Facile Suzuki-Miyaura coupling of activated aryl halides using new CpNiBr(NHC) complexes

Frederick P. Malan, Eric Singleton, Petrus. H. van Rooyen, Marilé Landman*

Department of Chemistry, University of Pretoria, 02 Lynnwood Road, Hatfield, Pretoria, 0002, South Africa. *E-mail: marile.landman@up.ac.za

Supplementary Information

General synthesis for imidazolium bromide salts (L1, L2):

To a slurry of imidazole (2.05 g, 30 mmol), KOH (3.38 g, 60 mmol), and K_2CO_3 (4.16 g, 30 mmol), in CH₃CN (20 mL) was added the benzyl/phenylethyl halide (RX, 30 mmol) and the resulting mixture was heated under reflux for 3 hours. The mixture was concentrated to dryness, extracted with DCM (20 mL), which was washed with H₂O (3 x 8 mL). The combined organic extracts was concentrated *in vacuo* to which the second aryl halide (R'X, 30 mmol) was added in CH₃CN (20 mL) and heated under reflux overnight. The resulting mixture was concentrated to dryness and washed several times with hexane (3 x 10 mL), Et₂O (3 x 10 mL), and EtOAc (3 x 10 mL) to give the precursor imidazolium salts in high yield (> 85%).

 $[Im(Me)((CH_2)_2Ph)]Br$ (L1): Yield: 87%. ¹H-NMR ((CD₃)₂CO, $\delta_{\rm H}$) 3.32 (t, ³J_{HH} = 8 Hz, NCH₂CH₂, 2H), 4.04 (s, CH₃, 3H), 4.72 (t, ³J_{HH} = 8 Hz, NCH₂CH₂, 2H), 7.18 – 7.30 (m, C₆H₅, 3H), 7.39 – 7.75 (m, C₆H₅, 2H), 7.76 (s, NCH, 1H), 7.92 (s, NCH, 1H), 10.16 (s, NCHN, 1H). ¹³C{¹H}-NMR ((CD₃)₂CO, $\delta_{\rm C}$) 36.5 (s, CH₂), 37.0 (s, CH₃), 51.2 (s, CH₂), 123.4 (s, NCH), 124.1 (s, s, NCH), 127.6 (s, C₆H₅), 129.4 (s, C₆H₅), 129.9 (s, C₆H₅), 137.9 (s, *ipso-C*₆H₅), 138.4 (s, NCN).

 $[Im(Me)(4-NO_2Bn)]Br$ (*L1*): Yield: 86%. ¹H-NMR ((CD₃)₂CO, $\delta_{\rm H}$) 3.75 (s, CH₃, 3H), 6.00 (s, CH₂, 2H), 6.96 (s, NCH, 1H), 7.09 (s, NCH, 1H), 7.99 (m, C₆H₅, 2H), 8.24 (m, C₆H₅, 2H), 10.34 (s, NCHN, 1H). ¹³C{¹H}-NMR ((CD₃)₂CO, $\delta_{\rm C}$) 36.7 (s, CH₃), 51.9 (s, CH₂), 124.7 (s,

NCH), 124.8 (s, s, NCH), 128.5 (s, C₆H₄), 131.5 (s, C₆H₄), 136.5 (s, *ipso-C*₆H₅ *trans* to NO₂-group), 138.8 (s, *ipso-C*₆H₅ adjacent to NO₂-group), 143.0 (s, NCN).

Complex	L1	L2	1	2	3	4
Emp. formula	$C_{12}H_{15}Br$	$C_{11}H_{12}BrN_3$	$C_{22}H_{21}BrN_2$	$C_{16}H_{17}BrN_2$	$C_{20}H_{22}BrN_2$	C ₁₆ H ₁₆ BrN ₃ Ni
_	N_2	O_2	Ni	Ni	Ni	O_2
Form. weight	267.17	298.15	452.03	375.93	429.96	420.94
(g.mol ⁻¹)						
Crystal	monoclinic	monoclinic	orthorhombi	triclinic	monoclinic	monoclinic
system			с			
Space group	$P2_1/n$	$P2_{1}/n$	Pnma	<i>P</i> -1	C2/c	$P2_{1}/n$
Crystal descr.	colourless	colourless	red fragment	red block	red block	red plate
o	block	rod				
a (Å)	7.537(2)	5.2343(2)	13.1389(6)	7.3271(5)	13.3223(9)	14.7447(1)
b (A)	17.252(5)	24.6265(1)	17.3065(8)	9.1441(6)	12.7790(1)	28.446(3)
c (A)	9.742(3)	19.0455(9)	8.3032(4)	11.4801(7)	22.2205(2)	9.0297(1)
α (°)	90.000	90.000	90.000	87.589(2)	90.000	90.000
β (°)	100.874(9)	94.7320(11)	90.000	82.321(2)	102.963(3)	120.885(2)
γ (°)	90.000	90.000	90.000	85.151(2)	90.000	90.000
Volume (A ³)	1243.9(6)	2446.64(2)	1888.05(2)	759.17(9)	3686.5(5)	3250.3(6)
Z	4	8	4	2	8	8
Abs. coeff.	3.276	4.553	3.151	3.900	3.223	3.664
$(\mathbf{m}.\mathbf{mm}^{-})$	544.0	1000.0	0000	200.0	1752.0	1 (0 (0
F(000)	544.0	1200.0	920.0	380.0	1/52.0	1696.0
Independent	4967	4829	4/34	12814	4098	/850
reii.	100	100	00	100	00	100
Completeness	100	100	99	100	99	100
(%) Data/Dastr/Da	1067/0/106	4820/0/200	1721/0/167	12011/0/102	1009/0/219	7850/420/417
	4907/0/190	4829/0/309	4/34/0/107	12014/0/102	4098/0/218	/030/420/41/
La Goodness of	1.050	1 1 1 6	1 289	1.027	1 046	1 079
fit on F^2	1.050	1.110	1.20)	1.027	1.040	1.077
Final R.	0.0323	0.0436	0.0573	0.0476	0.0263	0.0622
indices	0.0525	0.0150	0.0375	0.0170	0.0205	0.0022
wR ₂ indices	0.0796	0.1099	0.1215	0.1060	0.0592	0.1718
(all data)						, 10
Largest diffr.	1.19/-0.37	1.40/-0.48	1.95/-0.65	1.25/-0.53	0.69/-0.61	1.36/-0.77
peak and hole						
(e.Å ⁻³)						

Table 1: Crystal data and experimental parameters for compounds L1, L2, 1, 2, 3, 4.

Mass spectra for compounds 1-9:

MS of 4

MS of 5

MS of 7

MS of **8**

