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Abstract 

The study presents the development of an alternative noise current term and novel voltage dependent 

current noise algorithm for conductance based stochastic auditory nerve fibre (ANF) models.  ANFs 

are known to have significant variance in threshold stimulus which affects temporal characteristics 

such as latency.  This variance is primarily caused by the stochastic behaviour or microscopic 

fluctuations of the node of Ranvier’s voltage dependent sodium channels of which the intensity is a 

function of membrane voltage.  Though easy to implement and low in computational cost, existing 

current noise models have two deficiencies: it is independent of membrane voltage and it is unable to 

inherently determine the noise intensity required to produce in vivo measured discharge probability 

functions.  The proposed algorithm overcomes these deficiencies whilst maintaining its low 

computational cost and ease of implementation compared to other conductance and Markovian based 

stochastic models.  The algorithm is applied to a Hodgkin-Huxley based compartmental cat ANF 

model and validated via comparison of the threshold probability and latency distributions to 

measured cat ANF data.  Simulation results show the algorithm’s adherence to in vivo stochastic 

fibre characteristics such as an exponential relationship between the membrane noise and 

transmembrane voltage, a negative linear relationship between the log of the relative spread of the 

discharge probability and the log of the fibre diameter and a decrease in latency with an increase in 

stimulus intensity. 

 

1. Introduction 

It is ever the objective of a model to represent the actual system as closely as possible whilst 

taking into account the required or acceptable accuracy and computational cost.  A cochlear implant 

(CI) is a device used by profoundly deaf persons to obtain a measure of sound perception and, in 

particular, speech perception. These devices directly stimulate the surviving and functioning auditory 

nerve fibres (ANFs) with electrical pulses via an array of electrodes implanted as close as possible to 

the surviving ANFs inside the cochlea (Smit et al. 2009).  In order to better understand and hence 

predict the electrically stimulated neural response (ESNR) caused by the activation of an electrode, 

numerous ANF models (Frijns et al. 1994; Rattay 1990; Rattay et al. 2001b; Smit et al. 2010) and 

volume conduction (VC) models (Frijns et al. 1995; Hanekom 2001; Kalkman et al. 2014; Malherbe 

et al. 2015; Rattay et al. 2001a) have been developed since the ground breaking nerve fibre model by 

Hodgkin and Huxley (1952).  The modelled ESNRs are used to improve our understanding of the 

auditory nerve properties, the percepts produced by the CI and the wide variance in performance 
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among CI users.  An improved understanding in turn allows for improved stimulation strategies and 

CI designs so as to ultimately improve the sound perception of the CI user (Bruce et al. 1999b; Frijns 

et al. 2001; Frijns et al. 1995; Macherey et al. 2007; Rattay 1989; Rattay et al. 2001a; Rattay et al. 

2001b).   

Because of the high frequency pulsatile stimulation of CI speech processors, the desired models 

not only need to estimate the neural excitation threshold or stimulus intensity value, but also the 

temporal characteristics (Cartee 2000; Rattay et al. 2001b).  One of the important properties of a 

nerve fibre affecting temporal characteristics such as latency is variance in threshold stimulus 

intensity (Hales et al. 2004; Javel et al. 1987; Verveen 1962; Verveen and Derksen 1968).  This  

activation threshold variability has been shown to be primarily caused by the stochastic behaviour of 

the node of Ranvier’s sodium channels (Hales et al. 2004) or as noted by Sigworth (1980) and 

Rubinstein (1995): the macroscopic fluctuation of threshold can sufficiently be accounted for by the 

microscopic fluctuations of the voltage dependent sodium channels.  The intensity of these 

microscopic fluctuations, also referred to as membrane noise, in turn has been shown to be a function 

of membrane voltage (Verveen and Derksen 1968).  Numerous approaches are followed to account 

for the threshold variability in both conductance based (Dangerfield et al. 2012; Goldwyn and Shea-

Brown 2011; Huang et al. 2013; Rattay et al. 2001b; Rubinstein 1995) and phenomenological (Bruce 

et al. 1999a; 1999b; Macherey et al. 2007) stochastic models.  The present study focusses on 

conductance based models and in particular the Hodgkin-Huxley (HH) model since only these 

models provide biophysically meaningful results (Izhikevich 2004) as required in the study and 

modelling of CIs (Rattay et al. 2001b).  Before reviewing the types of conductance based stochastic 

models that exist, it is important to first look at activation threshold variability characteristics.   

The relationship between activation or discharge probability and stimulus intensity in the 

stochastic nerve has experimentally been shown to be Gaussian (Javel et al. 1987; Shepherd and 

Javel 1997; Verveen 1962; Verveen and Derksen 1968).  Both the threshold (mean, μ) and spread 

(standard deviation, σ) of the Gaussian discharge probability function (DPF) proved dependent on 

stimulus duration, but the relative spread (      ) was found to be independent of stimulus 

duration for pulse durations between 100 μs and 3 ms.  RS thus characterises the excitability 

fluctuation as a measure of the threshold region width or spread (σ) relative to the mean threshold 

value (μ) (Rubinstein 1995; Verveen 1962).  Verveen (1962) also found that RS decreased as the 

fibre diameter increased while Rubinstein (1995) further showed RS to be approximately 

proportional to   √  where N is the number of sodium channels which in turn is directly 

proportional to the membrane surface area A.   Since an increase in N effectively results in a 

proportional increase in passive membrane conductance and capacitance (Rubinstein 1995), it can be 

stated that       √     ⁄  where gNa is the maximum sodium conductance density.  This inverse 

proportionality results in the fibre’s discharge probability becoming more deterministic as A 

increases and subsequently RS decreases such that log(RS) vs log(A) has a negative linear 

relationship (Rubinstein 1995; Verveen 1962).  The decrease in RS as a result of the increase in the 

DPF gradient can also be viewed from the perspective that as the fibre diameter increases, and 

consequently the number of channels on a Ranvier node, the voltage fluctuation caused by a single 

channel becomes less significant when compared to the total ionic conductance and thus the fibre 

becomes less stochastic or less “noisy” (Bruce et al. 1999b; Rubinstein 1995).  On a macro ANF 

scale, this results in the ANF becoming less stochastic or more deterministic (increased DPF 

gradient) as the diameter increases as found by Verveen (1962). 
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Returning to the types of conductance based stochastic models, the literature review by Goldwyn 

and Shea-Brown (2011) identified three types, all with the objective to approximate Markov chain 

models of channel noise.  The first type of model identified is sub-unit noise in which a Gaussian 

noise term is added to the equations describing the fractions of open sub-units, i.e. the m, n and h HH 

differential equations.  The second type of model identified is conductance noise which adds a 

Gaussian process directly into the fraction of open sodium channels, the m
3
h term.  However, it 

quickly becomes evident from literature that these two types of noise models are almost exclusively 

used in single node models due to their high computational requirements (Dangerfield et al. 2012; 

Huang et al. 2013; Mino et al. 2002; Rubinstein 1995).  Consequently this makes these two types a 

non-viable option for practical implementation in compound ANF models used in the study of CIs 

for not only does each fibre have multiple nodes, but the compound model has multiple fibres spread 

along the length of the cochlea (Briaire and Frijns 2005; Kalkman et al. 2014; Malherbe et al. 2013; 

Malherbe et al. 2015).  

The third and simplest type, current noise, adds a Gaussian noise current term to the HH     ⁄  

equation which has the advantage of easy implementation and relatively low computational 

requirements (Jönsson 2010; Rattay et al. 2001b).  Current noise is however shown to have two 

distinct deficiencies (Goldwyn and Shea-Brown 2011). The first deficiency is independence of the 

membrane voltage even though the noise intensity has been shown to be voltage dependent (Verveen 

and Derksen 1968).  For the purposes of this study, noise intensity is regarded as a measure of the 

magnitude of the membrane noise amplitude of which the standard deviation is the rms noise.  The 

second deficiency is the method’s inability to inherently determine the noise intensity required to 

produce in vivo measured DPF spread (Rattay et al. 2001a; Shepherd and Javel 1997).  At present the 

noise intensity has to be empirically calibrated as done by Jönsson (2010) by comparing the resulting 

discharge probability function’s spread to measured data or by comparing the modelled noise 

intensity to measured noise intensity as in Rattay et al. (2001b). 

This study presents a solution to both deficiencies through an alternative noise current term and 

novel voltage dependent current noise algorithm for application in conductance based ANF models 

used in CI modelling.  Section two of the paper discusses the models and methods used in 

developing the new noise current model and the evaluation criteria used to validate the model.  

Section three validates the model output results as applied on a cat ANF model against that of 

measured cat ANF data and refines the model based on the results.  Final remarks on the validity, 

application and possible deficiencies of the model, in particular for the human ANF, are discussed in 

section four. 

 

2. Models and Methods 

2.1. Auditory nerve fibre conduction model, morphology and stimulation 

Because measured DPFs for human ANFs are not available, the proposed algorithm was 

developed using the cat ANF and in particular the HH-based compartmental cat ANF model with the 

morphology as presented in Rattay et al. (2001b) and reproduced in Fig. 1.  However, for latter 

verification of the proposed algorithm against measured results, the ANF’s diameters were adjusted 

based on the measured cat morphology by Rattay et al. (2013).  The myelinated somatic diameter 

was decreased and kept constant at 16 μm while the central axon diameter was varied between the 

weighted values of μ ± σ = 1.81 ± 0.19 μm  to take into account the effect of varying nodal surface 
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areas in validating the algorithm.  Using the ratio of fibre diameter (including myelin) over axon 

diameter (excluding myelin) of D/d = 1.43 in accordance with Rattay et al. (2013), the axon 

diameters correlate well with the weighted average fibre diameter of  μ ± σ = 2.62 ± 0.44 μm  

measured by Shepherd and Javel (1997).  The measured diameters by Rattay et al. (2013) resulted in 

a variation in diameter of d∙0.81 ≤ daxon ≤ d∙1.0 μm relative to Rattay’s axon diameter d = 2 μm.  For 

this particular study, simulated DPFs used to determine log(RS) vs log(daxon) distributions were 

obtained for five specific axon diameter factors of DFaxon = (0.81, 0.86, 0.905, 0.95, 1.0) thereby 

including the measured μ = 1.81 μm at DF = 0.905 and μ ± σ diameters at DF = 0.81 and 1.0.  In like 

manner the peripheral axon or dendrite diameter was varied between μ ± σ = 1.02 ± 0.12 μm using 

DFdend = (0.90, 0.96, 1.02, 1.08, 1.14) relative to the original dendritic diameter of 1 μm.  If the k
th

 

DFaxon value was used to set the axon diameter, the k
th

 DFdend value was used to set the dendrite 

diameter.  Nodal and compartmental lengths were kept unchanged and constant. 

 

 
  

Fig. 1 A representation of a cat ANF giving all diameter (d) and length (l) values in m as well as active node and 

compartment (Comp) numbers used in the paper.  The fibre has in total thirty nine compartments of which twenty are 

active nodes and dimensions are as in Rattay et al. (2001b) 

  

A bi-phasic, cathodic first stimulation with a 100 μs pulse width using a single monopolar 

point electrode in an infinite homogeneous medium (ρe = 0.3 kΩ∙cm) was applied at a model 

temperature of 38°C (Bruce et al. 1999b; Rubinstein 1995; Shepherd and Javel 1997).  The electrode 

was positioned 99 μm above node 2 of the straight ANF with daxon = 1.81 μm and ddend = 1.02 μm to 

obtain a deterministic threshold of 60 dB (re 1 µA) which is within the range of stochastic thresholds 

measured by Shepherd and Javel (1997).  Final simulation results presented also used the curved cat 

fibre and spherical electrode as presented in Rattay et al. (2001b).  All simulations were done in 

MATLAB using a first order implicit Euler-Maruyama numerical method based on Itô-calculus to 

solve the stochastic differential equations resulting from the introduction of the current noise terms.  

A time step-size of 1 s was used in the numerical solver along with noise values that 

correspondingly changed every 1 s (compared to the 2.5 s in Rattay et al. (2001b)). 

 

2.2. Validation of the current noise algorithm 

To validate the proposed current noise model as an acceptable representation of an actual 

stochastic ANF, the simulated results were evaluated based on four criteria identified from literature: 

i. The rms of the membrane noise (Vrms) vs transmembrane voltage (Vmem) must be an 

exponential function (Verveen and Derksen 1968). 

ii. The spread of the modelled DPFs must be comparable to measured results.  The measured 

DPFs for fibres BT-5-6, BT-5-14 and BT-5-19 in Shepherd and Javel (1997) were used 

having spreads of σ = 0.41, 0.77 and 1.18 dB respectively ( ̅ = 0.79). 
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iii. For an increase in diameter, the log(RS) vs log(diameter) must have a negative linear 

distribution (Rubinstein 1995; Verveen 1962).   The axon diameter was used for validation 

and is calculated as                   

iv. The response latency must decrease for an increase in stimulus intensity (Rattay et al. 2001b; 

Shepherd and Javel 1997) 

Obtaining discharge probability functions, RS and latency 

Unless stated otherwise, the presented DPFs for specific DF values are the least square fit to 

fifteen discharge probabilities corresponding to fifteen stimulus levels (15 sets).  The dB-range of the 

stimulus levels were chosen so as to limit the number of probabilities equal to 0 or 1 in order to 

provide a more accurate DPF fit.  The discharge probability at a specific stimulus level (set) was 

calculated as the number of discharges out of a hundred iterations.  The relative spread RS was then 

calculated as the standard deviation or spread of the DPF divided by the mean thereof.  Latency was 

calculated as the time between the onset of the stimulus and the first action potential peak on any of 

the fibre nodes for each of the hundred iterations of each set. 

2.3. An alternative expression for current noise 

Figure 2 depicts the implementation of current noise in a section of a nerve fibre. Only a brief 

explanation of parameters and principles required for this paper will be presented here.  For a 

detailed explanation of the methodology and calculation of the various components and voltages the 

reader is referred to Rattay et al. (2001b) and Rattay (1990).    
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Fig. 2 A section of an ANF axon with three nodes (n) of Ranvier and internodal compartments with its corresponding 

standard electrical cable network.  Electrical components shown are the axoplasmic conductance Ga, membrane 

capacitance Cm and voltage dependent membrane conductance Gm.  Vi and Ve respectively represents the intra- and extra- 

cellular potentials.  Currents indicated are the membrane capacitance current IC, the potassium, sodium and leakage HH 

ionic currents represented by Iion, the axoplasmic currents IG and the injected noise current Inoise 

An expression for the membrane capacitance current, IC,n, is obtained via Kirchoff’s current law at 

node n as: 

 
       

       
  

  (               )        (1) 

where        represents the ionic currents as defined by HH,       represents the axoplasmic currents 

(                ) and          the added Gaussian noise current.  Vmem,n is the transmembrane 

voltage at node n which can be expressed as: 

                           (2) 

where Vi and Ve respectively represents the intra- and extracellular potentials and the node voltage Vn 

is the deviation of Vmem,n from the constant resting potential Vrest.   
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From these expressions it is evident that membrane voltage noise on a node is caused by the 

magnitude of the current noise affecting the rate of change of the membrane voltage.  Equation (1) 

also shows that the effect of Inoise decreases as Iion increases thereby effectively decreasing the 

membrane noise as seen and discussed in  Rattay et al. (2001b), an effect that will henceforth be 

referred to as the inherent noise reduction characteristic. 

The general term for the noise current for compartment n in Eq. (1) is expressed in Rattay et al. 

(2001b) as: 

                      √        (3) 

 

where knoise (μA∙mS
-0.5

) is a common noise factor and GAUSS is a Gaussian term (μ = 0, σ = 1) of 

which the value changes every 2.5 μs.  Since the standard deviation σ, or rms, of GAUSS is one, it 

implies that              √      thereby suggesting that             as it has already been 

explained that       √     ⁄ .  However, DPF simulation results shown in Fig. 3 for the original 

cat ANF noise model and temperature in Rattay et al. (2001b) with an increasing knoise, ie Irms, and a 

constant An show that             and that therefore          .   

 

 
 

Fig. 3 (a) DPFs showing a decrease in gradient (increase in spread) with increasing knoise values or equivalently 

proportional increasing relative spread as illustrated in (b) thus showing that             and hence          .  The 

electrode was positioned 114 μm above node 1 of the original cat model of Error! Reference source not found. at T = 

28.9 °C 

 A more appropriate expression for current noise is therefore suggested as 

                         
  √      ⁄    (4) 

 

having a new noise factor       (μA∙mS
0.5

) with the factor 10
-8

 included so as to have kfact > 1 in 

simulations.  This term correlates with the thermal noise equation (Horton 1987) in which       

 √  and since resistance (R) is inversely proportional to area, it can be stated that          √ .   

The introduction of this alternative current noise term added an additional noise reduction 

factor to the inherent noise reduction in Eq. (1) in that Inoise now decreases with an increase in fibre 

diameter in contrast to Inoise increasing in the original noise current term.  As will be shown in the 

results, this led to more deterministic DPFs, or equivalently lower RS values, for larger fibre 

diameters compared to the original term.   
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2.4. Creating a voltage dependent current noise 

In order to obtain a voltage dependent current noise, so as to model the fluctuations of the 

voltage dependent sodium channels within the proposed algorithm, kfact ultimately had to be made a 

function of the node voltage Vn defined in Eq. (2).  A simplified diagram of the proposed algorithm 

to be discussed in this section is shown in Fig. 4. 

 
Fig. 4 Simplified diagram of the proposed voltage dependent current noise algorithm.  HH = Hodgkin & Huxley, DF = 

Diameter Factor, VD = Verveen & Derksen, mVk = noise gradient function 

First the HH-based compartmental model in Rattay et al. (2001b) is solved to obtain Vn from 

which the transmembrane voltage Vmem,n is calculated using Eq. (2).  From Vmem,n the required rms 

noise voltage (Vrms) on the node is calculated via a least square function fitted to the measured data in 

Verveen and Derksen (1968) (VD) as shown in Eq. (5) and Fig. 5. 

 

            
              (5) 

 

 
Fig. 5 Reproduction of the measured data by Verveen and Derksen (1968) depicting the rms membrane noise voltage 

(Vrms) versus the transmembrane voltage (Vmem) for the myelinated axons of a frog sciatic nerve at room temperature with 

a least square exponential function fit 

Since the origin of the membrane noise is the voltage fluctuations of the sodium channels of 

which the number is determined by the area of the node, the calculated Vrms can however only serve 

as a reference.  This is because the VD measurements were on myelinated axons of a frog’s sciatic 

nerve of which the Ranvier node diameters were kept in the order of 4 μm, but the nodal lengths 

varied between 0.5 and 1.0 μm.  The reference voltage Vrms0, at the VD’s reference nodal surface area 

A0, therefore had to be scaled to Vrms,n at the actual membrane surface area of compartment n, An, of 

the cat ANF.  For the purposes of this study A0 was calculated as a cylindrical area assuming an 

average nodal length of 0.75 μm:                  
 .   

Based on the origin of the noise it followed that scaling Vrms0 to Vrms,n should be based on a 

relationship between A0 and An.  Having shown that        √     ⁄ , a relationship between Vrms 

Vrms = 0.5490e0.0137∙Vmem 
R² = 0.98 
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and A was determined by first finding the relationship between Vrms and Irms or kfact which is shown in 

Fig. 6a to be linear.  It can therefore be stated that                √ ⁄  and scaling Vrms0 to 

Vrms,n can thus be partially done using Eq. (6): 

 
             

√  

√  
    (6) 

 

Fig. 6a also provided the key for achieving the original objective of determining kfact as a 

function of Vn in order to obtain a voltage dependent current noise by writing from Fig. 6a the 

expression: 

 
        

      
     

 (7) 

 

Therefore, if the gradient     is known along with the required Vrms, obtained via the VD 

function, the kfact value required to generate the required Vrms can be calculated.  It is however evident 

from the difference in gradients in Fig. 6a that Vrms and hence     is also a function of the nodal 

diameter (                     ).  Hence kfact not only became a function of Vn, but also of the 

diameter factor DF via the gradient     as shown in Fig. 4.   

 
Fig. 6 (a) Vrms vs kfact for the axon and dendrite shows a distinct linear relationship.  Vrms was calculated as the average 

standard deviation of the voltages on nodes 2 and 3 of the dendrite and nodes 8 to 19 of the axon for the cat ANF at 

various kfact values. (b) An example of the voltage noise showing the node voltage Vn for nodes 3 (dendrite) and 14 (axon) 

at kfact = 3 and without noise at kfact = 0 (zero line).  Note the higher dendritic Vrms values compared to the axon’s for the 

same kfact value in both figures due to the dendrite’s smaller nodal membrane surface area.  Simulations were done with 

no external stimulus (resting state) 

Finally, in order to compensate for the inherent noise reduction characteristic of a current noise 

model within the proposed algorithm,     is shown in Fig. 4 to have been made a function of Vn via 

Vmem as well.  The procedure followed to determine     as a function of Vn is explained in detail in 

the next section. 

 

2.5. Gradient     as a function of DF and Vmem 

Summarised below are the steps taken to determine the gradient     as a function of the 

diameter factor DF and transmembrane voltage Vmem.  Though all figures shown are for the dendrite, 

the same process was also followed for the axon so as to obtain an equivalent axon gradient function. 

i. Extract the noise from the stochastic APs and calculate Vrms vs Vmem for the active nodes for 

kfact = (0.5, 1.8, 3.1, 4.4, 5.7, 7.0) for each DFdend = (0.90, 0.95, 1.00, 1.05, 1.10, 1.15).  The 
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values for kfact were chosen based on preliminary simulations as to which values provide 

noise within the range measured by VD and the DF values so as to include the range of 

measured diameter values.  For the axon DFaxon = (0.80, 0.85, 0.90, 0.95, 1.00, 1.05) was 

used. 

ii. Do a linear regression for Vrms vs Vmem for each kfact and DF as shown in Fig. 7a (for 

DF = 0.95) to obtain m1 and c1 from Vrms = m1∙Vmem + c1.  The negative gradients are a 

realisation of the inherent noise reduction characteristic of the current noise model in Eq. (1). 

iii. Calculate Vrms = m1∙Vmem + c1 for Vmem = (-90, -80, …, +30, +40) mV at each kfact for all DF 

values.  For each DF, plot Vrms vs kfact for each Vmem and then do a linear regression for Vrms vs 

kfact as illustrated in Fig. 7b (for DF = 0.95) in order to obtain mVk and cVk from 

Vrms = mVk∙kfact + cVk.  For example, if a vertical line is drawn in (a) at Vmem = 0, the six 

intersections with the six kfact lines are represented as six markers in (b) forming a linear line 

for Vmem = 0 of which the gradient is mVk.  Observe the direct proportionality of Vrms vs kfact as 

already noted in Fig. 6a and that, though not shown, all the regression lines approximately 

converges at the origin resulting in cVk ≈ 0.  

iv. For each DF value, plot the gradient     of each line in Fig. 7b versus its corresponding 

Vmem value and do a linear regression as shown in Fig. 7c to find the required gradient     as 

a function of Vmem for each DF.  Each marker in (c) therefore represents the gradient of a line 

for a specific DF and Vmem value in (b).  Each line in (c) would have its own set of 

corresponding curves shown in (a) and (b). 

 

 
 

Fig. 7 (a) Linear regression of simulated Vrms vs Vmem data for DF = 0.95 starting at kfact = 7 at the top through to kfact = 

0.5 at the bottom in decrements of 1.3. Each set of markers for a kfact value is the result of 100 iterations of the straight cat 

ANF model.  Note the negative gradient due to the inherent noise reduction characteristic in Eq. (1).   (b)  Linear 

regression of Vrms, calculated based on the linear regression in (a), versus kfact for Vmem = -90mV at the top through to Vmem 

= 40 mV at the bottom in 10 mV increments – a line for each Vmem value.  Each set of six markers for a specific Vmem is 

the intersection points of a vertical line at the specific Vmem value with the six regression lines for DF = 0.95 in (a).  (c) 

The gradient of each regression line in (b) plotted against the line’s Vmem value for each DF.  Each marker thus represents 

the gradient of the linear regression in (b) for a specific Vmem and DF value 

v. Finally      as a function of Vmem for any value of DF can now be found using interpolation.  

This is illustrated in Fig. 8 showing a 3D mesh rendering of Fig. 7c with the cubic spline 

interpolated     gradient function for the dendrite at DFdend = 0.975 in (a) and for the axon 

at DFaxon = 0.875 in (b). 
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Fig. 8 3D Mesh rendering of Fig. 7c showing the interpolated gradient function for the dendrite at DFdend = 0.975 in (a) 

and for the axon at DFaxon = 0.875 in (b) 

 

3. Results 

3.1. Evaluation of the proposed expression for current noise 

Application of only the proposed voltage independent current noise term in Eq. (4) to the 

straight cat ANF model at DFdend = 1.02, DFaxon = 0.905 and T = 38°C required a manually calibrated 

kfact = 3.5 to approximate the average measured spread of σ = 0.79.  The resulting DPF with σ = 0.81 

is shown in Fig. 9a along with the DPFs for the remaining four DF values.  The DPF spreads 

monotonically decrease with increasing DF and consequently the resulting log(RS) vs log(daxon) (log-

log) distribution in (b) has the negative linear distribution as required by validation criterion iii. 

 
Fig. 9 (a) Average of three simulations’ DPFs of the straight cat ANF for DFaxon = (0.81, 0.86, 0.905, 0.95, 1.0) with 

application of only the proposed current noise expression in Eq. (4)  (constant kfact = 3.5) compared to the measured data 

of Shepherd and Javel (1997) (Broken lines). This constitutes a voltage independent current noise with no inherent noise 

reduction compensation.  The DPFs show a monotonic decrease in spread from with increasing DF and consequently the 

log(RS) vs log(daxon) distribution in (b) has the required negative linear distribution 



11 

 

In contrast, Fig. 10 shows that the application of the original current noise term in Eq. (3) with 

knoise = 40×10
-5

 does not result in a monotonic decreasing DPF spread and consequently not a 

negative linear regression for the log-log distribution either.  It is true that the original term in Eq. (3) 

sees a reduction in noise upon an increase in diameter even though        √  .  However, this is 

because Inoise is added to Iion in Eq. (1), and as Rattay et al. (2001b) mentioned,          and hence 

Iion dominates Inoise at larger diameters making the effect of the noise relatively smaller and hence the 

noise decreases.  This decrease in noise is however not sufficient to result in the required negative 

linear log-log distribution. 

 

 
Fig. 10 (a) Application of the original Rattay current noise term in Eq. (3) with a constant knoise = 40×10

-5
 on the straight 

cat ANF for DFaxon = (0.81, 0.86, 0.905, 0.95, 1.0) resulted in non-monotonic DPF spreads and consequently the log-log 

distribution in (b) does not have the required negative linear distribution 

The proposed current noise term in Eq. (4) is therefore indeed a more appropriate term to use 

when compared to measured DPFs.   But since both current noise terms are independent of Vmem and 

both have the inherent noise reduction characteristic, neither adheres to the first validation criterion 

of an exponential Vrms vs Vmem without incorporating the current noise term into the proposed voltage 

dependent current noise algorithm.  

3.2. Evaluation of Vrms vs Vmem for the proposed current noise algorithm 

To determine the adherence of the voltage dependent current noise algorithm in Fig. 4 to the 

first validation criterion, the algorithm was applied to the straight cat ANF model at DFaxon = 0.81 

and DFdend = 0.90 from which Vrms vs Vmem was estimated.  The result in Fig. 11 shows a near perfect 

correlation between the modelled data scaled to A0 (solid markers) and the measured exponential VD 

function for both the dendrite and the axon.  Thus the first model validation criterion, an exponential 

Vrms vs Vmem distribution, is satisfied.  Also shown is the unscaled Vrms values (empty markers) for the 

dendrite which are higher than that of the axon’s as would be expected due to dendrite’s smaller 

diameter and hence nodal diameter An resulting in a higher Inoise and thus Vrms.  
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Fig. 11 The proposed algorithm provides a near perfect correlation for an exponential Vrms vs Vmem for both the dendrite 

and axon when compared to the measured VD data and scaled to A0 (solid markers).  If left unscaled (empty markers), it 

can be seen that the dendrite’s noise is higher than the axon’s as expected due to the dendrites smaller diameter and hence 

smaller nodal surface area 

 

3.3. Comparison between modelled and measured spread 

The second validation criterion requires the spread of the modelled DPF to correlate with 

measured DPFs.  Fig. 12 however shows the modelled cat ANF at the average diameters (DFdend = 

1.02, DFaxon = 0.905)  to have a spread of σ = 0.15 which is significantly lower than those measured 

by Shepherd and Javel (1997)  (σ = 0.41, 0.77, 1.18) thereby suggesting a too small a noise current.  

To compensate for the difference in spread a scaling factor (SF) was thus included into Eq. (4) as 

shown in Eq. (8) in order to increase the noise current and hence the spread.  

 
                

          
  

√      
    (8) 

 

After simulation at a number of SF values, Fig. 12 shows that an SF = 4.9 would sufficiently 

approximate the average measured spread (σ = 0.79) at the average measured diameters. 

 
Fig. 12 Least square fitted DPFs of the straight cat ANF current noise model for scaling factors  SF =1, 4.8 and 5 and 

associated standard deviations (spreads) in brackets.  At SF = 1 the modelled spread (0.15) is much lower than the 

measured data of Shepherd and Javel (1997) having σ = 0.41, 0.77 and 1.18.  From the results at SF = 4.8 and 5.0 an SF 

= 4.9 would sufficiently approximate the average measured spread of 0.79.  The stimulus electrode was positioned 0.99 

mm above node 2, DFdend = 1.02, DFaxon = 0.905, T = 38°C 
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3.4. Log-Log test of the algorithm with the scaling factor 

Including the constant SF = 4.9 into the proposed current noise algorithm did however not 

result in adherence to the third validation criterion.  The five modelled DPF spreads in Fig. 13a do 

not consistently decrease with increasing DF and consequently the resulting log(RS) vs log(daxon) 

distribution in (b) does not have a significant negative linear distribution. 

 
Fig. 13 (a) DPFs of the straight cat ANF using the proposed current noise algorithm with SF = 4.9 for all DF values.  The 

DPFs do not show a monotonic decrease in spread with increasing DF and consequently the log-log distribution in (b) 

does not have a significant negative linear distribution 

The reason becomes apparent when noting that while the required Vrms,n decreases as DF 

increases through Eq. (6), the required gradient mVk simultaneously also decreases (Fig. 7c ) with the 

net result that kfact,n in Eq. (7) increases as DF increases.  Hence compensating for the inherent noise 

reduction characteristic in order to adhere to the measured exponential Vrms vs Vmem criterion comes 

at the cost of non-adherence to the negative linear log-log relationship criterion.  If however SF can 

be made a function of the diameter or DF such that SF decreases with increasing diameter, the spread 

can be reduced as the diameter increases.   

 

3.5. Noise scaling factor as a function of the diameter factor 

From Fig. 13 we noted that the application of the proposed algorithm in Fig. 4 resulted in a log-

log gradient of almost zero whereas the use of only the proposed current noise term in Eq. (4) 

resulted in the desired negative linear log-log distribution in Fig 9.  From the simulation results in 

Fig. 3 it was also noted that             and hence one would expect that        .  This linear 

relationship is verified in Fig. 14 having used the same method as in Fig. 12 by excluding the 

proposed algorithm and using only the proposed current noise term at the average diameters (DFdend 

= 1.02, DFaxon = 0.905) to determine RS at SF = (1, 2, 3, 4, 5, 5.5). 
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Fig. 14 RS as a function of SF when the ANF is modelled using only the proposed current noise term in Eq. (4).  The 

result is a near perfect least square linear fit confirming as expected that RS is directly proportional to SF when using the 

proposed current noise term. 

 

Knowing that we need to obtain a negative linear log-log gradient, we can write RS as a function of 

the axon diameter from which, based on the result in Fig. 14, we can write the required SF as a 

function of daxon in Eq. (9): 

                   

                 

                        

         (           ) 

 

 

 

(9) 

 

Substituting the gradient of m = -1.43 and intercept of c = -1.52 found in Fig. 4b into Eq. (9), the 

estimated SF’s required to provide a negative linear log-log distribution values at the five DFaxon 

values are calculated and plotted in Fig. 15.  The result is a power function for SF vs DFaxon/DFavg in 

the form of Eq. (10) in which the exponent (-1.43) is the gradient m and the coefficient (4.68), which 

proved to be an exponential function of the absolute value of the intercept c, is nearly equal to the 

initial scaling factor of SF = 4.9 determined in Fig. 12.  Equation (10), in which SFDF is the scaling 

factor to be used for the specific diameter factor DFaxon and DFavg = 0.905, thus provides a way in 

which to control the gradient of the log-log distribution primarily through the exponent, and the 

intercept of the log-log distribution primarily through the coefficient.  Both the exponent and 

coefficient affects the DPF spreads. 

 

 

 
Fig. 15 A perfect power function fit of the calculated SFs required to produce a linear log-log distribution versus 

DFaxon/DFavg at the five DFaxon values.  The exponent of the function primarily controls the gradient of the log-log 

distribution whilst the coefficient primarily affects the intercept thereof. 
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 Figure 16 shows the result of replacing the constant SF = 4.9 in Eq. (8) with the diameter 

dependent SFDF in Eq. (10) within the proposed current noise algorithm. The DPFs shows a 

favourable monotonic decrease in spread with increasing diameter and consequently the required 

negative linear log-log distribution.  The gradient of the log-log distribution is lower (steeper) 

compared to m = -1.43 in Fig. 9b when using only the proposed current noise term in Eq. (4).  This 

can be seen in view of the fact that the proposed algorithm does not completely nullify the effect of 

the current noise term and hence Eq. (10) decreases the gradient relative to that of Fig. 9b. 

 Another observation worth noting is the small variance of the spreads which can directly be 

ascribed to the small variance of the axon diameters. Yet the algorithm is capable of producing the 

negative linear log-log distribution. 

 

 
Fig. 16 Average result of three simulations of the straight cat ANF using the diameter dependent SFDF in Eq. (10) within 

the proposed algorithm.  The average DPFs in (a) show the required decreasing spread with increasing DF whilst the 

average log-log distributions in (b) show the required negative linear distribution. 

 

3.6. Latency versus stimulus intensity test 

The fourth and final validation criterion requires the response latency to decrease with an 

increase in stimulus intensity.  The algorithm is shown to adhere to this criterion in Fig. 17 depicting 

the DPF and corresponding latency results for DFaxon = (0.81, 0.905, 1) for one of the simulations 

used in Fig. 16.  Also worth noticing is the decrease in the latency variance with increasing fibre 

diameter due to the corresponding decrease in the noise Vrms. 



16 

 

 
Fig. 17 (a) DPFs for DFaxon = (0.81, 0.905, 1.0) of a simulation in Fig. 16 along with their corresponding latency plots in 

(b) showing a steady decrease in latency with an increase in stimulus intensity as required.  Noticeably the variance in 

latency also decreases with an increase in diameter due to the corresponding decrease in the noise Vrms .  The large 

variance in latency for DF = 0.81 at approximately 58 dB is because of significant variance in the low number of 

latencies at the low stimulus (probability) levels.  

3.7. Curved cat fibre implementation 

A final evaluation of the proposed algorithm was made through application to the curved cat 

fibre in Rattay et al. (2001b) illustrated in Fig. 18a.  Although the spreads of the DPFs in (b) do 

decrease monotonically and do result in the required negative linear log-log distribution in (c), the 

log-log gradient is significantly higher (less steep) than for the straight fibre in Fig. 16.  However, 

when compared to the increasing DPF spreads and positive log-log gradient in Fig. 19 when using 

the original current noise term in Eq. (3) and when compared to Fig. 20 using only the proposed 

current noise term in Eq. (4), the proposed algorithm still provides the best and most sound 

biological results in terms of spread and log-log distribution.  

 
Fig. 18 (a) Curved cat ANF with a spherical electrode in a homogeneous conductive medium as in Rattay et al. (2001b).  

(b) DPFs of a single simulation show a monotonic decrease in spread with increasing diameter which results in the 

required negative linear log-log distribution in (c) albeit with a higher (less steep) gradient compared to the straight fibre. 
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Fig. 19 Application of the original voltage independent current noise term in Eq. (3) (knoise = 40×10
-5

) to the curved cat 

fibre in Fig. 18 results in the DPFs in (a) having an increase in spread instead of the biologically measured decrease in 

spread with an increase in diameter and in a log-log distribution with a positive instead of negative linear distribution in 

(c) 

 

 
Fig. 20 Application of the proposed voltage independent current noise term in Eq. (4) (kfact = 3.5) to the curved cat fibre 

in Fig. 18a results in the required negative linear log-log distribution in (b) despite the DPFs in (a) not having a 

monotonic decrease in spread with an increase in diameter.  The results are averaged over five simulations. 

 

Finally Fig. 21 verifies that the latencies decrease with an increase in stimulus intensity as 

biologically measured.  The initial increase in latency at the lower probabilities can again be ascribed 

to a combination of the low number of discharges and the high variance in latency. 
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Fig 21 (a) DPFs for DFaxon = (0.81, 0.905, 1.0) in Fig. 18 show a steady decrease in latency with an increase in stimulus 

intensity as required.  The initial increase in latency at the lower probabilities can be ascribed to a combination of the low 

number of discharges and the high variance in latency 

 

4. Discussion and Conclusion 

The contribution of this paper is twofold.  Firstly a more appropriate current noise term was 

presented in Eq. (4) that provided the biological negative linear log(RS) vs log(d) distribution.  

However, the term remains independent from the source of the voltage noise, namely the 

transmembrane voltage.  Consequently the magnitude of the current noise remains constant as 

dictated by an empirically calibrated kfact which results in a negative linear Vrms vs Vmem relationship 

(Fig. 7a) instead of the biological exponential relationship (Fig. 5, Verveen and Derksen (1968)). The 

second contribution addressed this shortcoming through a voltage dependent current noise algorithm 

(Fig. 4) adhering to four identified validation criteria.   

Including or excluding the voltage dependant algorithm into a model depends on the information 

and accuracy required from the model.  If the modeller requires only the DPFs and log(RS) vs log(d) 

distributions to study the effect of varying diameters on discharge probability, only the proposed 

current term in Eq. (4) needs to be implemented.   It was however noted in Fig. 20 that application of 

only the current noise term does not yield as good results in terms of the log-log gradient when 

compared to including the voltage dependent algorithm in Fig. 18.  Hence, for improved results and 

in order to obtain the exponential Vrms vs Vmem distribution for possible further evaluation or as an 

input to other modelling algorithms, the voltage dependent algorithm has to be included. 

Inclusion of the proposed algorithm also resulted in a 28% reduction in computational time 

compared to using only the proposed current noise term.  This can be ascribed to the algorithm 

resulting in lower Vrms at low Vmem values enabling the numeric solver to converge faster to an 

answer within an acceptable error.  The reduction in computational cost of the algorithm was 

calculated based on the computational time for 100 iterations each over a 600 μs simulation period at 

DFaxon = 0.905 and a stimulation resulting in discharge probability of one.  The processor used was 

an Intel® Core™ i5-6200U CPU, at 2.30 GHz, 7.87 GB usable RAM on a 64 bit operating system.  

For the voltage independent method (kfact = 3.5, Istim = 63 dB) the computational time was 
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approximately 1050 seconds versus approximately 750 seconds for the proposed voltage dependent 

current noise algorithm (Istim = 63 dB).  The proposed algorithm thereby retains and even improves 

the low computational cost relative to the conductance and sub-unit types of conductance based 

stochastic models and even more so compared to Markov chain models.  Computationally this makes 

the proposed algorithm the most suitable for application in compound ANF models used in CI 

modelling which will be the focus of a follow up paper.  

Three matters remain regarding the model presented:  the effect of temperature, the log(RS) vs 

log(d) gradient if applied to human ANFs and thirdly the fact that human ANFs have a long 

unmyelinated pre-somatic region and an unmyelinated soma which acts as active nodes within the 

model (Rattay et al. 2001b). 

Considering first the unmyelinated pre-somatic region and soma of the human ANF, it has been 

noted before that an increase in diameter or surface area of an unmyelinated, active node will cause 

the node to become less stochastic or “noisy” as the significance of a single sodium channel 

decreases compared to the total ionic conductance  (Bruce et al. 1999b; Rubinstein 1995).  Both the 

proposed current noise term in Eq. (8) and the diameter dependent scaling factor in Eq. (10) ensure 

that the model decreases the noise on a node with increasing diameter to ensure the required negative 

linear log-log distribution.  Hence, in the case of the human soma and pre-somatic region having 

significantly larger surface areas compared to the nodes of Ranvier, the proposed model will cause a 

reduction in noise on these active unmyelinated noise.  In contrast, the original current noise term in 

Eq. (3) will increase instead of decrease the current noise on the soma and pre-somatic region as well 

as on the nodes of Ranvier which will then most probably result in a positive instead of negative 

linear log-log distribution in view of the results for the straight (Fig. 10) and curved (Fig. 19) CAT 

ANF models as well as the increase in RS vs knoise in Fig. 3b.  Keeping the overall objective of 

modelling the threshold variability of the ANF in mind, it is the noise on the nodes of Ranvier that 

will mostly affect the threshold variability of the human ANF as it is on these nodes that the noise 

magnitude are the greatest and where the APs are initiated. 

Temperature might be a possible concern because the measurements in Verveen and Derksen 

(1968) which forms the reference for determining Vrms0 were done at room temperature in contrast to 

the 38°C of Shepherd and Javel (1997).  Because measured membrane noise (Vrms) vs temperature 

data could not be found in literature, it was considered to partially include the effect of temperature 

through a temperature dependent gNa having a Q10 =1.02 (Smit et al. 2008).  However, with gNa = 635 

ms/cm
2
 at 20°C vs 658 ms/cm

2
 at 38°C and the root of the ratio being 0.98, this made an 

insignificant difference to Inoise in Eq. (4).  An alternative approach considered was to apply the 

thermal noise relationship to temperature in which        √ , but as Horton (1987) alludes, 

membrane noise is not thermal noise.  In fact, Monte-Carlo simulations of a stochastic Markov 

version of the Mainen-Sejnowski model of dendritic excitability in cortical neurons showed a 

decrease in voltage noise with temperature due to membrane acting as a low-pass RC filter to the 

increasing bandwidth of the voltage noise as channel transition rates increase with temperature 

(Manwani et al. 1999).   

The final matter pertains to the log-log gradient should the model be applied to human ANFs.  

Although the modelled log-log gradient for the cat ANF is a reasonable approximation because of the 

DPF spreads falling within the measured ranges by Shepherd and Javel (1997), equivalent in vivo 

ANF DPF measurements do not exist for human ANFs.  As a consequence, even though the noise 

gradient functions can be determined for the human ANF as in Fig. 8, the value of the exponent and 

coefficient in Eq. (10) which determines the log-log gradient and intercept cannot be verified at this 

file:///C:/Users/User/Documents/PhD/Paper%202%20WB%20Noise%20term/A%20voltage%20dependent%20current%20noise%20algorithm.docx%23_ENREF_29
file:///C:/Users/User/Documents/PhD/Paper%202%20WB%20Noise%20term/A%20voltage%20dependent%20current%20noise%20algorithm.docx%23_ENREF_29
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time.  Therefore the values used for the cat ANF will have to serve as initial estimates for the human 

ANF as well. 

While keeping the matters discussed above in, the model provides a computationally feasible 

means of including non-phenomenological stochasticity into conductance based, compound ANF 

models used in CI modelling by providing an exponential membrane noise (Vrms) vs transmembrane 

voltage (Vmem), biologically comparable discharge probability functions and negative linear log(RS) 

vs log(diameter) distributions. 

 

Appendix A 
 

This section provides a step-by-step procedure on how to implement the proposed algorithm into 

existing current noise models.  It also serves as an encapsulation of the algorithm in a chronological 

order of its application.  

 

1. The first and most time consuming step is to determine the dendrite and axon noise gradient 

functions     as described in section 2.5 using the proposed current noise term in Eq. (4).  The 

advantage however is that this step only needs to be completed once for a given fibre 

morphology in which the diameters may be varied. 

2. If the fibre to be simulated is not at a DF value used in step 1, interpolate to determine     as a 

function of Vmem for the DF value used as explained in section 2.5v.  DF is calculated as 

explained in section 2.1. 

3. Calculate SFDF at the DF used in the simulation with Eq. (10). 

4. Prior to the start of, for example, 100 iterations to determine the discharge probability at a given 

stimulus level, generate an Inoise0 matrix using Eq. (4) with kfact = 1 which then contains an 

initialised current value for each node in 1 μs intervals over the total simulation period.  

5. Implement the algorithm in Fig. 4 into the numeric SDE solver.  For each step or at each point in 

time within the sde solver and for each node n calculate: 

i. Vmem,n from Vn, which is determined by the HH based compartmental model referred to in 

section 2.3, using Eq. (2). 

ii.       required at Vmem,n from the gradient function determined in step 1 or 2. 

iii. Vrms0 from Vmem,n using the VD equation (5). 

iv. Vrms,n required via Eq. (6). 

v. kfact,n required by substituting       and Vrms,n into Eq. (7).  

vi. Inoise,n required using Eq. (8) by multiplying the initialised Inoise0,n value by kfact,n and SFDF. 

vii. The sum of Inoise,n and Iion,n as in Eq. (1) to complete the current noise algorithm. 
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