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Abstract

The fast synchronization problem for a class of complex dynamical networks
with time varying delay by means of periodically intermittent control is stud-
ied. Based on the finite-time stability theory and periodically intermittent
control technique, some sufficient synchronization criteria are obtained to
guarantee the fast synchronization. Furthermore, the essential condition for
guaranteeing periodically intermittent control realized in finite time is given
in this paper. Finally, two examples are illustrated to verify the proposed
theoretical results.
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1. Introduction

Complex networks have recently received great attention in wide fields of
science, engineering and society. Networks exist everywhere in nature and
our daily life, such as social networks, ecosystems, the internet, World Wide
Web, neural networks, and so on. Generally, a complex network can be
described by a large set of nodes and edges interconnecting these nodes.

Among various dynamical behaviors, synchronization is a significant and
interesting phenomenon. Synchronization plays a very important role in
many contexts, such as synchronous communication, signal synchronization
(for example, synchronization between video and audio signals), firefly bio-
luminescence synchronization, geostationary satellites, synchronous motors,
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database synchronization [1-5]. So far, many effective control approaches
have been proposed to achieve synchronization, such as adaptive control [6-
7], feedback control [8-9], pinning control [10-11], impulsive control [12-13]
and intermittent control [14-19].

Recently, the discontinuous feedback control approaches, such as impul-
sive control and intermittent control, have received a lot of focuses since they
are practical and easy implementation in engineering such as transportation
and communication. Intermittent control has a nonzero control width, while
impulsive control is only activating at some isolated instants. On the other
hand, as a special form of switching control, intermittent control can be divid-
ed into two classes [16]: state-dependent switching rule and time-dependent
switching rule. The former implies that the control operation is activated on-
ly when the states enter to a certain region which is often pre-given, while the
latter rule activates the control only in some finite time intervals, the system
evolving freely outside these intervals. Compared with continuous control
methods, intermittent control is more efficient because the system output
is measured intermittently rather than continuously [17]. In view of these
merits, some dynamic systems with or without time delays were discussed
by using the intermittent feedback control, and some promising results were
achieved [14-21].

Nevertheless, to the best of our knowledge, most researches focus on
the asymptotical or exponential synchronization of networks via intermit-
tent control [14-19]. This means that the trajectories of the slave system can
reach to the trajectories of the master system over the infinite horizon by
using intermittent control method. From a practical point of view, it is a
challenging but significant that the synchronization objective is realized in a
finite time [22-28]. In order to achieve a convergence time in a given time,
finite-time intermittent control methods can work out efficiently. Periodi-
cally intermittent feedback control scheme [20] and periodically intermittent
adaptive control method [21] are designed to control the complex dynamical
networks to achieve finite-time synchronization. This paper gives some new
contributions for fast synchronization of systems via intermittent control.
Fast synchronization means the convergence time very fast. Fast stability
has been firstly reported in Ref. [29]. Different control problems to study
fast convergence are given in Refs. [30, 31]. Fast tracking has been applied
in Heating, Ventilation and Air Conditioning (HVAC) control systems. To
obtain a high thermal comfort, we hope the controller can fast track the
setpoint. In order to save energy consumption by the buildings HVAC, the
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intermittent control technique can be adopted, especially the price of electric-
ity is used under time-of-use (TOU) policy. Therefore, fast synchronization
of systems via intermittent control is a very interesting topic.

The contribution of this paper is given as follow: firstly, the aim of this
paper is to improve the convergence time for caparisoning with the previous
work [20-21]; secondly, two types intermittent control methods (from control
to non-control and from non-control to control) are designed; what’s more,
the control width is less than the convergence time, which is to guarantee
the finite-time intermittent control, but this important condition has been
neglected in [20-21].

The paper is organized as follows. In Section 2, some useful preliminar-
ies, lemmas, assumptions and definition are presented. In Section 3, the fast
synchronization criteria for the complex dynamical networks via periodically
intermittent control are obtained. Numerical examples are given to demon-
strate the effectiveness of the main results in Section 4. Conclusions are
finally drawn in Section 5.

2. Preliminaries

Consider a general complex dynamical network consisting of N dynamical
nodes with linear couplings, which is described by

ẋi(t) = f(xi(t)) + c1

N∑
j=1

aijΓ1xj(t) + c2

N∑
j=1

bijΓ2xj(t− τ(t)),

i = 1, 2, · · · , N,

(1)

where xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Rn is the state vector of the ith
node; f : Rn → Rn is a continuously differential nonlinear vector function;
c1 > 0 and c2 > 0 are the non-delay and time-varying delay coupling strength-
s, respectively. Γ1 = diag(γ11 , γ

2
1 , . . . , γ

n
1 ) and Γ2 = diag(γ12 , γ

2
2 , . . . , γ

n
2 ) are

positive definite diagonal matrices, which represent the inner connection ma-
trices between each pair of nodes. A = (aij)N×N , B = (bij)N×N are the
non-delay and time-varying delay weight configuration matrices, respective-
ly. The entries aij is defined as follows: if there is a link from the node i to
the node j (i ̸= j), then aij ̸= 0, bij ̸= 0; otherwise aij = 0, bij = 0, and the

diagonal elements of matrices A,B are defined as aii = −
∑N

j=1,j ̸=i aij, bii =

−
∑N

j=1,j ̸=i bij. Since the networks in this paper are direct, aij ̸= aji and
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bij ≠ bji (i, j = 1, 2, . . . , N). The coupling time-varying delay τ(t) is a
bounded and continuously differentiable function, which means there exist
positive constants ε and τ satisfying 0 ≤ τ̇(t) ≤ ε < 1 and 0 ≤ τ(t) ≤ τ .

To realize finite-time synchronization between two coupled complex net-
works with time-varying delay via periodically intermittent control, we refer
to the model (1) as the drive network, and the corresponding response net-
work is given by the following equation:

ẏi(t) = f(yi(t)) + c1

N∑
j=1

aijΓ1yj(t) + c2

N∑
j=1

bijΓ2yj(t− τ(t)) + ui(t),

i = 1, 2, · · · , N,

(2)

where yi(t) = (yi1(t), yi2(t), . . . , yin(t))
T ∈ Rn is the response state vector of

the node i of system (2), and ui(t) (i = 1, 2, · · · , N) are the intermittent
controllers, which are described as follows:{

ui(t) = −ηiei(t)− k (λmax(P ))
1+µ
2

λmin(P )
sgn(ei(t))|ei(t)|µ, lT ≤ t < lT + δ1,

ui(t) = 0, lT + δ1 ≤ t < (l + 1)T,
(3)

where ηi > 0 is a positive constant called control gain; denotes λmax(P )
(λmin(P )) as the maximum (minimum) eigenvalue of the positive definite di-
agonal matrix P , respectively; k > 0 is a tunable real constant; the real num-
ber µ satisfies 0 < µ < 1. T > 0 is the control period, and δ1 > 0 is called the

 control width (control duration). θ˜ = δ1/T is the ratio of the control width
δ1 to the control period T called control rate, and satisfies 0 < θ̃ < 1. ι =
{1, 2, . . . , ς} is a finite natural number set and l ∈ ι. ei(t) = yi(t)−xi(t), i =
1, 2, . . . , N are the synchronization errors between the drive network (1)
and the response network (2); |ei(t)|µ = (|ei1(t)|µ, |ei2(t)|µ, . . . , |ein(t)|µ)T ;
sgn(ei(t)) = (sgn(ei1(t)), sgn(ei2(t)), . . . , sgn(ein(t)))

T , then we have the fol-
lowing error systems

ėi(t) = f(ei(t)) + c1
∑N

j=1 aijΓ1ej(t) + c2
∑N

j=1 bijΓ2ej(t− τ(t)),

+ ui(t), lT ≤ t < lT + θ̃T, i = 1, 2, · · · , N,
ėi(t) = f(ei(t)) + c1

∑N
j=1 aijΓ1ej(t) + c2

∑N
i=1 bijΓ2ej(t− τ(t)),

lT + θ̃T ≤ t < (l + 1)T, i = 1, 2, · · · , N.

(4)

Remark 1. There are many control schemes to realize complex networks
to get synchronization, such as feedback control, pinning control, adaptive
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control and so on. All the control schedules are based on the continuous
closed-loop controllers. Most of practical situations could use the continuous
controllers. However, some fields are no need to use the continuous con-
trol method, such as microgrid control [32], wind energy conversion control
[33], because of controls continuously work are abound to add costs. These
controls are intermittent. Hence, it is worth to investigate the intermittent
control problem.

In this paper, we give the following definition of finite-time synchroniza-
tion for the networks (1) and (2).

Definition 1. The systems (1) and (2) are said to achieve local syn-
chronization in finite-time t∗ if there exists a constant l such that for any
solutions of systems (1) and (2) with different initial values ϕ, φ ∈ Ω = {ψ ∈
C([t0 − τ, t0], R

n), ||ψ|| < l}, and t∗ depends on the initial state vector values
ϕ and φ, for any t ≥ t∗, such that

||yi(t)− xi(t)|| = 0, as t→ t∗

holds for any i = 1, 2, . . . , n, where x(t) = (x1(t), . . . , xn(t))
T ∈ Rn and

y(t) = (y1(t), . . . , yn(t))
T ∈ Rn. Furthermore, if Ω = C([−τ, 0], Rn), systems

(1) and (2) are said to achieve global synchronization in finite-time t∗.
In order to obtain the main results, we give the following assumptions

and lemmas.
Assumption 1. Assume that there exist a positive definite diagonal

matrix P = diag(p1, . . . , pn) and a diagonal matrix Θ = diag(θ1, . . . , θn),
such that f(·) satisfies the following inequality:

(y − x)TP (f(y)− f(x)−Θ(y − x)) ≤ −ξ(y − x)T (y − x), (5)

for some ξ > 0, all x, y ∈ Rn.
The function f(·) ∈ QUAD (P,Θ). it can be shown that QUAD assump-

tion holds for several well-known chaotic oscillators, such as the Lorenz’s
systems, Chua’s systems, Rössler’s systems, and so on. This assumption has
been widely given in the previous work ([10-11], [20-21]).

Assumption 2. There exists a continuous function g : [0,∞) → [0,∞)
with g(0) ≥ 0, for any 0 ≤ u ≤ t, such that

g(t)− g(u) ≤ −λ
∫ t

u

(g(s))ρds,

for any 0 < ρ < 1 and λ > 0.
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The following lemmas will play an important role in later analysis, which
guarantee the complex dynamical networks achieving fast synchronization by
using two types intermittent controller techniques, its initial idea comes from
[20, 21].

Lemma 1 . Assume that a continuous, positive-definite function V (t)

defined on a neighborhood Ũ ∈ Rn of the origin, and satisfy the following
differential inequality:

V̇ (x(t)) ≤ −αV η(x(t))− pV (x(t)), ∀x(t) ∈ Ũ\{0}, (6)

 where α > 0, 0 < η < 1, p > 0 are constants. Then, for any given x(t0), V (t)
satisfies the following inequality:

V 1−η(x(t))exp{(1− η)px(t)} ≤V 1−η(x(t0))exp{(1− η)px(t0)}+
α

p
[exp{

(1− η)px(t0)} − exp{(1− η)px(t)}],
t0 ≤ t ≤ ts,

(7)
and

V (x(t)) ≡ 0, ∀t ≥ ts, (8)

with ts given by

ts =
ln(1 + p

α
V 1−η(0))

p(1− η)
, (9)

for t0 = 0.
Proof. Consider the following differential equation:

Ẋ(t) = −αXη(t)− pX(t), X(t0) = V (t0). (10)

By multiplying exp{pt}, we have

d(exp{pt}X(t))

dt
= −α(exp{pt}X(t))ηexp{(1− η)pt}. (11)

Although this differential equation does not satisfy the global Lipschitz con-
dition, the unique solution to this equation can be found as

X1−η(t)exp{(1− η)pt} =X1−η(t0)exp{(1− η)pt0}+
α

p
[exp{(1− η)pt0} − exp{(1− η)pt},

t1 ≥ t ≥ t0,

(12)
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and X(t) ≡ 0, ∀t ≥ t1.
It is direct to prove that x(t) is differential for t > t0. From the compar-

ison lemma, one obtains

V 1−η(x(t))exp{(1− η)px(t)} ≤V 1−η(x(t0))exp{(1− η)px(t0)}+
α

p
[exp

{(1− η)px(t0)} − exp{(1− η)px(t)}],
t0 ≤ t ≤ ts,

(13)
and V (x(t)) ≡ 0, ∀t ≥ ts, with ts given in (9).

Lemma 2. Suppose that function V (t) is continuous and non-negative
when t ∈ [0,∞) and satisfy the following conditions:{

V̇ (t) ≤ −αV η(t)− p1V (t), lT ≤ t < lT + θT,

V̇ (t) ≤ p2V (t), lT + θT ≤ t < (l + 1)T,
(14)

where α, T, p1, p2 > 0, 0 < η, θ < 1, l ∈ ι, if

θ̃p1 − (1− θ)p2 > 0, (15)

then the following inequality holds:

V 1−η(t)exp{(1− η)p1t}

≤exp{(1− η)(p1 + p2)(1− θ)t}
[
V 1−η(0)−

α

p1
(exp{(1− η)p1θt}exp{−(1− η)p2(1− θ)t} − 1)

]
, t ≥ 0.

(16)

Remark 2. Lemma 2 is given to investigate fast synchronization of
complex dynamical networks via the intermittent controllers (3).

Lemma 3 ( Jesen inequality [34]). If a1, a2, · · · , an are any positive
numbers and 0 < r < p, then

(
n∑

i=1

api )
1/p ≤ (

n∑
i=1

ari )
1/r.

Proposition 1: Suppose that there exists a continuous differential func-

tion H(β1, β2) =
ln

(
1+

β1V
1−µ
2 (0)

2k

)
1−µ
2

(
θβ1−(1−θ)β2

) with any positive constants 1 > µ >
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0, k, 1 > θ > 0, V (0) and β1, β2 ∈ (0,+∞), θβ1 − (1 − θ)β2 > 0. Then
∂H
∂β1

< 0, ∂H
∂β2

> 0.

Proof: Calculating the derivative of H(β1, β2) with β1, we have

∂H

∂β1
=

V
1−µ
2 (0)(1−µ)(θβ1−(1−θ)β2)

4k

(
1+

β1V
1−µ
2 (0)

2k

) − ln
(
1 + β1V

1−µ
2 (0)

2k

)
(1−µ)θ

2

(1−µ
2
)2(θβ1 − (1− θ)β2)2

.

Denote F (β1, β2) =
V

1−µ
2 (0)(1−µ)(θβ1−(1−θ)β2)

4k

(
1+

β1V
1−µ
2 (0)

2k

) −ln
(
1+ β1V

1−µ
2 (0)

2k

)
(1−µ)θ

2
, F (0) =

0, the derivative of F (β1, β2) with respect to β1 is given as follows:

∂F

∂β1
= −2V 1−µ(0)(1− µ)θ1β

2
1(

4k + 2β1V
1−µ
2 (0)

)2 < 0.

Therefore, ∂H
∂β1

< 0.

By differentiating the H(β1, β2) with β2, we get

∂H

∂β2
=

(1− θ) ln
(
1 + β1V

1−µ
2 (0)

2k

)
1−µ
2
(θβ1 − (1− θ)β2)2

> 0.

This completes the proposition.

3. Fast synchronization criteria

In this section, we address the finite-time synchronization problems by
means of finite-time theory and Lyapunov-based method. Two different in-
termittent control techniques are designed to control networks for achieving
fast synchronization.

Type 1. Using intermittent controllers (3).
Theorem 1. Suppose that Assumptions 1 and 2 hold, there exist positive

constants η1, η2, . . . , ηN , ξ, p1, p2 and a positive definite diagonal matrix
P > 0 such that the following conditions hold: c1(A⊗ PΓ1) + (IN ⊗ PΘ) + (

c2exp{pτ}
2(1−ε)

− ξ

− k
λ
)(IN ⊗ In)− c1(Ξ⊗ P ) + p

2
(IN ⊗ P ) c2

2
(B ⊗ PΓ2)

∗ −( c2
2
− k

λ
)(IN ⊗ In)

 < 0,

(17)
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 (−ξ + c2exp{pτ}
2(1−ε)

)(IN ⊗ In) + (IN ⊗ PΘ)+

c1(A⊗ PΓ1)− q
2
(IN ⊗ P ) c2

2
(B ⊗ PΓ2)

∗ − c2
2
(IN ⊗ In)

 < 0, (18)

θ̃p− (1− θ̃)q > 0, (19)

θ̃ < min
{
1,

q

p+ q
+

√√√√√ ln
(
1 + pV

1−µ
2 (0)
α

)
1−µ
2
T (p+ q)

+
( q

2(p+ q)

)2 }
,

(20)

where Ξ = diag(η1, η2, . . . , ηN),Θ = diag(θ1, θ2, . . . , θn) and IN is the N ×N
identity matrix. Then under the periodically intermittent controllers (3), the
error systems (4) can converge to zero in a finite time

t ≤
ln
(
1 + pV

1−µ
2 (0)
α

)
1−µ
2
(θ̃p− (1− θ̃)q)

= T1, (21)

where V (0) =
∑N

i=1 e
T
i (0)Pei(0)+

c2exp{pτ}
2(1−ε)

∑N
i=1

∫ 0

−τ(0)
exp{ps}eTi (s)ei(s)ds,

ei(0) is the initial condition of ei(t).
Proof. Define the Lyapunov function as

V (t) = V1(t) + V2(t), (22)

where

V1(t) =
1

2

N∑
i=1

eTi (t)Pei(t), (23)

V2(t) =
c2exp{pτ}
2(1− ε)

N∑
i=1

∫ t

t−τ(t)

exp{p(s− t)}eTi (s)ei(s)ds. (24)

The derivative of (22) with respect to time along with the solution of (4) is
calculated as follows.

Case I: When lT ≤ t < (l + θ̃)T , for l ∈ ι,

V̇1(t) = −pV1(t) +
p

2

N∑
i=1

eTi (t)Pei(t) +
N∑
i=1

eTi (t)P ėi(t), (25)
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V̇2(t) =− pV2(t) +
c2exp{pτ}
2(1− ε)

N∑
i=1

[eTi (t)ei(t)−

exp{−pτ(t)}(1− τ̇(t))eTi (t− τ(t))ei(t− τ(t))]

≤− pV2(t) +
c2exp{pτ}
2(1− ε)

N∑
i=1

[eTi (t)ei(t)−

exp{−pτ}(1− ε)eTi (t− τ(t))ei(t− τ(t))].

(26)

Then, it follow from (25), (26), and Assumption 1 that

V̇ (t) ≤− pV (t) +
p

2

N∑
i=1

eTi (t)Pei(t) +
N∑
i=1

eTi (t)P ėi(t) +
c2exp{pτ}
2(1− ε)

N∑
i=1

[

eTi (t)ei(t)− exp{−pτ}(1− ε)eTi (t− τ(t))ei(t− τ(t))]

≤
N∑
i=1

{eTi (t)P [f(ei(t))−Θei(t)] + eTi (t)PΘei(t)+

c1

N∑
j=1

eTi (t)aijPΓ1ej(t) + c2

N∑
j=1

eTi (t)bijPΓ2ej(t− τ(t))+

p

2
eTi (t)Pei(t) + eTi (t)Pui(t)}+

c2exp{pτ}
2(1− ε)

N∑
i=1

eTi (t)ei(t)−

c2
2

N∑
i=1

eTi (t− τ(t))ei(t− τ(t))− pV (t)

≤− pV (t)− ξ

N∑
i=1

eTi (t)ei(t) + c2

N∑
i=1

N∑
j=1

eTi (t)bijPΓ2ej(t− τ(t))+

c1

N∑
i=1

N∑
j=1

eTi (t)aijPΓ1ej(t) +
c2exp{pτ}
2(1− ε)

N∑
i=1

eTi (t)ei(t)−

c2
2

N∑
i=1

eTi (t− τ(t))ei(t− τ(t))− c1

N∑
i=1

eTi (t)ηiPei(t)+

p

2

N∑
i=1

eTi (t)Pei(t) +
N∑
i=1

eTi (t)PΘei(t)− k

N∑
i=1

eTi (t)P sgn(ei(t))|ei(t)|µ. (27)
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Let e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N(t))

T , and we get

c1

N∑
i=1

N∑
j=1

eTi (t)aijPΓ1ej(t) = c1e
T (t)(A⊗ PΓ1)e(t), (28)

c2

N∑
i=1

N∑
j=1

eTi (t)bijPΓ2ej(t− τ(t)) = c2e
T (t)(B ⊗ PΓ2)e(t− τ(t)), (29)

c1

N∑
i=1

eTi (t)ηiPei(t) = c1e
T (t)(Ξ⊗ P )e(t), (30)

ξ

N∑
i=1

eTi (t)ei(t) = ξeT (t)(IN ⊗ In)e(t). (31)

Let λ > 0, from Assumption 2 and Lemma 3, we have

k

λ
[

N∑
i=1

eTi (t)ei(t)−
N∑
i=1

eTi (t− τ(t))ei(t− τ(t))]

≤ −k
N∑
i=1

∫ t

t−τ(t)

(eTi (s)ei(s))
1+µ
2 ds

≤ −k(
N∑
i=1

∫ t

t−τ(t)

eTi (s)ei(s)ds)
1+µ
2 .

(32)

Since
∑N

i=1 |ei(t)|T |ei(t)|µ =
∑N

i=1

∑n
j=1 |eij(t)|1+µ and using Lemma 3, it

implied that

(
N∑
i=1

n∑
j=1

|eij(t)|µ+1)
1

1+µ ≥ (
N∑
i=1

n∑
j=1

|eij(t)|2)
1
2 . (33)

Hence,

N∑
i=1

n∑
j=1

|eij(t)|1+µ ≥ (
N∑
i=1

n∑
j=1

|eij(t)|2)
1+µ
2 = (

N∑
i=1

eTi (t)ei(t))
1+µ
2 . (34)
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Therefore, substitutings (28)-(34) into (27), we have

V̇ (t) ≤− pV (t)− k(
N∑
i=1

eTi (t)Pei(t))
1+µ
2 − k(

N∑
i=1

∫ t

t−τ(t)

eTi (s)ei(s)ds)
1+µ
2

+ eT (t)[c1(A⊗ PΓ1) + (
c2exp{pτ}
2(1− ε)

− k

λ
− ξ)(IN ⊗ In)−

c1(Ξ⊗ P ) + (IN ⊗ PΘ) +
p

2
(IN ⊗ P )]e(t) + c2e

T (t)(B ⊗ PΓ2)

c1(Ξ⊗ P ) + (IN ⊗ PΘ) +
p

2
(IN ⊗ P )]e(t) + c2e

T (t)(B ⊗ PΓ2)

e(t− τ(t))− (
c2
2
− k

λ
)eT (t− τ(t))(IN ⊗ In)e(t− τ(t))

≤− pV (t)− k(
N∑
i=1

eTi (t)ei(t))
1+µ
2 − k(

N∑
i=1

∫ t

t−τ(t)

eTi (s)ei(s)ds)
1+µ
2

=− pV (t)− 2
1+µ
2 k(

1

2

N∑
i=1

eTi (t)ei(t))
1+µ
2 − k(

c2exp{pτ}
2(1− ε)

)−
1+µ
2

(
c2exp{pτ}
2(1− ε)

N∑
i=1

∫ t

t−τ(t)

eTi (s)ei(s)ds)
1+µ
2

≤− pV (t)− αV
1+µ
2 (t),

where α = min{2 1+µ
2 k, (

c2exp{pτ}
2(1−ε)

)−
1+µ
2 k}. Then, V̇ (t) ≤ −αV 1+µ

2 (t)− pV (t).

Case 2: When (l + θ̃)T ≤ t < (l + 1)T , for l ∈ ι, we can do the similar
estimation as the case lT ≤ t < (l+ θ)T . Thus from Assumption 1, we have

V̇ (t) =− pV (t) + (p+ q)V1(t) +
N∑
i=1

eTi (t)P ėi(t) +
c2exp{pτ}
2(1− ε)

N∑
i=1

[eTi (t)ei(t)

− exp{−pτ}(1− τ̇(t))eTi (t− τ(t))ei(t− τ(t))]− q

2

N∑
i=1

eTi (t)Pei(t)

≤
N∑
i=1

{eTi (t)P [f(ei(t))−Θei(t)] + eTi (t)PΘei(t)−
q

2

N∑
i=1

eTi (t)Pei(t)+

c1

N∑
j=1

eTi (t)aijPΓ1ej(t) + c2

N∑
j=1

eTi (t)bijPΓ2ej(t− τ(t))}+ (p+ q)V (t)

12



+
c2exp{pτ}
2(1− ε)

N∑
i=1

eTi (t)ei(t)−
c2
2

N∑
i=1

eTi (t− τ(t))ei(t− τ(t))− pV (t)

≤− ξeT (t)(IN ⊗ In)e(t) + eT (t)(IN ⊗ PΘ)e(t) + c1e
T (t)(A⊗ PΓ1)e(t)

+ c2e
T (t)(B ⊗ PΓ2)e(t− τ(t)) +

c2exp{pτ}
2(1− ε)

eT (t)(IN ⊗ In)e(t)−
c2
2
eT (t− τ(t))(IN ⊗ In)e(t− τ(t))− q

2
eT (t)(IN ⊗ P )e(t) + qV (t)

≤qV (t),

which represents that V̇ (t) ≤ qV (t).
Namely, denotes 1+µ

2
= η, we have{

V̇ (t) ≤ −αV η(t)− pV (t), lT ≤ t < lT + θ̃T,

V̇ (t) ≤ qV (t), lT + θ̃T ≤ t < (l + 1)T.
(35)

Using Lemma 2, we obtain

V
1−µ
2 (t)exp

{1− µ

2
pt
}
≤exp

{1− µ

2
(p+ q)(1− θ̃)t

}[
V 1−η(0)

− α

p

(
exp

{1− µ

2
(pθ̃ − q(1− θ̃))t

}
− 1

)]
,

t ≥ 0.

(36)

By Lemma 1, we have

t ≤
ln
(
1 + pV

1−µ
2 (0)
α

)
1−µ
2
(pθ̃ − q(1− θ̃))

.

The proof of Theorem 1 is completed.
Remark 3. Inq. (20) should be given for achieving finite-time synchro-

nization via periodically intermittent control. If 1 > θ̃ > q
p+q

+√
ln

(
1+

pV
1−µ
2 (0)
α

)
1−µ
2

T (p+q)
+ ( q

2(p+q)
)2 , the error systems (4) would be finite-time syn-

chronized via continuous control, while this trivial case have been investigated

13



by many previous works [8, 24-27, 29]. Hence, this case is not discussed in
this paper.

Remark 4. From (21), we can easily see the role of the control rate θ̃, the
tunable constant k, the constant µ and the parameters p, q on finite-timely
synchronizing error systems (4), and the parameters θ̃, k, µ, p, q are the
decision variables of the convergence time. The role of the parameters µ, k
have been discussed by Ref. [26], and the convergence time determining by

 the parameter θ˜ has been studied by Refs. [20-21]. In this paper, we will
focus on the decision variables p, q influences the convergence time. Denotes

T (p, q) =
ln(1+

pV
1−µ
2 (0)
α

)
1−µ
2

(pθ̃−q(1−θ̃))
, from Proposition 1, it yields ∂T

∂p
< 0, we follow that

T (p) is the strictly monotone decreasing function for the variable p, and we
obtain that the function T (p, q) is the strictly monotone increasing function
with the variable q. Hence, the larger the parameter p is, the shorter the
convergence time is achieved; the larger the parameter q is, the longer for
the convergence time will be.

Remark 5. The convergence time of (21) is shorter than the convergence
time of Refs. [20-21]. This is the advantage of my proposed control scheme
for the fast synchronization.

Obviously, when θ = 1, the intermittent control (3) is degenerated to a
continuous control. This trivial case is discussed as follows.

Corollary 1. Suppose that Assumptions 1 and 2 hold, there exist positive
constants η1, η2, . . . , ηN , ξ, p and a positive definite diagonal matrix P > 0
such that the following conditions hold: c1(A⊗ PΓ1) + (IN ⊗ PΘ) + (

c2exp{pτ}
2(1−ε)

− ξ

− k
λ
)(IN ⊗ In)− c1(Ξ⊗ P ) + p

2
(IN ⊗ P ) c2

2
(B ⊗ PΓ2)

∗ −( c2
2
− k

λ
)(IN ⊗ In)

 < 0,

(37)
where Ξ = diag(η1, η2, . . . , ηN),Θ = diag(θ1, θ2, . . . , θn) and IN is the N ×N
identity matrix. Then under the periodically intermittent controllers (3), the
error systems (4) can achieve synchronization in a finite time

t ≤
ln(1 + pV

1−µ
2 (0)
α

)
1−µ
2
p

= T2, (38)

where V (0) =
∑N

i=1 e
T
i (0)Pei(0)+

c2exp{pτ}
2(1−ε)

∑N
i=1

∫ 0

−τ(0)
exp{ps}eTi (s)ei(s)ds,

ei(0) is the initial condition of ei(t).
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Remark 6. If Lyapunov function V̇ (t) ≤ −αV (t) (p = 0) when con-
trollers are added into the network. Then, this case has been discussed by
Ref. [21]. If Lyapunov function V̇ (t) ≤ −αV (t) (p = 0) when controllers are
added into the network and the control rate θ = 1. Many previous results
focus on this case (see [8, 24-27]).

Type 2. Using intermittent controllers (39).
In the following, we will design the other intermittent controllers (39) to

achieve the fast synchronization, which are described as follows:
ui(t) = 0, lT ≤ t < lT + δ2,

ui(t) = −ηiei(t)− k (λmax(P ))
1+µ
2

λmin(P )
sgn(ei(t))|ei(t)|µ,

lT + δ2 ≤ t < (l + 1)T,

(39)

for i = 1, 2 . . . , N , δ2 is the non-control width. θ = δ2/T is the ratio of the
non-control width δ2 to the control period T called non-control rate, and
satisfies 0 < θ < 1. Where all the other parameters are the same as (3). In
this case, the error systems can be rewritten as follows:

ėi(t) = f(ei(t)) + c1
∑N

j=1 aijΓ1ej(t) + c2
∑N

j=1 bijΓ2ej(t− τ(t)),

lT ≤ t < lT + θT, i = 1, 2, · · · , N,
ėi(t) = f(ei(t)) + c1

∑N
j=1 aijΓ1ej(t) + c2

∑N
j=1 bijΓ2ej(t− τ(t)),

+ ui(t), lT + θT ≤ t < (l + 1)T, i = 1, 2, · · · , N,

(40)

where f(·) is the same as (4) and satisfies Assumption 1.
Remark 7. The above intermittent controllers (3) are about the control

time in the first part of a control period. The simplified diagram of this
control is given in Fig.1 of Ref. [21]. The intermittent controllers (39) is
difference from (3), which designed is about the non-control time in the first
part of a control period. The control architecture shows in the following
Figure 1. On the other hand, the convergence time of the two types are
differences. The two types controllers have the same control principle, but
the work time are differences. Besides, no advantages for caparisoning with
each other. In order to save energy consumptions and costs, many control
systems employ the intermittent control techniques. The type 1 intermit-
tent control schedule can be adopted to track indoor air setpoints [35, 36].
However, electricity rate is a time-of-use in one day in U.S., the type 2 inter-
mittent control schedule is proposed to regulate indoor temperature setpoint
at different time zones to reduce costs [37].
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Figure 1: The simplified diagram of the second type intermittent control
architecture

To achieve fast synchronization of the error systems (40) via the inter-
mittent controllers (39), we firstly give the following lemma.

Lemma 4. Suppose that function V (t) is continuous and non-negative
when t ∈ [0,∞) and satisfy the following conditions:{

V̇ (t) ≤ p2V (t), lT ≤ t < lT + θT,

V̇ (t) ≤ −αV η(t)− p1V (t), lT + θT ≤ t < (l + 1)T,
(41)

where α > 0, T > 0, p1 > 0, p2 > 0 0 < η, θ < 1, l ∈ ι are constants, then
the following inequality holds:

V 1−η(t) <exp{−(1− η)p1(1− θ)t}exp{(1− η)p2θt}[V 1−η(0) +
α

p1
−

α

p1
exp{(1− η)p1(1− θ)t}exp{−(1− η)p2θt}].

Similar to Theorem 1, the following results are obtained, which ensure the
finite-time synchronization of the drive system (1) and the response system
(2) via the new intermittent control technique.

Theorem 2. Suppose that Assumptions 1 and 2 hold, there exist positive
constants η1, η2, . . . , ηN , ξ, p1, p2 and a positive definite diagonal matrix

16



P > 0 such that the following conditions hold (−ξ + c2exp{pτ}
2(1−ε)

)(IN ⊗ In) + (IN ⊗ PΘ)+

c1(A⊗ PΓ1)− q
2
(IN ⊗ P ) c2

2
(B ⊗ PΓ2)

∗ − c2
2
(IN ⊗ In)

 < 0, (42)

 c1(A⊗ PΓ1) + (IN ⊗ PΘ) + (
c2exp{pτ}

2(1−ε)
− ξ

− k
λ
)(IN ⊗ In)− c1(Ξ⊗ P ) + p

2
(IN ⊗ P ) c2

2
(B ⊗ PΓ2)

∗ −( c2
2
− k

λ
)(IN ⊗ In)

 < 0,

(43)
p(1− θ)− qθ > 0, (44)

pθ − (p+ q)(θ)2 <
ln(1 + pV

1−µ
2 (0)
α

)
1−µ
2
T

, (45)

where Ξ = diag(η1, η2, . . . , ηN),Θ = diag(θ1, θ2, . . . , θn) and IN is the N ×N
identity matrix. Then under the periodically intermittent controllers (39),
the error systems (40) can converge to zero in a finite time

t ≤
ln(1 + pV

1−µ
2 (0)
α

)
1−µ
2
(p(1− θ)− qθ)

= T3, (46)

where V (0) =
∑N

i=1 e
T
i (0)Pei(0)+

c2exp{pτ}
2(1−ε)

∑N
i=1

∫ 0

−τ(0)
exp{ps}eTi (s)ei(s)ds,

ei(0) is the initial condition of ei(t).
Proof. Similar to Theorem 1, Lyapunov function construct the same as

(22), then we have{
V̇ (t) ≤ qV (t), lT ≤ t < lT + θT,

V̇ (t) ≤ −αV η(t)− pV (t), lT + θT ≤ t < (l + 1)T,
(47)

where α = min{2 1+µ
2 k, (

c2exp{pτ}
2(1−ε)

)−
1+µ
2 k}, η = 1−µ

2
.

From Lemma 4, we have

V
1−µ
2 (t) <exp{−1− µ

2
p(1− θ)t}exp{1− µ

2
qθt}[V

1−µ
2 (0) +

α

p
−

α

p
exp{1− µ

2
p(1− θ)t}exp{−1− µ

2
qθt}].
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By Lemma 1, ones obtain

t ≤
ln(1 + pV

1−µ
2 (0)
α

)
1−µ
2
(p(1− θ)− qθ)

. (48)

This completes the proof.
Remark 8. From (21) and (46), we can see that if θ̃ = θ > 0.5, then

 T1 < T3; if θ˜ = θ = 0.5, then T1 = T3; and if θ˜ = θ < 0.5, then T1 > T3.

4. Numerical examples

In this section, we give two examples to demonstrate the effectiveness
of the theoretical results for finite-time synchronization of complex dynami-
cal networks via periodically intermittent control. For this purpose, Lorenz
system is taken as the node dynamics.

The dynamics of Lorenz system is described as follows:

ṡ = f(s) =

 ṡ1
ṡ2
ṡ3

 =

 −a a 0
c −1 0
0 0 −b

 s1
s2
s3

+

 0
−s1s3
s1s2

 , Cs+ ψ(s).

(49)
As shown in Figure 2, Lorenz system has a chaotic attractor when a =
10, c = 30, b = 8/3. Note that the states of Lorenz system (49) are bounded
with |xi1| ≤ 18.6360 = r1, |xi2| ≤ 25.3679 = r2, |xi3| ≤ 45.9792 = r3 . Let
x = [x1, x2, x3]

T , y = [y1, y2, y3]
T , δ = x − y , [δ1, δ2, δ3]

T = [x1 − y1, x2 −
y2, x3 − y3]

T , |ϵ| = [|ϵ1|, |ϵ2|, |ϵ3|]T , then

ψ(x)− ψ(y) =

 0
−x1x3 + y1y3
x1x2 − y1y2

 =

 0
−x1ϵ3 − y3ϵ1
x1ϵ2 + y2ϵ1

 .
Hence,

(x− y)T (ψ(x)− ψ(y)) = −y3ϵ1ϵ2 + y2ϵ1ϵ3

≤ 1

2
|ϵ|T

 0 r3 r2
r3 0 0
r2 0 0

 |ϵ| , 1

2
|ϵ|TR|ϵ|.
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Figure 2: The chaotic trajectories of Lorenz system

Then

(x− y)TP (f(x)− f(y)−Θ(x− y)) ≤
λmax(C) +

1
2
λmax(R)− λmin(Θ)

λmin(P )
(x− y)T (x− y),

where λmax(C), λmax(R), λmin(Θ) are the maximum eigenvalues of C,R,Θ,

respectively. Let ξ = −λmax(C)+ 1
2
λmax(R)−λmin(Θ)

λmin(P )
= 38.5143, therefore As-

sumption 1 is satisfied with Θ = diag(40, 40, 40) and P = diag(0.5, 0.4, 0.035).

Example 1. Consider the following complex dynamical networks (1)
consisting of 10 identical Lorenz oscillators nodes, which is described by:

ẋi(t) = f(xi(t)) + c1

10∑
j=1

aijΓ1xj(t) + c2

10∑
j=1

bijΓ2xj(t− τ(t)),

i = 1, 2, · · · , 10.

(50)

Time-varying delay is selected as τ(t) = 0.01 − 0.01e−t, then τ = 0.01, ε =
0.01. And we choose the coupling strengths c1 = 10 and c2 = 0.5, the inner
matrices Γ1 = diag(1, 1, 1), Γ2 = diag(5, 5, 5), the non-delayed and time-
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varying delayed weight configuration matrices A and B are given as follows:

A =



−1 1 0 0 0 0 0 0 0 0
0 −2 0 1 0 0 0 0 0 1
0 0 −1 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 0
0 1 1 0 −3 1 0 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 1 0 −2 1 0
0 1 0 1 0 0 0 1 −3 0
0 0 0 0 1 0 0 0 0 −1


,

B =



−5 1 1 0 1 0 1 0 1 0
1 −6 1 0 1 1 1 1 0 0
1 1 −3 1 0 0 0 0 0 0
0 1 1 −3 0 1 0 0 0 0
1 1 0 0 −2 0 0 0 0 0
0 1 0 1 0 −5 1 2 0 0
0 1 0 0 0 1 −2 0 0 0
0 1 0 0 0 1 0 −4 1 1
1 0 0 1 0 0 0 1 −3 1
0 0 0 0 1 0 0 1 1 −2


.

The corresponding controlled response system of (2) is described as fol-
lows:

ẏi(t) = f(yi(t)) + c1

10∑
j=1

aijΓ1yj(t) + c2

10∑
j=1

bijΓ2yj(t− τ(t)) + ui(t),

i = 1, 2, · · · , 10,

(51)

where aij, bij and fi(·) are the same as (50) and{
ui(t) = −ηiei(t)− k (λmax(P ))

1+µ
2

λmin(P )
sign(ei(t))|ei(t)|µ, lT ≤ t < lT + δ1,

ui(t) = 0, lT + δ1 ≤ t < (l + 1)T,
(52)

where k = 5.
The initial conditions of the numerical simulations are as follows: xi(0) =

(2 + 0.2i, 0.2 + 0.3i, 0.3 + 0.1i)T , yi(0) = (−8 + 0.7i,−5 + 0.8i,−10 + 0.6i)T ,
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Figure 3: Synchronization errors eij, 1 ≤ i ≤ 10, 1 ≤ j ≤ 3 with control

parameters k = 5, T = 1, θ̃ = 0.8, µ = 0.5, p = 0.358, q = 1.332.

where 1 ≤ i ≤ 10. The initial conditions of the error system are ei(0) =
(−10 + 0.5i,−5.2 + 0.5i,−10.3 + 0.5i)T , where 1 ≤ i ≤ 10.

In Theorem 1, in order to synchronize the drive system (50) with the re-
sponse system (51), we select Θ = diag(40, 40, 40), P = diag(0.5, 0.4, 0.035),
and λ = 70, it is easy to verify that the inequality (18) holds. Besides, to sim-
ulate (17) by Matlab LMIs Toolbox, we can obtain the control gain matrix
of the intermittent controllers (52) as Ξ = diag(39.6586, . . . , 39.6586)10×10,
p = 0.358 and q = 1.332. Choosing the control period T = 1 and the constant
µ = 0.5; calculating (20), then θ̃ = 0.8 is satisfied (20). Hence, all the con-
ditions of Theorem 1 are satisfied, which implies that the error systems (4)
are finite-time synchronization via intermittent control. The numerical sim-
ulations of the error curves are demonstrated in Figure 3. Take k = 5, T =
1, θ̃ = 0.8, p = 1.424, q = 1.332, µ = 0.5. By simple calculating (21), we
have t = 1.98. The synchronization error variables eij, 1 ≤ i ≤ 10, j = 1, 2, 3

are showed in the Figure 4, with k = 5, T = 1, θ̃ = 0.8, µ = 0.5, p =5

1.424, q = 1.332. Let k = 5, T = 1, θ̃ = 0.8, p = 3.578, q = 1.332, µ = 0.5.6

Through simple computation (21), we get t = 1.14. Figure 5 describes the
synchronization error variables eij, 1 ≤ i ≤ 10, j = 1, 2, 3, respectively, with
different parameters p.

Now we will verify Corollary 1. For convenience, the initial conditions
of the numerical simulations are taken as the same as Theorem 1, and let
the control rate θ = 1. Figure 6 demonstrates the time response of the error
variables eij, 1 ≤ i ≤ 10, j = 1, 2, 3, respectively, with k = 5, θ̃ = 1, µ =

0.5, p = 0.358. The first part of controllers (52) can synchronize the network  

at about t = 2.15, which implies that the convergence time is smaller than
t = 2.54 in Theorem 1.
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Figure 4: Synchronization errors eij, 1 ≤ i ≤ 10, 1 ≤ j ≤ 3 with control

parameters k = 5, T = 1, θ̃ = 0.8, µ = 0.5, p = 1.424, q = 1.332.
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Figure 5: Synchronization errors eij, 1 ≤ i ≤ 10, 1 ≤ j ≤ 3 with control

parameters k = 5, T = 1, θ̃ = 0.8, µ = 0.5, p = 3.578, q = 1.332.
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Figure 6: Synchronization errors eij, 1 ≤ i ≤ 10, 1 ≤ j ≤ 3 with control

parameters k = 5, θ̃ = 1, µ = 0.5, p = 0.358.
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Figure 7: Synchronization errors eij, 1 ≤ i ≤ 10, 1 ≤ j ≤ 3 with control
parameters k = 5, T = 1, 1− θ = 0.2, µ = 0.5, p = 3.58, q = 1.45.

Example 2. In this example, we consider the same networks as in Ex-
ample 1. We take the control period T = 1, the control width 1 − θ = 0.2
of the intermittent controllers (39) and the other parameters k = 5, 1− θ =
0.2, µ = 0.5, p = 3.58, q = 1.45. Figure 7 shows the trajectories of synchro-
nization errors eij, 1 ≤ i ≤ 10, j = 1, 2, 3, respectively, with k = 5, T =
1, 1 − θ = 0.2, µ = 0.5, p = 3.58, q = 1.45. From Figure 7, we can find
that the networks with intermittent controllers (39) can be synchronized in
t1 = 3.67 (Figure 6(m)), t1 = 3.58 (Figure 6(n)), and t1 = 3.86 (Figure 6(o)),
respectively.

5. Conclusion

In this paper, the fast synchronization issue of complex dynamical net-
works via periodically intermittent control is studied. The types of periodi-
cally intermittent control scheme are proposed to drive the network achiev-
ing finite-time synchronization. Based on the finite-time stability theory and
intermittent control techniques, fast synchronization criteria for such dy-
namical networks are derived by using differential inequalities (14) and (41).
Compared with the previous works, our results can achieve fast synchroniza-
tion with fast convergence time. The proposed conditions (20) in Theorem 1
and (45) in Theorem 2 are required in the intermittent control. If we ignore
this condition, then the results of Theorem 1 and Theorem 2 in this paper are
not sufficient to be the intermittent control problem. Numerical simulations
have proven that the proposed synchronization criteria finally are efficient.
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6. Appendix

Proof of Lemma 2: TakeM0 = V 1−η(0)+ α
p1

andW (t) = V 1−η(t)exp{(1−
η)p1t}, where t ≥ 0. Let Q(t) = W (t) −M0 +

α
p1
exp{(1 − η)p1t}. It is easy

to see that
Q(t) = 0, for t = 0. (53)

In the following, we will prove that

Q(t) ≤ 0, for all t ∈ [0, θT ). (54)

If this is not true, then there exists a t1 ∈ [0, θT ) such that

Q(t1) = 0, Q̇(t1) > 0, (55)

Q(t) ≤ 0, 0 ≤ t < t1. (56)

Using Eqs. (53), (55) and (56), we obtain

Q̇(t1) =(1− η)V −η(t1)V̇ (t1)exp{(1− η)p1t1}+
p1(1− η)V 1−η(t1)exp{(1− η)p1t1}+ α(1− η)exp{(1− η)p1t1}

≤(1− η)V −η(t1)(−αV η(t1)− p1V (t1))exp{(1− η)p1t1}+
p1(1− η)V 1−η(t1)exp{(1− η)p1t1}+ α(1− η)exp{(1− η)p1t1}

=− α(1− η)exp{(1− η)p1t1} − p1(1− η)V 1−η(t1)exp{(1− η)p1t1}
+ p1(1− η)V 1−η(t1)exp{(1− η)p1t1}+ α(1− η)exp{(1− η)p1t1}

=0.

This contradicts the second inequality in (55), and so (54) holds.
Let W1(t) = V 1−η(t)exp{(1 − η)p1t}exp{−(1 − η)p1(t − θT )}exp{−(1 −

η)p2(t−θT )}, and H(t) = W1(t)−M0+
α
p1
exp{(1−η)p1t}exp{−(1−η)p1(t−

θT )}exp{−(1− η)p2(t− θT )}, t ≥ θT . Next, we prove that for t ∈ [θT, T ),

H(t) ≤ 0, for all t ∈ [θT, T ). (57)
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Otherwise, there exists a t2 ∈ [θT, T ) such that

H(t2) = 0, Ḣ(t2) > 0, (58)

H(t) ≤ 0, θT ≤ t < t2. (59)

According to Eqs. (58) and (59), we have

Ḣ(t2) =Ẇ1(t2) +
α

p1
(1− η)p1exp{(1− η)p1t2}[exp{−(1− η)p1(t2 − θT )

exp{−(1− η)p2(t2 − θT )] +
α

p1
exp{(1− η)p1t2}[−(1− η)(p1+

p2)exp{−(1− η)(p1 + p2)(t2 − θT )}]
=(1− η)V −η(t2)V̇ (t2)exp{(1− η)p1t2}exp{−(1− η)(p1 + p2)(t2−
θT )}+ V 1−η(t2)[exp{(1− η)p1t2}exp{−(1− η)p1(t2 − θT )}

exp{−(1− η)p2(t2 − θT )}]′ + α

p1
(1− η)p1exp{(1− η)p1t2}

exp{−(1− η)(p1 + p2)(t2 − θT )} − α

p1
(1− η)(p1 + p2)exp{(1−

η)p1t2}exp{−(1− η)(p1 + p2)(t2 − θT )}
≤p2(1− η)V 1−η(t2)exp{(1− η)p1t2}exp{−(1− η)(p1 + p2)

(t2 − θT )}+ V 1−η(t2)[(1− η)p1exp{(1− η)p1t2}exp{−(1−
η)(p1 + p2)(t2 − η)p2(t2 − θT )− (1− η)(p1 + p2)exp{(1−

η)p1t2}exp{−(1− η)(p1 + p2)(t2 − θT )}] + α

p1
(1− η)p1

exp{(1− η)p1t2}exp{−(1− η)(p1 + p2)(t2 − θT )} − α

p1
(1

− η)(p1 + p2)exp{(1− η)p1t2}exp{−(1− η)(p1 + p2)(t2 − θT )}
=p2(1− η)V 1−η(t2)exp{(1− η)p1t2}exp{−(1− η)(p1 + p2)(t2−
θT )} − p2(1− η)V 1−η(t2)exp{(1− η)p1t2}exp{−(1− η)(p1+

p2)(t2 − θT )} − α

p1
p2exp{(1− η)p1t2}exp{−(1− η)(p1 + p2)(t2

− θT )}
<0,

which contradicts the second inequality in (58). Hence (57) holds. From
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(57), it is easy to see that

W (t) ≤exp{(1− η)(p1 + p2)(t− θT )}
[
M0−

α

p1
exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(t− θT )}

]
.

(60)

Consequently, for t ∈ [θT, T ), we have

W (t) <exp{(1− η)(p1 + p2)(t− θT )}
[
M0−

α

p1
exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(t− θT )}

]
≤exp{(1− η)(p1 + p2)(1− θ)T}

[
M0−

α

p1
exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(1− θ)T}

]
.

On the other hand, it follows from Eqs. (53) and (54) that for t ∈ [0, θT ),

W (t) ≤M0 −
α

p1
exp{(1− η)p1t}

≤M0 −
α

p1
exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(1− θ)T}

≤exp{(1− η)(p1 + p2)(1− θ)T}
[
M0−

α

p1
exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(1− θ)T}

]
.

So

W (t) <exp{(1− η)(p1 + p2)(1− θ)T}
[
M0−

α

p1
exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(1− θ)T}

]
,

for all t ∈ [0, T ).
Similarly, we can proof that for t ∈ [T, (1 + θ)T ),

W (t) <exp{(1− η)(p1 + p2)(1− θ)T}
[
M0−

α

p1
exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(1− θ)T}

]
,
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and for t ∈ [(1 + θ)T, 2T ),

W (t) <exp{(1− η)(p1 + p2)(1− θ)T}exp{(1− η)(p1 + p2)(t− θT

− T )}
[
M0 −

α

p1
exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(1

− θ)T}exp{−(1− η)(p1 + p2)(t− θT − T )}
]

=exp{(1− η)(p1 + p2)(t− 2θT )}
[
M0 −

α

p1

exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(t− 2θT )}
]
.

By induction, for any integers m, we can derive the following estimation
of W (t) for any m.

For mT ≤ t < (m+ θ)T ,

W (t) <exp{(1− η)(p1 + p2)(1− θ)mT}
[
M0 −

α

p1
exp{(1

− η)p1t}exp{−(1− η)(p1 + p2)(1− θ)mT}
]
,

(61)

and for (m+ θ)T ≤ t < (m+ 1)T ,

W (t) <exp{(1− η)(p1 + p2)(t− (m+ 1)θT )}
[
M0 −

α

p1

exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(t− (m+ 1)θT )}
]
.

(62)

Since for any t ≥ 0, there exists a nonnegative integer k, such that kT ≤ t <
(k + 1)T , we can deduce the following estimation of W (t) for any t by Eqs.
(61) and (62).

For kT ≤ t < (k + θ)T ,

W (t) <exp{(1− η)(p1 + p2)(1− θ)kT}
[
M0 −

α

p1

exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(1− θ)kT}
]

≤exp{(1− η)(p1 + p2)(1− θ)t}
[
M0 −

α

p1

exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(1− θ)t}
]
,

27



and for (k + θ)T ≤ t < (k + 1)T ,

W (t) <exp{(1− η)(p1 + p2)(t− (k + 1)θT )}
[
M0 −

α

p1
exp{(1

− η)p1t}exp{−(1− η)(p1 + p2)(t− (k + 1)θT )}
]

≤exp{(1− η)(p1 + p2)(1− θ)t)}
[
M0−

α

p1
exp{(1− η)p1t}exp{−(1− η)(p1 + p2)(1− θ)t}

]
.

Together with the definition of W (t), we obtain

V 1−η(t)exp{(1− η)p1t)}

≤exp{(1− η)(p1 + p2)(1− θ)t}
[
V 1−η(0) +

α

p1

− α

p1
exp{(1− η)p1θt}exp{−(1− η)p2(1− θ)t}

]
=exp{(1− η)(p1 + p2)(1− θ)t}

[
V 1−η(0)− α

p1

(exp{(1− η)p1θt}exp{−(1− η)p2(1− θ)t} − 1)
]
.

It implies the conclusion and the proof is completed.
Proof of Lemma 4. DenoteM0 = V 1−η(0)+ α

p1
andW (t) = V 1−η(t) exp{−(1−

η)p2t}, where t ≥ 0. Let Q(t) = W (t)−M0 +
α
p1
. It is easy to see that

Q(t) = 0, for t = 0. (63)

In the following, we will prove that

Q(t) ≤ 0, for all t ∈ [0, θT ). (64)

otherwise, there exists t1 ∈ [0, θT ) such that

Q(t1) = 0, Q̇(t1) > 0,

Q(t) < 0, 0 ≤ t < t1.
(65)

Using (63), (65) and (65), we have

Q̇(t1) =(1− η)V −η(t1)V̇ (t1) exp{−(1− η)p2t1}−
(1− η)p2V

1−η exp{−(1− η)p2t1}
≤p2(1− η)V −η(t1)V (t1) exp{−(1− η)p2t1}−
p2(1− η)V 1−η(t1) exp{−(1− η)p2t1}

=0.

(66)
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This contradicts the second inequality in (65), and so (64) holds.
Let W1(t) = V 1−η(t) exp{−(1 − η)p2t} exp{(1 − η)p2(t − θT )}exp{(1 −

η)p1t}exp{−(1−η)p1θt}, andH(t) = W1(t)−M0+
α
p1
exp{−(1−η)p2t} exp{(1−

η)p2(t−θT )}exp{(1−η)p1t}exp{−(1−η)p1θt}, t ≥ θT . Next, we prove that
for t ∈ [θT, T )

H(t) ≤ 0, for all t ∈ [θT, T ). (67)

Otherwise, there exists t2 ∈ [θT, T ) such that

H(t2) = 0, Ḣ(t2) > 0, (68)

H(t) < 0, θT ≤ t < t2. (69)

According to (68) and (69), we have

Ḣ(t2) =(1− η)V −η(t2)V̇ (t2) exp{−(1− η)p2t2} exp{−(1− η)p2(t2 − θT )}
exp{(1− η)p1t2}exp{−(1− η)p1θt2} − (1− η)p2V

1−η(t2) exp{−
(1− η)p2t2} exp{−(1− η)p2(t2 − θT )}exp{(1− η)p1t2}exp{−(1

− η)p1θt2}+ V 1−η(t2) exp{−(1− η)p2t2}(exp{−(1− η)p2(t−
θT )}exp{(1− η)p1t2})′exp{−(1− η)p1θt2}+ V 1−η(t2)

exp{−(1− η)p2t2} exp{(1− η)p2(t2 − θT )} exp{(1− η)p1t2}

(−α(1− η)
p2
p1
)exp{−(1− η)p2t2} exp{(1− η)p2(t2 − θT )}

exp{(1− η)p1t2}(−(1− η)p1θ)exp{−(1− η)p1θt2}+

α(1− η)
p2
p1
exp{(1− η)p2t2} exp{(1− η)p2(t2 − θT )}

exp{(1− η)p2t2}exp{−(1− η)pθt2}+
α

p1
exp{−(1− η)p2t2}

exp{(1− η)p2(t− θT )}(1− η)p1exp{(1− η)p1t2}exp{−(1− η)

p1θt2}+
α

p1
exp{(1− η)p2t2}exp{(1− η)p2t2}(1− η)p1

exp{(1− η)p1t2}exp{−(1− η)p1θt2}+
α

p1
exp{(1− η)p2(t2 − θT )}

exp{(1− η)p2(t2 − θT )}exp{(1− η)p1t2}exp{−(1− η)p1θt2}
≤0,

(70)

which contradicts the second inequality in (68). Hence (67) holds.
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From (67), it is easy to see that

W (t) ≤exp{−(1− η)p2(t− θT )}exp{−(1− η)p1t}exp{(1− η)p1θt}

[M0 −
α

p1
exp{(1− η)p2(t− θT )}exp{−(1− η)p2t}

exp{(1− η)p1t}exp{−(1− η)p1θt}]
≤exp{−(1− η)p2(t− θt)}exp{−(1− η)p1t}exp{(1− η)p1θt}

[M0 −
α

p1
exp{(1− η)p2(t− θt)}exp{−(1− η)p2t}

exp{(1− η)p1t}exp{−(1− η)p1θt}]

(71)

Consequently, for t ∈ [θT, T ), we have

W (t) ≤exp{−(1− η)p2(t− θt)}exp{−(1− η)p1(t− θt)}[M0−
α

p1
exp{−(1− η)p2θt}exp{(1− η)p1(t− θt)}]

≤M0 −
α

p1
exp{−(1− η)p2θt}exp{(1− η)p1(t− θt)}

≤M0 −
α

p1
exp{−(1− η)p2θT}exp{(1− η)p1(t− θt)}.

(72)

On the other hand, it follows from Eqs. (63) and (64) that for t ∈ [0, θT ),

W (t) ≤M0 −
α

p1

≤M0 −
α

p1
exp{−(1− η)p2θT}exp{(1− η)p1(t− θt)}

(73)

From inequalities (72) and (73), we have

W (t) ≤M0 −
α

p1
exp{−(1− η)p2θT}exp{(1− η)p1(t− θt)}, (74)

for t ∈ [0, T ).
Similarly, if t ∈ [T, (1 + θ)T ), we can proof that

W (t) ≤exp{−(1− η)(p1 + p2)(1− θ)t)}

[M0 −
α

p1
exp{−(1− η)p2θt}exp{(1− η)p1(t− θt)}]
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and for t ∈ [(1 + θ)T, 2T ),

W (t) ≤exp{−(1− η)(p1 + p2)(1− θ)t)}[M0 −
α

p1
exp{(1− η)p2(t

− θT )}exp{−(1− η)p2θT}exp{−(1− η)p2t}
exp{(1− η)p1(t− θt)}]

≤exp{−(1− η)(p1 + p2)(1− θ)t)}[M0 −
α

p1
exp{(1− η)p2(1−

θ)2T )}exp{−(1− η)p2t}exp{(1− η)p1(t− θt)}]

≤exp{−(1− η)(p1 + p2)(1− θ)t)}[M0 −
α

p1
exp{(1− η)p2(1−

θ)t)}exp{−(1− η)p2t}exp{(1− η)p1(t− θt)}]

Hence, for ∀t ∈ [T, 2T ), we obtain

W (t) ≤exp{−(1− η)(p1 + p2)(1− θ)t)}

[M0 −
α

p1
exp{−(1− η)p2θt}exp{(1− η)p1(t− θt)}]

By induction, for any integers m, we can derive the following estimation of
W (t) for any m and ∀t ∈ [mT, (m+ 1)T ) such that:

W (t) <exp{−(1− η)(p1 + p2)(1− θ)t)}[M0 −
α

p1
exp{(1− η)p2(1−

θ)t}exp{−(1− η)p2t}exp{(1− η)p1(t− θt)}]

Together with the definition of W (t), we obtain

V 1−η(t) <exp{−(1− η)p1(1− θ)t}exp{(1− η)p2θt}[V 1−η(0) +
α

p1
−

α

p1
exp{(1− η)p1(1− θ)t}exp{−(1− η)p2θt}].

This completes the proof of Lemma 4.
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