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One of the problems facing wireless network planners is a perceived scarcity of spectrum. A

technology that addresses this problem is cognitive radio (CR). A critical function of a CR

network is spectrum sensing (SS). A secondary user (SU) in a CR network will perform SS to

gather information about the radio environment within which it wishes to operate and then

make decisions based on that information. While SS by individual SUs is very useful it has

been found in the literature that a cooperative approach, where SUs share their individual

results, may provide more accurate information about the radio environment. It has also been

shown that it is beneficial for SUs to be able to make proactive decisions about spectrum

resource allocation. To be able to make these proactive decisions, a SU will need to be able

to make predictions about the future behaviour of other users of the same spectrum.

This research project was divided into two parts. Firstly, a measurement campaign was per-

formed to characterise spectrum scarcity in the South African context. Detailed information,

about the occupancy of various commercially utilised South African frequency bands, was

collected from spectrum measurement campaigns carried at the Hatfield campus of the Uni-

versity of Pretoria and at Pinmill Farm in Johannesburg. These bands included the television
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broadcast and mobile cellular bands. On average, the television broadcast bands were found

to be underutilised highlighting the existence of a number of opportunities for television

white space devices. However, the mobile cellular bands were found to be much more heavily

occupied, particularly for the bands around 900 MHz, suggesting that mobile operators are

currently in need of additional spectrum resources.

The second part of this thesis followed a more theoretical approach and was based on the need

for proactive decision making in CR networks. A single SU prediction method, of relatively

cheap computational complexity, was proposed and tested under various traffic conditions.

The premise that collaboration between SUs may improve the accuracy of single SU traffic

predictions was then explored. Pre-fusion and post-fusion approaches to cooperative pre-

diction were compared with the single SU prediction scenario. The prediction error for the

cooperative approaches was found to be lower than for the single SU case, especially for the

pre-fusion scenario. For example, for a signal-to-noise ratio of 8 dB and individual forecast

probability of 0.9, the pre-fusion prediction error was found to be approximately 2% com-

pared with 26% for single SU prediction error. The cost of this improvement, however, was

added algorithm complexity.

It was then demonstrated that primary user traffic prediction could be used to improve the

energy consumption associated with cooperative SS in a CR network. Combined with an

optimal scheduling algorithm, this approach was shown to prolong the lifetime of a group of

twenty cooperating SUs by 21.2 time samples for a uniformly distributed group of SUs when

predictions were made ten time samples into the future.
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OPSOMMING
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deur

Simon Daniel Barnes

Promotor(s): Prof. B.T.J. Maharaj
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Universiteit: Universiteit van Pretoria
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enkundige kompleksiteit, spektrum metings, spektrum besetting,

spektrum sensing, verkeer klassifikasie, voorspellings fout

Een van die probleme wat draadlose netwerk beplanners in die gesig staar is ’n vermeende

skaarsheid van die radio frekwensie spektrum. ’n Tegnologie wat hierdie probleem aanspreek

is ’n kognitiewe radio (KR). A kritiese funksie van ’n KR netwerk is spektrum sensing (SS).

’n Sekondêre gebruiker (SG) in ’n KR netwerk sal SS gebruik om inligting oor die radio

omgewing waarbinne dit wil werk in te samel en dan dit gebruik om besluite te neem wat

gebaseer is op hierdie inligting. Terwyl SS deur individuele SGs baie nuttig is, is daar gevind

in die literatuur dat samewerking tussen SGs, waar hulle hul individuele resultate deel, kan

meer akkurate inligting oor die radio omgewing voorsien. Dit het ook getoon dat dit voordelig

is vir SGs om proaktiewe besluite te neem oor die toekenning van spektrum hulpbronne. Om

hierdie proaktiewe besluite te neem, sal ’n SG in staat moet wees om voorspellings te maak

oor die toekomstige gedrag van ander gebruikers van dieselfde spektrum.

Hierdie navorsing is in twee dele verdeel. Eerstens is ’n meting veldtog uitgevoer om spektrum

skaarsheid in die Suid-Afrikaanse konteks te karakteriseer. Gedetailleerde inligting, oor die

besetting van verskeie kommersieel gebruikte Suid-Afrikaanse frekwensiebande, is van spek-

trum meet veldtogte by die Hatfield-kampus van die Universiteit van Pretoria en by Pinmill
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Farm in Johannesburg ingesamel. Hierdie frekwensiebande ingesluit die televisie-uitsending

en mobiele sellulêre bande. Op die gemiddelde is die televisie-uitsending bande onderbenut

gevind, vat die bestaan van ’n aantal geleenthede vir televisiewitspasietoestelle beklemtoon.

Maar dit is gevind dat die mobiele sellulêre bande baie meer swaar beset is, veral vir die

bande om 900 MHz, wat daarop dui dat die mobiele operateurs tans in die behoefte van

addisionele spektrum hulpbronne is.

Die tweede deel van hierdie tesis is ’n meer teoretiese benadering wat gebaseer is op die be-

hoefte vir proaktiewe besluitneming in KR netwerke. ’n Enkele SG voorspelling metode van

relatief goedkoop rekenkundige kompleksiteit is voorgestel en getoets onder verskillende tipe

verkeer. Die veronderstelling dat samewerking tussen SGs die akkuraatheid van ’n enkele SG

voorspellings kan verbeter is toe ondersoek. Voorsamesmelting en nasamesmelting benader-

ings tot koöperatiewe voorspelling is vergelyk met die enkele SG voorspellings skema. Die

voorspelling fout vir die koöperatiewe benaderings is laer as vir die enkele GS geval bevind,

veral vir die voorsamesmelting skema. Byvoorbeeld, vir ’n sein-tot-ruis-verhouding van 8

dB en individuele voorspelling waarskynlikheid van 0.9, is die voorsamesmelting voorspelling

fout ongeveer 2% gevind in vergelyking met ’n 26% enkel SG voorspellings fout. Die koste

van hierdie verbetering was egter bygevoege algoritme kompleksiteit.

Dit is dan bewys dat primêre gebruiker verkeer voorspelling gebruik kan word om die en-

ergieverbruik wat verband hou met koöperatiewe spektrum sensing in ’n KR netwerk te

verbeter. Gekombineer met ’n optimale skeduleringsalgoritme is hierdie benadering getoon

om die leeftyd van ’n groep van twintig eenvormig verspreide SGs te verleng deur 21.2 tyd

monsters toe voorspellings van tien tyd monsters in die toekoms gemaak is.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Mobile broadband communications are an important driver of social and economic devel-

opment around the world. The global proliferation of wireless communication devices has

already lead to unprecedented volumes of mobile traffic [1] and recent trends suggest that this

ever increasing demand for mobile broadband services may soon outstrip available spectrum

resources [2, 3]. Rapidly increasing numbers of mobile devices, competing for spectrum at

ever increasing date rates, are primarily responsible for this prediction. Regulatory bodies

and enterprises, such as the federal communications commission (FCC), Cisco Systems

and the international telecommunication union radiocommunication sector (ITU-R), have

predicted that wireless network planners and mobile operators will soon face a spectrum

crunch [3]. A study released by Cisco Systems indicated that global mobile data traffic

more than doubled in the year 2011 and has predicted an 18-fold increase by the year

2016 [4]. While a report by the ITU-R on future spectrum requirements has predicted at

least a 25-fold increase with a possible maximum 100-fold increase in mobile traffic by the

year 2020 [5], illustrated in Figure 1.1. Data-hungry technologies such as tablet computers,

smart phones, machine-to-machine (M2M) communications, mobile video, media rich social

networking, portable gaming consoles, cloud computing services and the proposed concept

of the internet of things have been listed as the main drivers of this phenomenon [1, 4].

The deployment of fourth generation (4G) networks has allowed for significant in-

creases in the speeds at which these devices are able to operate. The well know Shannon
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Chapter 1 Introduction

Figure 1.1: ITU-R mobile traffic forecasts up to the year 2020 [5].

channel capacity theorem states that [6],

C = B log2 (1 + SNR) , (1.1)

where C refers to the channel capacity, B bandwidth and SNR is the signal-to-noise ratio.

Equation (1.1) indicates that either SNR or B needs to be increased to support this increase

in capacity. Since it is not always practical to increase SNR, future increases in channel

capacity will heavily rely on an increase in B, which places greater demands on the amount

of spectrum that is required. A look at the bandwidth requirements of mobile telecommunic-

ations technologies over the past few decades, as shown in Table 1.1, reinforces this concept.

Generation Technology Bandwidth

1G AMPS 25 – 30 KHz

2G GSM 200 KHz

3G WCDMA 5 MHz

4G LTE 1.4 – 20 MHz

4G LTE-A 1.4 – 100 MHz

Table 1.1: Mobile telecommunication technology channel bandwidths.
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Chapter 1 Introduction

The channel bandwidths employed have clearly increased at each successive wireless network

generation, with support for up to a 100 MHz of aggregated spectrum proposed for long term

evolution advanced (LTE-A) [7]. However, the spectral efficiency of 4G networks is already

approaching the theoretical channel capacity limit. Spectrum is a scarce resource that clearly

needs to be managed in an efficient manner if future spectrum demands are to be met.

While the impending spectrum crunch is being driven by rapidly increasing mobile data traffic

and data speeds, a major underlying reason for the spectrum crunch, has to do with static

legacy spectrum allocation policies. Cognitive radio networks (CRN) have been proposed as

a potential approach at making more efficient usage of existing spectrum by moving away

from a static to a dynamic approach to the allocation of spectrum resources [8, 9, 10].

Secondary users (SU) within a CRN need to be aware of each other and of the primary users

(PU) within the network. Due to the effects of shadowing and multipath fading in urban

environments, the spectrum sensing process may suffer from various problems, including

the hidden node problem. This process may thus benefit from a cooperative approach to

gathering information about the behaviour of other users of the spectrum. Furthermore,

there are usually power and time constraints that are placed on the spectrum sensing process.

Combining prediction with cooperative sensing to produce a cooperative prediction process

may hold significant benefits for the dynamic assignment process and the overall performance

of the network.

1.2 OBJECTIVES

The main objectives of this thesis are summarised as follows:

• To quantify the actual usage of commercially utilised spectrum within the South

African context. Specifically the television broadcast and mobile cellular bands.

• To investigate the feasibility of spectrum sensing and geo-location spectrum database

based decision making by comparing actual measured data to a locally available

spectrum database.

• To develop a method whereby PU spectrum occupancy may be predicted with low

Department of Electrical, Electronic and Computer Engineering
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Chapter 1 Introduction

complexity for different types of PU traffic patterns.

• To investigate the trade-offs between complexity and accuracy when predicting

spectrum occupancy for different types of PU traffic patterns.

• To develop a method whereby spectrum occupancy may be predicted in a cooperative

manner and to investigate how this could be optimally achieved.

• To investigate the trade-offs between cooperative prediction gain and overhead.

• To investigate how cooperation in a CRN can be implemented in a power efficient

manner and how PU traffic prediction may contribute to this.

1.3 CONTRIBUTION AND OUTPUTS

1.3.1 Research contribution

The main research contributions of this thesis are summarised as follows:

• A novel noise threshold detection technique, known as the maximum normal fit

method, was presented 1. This technique separates the noise and signal components of

a received signal based on its statistical properties.

• An extensive spectrum occupancy measurement campaign was conducted to charac-

terise the current usage of the TV broadcast and mobile cellular bands. The maximum

normal fit method was employed to calculate spectrum occupancy.

• A computationally simple approach to predicting PU traffic, called the occupancy

window method, was proposed and compared with certain other methods from the

literature, under various different traffic conditions.

• The concept of cooperative prediction for cognitive radio networks was discussed

1The author would like to thank Mr P.A. Jansen van Vuuren and Mr M.J. Prinsloo for there contributions

to this technique.
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Chapter 1 Introduction

and investigated. An optimal cooperative forecasting problem was formulated and a

heuristic for solving the problem was proposed.

• The application of traffic forecasting was combined with optimal scheduling to provide

a novel approach to improving the spectrum sensing related energy efficiency of cooper-

ating SUs within cognitive radio network.

1.3.2 Publications

The following publications emanated from the research activities undertaken by the author

during this research project.

1.3.2.1 Journal publications

The following articles were either published in or submitted to accredited peer-reviewed

journals:

1. S.D. Barnes, P.A. Jansen van Vuuren and B.T. Maharaj, “Spectrum occupancy invest-

igation: Measurements in South Africa,” Measurement, vol. 46, no. 9, pp. 3098–3112,

Nov. 2013.

2. S.D. Barnes, B.T. Maharaj and A.S. Alfa, “Cooperative prediction in cognitive radio

networks,” Wireless Personal Communications, vol. 89, no. 4, pp. 1177–1202, Aug.

2016.

3. S.D. Barnes, P.R. Botha and B.T. Maharaj, “Spectral occupation of TV broadcast

bands: Measurement and analysis,” Measurement, vol. 93, pp. 272–277, Nov. 2016.

1.3.2.2 International conference proceedings

The following papers were presented at and published in the peer reviewed proceedings of an

international conference:

1. S.D. Barnes and B.T. Maharaj, “Collaborative spectral opportunity forecasting for

cognitive radio,” Proceedings of IEEE AFRICON Conference, Addis Ababa, Ethiopia,

Department of Electrical, Electronic and Computer Engineering
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Sept. 2015, pp. 1-6.

2. S.D. Barnes, B.T. Maharaj and A.S. Alfa, “Spectrum opportunity forecasting for energy

efficient sensing in cognitive radio networks,” Proceedings of the 2nd IEEE International

Symposium on Telecommunication Technologies, Langkawi, Malaysia, Nov. 2014, pp.

128-132.

3. S.D. Barnes and B.T. Maharaj, “A comparison of spectrum occupancy in the South

African 900 MHz GSM cellular bands,” Proceedings of IEEE AFRICON Conference,

Port Louis, Mauritius, Sept. 2013, pp. 1-5.

4. R.R. Thomas, S.D. Barnes and B.T. Maharaj, “TOA Location estimation based on

cognitive radio channel occupancy prediction,” Proceedings of the IEEE Wireless and

Mobile Communications Conference, Barcelona, Spain, Oct. 2012, pp. 733-738.

1.3.2.3 National conference proceedings

The following papers were presented at and published in the peer reviewed proceedings of a

local South African conference:

1. S.D. Barnes and B.T. Maharaj, “An occupancy window approach to primary user traffic

modelling for cognitive radio,” Proceedings of the Southern African Telecommunications

Networks and Applications Conference, Stellenbosch, South Africa, Sept. 2013, pp. 395-

399.

2. S.D. Barnes, K. Dhuness, R.R. Thomas and B.T. Maharaj, “Proactive dynamic spec-

trum access based on energy detection,” Proceedings of the Southern African Telecom-

munications Networks and Applications Conference, George, South Africa, Sept. 2012.

1.3.2.4 Invited conference presentations

The following invited paper was presented at a local South African conference:

1. S.D. Barnes and B.T. Maharaj, “Spectrum occupancy and modelling: A South African

case study,” South African IEEE Joint AP/MTT/EMC Chapter Conference, Pretoria,
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Chapter 1 Introduction

South Africa, May 2014.

1.4 THESIS OUTLINE

This thesis has been organised into seven Chapters. A flow chart is provided in Figure 1.2

that summarises both the topics covered and contributions made in this thesis. This diagram

also indicates how each of the topics are related and fit together.

A review of the literature pertaining to spectrum efficiency and cognitive radio networks is

provided in Chapter 2. This chapter provides background knowledge to support the work

presented in the chapters that make up the rest of the thesis.

The current state of spectrum usage in various South African commercial bands has been

investigated in Chapter 3. The results of a spectrum measurement campaign, encompassing

various commercially utilised bands, are described and the case for dynamic spectrum access

in South Africa is presented. These results provide motivation for the need to investigate tech-

nologies that can make efficient usage of current spectrum resources and lay the contextual

foundation for the chapters that follow in this thesis.

PU traffic modelling and forecasting, for individual SUs, is discussed in Chapter 4. The

occupancy window prediction method is presented and its performance is compared with

other prediction methods for various traffic conditions.

Cooperation amongst SUs, for the purposes of detection and collaborative PU traffic forecast-

ing, is investigated in Chapter 5. An optimal solution to collaborative PU traffic forecasting

is sought where a balance between prediction accuracy and complexity can be achieved.

The effect that forecasting has on the energy efficiency of collaborating SUs is investigated in

Chapter 6. Spectral opportunity forecasting, for proactive spectrum access, has been shown

to help reduce the energy consumption of cognitive radio networks.

Finally, the topics covered by this research project are summarised and conclusions drawn in

Chapter 7. Recommendations for possible future research are also discussed.

Department of Electrical, Electronic and Computer Engineering
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CHAPTER 2

BACKGROUND: IMPROVING SPECTRAL

EFFICIENCY

2.1 INTRODUCTION

Given predictions about exponential increases in the demand for spectrum [1], coupled with

the fact that it is a limited natural resource, future technologies will need to balance spectrum

efficiency with interference-free communication so as to ensure that the spectrum needs of

future wireless networks can be met. Various approaches to achieving this balance have been

proposed in the literature [9, 11], some of which will be explored in this chapter.

The chapter begins with a discussion on spectral efficiency, the electromagnetic spectrum

and a selection of technologies that have been earmarked for improving spectral efficiency in

future wireless networks. A brief overview on spectrum usage studies both in South Africa

and around the world, together with a brief look at the South African spectrum regulatory

environment, is also presented. One of the technologies earmarked for improving spectral

efficiency, known as cognitive radio [8, 12], is then discussed in greater detail with a strong

focus on spectrum sensing. Which is a critical process whereby information is gathered

about the radio environment and the behaviour of other users of the spectrum. The focus on

spectrum sensing then continues as an overview of the cooperative spectrum sensing (CSS)

concept, aimed at improving spectrum sensing accuracy through cooperation and sharing

amongst cognitive radios (CR), is presented. The chapter is concluded by a discussion on

how the behaviour of other users of the spectrum can be modelled and predicted so as to

facilitate proactive decision making within cognitive radio networks.
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Figure 2.1: The electromagnetic spectrum. Adapted from [13], with permission (Copyright

© 2005, John Wiley and Sons, Inc.).

2.2 SPECTRAL EFFICIENCY

The mobile traffic forecast illustrated in Figure 1.1, means that demand for spectrum in

certain bands is rapidly increasing and will continue to do so into the future. A segment of

the electromagnetic spectrum is presented in Figure 2.1. For convenience, the spectrum has

been organised into general divisions roughly based on application and general propagation

characteristics [13]. The divisions shown range from the bands used for long range radio

through the visible spectrum and right up to X and Gamma-rays.

The regions that are currently of interest for broadband wireless communication, the bands

where the demand for spectrum is rapidly growing, are shaded in grey. These are the bands

traditionally assigned to television (TV) and radio applications as well as parts of the L and

S microwave bands. The radio and TV bands, shown at the top of the figure, fall within the
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Chapter 2 Background: Improving spectral efficiency

region from 50 MHz up to 1000 MHz and are traditionally shared by broadcast radio and

TV services as well as cellular communication networks. The L and S bands lie within the

region from 1000 MHz up to 4000 MHz, as shown at the bottom left hand side of Figure

2.1. Parts of these bands are also used for cellular communications as well as for unlicensed

services such as Wi-Fi and blue tooth in the industrial, scientific and medical bands.

As the demand for mobile and wireless connectivity grows within the shaded bands, so does

the amount of spectrum required to support it. Regulatory bodies and researchers around the

world are thus considering new and better approaches to making use of this scarce resource.

In this section, various technologies and approaches, that have been considered for improving

spectral efficiency in future generation wireless networks, are discussed.

2.2.1 Fifth generation network technologies

It has been predicted that the evolution from fourth generation to fifth generation mobile

networks will most likely lead to massive increases in capacity, data rates and device con-

nectivity, as well as reduced latency and improved energy efficiency (EE) [11]. However, this

will require large amounts of spectrum. Existing spectrum allocations will thus need to be

used in a more efficient manner. Some of the core technologies proposed for this purpose

include licensed shared access (LSA), dynamic spectrum access (DSA), carrier aggregation

(CA), device-to-device (D2D) communication and millimetre-wave broadband (MMB).

2.2.1.1 Licensed shared access

Licensed shared access allows for a particular class of user, most likely a cellular operator, to

access spectrum that has already been allocated to an incumbent on a quasi-static basis. A

license is provided that allows this user exclusive access to the spectrum during the time for

which this license is valid. The agreement that the incumbent has with the LSA user may

span a period of several years and since the incumbent user forfeits its right to the spectrum

during this time, the LSA user can guarantee a certain level of quality of service (QoS) to its

customers [14]. The concept of LSA is currently under study in the 2.3 to 2.4 GHz frequency

band [15].

The LSA scheme may be useful to mobile operators as they could make use of such an

Department of Electrical, Electronic and Computer Engineering
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Chapter 2 Background: Improving spectral efficiency

agreement to improve their capacity during peak usage times where the incumbent is willing

to lease spectrum to the mobile operator in a specific geographic area. The mobile operator

benefits since it does not need a license for the entire country and the incumbent has the

potential to gain revenue from spectrum that it might not be using at that specific time and

geographical location. In a similar way, devices that would form part of the internet of things

could also make use of LSA spectrum, since there spectrum usage may be erratic with large

intervals between transmissions.

This is a short to medium term solution to the spectrum scarcity problem and it is envisioned

that it will evolve into a more dynamic form of spectrum sharing in the future, where the lease

time becomes shorter and shorter, until it actually meets the requirements for full dynamic

spectrum access.

2.2.1.2 Dynamic spectrum access

A further step towards spectrally efficient communication, dynamic spectrum access, is a

technology that builds on the LSA concept by allowing users opportunistic access to under-

utilised spectrum [16, 17]. Central to the concept of DSA is a technology known as CR. A

CR is a radio with learning capabilities and thus independently able to obtain knowledge

of its radio environment [8]. It uses this knowledge to dynamically switch between channels

that are unused so as to temporarily make use of spectrum that would otherwise have simply

remained idle and thus gone to ’waste’. Such an approach has the potential to significantly

increase spectral efficiency. Global interest in Cognitive Radio technologies has thus grown

significantly in recent years. CR will be discussed in much greater detail in Section 2.3.

2.2.1.3 Carrier aggregation

Carrier aggregation (CA) is a technique that allows operators to combine several possibly

non-contiguous blocks of spectrum into a single data stream with a wider bandwidth. This

allows for underutilised spectrum to be more efficiently utilised and is the key to achieving

higher data rates in long term evolution advanced (LTE-A) networks, since it allows for the

use of bandwidths that are wider than 20 MHz. The three main ways in which carriers

may be combined are: Contiguous intra-band, non-contiguous intra-band and inter-band CA

[18].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

12

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 2 Background: Improving spectral efficiency

An advanced form of CA allows for the combination of carriers from different bands, e.g.

Wi-Fi can be combined with LTE and 3G services, so as to greatly improve the data rate of

the link. An example of such a system is the SpiderRadio, developed at the Stevens Institute

of Technology [19], which is a software driven CR prototype that can be used to aggregate

multiple data services based on the concept of bandwidth aggregation. The SpiderRadio can

sense radio spectrum, detect PUs and perform dynamic spectrum access. Using dynamic

spectrum management (of cost, required performance, access of policies, etc.), the SpiderRa-

dio simultaneously takes advantage of multiple broadband services by aggregating multiple

low data rate services, to obtain a high data rate connection. For example, data services

(including Wi-Fi, 2G, 3G, 4G and fixed line services) could be aggregated to obtain a higher

combined throughput and link quality than either of the individual services.

2.2.1.4 Device-to-device communication

The idea behind D2D communication is that wireless devices, operating within the same cell,

can make use of intra-cell communication protocols to communicate directly with each other.

This technology can be employed to take some of the load away from the base station (BS) by

offloading tasks to the users that it serves. D2D communication thus has the potential to im-

prove network performance and decrease end to end delays by allowing direct communication

between devices over multiple, re-usable operating channels.

The potential benefits of D2D include improved power efficiency, network capacity, data

throughput and spectrum utilisation. However, practical challenges surrounding self-

coexistence between neighbouring cells, resource allocation and intra-cell multi-hop commu-

nication will need to be overcome. Also questions surrounding how best to share spectrum

amongst devices (orthogonal or opportunistic access), over what range devices should operate

and whether an underlay or an overlay approach should be adopted, must be answered. D2D

devices will thus need to posses additional functionality so as to be able communicate directly

with each another [20].

2.2.1.5 mmWave communication

Another technology that could help to alleviate the spectrum crunch is millimetre-wave broad-

band, where spectrum in the microwave region between 3 – 300 GHz can be used to comple-
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Chapter 2 Background: Improving spectral efficiency

ment the traditional wireless communication bands below 3 GHz [21]. The region from 28

– 38 GHz has been considered as eligible for MMB since both atmospheric absorption (less

than 0.1 dB/km) and specific attenuation due to rainfall are lower than at higher frequencies

[22, 23]. Atmospheric absorption losses in the region between 70 – 100 GHz and 125 – 160

GHz are also acceptable (less than 1 dB/km).

Since MMB has access to large amounts of bandwidth, it holds the potential for high data

rate communications (in the order of 1 Gb/s) that could potentially be used to provide much

greater capacity in both back-haul links as well as from the BS to the user. However, while

spectrum scarcity is not a problem for MMB there are a number of challenges related to

operating at higher frequencies. These may include poor penetration through most solid

materials, high attenuation due to foliage and in the presence of heavy rain fall, higher

atmospheric absorption in certain bands (e.g. 15 dB/km in the oxygen absorption band at 60

GHz) as well as various antenna and RF design challenges due to smaller wave lengths.

Initially this technology may be limited to the use of narrowly focused beam widths in point-

to-point back-haul networks or for communication over relatively short distances, due to the

nature of the environment that MMB devices would be operating in. However, the smaller

wave lengths of these bands allows for new spatial processing and polarisation techniques

such as massive multiple-input-multiple-output (MIMO) [24, 25] and adaptive beam-forming

[26]. The adoption of these techniques, together with other advances such as the use of small

cells, cooperative MIMO, relay stations and other interference mitigation techniques, could

make MMB a viable option for the alleviation of congested spectrum.

2.2.2 Television white spaces

Using the white spaces in the bands traditionally assigned for TV broadcasting has been

proposed as a way to more efficiently make use of this spectrum. White space devices (WSD)

can exploit opportunities that exist due to spectral holes in the very-high frequency (VHF)

bands (30-300 MHz) and also in the ultra-high frequency (UHF) bands (300-1000 MHZ) [27].

These spectral holes are gaps in the TV transmissions. Spectrum in this frequency range is

highly desirable due to its high penetration and favourable propagation characteristics. This

technology is commonly referred to as TV white space (TVWS).
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Some regulators, e.g. the federal communications commission and the Office of Communic-

ations, are moving towards regulation that will allow for the license exempt usage of the

TV bands. TVWS technology is an attractive solution for rural broadband networks since

TVWS spectrum is generally readily available in the rural areas and lends itself well to

signal propagation over large distances. Standards that support rural broadband commu-

nications over TVWS include the Institute for Electrical and Electronics Engineers 802.22

(IEEE 802.22), IEEE 802.11af (also known as Super Wi-Fi) and the European computer

manufacturers association-392 standards.

WSDs can use spectrum sensing (SS) to detect free channels, however, SS is not always accur-

ate and in many locations may suffer from the so called hidden node problem (where SS may

be inaccurate due to among others things shadowing and fading). The geo-location spectrum

database (GLSDB) has been proposed to helps WSD devices to overcome this problem [28].

A GLSDB is a geographical database of TV transmitter propagation curves that allow WSD

to detect spectrum holes without performing spectrum sensing. WSD can access a GLSDB

to obtain information about the location and geographically relevant transmitter power of

the incumbent users of the spectrum. To make the GLSDB accurate, a combination of TV

broadcast planning parameters, measurement campaigns and propagation models should be

taken into account.

Some of the operators that currently provide free GLSDB services include companies such as

Google [29] and Microsoft. However, paid GLSDB services are provided by companies such as

Fair Spectrum, Key Bridge, Spectrumbridge and Telcordia. In South Africa a free GLSDB,

that uses the international telecommunications union radiocommunication sector (ITU-R)

P.1546-4 and federal communications commission curves propagation models (grade-B and

grade-C), is provided by the Meraka Institute of the Council for Scientific and Industrial

Research (CSIR). A screen shot of the database, where free channels at the University of

Pretoria are shown in green, is provided in Figure 2.2 [30].

A number of TVWS trials have been performed around the world. The most prominent trials

include: The Cape Town white space trial in South Africa, the Kenya white space project,

the advanced internet regions consortium and University of west Virginia trial in the USA,

a white space project on the Isle of Bute in Scotland, a telemedicine over TVWS project in

the Philippines and a white spaces pilot project in Singapore.
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Chapter 2 Background: Improving spectral efficiency

Figure 2.2: A screen shot of the CSIR GLSB. Free channels are highlighted in green [30].

2.2.3 Characterising spectrum occupancy

To gain a better perspective of the needs of future wireless networks, it is necessary to

determine how much spectrum is currently being used and where congestion is currently the

highest. The best way to do this is to actually take measurements of the spectrum in the

bands of interest to these networks. These measurements can then be used by regulatory

bodies as a basis for future planning. Measurement campaigns that have been conducted

are briefly listed below. The general conclusion drawn from most of these campaigns was

that outdated spectrum assignments and regulatory policies have led to a situation where

spectrum appears to be scarce, but in actual fact is underutilised due to inefficiency.

2.2.3.1 Local measurement campaigns

A few of measurement campaigns have been conducted to gain insight into the actual usage of

spectrum in South Africa, most notably a TVWS trial performed in Cape Town by the Meraka

Institute of the CSIR in collaboration with the independent communications authority of

South Africa (ICASA) [31, 32]. This trial helped to identify un-unused spectrum in the TV

broadcast bands in the Cape Town suburb of Tygerberg and has lead to further work on
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Chapter 2 Background: Improving spectral efficiency

developing a TVWS GLSDB for South Africa [30]. However, in the South African context,

knowledge about actual measured spectral occupancy is limited. As a step toward better

spectral awareness in South Africa, a detailed measurement campaign of all of the bands

listed in Table 2.2, will thus be presented in Chapter 3 of this thesis.

2.2.3.2 International measurements campaigns

A number of comprehensive measurement campaigns have been performed around the world

that cover more than just the bands used for TV broadcast and mobile broadband. These

included measurement campaigns carried out in various parts of the USA (New York City,

Chicago, Washington, DC, Greenbank, WV) by both universities and other organisations such

as the Shared Spectrum Company [33, 34, 35, 36, 37]. In general spectrum usage was found to

be high in certain bands, e.g. the mobile cellular bands, yet many of the bands were actually

found to be underutilised. Measurements conducted in other countries include campaigns

carried out in Auckland, New Zealand [38], Barcelona, Spain [39], Aachen, Germany [40, 41],

Maastricht, The Netherlands [42, 41] and Dublin, Ireland [43].

The results obtained from these measurement campaigns are summarised in Table 2.1. A

comparison is made against the average occupancy of the bands reportedly used for mobile

cellular communications as well as those used for television broadcasting. The values presen-

ted in Table 2.1 represent the average occupancy of the bandwidth allocated for either mobile

broadband communication or broadcast television (both VHF and UHF bands) at each meas-

urement location. The bands allocated for cellular communication around the 800/900 MHz

region are denoted Mobile A and those around the 1800/1900 MHz region, Mobile B.

Certain observations can be made from Table 2.1. Firstly, that the broadcast TV bands are

Table 2.1: A comparison of measured spectral utilisation at various international locations.

Band New York Chicago Virginia Barcelona Dublin

TV 35.93 52.40 30.54 82.08 36.36

Mobile A 46.30 54.70 42.53 51.30 0.70

Mobile B 33.80 42.90 19.70 29.41 36.80
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Chapter 2 Background: Improving spectral efficiency

underutilised at all of the locations, except for Barcelona, Spain. Secondly, mobile A tends to

be more heavily utilised than mobile B, with the exception of Dublin, Ireland where mobile

A does not seem to be in use at that particular measurement location.

It must be noted that it is difficult to obtain an exact comparison of occupancy, since there

are differences in the regulatory policy surrounding frequency planning, the number of TV

stations operating at each location and the exact bandwidths set aside for mobile commu-

nication for each country. Also, the thresholds used to detect band usage have not always

been clearly defined. However, there is clearly spectrum that is still available in the TV and

cellular bands, which could be exploited by other technologies.

2.2.4 Spectrum regulation

National regulatory bodies are usually tasked with allocating spectrum. In South Africa this

falls under the ICASA. They are an independent regulatory body which is also a member

of both the African Telecommunications Union and the International Telecommunications

Union (ITU).

The bands that are allocated for mobile telephony and mobile broadband services are cur-

rently most at risk of spectral congestion. Current allocation for these services is limited

to the bands from 880 MHz to 960 MHz, 1710 MHz to 1880 MHz, 1920 MHz to 2170 MHz

and 2305 MHz to 2483.5 MHz (LTE) [44]. At the same time, however, other bands are not

actually being fully utilised. An example of this is the bands currently assigned for television

(TV) broadcast, where outdated spectrum planning for analogue TV has lead to inefficient

usage of these bands. Since South Africa falls within Region one of the ITU), TV broadcast

services are currently allocated for spectrum between 174 MHz to 254 MHz (band III), 470

MHz to 582 MHz (band IV) and 582 MHz to 854 MHz (band V) [44]. These allocations are

summarised in Table 2.2.

Future wireless networks will require regulators to balance spectrum efficiency with interfer-

ence free communication so that the spectrum needs of future wireless broadband networks

can be met. This will require appropriate licensing models for users of the spectrum as well

as monitoring of the spectrum to ascertain what the actual usage is. As a step in this direc-

tion the Conférence Européenne des Administrations des Postes et des Télécommunications
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Chapter 2 Background: Improving spectral efficiency

Table 2.2: Band allocations for TV broadcast and mobile telephony in South Africa.

Band Frequency (MHz)

Band III 174 - 254

Band IV 470 - 582

Band V 582 - 854

GSM 900 880 - 960

GSM 1800 1710 - 1880

WCDMA 1920 - 2170

LTE 2305 - 2483.5

has proposed various spectrum sharing methods. These methods include the following three

license regimes: Spectrum trading licenses, individual usage licenses and general cognitive

radio equipment licenses [45].

2.3 COGNITIVE RADIO

The term cognition refers to the mental processes of knowing and making decisions through

awareness, perception, reasoning, judgement and intuition. It is the process whereby input

stimuli are processed so as to generate an output, and although this process is traditionally

associated with human intelligence, it may be extended to the realm of artificial intelligence

(AI) [46]. In this section an AI extension that is applicable to wireless communication net-

works, known as CR, will be discussed.

2.3.1 Definition

A CR is a radio that interacts with its radio environment by observing the activity of other

users in that environment and then, based on those observations, makes decisions about

which frequencies to occupy, at which geographical location and also when to occupy them.

A CR has the ability to continuously and automatically adapt its operating parameters to

its operational environment. Essentially, a CR is a radio with AI [8]. The concept of CR is

based on the concept of a software defined radio, which is a radio whose operating parameters
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Chapter 2 Background: Improving spectral efficiency

can be dynamically programmed in a software environment [47].

The following definitions provide a more extended explanation of the CR concept:

• Dr Joseph Mitola (founder of CR): “A really smart radio that would be self-, RF-

and user-aware, and that would include language technology and machine vision along

with a lot of high-fidelity knowledge of the radio environment” [8].

• Institute for electrical and electronic engineers (IEEE) 1900.1 : “A type of

radio in which communication systems are aware of their environment and internal state

and can make decisions about their radio operating behaviour based on that information

and predefined objectives” [17].

• International telecommunications union radio communication sector (ITU-

R): “A radio system employing technology that allows the system to obtain knowledge

of its operational and geographical environment, established policies and its internal

state; to dynamically and autonomously adjust its operational parameters and protocols

according to its obtained knowledge in order to achieve predefined objectives; and to

learn from the results obtained” [48].

2.3.2 Primary functions

Traditionally, fixed portions of spectrum have been allocated to primary users (PU) of the

spectrum. This has lead to a situation where regions exist in space, time and frequency that

are un-utilised by the PUs, either momentarily or for protracted periods of time. These space-

time-frequency regions are referred to as spectrum holes [12]. In a cognitive radio network

(CRN), secondary users (SU) are allowed to exploit these holes by dynamically transitioning

from hole-to-hole as dictated by PU behaviour [9]. An illustration of this concept is provide in

Figure 2.3. The grey blocks represent portions of used spectrum for four different frequency

channels over a period of time, while the spaces between them represent spectrum holes. A

SU of this spectral region would need to adapt to the environment by following the arrows

from the bottom left to the bottom right hand portion of the diagram. This is the DSA

process referred to in the previous section.

It very important that a CR does not interfere with other users of the same spectrum. To
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Figure 2.3: Illustration of the spectrum hole concept. Adapted from [49], with permission.

help it do this, a CR device needs to fulfil the following requirements,

• Have knowledge of who the spectrum users are and what protection criteria are required.

• Be able to detect PU field strength and system type (e.g. analogue or digital transmis-

sion)

• Be capable of intelligently detecting and avoiding incumbent spectrum users.

These requirements may in turn be met by following a cognitive cycle. This cycle is illustrated

in Figure 2.4 and is primarily a repetition of the following steps,

• Sensing: A real time wide-band spectrum monitoring process where information about

the radio environment is gathered.

• Analysis: The inference of the occurrence of spectrum holes and the presence of PUs

from the information gathered during spectrum sensing.

• Decision: The course of action to be followed is determined by taking user require-

ments and the current radio environment into account.

• Action: The transition to new operating parameters including fair sharing of spectrum

among coexisting SUs.

• Learning: The retention of knowledge about the current cycle that can be used to

assist with decision making in future cycles.
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Figure 2.4: Illustration of the cognitive radio cycle. Adapted from [49], with permission.

2.3.3 Spectrum sensing

A SU needs to be able to detect both the presence of spectrum holes and other spectrum

users, before it may operate in a CR network. It uses information gathered during SS to this.

SS is therefore one of the most important components of a CR system since knowledge about

the radio environment must be obtained before SU communication may commence.

2.3.3.1 Sensing techniques

A number of methods including matched filtering, waveform-based sensing, radio identifica-

tion, cyclostationary feature detection, energy detection and cooperative sensing have been

proposed in the literature [50, 51]. A comparison between the accuracy and complexity of

some of the most prominent techniques is shown in Figure 2.5. A brief description now

follows:

• Matched filter detection: The SU receiver needs to have pre-existing knowledge of

the PU’s signalling features and be able to demodulate the actual PU signal. This is the

most accurate technique for detecting a PU [52]. However, it suffers from impractical

levels of receiver complexity [53].
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Figure 2.5: Comparison between SS techniques illustrating a trade-off between accuracy

and complexity. Adapted from [50], with permission (Copyright © 2009, IEEE).

• Waveform-based sensing: Waveform-based sensing can be employed when PU wave-

form patterns are known to the SU. These patterns may be correlated with the measured

signals to establish the presence of the PU. Waveform-based detection methods possess

the advantage of having short sensing times, but may suffer from synchronisation issues

[50].

• Radio identification based sensing: Through the continual search for transmission

modes before and during communication, transmission technology can be used to detect

PUs. Feature extraction is used to select the most probable technology from parameters

such as the centre frequency, channel bandwidth and amount of energy detected as well

as other statistical information about the measured signal [50].

• Cyclostationary feature detection: The presence of a PU is detected using cyclic-

ally varying features of the PU signal, e.g. mean and autocorrelation. This is achieved

by analysing the cyclic spectral density function of a received signal, since it can dif-

ferentiate between noise and the PU signal. Several techniques have been proposed in

the literature [54, 55, 56, 57].

• Energy detection: Energy detection (ED) is the least complex, but also the least

accurate technique, and requires no prior information about the PU signal. The received

signal is pre-filtered by a band pass filter, squared and then integrated over an interval

of time so as to measure the amount of energy contained within the received waveform

[58].
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Chapter 2 Background: Improving spectral efficiency

Even though ED is the least accurate SS technique it is the most popular approach, due to

its low computational complexity and relative ease of implementation. For the rest of this

thesis, further reference to SS will be assumed to follow the ED technique.

2.3.3.2 Sensing accuracy

The result of the SS process can be described by the binary hypothesis that a channel that

is unoccupied is given by H0 and that a channel that is occupied by H1, such that,

H0 : r (n) = w (n) ,

H1 : r (n) = s (n) + w (n) ,
(2.1)

where r(n) is the signal measured during SS, s(n) is the actual transmitted signal and w(n)

denotes additive white Gaussian noise. Thus, in the absence of the PU, s (n) = 0. Altern-

atively |s (n) | > 0 when the PU is present. Using ED, let the absolute energy measured for

r(n) be denoted by E, then a binary occupancy decision D can be made by comparing E to

a noise threshold λ, such that,

D =











1, E > λ

0. otherwise
(2.2)

Since SS is crucial to the performance of a CRN. It is necessary to do so in an accurate

manner. The probability of detection Pd, the probability of miss-detection Pmd and the

probability of false alarm Pf are measures that can be used to characterise SS performance.

These measures may be defined as follows [50],

Pd =Pr {E > λ|H1} , (2.3)

Pmd =Pr {E < λ|H1} , (2.4)

where Pmd = 1 − Pd is the probability of mis-detection (the probability of detecting the

band to be free when it is actually occupied) and Pf is the probability of false alarm (the

probability that the channel is found to be occupied when it is in fact not), given as,

Pf = Pr {E > λ|H0} . (2.5)

When performing SS it is desirable for Pmd and Pf to be minimised and for Pd to be max-

imised.
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Chapter 2 Background: Improving spectral efficiency

A collaborative approach to SS has been shown to improve SS accuracy [50, 59, 60], particu-

larly under channel conditions where fading, shadowing and noise uncertainty, are prevalent

[61]. In this approach SUs share information about their individual SS results so that a com-

bined SS result can be obtained. Space, time and frequency diversity can also be exploited

to further improve cooperative SS performance [62].

Since multiple cooperating sensing nodes are employed, the concept of a cooperative probab-

ility of detection Qd and a cooperative probability of false alarm Qf has been proposed in the

literature [63]. Assuming the use of the k-out-of-N fusion rule (a commonly employed hard

decision fusion rule, fusion rules are briefly discussed in Section 2.4.3), these probabilities

may be defined as,

Qd = Pr

{

N
∑

i=1

Di ≥ k|H1

}

, (2.6)

Qf = Pr

{

N
∑

i=1

Di ≥ k|H0

}

. (2.7)

Considering the extreme cases of the k-out-of-N rule leads to the OR rule [64], when k = 1,

where (2.6) and (2.7) become,

Qd = 1 −
N
∏

i=1

(1 − Pd,i), (2.8)

Qf = 1 −
N
∏

i=1

(1 − Pf,i), (2.9)

and the AND rule [64], when k = N , where (2.6) and (2.7) respectively become,

Qd =
N
∏

i=1

Pd,i, (2.10)

Qf =
N
∏

i=1

Pf,i. (2.11)

2.4 COOPERATIVE SPECTRUM SENSING

As already mentioned in the previous section, the SS process may not always be accurate

and in reality there are a number of problems associated with this process. Inaccuracy in

the SS process may occur when a SU makes a decision about the occupancy of a particular

band while not actually being in a position to accurately measure the status of that band.
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PU RXRRPU RX

Figure 2.6: Multi SU CR scenario illustrating some of the problems associated with SS.

Adapted from [65], with permission.

This may be due to the effects of the hidden node problem, shadowing, multipath fading and

receiver uncertainty [10].

A typical CR scenario, where these problems are highlighted, is illustrated in Figure 2.6.

Firstly, the signal transmitted by the PU transmitter is hidden from SU1 due to shadowing

from the high-rise buildings that lie between them. SU1 is thus a hidden node. Secondly,

multiple attenuated versions of the signal that have been reflected or scattered off nearby

buildings and vegetation, arrive at SU2 making the correct detection of the PU signal dif-

ficult to achieve. Thirdly, while situated within the secondary CR network, SU3 lies just

outside of the range of the PU transmitter and thus suffers from receiver uncertainty since it

cannot detect the PU. The problem with receiver uncertainty is that SU3 transmissions could

interfere with the PU receiver. Fortunately SU4 has a direct line of sight with the transmitter

and should be able to accurately detect the presence of the PU. There is thus clearly a need

for cooperation amongst the SUs. Cooperative SS makes use of spatial diversity amongst SUs

within a CRN to overcome the sensing deficiencies of individual users. This means that SU4

could potentially share its SS results with the other users, thus allowing them to improve

their individual SS results.
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Chapter 2 Background: Improving spectral efficiency

2.4.1 Objectives and essential elements

Given a group of cooperating SUs exposed to diverse channel conditions, the essence behind

the idea of cooperative sensing may be summarised by the following three questions [66]:

• How can individual CR users cooperate with each other?

• How much can be gained by cooperating as opposed to acting alone?

• What is the cost/overhead associated with following this approach?

These questions should be considered within the context of the following objectives [65]:

• To avoid harmful interference to PUs.

• To exploit spectrum holes so as to improve CRN throughput and QoS.

• To enhance spectrum sensing performance.

• To exploit spatial diversity.

• To provide greater sensing accuracy by making combined decisions.

While cooperative SS can be summarised as a process where individual users try to detect

the presence of a PU and then share their results so that they can be fused together to

obtain a cooperative spectrum decision, it is also comprised of a number of other essential

elements. These elements are crucial to the success of the process and can affect cooperative

SS accuracy. These essential elements are as follows [65, 63]:

• A cooperation model: SUs are allowed to share information among themselves, e.g.

Parallel fusion or game theoretic models.

• A sensing technique: Individual SUs gather data about their radio environment, e.g.

ED or cyclostationary detection.

• A statistical hypothesis: Individual SUs test for the presence of the PU, e.g. binary

hypothesis, composite hypothesis or sequential testing,

• Control and reporting channels: SS results are shared or fed to a fusion centre

(FC) using these channels. They should be reliable, efficient and tolerant of fading and

bandwidth limitations.

• A data fusion process: Data is combined to make a cooperative decision about the

presence of the PU.

• An optimal user selection process: Cooperating SUs are selected so as to maximise
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Chapter 2 Background: Improving spectral efficiency

cooperative gains while minimising losses, e.g. a centralised or cluster-based approach.

• A radio environment knowledge base: This is used to facilitate the cooperation

process using information about signal strength, geographical location and PU activity

models, e.g. the TVWS GLSDB discussed earlier in this chapter.

• System synchronisation: Communication between all of the cooperating nodes is

necessary to ensure that SU transmissions do not interfere with the SS process.

• A suitable geographical spread: Diversity between the cooperating nodes is import-

ant since it improves SS accuracy by minimising the effect of the hidden node problem.

2.4.2 Approach

Traditionally there are two main ways in which cooperative SS sensing is carried out, as

illustrated in Figure 2.7 [65]:

• A centralised approach: A master node within the network acts as a FS and collects

all sensing information from the other nodes. Cooperating nodes report their results

via a control channel to the FC. The FC then makes a decision about which channels

are available.

• A distributed approach: Individual nodes have a higher degree of autonomy and no

single node has the power to control the network, i.e. there is no FC. The cooperating

nodes share their sensing results with each other which they use, together with their

own information, to make a unified decision. This approach is based on a distributed

SU5SU5

SU2SU2 SU4SU4

PU TXPU TX

SU3SU3

SU1SU1

(b)(a)

SU4SU4

SU2SU2 SU3SU3

SU1SU1

FCFC

PU TXPU TX

Figure 2.7: Different approaches to CSS: (a) centralised and (b) distributed. Adapted from

[65], with permission.
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algorithm and iterated so as to reach a unanimous cooperative decision.

As a variation, a relay-assisted approach has also been proposed in the literature [65]. The

relay-assisted approach makes decisions using relay channels that allow the data to be for-

warded by multi-hop techniques. SUs with strong report channels are used as relay channels

for SUs with weak reporting channels. In this way strong channels can be exploited while

weak channels are ignored. This approach can be used in either a distributed or a centralized

fashion.

2.4.3 Decision making

When making a cooperative decision, two main approaches are generally followed for com-

bining or fusing reported SS results:

• Soft decision: Either the complete test statistic or the entire sample of original sens-

ing data, from each SU, is used to make a decision. No local processing is performed

by individual SUs, but rather at the FC. Techniques such as maximal ratio combin-

ing, equal gain combining and optimal combining could be employed for this purpose

[67]. Quantised versions of the original sample are sometimes also used to improve

computational cost [68].

• Hard decision: A single bit decision from each SU is used to make the cooperative

decision [65]. In this case linear fusion rules such as the AND, OR and majority rules,

which are derived from the k-out-of-N rules, are commonly applied. The OR rule,

when k = 1, is best for large numbers of cooperating SUs, while the AND rule, when

k = N , is better when there are fewer cooperating SUs. Various schemes, such as

reinforcement learning and Q-Learning have been proposed in the literature to improve

the performance of hard decision fusion [69, 70].

It has been shown in the literature that soft decision fusion generally outperforms hard

decision fusion [71, 72]. However, the hard decision fusion approach is much less complex

to implement. A compromise between these two approaches was presented in [73], where

a ternary decision process was proposed that still outperforms the binary decision making

process.
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2.4.4 Cooperative sensing gains and costs

There are undeniable benefits to performing cooperative SS, however, these benefits also come

at a cost. Any cooperative SS scheme needs to consider both and also how to find the best

compromise between them.

2.4.4.1 Gains

The performance improvement associated with cooperative SS is referred to as cooperative

gain [65, 69]. In a CRN, cooperative gain is mainly experienced as an improvement in the

accuracy of PU signal detection, i.e. higher values for Pd and lower values for Pf . The

detection of weak signals becomes far more likely, since cooperation can help to address the

problems associated with multipath fading, shadowing and receiver uncertainly by effectively

relaxing the receiver sensitivity requirements of individual SUs. Cooperative SS also leads to

increased SU agility since cooperation allows for more and better channel switching options,

given that the SUs now have a more complete picture of the actual channel conditions within

which they intent to operate.

2.4.4.2 Costs

The cost of cooperation, also know as cooperative overhead, is a limiting factor of cooperative

SS. The following is a list of the most common problems associated with cooperative SS:

• Time delays: The process of detecting the PU signal can lead to various delays,

especially if the reporting process is not synchronised. The SS process is inherently

time consuming since every spectrum sample uses up time that could otherwise have

been spent transmitting or receiving data. Also, the more samples taken, the greater

the SS accuracy. Having to report results to a FC also takes time that would not be

needed in a non-cooperative SS scheme [74].

• Energy efficiency: Energy consumption can become a issue in cooperative SS

schemes, since both the processes of local sensing as well as reporting require addi-

tional energy. If there are a large number of cooperating SUs, EE can be significantly

affected. EE can be improved either by reducing the amount of reporting needed or by

optimising which SUs actually need to perform local sensing [64, 75].
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• Spatial correlation and mobility: Nodes experiencing shadowing or receiver uncer-

tainty, that are situated too close to each other, can influence each others’ SS results.

This leads to something known as spatially correlated fading, which can degrade cooper-

ative SS performance [76]. Mobility amongst SUs could also lead to spatial correlation

as individual SUs could move closer together, however, it could also improve spatio

temporal diversity [77].

• Security: Cooperation may also lead to a number of security issues since incorrect

reporting of local SS results could influence the cooperative decision. This could hap-

pen by accident when a SU malfunctions, or it could be a consequence of deliberate

falsification, e.g. malicious SUs could report false information so as to selfishly gain

access to spectrum and further their own agendas [78].

2.5 WHITE SPACE PREDICTION

While critical to a CRN, the SS process has certain drawbacks. One of the main drawbacks

is that the time spent performing SS subtracts from the time available for actual data trans-

mission. Also, SS can increase the power consumption of the SS device [64]. However, if

accurate predictions about future PU activity can be made, then some of the time spent

on SS could potentially be replaced by predictions [12]. Furthermore, accurate prediction of

future PU behaviour allows for proactive decision making, which has been shown to improve

the channel selection process [79, 80].

Predicting future channel occupancy first requires SUs to gather information about PU traffic

patterns. Statistical models can then be generated from this information and used to predict

PU behaviour. These models can be classified according to three major groups: AI based

models, linear models and statistical and moving average based models. In this section, a

number of techniques for modelling and predicting PU traffic patterns are presented.

2.5.1 Artificial intelligence

Since predicting PU behaviour can be a complex process, the use of various AI techniques

has been proposed in the literature. In [81] and [82, 83], Neural networks were proposed. The

use of support vector machines (SVM) was suggested in [84] and a number schemes involving

various forms of both Markov chains (MC) and hidden Markov models (HMM) have also
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been proposed [85, 86, 87, 88, 89, 90, 91, 92, 93].

2.5.1.1 Neural networks

Artificial neural networks (ANN) have been proposed for channel status prediction in CRNs

since, unlike other statistical methods, they do not rely on a-priori information about the

underlying statistical distributions of PU behaviour [82]. An ANN is an adaptive and non

linear model which allows for the mapping of input data to output data via an interconnected

network of artificial neurons. These neurons make use of mathematical or computational

models to process information.

In [82, 83], a multilayer perceptron (MLP) feed-forward ANN is used for future state predic-

tion. The input data is made up of historical observations of PU behaviour and the outputs

of the model are the future predicted states.

An MLP is made up of multiple layers which include an input layer, an output layer and

multiple hidden layers in-between. Each layer consists of a group of artificial neurons or

nodes. Nodes from different layers are connected to each other via adaptive weights. With

the exception of the input nodes, each node calculates a weighted sum of all of its inputs

and then passes that sum through a nonlinear activation function Γ (.) (a hyperbolic tangent

is often used). Let the output of node nj , 1 ≤ j ≤ N l from layer l be denoted as ylj , the

output of node ni, 1 ≤ i ≤ N l−1 from layer l − 1 be denoted as yl−1
i and the connection

weight between these two nodes be denoted as wl−1
ij , then the weighted sum of all the inputs

to the current node may be calculated as,

vlj =
N l
∑

i

yl−1
i wl−1

ij . (2.12)

The output of the current node may be calculated as,

ylj = Γ
(

vlj

)

. (2.13)

If a hyperbolic tangent is used for Γ(.) in (2.13), then the output ylj becomes,

ylj =
1 − exp (−vli)
1 + exp (−vli)

. (2.14)

A simple example of a second order MLP is depicted in Figure 2.8, where there are two input

neurons in the input layer, four neurons in the only hidden layer and a single neuron in the
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Figure 2.8: Basic example of a feed-forward ANN. Adapted from [94], with permission.

output layer (the network order is equal to the number of neurons in the input layer).

One the major problems associated with ANN is the training process of the model.

In [82, 83] a method known as the backpropagation algorithm was utilised. The algorithm

attempts to minimise the mean square error E of the output of the MLP network over

successive iterations of the MLP. It does this by adjusting the weight parameters wlij until

the output of the MLP approximately matches the desired value. The parameters are

updated as follows,

wt = wt−1 + ∆wt, (2.15)

with wt the weight parameter at at time t. The change in weight function may be described

as follows,

∆wt = −η ∂E

∂wt
+ β∆wt−1. (2.16)

where η and β are constants for the learning rate and momentum. They can be chosen from

the following ranges, η ∈ {0, 1} and β ∈ {0.5, 0.9}.

2.5.1.2 Support vector regression

In [84], support vector regression is combined with empirical mode decomposition to per-

form spectrum series prediction. Support vector regression makes use of SVMs to perform

regression estimation that is based on the principle of structural risk minimisation.
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Chapter 2 Background: Improving spectral efficiency

A function f(x) needs to be found that deviates from yi by no more than ǫ, given a set of

training data {(xi, yi)}Ni=1, with xi ∈ ℜ an input value of the space of input patterns X and

yi ∈ ℜ its corresponding target value. In the linear case f(x) may be expressed as,

f(x) = 〈w, x〉 + b. w ∈ X, b ∈ ℜ (2.17)

The term 〈w, x〉 refers to the dot product, where w is the regression vector and b is a bias term.

Flatness in (2.17) is desired which can be achieved by minimising the norm ‖w‖2 = 〈w,w〉.
This leads to a convex optimisation problem, which can be expressed as follows [95],

min
w,ζi,ζ∗

i

L =
1

2
‖w‖2 + C

N
∑

i=1

(ξi + ξ∗
i ) (2.18)

s.t.























yi − 〈wxi〉 − b ≤ ǫ+ ξi

〈wxi〉 + b− yi ≤ ǫ+ ξ∗
i

ξi, ξ
∗
i ≥ 0

(2.19)

where ξi, ξ
∗
i are slack variables that allow for a certain amount of error in the optimisation

problem, thus helping to alleviate problems that would otherwise be associated with infeasible

constraints. The constant term C can be adjusted for a trade-off between how much deviation

above ǫ would be tolerated and the flatness of the function f(x). The linear function f(x) is

illustrated in Figure 2.9.

+ε 

-ε 

0

ξ 

ξ *

f(x)

x

Figure 2.9: Graphical depiction of a generic linear SVM function. Adapted from [96], with

permission.
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Chapter 2 Background: Improving spectral efficiency

2.5.1.3 Markov modelling

A number of techniques for modelling channel occupancy, employing MC and HMMs, have

been suggested in the literature [85, 86, 87, 88, 89, 90, 91, 92, 93, 97]. If the occupancy status

of a channel can be described by a sequence of binary states, then a simple two-state MC

may be utilised to model the presence of a PU on that channel. The one state represents

an OFF period (no PU present) and the other state represents an ON period (PU present)

[92]. It is assumed that there is a statitical relationship between the PU’s current occupancy

state, its previous state its future state. A simple two-state MC is illustrated in Figure 2.10.

Let the probability of changing from an OFF state to an ON state be denoted by f and

the probability of changing from an ON state back to an OFF state be denoted by b then,

assuming that the state at time t is denoted by qt, the state transition matrix P may be

defined as follows,

P =







1 − f f

b 1 − b






. (2.20)

In (2.20), f is described by,

f = P (qt = ON |qt−1 = OFF ) , (2.21)

and b is described by,

b = P (qt = OFF |qt−1 = ON) , (2.22)

Estimates for the values of f and b are obtained by counting the number of transitions

between the ON and OFF states that occur during a observation interval. Based on the

OFF ON

f

b

1-b1-f

Figure 2.10: A two-state ON-OFF Markov chain. Adapted from [98], with permission

(Copyright © 2008, IEEE).
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Chapter 2 Background: Improving spectral efficiency

estimates for f and b, the MC can then be used to predict a sequence of future states

ym(n+ k) = {y0, y1, . . . , yk−1}, where k is the number of future samples predicted.

Since errors occur in the SS process, the MC approach can easily be extended to using a

HMM. A HMM was employed in [85]. In this case each PU state also had an error state e

associated with it, which represents the probability of predicting a PU state incorrectly.

2.5.2 Linear models

Various linear approaches to PU traffic modelling have been proposed in the literature, due

to their relative simplicity. These include methods based on correlation [99, 100], auto and

linear regression [101, 102, 103, 99] and least squares [104, 105, 106].

2.5.2.1 Binary time series

Linear regression techniques were employed to predict spectrum opportunities in [101]. A

binary time series Bt with a time index t, where the presence of a PU is indicated as Bt = 1

and its absence as Bt = 0, was used to model PU channel occupancy. The probability of

a successful prediction was then expressed as the sigmoid function transformation of the

following expression,

µt =
∑d

k=1
βkBt−k, (2.23)

with the model parameters given by β. A linear regression was performed on past observa-

tions, with S representing the band of interest to a CR, and the probability of success was

evaluated by logit transformation, such that,

P (Sit = 1|St−1, St−2, · · · , St−p) =
1

1 + e−M
, (2.24)

where M is an auto regression function,

M = a0 +
∑d

j=1
(AjSt−j) + n, (2.25)

with offset a0, coefficient matrices Aj , historical observations St−j and error vector n.

2.5.2.2 Correlation and linear regression

A method based on correlation among spectrum status of channel observations was proposed

in [99]. This method begins by calculating the Pearson correlation coefficient ρ of a set of
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Chapter 2 Background: Improving spectral efficiency

historical channel observations, which is given as,

ρX,Y =
cov(X,Z)

σXσZ
. (2.26)

Historical observations are denoted by X = {x1, x2, . . . , xp} and the index vector by Z =

{1, 2, . . . , p}. If this coefficient is found to be above a certain threshold δC , then the status

of the most recent observation is used as the predicted value. However if the coefficient

falls below the threshold, then the majority result of the historical observation window is

selected.

A linear regression based prediction scheme is also proposed, in [99], where future points are

calculated using linear regression if ρ > δC . Assuming that there a linear relationship between

historical data X = {xi1, xi2, . . . , xip}ni=1 and the predicted data y = {y1, y2, . . . , yn}, such

that,

y = Xβ + ǫ. (2.27)

where β = {β1, β2, . . . , βp} are the regression coefficients and ǫ is an error term.

2.5.2.3 Auto regression

Auto regressive models have been proposed for channel and spectrum hole prediction in CRN

[102, 107]. A second order auto regressive model, together with a Kalman filter predictor,

was employed in [102]. However, in [107], a particle filter predictor was shown to be more

accurate than the Kalman filter used in [102].

A discrete-time random process X(k), can be modelled according to the following expres-

sion,

X(k) = −
p
∑

j=1

φjx (k − j) + ωk. (2.28)

The order of the process is given by p, ωk is the observed noise value at the kth instant and

φj represents the parameters of the model. The autocorrelation matrix Rxx for X(k) is given

as,

Rxx[k] =











−∑p
m=1 φmx (k −m)

−∑p
m=1 φmx (−m)

(2.29)

The parameters Φ = [φ1, φ2, . . . , φp] can be calculated using Yule-Walker equations. For an
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Chapter 2 Background: Improving spectral efficiency

AR-2 model, this may be done as follows,

φ1 = ρ1(1−ρ2)
1−ρ2

1

,

φ2 =
ρ2−ρ2

1

1−ρ2

1

(2.30)

where ρ1 = ρxx(L∆t), ρ2 = ρxx(2L∆t) and the sampling interval is denoted by L.

2.5.2.4 Normalised least mean square algorithm

In the literature, the normalised least mean square algorithm (NLMS) linear predictor has

been proposed for predicting video traffic in real-time multimedia applications [104, 105]. In

this paper the application of the NLMS error linear predictor to the prediction of PU traffic

is investigated (illustrated in Figure 2.11).

The NLMS method is rooted in adaptive filter theory [108]. Given an input vector X(n) of

length p symbols, such that,

X(n) = [x(n), x(n− 1), . . . , x(n− p+ 1)]T , (2.31)

and a set of prediction filter coefficients W , given as,

W = [w(0), w(1), . . . , w(p− 1)]T , (2.32)

then the output of a k-step, pth-order linear predictor ys(n + k) may be described by the

µ 

W(n+k)

W (n)

X(n)

e(n)

X

||.||
2

÷ ∑ 

∑ Adaptive 

filter 

e(n)

ys (n+k)

x (n+k)

X(n)

Figure 2.11: The normalised least mean square error linear predictor.
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Chapter 2 Background: Improving spectral efficiency

following expression,

ys(n+ k) =
p−1
∑

l=0

w(l)x(n− l). (2.33)

The algorithm commences by estimating an initial value for W (0). For each new data point

thereafter, W (n) is updated according to the following expression,

W (n+ 1) = W (n) +
µe(n)X(n)

‖X(n)‖2 , (2.34)

where ‖X(n)‖2 = X(n)TX(n) and µ is a constant known as the step size. Changing µ

leads to a trade-off between convergence rate and filter coefficient fluctuation (larger values

for µ mean faster convergence but increased filter coefficient fluctuation). The error e(n) is

calculated as follows,

e(n) = x(n+ k) − ys(n+ k), (2.35)

where x(n+ k) is the actual data sequence and ys(n+ k) is the predicted sequence.

2.5.2.5 Recursive least squares algorithm

To assist proactive network management in wireless networks a traffic prediction method,

known as the recursive least squares (RLS) algorithm, has been proposed [106]. This method

is also rooted in adaptive filter theory and is a computationally efficient approach to quickly

predicting network traffic. No statistical assumptions are needed for the data being observed

and near future traffic load is predicted using recent observations. Future traffic load y (n)

may be estimated as,

y (n) = wT (n− 1)u (n) , (2.36)

where w (n) is a set of weighting factors and u (n) represents a corresponding set of n recent

traffic observations. If the true traffic load is denoted d (n) then prediction error e (n) is given

as,

e (n) = d (n) − y (n) . (2.37)

Using an exponential weighting factor λ, this approach attempts to minimise the mean square

prediction error by minimising the cost function J (n), as follows,

min J (n) =
n
∑

i=1

λn−i [e (i)]2 . (2.38)
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Chapter 2 Background: Improving spectral efficiency

To obtain the minimum value for Equation (2.38), the weight factor w (n) was calculated

using the following expression,

w (n) = w (n− 1) +K (n) e (n) , (2.39)

where the gain vector K (n) was derived as,

K (n) =
λ−1P (n− 1)u (n)

1 + λ−1uT (n)P (n− 1)u (n)
(2.40)

and the cross correlation P (n) between the actual traffic load and the observed signal, is

calculated as,

P (n) =
n
∑

i=1

u (i) d (i) . (2.41)

2.5.3 Statistical and moving average approaches

Channel occupancy is usually not a random process, since it is driven by human behavioural

patterns. Various PU modelling techniques that assume non-random PU activity patterns,

that are non-AI based, can be found in the literature [109, 99, 102, 103]. In this subsection a

statistical method based on the exponential distribution [110, 79] as well as a simple nearest

neighbour approach to prediction [90, 111], are briefly discussed.

2.5.3.1 Alternative exponential approach

The most prominent statistical approach models PU activity, for a set of channels q =

1, 2 . . . , ϑ, as a Poisson process with arrival rate λq. It is assumed that only one PU occupies

a channel during time interval tψ. The probability that a PU enters this band k times during

this interval, is thus given as [110],

f (k, λq) =
λq
ke−λq

k!
, q = 1, 2 . . . , ϑ. (2.42)

Channel occupancy is modelled as an independently exponentially distributed process. The

following probability density function is used to describe a PU channel q, with an ON occu-

pancy duration of length tON (q) and a mean ON duration 1/λtON (q),

f (tON (q) , λq) =











λqe
−λqtON (q), tON (q) ≥ 0

0, tON (q) < 0.
(2.43)
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Chapter 2 Background: Improving spectral efficiency

Similarly, the probability density function for a PU channel q with an OFF duration of length

tOFF (q) and a mean OFF duration 1/λtOF F (q), is given as,

f (tOFF (q) , λq) =











λqe
−λqtOF F (q), tOFF (q) ≥ 0

0, tOFF (q) < 0.
(2.44)

2.5.3.2 Nearest neighbours

A simple single-SU predictor, named the 1-nearest neighbour (1-NN), was utilised in [90, 111].

In this approach the current channel status qt is used to predict future channel status qt + x,

as follows,

qt + x = qt, (2.45)

where x is the number of future slots predicted. Channel occupancy status is calculated by

comparing the observed signal to a threshold value.

2.5.4 Cooperative prediction

As discussed in Section 2.4, CSS presents a potential solution to the hidden node problem

[62]. A natural progression from CSS is to perform PU traffic prediction in a cooperative

manner.

This concept was introduced in [111], where both a soft and a hard combining rule were

employed to combine the independent predictions of multiple cooperating SUs. The k-out-of-

N rule, applied to the prediction of a single future state, was assumed for the hard decision.

However, for the soft combining rule, the likelihood probabilities for each predicted state were

combined to obtain accumulated probabilities for both the idle and busy PU states. For the

ith cooperating SU, given the likelihood probabilities for an idle state P0,i and for a busy

state P1,i, this soft combining rule is given as,

N
∑

i=1

P0,i − P1,i

P0,i + P1,i
≷idle
busy 0. (2.46)

The CSS concept was taken further in [112] to incorporate a coalition game theory based

approach to CSS. In this case the cooperative miss prediction Ψm and cooperative prediction
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Chapter 2 Background: Improving spectral efficiency

false alarm Ψf were given as,

Ψm(Sik) =
∏

j∈Si
k

[ψmji(1 − Pejâ) + (1 − ψmji)Pejâ], (2.47)

Ψf (Sik) = 1 −
∏

j∈Si
k

[(1 − ψfji)(1 − Pejâ) + ψfjiPejâ], (2.48)

where ψmji and ψfji are the local cooperative miss prediction and cooperative prediction false

alarm probabilities of each cooperating SU in the set of SUs j ∈ Sik, â is the coalition leader

and Pejâ is the probability of a transmission error occurring between SU j and â.

In both cases, a prediction accuracy improvement was found for CSS over individual SS. The

concept of CSS will be further investigated in Chapter 5.

2.6 CONCLUSION

This chapter provided an overview of the literature pertaining to spectral efficiency in future

wireless networks. Rapid growth in mobile data traffic and its associated spectrum demands

has been predicted. To meet this demand spectrum will need to be used in a more efficient

manner in the future. Technologies that are envisioned to play a leading role in improving

spectrum efficiency were discussed in this chapter, with a strong focus on CR. The concepts

of SS, CSS and channel state prediction in CRN were also explored. The remaining chapters

in this thesis are derived from the concepts discussed in this chapter.
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CHAPTER 3

SPECTRUM OCCUPANCY AND EFFICIENCY:

A SOUTH AFRICAN PERSPECTIVE

3.1 INTRODUCTION

As mentioned in Section 2.2.3, various measurement campaigns have been undertaken around

the world to characterise the actual usage of currently utilised commercial spectrum [33, 38,

39, 34, 35, 36, 37, 40, 42, 41, 12, 31, 32]. These measurements can help regulators to gain a

better perspective on the spectral needs of future wireless networks. In South Africa, a general

lack of knowledge about actual spectral utilisation validates the need for such measurement

campaigns in the local context. The work presented in this chapter sought to fill this gap

by gathering spectrum occupancy information for various commercially relevant bands in

the South African context. It also aims to provide motivation for the need to investigate

technologies that can make more efficient usage of current spectrum resources and lay the

contextual foundation for the chapters that follow in this thesis.

A modular spectrum measurement system, developed as part of the authors previous work

[12], was employed to gather information about the actual spectrum occupancy of the tele-

vision (TV) broadcast and mobile cellular bands. A technique for differentiating between

the information and noise bearing components of a measured signal, described as the max-

imum normal fit (MNF) method, was developed to calculate the spectrum occupancy of these

bands. Measurement data was collected from various locations at the University of Pretoria

as well as at Pinmill Farm Office Park in Johannesburg. The findings of these measurement

campaigns suggest that a number of TV white space (TVWS) opportunities, that could be
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Chapter 3 Spectrum occupancy and efficiency: A South African perspective

exploited by spectrally efficient future wireless technologies, currently exist in the TV bands

(this should increase after the proposed analogue TV switch off in 2015 [113]), but that the

mobile cellular bands are currently heavily utilised.

The rest of this chapter is organised as follows: Calculating spectral occupancy using the

MNF method is described in Section 3.2, the spectrum measurement system is summarised

in Section 3.3 and details pertaining to each measurement campaign are provide in Section

3.4. Spectrum measurement results for the TV broadcast bands are presented in Section 3.5

and for the mobile cellular bands in Section 3.6. The chapter is concluded in Section 3.8.

Parts of this chapter were published in [114], [115] and [116].

3.2 CALCULATING SPECTRUM OCCUPANCY

To calculate spectrum occupancy it is necessary to distinguish between the information and

noise bearing components of a measured signal. In this section, a method is thus described

for calculating the detection threshold λ needed to test the binary hypothesis from Section

2.3.3.2.

3.2.1 Maximum normal fit method

A threshold detection method, known as the recursive one-sided hypothesis test (ROHT), has

been proposed in the literature [117]. This method makes the assumption that the probability

density function (PDF) of the noise component of a received signal r(x) , as given in Equation

(2.1), will always follow a Gaussian distribution. In this section, a new approach, called the

MNF method, is presented as an evolution of the ROHT method. The MNF method follows

a ’best-fit’ approach for calculating the noise threshold, as opposed to the ’recursive-removal’

approach followed by the ROHT method [117] and also does not require that the PDF of

the signal component of Equation (2.1) be specifically defined. For the MNF method, the

detection threshold is computed as the point of intersection between fitted estimates for the

PDFs of the signal and noise components of the measured signal.

An algorithmic description of the MNF method is provided in Algorithm 1. The MNF method

begins by calculating a histogram mi from the discrete samples of measured power r(x) that

are acquired during the spectrum sensing (SS) process. The histogram, where k is the number

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 3 Spectrum occupancy and efficiency: A South African perspective

Algorithm 1 Maximum normal fit method

1: σ̂ = 10

2: α̂ = 10

3: Given r(x) ⊲ power in dBm

4: Compute histogram j =
∑k
i=1mi ⊲ from r(x) with number of bins k and observations j

5: H(x) = {m1,m2, . . . ,mk}
6: Smooth H(x) ⊲ moving average filter with a span of 9

7: h(x) = d
dxH(x)

8: Solve h(x) = 0

9: βN = min(x)

10: µ̂N = H(βN )

11: fRN
(x) = {H(1), H(2), . . . , H(βN ), H(βN − 1), H(βN − 2), . . . , H(1)}

12: [fN (x)] = EstimateDistribution(µ̂N , σ̂, α̂, fRN
(x))

13: fRS
(x) = H(x) − fN (x)

14: µ̂S = max {fRS
(x)}

15: [fS(x)] = EstimateDistribution(µ̂S , σ̂, α̂, fRS
(x))

16: Solve fN (x) − fS(x) = 0

17: λ =











x, µ̂N ≤ x ≤ µ̂S

max(x), otherwise

18: function EstimateDistribution(µ̂, σ̂, α̂, fR(x))

19: ǫ = 1 × 10−3

20: ii = 20 × 103

21: while ∆ ≥ ǫ AND ii ≥ 0 do

22: f(x) = α̂√
(2πσ̂2)

e− 1

2
( x−µ̂

σ̂ )
2

23: ∆ = 1
2βN −1

∑2βN −1
x=1 {fR(x) − f(x)}2

24: σ̂ = σ̂ + U(0, 1) − cs

25: α̂ = α̂+ U(0, 1) − ca

26: ii = ii− 1

27: end while

28: return f(x)

29: end function
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Chapter 3 Spectrum occupancy and efficiency: A South African perspective

of bins and j is the total number of observations, adheres to the condition that j =
∑k
i=1mi.

This histogram is essentially a probability mass function (PMF) of r(x) and its continuous

time counterpart thus represents its PDF, fR(x).

In order to calculate a noise detection threshold, the MNF method seeks to identify and

separate the portion of the histogram that belongs to the noise component of r(x). To do this

the mean of the noise component needs to be identified. A vector H(x) = {m1,m2, . . . ,mk}
is thus populated, from the PMF of r(x), and smoothed using a moving average filter. The

derivative h(x) = d
dxH(x) is then calculated and the roots of h(x) are solved for. The first

root, i.e. the root with the smallest value, is then assumed to represent the index x = βN

at which the mean µ̂N of the noise component occurs. The mean can then be calculated as

µ̂N = H(βN ). This information is used to estimate the PMF of the noise component fRN
(x).

The first half of fRN
(x) is obtained by using all the samples of H(x) from the lowest sample

up to the sample containing βN , while the second half is obtained by mirroring the first half

as follows,

fRN
(x) = {H(1), H(2), . . . , H(βN ), H(βN − 1), H(βN − 2), . . . , H(1)} (3.1)

The MNF algorithm then tries to generate a function fN (x) that closely resembles fRN
(x).

If the assumption is made that fRN
(x) follows a Gaussian distribution, since it represents

noise, then fN (x) is generated using an amplitude scaled Gaussian distribution, as described

by the following expression,

fN (x) =
α̂

√

(2πσ̂2)
e

− 1

2

(

x−µ̂N
σ̂

)2

. (3.2)

Initially, random guesses are made for the standard deviation σ̂ and amplitude scaling factor

α̂ (chosen within arbitrary selected minimum bounds). At each iteration, the mean squared

error (MSE) ∆ between fN (x) and fRN
(x) is calculated as follows,

∆ =
1

2βN − 1

2βN −1
∑

x=1

{fRN
(x) − fN (x)}2 . (3.3)

If ∆ is not sufficiently small then σ̂ and α̂ are modified according to the following expres-

sions,

σ̂ = σ̂ + U(0, 1) − cs, (3.4)

α̂ = α̂+ U(0, 1) − ca, (3.5)
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where cs and ca are constants (e.g. cs = ca = 0.5) and U(0, 1) represents a uniformly distrib-

uted random number between zero and one. This process is continued until the maximum

number of iterations is exceeded (denoted by ii in Algorithm 1) or ∆ becomes sufficiently

small, such that ∆ < ǫ, where ǫ represents an arbitrary small value, e.g. ǫ = 10−3. The

convergence time and accuracy of the algorithm are influenced by the values chosen for ǫ, cs

and ca. At this point, the most recently calculated values for σ̂ and α̂, together with µ̂N , are

taken to be the standard deviation, amplitude scaling factor and mean of the final estimate

for the noise distribution curve respectively.

The next step is to isolated the signal component fRS
(x) from H(x) by subtracting the noise

distribution estimate fN (x) from H(x) as follows,

fRS
(x) = H(x) − fN (x). (3.6)

A function fS(x), that can be matched to fRS
(x), is then generated. An estimate for the mean

µ̂S is obtained by identifying the maximum value of fRS
(x). Therefore, µ̂S = max {fRS

(x)} =

fRS
(βS), where x = βS is the index at which this point occurs. The same iterative procedure

that was followed to obtain fN (x) is then followed to calculate fS(x), by substituting µ̂S into

Equation 3.2 as well as fS(x), fRS
(x) and βS into Equation 3.3.

The detection threshold λ can then be computed from the roots of the intersection of fN (x)

and fS(x) by solving the following expression,

fN (x) − fS(x) = 0. (3.7)

The root that falls between µ̂N and µ̂S is chosen as the detection threshold, however, if no

such solution exists then the largest root is chosen. Therefore,

λ =











x, µ̂N ≤ x ≤ µ̂S

max(x), otherwise
(3.8)

The MNF method requires that µ̂N ≤ µ̂S . If this condition is not met then the MNF method

will fail.

3.2.2 Threshold estimation

One approach to practically estimating λ by solving Equation (3.7), is to make the assumption

that both the signal and noise component PDFs follow a Gaussian distribution, where the
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noise distribution fN = N (

0, σ2
n

)

is assumed to have zero mean and the signal distribution

fS = N (

µs, σ
2
s

)

some non-zero mean µs, then the threshold λi can be calculated from the

following expression (derived in Appendix A),

λ =
µsσ

2
n ± σnσs

√

2 ln (σn

σs
)(σ2

n − σ2
s) + µ2

s

σ2
n − σ2

s

. (3.9)

The correct value for λ is then selected using Equation 3.8.

If r(n) represents the received signal, then the Gaussian assumption for fS requires that only

the signal bearing portion of r(n) be considered when calculating Equation (3.9). The signal

distribution fS is thus calculated as the PDF of r(n) using only its positive elements. In

other words, the signal portion rs(m) is roughly estimated to be,

rs(m) = r(n), ri(n) ≥ 0 (3.10)

and the PDF of the signal portion is then estimated by using rs(m), such that fS = f(rs(m)).

Therefore, the mean of the signal distribution can be calculated as,

µs =
1

M

M
∑

m=1

rs(m) (3.11)

where M ≤ p is the number of positive elements in r(n).

An estimate for the variance of the signal distribution σs is obtained by firstly calculating the

variance σ2
r and power Pr of the received signal r(n). The received power can be calculated

as,

Pr =
1

p

p
∑

n=1

|rs(n)|2 (3.12)

and the variance as,

σr =
1

M

M
∑

m=1

(r(n) − µs)
2 (3.13)

An estimate for the signal-to-noise ratio (SNR), denoted as γ, is then used, together with Pr,

to obtain an estimate for the variance of the noise σ2
n, such that,

σ2
n =

Pr
10(0.1γ)

(3.14)

The estimate for the variance of the signal component is then calculated as,

σ2
s = σ2

r − σ2
n (3.15)
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Figure 3.1: PDFs for the MNF (top left) and ROHT (top right) method, applied to a 40%

occupied channel for data with a simulated SNR of 3 dB, and of the MNF method applied to

real measurements from the TV broadcast (bottom left) and 900 MHz mobile cellular bands

(bottom right).

3.2.3 Validation

Simulations were run to compare the accuracy of the MNF and ROHT methods. A vector of

noise thresholds was calculated for each method and used to calculate the spectrum occupancy

of a channel occupied by a known signal.

The MNF method is illustrated on the top left hand side of Figure 3.1 for a channel, with

a SNR of 3 dB, that was simulated to be 40% occupied. Estimates for both the signal

(blue line) and noise (black line) distributions were identified. In terms of normalized power,

the threshold was calculated to be λ = 0.556, which resulted in an approximate error of

9.82%. Similarly, a threshold of λ = 1.608 was then obtained when the ROHT method was

applied to the same data set, which lead to an error of approximately 88.64%, illustrated on
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the top right hand side of Figure 3.1. The performance of the MNF and ROHT methods

have been compared for other spectrum occupancy scenarios in Table 3.1, where the MNF

method was clearly found to be significantly more accurate than the ROHT method for each

scenario.

A practical example of the MNF method is provided in the bottom part of Figure 3.1 where

the signal and noise distributions for instantaneous samples of the data that was measured

in the TV broadcast (bottom left) and 900 MHz mobile cellar bands (bottom right) are

illustrated. The PDFs to the left (black line) represent estimates for the noise component of

r(n), while the PDFs to the right (green line) represent estimates for the signal component

of r(n). The dashed purple lines represent calculated thresholds of λ = −93.93 dBm and

λ = −90.52 dBm for the TV broadcast and mobile cellular bands respectively.

3.2.4 Occupancy calculation

For each measured band, the MNF method described in Section 3.2.1 was employed to calcu-

late the detection threshold λ. The power of each individual measurement sample was then

compared with λ and the number of samples that exceeded it counted and divided by the

total number of samples ψ gathered for a particular band k. The percentage occupancy O (k)

of that band was then calculated according the following expression,

O (k) = 100

∑ψ
n=1 ρ (n, k)

ψ
, (3.16)

where,

ρ (n, k) =











1, r (n, k) > λ

0, r (n, k) ≤ λ.
(3.17)

Table 3.1: The percentage error in occupancy when making use of the MNF and ROHT

methods at SNR = 3 dB.

Occupancy (%) 20 40 60 80

MNF 11.74 9.82 2.27 1.80

ROHT 65.23 88.64 96.18 99.21
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Figure 3.2: Overview of the spectrum measurement system.

3.3 SPECTRUM MEASUREMENT SYSTEM

A summary of the design, and configuration, of the measurement system is provided in this

section [12].

3.3.1 Measurement setup

A block diagram of the measurement system is provided in Figure 3.2. The system was

setup as follows: the output signal of a wideband antenna was fed into a low noise amplifier

(LNA), which was in turn fed into the radio frequency front end of an Agilent EXA N9010A

spectrum analyser. The spectrum analyser was controlled by a software application that

received scheduling instructions from another software application that remotely controlled

where and when measurements should be taken. Once measurements had been taken they

were initially stored on a hard drive that formed part of the spectrum analyser. Since this

local storage device had limited storage capacity, measured data was periodically moved to an

external storage location. The spectrum analyser and LNA were housed in a metal weather

resistant and air-conditioned cabinet at the physical measurement location.
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3.3.2 System calibration and sensitivity

An Agilent E5071C ENA series network analyser was employed to calibrated the radio fre-

quency front end of the measurement system, while the wideband antenna was calibrated at

the compact antenna test range of the University of Pretoria. The link budget for the meas-

urement system, including the calibrated gains for the antenna Ga, the coaxial cables (LMR

600, Gcl, and Sucoflex 100, Gcs) and the LNA Glna, is illustrated in Figure 3.3 [12, 114].

The calibrated gain of the system Gtot, illustrated by the solid black line in Figure 3.3, was

calculated as follows,

Gtot = Ga +Gcl +Gcs +Glna. (3.18)

3.4 MEASUREMENT CAMPAIGNS

Various measurement campaigns were conducted to gather information about actual band

usage. Descriptions of how these campaigns were conducted are provided in this section.
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Figure 3.3: Link budget of hardware setup, modified from [12].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

52

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 3 Spectrum occupancy and efficiency: A South African perspective

3.4.1 Measurement description

The measurement system, described in Section 3.3 [12], was used to measure the power

spectrum of the broadcast TV bands and the bands used for mobile communication. Data

was collected from the very-high frequency (VHF) (174 – 254 MHz) and ultra-high frequency

(UHF) (470 – 854 MHz) bands, as well as from the downlink portion of the bands used for

mobile communications, namely the mobile 900 MHz (M900) (880 – 960 MHz), mobile 1800

MHz (M1800) (1710 – 1880 MHz) and mobile 2100 MHz (M2100) (1900 – 2170 MHz) bands.

For each band, a frequency resolution was chosen that would be fine enough to ensure that

channel occupancy would be accurately detected. The bands measured are listed in Table

3.2, together with both the frequency and time resolutions employed for each band as well

as the location at which the measurements were taken (as discussed in Section 3.4.3).

3.4.2 Measurement schedules

The time, regularity and duration of measurements were controlled by a remotely operated

scheduling application. Measurements were taken over a period that consisted of either 500

Frequency Time re-

Description Band (MHz) resolution (kHz) solution (ms)

University of Pretoria

VHF 174 - 254 500 32

UHF 470 - 854 500 96

M900 920 - 960 100 50

M1800 1805 - 1880 100 100

M2100 2110 - 2170 100 50

Pinmill Farm

M900 920 - 960 100 50

M1800 1805 - 1880 100 100

Table 3.2: Band descriptions for the two main measurement locations indicating spectral

range as well as both frequency and time resolution.
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(TV broadcast bands) or 1500 (mobile bands) consecutive samples spaced according the time

resolutions listed in column four of Table 3.2 (where each sample is a sweep of the entire

band being measured). The sampling times were proportional to the resolution and size of

the bands measured and were limited by the hardware processing time of the measurement

system. Measurements were repeated every minute over a period of an hour for the TV

broadcast bands (since little change could be observed over a longer period of time). However,

measurements for the mobile cellular bands were repeated every seven minutes over a period

of four weeks. This made it possible to compare traffic trends, for the mobile bands, for

different times of day and days of the week. For all of the bands, measurements were evenly

spaced so as to ensure that the measurement system did not fall behind schedule and also to

give the file-backup application time to move the result-files to remote storage.

3.4.3 Measurement sites

Measurement data was collected from two different geographical locations in South Africa:

the Hatfield campus of the University of Pretoria (site UP) and Pinmill Farm Office Park in

Sandton, Johannesburg (site PF).

3.4.3.1 University of Pretoria measurement sites

As indicated in Table 3.2, measurements were taken for all of the bands at the University of

Pretoria. However, measurements for each band were taken at different measurement sites.

Photographs of the measurement sites are shown in Figure 3.4 and a map of these locations

provided in Figure 3.5. Measurements for the TV broadcast bands were collected from all of

the sites at the University of Pretoria so as to illustrate the hidden node problem by observing

diversity in the results obtained. However, all of the results obtained for the M900 and M1800

bands were collected at location A and for the M2100 band at location C.

The measurement site locations were chosen to be fairly close together, with the furthest

distance between any location being approximately 380 m between locations C and E. The

reason for this was to demonstrate the effect of shadowing and the hidden node problem

associated with SS in CR networks. Location A (GPS co-ordinates: S25◦ 45′ 11′′ E28◦ 13′

42′′) was situated on the roof of the Engineering 1 building (12 stories above ground level).

Location B was situated at ground level with possible shadowing due to the surrounding
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A – Eng 1 roof  

B – Aula lawn  

C – Student centre

D – Musion quad  

E – Eng 3 balcony  

F – BWMC lab
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Figure 3.4: Photographs of the receiver locations at the Hatfield campus of the University

of Pretoria.

structures. Location C was situated one floor above ground level on the roof of the stu-

dent centre, also with possible shadowing. Location D was situated at ground level in a

100 m

A

B

C

D

E

F
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A – Eng 1 roof  

C – Student centre

D – Musion quad  

E – Eng 3 balcony

F – BWMC lab

Map data ©2015 AfriGIS (Pty) Ltd, Google

Figure 3.5: Receiver location map of the University of Pretoria’s Hatfield campus [118].
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heavily shadowed quadrangle between the Engineering 3 building, the Musaion and the Am-

phitheatre. Locations E and F were both situated on the 7th floor (this is the top floor)

of the Engineering 3 building, with location E on the outer western balcony overlooking the

central business district of the city and location F in a laboratory 20 m away. Location F was

an indoor measurement site, while all of the others locations were situated outdoors.

3.4.3.2 Pinmill farm office park

To introduce some diversity into the results obtained for the M900 and M1800 bands, meas-

urements were also carried out for these bands at site PF (GPS co-ordinates: S26◦ 6′ 2′′ E28◦

4′ 26′′). Photographs of the measurement site are provided in Figure 3.6 [119].

Imagery ©2012 DigitalGlobe, Map data © 2012 AfriGIS (Pty) Ltd, Google

University of Pretoria
Pinmill Farm

10 kmMap data ©2015 AfriGIS (Pty) Ltd, Google

Figure 3.6: Photograph and location of the measurement system at Pinmill Farm office

park in Sandton, Johannesburg [119, 120].
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3.5 SPECTRAL OPPORTUNITIES IN THE TELEVISION BROADCAST

BANDS

In light of the impending switch over from analogue to digital television in South Africa [113],

measurements were taken from the VHF and UHF bands to gain greater insight into their

actual utilisation. Measurement results were compiled by averaging measurements taken over

the course of the campaign (data was collected in June 2013 for location C and in December

2014 for rest of the locations at the University of Pretoria). Using these results practical

challenges faced by CR networks, due to inaccurate SS, are illustrated in this section. A

comparison is also made between the measured results and a locally available geo-location

spectrum database (GLSDB) [30].

3.5.1 Transmitter locations

The power measured for the TV broadcast bands can be attributed to five separate TV

broadcast sites located within the Tshwane metropolitan area (city of Pretoria). However

some measurement sites were able to detect signals from two broadcast sites situated much

further away. A map showing the locations of the Tshwane broadcast sites, in relation to

site UP, is provided in Figure 3.7. Since different ERPs are used for each technology, a

distinction has been made between the broadcast sites for analogue television (AT), digital

terrestrial television (DTT) and digital mobile television (DMT). The broadcast sites are

5 km

I

II

III

IV

V

VI

- Gelukskroon Pretoria 

- CSIR

- Pretoria North

- Sunnyside

- Menlo Park

- Measurement sites

Map data ©2015 AfriGIS (Pty) Ltd, Google

Figure 3.7: TV broadcast transmitter locations for the City of Tshwane [121].
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Table 3.3: Broadcast locations and associated ERPs (kW).

Site Lat. Long. AT DTT DMT

GPT S25.6892 E27.9839 100.000 70.00 100.00

PN S25.6914 E28.1672 0.125 0.02 2.50

SD S25.7661 E28.2058 1.000 1.00 2.50

MP S25.7712 E28.2686 0.040 0.04 0.25

CSIR S25.7554 E28.2829 - - 13.00

listed in Table 3.3 together with the associated effective radiated power (ERP) broadcast for

each technology (all powers are in kW) [122]. The Tshwane broadcast sites are: Gelukskroon

Pretoria (GPT), Pretoria North (PN), Sunnyside (SD), Menlo Park (MP) and the council

for scientific and industrial research (CSIR). The other two sites, with ERPs in excess of

100 kW, are the Sentech tower (ST) in Johannesburg (approximately 54 km away from the

UP) and the Welverdiend tower (WDT) situated near Carletonville (approximately 125 km

away). With the exception of the CSIR, which is only used for DMT broadcasts, all sites are

currently used for AT, DTT and DMT broadcasting.

3.5.2 Typical channel profiles for analogue and digital television

While AT and DTT signals for a single channel both cover 8 MHz of spectrum, they make

use of this spectrum in different ways. The DTT signal is more spectrally efficient since a

number of TV channels can be broadcast at the same time on that spectrum, while only one

channel can be broadcast on the AT at any given time. To illustrate a typical AT signal, the

power spectral density (PSD) of e.tv (channel 38) is shown in the left hand side of Figure 3.8.

The luminance carrier, chrominance carrier, near instantaneous companded audio multiplex

(NICAM) carrier and audio carrier are clearly visible. The vestigial side band to the left of

the luminance carrier is also evident. The right hand side of Figure 3.8 shows the measured

PSD of channel 35. This is a DTT transmission for DStv mobile. The format is digital video

broadcasting–handheld (DVB-H) and is thus expected to have a flat power spectrum, the lack

of which suggests that the signal may have experienced frequency selective fading.
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Figure 3.8: PSDs of a typical AT (left) and DTT (right) transmissions.

3.5.3 Very-high frequency band results

For each measurement location, plots of the measured PSD for the VHF band (channels

4-13) are provided in Figure 3.9. The University of Pretoria measurement location site, as

shown in Figure 3.5, is indicated as a legend at the top right hand corner of each sub-plot,

while the value of λ used to calculate CO is illustrated by a horizontal dashed line. From

Figure 3.9 it can be seen that only three channels in the VHF bands (channels 4, 8, 11) are

clearly distinguishable. However, weak signals from some other channels are evident at some

of the locations. A very weak signal was detected at location A at 239.25 MHz. Since no

assignment has been made for that channel, it is assumed to either be noise or an illegal

transmission.

3.5.4 Ultra-high frequency band results

Similar to the VHF band, plots of the measured PSD for the UHF band (channels 21-68) are

provided in Figure 3.10. Of particular interest were four anomalous signals that were not AT

transmissions. Three of these signals occurred in channels 35, 54 and 58 and occupied the

same amount of spectrum as a standard TV channel (8 MHz). These signals represent DMT

and DTT transmissions. Channel 35 is being used for a DMT transmission that uses the

DVB-H format and channels 54 and 58 have DTT trials running on them using the digital
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Figure 3.9: Measured power spectral density of the VHF bands.

video broadcasting second generation (DVB-T2) format. There is a signal present at 851.25

MHz (1 MHz bandwidth) that does not seem to correspond to either DVB-T2 or AT. This

signal is very strong at locations C and A, while weaker versions were detected at all of the

other measurement sites. It is assumed that this signal is either a studio transmitter link

for the campus radio station or an illegal transmission. Another such signal was detected at

location A at 835.25 MHz.

3.5.5 Spectral occupancy and availability

For the TV broadcast bands, two approaches to selecting the detection threshold λ were

considered. In the first approach, the threshold was calculated from the minimum usable

field strength used to calculate TV broadcast coverage, as suggested by ICASA [122]. The

thresholds were thus used as -90 dBm (55 dBµV/m) and -80 dBm (65 dBµV/m) for the

VHF and UHF bands respectively. These values are summarised in Table 3.4. The second
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Figure 3.10: Measured power spectral density of the UHF bands at site UP.
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Table 3.4: Minimum usable field strength for TV broadcast coverage [122].

Band Frequency (MHz) Channel Strength (dBµV/m) Power (dBm)

VHF (Band III) 174-254 4-11,13 55 -90

UHF (Band IV) 470-854 21-68 65 -80

approach was based on the MNF method, as described in Section 3.2.

The first approach was followed for calculating channel occupancy (CO) and the second

approach for calculating spectral occupancy (SO). The difference between CO and SO is

explained via the following definitions:

• Channel occupancy: If the luminance carrier of a TV channel is measured to be

above the threshold, then that TV channel is occupied (8 MHz of spectrum). The

channel occupancy of the band is calculated as a percentage of the total number of TV

channels allocated to the band.

• Spectral occupancy: If any measured signal component is found to be above the

chosen threshold, then that component is considered to be occupied spectrum. Any

components that fall below this threshold constitute un-occupied spectrum.

Once occupancy has been calculated, the spectral availability (SA) of the bands can also be

calculated. SA is defined as the amount of spectrum that is deemed to be unused and thus

potentially available for unlicensed usage.

Calculated values for CO, SO and SA are listed in Table 3.5 for each measurement location. It

is evident that SA, due to SS, varied according to location specific differences in SS accuracy.

For example, at location D, CO was calculated to be 60% (SA of 32 MHz) and 10.42% (SA

of 344 MHz), but at location A, this was 90% (SA of 8 MHz) and 45.83% (SA of 208 MHz)

for the VHF and UHF bands respectively.

However, according to actual TV channel assignments for the region, CO should be 30% (SA

of 56 MHz) and 48.98% (SA of 200 MHz) and according to the CSIR GLSDB, a minimum

of 100% (SA of 0 MHz) and 75.51% (SA of 96 MHz) respectively.
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Table 3.5: Measured spectral opportunities for the TV broadcast bands.

Band CO (%) CO SA (MHz) SO (%) SO SA (MHz)

Location A

VHF 90.00 8.00 46.25 43.00

UHF 45.83 208.00 37.56 239.77

Location B

VHF 40.00 48.00 23.13 61.50

UHF 29.17 272.00 15.98 322.64

Location C

VHF 30.00 56.00 45.25 43.80

UHF 29.17 272.00 17.93 315.15

Location D

VHF 60.00 32.00 16.88 66.50

UHF 10.42 344.00 9.88 346.06

Location E

VHF 50.00 40.00 25.00 60.00

UHF 29.17 272.00 13.90 330.62

Location F

VHF 40.00 48.00 25.63 59.50

UHF 16.67 320.00 13.29 332.97

For the same locations SO was calculated to be 16.88% (SA of 66.5 MHz) and 9.88% (SA of

346.06 MHz) at location D, and 46.25% (SA of 43 MHz) and 37.56% (SA of 239.77 MHz) at

location A, for the VHF and UHF bands respectively. The difference between CO and SO

can largely be attributed to inefficient use of spectrum by AT channels.

3.5.6 Spectrum sensing accuracy

Illustrated in Figure 3.11, a channel availability comparison has been made, for each measure-

ment location at the University of Pretoria, between (a) the measured CO, (b) the actual TV

channel assignment for the Tswhane metropolitan area (listed together with each broadcast
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Figure 3.11: Comparison between TVWS opportunities for (a) measured CO, (b) actual

TV channel assignment [122] and (c) the CSIR TVWS GLSDB [30].

site in Appendix B [122]) and (c) the CSIR TV white space GLSDB, based on the ITU-R

P.1546-4 (B) propagation model [30].

The effect of the hidden node problem is clearly evident when comparing parts (a), (b) and

(c) of Figure 3.11. SS accuracy fluctuated across the measurement locations and failed to

detect the presence of a TV signal on a number of channels. Since the transmissions in the

VHF band were very strong, SS was accurate at all locations (even weak signals from the

ST and WDT transmitters were detected on some channels). However, this was not always

the case for the UHF band. The SS error ǫ for both bands, as calculated against part (b)

and part (c) of Figure 3.11, is summarised as a percentage in Table 3.6 (detected signals

originating from the ST and WDT were not counted as errors).

For the UHF band, the highest degree of SS error was observed at location D (ǫ = 40.82%.),
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Table 3.6: Percentage channel detection error ǫ for each measurement location at the Uni-

versity of Pretoria, due to SS, compared with TV band allocations and the CSIR GLSDB.

Band A B C D E F

TV stations

VHF 0.00 0.00 0.00 0.00 0.00 0.00

UHF 8.16 22.45 22.45 40.82 22.45 34.69

CSIR GLSDB

VHF 10.00 60.00 70.00 40.00 50.00 60.00

UHF 40.82 46.94 46.94 65.31 53.06 65.31

while the lowest SS error was observed at location A (ǫ = 8.16%). The CSIR GLSDB seems to

be a more conservative approach and appeared to include transmissions from further afield,

e.g. the ST. For the VHF band at location C, the difference in CO between SS and the

GLSDB was as much as 70%. Under certain scenarios this should mean better protection for

the primary user, however, technologies that rely on short range communication may benefit

from a less conservative approach.

3.6 CHARACTERISATION OF SPECTRAL ACTIVITY IN THE MOBILE

CELLULAR BANDS

Measurement results for the mobile cellular bands are presented and discussed in this section.

Data was collected for the M900 and M1800 bands, at the University of Pretoria, during

March and April 2012 and at Pinmill Farm during October and November 2012. Data was

collected at the University of Pretoria for the M2100 band during May and June 2013.

3.6.1 Mobile 900 MHz bands

A plot of the average power measured across the M900 band, at site UP, is presented in part

(a) of Figure 3.12. The corresponding heat map over a 24 hour period is provided in part

(b) of the figure. It is immediately evident that there appears to be a significant amount of

activity in these bands.
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Figure 3.12: (a) Average measured power and (b) heat map over the course of an average

day for the down-link of the M900 band at site UP.

3.6.1.1 Hourly occupancy

Two sub-plots comparing the measured average occupancy of the M900 band for site UP

and site PF, over the course of a 24 hour period are provided in Figure 3.13. Both of the

sub-plots exhibit similar trends with regard to how occupancy changes over the course of the

day, e.g., low occupancy during average sleeping hours and high occupancy during business

hours (this trend confirms the assumptions made in the previous sub-section). However, as

suggested earlier, there is a notable difference between the two locations when comparing

the utilisation of the measured bands. According to the measurements, site UP had an

average occupancy of approximately 32% more than site PF. Also, the difference between the

calculated occupancy at 04:00 (time of lowest occupancy) when compared with 16:00 (time

of maximum occupancy), was found to be much larger at site PF (from 70.5% to 44.5% =

26%) than at site UP (from 94.8% to 84.4% = 10.4%).

3.6.1.2 Daily occupancy

The difference between the occupancy of the measurement sites is further described in Table

3.7, where the average occupancy over a seven day period for site UP, site PF and the

difference between them, is tabulated. While there appears to be no significant difference
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Figure 3.13: Average measured power of the down-link of the M900 band at site UP and

site PF.

between occupancy over the days of the week (at most a 3% deviation from the average

daily occupancy), the large difference in occupancy between the two sites is again evident

(on average, approximately 92% for site UP and 60% for site PF).

Table 3.7: Daily occupancy comparison of an average week for the G900 band.

Day Site UP (%) Site PF (%) Difference

Mon 91.67 60.72 30.95

Tue 91.96 57.41 34.45

Wed 91.80 58.92 32.88

Thu 93.23 62.09 31.04

Fri 92.25 63.32 28.93

Sat 91.78 63.16 28.62

Sun 90.77 56.82 33.95

Average 91.89 60.35 31.55
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Table 3.8: Occupancy comparison between the different mobile operators for G900 band.

.

Operator Site UP (%) Site PF (%) Difference (%)

A 98.61 63.22 35.39

B 93.92 58.50 35.42

C 82.64 59.29 23.35

3.6.1.3 Comparison amongst mobile operators

While differences exist between the measured occupancy of the two locations, there are also

differences in occupancy between the bands allocated to the mobile operators listed in Table

3.2. This can clearly be seen in Figure 3.13, where the average occupancy for each operator

is compared over a 24 hour period. At both measurement sites operator A was found to have

the most traffic, followed closely by operator B and then by operator C. However, the relative

occupancy of operator C to operator A at site UP (approximately 16.2% lower) was greater

than at site PF (approximately 6.2% lower). The average occupancies of the different mobile

operators for both measurement locations are listed in Table 3.8. A difference in occupancy

of around 35% was found between site UP and site PF for both operator A and operator B,

however, the difference for operator C was only around 23%. These trends may be indicative

of the number of subscribers that each operator has around the measurement sites in question.

It is also clear that there is a high user density at measurement site UP.

3.6.2 Mobile 1800 MHz bands

A plot of the average power measured across the M1800 band, at site UP, is presented in

part (a) of Figure 3.14. The corresponding heat map over a 24 hour period is provided in

part (b) of the figure. Clearly, there is less activity in the M1800 band than in the M900

band. However, looking at part (b), it appears that the first and last 10 MHz of the M1800

band are completely unoccupied, which accounts for the lower average occupancy calculated

for the band in Section 3.6.2.1.
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Figure 3.14: (a) Average measured power and (b) heat map over the course of an average

day for the down-link of the M1800 band at site UP.

3.6.2.1 Hourly occupancy

The average occupancy of this band was calculated for a 24 hour period and has been plotted,

for both site UP and site PF, in Figure 3.15. While the daily usage pattern of this band was

similar to the M900 band, the overall level of occupancy was found to be significantly lower

(roughly 55% lower than the M900 band). The difference between the two measurement sites

(site UP and site PF) was found to be around 28% (fairly consistent with the findings from

the M900 band). There was also a narrower period of time during which peak utilisation was

evident. For site UP, peak utilisation was found to be between 09:00 and 22:00, while for site

PF, this was found to be between 10:00 and 18:00.

3.6.2.2 Daily occupancy

The utilisation of the M1800 band over the days of the week is provided in Table 3.9. A slight

variation in occupancy is evident, however, only around 4% difference was found between the

occupancy on Sundays (lowest) as compared with the occupancy calculated for Thursdays

(highest).
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Figure 3.15: Average measured power of the down-link of the M1800 MHz band.

3.6.2.3 Comparison amongst mobile operators

Plots showing the difference in occupancy between the mobile operators assigned to the

M1800 band are shown on the right hand side of Figure 3.15. Six operators are licensed to

use this band, however, two of them were found not to be using their spectrum (denoted

as operator E and operator F in Figure 3.15). These differences are listed in Table 3.10,

however, unlike the M900 band the differences between the operators at the two locations are

not consistent. At site UP, operator A was found to have the most traffic (67.59% where the

band average was 34.43%), followed by operator C, operator D and then operator B. On the
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Table 3.9: Occupancy comparison of the M1800 band for an average week.

Day Site UP (%) Site PF (%) Difference

Mon 35.02 7.01 28.01

Tue 35.01 6.28 28.73

Wed 34.82 6.71 28.11

Thu 36.35 6.33 30.02

Fri 33.88 7.63 26.25

Sat 33.59 6.29 27.30

Sun 32.33 5.61 26.72

Average 34.43 6.55 27.88

other hand, operator B was found to have the most traffic (17.94% where the band average

was 6.55%) at site PF, followed by followed by operator D, operator C and then operator

A.

These trends may be indicative of the number of subscribers that each operator has around

the measurement sites in question. It is also clear that there was a much higher user density

at site UP than at site PF.

Table 3.10: Occupancy comparison between the different mobile operators for the M1800

band.

.

Operator Site UP (%) Site PF (%) Difference (%)

A 67.59 3.656 63.93

B 35.27 17.94 17.33

C 52.76 4.824 49.94

D 49.47 12.92 36.55

E 0.044 0.002 0.042

F 0.347 0.001 0.346
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Figure 3.16: Average measured PSD of the M2100 band at site UP.

3.6.3 Mobile 2100 MHz bands

Measurements were also taken from the M2100 band which, at the time of measurement, was

used for downlink data transmission using 3G wide code division multiple access (WCDMA).

The PSD of this band, as measured at site UP, is shown in Figure 3.16 and heat maps for

both a 24 hour (left) and a seven day (right) period are provided in Figure 3.17. From
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Figure 3.17: Heat maps of the M2100 band for an average day (left) and week (right).
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these plot it can be seen that the band is subdivided into 5 MHz channels with guard bands

clearly visible in between each channel. The effects of frequency selective fading can be seen

in Figure 3.16, as the tops of the channels are not flat as would be the case without frequency

selective fading. Due to the nature of WCDMA, it is difficult to directly measure the number

of mobile users on each channel. As such, the occupancy measurements performed for the

M2100 band are simply a calculation of the spectral occupancy, i.e. the percentage of the

band that is not considered noise.

3.6.3.1 Hourly occupancy

On the left hand side of Figure 3.18 the overall occupancy, calculated as per the MNF

method, of the M2100 band can be seen for the average twenty-four hour period. It can be

seen that the usage increases suddenly at approximately 09:00, with local minima at around

13:00, 16:00 and 19:00. This seems to correlate with lunch, the end of work day and supper

times. The lowest occupancy was found to be after midnight at around 02:00. However, these

fluctuations represent no more than a 2% difference in occupancy at any given time. This

observation is corroborated by the heat map on left hand side of Figure 3.17, where it is hard

to see any difference in average measured power over the course of an average day.
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Figure 3.18: Plot of the overall (left) and per operator (right) occupancy of the M2100

band for an average 24 hour period.
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Figure 3.19: Occupancy of the M2100 band for an average week.

3.6.3.2 Daily occupancy

The right hand side of Figure 3.17 and the left hand side of Figure 3.19 respectively show

the average measured power and occupancy of the M2100 band for the period of an average

week. From the figure it is evident that Sunday was the day with lowest use and Friday the

day with the highest usage. It is interesting to note that Monday, Thursday and Sunday were

all found to have approximately the same level of occupancy, near the minimum occupancy

levels for this band. The low activity on Sundays can be explained by the fact that the

university campus is mostly devoid of students. However, the reasons for the low occupancy

of Mondays and Thursdays are not as evident.

3.6.3.3 Comparison amongst mobile operators

There are four mobile operators assigned to the M2100 band. These are the same operator

A, operator B, operator C and operator D that were reported to be operating in the M1800

band. Each operator has been assigned 15 MHz of bandwidth consisting of three 5 MHz

channels. From the measurements shown in Figure 3.16, it appears that both operator A

(2140 - 2155 MHz) and operator B (2125 - 2140 MHz) only use two thirds of their assigned

spectrum in this band. Furthermore, since different signal levels were measured for the two

channels being used by operator B, it appears that there may be two different base stations
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serving site UP for operator B. Also, assuming that the transmission power would be similar

for all base stations, it appears that either the base stations of operator B are located further

away from site UP, than those serving the other operators, or there is something that is

causing additional shadowing or fading.

The per operator occupancy levels for an average day are shown on the right hand side of

Figure 3.18. The figure shows that operator D and operator C were found to have the highest

spectral occupancy levels (approximately 94% and 93% respectively), with a low variability

over an average day. Nonetheless, a small increase is seen at the 09:00 mark. Operator

A was found to have the third highest occupancy level (approximately 63%), with a similar

increase at 09:00. Operator B had the lowest occupancy levels (around 35%) and experienced

a significant increase in activity at the 09:00 time mark.

The right hand side of Figure 3.19 shows the occupancy over the average week on a per

operator basis. Consistent with the right hand side of Figure 3.18, the results show that

operator C and operator D were using nearly all of their assigned bandwidth (95% and 93%,

respectively) and exhibited little variability over the course of an average week. Operator A

was the next most occupied (64%) with a significant increase evident on Fridays. Operator

B was found to have an occupancy level of approximately only 36%, but this increased to

approximately 55% on a Friday.

3.7 COMPARATIVE ANALYSIS

A comparison is made in Table 3.11 between the results obtained from measurements taken

at location A of the University of Pretoria and the interpreted international results listed

in Table 2.1. As discussed in Chapter 2, it is difficult to make a direct comparison due to

Table 3.11: Spectral utilisation in Pretoria compared with various international locations.

Band Pretoria New York Chicago Virginia Barcelona Dublin

TV 39.09 35.93 52.40 30.54 82.08 36.36

Mobile A 91.89 46.30 54.70 42.53 51.30 0.70

Mobile B 34.43 33.80 42.90 19.70 29.41 36.80
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differing regulatory policies. However, this brief compassion does provide a rough indication

as to how the results obtained in Pretoria compare with the rest of the world.

Three main observations can be made from this comparison. Firstly, that the TV broadcast

bands in Pretoria and Dublin appear to have similar levels of occupancy (lower than cities like

New York and Barcelona), secondly, that activity in mobile A was found to be significantly

higher in Pretoria and thirdly that activity in mobile B was found to be similar to the other

locations (especially New York and Dublin).

3.8 CONCLUSION

Technologies such as CR and GLSDB have been identified as candidates for taking advantage

of TVWS for communication services. However, information about the spectral opportun-

ities in these bands is required to determine the suitability of these technologies. Spectrum

measurements were thus taken from the VHF and UHF bands, to quantify the current status

of the TV broadcast bands in South Africa. Data was collected from various measurement

sites at the Hatfield campus of the University of Pretoria and both the channel and spectral

occupancies of these bands were calculated. Results indicated that a reasonable amount of

spectrum is already available in these bands. Channel occupancies of only 40% and 29.17%

were measured at location B of site UP which means that as much as 320 MHz of spectrum

may currently be available.

Spectrum measurements were also taken from the bands utilised for mobile cellular commu-

nication at both site UP and site PF. Results indicated that these bands are already well

utilised. At site UP, average spectral occupancies of 92% and 34% were found for the M900

and M1800 bands respectively, and an average spectral occupancy of 71% was found for the

M2100 band. Thus, given the predictions for increased mobile services in the future, it is

clear that the current capacity of these bands may not be enough to satisfy future spectrum

needs. Technologies such as CR and GLSDB together with the freeing up of TVWS, for

usage by mobile communications devices, may thus become critical to ensuring that future

spectrum demands are met.

The work presented in this chapter has laid a foundation and provides motivation for the

concepts that will be discussed in the chapters that follow.
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CHAPTER 4

PRIMARY USER TRAFFIC PREDICTION

4.1 INTRODUCTION

In a cognitive radio network (CRN) it is assumed that secondary users (SU) are able to coexist

with primary users (PU) of the same spectrum. However, interference between these users is

undesirable [9]. If a SU is to avoid a collision with the PU, then it will need to know when the

PU is present. A cognitive radio (CR) will thus periodically perform spectrum sensing (SS) to

detect the presence of a PU [50]. Yet, the SS process adds additional overhead for a SU. It is

thus not ideal for a SU to be constantly sensing the band of interest. Nevertheless, reducing

SS regularity poses a problem, since a PU may still collide with a SU if it enters a band

in-between SS events. But, if a SU is able to predict the return of a PU ahead of time, then

it has the opportunity to avoid collision by pro-actively vacating the band of interest before

the actual arrival of the PU. Accurate prediction of PU behaviour thus has the potential to

allow a SU to reduce SS regularity, while still avoiding collisions with the PU [80].

Various approaches to modelling and predicting PU traffic have been proposed in the lit-

erature, as presented in Section 2.5. However, one of the problems associated with traffic

prediction in a CRN is the computational complexity of the algorithm. Ideally, PU traffic

prediction needs to be performed both accurately and quickly for it to be successful. Con-

sequently, a computationally simple yet fairly accurate approach to predicting PU occupancy,

based on a sliding occupancy window (OW), is proposed in this chapter. The prediction error

(PE) of this method is compared with that of the normalised least mean square (NLMS) and

two-state Markov chain (MC) approaches to occupancy prediction.
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Chapter 4 Primary user traffic prediction

The rest of this chapter is structured as follows. Section 4.2 is a brief discussion on the

classification of PU traffic. The OW method for traffic prediction is presented in Section

4.3. Simulation results are provided in Section 4.4, which is followed by Section 4.5, where

conclusions are drawn. Parts of this chapter were published in [123] and [124].

4.2 TRAFFIC CLASSIFICATION

The main purpose of traffic prediction in CRNs, is to provide SUs with information about PU

behaviour before it actually happens. In order for a SU to be able to make these predictions,

certain PU behavioural properties need to be ascertained. These behavioural properties may

then be utilised in the prediction process, e.g., if PU behavioural patterns can be identi-

fied from historical data, then it is plausible that these patterns may be repeated in the

future.

The first step in identifying these patterns is to classify the type of traffic that is to be

predicted. It is assumed that at time t, for a particular frequency band ϑ, a SU i will gather

a sequence of binary occupancy decisions (ON and OFF periods) St,i,ϑ(n) that describe the

occupation of the band by a PU for a period of p historical ON and OFF periods. This

sequence is given as,

Si,t,ϑ(n) = {Dt−1,i, Dt−2,i, . . . , Dt−p,i}, 1 ≤ n ≤ p (4.1)

where Dt−p,i is the binary occupancy decision from Equation (2.2). An ON period denotes

the presence of a PU (e.g. at t = t − p, Dt−p = 1) and an OFF period the absence thereof

(e.g. at t = t− p, Dt−p = 0). This sequence is then used to model the broader traffic pattern

generated by the PU. For the sake of simplicity, PU traffic will be classified according to the

following three scenarios,

• periodicity of ON and OFF times,

• randomness of ON and OFF times, and

• density of ON and OFF times.
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Chapter 4 Primary user traffic prediction

4.2.1 Periodicity

If after observing PU behaviour, it is repeatedly found that the ON and OFF times in Si,t,ϑ(n)

are of a fixed length, then it may be assumed that PU traffic will continue to follow a fixed

periodic pattern in the future. This distinction can be made by calculating the separation

time between the consecutive local maxima of Si,t,ϑ(n), as suggested in [125]. If the separation

time is found to be reasonably constant, then Si,t,ϑ(n) may be assumed to be periodic. In this

case the usage pattern observed during the period of repetition is deterministic and may then

be repetitively used to predict future PU activity on that band. Such a scenario is depicted

in part (c) of Figure 4.1.
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Figure 4.1: Binary data sets illustrating: (a) fast and (b) slow varying stochastic PU activity

and (c) fast varying periodic PU activity (approximately 80% channel utilisation).
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Chapter 4 Primary user traffic prediction

4.2.2 Randomness

If Si,t,ϑ(n) is found to be non-periodic, then it may be assumed that the arrival rate and

duration of ON and OFF times may follow a stochastic distribution. An example of such a

stochastic distribution is the alternative exponential ON-OFF model which has been adopted

in this chapter for modelling these ON and OFF periods [126]. For this model, it is assumed

that channel occupancy can be modelled as independently exponentially distributed pro-

cesses, where the time intervals between the arrival and departure of a PU follow a negative

exponential distribution. For channel ϑ the OFF period distribution is given as,

f (tϑ,0) =











Λ0e
−Λ0tϑ,0 , tϑ,0 ≥ 0

0, tϑ,0 < 0
(4.2)

with mean 1/Λ0 and tϑ,0 the duration of an OFF period. Similarly, the ON period distribution

is given as,

f (tϑ,1) =











Λ1e
−Λ1tϑ,1 , tϑ,1 ≥ 0

0, tϑ,1 < 0
(4.3)

with mean 1/Λ1 and tϑ,1 the duration of an ON period. Such a scenario is depicted in parts

(a) and (b) of Figure 4.1. Another example is the Poisson distribution. In this case the rate

at which PUs either arrive or depart from the band of interest is considered. The rate at

which they depart is described by the following distribution,

f (rϑ,0|Λ0) =
Λ0

rϑ,0

rϑ,0!
e−Λ0 , (4.4)

with mean departure rate Λ0 and rϑ,0 ∈ N the number PUs that will depart the band

over a fixed time period. Similarly, the rate at which they arrive is given by the following

distribution,

f (rϑ,1|Λ1) =
Λ1

rϑ,1

rϑ,1!
e−Λ1 , (4.5)

with mean arrival rate Λ1 and rϑ,1 ∈ N the number of arriving PUs.

The effect that these patterns will have on PE will be investigated in Section 4.4.

4.2.3 Traffic density

The average utilisation of an observed channel may also have a bearing on the way in which PU

behaviour may be predicted. By calculating the average utilisation of Si,t,ϑ(n), information
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Chapter 4 Primary user traffic prediction

can be obtained as to how frequently the ON period will change to OFF periods and vice

versa. For example, if after observation, the average utilisation of a channel is found to

be only 10%, then future time slots may be likely to follow a similar trend. A method for

predicting PU behaviour, based on channel utilisation, will be discussed in Section 4.3.

For the sake of simplicity, PU traffic will be classified according to the following two para-

meters: pattern change rate and the average utilisation of the band. Traffic patterns can be

described by using these parameters to adjust Λ0 and Λ1 according to the following expres-

sion,

Λ0 = τυ0, (4.6)

Λ1 = τυ1,

where Λ0,Λ1 ∈ (0,∞). The rate at which PU occupancy patterns are changing is described

by τ while υ0 and υ1 are a measure of ON and OFF period density respectively, where

τ ∈ [1,∞), υ0 ∈ [0, 10] and υ1 = 10 − υ0.

As an example consider the data sets presented in Figure 4.1 where all three data sets are

a binary representation of a high PU traffic density scenario consisting of p = 100 ON-

OFF periods (approximately 80% channel utilisation) where υ0 = 2 and υ1 = 8. The first

scenario (a), shown at the top of the figure, represents the case where stochastic PU activity

is changing quite fast (τ = 1). The second scenario (b), shown in the middle of the figure,

represents the case where stochastic PU activity is changing more slowly (τ = 5). The third

scenario (c), shown at the bottom of the figure, represents a deterministic data set with fixed

ON-OFF periods for fast changing PU activity. Each period was T = 10 time samples long,

and consisted of eight ON samples followed by two OFF samples.

Traffic classification and prediction performance will be investigated in Section 4.4.

4.3 PREDICTION MODELLING

In this section an OW based method for modelling PU activity is proposed that uses traffic

density to forecast future PU activity. The OW based method can in turn be used for making

predictions about future PU traffic behaviour. In this chapter it is assumed that predictions

are made by a single SU for the traffic of a single PU. Forecasting using multiple SUs will be
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Chapter 4 Primary user traffic prediction

discussed in Chapter 5.

4.3.1 Primary user traffic prediction

If a function f(·) is used to perform a forecast, then let Ft,ϑ(r) be the sequence of predicted

ON-OFF values at time t for frequency channel ϑ based on the historical sequence St,ϑ(n),

such that,

Ft,ϑ(r) = f (St,ϑ(n)) , t+ 1 ≤ r ≤ t+ k, 1 ≤ n ≤ p (4.7)

where k is the number of future ON-OFF samples predicted, {r, t, k} ∈ N, St,ϑ ∈ {0, 1} and

Ft,ϑ(r) ∈ {0, 1}. The function f(·) could represent any of the prediction methods described

in Chapter 2. Ft,ϑ(r) may also be described as a sequence of binary forecast values, such

that,

Ft,ϑ(r) = {PDt+1, PDt+2, . . . , PDt+k}, t+ 1 ≤ r ≤ t+ k (4.8)

where PDt+k is the binary forecast for time slot t+ k.

4.3.2 Occupancy window approach

While many of the techniques discussed in Chapter 2 have been shown in the literature to be

effective at predicting various forms of traffic, they all add a certain amount of complexity

to the SS and prediction process. However, excessive complexity could slow the prediction

process down leading to outdated predictions, especially under fast changing PU traffic con-

ditions. Therefore, a simplified approach to prediction that relies on estimating the average

utilisation of the band of interest over a window of observation of length p time slots, is

proposed in this section.

Future predictions are made as a hard decision, based on the calculated occupancy level of

the observation window. If the observation window for channel ϑ at time t is comprised of

the sequence St,ϑ(n), then the mean occupancy Φt,ϑ of that observation window is calculated

as follows,

Φt,ϑ =
1

p

p
∑

n=1

St,ϑ(n). (4.9)

Once Φt,ϑ is known, the predicted sequence Ft,ϑ(r) is calculated by letting the binary forecasts
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Figure 4.2: Occupancy window based prediction, where Φt,ϑ = 0.6 for (a), Φt,ϑ = 0.3 for

(b) and p = 10 samples.

for each future time slot be populated according to the following expression,

PDt+r =











1, Φt,ϑ ≥ 0.5, 1 ≤ r ≤ k

0, Φt,ϑ < 0.5, 1 ≤ r ≤ k.
(4.10)

4.3.3 Occupancy window example

A generic example of how this OW approach works, is provided in Figure 4.2. Consider

scenario (a) where Φt,ϑ ≥ 0.5, and scenario (b) where Φt,ϑ < 0.5, with observation window

length chosen as p = 10 and the number of predicted samples as k = 5 for both scenarios. In

scenario (a),

St,ϑ(n) = {0, 1, 0, 1, 1, 1, 1, 0, 1, 0}, (4.11)

which means that Φt,ϑ = 0.6. Therefore since Φt,ϑ ≥ 0.5, the predicted sequence would be

calculated as,

Ft,ϑ(r) = {1, 1, 1, 1, 1}. (4.12)
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Chapter 4 Primary user traffic prediction

However, in scenario (b),

St,ϑ(n) = {1, 0, 0, 1, 0, 0, 0, 0, 0, 1}, (4.13)

which means that Φt,ϑ = 0.3. Therefore since Φt,ϑ < 0.5, the predicted sequence would be

calculated as,

Ft,ϑ(r) = {0, 0, 0, 0, 0}. (4.14)

Intuitively, it would seem that this method of prediction would be likely to be more suited

to conditions where ON and OFF periods are made up of contiguous blocks in time, e.g slow

varying PU activity. This assumption should thus be taken into consideration when selecting

values for parameters p and k.

4.4 SIMULATION RESULTS

Simulations were run, in MATLAB, to compare the PE of the OW method with two other

prediction methods, namely the: NLMS [104, 105] and MC [85, 92] methods (summarised in

Chapter 2). Three simulations were run: Firstly to compare the PE for random PU traffic

with periodic PU traffic, secondly to investigate the effect of traffic density on PE and thirdly

to compare the complexity of each prediction method.

4.4.1 Simulation environment

To compare the performance of the prediction methods, simulations were run using the data

sets illustrated in Figure 4.1. These data sets were generated with the aim of creating a high

PU traffic density scenario (approximately 80% channel utilisation). The PE was defined as

the percentage difference between the actual Xt(r) and predicted Ft,ϑ(r) data sequences at

time t, such that,

PE = 100

(

∑k
r=1 Ft,ϑ(r) − Xt,ϑ(r)

k

)

. (4.15)

The PE was calculated for each method under various traffic classification scenarios. For all

three simulations, the performance of each prediction method was compared with the scenario

where the predicted sequence was made up of discrete uniformly distributed pseudo-random

binary integers. For the rest of this thesis, this will be referred to as random prediction

(RND).
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Chapter 4 Primary user traffic prediction

Table 4.1: Simulation parameters for the traffic density and complexity simulations.

Parameter υ0 υ1 τ k p

Value [0, 10] 10 − υ0 {1; 5} {1; 10} 21

4.4.1.1 Deterministic and stochastic traffic patterns

For the first simulation the PE was compared using data sets (a) and (c) from Figure 4.1, so

as to compare the PE for periodic traffic with that of stochastic traffic (Poisson distributed).

To aid the comparison, the effect that the number of observations p had on the PE, was

investigated. The effect on PE, as the step-ahead prediction length k was increased, was also

observed. These parameters were investigated for the following range of values: 1 ≤ p ≤ 25

for observation time, and 1 ≤ k ≤ 10 for prediction length.

4.4.1.2 Traffic density and complexity

The second and third simulations compared the PE for different levels of traffic occupancy

and pattern change rates, as discussed in Section 4.2.3. Only the stochastic traffic patterns

were considered, i.e. part (a) and (b) of Figure 4.1. The observation length was set at p = 21

and forecast lengths of either k = 1 or k = 10 were employed. Simulations were run for ten

different channel occupancy values (from 0%, υ0 = 0, to 100% occupied, υ0 = 10) and results

where compared for two different pattern change rates (τ = 1 and τ = 5). These parameters

are summarised in Table 4.1.

4.4.2 Prediction performance: Deterministic and stochastic traffic

Calculated prediction accuracies, as observation period p is increased, are illustrated in Figure

4.3. For these results, the prediction length was fixed at k = 5 future time samples. For

both data sets, the prediction models clearly provided an improvement over RND. Also, the

proposed OW method was found to consistently be more accurate or provide at least the

same accuracy as the MC and NMLS methods respectively.

When using periodic data, part (a), the prediction accuracies obtained for the MC and NLMS
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Figure 4.3: PE as observation length p is increased and k = 5, for (a) periodic and (b)

stochastic data (Poisson distribution).

methods appear to exhibit a periodic fluctuation. The period of this fluctuation is linked to

the period T of the data set. Since the data set is deterministic and periodically repetitive,

it is concluded that p = T should be chosen to perform prediction. Also, p does not seem to

have any other significant effect on PE.

From the results obtained using stochastic data, part (b), it is evident that increasing p leads

to a reduction in the PE of all three methods, particularly for the OW method. Over the

range p = {1, . . . , 25}, there was approximately a 4% improvement for the MC method, a 5%

improvement for the NLMS method and a 17% improvement for the OW method. Observing

Figure 4.3, it seems that the PE of the NLMS and OW methods begins to settle as p > 11,

whereas the MC method appears to need a longer time to do so.

In Figure 4.4, the prediction methods are compared for PE as step-ahead prediction length

k is increased. In this case, the observation period was fixed at p = 20. For periodic data,

part (b), a periodic fluctuation in PE is again evident. As with the observation period, it is

recommended that k be chosen according to the period T of the data set. It is also noticeable
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Figure 4.4: PE as prediction length k is increased and p = 21, for (a) periodic and (b)

stochastic data (Poisson distribution).

that there is little difference in the PE of the MC and NLMS methods. Thus, apart from

periodic fluctuations, k does not appear to have any other major effect on PE for periodic

data.

However, for stochastic traffic, part (b), results show that PE gradually increases when the

NLMS and MC methods are employed for 1 ≤ k ≤ 6. Further increase in k appears to have

no effect on the PE. The OW method seems to be less susceptible to this increase in PE

than the other two methods, since there is less than a 1% increase in PE of (over the range

k = {1, . . . , 10}), compared with approximate increases in PE of 7% and 9% for the MC and

NLMS methods receptively. All three prediction methods significantly outperformed RND

for the entire range of future prediction lengths k.

Thus, as k was increased, it was again evident that the proposed OW method was consistently

more accurate than both the MC and NMLS methods for a traffic occupancy rate of 80%.

Yet, it will be shown in the next section that this is not necessarily the case for all traffic

density scenarios.
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4.4.3 Prediction performance: Traffic density

Prediction performance for stochastic traffic patterns, investigated over the full range of

channel occupancy values, is presented in this sub-section.

4.4.3.1 Fast changing traffic

Plots showing the PE for fast changing PU traffic (when τ = 1) are provided in Figure

4.5 (for alternative exponentially distributed traffic) and Figure 4.6 (for Poisson distributed

traffic). It is evident that all of the prediction methods either matched or outperformed RND

(the control method) over the full range of channel occupancies. Consistent with Figure 4.4,

predictions made further into the future (i.e. k = 10) were found to be less accurate than for

the immediate future (i.e k = 1). However, the most notable observation was that the PE of

all of the methods was found to be the lowest when a band was either completely empty (0%)

or when it was completely occupied (100%) and highest when the channel had an occupancy of

50%. This can be explained by the effect of randomness on the prediction methods, since the

PU traffic pattern is more random when the occupancy is 50% and completely non-random

when the occupancy is either 0% or 100%.

In the previous section simulations were only run for a traffic density of υ0 = 2. In that

scenario, all of the prediction methods experienced improved PE values as p was increased.

However, after further analysis of Figure 4.5 and Figure 4.6, it is clear that as the PU traffic

occupancy approaches 50%, i.e. becomes more random, the inverse is actually true. When the

traffic pattern is random the accuracy of the prediction methods degrades as an identifiable

traffic pattern becomes less prevalent.

The major differences found, when comparing the results obtained under alternative exponen-

tially distributed traffic to those obtained for Poisson distributed traffic, were: Firstly, that

the PE for all three methods was slightly worse for Poisson distributed traffic when the PU

traffic density approached 50%. But, secondly, for the OW method, the PE was found to be

lower when υ0 ≤ 3 or υ0 ≥ 7. This meant that the OW method was consistently better than

the other methods when k = 10. The third difference was that the difference in PE, between

predictions made for the near future compared with those made further into the future, was

larger for the NLMS and MC methods but much smaller for the OW method.
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Figure 4.5: Prediction error over the full range of channel occupancies for a fast varying

stochastic PU traffic pattern (alternate exponential distribution with k = {1, 10}, p = 21, τ =

1).
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Figure 4.6: Prediction error over the full range of channel occupancies for a fast varying

stochastic PU traffic pattern (Poisson distribution with k = {1, 10}, p = 21, τ = 1).

It is thus evident that the achievable prediction performance of each method varies according

to the PU traffic conditions and in an optimal scenario should thus be employed accordingly.
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4.4.3.2 Slow changing traffic

Plots showing the PE for slow changing stochastic traffic (when τ = 5) are provided in Figure

4.7 (for alternative exponentially distributed traffic) and Figure 4.8 (for Poisson distributed

traffic). PE trends similar to the fast changing traffic scenario were observed. The major dif-

ferences though were: Firstly, for the MC and NLMS methods, the PE appeared to generally

be significantly lower under slow changing traffic conditions than under fast changing traffic

conditions. Secondly, the variation in PE values as channel occupancy changed were found

to be less pronounced, with PE almost flat when 1 ≤ υ0 ≤ 9. This may be attributed to

the fact that a slower changing PU traffic pattern is less random and thus more predictable

(intuitively it makes sense that for a binary pattern, the larger the number of contiguous bits

that are the same, the easier it becomes to predict future bits). Thirdly, PE for the OW

method also improved for alternate exponentially distributed traffic, but generally became

worse under Poisson distributed traffic.

The OW method was thus clearly found to be generally less suitable for slow changing traffic

conditions than for fast changing traffic conditions.
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Figure 4.7: Prediction error over the full range of channel occupancies for slow varying PU

traffic (alternate exponential distribution with k={1,10}, p = 11, τ = 5)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

90

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 4 Primary user traffic prediction

Occupancy (%)

0 20 40 60 80 100

P
E

 (
%

)

0

10

20

30

40

50

60

70
k = 1, p = 21, τ = 5, Poisson NLMS

MC
OW
RND

Occupancy (%)

0 20 40 60 80 100

P
E

 (
%

)

0

10

20

30

40

50

60

70
k =10, p = 21, τ = 5, Poisson NLMS

MC
OW
RND

Figure 4.8: Prediction error over the full range of channel occupancies for slow varying PU

traffic (Poisson distribution with k={1,10}, p = 21, τ = 5)

4.4.3.3 Traffic distribution

Individual differences between the performance of the prediction methods for different oc-

cupancy levels, traffic change rates and prediction lengths were observed. These differences

suggest that the choice of prediction method should be related to the traffic pattern of the

actual channel for which a prediction is to be made. Selected PE results are listed in Table

4.2, to further highlight these differences in the context of the underlying PU traffic distribu-

tion. PE values for different different levels of future prediction length k and traffic density

τ are compared for each method, when channel occupancy was either set at υ1 = 5 or at

υ1 = 8 for a fixed observation length of p = 21, for both alternate exponentially and Poisson

distributed PU traffic patterns.

With the exception of the OW method, at higher levels of traffic occupancy (υ1 ≥ 8), all of the

prediction methods returned either similar or slightly better results for alternate exponentially

distributed traffic than for Poisson distributed traffic. For both traffic pattern distributions,

most of the traffic scenarios investigated found that the NLMS method generally had the best

performance, while the OW method was generally found to be the worst performing method.

The OW method was particularly poor when the occupancy level was 50% (υ1 = 5) and the

underlying traffic pattern followed a Poisson distribution. Under certain conditions the OW
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Table 4.2: Comparison between selected PE results for υ1 = 5 and υ1 = 8 when p = 21, for

both alternate exponentially and Poisson distributed traffic patterns.

Method Poisson Alternate Exponential

τ = 1 τ = 5 τ = 1 τ = 5

k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10

υ1 = 5

NLMS 21.26 52.30 4.54 24.42 21.85 42.38 6.79 19.31

MC 32.14 50.83 4.56 22.64 27.19 43.58 5.56 18.30

OW 50.29 51.55 44.07 61.23 42.02 47.81 25.45 32.54

RND 49.87 50.02 49.93 49.99 49.88 50.02 50.00 50.00

υ1 = 8

NLMS 18.25 28.55 6.07 24.19 17.97 27.59 6.78 16.37

MC 25.96 32.58 5.18 22.93 22.92 31.00 5.19 16.31

OW 20.19 20.15 15.09 30.27 21.48 22.89 19.94 23.28

RND 49.89 50.23 50.19 50.30 49.89 50.22 49.92 50.34

method actually had the lowest PE of all of the methods. For both traffic distributions this

occurred when predictions were made further into the future (k = 10) and the traffic pattern

was fast changing (τ = 1), but in this case performed best under the Poisson distributed

traffic scenario. The PE of all of the methods, became more similar at either high or low

levels of traffic occupancy.

The PEs of the MC and NLMS methods were found to be similar for slow changing traffic

(τ = 5), with the MC method marginally better. However, for a faster varying traffic pattern

(τ = 1), the NLMS method was found to be better (particularly when k = 1 where PE was

found to be between 5% and 11% better).

While PE is of primary importance to the proactive decision making process, the complexity

of each method could influence its actual viability in a CRN. This will be discussed in Section

4.4.4.
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4.4.4 Prediction performance: Complexity

To gain some insight into the complexity associated with predicting future PU behaviour,

average execution times were simulated and normalised for each prediction method using unit

length feature scaling. Only the stochastic PU traffic patterns were considered.

4.4.4.1 Observation and prediction length

The normalised simulation times for each prediction method are compared with RND, for

various values of p and k, in Figure 4.9. Prediction method complexities, when k = 1 and

k = 10, were illustrated on the left and right hand side of the figure respectively. Altern-

ate exponentially distributed traffic was employed with τ = 1 and a logarithmic scale was

employed to highlight the differences between the most and least complex methods.

From these plots it can be seen that the MC method experienced the highest level of complex-

ity particularly as p was increased. The NLMS method was found to be less complex than

the MC method but did not experience significant increases in complexity with increasing

values of p. The OW method was found to be much less complex than by the MC and NLMS

methods and was either comparable or even less complex than employing RND. In general,
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Figure 4.9: Normalised simulation times for each prediction method for various values of p

and k (alternate exponentially distributed traffic when τ = 1).
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Figure 4.10: Comparison of normalised simulation times between different stochastic traffic

distributions and pattern change rates for each prediction method (with p = 21).

all of the methods took proportionately longer to simulate when k = 1 than when k = 10.

This was expected since predictions only needed to made every ten periods when k = 10

compared with every single period when k = 1.

4.4.4.2 Traffic distribution

Normalised simulation times, for different underlying traffic distributions and pattern change

rates, are illustrated in Figure 4.10. The observation length was chosen to be p = 21. All

three prediction methods experienced higher complexity for Poisson distributed traffic than

for alternate exponentially distributed traffic. However, the traffic change rate τ did not seem

to have any significant effect on complexity.

4.4.4.3 Channel occupancy

Normalised simulation times for all three prediction methods, for different levels of traffic

occupancy, are illustrated in Figure 4.11. Poisson distributed traffic was employed with

τ = 1 and p = 21. Clearly, the level of channel occupancy had no effect on the complexity

experienced by the MC and NLMS methods, while for the OW method only minor variations

were observed.
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Figure 4.11: Normalised simulation times for different levels of channel occupancy for each

prediction method (with p = 21 and τ = 1).

4.5 CONCLUSION

In this chapter a simple method for predicting PU occupancy was proposed and compared

with two other prediction methods in the literature. Both the accuracy and complexity of

these methods was investigated for different PU traffic patterns. PU traffic pattern criteria

included: Randomness, traffic distribution, channel occupancy and pattern change rate. Dif-

ferent observation and prediction lengths were also considered. The prediction methods were

found to provide different levels of performance depending on the underlying traffic pattern.

Although the MC and NLMS methods were generally found to be more accurate than the OW

method, the OW method was found to either match or outperform the other methods under

certain traffic conditions, e.g. under fast changing traffic conditions, when the traffic pattern

becomes less random and when predictions are made further into the future (higher values

of k). Also the OW method was consistently found to be significantly less complex than the

other methods. Thus it can be concluded that under the right PU traffic conditions, the OW

method would be well suited to a CR environment where complexity can be a performance

limiting factor. This work forms the basis of the discussion that follows in Chapter 5 where

the issue of exploiting SU diversity, to improve PE, will be investigated.
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CHAPTER 5

COOPERATIVE PREDICTION IN COGNITIVE

RADIO NETWORKS

5.1 INTRODUCTION

In this chapter the premise that if collaboration between secondary users (SU) may improve

the spectrum sensing (SS) process, then collaboration between SUs should also allow for better

accuracy in the prediction process, is explored [111, 112]. Firstly a hard decision based model

for performing cooperative prediction, where the results of individual SU predictions are fused

together to make a combined prediction, is presented. Secondly, a sub-optimal cooperative

forecasting algorithm has been formulated to minimise the likelihood of cooperative prediction

error (CPE) and a heuristic for solving it proposed. Thirdly, the use of pre-fusion and post-

fusion based prediction scenarios are introduced and their performance is compared with that

of the single SU prediction scenario (this scenario was discussed in Chapter 4). Finally, the

issue of algorithmic complexity in the prediction process is also dealt with. It is shown that

diversity, both in terms of physical location and local forecasting accuracy, can be exploited

to improve primary user (PU) prediction accuracy in a cognitive radio network (CRN). An

optimal balance is sought between the accuracy that forecasting and cooperation provides

and the costs and delays that this may introduce into the CRN.

The rest of this chapter is organised as follows: The system model that was considered, for

the combination of cooperation and prediction, is described in Section 5.2. Techniques for

collaboratively modelling and forecasting PU behaviour are discussed in Section 5.3. Optimal

cooperative prediction is discussed in Section 5.4. Both the benefits and costs of cooperative
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Chapter 5 Cooperative prediction in cognitive radio networks

prediction are then quantified via the simulation results presented and discussed in Section

5.5. The chapter is then concluded in Section 5.6. Parts of this chapter were published in

[127] and [124].

5.2 SYSTEM MODEL FOR COOPERATIVE PREDICTION

5.2.1 Prediction scenario

A scenario where multiple SUs cooperate to predict future spectrum availability is depicted

in Figure 5.1. It is assumed that all cooperating SUs are aware of the radio environment

within which they are operating and that they are willing to collaboratively analyse the same

channels. The aim of this collaboration is to generate a forecast for the future availability

of the band. The cooperative prediction scheme described in this chapter assumes the use

of both a forecast engine (where predictions are made about future PU behaviour) as well

as a fusion centre (FC) (where information from cooperating SUs is combined). Individual

SUs perform SS, after which individual decisions are used to perform predictions based on

information fusion. A decision is then made about the future availability of the band.

Two different cooperative fusion scenarios are illustrated in Figure 5.1. Namely a pre-fusion

scenario (illustrated by the solid green arrows) where each SU performs prediction before

fusion is performed and a post fusion scenario (indicated by the dashed blue arrows) where

prediction is only performed after the SS results of each SU have already been combined.

These fusion scenarios will be discussed in greater detail in Section 5.3.

SU1

Forecast 

Engine

Fusion 

Center

DecisionSU2

SUN

Radio 

Environment

Figure 5.1: Cooperative prediction scenario.
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Chapter 5 Cooperative prediction in cognitive radio networks

5.2.2 Radio environment

Taking into account both large and small scale path loss, the received signal ri(n) at any SU

i was assumed to be given by the following expression,

ri(n) = x(n)ai(n)Li + γ(n), (5.1)

where x(n) is the transmitted PU signal, ai(n) is the fading on the channel between SU i and

the PU base station (BS), γ(n) is additive white Gaussian noise and Li is the free space path

loss experienced by SU i and was calculated according to the following expression,

Li =

(

c

4πdifi

)2

, (5.2)

where di is the distance in meters between the transmitting PU and the receiving SU i, fi is

the signal frequency in hertz and c ≈ 3 × 108 is the speed of light. A frequency flat fading

environment has been assumed, where the channel follows a Rician distribution,

fi(x) =
x

σ2
exp

{

−x2 + ρ2

2σ2

}

I0

{

xρ

σ2

}

, (5.3)

with Rician K-factor,

K = 10 log

(

ρ2

2σ2

)

, (5.4)

where ρ is the line of site amplitude, I0 is the zero order modified Bessel function and σ2 is

the noise variance of the signal.

The geographical distribution of SUs, considered in this chapter, is illustrated in Figure

5.2. The green line represents the cell boundary of a PU BS (shown as a red square),

while ten cooperating SUs are illustrated as blue circles. The radius of the PU cell is

R = 1.414 km. Each SU, SU1 through SU10, has been assigned a different Rician K-factor

(K = [0; 18; 9; 1; 14.5; 4; 20; 6; 8; 12]). The K-factor describes the severity of fading on the

channel, which means that each SU will be able to detect PU activity with different degrees

of success.

This grouping of SUs was chosen to represent a scenario where there was diversity amongst

SUs with regard to their quality of received PU signal. A scenario like this was chosen based

on the premise that diversity would be a key factor in the success of cooperative prediction.

Preliminary investigations indicated that the cooperative prediction process would be less

successful if the level of diversity amongst SUs were to be diminished.
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Figure 5.2: Geographical distribution of cooperating SUs

It is assumed that no errors are made when the SUs report either their individual SS or

forecast results to the FC. Other large scale fading effects such as diffraction and scattering

have been ignored. The assumption has also been made that channel conditions change at a

slower rate than the time for which a prediction has been made, i.e. the PU traffic pattern

must not change during the predicted time slots. A necessary condition, to support this

assumption, is that SUs remain stationary during this time (the geographical distribution

of SUs must remain constant so that no Doppler shift can interfere with the sensing and

prediction process).

5.3 COOPERATIVE PREDICTION

The historical behaviour of PUs can be used to model and then predict future behaviour,

as discussed in Chapter 4, which can in turn be used by CRs to make proactive decisions.

Multiple SUs may be used to collaboratively perform forecasting. This forecast is obtained

by fusing the SS data obtained by multiple SUs to obtain a single improved forecast. In this

section the manner in which prediction and fusion are combined will be investigated.
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Chapter 5 Cooperative prediction in cognitive radio networks

5.3.1 Single and multi-user prediction

In this chapter it will be assumed that, at time t, prediction may be performed by either

a single SU i or by multiple concurrently active SUs. In the single SU case, prediction is

performed by a single SU using Fi,t,ϑ(r) from Equation (4.7) in Chapter 4. For the multiple

SU case a set, comprised of N cooperating SUs, is used to calculate a combined forecast.

Therefore, let the combined forecast, be denoted by Gt,ϑ(r) such that,

Gt,ϑ(r) = CN {Fi,t,ϑ(r)} , t+ 1 ≤ r ≤ t+ k (5.5)

where CN {·} indicates a combination of N individual SU predictions, k is the number of

future samples predicted, ϑ is the channel number for which the prediction is being made,

{i, t, ϑ, r, k} ∈ N and Fi,t,ϑ(r) ∈ {0, 1}.

5.3.1.1 Fusion rule

When more than one SU begins to collaborate (N > 1), then the process of forecasting

becomes a function of multiple SUs. There are a number of ways in which the information

collected by individual SUs may be combined.

One of the most popular approaches to cooperative SS in the literature is the M -out-of-N rule

[128]. This is a voting-based fusion rule which can be extended to cooperative forecasting. In

this approach, a forecast value of Gt,ϑ(r) = 1 is made if at least M out of the N cooperating

SUs predict the presence of a PU. The forecast is thus given as,

Gt,ϑ(r) =











1,
∑N
i=1 Fi,t,ϑ(r) ≥ M

0, otherwise
(5.6)

where r = t + 1, t + 2, . . . , t + k. The M -out-of-N rule becomes the OR rule when M = 1,

and the AND rule when M = N . When using this approach, a suitable value for M will need

to be chosen. In this chapter, M =
⌈

N
2

⌉

was used.

5.3.2 Fusion scenarios

Two fusion scenarios have been considered. In the first scenario, all collaborating SUs first

perform prediction on a individual basis and then fuse their decisions (pre-fusion prediction).
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Figure 5.3: Pre-fusion cooperative prediction

In the second scenario, collaborating SUs first fuse historical PU data at the FC before

performing a single prediction (post-fusion prediction).

5.3.2.1 Pre-fusion prediction

The pre-fusion prediction scenario is illustrated by the block diagram shown in Figure 5.3.

Firstly, using Equation (4.1) in Chapter 4, each collaborating SU obtains a sequence of SS

results Si,t,ϑ(n), which is followed by an individual prediction by each SU about future channel

availability Fi,t,ϑ(r). After the prediction process, all of the individual SU predictions are

fused together to obtained a combined prediction result Gt,ϑ(r). The expressions given in

Equation (5.6) represents the pre-fusion prediction scenario.

5.3.2.2 Post-fusion prediction

The post-fusion prediction scenario is illustrated by the block diagram shown in Figure 5.4.

All collaborating SUs perform SS to obtain a sequence of historical PU information Si,t,ϑ(r).

This data is then immediately fused to obtain a collaborative SS decision Ht,ϑ(r), which may

be described by the following expression,

Ht,ϑ(n) =











1, 1
N

∑N
i=1 Si,t,ϑ(n) ≥ M

0, otherwise
1 ≤ n ≤ p (5.7)

where {n, p} ∈ N, Ht,ϑ(n) ∈ {0, 1} and p is the observation length described in Chapter 4.

Only then is a single prediction made for future channel availability, using the result of the
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Sense

SU1

Sense

SU2

Sense

SUN

Fusion Result

⁞ 

Forecast

Figure 5.4: Post-fusion cooperative prediction.

combined SS decision, such that,

Gt,ϑ(r) = f (Ht,ϑ(n)) , t+ 1 ≤ r ≤ t+ k, 1 ≤ n ≤ p (5.8)

where {r, k} ∈ N and Gt,ϑ(r) ∈ {0, 1}.

5.3.3 Prediction approach

The occupancy window prediction approach, described in Chapter 4, was employed to calcu-

late the local prediction error ǫfr. This error does not take into account the possibility that

the information it uses to make the prediction may be incorrect due to poor SS, but is simply

a prediction of future PU traffic based on information obtained through SS by a single SU.

Equation 4.15, from Chapter 4, may be used to calculate ǫfr. Each SU i will detect different

versions of Si,t,ϑ(n) due to imperfect SS and may also experience variations in its ability to

preform a local forecast. To allow for variations in local prediction error ǫfr, the local forecast

error for a single SU i has been defined as,

ǫfr,i,t = vi,tǫfr, (5.9)

where vi,t is randomly chosen from a continuous uniform distribution with probability density

function fv(x) and a lower boundary of ς, such that,

vi,t = ς + (1 − ς)fv(x). (5.10)

For the simulation results shown in Section 5.5.4, the lower boundary ς acts as a spreading

factor that allows for accuracy variations among cooperating SUs.
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Chapter 5 Cooperative prediction in cognitive radio networks

5.4 OPTIMAL FORECASTING

The idea behind a cooperative prediction scheme is to minimise CPE by exploiting diversity

amongst SUs. However, in order to so, it is necessary to perform predictions, and combine

the data collected by cooperating SUs, in as optimal a fashion as possible. Therefore, an

algorithm is presented in this section based on the system model and cooperative prediction

approach described both in this chapter and in Chapter 4.

5.4.1 Problem formulation

Using Equation (5.8) the CPE at time t, denoted by ǫcp,t, may be given as,

ǫcp,t =

∑k
j=1 Gt,ϑ(j) − Xt,ϑ(j)

k
, (5.11)

where k is the number of future samples predicted and Xt,ϑ(r) is the actual data sequence

transmitted by the PU at time t on channel number ϑ. Since it is desirable to minimise ǫcp,t,

the cooperative prediction problem may be formulated as,

min
ǫcp,t

ǫcp,t =

∑k
i=1 Gt(i) − Xt(i)

k
, (5.12)

s.t. 1 ≤ n ≤ p

1 ≤ k ≤ z

1 ≤ i ≤ Nmx

0 ≤ ǫcp,t ≤ ǫcp

n < t ≤ ξ

ρ, ν ≥ 1

1 ≤ τ ≤ ξ

0 ≤ ς ≤ 1

p, k, n, z, i, t, τ, ρ, ν ∈ N

Gt,ϑ,Xt,ϑ ∈ {0, 1} .

In Equation (5.12), n is the number of observations gathered by the local prediction algorithm

and may not exceed the limit of p observations, z is the maximum number of future samples

that may be predicted, i is the number of cooperating SUs, Nmx is the maximum number of
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Chapter 5 Cooperative prediction in cognitive radio networks

cooperating SUs that may be combined, ǫcp is the maximum error threshold for cooperative

prediction, ξ is the maximum number of iterations allowed by the algorithm (assuming a single

iteration at each time increment), ρ is the observation length resolution, ν is the amount by

which i may be changed, τ is the iteration interval that determines the sign of ρ (discussed

in the following subsection) and ς controls the variation in prediction accuracy experienced

by individual SUs (using Equation 5.9).

5.4.2 Cooperative forecasting algorithm

A cooperative forecasting algorithm (CFA) can be employed to find a solution for Equation

(5.12). A sub-optimal heuristic for this problem is proposed and described in Algorithm 2. In

this case, it is assumed that cooperating SUs report their individual forecasts to a centralised

FC to calculate Gt,ϑ(n).

The CFA begins by calculating Fi,t,ϑ(r) for a single SU (i = 1) at time t = 0, with {n, i, z} = 1

initially. It then enters a recursive process that begins by calculating Gt,ϑ(n) for SU i and the

corresponding value for ǫcp,t (Gt,ϑ(r) = Fi,t,ϑ(r) at t = 0). If ǫcp,t is found to be greater than

the cooperative error threshold ǫcp on the first iteration of the loop (t = 0), then the CFA

will increase i and n by an amount ρ and ν respectively ρ, ν ∈ N (these variables represent

the amount by which i and n will be adjusted at each iteration of the CFA).

This process is repeated for τ iterations. If after τ iterations ǫcp,t > ǫcp,t−τ , then n is decreased

by ρ and i is kept constant to allow for the possibility that increasing n may actually degrade

prediction performance. This is repeated until either ǫcp,t ≤ ǫcp,t−τ or n ≤ ρ. Thereafter

either both i and n are increased (when i < Nmx) or only n is increased (if i = Nmx), at

every iteration of the algorithm.

The CFA repeats itself until one of the stopping criteria are met: Either a lower cooperative

prediction error than the threshold is found ǫcp,t ≤ ǫcp, the maximum number of historical

observations has been exceeded n > p, the maximum number of cooperating SU has been

exceeded i > Nmx or the maximum number of iterations allowed by the algorithm has been

reached t > ξ.
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Chapter 5 Cooperative prediction in cognitive radio networks

Algorithm 2 Cooperative forecasting algorithm.

1: t = 0

2: {n, i, z} = 1

3: Compute Fi,t,ϑ(r) from Equation (4.7)

4: while (ǫcp,t > ǫcp) AND (n ≤ p) AND (i ≤ Nmx) AND (t ≤ ξ) do

5: Compute Gt,ϑ(r) from Equation (5.5)

6: Compute ǫcp,t from Equation (5.12)

7: if (ǫcp,t ≤ ǫcp) then

8: n = n

9: i = i

10: return ǫcp,t and Gt,ϑ(r)

11: else if ǫcp,t > ǫcp then

12: if (t > δ) then

13: if (ǫcp,t > ǫcp,t−δ) AND (n > ρ) then

14: n = n− ρ

15: i = i

16: else

17: if (i < Nmx) then

18: n = n+ ρ

19: i = i+ ν

20: else

21: n = n+ ρ

22: i = i

23: end if

24: end if

25: else

26: n = n+ ρ

27: i = i+ ν

28: end if

29: end if

30: t+ +

31: end while
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Chapter 5 Cooperative prediction in cognitive radio networks

5.5 SIMULATION RESULTS

In this section, simulation results are presented to verify the performance of the suggested

cooperative prediction techniques and illustrate the benefits of diversity in the prediction

process. Using MATLAB, four different simulations were performed: Firstly to investigate

the accuracy of the maximum normal fit (MNF) method as applied to the system model

described in this chapter, secondly to investigate cooperative prediction accuracy, thirdly to

show how optimisation can improve CPE and fourthly to quantify the costs and delays that

this may introduce into the CRN.

5.5.1 Simulation environment

5.5.1.1 Spectrum sensing parameters

The first simulation was run to investigate the performance of the MNF method, described in

Section 3.2.1. This simulation was run to generate the test data, based on the system model

described in this chapter, from which the rest of the simulations could be performed. SS

results were obtained for the ten different SU scenarios depicted in Figure 5.2, for a signal-

to-noise ratio (SNR) range of γ = [0, 30] dB in 2 dB increments. The observation length was

fixed at p = 10 for this simulation.

5.5.1.2 Cooperative prediction parameters

The second simulation investigated the performance of cooperative prediction when compared

with prediction by a single SU as the number of cooperating SUs i was increased up to

N = 10. The difference between the prediction performance of the pre-fusion and post-fusion

prediction scenarios was compared over an SNR range of γ = [−4, 28] (8 dB increments). The

probability of correct local forecast Pfr,i,t = 1 − ǫfr = P fr was assumed to be equal amongst

SUs, i.e. ς = 1, and four fixed levels of local prediction accuracy P fr,t = [0.6; 0.7; 0.8; 0.9]

were considered. These parameters are summarised in Table 5.2 and Table 5.3.
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Chapter 5 Cooperative prediction in cognitive radio networks

Table 5.1: General simulation parameters for all four computer simulations.

Parameter p ξ Nmx τ ρ z ν ǫcp

Value 25 17 10 3 2 1 1 0

5.5.1.3 Parameters for optimal forecasting

The third simulation investigated the performance of the CFA. The values used for ǫfr were

based on those presented in [123] and only odd numbered values of n were considered (n ∈
2N − 1). Diversity in local forecast accuracy was facilitated by selecting various values for ς

such that ς = [0.0; 0.2; 0.4; 0.6; 0.8; 1.0]. Limits of p = 25, k = 1, Nmx = 10, ǫcp = 0, ρ = 2,

ν = 1 and ξ = 17 were set. Through a process of trial an error, τ = 3 was chosen to allow

for both positive and negative adjustments of n in the CFA.

5.5.1.4 General parameters

All of the simulations were run for a length of T = 60000 time samples. For the first and

third simulations, the CRN environment consisted of ϑ = 100 channels spaced 200 kHz apart,

beginning at f0 = 700 MHz. The transmit power of the PU BS was set to Ptx = 30 W. The

Table 5.2: General simulation parameters for all four computer simulations.

Parameter Value

T 60000 time samples

P fr [0.6; 0.7; 0.8; 0.9]

ς [0.0; 0.2; 0.4; 0.6; 0.8; 1.0]

Li (dB) 70.9, 80.3, 81.6, 85.9, 86.4,

86.5, 86.8, 88.1, 88.7, 88.9

K [0; 18; 9; 1; 14.5; 4; 20; 6; 8; 12]

ǫfr [0.303; 0.281; 0.236; 0.216; 0.187; 0.178;

0.177; 0.174; 0.171; 0.168; 0.164; 0.169; 0.173]
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Chapter 5 Cooperative prediction in cognitive radio networks

Table 5.3: Simulation parameters for the third simulation: CPA performance.

Parameter N Ptx (W) BW (kHz) f0 (MHz) R (m) γ (dB) ϑ M

Value 10 30 200 700 1414 [-4, 28] 100
⌈

N
2

⌉

= 5

N = 10 SUs were randomly distributed within a quarter circle with radius R = 1414m. The

calculated free space path loss Li and the assigned Rician K-factor Ki for each SU are listed

in Table 5.2. For the fusion rule M =
⌈

N
2

⌉

= 5 was employed.

5.5.2 Spectrum sensing performance

Simulations were run to test the performance of the MNF method, described in Section 3.2.1.

The individual noise thresholds λi and the resulting probabilities of error Pe,i were calculated,

as described in Section 2.3.3.2, for each of the SUs shown in Figure 5.2. The calculated values

for λi (shown in dBm) have been plotted on the left hand side of Figure 5.5, while the SS error

probabilities Pe,i have been plotted on the right hand side. A plot comparing the probability

of detection Pd,i to the probability of false alarm Pf,i for each SU, for various SNR values, is

provided in Figure 5.6.
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Figure 5.5: Calculated detection thresholds (left) and SS error probabilities (right), as SNR

is increased, for the SUs described in Section 5.2.2.
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Figure 5.6: Single SU SS performance as SNR is increased: Pd vs. Pf .

The calculated threshold values λi exhibited an approximately inverse proportional relation-

ship to SNR. However, this was not found to be true for SNR values below γ = 6 dB (since

there is a greater overlap between the distributions of the information bearing and noise

components of the signal, it becomes harder to calculate estimates for µs, σ
2
s and σ2

n when

γ ≤ 6 dB). As expected Pe,i improves as both the SNR and Rician K-factor are increased,

since it becomes easier to estimate λi.

The Pe,i values represent the ability that each SU has to detect the presence of the PU, based

on the quality of the signal that it can detect, and were used as the basis of the cooperative

prediction simulations that will be described in the remainder of this chapter.

5.5.3 Cooperative prediction performance

To quantify the benefit that cooperation brings to the prediction process, simulations were

run that compared the CPE that could be obtained by employing both pre-fusion prediction

(PRF) and post-fusion prediction (POF) as compared with the no-fusion scenario (NOF).

For the PRF and POF scenarios all ten SUs where employed in the prediction process, while

for the NOF scenario prediction was performed using only SU1 (shown in Figure 5.2). SU1

was used for the NOF scenario as it was the SU that was least able to detect the presence
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Chapter 5 Cooperative prediction in cognitive radio networks

of the PU due to the poor channel conditions at its geographical location. The simulations

were run for the range of SNR values listed in Table 5.3.

Each scenario was tested for a range of forecast probabilities Pfr = [0.6; 0.7; 0.8; 0.9; 1.0]. Pfr

is the probability that a correct forecast was made by SU i and is the inverse of the prediction

error (PE), discussed in Chapter 4, such that Pfr = 1−PE. Thus Pfr = 0.6 represents a poor

prediction with a PE of 40%, while Pfr = 1.0 represents a perfect prediction with a PE of

0%.

5.5.3.1 The influence of local prediction error

The PRF results are illustrated in Figure 5.7, the POF results in Figure 5.8 and the NOF

results in Figure 5.9. For these plots, the number of cooperating SUs was fixed at i = 10. For

all three scenarios, the CPE improves exponentially as both the SNR and Pfr are increased.

However, this reduction in CPE is larger when fusion is employed for prediction, most notably

when the PRF scenario is adopted. When fusion is employed the CPE can be reduced to a

value that is below the Pfr of the individuals SUs, as SNR is increased.

For the PRF scenario, the CPE when Pfr < 1.0 continues to improve with an increase in SNR

until it reaches its best value around γ = 24 dB. For the POF scenario, however, the best
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Figure 5.7: Cooperative prediction error for the pre-fusion scenario.
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Figure 5.8: Cooperative prediction error for the post-fusion scenario.
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Figure 5.9: Cooperative prediction error when fusion is not employed.

CPE is reached much earlier at around γ = 8 dB. This means that there is a benefit derived

from fusion for a much wider range of noise conditions under the PRF scenario. Improved

PE, due to cooperation, is evident at SNRs as low as γ = 0 dB.

Selected results have been listed in Table 5.4 to highlight how much PE can be reduced by

employing cooperative prediction. A CPE comparison is made for SNR values of γ = 4 and

γ = 16, and for Pfr = 0.7 and Pfr = 0.9. When γ = 4 dB, the POF scenario led to a CPE
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Chapter 5 Cooperative prediction in cognitive radio networks

Table 5.4: Selected PE results that highlight the benefit of cooperation.

Scenario Pfr = 0.7 Pfr = 0.9

γ = 4 γ = 16 γ = 4 γ = 16

Single

SU1 39.43 32.55 28.90 15.08

Fusion

POF 30.94 29.98 11.84 9.99

PRF 17.81 8.46 4.69 0.08

Reduction

POF 8.49 2.57 17.06 5.09

PRF 21.62 24.09 24.21 15.00

reduction of 8.49% and 17.06%, for Pfr = 0.7 and Pfr = 0.9 respectively. However, the CPE

was reduced by 21.62% and 24.21% respectively, for the PRF scenario. When γ = 16, the

difference between PRF and POF was even larger.

Thus it can be concluded that the PRF scenario provided much larger reductions in CPE

than the POF scenario, while it was clear that both fusion scenarios are of benefit to the

prediction process.

5.5.3.2 Population size

Three dimensional plots, where CPE is plotted against both SNR and the number of co-

operating SUs employed to perform prediction, are presented in Figure 5.10 and Figure 5.11.

Each plot represents a different value for P fr (in this case the same for all SUs, i.e. ς = 1).

The simulated CPE for a low to medium level of local forecast accuracy are illustrated in

Figure 5.10 and for a medium to high level of local forecast accuracy in Figure 5.11. The

CPE axes of each plot have been inverted to improve readability and only the PRF fusion

scenario was considered.

In all four scenarios, the CPE improved exponentially as γ was increased, as previously
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Figure 5.10: Cooperative prediction error for PRF when P fr = [0.6; 0.7].
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Figure 5.11: Cooperative prediction error for PRF when P fr = [0.8; 0.9].

illustrated. This improvement was compounded by a linear improvement in ǫcp as the number

of cooperating SUs i was increased. However, the real benefit of cooperation was only realised

for higher values of Pfr for which the gains due to both increasing γ and i improved with

local prediction accuracy. This can be quantified by comparing the minimum values obtained

for ǫcp (i = 10 and γ = 28). When Pfr = 0.6, this was ǫcp = 0.227 and when Pfr = 0.9,

it had improved to ǫcp = 6.135 × 10−4. Clearly the prediction gains due to SU diversity

were much more pronounced for high values of P cp than when local prediction was performed
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Chapter 5 Cooperative prediction in cognitive radio networks

poorly.

The benefit of SU cooperation, for higher local prediction accuracy, can clearly be seen in the

bottom plot of Figure 5.11 (P fr = 0.9). When γ = 16, a forecast error of ǫcp = 6.723 × 10−4

was observed for i = 10 cooperating SUs compared with ǫcp = 0.151 for SU1 attempting to

make a forecast on its own. The corresponding benefit of SU cooperation was much lower

when local forecast accuracy was poor (P fr = 0.6). Values of ǫcp = 0.2333 and ǫcp = 0.4128

were obtained respectively.

5.5.4 Optimal cooperative prediction

The CFA was used to calculate the results presented in Figure 5.12 and Figure 5.13.

5.5.4.1 Uniform local prediction error

In Figure 5.12, the CPE is illustrated for the case where ς = 1, i.e. for no diversity in local

forecast error ǫfr,i,t. Values for ǫcp have been plotted, on the left hand side of the figure,

for each iteration of the CFA for various values of γ. The corresponding values for variables

i and n are illustrated on the right hand side of the figure. From these plots it can been
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Figure 5.12: Cooperative prediction error at each iteration of the CFA for different values

of γ (left) and the corresponding values for parameters i and n (right).
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Chapter 5 Cooperative prediction in cognitive radio networks

seen that ǫcp generally improved as the algorithm was iterated, reaching the optimal solution

when t = 12 after which no further improvement was made. This could be seen for all values

of γ, where i and n steadily increased up to their optimal values, except for when γ = 0 dB.

When γ = 0 dB, i and n sometimes had to be decreased to cope with local SS inaccuracies.

This meant that it took longer to find the optimal solution, which was only reached when

t = 16.

5.5.4.2 Local prediction error diversity

In Figure 5.13 the effect of diverse local prediction accuracy, when ς = [0, 1], is illustrated.

Using the CFA, the optimal value obtained for ǫcp is compared over a range of SNR values

and for different values of ς. Clearly diversity in the ability of SUs to perform local forecasts

lead to a improvement in the CPE. For example, for γ = 16 dB, the CPE obtained when

ς = 1.0 was ǫcp = 6.405×10−3, but due to diversity it had been reduced to ǫcp = 3.800×10−5

when ς = 0.0.

For lower SNR values there was an approximately exponential decrease in ǫcp with SNR, which
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Figure 5.13: Cooperative prediction error with local forecast diversity.
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Chapter 5 Cooperative prediction in cognitive radio networks

then began to flatten out as SNR became larger. For ς = [0.4; 0.6; 0.8; 1.0], the minimum

value for ǫcp appeared to have been reached when γ = 24 dB. However, ǫcp was still decreasing

at γ = 28 dB for a large diversity in local forecast accuracy (ς = [0.0; 0.2]).

5.5.5 The cost of cooperative forecast

Although obtaining the lowest possible CPE is important, the cost associated with doing

so must also be considered. Many CR functions are time critical and would be negatively

affected if the SS and prediction process were to be an over complicated and time consuming

process. Estimates for the complexities associated with each fusion scenario, over a range

of local forecast accuracies, are illustrated in Fig 5.14. These estimates were calculated by

normalising average simulation times using unit length feature scaling. Selected complexity

results are also listed in Table 5.5, to complement Figure 5.14.

As may be expected, there was a price to pay for the improvement in prediction accuracy

due to fusion. For the PRF scenario, the most accurate approach, fusion was found to be

10.7 times more complex than for the NOF scenario (when Pfr = 0.8). However, the POF

scenario was found to be only 1.3 times more complex than the NOF scenario.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

PRF POF NOF

F
u
si

o
n
 c

o
m

p
le

x
it

y

Fusion scenario

Pfr = 0.6

Pfr = 0.7

Pfr = 0.8

Pfr = 0.9

Pfr = 1.0

Figure 5.14: Estimated complexity of (a) prediction method and (b) fusion scenario.
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Chapter 5 Cooperative prediction in cognitive radio networks

Table 5.5: Selected complexity estimates for the prediction methods and fusion scenarios.

Scenario Pfr = 0.6 Pfr = 0.7 Pfr = 0.8 Pfr = 0.9

PRF 0.178 0.179 0.158 0.154

POF 0.022 0.022 0.020 0.020

NOF 0.017 0.017 0.015 0.014

Therefore, when performing cooperative prediction it is important to select the correct com-

bination of prediction method and fusion scenario, so as to ensure a reasonable balance

between prediction accuracy and complexity.

5.6 CONCLUSION

In this chapter it was shown that cooperation allowed SUs to predict PU behaviour with

greater accuracy than they would have on their own. The performance of various prediction

methods and cooperative prediction fusion scenarios were investigated for different PU traffic

conditions. A sub-optimal cooperative forecasting algorithm was also presented. From the

simulation results obtained, cooperative prediction was shown to provide greater accuracy

than when a single SU, experiencing poor channel conditions, was used to predict PU activity.

The pre-fusion fusion scenario was clearly found to provide greater accuracy than the post

fusion scenario, however, this was achieved at a significant increase in required computational

complexity. A trade-off was thus found to exist between cooperative prediction accuracy and

computational complexity. The CPA was also found to be effective at reducing CPE even

further. In Chapter 6 the benefit of forecasting, with regard to energy efficiency in a network

of cooperating SUs, will be investigated.
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CHAPTER 6

FORECASTING FOR ENERGY EFFICIENT

SPECTRUM SENSING

6.1 INTRODUCTION

Since it was shown in [129] that sensing devices consume significantly more power when

they are active, it may be concluded that the spectrum sensing (SS) process increases the

energy consumption of sensing devices. More often than not, these devices will be energy

constrained [130, 131]. Thus excessive SS, although critical for providing accurate information

about the radio environment, may lead to premature depletion of the sensing devices battery

and consequently shorten its lifetime [64]. Energy efficiency (EE) is thus a pertinent issue in

a cognitive radio network (CRN) [132].

In [64] an optimal scheduling method for sensor node activation was proposed in an attempt

at maximising the network lifetime (collective lifetime of all cooperating sensor nodes in the

network) of a cooperative SS based CRN by minimising the active time of each sensor node.

However, forecasting as a technique for reducing the amount of time spent on SS, was not

considered. If accurate predictions can be made regarding the availability of spectral white

spaces, then these predictions may allow for a reduction in SS regularity [12, 80]. Forecast

values could be used to replace SS events, and a reduction in SS events could allow for lower

overall power consumption in the sensor node network. For the rest of this chapter, primary

user traffic prediction will be referred to as spectral opportunity forecasting (SOF).

In this chapter, a contribution is made through an investigation into the integration of the

work presented in Chapter 4 on SOF and optimal scheduling for sensor node activation [64]
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Chapter 6 Forecasting for energy efficient spectrum sensing

with the aim of further increasing sensor network lifetime. The idea that total network lifetime

can be maximised by minimising the number of sensor nodes that need to be activated at any

given time, is explored. The idea that the network lifetime of cooperating sensing devices

could be even further increased, by replacing SS operations by forecast values, is demon-

strated in this chapter. Mathematical expressions, that describe the relationship between

SOF accuracy, the probability of detection and the probability of false alarm, have thus been

derived and used to characterise the effect that the introduction of SOF has on sensor network

lifetime. Promising simulation results were obtained that show a significant improvement in

the collective lifetime of the sensor node network when SOF was introduced.

This chapter is organised as follows: Optimal scheduling for sensor node activation is sum-

marised in Section 6.2. SOF and how it can be integrated into a cooperative SS framework is

discussed in Section 6.3. Simulation results are presented in Section 6.4. Finally, conclusions

are drawn in Section 6.5. This chapter is based on the work published in [133].

6.2 OPTIMAL SENSOR NODE ACTIVATION

Consider a CRN scenario, as illustrated in Figure 6.1, consisting of M secondary sensing

nodes S = [s1, s2, . . . , sM ], where each node reports its individual decision to a centralised

fusion centre (FC). If each node can be activated in such a way that only the minimum

number of nodes needs to perform SS at the same time, then the energy consumption and

thus the lifetime, of this network of cooperating secondary users (SU) can be prolonged.

6.2.1 Problem formulation

This chapter is based on an optimal scheduling problem for sensor node activation, presented

in [64], that was aimed at maximising network lifetime. To maximise network lifetime,

the nodes in the network needed to be activated so as to minimise energy consumption.

The sensors were thus grouped into a series of non-disjoint subsets S1, S2, . . . , SK with time

coefficients t1, t2, . . . , tK ∈ (0, 1] such that the network lifetime was given as,

TN = t1 + t2 + . . .+ tK . (6.1)

The subsets that allowed the minimum number of sensors to be activated, while still adher-

ing to cooperative detection and false alarm thresholds, where then selected. The problem
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Figure 6.1: Example of a multi-SU sensing network with centralised FC.

was formulated as a non-linear optimisation problem that had the following set of decision

variables, xi = {x1, x2, . . . , xM}, where xi was the activation status of sensor node si. The

residual lifetime of si was denoted ti and all sensor nodes were assumed to have the same

residual lifetime. Based on the proof in [128], the OR rule for cooperative spectrum sensing

(where k = 1) was assumed to be optimal. The problem was thus formulated as follows,

min
tij ,xij

K
∑

j=1

M
∑

i=1

xijtij , (6.2)

s.t. 1 −
M
∏

i=1

(1 − xijPd,i) ≥ Qd, j = 1, 2, . . . ,K

1 −
M
∏

i=1

(1 − xijPf,i) ≤ Qf , j = 1, 2, . . . ,K

K
∑

j=1

xijtij ≤ 1, i = 1, 2, . . . ,M

tij ∈ (0, 1] ,

xij ∈ {0, 1} ,

where xij = 1 only if si ∈ Sj . For an individual sensor the probability of detection was

denoted by Pd,i and that of false alarm by Pf,i. For M cooperating sensors, Qd was the

cooperative detection probability threshold and Qf the cooperative false alarm probability

threshold. The network lifetime TN was calculated as,

TN = ωG, (6.3)

where G ≤ K was the number of available and feasible subsets activated and ω ∈ (0, 1] the

granularity or activation time interval of a subset Sj . Every time a sensor was selected as part
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Chapter 6 Forecasting for energy efficient spectrum sensing

of a feasible subset, its residual lifetime was decreased by ω units of time, i.e. tij = tij − ω.

Once an individual sensor’s lifetime had been depleted, it could no longer be activated.

In this chapter, the problem has been reformulated as a linear integer programming problem

(as described in [64]) and two greedy algorithms have been considered to solve it. Namely

implicit enumeration (IE) and the λ-greedy (λG) algorithm [64]. Simulation results, where

these algorithm are complemented by SOF, will be presented in Section 6.4.

6.2.2 Implicit enumeration

For the IE approach, based on Equation (6.2), a least weighted sub-problem (LWSP) was set

up as follows,

min
xi

M
∑

i=1

wixi, (6.4)

s.t. 1 −
M
∏

i=1

(1 − xiPd,i) ≥ Qd,

1 −
M
∏

i=1

(1 − xiPf,i) ≤ Qf ,

xi ∈ {0, 1} ,

where wi is the weight of the ith sensor and xi = 1 only if si ∈ Sj . The non-linear constraints

of this LWSP were then transformed into linear constraints using the following transforma-

tion,










ai =
ln(1−Pd,i)

ln(1−Qd)
> 0,

bi =
ln(1−Pf,i)

ln(1−Qf )
> 0. i = 1, 2, . . . ,M

The non-linear problem could thus be reformulated as the following linear integer multi-

dimensional knapsack problem,

min
xi

M
∑

i=1

wixi, (6.5)

s.t.
M
∑

i=1

aixi ≥ 1,

M
∑

i=1

bixi ≤ 1,

where wi, ai, bi > 0 and xi ∈ {0, 1}.
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Chapter 6 Forecasting for energy efficient spectrum sensing

6.2.3 λ-Greedy algorithm

For the λG approach, a Lagrangian multiplier was introduced. The second constraint in

Equation (6.5) was thus moved to the objective function. In this case the LWSP was formu-

lated as follows,

min
xi

M
∑

i=1

(wi + λbi)xi, (6.6)

s.t.
M
∑

i=1

aixi ≥ 1,

wi, ai, bi > 0,

where wi, ai, bi > 0, λ ≥ 0 and xi ∈ {0, 1}. To fill the knapsack, sensor node efficiency was

calculated as,

ei =
ai

(wi + λbi)
. (6.7)

The following expression was then used to calculate the critical values of the Lagrangian

multiplier λ,

λ(i, j) =
ajwi − aiwj
aibj − ajbi)

, (6.8)

where ai

(wi+λbi)
and

aj

(wj+λbj) represent two arbitrary efficiency values. All positive values for

λ as well as the extreme cases of λ = 0 and λ = ∞ were considered so as to find the best

sub-optimal solution.

6.3 FORECASTING SPECTRAL OPPORTUNITIES

Since power is consumed every time a sensing node is activated, EE would be further improved

if SS regularity could be reduced. This could be achieved by introducing SOF. If it is assumed

that SOF can be performed with a reasonable level of accuracy, then SS decisions could be

replaced by the predicted status of a particular sensing node, as was considered in [80]. This

means that the number of SS operations required of each node could be reduced, and thus

the lifetime of each sensor would be improved. If the sensing period is denoted as ts and the

number of sensing periods that a forecast is made for is denoted by kfr, then the amount

of time that could be saved by SOF in between sensing operations, is kfrts (assuming that
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Chapter 6 Forecasting for energy efficient spectrum sensing

the time and energy spent on SOF is negligible). In other words, for every SS operation kfr

SS operations could be replaced by forecast values. An example of the benefit that this may

have, on energy consumption, is illustrated in Figure 6.2.

Considering the description provided for Pd,i and Pf,i in Section 2.3.3, let the probability of

detection, given that a forecast was made Pd|fr,i, be given as,

Pd|fr,i =Pr {Di = 1|H1, F} (6.9)

=Pd,iPfr,i,

where F is the condition that a forecast was made. The probability of obtaining a correct

forecast at sensor node i is denoted by Pfr,i. This relationship is based on the assumption

that Pfr,i is independent of Pd,i. To accommodate for the possibility of SS and forecasting

errors, let the probability of obtaining an error, given that a forecast was made Pe|fr,i, be

given as,

Pe|fr,i =Pr {Di = 1|H0, F} + Pr {Di = 0|H1, F} , (6.10)

=Pe,iPfr,i.

The assumption is then made that Pe|fr,i can be described as,

Pe|fr,i = Pf |fr,i + Pmd|fr,i, (6.11)

where Pf |fr,i is the probability of false alarm, given that a forecast was made and Pmd|fr,i

is the probability of miss-detection given that a forecast was made. But, Pmd|fr,i = 1 −
Pd|fr,i, therefore, substituting Equation (6.11) into Equation (6.10) leads to the following

expression,

Pe|fr,i = Pfr,i(Pf,i + 1 − Pd,i). (6.12)

ts tskfrts

E
n

er
g
y

tskfrts

Figure 6.2: Illustration of the impact that SOF could have on energy consumption.
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Chapter 6 Forecasting for energy efficient spectrum sensing

Equation (6.9) and Equation (6.11) can then be expanded such that,

Pe|fr,i = Pf |fr,i − Pd,iPfr,i + 1. (6.13)

Then Equation (6.12) and Equation (6.13) can be solved to obtain an expression for Pf |fr,i,

such that,

Pf |fr,i = Pfr,i(1 + Pf,i) − 1. (6.14)

When SOF is combined with optimal scheduling, Pd,i is replaced by Pd|fr,i and Pf,i is replaced

by Pf |fr,i in Equation (6.2).

6.4 ENERGY EFFICIENCY SIMULATION

Simulations were run to compare the effect that SOF had on TN . Together with SOF, the IE

and λG optimisation methods were compared with random subset selection. The complexity

of these approaches was also considered. All results presented represent the average of 1000

simulation iterations.

6.4.1 Parameters

All simulations presented in this section were run for a range of sensor deployments 2 ≤ M ≤
20 and a base granularity of ω = 0.1 was assumed for all feasible subsets Sj . In accordance

with the IEEE 802.22 standard’s recommendations for spectrum sensing [134], cooperation

thresholds of Qd = 0.9 and Qf = 0.1 were employed. Also, based on the work presented in

[128], the OR rule was chosen for performing cooperative SS. The following specific simulation

parameters were used to generate the simulation results.

6.4.1.1 Sensor node distribution

To simplify calculations, only the distributions of Pd and Pf were considered and not the

actual physical locations of the sensor nodes. Two different scenarios were considered (il-

lustrated in Figure 6.3). In the first scenario a standard uniform distribution U(x) was

employed,

UM (x) =











1
b−a , a ≤ x ≤ b

0. x < a or x > b
(6.15)

where a = 0 and b = 1. In the second scenario variations of the Rayleigh distribution were
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Figure 6.3: Sensor distribution of Pd and Pf for the uniform (top) and Rayleigh scenarios

(bottom).

considered. For Pf , the following amplitude scaled Rayleigh distribution was employed,

RM (x, σ) =
0.2x

σ2
e(−x2/2σ2), (6.16)

with the scale parameter of the distribution chosen to be σ = 1. However, for Pd, Equation

(6.16) was changed to be 1 −RM (x, σ).

6.4.1.2 Forecasting parameters

In this chapter Pfr,i was calculated using the normalised least mean square (NLMS) method,

described in Chapter 4. Only prediction lengths of kfr = [0; 1; 5; 10] were considered (i.e.

kfr = 0 means that no forecast was made and kfr = 10 means that a forecast was made ten

sensing periods into the future). The values employed for kfr are listed in Table 6.1.

Table 6.1: Table of Pfr versus kfr calculated for a single SU using the NLMS prediction

method.

kfr 0 1 5 10

Pfr 1.0 0.76 0.64 0.63
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Chapter 6 Forecasting for energy efficient spectrum sensing

When SOF was employed the granularity ωfr, used to calculate TN in Equation (6.3), was

scaled by kfr such that,

ωfr = ω (kfr + 1) , (6.17)

where ω is the granularity that would have been employed had no forecast been made.

6.4.1.3 Cooperation thresholds

The effect that different cooperative detection thresholds had on EE was also investigated. A

range of cooperative detection Qd = {0.6; 0.7; 0.8; 0.9} and false alarm Qf = {0.1; 0.2; 0.3; 0.4}
threshold values were considered. For these simulations only the uniform distribution was

considered for Pd and Pf with kfr ∈ {1, 10}.

6.4.2 Simulation results

6.4.2.1 Forecasting

The effect that SOF had on TN is illustrated in Figure 6.4 and Figure 6.5. Results obtained

under the uniform distribution are denoted by subscript U and those obtained under the

Rayleigh distributions are denoted by subscript R. For both distribution scenarios a clear

improvement in TN was evident when compared with the approach proposed in [64], where

kfr = 0. This was in spite of the fact that SOF accuracy decreased when kfr was increased,

as shown in Table 6.1. Considering a scenario where M = 20 sensors, the IE approach was

followed and the sensing nodes were uniformly distributed, it can be seen that even for single

step ahead prediction, when kfr = 1, TN had improved by 2.4 time samples compared with

when SOF was not employed (kfr = 0). However, when kfr = 10, TN had substantially

improved to 21.2 time samples longer. For the Rayleigh distributed case an improvement

of 54.8 time samples was observed (a combined power reduction of 5.48 W using the device

described in [129]).

From the plot shown in Figure 6.5, where M = 20, it is evident that a linearly increasing

relationship existed between TN and kfr. As expected, the IE approach performed slightly

better than the λG approach. Both of these optimisation approaches performed better than

when random scheduling (denoted RD) was employed. For example, using the λG and IE ap-

proaches, when kfr = 5, lead to an approximate increase in TN over random scheduling of 1.6
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Figure 6.4: Simulated network lifetime TN for various values of M and kfr.
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Figure 6.5: Simulated TN for various values of kfr when M = 20.

and 2.6 time samples respectively for the uniformly distributed case. For the Rayleigh distrib-

uted case, respective increases of approximately 26.9 and 20.4 time samples were observed.

This improvement over random scheduling was also found to increase as kfr was increased.

This means that the sensor node network is able to remain operational for a longer period

of time when SOF is employed and that increasing kfr improves the benefit proportionally.
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Chapter 6 Forecasting for energy efficient spectrum sensing

However, in reality there would be practical limitations on how large kfr could become be-

fore the decrease in SOF accuracy would lead to a violation of the constraints of Equation

(6.2).

6.4.2.2 Algorithm complexity

The normalised average simulation time of each algorithm was measured and assumed to

provide an indication of algorithm complexity. The normalised simulation times Ts for both

distribution scenarios are presented, on a logarithmic scale, in Figure 6.6 and Figure 6.7.

In Figure 6.6 an exponential increase in Ts was observed, as M was increased, for both

distribution scenarios. A proportional relationship between Ts and TN was also evident. This

meant that Ts also increased as kfr was increased, although, little difference was observed

between the values obtained for Ts when kfr = 5 and when kfr = 10. In Fig 6.7, the

IE and λG approaches were compared with random scheduling when SOF was employed for

M = 20. The IE and random approaches clearly exhibited the highest complexity, with the

IE approach having a Ts that was 20% shorter than random scheduling (under the uniform

scenario with kfr = 10). However, the λG approach was found to be significantly less complex

than either of them with a Ts that was 99% shorter under the same conditions.
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Figure 6.6: Simulations times Ts for various values of M and kfr.
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Figure 6.7: Simulated Ts for various values of kfr when M = 20.

6.4.2.3 Node distribution

Results obtained under the two different sensor node distributions, when M = 20, are sum-

marised in Table 6.2 (IE approach) and Table 6.3 (λG approach) respectively. The absolute

percentage difference between the results obtained under the different distributions has also

been included for both TN (%|∆TN |) and Ts (%|∆Ts|).

Under both distribution scenarios, TN as well as Ts were found to be much higher under

the Rayleigh distributed scenario (%|∆TN |≈62% and %|∆Ts|≈95% longer when kfr = 10).

Table 6.2: Network lifetime and complexity for different sensor node distributions for the

IE approach when M = 20.

kfr TN,U TN,R %|∆TN | Ts,U Ts,R %|∆Ts|

0 0.304 0.498 38.96 0.0038 0.0048 19.908

1 2.738 11.77 76.74 0.0111 0.2446 95.431

5 11.36 30.79 63.11 0.0447 0.8470 94.720

10 21.48 55.34 61.26 0.0624 0.8578 92.730
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Chapter 6 Forecasting for energy efficient spectrum sensing

Table 6.3: Network lifetime and complexity for different sensor node distributions for the

λG approach when M = 20.

kfr TN,U TN,R %|∆TN | Ts,U Ts,R %|∆Ts|

0 0.242 0.386 37.31 0.00086 0.0008 7.273

1 2.207 9.987 77.90 0.00087 0.0010 11.11

5 9.725 27.64 64.82 0.00087 0.0009 4.000

10 18.41 48.81 62.28 0.00087 0.0009 1.695

This was because Pd and Pf were concentrated closer to the cooperation thresholds, which

meant that a larger number of nodes met the cooperation criteria.

Under both scenarios, it was found that Ts for the IE approach was much longer than for

the λG approach although the λG approach still achieved acceptable results (consistent with

the findings of [64]). It was also evident that Ts grew exponentially as kfr was increased for

the IE approach, but remained relatively constant for the λG approach. For energy efficient

SS the λG approach should thus be combined with SOF, where kfr is large but within the

constraints of Equation (6.2).

6.4.2.4 Cooperative detection and false alarm threshold

The TN for different values of Qd and Qf is illustrated in Figure 6.8. Firstly, a fixed value

of Qf = 0.1 was set and TN observed for a range of Qd values, shown on the left hand side

of the figure. It was evident that there was a linear decrease in TN as Qd was increased.

Secondly, a fixed value of Qd = 0.9 was set and TN observed for a range of Qf values, shown

on the right hand side of the figure. In this case an increase in TN was observed as Qf was

increased.

From these graphs it can be seen that TN generally decreases, and that the EE benefit of

employing SOF also decreases, as the detection and false alarm thresholds become more

stringent. For example, consider the plot on the left hand side of Figure 6.8. For the IE

algorithm when Qd = 0.6, TN is 23.2 time samples longer when Kfr = 10 than when Kfr = 1.

However, TN is only 7.4 times samples longer when Qd = 0.9.
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Figure 6.8: Simulated TN for various values of Qd and Qf (uniform distribution with

kfr ∈ {0, 10}).

6.5 CONCLUSION

Accurate SS is a critical function of CRNs that allows the network to operate in an efficient

and unobtrusive manner. As discussed in Chapter 2 and Chapter 5, there is a clear benefit to

CRNs when SUs cooperate with each other to perform SS and SOF. Unfortunately, SS places

additional power demands on the power consumption of the cooperating sensing devices. If

these devices are energy constrained, this can have negative consequences for the lifetime

of the cooperating network of SUs. In this chapter, the combination of SOF and optimal

sensor node scheduling was proposed as a way to reduce the power demands placed on

sensing devices by limiting the overall number of SS operations required by each sensing

node. Simulation results indicated that the combination of reasonably accurate SOF and

optimal scheduling lead to significant improvements in the collective lifetime of the sensor

node network. A positive linear relationship between network lifetime and forecast length

was evident. The extent of the benefit that SOF provided was also found to be influenced

by the statistical distribution of the participating sensor nodes as well as the stringency of

the cooperative detection and false alarm thresholds. The integration of SOF and optimal

sensor node scheduling was thus found to be of great advantage to the combined lifetime of

the sensor node network.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 SUMMARY OF WORK

The work described in this thesis may be summarised as follows:

• Background on improving spectral efficiency

Background information, in the form of a comprehensive literature review that covered

a number technologies and techniques that could be used to improve spectral efficiency,

was presented in Chapter 2. Technologies such as fifth generation networking, TVWS

and GLSDBs, as well various South African regulatory aspects, were discussed. A

spectrally efficient technology, known as cognitive radio, was then introduced followed

by a discussion on some of the important functions associated with this technology.

Spectrum sensing, where information is gathered about the radio environment, was

identified as one the most critical of these functions. Various spectrum sensing

techniques were presented and the concept of cooperative sensing was discussed. A

discussion of some of the techniques that could be used to model spectrum usage

behaviour was also included.

• Characterisation of spectrum occupancy in the South African context

In Chapter 3, the findings of an extensive spectrum occupancy measurement campaign

were presented. The chapter began with a discussion on how to calculate spectrum

occupancy and a novel noise threshold detection technique was presented. The

details of a number of spectrum measurement campaigns, carried out at various

locations in South Africa’s Gauteng province, including the Hatfield campus of the
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University of Pretoria and Pinmill Farm in Johannesburg, were discussed. The

bands measured covered the spectra associated with TV broadcasting and mobile

cellular communication. It was found that a number of spectral opportunities

currently exist in the TV broadcast bands that could be exploited by TVWS devices

and other dynamic spectrum access based technologies. Conversely, the mobile

cellular bands were found to be very well utilised and in same instances completely

saturated, particularly in the bands around 900 MHz. This suggests that mobile

operators in South Africa are currently in need of additional spectrum resources, a

need that will most likely continue to increase in the future (as discussed in Section 1.1).

• Primary user traffic prediction

Prediction of primary user traffic, by a single secondary user, was investigated in

Chapter 4. Different types of theoretical primary user traffic patterns were classified

and a low-complexity prediction method, called the occupancy window method, was

proposed. The performance of this method was compared with various other techniques

in the literature, both in terms of prediction accuracy and algorithm complexity, as

well as for different types of traffic conditions. Under certain traffic conditions, the

occupancy window method was found to have either comparable or better prediction

performance than the other methods, but with much lower computational complexity.

There were, however, a number of traffic conditions where the occupancy window

method was found to have poorer prediction performance than the other methods, but

always with a much lower degree of complexity.

• Improving traffic prediction through cooperation

In Chapter 5 the traffic prediction concept was expanded upon to include the use of

cooperation amongst secondary users. A simulation scenario was created where both

the benefits as well as the costs of cooperative prediction could be investigated. The

performance of the cooperative prediction scheme was investigated for a range of single

user prediction algorithm accuracies and under various noisy channel conditions. For

the scenarios investigated, it was found that cooperation always lead to improvements

in prediction accuracy, particularly as the number of cooperating SUs was increased.

An optimal cooperative forecasting problem was also formulated and a heuristic

proposed for solving it, which was shown to further improve prediction accuracy. Pre
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and post-fusion cooperation scenarios were compared and a higher degree of prediction

accuracy was observed for the former approach than for the latter. The improved

prediction performance of the pre-fusion approach did, however, come at a cost of

increased computational complexity, proportional to the number of cooperating sensor

nodes.

• Forecasting for energy efficient cooperative spectrum sensing

In Chapter 6 the concepts of primary user traffic prediction, and secondary user co-

operation, were applied to an energy consumption problem for a network of cooperating

secondary sensing nodes. The benefit of employing prediction was applied to an optimal

scheduling problem for sensor node activation as a way to reduce the power demands

placed on sensing devices, by limiting the overall number of spectrum sensing operations

required of each sensing node. It was found that prediction, or spectral opportunity

forecasting, combined with optimal scheduling helped to significantly prolong the life-

time of a cooperative cognitive radio based sensor node network. A positive linear

relationship was found between network lifetime and forecast length. The extent of this

benefit was found to be influenced by the statistical distribution of the participating

sensor nodes as well as the chosen cooperative detection and false alarm thresholds.

7.2 FUTURE RESEARCH

Extensions to this research may include the following:

• Diversified spectral occupation measurements

The work presented in Chapter 3 could be extended by conducting spectrum occupancy

measurement campaigns for a much wider and more diverse range of geographical

locations, within the same city and also between different cities within South Africa.

A comparison between measurements covering different population densities may also

be useful, e.g, spectral occupation in rural areas could be compared to that of urban

or suburban areas.

• Statistical predictions and geo-location spectrum databases

A further extension to Chapter 3 may include an extensive investigation to compare
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the effectiveness of statistical prediction methods with that of geo-location spectrum

databases for dynamic spectrum access in the TV broadcast bands. A investigation

into a hybrid approach to this problem might also prove to be useful.

• Optimal forecasting algorithm

A more advanced and complete optimal forecasting algorithm, than the one presented

in Chapter 5, could be developed. In this case the algorithm could draw on a broader

range of the factors influencing the accuracy of traffic prediction, e.g. knowledge about

the suitability of certain models to different traffic patterns and conditions could be

combined with knowledge about the historical correctness of different algorithms at a

particular geographical location. This approach might include an investigation into

the practical suitability of different algorithms to typical traffic patterns that may

occur in wireless communication networks, e.g. voice, video, file transfer or general

web browser traffic. An adaptive hybrid approach to the problem is suggested.

• Energy efficiency

Further investigation into how to make cognitive radio networks more energy efficient

is warranted, where the focus of the optimal forecasting algorithm could also be shifted

away from prediction accuracy towards optimal prediction as a tool for improved

energy efficiency.

• Application of measured data to simulation driven models

The simulation driven models presented in Chapters 4, 5 and 6 could be further

investigated by testing them against the measured data collected in Chapter 3.

Classification of the traffic patterns inherent to the measured data could form part of

this investigation.

• Hardware test-bed implementation

A possible next step would be to incorporate the concepts discussed in this thesis into

a cognitive radio network hardware test bed, so as to investigate the performance of

these techniques in the context of a more complete cognitive radio system and also to

garner a better understanding of the practicality of some of the theoretical concepts

presented in this thesis.
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APPENDIX A

DERIVATION OF THE MAXIMUM NORMAL

FIT METHOD

A.1 INTRODUCTION

In this appendix the expression for the noise threshold λi is derived.

A.2 NOISE THRESHOLD CALCULATION

Lemma A.2.1 Let the signal detection threshold λi be given by the following expression,

λi =
µsσ

2
n ± σnσs

√

2 ln (σn

σs
)(σ2

n − σ2
s) + µ2

s

σ2
n − σ2

s

(A.1)

where µs and σ2
s are the mean and variance of the information carrying component of a

received signal respectively and σ2
n is the variance of the noise component.

Proof Let the probability density functions of the information and noise components be,

fN (x) =
1

σn
√

2π
exp

(x− µn)2

2σ2
n

(A.2)

and

fS(x) =
1

σs
√

2π
exp

(x− µs)
2

2σ2
s

(A.3)

respectively.

To solve for x, let fN (x) = fS(x) such that,

1

σn
√

2π
exp

(x− µn)2

2σ2
n

=
1

σs
√

2π
exp

(x− µs)
2

2σ2
s

(A.4)
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Appendix A Derivation of the maximum normal fit method

This expression can be simplified and written in the form of a second order polynomial,

ax2 + bx+ c = 0, where the coefficient are given as,

a = x2(σ2
n − σ2

s) (A.5)

b = 2x(σ2
sµn − σ2

nµs) (A.6)

c = σ2
nµ

2
s − σ2

sµ
2
n − 2σ2

nσ
2
s ln (

σn
σs

) (A.7)

If λi = x, is the solution for Equation (A.4), then,

λi =
µsσ

2
n − µnσ

2
s ± σnσs

√

2 ln (σn

σs
)(σ2

n − σ2
s) + µ2

n + µ2
s − 2µnµs

σ2
n − σ2

s

(A.8)

But, under the assumption that fN = N (

0, σ2
n

)

, µn = 0 must be substituted into Eq. (A.8)

to give the following expression,

λi =
µsσ

2
n ± σnσs

√

2 ln (σn

σs
)(σ2

n − σ2
s) + µ2

s

σ2
n − σ2

s

(A.9)
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APPENDIX B

TSHWANE METROPOLITAN AREA

TELEVISION CHANNEL ASSIGNMENTS

B.1 INTRODUCTION

Television channels assigned to the Tshwane metropolitan area are listed in Table B.1 for

the very-high frequency (VHF) bands and in Table B.2 for the ultra-high frequency (UHF)

bands, together with the broadcast site from which transmissions are made for each channel

[122]. The broadcast sites are: Gelukskroon Pretoria (GPT), Pretoria North (PN), Sunnyside

(SD), Menlo Park (MP) and the council for scientific and industrial research (CSIR).

B.2 VERY-HIGH FREQUENCY CHANNEL ASSIGNMENTS

Table B.1: VHF channel assignments for the Tshwane metropolitan area.

Channel Frequency Site Station

5 183.25 GPT SABC2

8 207.25 GPT SABC1

11 231.25 GPT SABC3
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Appendix B Tshwane metropolitan area television channel assignments

B.3 ULTRA-HIGH FREQUENCY CHANNEL ASSIGNMENTS

Table B.2: UHF channel assignment for the Tshwane metropolitan area.

Channel Frequency Site Station

21 471.25 GPT MNET

25 503.25 GPT CSN

27 519.25 SD TSHW

29 535.25 GPT ETV

33 567.25 GPT, PN, SD, MP DVB-T2

35 583.25 GPT, PN, SD, MP, CSIR DVB-H

37 599.25 PN ETV

38 607.25 SD ETV

40 623.25 PN SABC2

44 655.25 MP CSN

46 671.25 SD CSN

48 687.25 MP ETV

50 703.25 PN MNET

52 719.25 PN SABC1

53 727.25 MP SABC2

54 735.25 GPT, PN, SD, MP DVB-T2

55 743.25 SD SABC2

56 751.25 PN CSN

57 759.25 MP SABC1

58 767.25 GPT, PN, SD, MP DVB-T2

59 775.25 SD SABC3

61 791.25 MP MNET

63 807.25 SD SABC1

65 823.25 MP SABC3

67 839.25 SD MNET
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