the bottom board is a
suitable location for SHB traps during the
hot season, but during the winter, SHB will
be found close to or among heat-producing
clustering bees (Schäfer et al. 2011). At pres-
ent, in-hive control devices appear to be
most appropriate for removal of SHBs
(Annand 2011b). Traps that capture wander-
ing larvae at a colony scale (Arbogast et al.
2012) are recommended primarily as research
tools (Neumann et al. 2013), as damage has
already occurred when wandering larvae
leave the colonies.

When reproduction has occurred, SHB lar-
vae and pupae may be present in the soil
around the hive. Since the pyrethroid per-
methrin (in the USA sold as GardStar®) ap-
plied around colonies achieved some success
at killing beetle larvae and pupae (cf.
Neumann and Elzen 2004), pyrethroid
ground drenching is widely used for SHB
control (e.g. cypermethrin and tetramethrin
were used in Italy; Mutinelli et al. 2014),
but there are also problems with the use of
ground drenches. They may protect individu-
al hives on site but do little to prevent the
spread of SHBs (Hood 2000), and they need
to be applied around the hives in all direc-
tions (about 180–360 cm) to maximize their
efficacy (Pettis and Shimanuki 2000).
Moreover, during the reproductive season of
SHBs, larvae are continuously leaving the
hives to pupate in the ground (Torto et al.
2010a), which makes continuous treating
necessary.

Three different light types (white bulb, black
light insect light) were tested as attractants, indi-
cating that none of these light sources are attrac-
tive to adult SHBs (Neumann and Elzen 2004).
But lights have been used successfully in the
honey house to attract wandering larvae, as they
are positively phototactic (Somerville 2003).

Flying SHBs have been monitored with
baited traps (cf. Neumann and Elzen 2004).
The traps were baited with honey, pollen,
brood and live adult honeybees in several
compositions to test their attractiveness to
SHBs. But as beetles could enter and then
escape, these traps were ineffective for control.
Later, Arbogast et al. (2007) used refined traps
that lure and capture SHBs using a bait
consisting of pollen dough (mixture of pollen
and honey) conditioned by allowing male
SHBs to feed on it for 3 days were tested suc-
cessfully in the field. In their study, they also
found that significantly more SHBs were cap-
tured if the traps were located in the shade
compared to sunny locations (Arbogast et al.
2007). Torto et al. (2007a) tested the attractive-
ness of the same diet inoculated with the yeast
K. ohmeri , isolated from the beetle. Further tests
with K. ohmeri -inoculated pollen dough-baited

Biology and control of small hive beetles 455



traps confirmed the positive influence of shade
and showed a negative correlation with distance
to bee hives on the frequency of capture
(Arbogast et al. 2009a). To investigate the re-
sponse of adult A. tumida to visual stimuli, de
Guzman et al. (2011) tested the influence of
black and white colour and the height on pole
trap efficiency. The average catch in white traps
was significantly higher than that of black traps,
probably because white is more reflective than
black, and traps positioned at the same height as
colony entrances showed the highest catch num-
bers in the field. As these traps generally do not
catch high numbers of beetles and honeybee
hives seem to lure the majority of the beetles,
further improvements are necessary (de Guzman
et al. 2011), e.g. capturing and killing SHBs
prior to hive entry will bear obvious advantages.
Using external baited lures throughout the peak
movement times (autumn and spring), capturing
SHBs outside of the hives when flying into
apiaries may provide a safe, easy control option
(Annand 2011b). Such traps would be especially
useful if we aim to control SHB numbers outside of
managed apiaries, e.g. to safeguard bumblebees and
stingless bees as well as wild or feral honeybees. In
conclusion, these traps allow continuous observa-
tions that provide a relative measure of A. tumida
migration (Neumann et al. 2013), and there is still
hope to develop a lure that is more attractive to
SHBs than the colonies of honeybees or other bees.

4.3. Prevention

Good beekeeping management is an essen-
tial tool in the fight against SHB damage
(Westervelt 2005; Hood 2011). As the larval
stage is most harmful to the colonies, mea-
surements should be focused on limiting the
reproductive success of A. tumida in the col-
ony. If strong colonies are infested, the adult
beetles are pursuing a Bsit-and-wait^ repro-
ductive strategy (see above), as they are con-
fined by guard bees or hiding from the bees
in areas of the colony, where food for larvae
is rare. Only if the situation changes and the
beetles are free from captivity do they take
the chance and try to lay eggs close to food.
Especially if working on the hive creates a

narrow space that is secured from bee
aggression and pollen or brood is available.
This could happen for example when there is
no bee space between two brood combs. The
impact of the apiary location in the shade or
in the sun is unclear. While Arbogast et al.
(2007, 2009a) found more SHBs in lured
traps outside hives in the shade, Ellis and
Delaplane (2006) found that the location in a
shaded area or in an open field with full sun
had no significant effect on the number of
SHB entering the colonies. In Australia, large
beekeeping operations around Sydney moved
their operations over the Blue Mountains
where conditions are cooler and less humid,
which has proven the most effective SHB
management strategy (N. Annand and R.
Spooner-Hart, personal communication).

If honey is harvested, the SHB eggs and
larvae on such combs are released from the
bees and free to develop; therefore, it is rec-
ommended to extract the honey immediately
(at least within 2 days) and if this is not
possible cold storage or at low relative humid-
ity should be considered as temperatures below
15 °C and relative humidity less than 34 %
prevented egg survival (Annand 2011b). Hives
where bees do not exhibit good hygienic be-
haviour (attempt to remove beetle adults or
larvae) should be re-queened or replaced with
bees that do (Fletcher and Cook 2005).
Feeding pollen substitute patties is problematic
as enhanced SHB reproduction may occur
(Westervelt et al. 2001), but in winter the risk
is lower, as then the condi t ions are
unfavourable for SHBs (Hood 2009). Some
beekeepers in the USA use small colonies
(nucleus) with Checkmite+TM strips as death
traps for SHBs, believing that small colonies
may be especially attractive to them (Jacobson
2005). However, there is no evidence for
smaller or queenless colonies being more at-
tractive (Spiewok et al. 2007; Annand 2011a).
Nevertheless, it was shown that SHB levels,
which are harmless to full-sized colonies, may
have an impact on smaller ones (Annand
2011a; Mustafa et al. 2014). As hives contain-
ing very low bee numbers are vulnerable to
SHB reproduction and subsequent damage,
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beekeepers need to regularly check and remove
hives that are weak or declining. Removing
susceptible hives will reduce opportunities for
SHB reproduction and, therefore, help to min-
imize population expansion within the apiary
(Annand 2011b).

5. DISCUSSION

The introduction of A. tumida in areas as
far from its endemic range as North America,
Australia, Europe and Asia illustrates the
high anthropogenic transportation potential
of this beetle. However, it appears difficult
to trace back the actual transport mechanism
into specific areas, especially if introduction
is only detected after secondary spread. It
seems plausible to assume that the import
of package bees, honeybee and bumblebee
colonies, queens, hive equipment and/or even
soil (Brown et al. 2002) constitutes potential
invasion pathways of the SHB. Nevertheless,
at the current state of evidence, it is still
unc lea r how SHBs ac tua l ly reached
Australia and the USA. The migratory nature
of beekeeping is probably the greatest con-
tributor of SHB transmission within its new
ranges (USA: Neumann and Elzen 2004;
Australia: Gordon et al. 2014; Annand
2011b). The pattern of SHB spread is prob-
ably dominated by long-distance jump dis-
persal as in other invasive species (Nentwig
2007). Detailed data and comparative studies
on the invasion dynamics in the new ranges
seem necessary to evaluate the contribution
of individual processes to the spread of
A. tumida and to improve the predictive
power of future modelling efforts. Such stud-
ies are however still lacking.

The environmental requirements of SHBs
are readily met within a large range of the
global distribution of A. mellifera both in
terms of survival and completion of its life
cycle. Indeed, SHBs can establish popula-
tions in temperate regions due to their
overwintering capacity in the honeybee
cluster (Schäfer et al. 2011; Atkinson and
Ellis 2012). The requirement for lighter
sandy soils during pupation can also be

met within many areas. Thus, it is likely
that, if introduced, SHBs would swiftly be-
come established in most of the range of
the Western honeybee with major implica-
tions for apiculture and wild bees under
suitable environmental conditions. Also,
the ability of SHBs to heavily infest the
protected environment of honey houses
may allow severe economic damage in any
location worldwide similar to the USA and
Australia.

Our limited knowledge still constrains our
ability to pinpoint the most important factors
in SHB reproductive success, e.g. the role of
alternative food sources such as fruits re-
mains unclear so far. Many of the behav-
ioural mechanisms have only been qualita-
tively described or have not been tested in
comparative studies between African and
European honeybees. Moreover, very impor-
tant basic features like the number of SHB
offspring per social bee colony and levels of
infes ta t ion of wi ld / fera l Afr ican and
European honeybee, Bombus spp. and sting-
less bee host populations have not been
rigorously quantified yet. Therefore, more
comparative studies between SHBs and so-
cial bee host populations in the endemic and
new ranges are urgently required.

6. CONCLUSION

Since 1996, SHBs have become a global
threat to both apiculture and wild bee popu-
lations. Despite comprehensive efforts, it will
continue to spread. Its future impact will
most likely be more severe in areas with
managed and feral European-derived honey-
bee populations as well as warm and humid
climate, both fostering SHB population build-
up (Neumann 2016). Particular concern
should be addressed to beekeeping and native
bee fauna in South America, Southeast Asia
and the Mediterranean, and we hope that the
overview provided here will foster adequate
SHB mitigation. However, our knowledge of
biology, diagnosis, control and prevention of
this pest is still limited, creating demand for
more research on SHBs.
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