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1 Introduction

The recent global financial crisis has exerted enormous negative impacts

on conventional institutions and markets. Hence, a need has been felt for

exploring alternatives to conventional financial practices that allow to reduce

investment risks, increase returns, enhance financial stability, and reassure

investors and financial markets. Given this, following the crisis, one has

observed a renewed interest in Islamic finance,1 based on Sharia rules, as an

approach that might offer products and instruments driven by greater social

responsibility, ethical and moral values, and sustainability, and hence, may

be better safeguarded against financial crises.

Against this backdrop, in this paper, we aim to model and forecast condi-

tional volatility of the returns of the Dow Jones Islamic Market World Index

(DJIM), accounting for both the possibility of long memory and structural

changes in the volatility process. The choice of the DJIM is justified by the

fact that it is the most widely used, and most comprehensive representative

time series for the Islamic stock market (Hammoudeh et al., 2013). Note

that, appropriate modeling and forecasting of volatility is of importance due

to several reasons: Firstly, when volatility is interpreted as uncertainty, it

becomes a key input to investment decisions and portfolio choices. Secondly,

volatility is the most important variable in the pricing of derivative secu-

rities. To price an option, one needs reliable estimates of the volatility of

the underlying assets. Thirdly, financial risk management according to the

Basle Accord as established in 1996 also requires modeling and forecasting

of volatility as a compulsory input to risk-management for financial insti-

tutions around the world. Finally, financial market volatility, as witnessed

1Assets in the Islamic industry have grown by 500% in the last five years and reached
1.6 trillion U.S. dollars in 2013 (Hammoudeh et al., 2013).
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during the recent “Great Recession” for the returns on DJIM like many

other assets (see Figure 1), can have wide repercussions on the economy

as a whole, via its effect on real economic activity and public confidence.

Hence, estimates of market volatility can serve as a measure for the vulner-

ability of financial markets and the economy, and can help policy makers

design appropriate policies. Evidently, appropriate modeling and accurate

forecasting of the process of volatility has ample implications for portfolio

selection, the pricing of derivative securities and risk management. While

there is a rich literature on volatility modelling of ‘conventional financial

assets’, not much evidence exists to date with respect to the Islamic stock

market. We try to fill part of this gap using some of the most advanced

tools available in contemporaneous econometric literature.

A large body of recent research suggests that there is significant evi-

dence of long memory in the conditional volatility of various financial and

economic time series (Ding et al., 1993; Baillie et al., 1996; Andersen and

Bollerslev, 1997; Bollerslev and Mikkelsen, 1996; Lobato and Savin, 1998;

Davidson, 2004). Another strand of research shows that there is also evi-

dence for the occurrence of structural changes in the volatility process (Bos

et al., 1999; Andreou and Ghysels, 2002; Rapach and Strauss, 2008; Rapach

et al., 2008). In light of these two features (long memory and structural

breaks), a body of research has suggested that both long memory and struc-

tural changes simultaneously characterize the structure of financial returns

volatility (Lobato and Savin, 1998; Beine and Laurent, 2000; Morana and

Beltratti, 2004; Martens et al., 2004; Baillie and Morana, 2007).

Motivated by this line of research that suggests co-existence of both long

memory and structural change in the volatility processes of financial market

data, following Ben Nasr et al., (2010), we estimate a model for the DJIM
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returns that allows the volatility of the returns to share such behavior. The

idea is to allow the parameters in the conditional variance equation of a Frac-

tionally Integrated Generalized Autoregressive Conditional Heteroskedastic-

ity (FIGARCH) model to be time dependent. More precisely, the change

of the parameters is assumed to evolve smoothly over time using a logistic

smooth transition function, to yield a so-called Fractionally Integrated Time

Varying Generalized Autoregressive Conditional Heteroskedasticity (FITV-

GARCH) model.

Further, a related line of research on long memory and structural changes

in volatility discusses the connection between these phenomena. In fact,

volatility persistence may be due to switching of regimes in the volatility

process, as first suggested by Diebold (1986) and Lamoureux and Lastrapes

(1990). This literature concludes that it could be very difficult to distin-

guish between true and spurious long memory processes. This ambiguity

motivates us to include a new type of Markov-switching model in addition

to our array of volatility models (i.e., GARCH, FIGARCH, FITVGARCH)

— the Markov-switching multifractal (MSM) model of Calvet and Fisher

(2001). Despite allowing for a large number of regimes, this model is more

parsimonious in parameterization than other regime-switching models. It is

furthermore well-known to give rise to apparent long memory over a bounded

interval of lags (Calvet and Fisher, 2004) and it has limiting cases in which

it converges to a ‘true’ long memory process. To the best of our knowl-

edge, this is the first attempt in forecasting the volatility process for the

DJIM returns using a wide variety of advanced volatility models trying to

capture long-memory, structural breaks and the fact that structural breaks

can lead to the spurious impression of long-memory. The rest of the paper

is organized as follows: Section 2 provides basic information on GARCH,
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FIGARCH, FITVGARCH and MSM models, while Section 3 presents the

data and the empirical results. Finally, Section 4 concludes.

2 GARCH, FIGARCH, FITVGARCH and MSM

Volatility models

Univariate models of volatility usually consider the following specification

of financial returns measured over equally spaced discrete points in time

t = 1, ..., T :

yt = µt + σtut, (1)

where yt = pt − pt−1 with pt = lnPt the logarithmic asset price, µt =

E[yt|Ft−1] and σ2
t = Var[yt|Ft−1] the conditional mean and the conditional

variance (volatility), respectively. The information set Ft−1 is assumed to

contain all relevant information up to period t − 1. Moreover, ut is an

independently and identically distributed disturbance with mean zero and

variance one. Although ut can be drawn from various stationary distribu-

tions, in this study we let ut ∼ N(0, 1). The return components µt and

σt can be specified according to the assumed data generating process. For

the purpose of this study we use the simple specification µt = µ + ρyt−1.

Defining rt = yt − µt, the ‘centered’ returns can be modeled as

rt = σtut. (2)

Now we turn to volatility modelling. Returns in financial markets are

typically found to be heteroskedastic with high autocorrelation of all mea-

sures of volatility (e.g., squared or absolute returns). To capture this feature,
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the literature had developed the time-honored class of models with autore-

gressive conditional heteroskedasticity. As the benchmark version of this

class of models, the GARCH(1,1) model of Bollerslev (1986) assumes that

the volatility dynamics is governed by

σ2
t = ω + αr2

t−1 + βσ2
t−1, (3)

where the restrictions on the parameters are ω > 0, α, β ≥ 0 and α+ β < 1.

The FIGARCH model introduced by Baillie et al. (1996) expands the

GARCH variance equation by considering fractional differences. As in the

case of the GARCH model, we restrict our attention to one lag in both the

autoregressive term and in the moving average term. The FIGARCH(1,d,1)

model is, then, given by

σ2
t = ω +

[
1− βL− (1− δL)(1− L)d

]
r2
t + βσ2

t−1, (4)

where L is the lag operator, d is the parameter of fractional differentiation

and the restrictions on the parameters are β − d ≤ δ ≤ (2 − d)/3 and

d(δ− 2−1(1−d)) ≤ β(d−β+ δ). In the case of d = 0, the FIGARCH model

reduces to the standard GARCH(1,1) model. For 0 < d < 1 the binomial

expansion of the fractional difference operator introduces an infinite number

of past lags with hyperbolically decaying coefficients. Note that in practice,

the infinite number of lags in the FIGARCH model with 0 < d < 1 must be

truncated. We employ a lag truncation of 1000 steps.

The FITVGARCH model introduced by Ben Nasr et al. (2010) expands

the FIGARCH model of Baillie et al. (1996) by allowing the conditional

variance parameters to change over time. The FITVGARCH(p, d, q) model
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is given by:

[1− Φt(L)](1− L)du2
t = ωt + [1− βt(L)]vt (5)

where vt = u2
t−σ2

t , ωt = ω1+ω2F (t∗; γ, c), Φt(L) = Φ1(L)+Φ2(L)F (t∗; γ, c);

Φ1(L) = φ1,1L+ ...+ φ1,qL
q, Φ2(L) = φ2,1L+ ...+ φ2,qL

q, βt(L) = β1(L) +

β2(L)F (t∗; γ, c); β1(L) = β1,1L + ... + β1,pL
p, β2(L) = β2,1L + ... + β2,pL

p,

F (t∗; γ, c) is a logistic smooth transition function defined as

F (t∗; γ, c) =

(
1 + exp

{
−γ

K∏
k=1

(t∗ − ck)

})−1

, (6)

with constraints γ > 0 and c1 ≤ c2 ≤ ... ≤ cK for the transition points in

the standardized time variable t∗ = t/T with T as the sample size. The

transition function F (t∗; γ, c) is a continuous function bounded between 0

and 1. The parameter γ corresponds to the speed of transition between the

two regimes, while the parameter ck, known as the threshold parameter,

indicates when, within the range of t , the transitions take place.

The roots of the polynomials [1 − Φt(L)] and [1 − βt(L)] should again

be outside the unit circle for all t. This implies that [1 − Φt(1)] > 0 and

[1− βt(1)] > 0, if we restrict our setting to one lag like under GARCH and

FIGARCH. With K = 1, the parameters of the FITVGARCH model change

smoothly over time from (ω1, φ1,i, β1,j) to (ω1 +ω2, φ1,i+φ2,i, β1,j+β2,j), i =

1, ..., q, j = 1, ..., p. The transitions between regimes happen instantaneously

when t∗ = c1 and γ is large. When γ → 0, the FITVGARCH(p, d, q) model

in (5) and (6) nests the FIGARCH(p, d, q) model of Baillie et al. (1996) since

the logistic transition function becomes constant and equal to 1/2. As with

GARCH and FIGARCH, we only consider one lag in the volatility equation,

i.e. we impose p=q=1.

Estimation of the GARCH, FIGARCH and FITVGARCH models can
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be done via the Quasi Maximum Likelihood (QML) method. The l-period

ahead forecasts σ̂2
t+l|t for these models can be obtained most easily by re-

cursive substitution of one-step ahead forecasts σ̂2
t+1. Note that one obtains

volatility forecasts from FITVGARCH in much the same way as for FI-

GARCH using the active regime at time t. The advantage of FITVGARCH

would consist in detecting a possible regime switch within the in-sample

used for estimation so that the set of parameters might be different from

those of a FIGARCH model without regime switching both estimated for

the same series.

We now turn to a description of the MSM model. An in-depth analysis

of this model can be found in Calvet and Fischer (2004) and Lux (2008). In

the MSM model, instantaneous volatility is determined by the product of k

volatility components or multipliers M
(1)
t ,M

(2)
t , . . . ,M

(k)
t and a scale factor

σ2:

σ2
t = σ2

k∏
i=1

M
(i)
t . (7)

Following the basic hierarchical principle of the multifractal approach,

each volatility component M
(i)
t will be renewed at time t with a probability

γi depending on its rank within the hierarchy of multipliers, and will re-

main unchanged with probability 1 − γi. Convergence of the discrete-time

MSM to a Poisson process in the continuous-time limit requires to formalize

transition probabilities according to:

γi = 1− (1− γk)(bi−k), (8)

with γk and b parameters to be estimated (Calvet and Fisher, 2001). Since

we are not interested in the continuous-time limit in this article, we fol-
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low Lux (2008) and use pre-specified transition probabilities γi = 2i−k

rather than the specification of eq. (8). The negligence of a more flexi-

ble parametrization of transition probabilities also can be motivated by the

fact that the in-sample fit and out-of-sample forecasting performance of both

alternatives laid out above have been found to be almost invariant compared

to the influence of other (estimated) parameters (Lux, 2008). We consider

different specifications of the MSM model varying k from 2 through 15 and

choose the one at which the objective function does not improve anymore

by more than a very small difference. The consideration of a high number

of multipliers k can be motivated by previous findings that show that even

levels beyond k > 10 may improve the forecasting capabilities of the MSM

for some series and proximity to temporal scaling of empirical data might

be closer (Liu et al., 2007). Indeed, having ‘too many’ multipliers is always

harmless as the other parameter estimates would remain unchanged beyond

some threshold and ‘superfluous’ multipliers with very long life times would

just absorb part of the scale parameter.

The MSM model is a Markov-switching process with 2k states. The

model is fully specified once we have determined the distribution of the

volatility components. It is usually assumed that the multipliers M
(i)
t follow

either a Binomial or a Lognormal distribution. In the MSM framework,

only one parameter has to be estimated for the distribution of volatility

components, since one would normalize the distribution so that E[M
(i)
t ] = 1.

Here we use the Lognormal MSM (LMSM) model, in which multipli-

ers are determined by random draws from a Lognormal distribution with

parameters λ and ν, i.e.

M
(i)
t ∼ LN(−λ, ν2). (9)
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Normalization via E[M
(i)
t ] = 1 leads to

exp(−λ+ 0.5ν2) = 1, (10)

from which a restriction on the shape parameter ν can be inferred: ν =
√

2λ. Hence, the distribution of volatility components corresponds to a

one-parameter family of Lognormals with the normalization restricting the

choice of the shape parameter. Thus, the LMSM parameters to be estimated

are just λ and σ for all specifications k = 2, ..., 15.

Lux (2008) has introduced a GMM estimator that is universally applica-

ble to all possible specifications of MSM processes. In the GMM framework

the unknown parameter vector ϕ = (λ, σ)′ is obtained by minimizing the

distance of empirical moments from their theoretical counterparts, i.e.

ϕ̂T = arg min
ϕ∈Φ

fT (ϕ)′AT fT (ϕ), (11)

with Φ the parameter space, fT (ϕ) the vector of differences between sample

moments and analytical moments, and AT a positive definite and possibly

random weighting matrix. Under standard regularity conditions that are

routinely satisfied by MSM models, the GMM estimator ϕ̂T is consistent

and asymptotically normal.2

In order to account for the proximity to long memory characterizing

MSM models we follow Lux (2008) in using logarithmic differences of ab-

solute returns together with the pertinent analytical moment conditions,

2The standard regularity conditions are problematic for the preceding ‘first generation’
multifractal model of Mandelbrot et al. (1997) because of its restrictions to a bounded
time interval. This is not an issue for the ‘second generation’ MSM of Calvet and Fisher
(2001) which by its very nature is a variant of a Markov-switching model.
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i.e.

ξt,T = ln |rt| − ln |rt−T |. (12)

Using (2) and (7) in (12) we get the expression

ξt,T = 0.5
k∑
i=1

(
m

(i)
t −m

(i)
t−T

)
+ ln |ut| − ln |ut−T | , (13)

where m
(i)
t = lnM

(i)
t . The variable ξt,T only has nonzero autocovariances

over a limited number of lags. To exploit the temporal scaling properties of

the MSM model, covariances of various orders q over different time horizons

are chosen as moment conditions, i.e.

Mom (T, q) = E
[
ξqt+T,T · ξ

q
t,T

]
, (14)

for q = 1, 2 and T = 1, 5, 10, 20, together with E
[
r2
t

]
= σ2 for identification

of σ2.

Out-of-sample forecasting of the MSM model estimated via GMM is per-

formed for the zero-mean time series Yt = r2
t − σ̂2 for l-step ahead horizons,

by means of best linear forecasts computed with the generalized Levinson-

Durbin algorithm developed by Brockwell and Dahlhaus (2004).

3 Empirical analysis

In this section, we present the results of our empirical study, starting with the

description of the data, the in-sample estimation results, and then proceed

to the out-of-sample forecast comparison of the different volatility models

discussed above.
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3.1 Data

The various volatility models are estimated using daily data of the Global

Dow Jones Islamic Market World Index (DJIM). The DJIM index mea-

sures the performance of the global universe of investable equities that have

been screened for Sharia compliance. The companies in this index pass the

industry and financial ratio screens. The regional allocation for DJIM is

classified as follows: 60.14% for the United States; 24.33% for Europe and

South Africa; and 15.53% for Asia (Hammoudeh et al., 2013). Our data

spans the period of January 1, 1996 to September 2, 2013, implying a total

of 5750 observations. Note that the start and end date for the index is gov-

erned purely by data availability at the time of writing this paper. The time

series for the index is sourced from Bloomberg. In order to get a preliminary

idea about the data set, we present, in Figure 1, the daily index in levels and

returns. Note that daily returns are normalized by taking 100 times the first

difference of the natural log of the index. Table 1 gives some basic statistics

for the DJIM index returns. Inspecting the first four moments of the data

(prior to normalization), we find pronounced negative skewness (probably

due to the inclusion of the time of the financial crisis) and excess kurtosis

as it typically characterizes financial time series.

The Jarque-Bera test rejects the hypothesis of Normally distributed re-

turns at any level of significance. Similarly, conducting a series of Box-Ljung

tests for different lags, independence of raw, squared and absolute returns

is rejected at any traditional level of significance. In line with practically

all other such analysis of financial time series, the Box-Ljung statistics is

orders of magnitude larger for both squared and absolute returns than for

the raw data. Hence, there is much higher persistence in the measures of

volatility than in the raw returns themselves. It is this very feature that gave
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rise to the development of volatility models with autoregressive dependence

and long memory. We finally also show the so-called Hill estimator for the

tail index, i.e. the decay of the unconditional distribution of returns in its

outer, extremal region. The literature unequivocally finds the extreme part

of the distribution following a power-law, i.e. Prob(|τt| > x) ∼ x−α, with

the ‘tail index’ typically around 3 (which has been denominated the ‘cubic’

law of large returns), cf. Cont (2001). Applying the conditional maximum

likelihood estimator of Hill (1975), we report results for the decay parameter

α together with its 95 percent confidence intervals in Table 1. Tail index

estimates for assumed extremal tail regions are in the vicinity of around 3 as

it had been found for essentially all other financial series scrutinized in the

literature. The DJIM data also displays the slight decrease of the estimate

for larger tail sizes that is presumably due to more and more contamination

of tail observations with those from the central part of the distribution.

So far, we do not find anything out of the ordinary. Returns from the

DJIM seem to share all basic stylized facts of stock market data and more

broadly defined classes of financial assets. In particular, the Box-Ljung test

points to a very similar structure of the volatility dynamics (already visible

in the clear clustering of volatility in Fig. 1), and the obeyance of the

‘cubic law’ of large returns indicates that Islamic stocks share the same risk

structure like more conventional assets.

Fig.1 shows that daily returns are, in general, highly volatile, with

volatility being highest during the month of October in 2008. Given this, we

used the first 3926 (until December 29, 2006) observations for in-sample es-

timation, and the remaining 1824 observations for out-of-sample forecasting

of the volatility of DJIM returns, with the out-of-sample period being chosen

to coincide with the global financial crisis — a period of high volatility.
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Table 1: Time Series Statistics of DJIM Returns

Mean: 0.000
Std. dev: 0.010
Skewness: -0.367
Kurtosis: 8.889
Bera-Jarque statistics: 19055.047 (0.000)

Box-Ljung statistics for: Return Squared Return Absolute Return

Lag 8
91.039 3545.467 2657.314
(0.000) (0.000) (0.000)

Lag 12
92.981 5318.485 3339.935
(0.000) (0.000) (0.000)

Lag 16
103.141 6217.137 4691.161
(0.000) (0.000) (0.000)

Hill tail index at 10% tail 2.754 (2.529 - 2.979)
5% tail 3.133 (2.770 - 3.495)
1% tail 3.575 (2.647 - 4.503)

Note: For the Bera-Jarque and Box-Ljung statistics, p-values are given in brack-
ets; for the tail index estimates, the brackets contain the 95 percent confidence
intervals of the point estimates based upon the limiting distribution of the esti-
mator.

3.2 Estimation

We now turn to estimation of our four volatility models introduced above.

In-sample estimation results of the different models are reported in Table

2. The results corresponding to GARCH-type models, i.e., GARCH(1,1),

FIGARCH(1,d,1) and FITVGARCH(1,d,1) indicate that the constant pa-

rameter (ω̂) is significant at the 5% level. Also, we observe a statistically sig-

nificant effect of past volatility on current volatility (β̂) and of past squared

innovations on current volatility (φ̂) in all three models at the 5% significance

level. In addition, estimation results of both FIGARCH and FITVGARCH

models indicate strong evidence of long memory in the conditional variance

of the DJIM index returns, with statistically significant estimates of d, and

almost the same value in both models (' 0.48). FITVGARCH estimation

14



Daily DJIM index

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

1
0

0
0

1
8

0
0

2
6

0
0

Daily DJIM returns

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

-8
-6

-4
-2

0
2

4
6

8

Figure 1: Daily DJIM index in level and returns

results show that the regime specific FIGARCH parameters experience sig-

nificant changes. The estimated threshold parameter is significant at the

5% significance level and equal to 0.6114, indicating that the change in the

volatility structure took place at about the time point t̂ = 0.6114×T ' 2400,

corresponding to mid-August 2002. The high estimated value of the smooth-

ness parameter γ implies a sudden change in the parameters of the variance

equation. We now turn to the estimation of the Lognormal MSM model.

The in-sample selection procedure discussed above results in the choice of

the number of multipliers to be k = 14. Hence, it requires a high number

of hierarchical levels to obtain saturation of the GMM objective function

in eq. (11). The estimates of the Lognormal parameter (λ̂) and the scale
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factor parameter (σ̂) have values of 1.464 and 0.809 respectively.

3.3 Out-of-sample analysis

In this section, the out-of-sample forecasting accuracy of the considered

volatility models is analyzed. Daily volatility forecasts were computed for

the out-of-sample period; from January 2, 2007 to September 2, 2013. For

each day in the forecasting period, forecasts are computed for horizons of

various lengths: 1, 5, 10, 20, 60, 70, 80, 90 and 100 days. We have used the

set of the in-sample parameter estimates and have kept it fixed over the out-

of-sample period, as it is computationally demanding and time consuming

to estimate the FI(TV)GARCH models using maximum-likelihood. The l-

steps-ahead forecast σ̂t+h|t is obtained by appropriate substitution based on

the conditional volatility specification and the forecast errors as given by:

et+h|t = ε2t+h − σ̂2
t+h|t.

For forecast evaluation, we use both the mean squared forecast error

(MSE) and the mean absolute forecast error (MAE) criteria. The null hy-

pothesis of equality of forecast performance from different models is tested

in a pairwise comparison using the Diebold and Mariano (1995) (DM) test

and the modified DM type test statistics for nested models of Clark and

West (2007), depending on the models to be compared. Furthermore, we

use the superior predictive ability (SPA) test introduced by Hansen (2005)

that allows for the simultaneous test of n similar null hypotheses against a

group of alternatives.

Table 3 reports MSE and MAE of volatility forecasts for the four volatil-

ity models described previously relative to the MSE and MAE obtained with
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a naive forecast using the constant historical volatility (computed as average

squared on absolute returns) of the in-sample period. A value < 1 would,

thus, indicate that the pertinent model improves upon historical volatility

under the respective criterion. Based on the MSE criterion, the long mem-

ory model with time varying parameters, FITVGARCH, seems to be the

best model for certain short-horizon volatility forecasts such as 1, 20 and

30 days, while FIGARCH turns out to be the best model at a horizon of

10 days. For longer horizons, 40 days and beyond, the MSM model is the

best one, while FITVGARCH comes in second place. Also, we find that the

simple GARCH model can not outperform the long memory-type GARCH

models at any horizon. According to the MAE criterion, results are some-

what different: we find that the MSM model dominates over all the other

models at all horizons. With respect to the GARCH-type models, we find

that the FIGARCH model outperforms FITVGARCH only at horizons 1

and 5 days. For longer horizons, 10 days and beyond, the FITVGARCH

model performs better than GARCH and FIGARCH models.

Comparison with historical volatility shows, however, that some of the

time series models improve upon the naive forecast (HV) under the MAE cri-

terion, while only the MSM model consistently outperform historical volatil-

ity at all time horizons. This difference in the performance under the MSE

and MAE criterion indicates that time-series models are generally better

suited to forecast large realisations of volatility than average sized ones (as

the former have a higher influence on the average MSE compared to the

average MAE). Similar results have been found for other time series before

(e.g. Levey and Lux, 2012), and they appear to some extent plausible and

even reassuring since it is the occurrence of large clusters of highly auto-

correlated fluctuations that has motivated the development of modern asset
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pricing models like the ones used in this study.

Table 4 contains results of pairwise forecast comparison, for the four

models, with the Diebold and Mariano (1995) test using both squared fore-

cast error and absolute forecast error loss functions. For the cases of nested

models, we apply the modified Diebold-Mariano test by Clark and West

(2007). Note that in the hierarchy of GARCH type models the simpler ones

are always nested in the more complex ones and historical volatility is nested

in all time series models. In contrast MSM and any of the GARCH-type

models are non-nested. We show results for the adjusted test only for the

MSE criterion as it applies to quadratic loss criteria only by design. The re-

sults represent the p-values of the null hypothesis that forecast performance

at horizon l of model 1 is equal to the one of model 2 against the one-sided

alternative that model 2’s forecast performance is superior than the one of

model 1. At 10% level of significance and in terms of the squared error

loss function, the MSM model is outperformed by the other models at lower

horizons (l ≤ 20) but it dominates when the forecast horizon exceeds 50

days. We also find that the FITVGARCH model seems to outperform the

FIGARCH model for l ≥ 30. In terms of the absolute error loss function, the

MSM outperforms the other models at all horizons, while the FITVGARCH

model outperforms the FIGARCH model for l ≥ 10.

We also apply the SPA test of Hansen (2005) using the same two loss

functions, MSE and MAE. Hansen’s test allows to compare one model’s

performance to that of a whole set of competitors. The null hypothesis of

the test is that a particular model (benchmark model) is not inferior to all

the other candidate models. Table 5 presents the SPA test for each model

including also historical volatility in the comparison. We find that, based on

both MSE and MAE used as loss functions in the SPA test, the long-memory
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models FGARCH and FITVGARCH perform pretty similarly, where none

of them can be significantly outperformed at any horizon not exceeding 40

days. But beyond this horizon, they can be outperformed by other models

at least at the 10% level of significance. The MSM model, in contrast, can

be outperformed at short-horizons (l ≤ 20 days) but not for longer horizons,

l ≥ 30.

Table 2: Estimated parameters of four models for DJIM daily index returns
GARCH FIGARCH MSM FITVGARCH

d̂ – – 0.4831 (0.0627) – – 0.4888 (0.0450)
ĉ – – – – – – 0.6114 (0.0278)
γ̂ – – – – – – 500 (3268.62)
ω̂|ω̂1 0.0031 (0.0009) 0.0089 (0.0042) – – 0.0159 (0.0032)

φ̂1|φ̂1,1 0.0418 (0.0049) 0.3186 (0.0526) – – 0.3030 (0.0238)

β̂1|β̂1,1 0.9540 (0.0054) 0.7467 (0.0377) – – 0.7314 (0.0295)
ω̂2 – – – – – – -0.0139 (0.0034)

φ̂2,1 – – – – – – 0.0691 (0.0344)

β̂2,1 – – – – – – 0.0771 (0.0169)

λ̂ – – – – 1.4639 – – –
σ̂ – – – – 0.8089 – – –

Note: Standard errors are given in parentheses.
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Table 3: Forecast evaluation for DJIM return volatility based on MSE and
MAE criteria

GARCH FIGARCH MSM FITVGARCH

Horizon MSE MAE MSE MAE MSE MAE MSE MAE
1 0.7976 1.0585 0.7874 1.0581 0.8643 1.0058 0.7752 1.0694
5 0.8037 1.0636 0.7751 1.0569 0.9021 1.0015 0.7924 1.0583
10 0.8577 1.0922 0.8368 1.0910 0.9389 1.0148 0.8406 1.0830
20 0.9378 1.1427 0.9165 1.1404 0.9682 1.0248 0.9152 1.1287
30 0.9986 1.1831 0.9682 1.1774 0.9811 1.0286 0.9657 1.1608
40 1.0394 1.2006 1.0027 1.1969 0.9877 1.0302 0.9988 1.1776
50 1.0503 1.2060 1.0135 1.2065 0.9906 1.0310 1.0087 1.1842
60 1.0475 1.1988 1.0139 1.2055 0.9920 1.0306 1.0092 1.1807
70 1.0422 1.1977 1.0130 1.2111 0.9931 1.0303 1.0083 1.1844
80 1.0363 1.1908 1.0116 1.2114 0.9939 1.0301 1.0075 1.1844
90 1.0340 1.1923 1.0126 1.2170 0.9948 1.0302 1.0087 1.1876
100 1.0356 1.1940 1.0157 1.2217 0.9957 1.0300 1.0119 1.1911

Note: MSE and MAE for all four models are displayed relative to the MSE and MAE of a constant forecast using
historical volatility as estimated from the in-sample series. Entries in italics represent the best performing model for
the pertinent loss function and forecasting horizon.
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Table 4: Diebold and Mariano test results

Horizon 1 5 10 20 30 40 50 60 70 80 90 100
Model 1 Model 2

Clark and West test
HV GARCH 0.000 0.000 0.004 0.023 0.028 0.024 0.042 0.075 0.103 0.117 0.131 0.136

FIGARCH 0.000 0.000 0.004 0.019 0.021 0.016 0.029 0.056 0.078 0.089 0.099 0.100
FITVGARCH 0.000 0.000 0.003 0.017 0.018 0.013 0.026 0.051 0.074 0.085 0.095 0.096
MSM 0.001 0.000 0.002 0.010 0.011 0.022 0.063 0.107 0.145 0.175 0.210 0.256

GARCH FIGARCH 0.059 0.001 0.018 0.096 0.108 0.108 0.112 0.113 0.112 0.111 0.109 0.115
FITVGARCH 0.282 0.038 0.037 0.095 0.099 0.097 0.101 0.101 0.099 0.098 0.095 0.100

FIGARCH FITVGARCH 0.360 0.928 0.706 0.398 0.180 0.041 0.028 0.020 0.011 0.014 0.016 0.012

Diebold and Mariano test (MSE)

GARCH MSM 0.970 0.972 0.864 0.651 0.380 0.173 0.128 0.100 0.078 0.068 0.055 0.063
FIGARCH MSM 0.984 0.985 0.921 0.784 0.641 0.202 0.050 0.013 0.012 0.033 0.045 0.052
FITVGARCH MSM 0.914 0.987 0.923 0.796 0.668 0.253 0.069 0.019 0.040 0.053 0.089 0.082
MSM GARCH 0.030 0.028 0.136 0.349 0.620 0.827 0.872 0.900 0.922 0.932 0.945 0.937

FIGARCH 0.016 0.015 0.079 0.216 0.359 0.798 0.950 0.988 0.989 0.967 0.955 0.948
FITVGARCH 0.086 0.013 0.077 0.204 0.332 0.747 0.932 0.981 0.960 0.947 0.911 0.918

Diebold and Mariano test (MAE)

GARCH MSM 0.005 0.021 0.071 0.079 0.070 0.070 0.064 0.062 0.057 0.055 0.057 0.059
FIGARCH MSM 0.003 0.008 0.026 0.021 0.012 0.011 0.008 0.008 0.008 0.010 0.012 0.014
FITVGARCH MSM <.001 0.009 0.046 0.034 0.022 0.021 0.018 0.019 0.020 0.023 0.027 0.031
MSM GARCH 0.995 0.979 0.929 0.921 0.930 0.930 0.936 0.938 0.943 0.945 0.943 0.941

FIGARCH 0.997 0.992 0.974 0.979 0.988 0.989 0.992 0.992 0.992 0.990 0.988 0.986
FITVGARCH 1.000 0.991 0.955 0.966 0.978 0.979 0.982 0.981 0.980 0.977 0.973 0.969

Note: Table entries represent the one-sided p-values of the Clark and West (2007) test and the Diebold and Mariano
(1995) test (the second is based on both squared and absolute prediction errors). The Clark-West test is used in
the case of nested models, while the Diebold-Mariano test is utilized for non-nested models. For both models, the
null hypothesis is that the forecast performance at horizon h of model 2 is equal to the one of model 1 against the
one-sided alternative that model 2’s forecast performance is superior to the one of model 1.
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Table 5: Superior predictive ability (SPA) test results

Horizon Squared errors Absolute errors
HV GARCH FIGARCH MSM FITVGARCH HV GARCH FIGARCH MSM FITVGARCH

1 0 0.2 0.625 0.048 0.728 0.680 0.048 0.013 0.320 0.005
5 0 0.003 1 0.015 0.113 0.535 0.048 0.033 0.465 0.022
10 0 0.003 0.708 0.013 0.292 1 0.018 0.003 0.020 0.005
20 0 0.02 0.480 0.06 0.520 1 0 0 0 0
30 0 0.003 0.590 0.308 0.870 1 0 0 0 0
40 0 0.003 0.223 0.823 0.335 1 0 0 0 0
50 0 0 0.010 1 0.050 1 0 0 0 0
60 0 0.003 0.010 1 0.058 1 0 0 0 0
70 0 0.003 0.015 1 0.090 1 0 0 0 0
80 0 0 0.037 0.95 0.098 1 0 0 0 0
90 0 0.007 0.030 1 0.095 1 0 0 0 0
100 0 0.01 0.005 1 0.040 1 0 0 0 0

Note: The table entries represent the p-values of the SPA test of Hansen (2005) using two loss functions (MSE and
MAE). The null hypothesis is that a particular model (benchmark model) cannot be outperformed by other candidate
models. Each column shows the outcome of this test in terms of the one-sided p-ratios for the pertinent model against
all alternatives.

For the GARCH model, we find that it is inferior to alternative models

under MSE at all horizons but l=1. Interestingly, historical volatility is also

clearly out performed by some alternative forecasts so that the application of

our battery of time series models adds value in term of forecasting accuracy

under the MSE criterion. This is different under the MAE criterion where

the null of non-inferiority of HV for the alternative forecasts is never rejected.

If we would exclude HV from the competition, the SPA test would indicate

superiority of MSM compared to the GARCH type model at all forecast

horizons in line with the results of Tables 3 and 4. However, under the

MAE criterion, all our time series models would not add value to the naive

approach of using the in-sample average on a predictor for future volatility.
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4 Conclusions

In the wake of the recent global financial crisis, a need has emerged for

a reconsideration of many facets of the existing financial system. Among

other developments, this has also led to a renewal of interest in Islamic fi-

nance. In essence, Islamic finance attempts to provide financial products

and instruments that are consistent with certain principles such as social re-

sponsibility, ethical and moral values and sustainability. Given the prevalent

interest in such products, we have investigated the statistical properties of

the Dow Jones Islamic Market World Index (DJIM), and have applied up-to-

date volatility models to model and forecast conditional volatility of DJIM

returns, accounting for both long memory and structural changes in the

volatility process, as well as the fact that volatility persistence may be due

to structural breaks. Given this, we use four different types of volatility mod-

els, namely, the Generalized Autoregressive Conditional Heteroskedasticity

(GARCH), Fractionally Integrated Generalized Autoregressive Conditional

Heteroskedasticity (FIGARCH), Fractionally Integrated Time Varying Gen-

eralized Autoregressive Conditional Heteroskedasticity (FITVGARCH) and

Markov-switching multifractal (MSM) models. While the GARCH model

serves as our benchmark volatility model, FIGARCH allows for long mem-

ory, FITVGARCH covers both long memory and structural breaks simulta-

neously, and the MSM model captures regime-switching that might lead to

spurious time-series characteristics close to ‘true’ long memory. The choice

of the DJIM is justified by the fact that it is the most widely used, most

comprehensive representative, and has the most adequate time series for the

Islamic stock market.

Our results show that the MSM model appears to be superior to other

models considered, especially at longer horizons, and with absolute errors
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as loss criterion, for forecasting the volatility of the DJIM returns, and that

it outperforms the GARCH, FIGARCH and FITVGARCH for most of the

out-of-sample forecast comparison tests. However, this superiority against

GARCH-type models only has economic value under the MSE criterion,

while under the MAE loss function, all time-series models show predictive

capabilities that are inferior to historical volatility. Another finding is that

modeling the properties of long memory and time varying parameters in the

volatility process, as in the FITVGARCH model, can improve the forecast

performance for short and long forecasting horizons. Not surprisingly, the

classical GARCH model seems to be the worst performing model in terms

of forecasting future volatility among the models considered. All in all,

these results are not too different from those of other previous studies of the

comparative performance of volatility models: Calvet and Fisher (2004),

Lux(2008), Lux and Kaizoji (2007) and Lux, Morales-Arias and Satterhoff

(2013) all have found certain gains in forecastability of volatility with MSM

compared to GARCH-type models. The DJIM seems no exception and also

shows complete agreement with more traditional asset classes in terms of its

basic statistical features. This, however, casts doubt on whether investment

into the stocks represented in the DJIM could provide any safeguard against

extreme market gyrations like those observed over the last couple of years.
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