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Abstract

In this paper, we present an extended SI model of Hilker et al. (2009). In

the presented model the birth rate and the death rate are both modeled as

quadratic polynomials. This approach provides ample opportunity for taking

into account the major contributors to an Allee effect and effectively captures

species’ differential susceptibility to the Allee effects. It is shown that, the

behaviors (persistence or extinction) of the model solutions are characterized

by the two essential threshold parameters λ0 and λ1 of the transmissibility λ

and a threshold quantity µ∗ of the disease pathogenicity µ. If λ < λ0, the model

is bistable and a disease cannot invade from arbitrarily small introductions into

the host population at the carrying capacity, while it persists when λ > λ0 and

µ < µ∗. When λ > λ1 and µ > µ∗, the disease derives the host population

to extinction with origin as the only global attractor. For the special cases of

the model, verifiable conditions for host population persistence (with or without

infected individuals) and host extinction are derived. Interestingly, we show that

if the values of the parameters α and β of the extended model are restricted, then

the two models are similar. Numerical simulations show how the parameter β

affects the dynamics of the model with respect to the host population persistence

and extinction.
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1. Introduction

The history of the term Allee effect can be traced back to the pioneering

work of Allee (1931). It receives considerable attention recently in mathemati-
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cal models of ecology and epidemiology (for the recent works see (David et al.,

2007; Friedman and Yakubu, 2012b; Hilker et al., 2007; Ling-ling and Cang,

2009; Kang and Castillo-Chavez, 2014; Sophia and Jang, 2011; Thieme et al.,

2009) and the references therein). The Allee effect is a phenomenon in biolo-

gy characterized by a positive relationship between population density or size

and the per capita population growth rate in small populations Stephens et al.

(1999). That is, it is manifested by an increase in per capita growth rate with

increasing population density. When a population exhibits a critical size or

density below which, the population declines to extinction and above which,

it can increase, that population is said to exhibit a strong Allee effect. Vari-

ous mechanisms cause Allee effects which are naturally related to reproduction

and/or survival, for example, difficulties in finding suitable mate at low popula-

tion densities and foraging efficiency (Courchamp and Mackdonald, 2001; David

and Luděk, 2002; Stephens et al., 1999). When a strong Allee effect is present

in the host demographic the impact of a disease can be detrimental to the host

population since any further reduction could decrease host density below the

Allee threshold and lead to the extinction of the host. Some species that expe-

rience both an Allee effect and a disease include the island fox Urocyon littoralis

(Clifford et al., 2006; Angulo et al., 2007) and African wild dog Lycaon pictus

(Burrows et al., 1995; Courchamp et al., 2000).

Single species models with demographic Allee effect are widely studied in

the literature (see the review in (David and Luděk, 2002) and the references

therein). An SI model is introduced by (Deredec and Courchamp, 2006) for a

population whose dynamics already face strong Allee effects in the absence of

disease infection, in order to compare the impact of the Allee effects on the dis-

ease dynamics. In addition, an alternative model in which the Allee effect only

manifests on mortality is developed in (Deredec and Courchamp, 2006). That

is, a growth rate is decomposed into constant birth rate and density-dependent

death rate function. Deredec and Courchamp reported in (Deredec and Cour-

champ, 2006) that the impact of the Allee effects could be considered a tradeoff

between disease and the Allee effects. Indeed, the Allee effects could safeguard

native individuals by diminishing the population sizes that expedite parasitic

spread. On the other hand, when the disease invades the population, the Allee

effects reduce the population size and increase the range of parasitic species

that could drive the population to extinction. Hilker and collaborators Hilker

et al. (2009) analyzed a particular case of the model presented in (Deredec and

Courchamp, 2006) with a quadratic fertility rate and a linear density-dependent

death rate. It was proved that the model introduced in Hilker et al. (2009) ex-

hibits rich dynamical behaviors multiple stable steady states and homoclinic

bifurcations, which indicate disease invasion and host population extinction, re-

spectively. Moreover, Hilker et al. (2009) noted that high transmissibility rates
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could lead to disease-induced extinction.

Friedman and Yakubu (Friedman and Yakubu, 2012a) reconsidered the SI

model of Hilker et al. (2009) to identify a parameter regime of the model that

lead to host population persistence (with or without infected individuals) and

host extinction. Furthermore, these authors proved that an Allee effect matters

even at large population densities, as a small perturbation from the disease-free

equilibrium can drive host’s population to extinction. They also showed that

additional deaths due to the disease infections increase the Allee threshold of the

host population. Cai et al. (2013) used the same SI model of Hilker et al. (2009)

to analytically study bifurcations and dynamical behaviors of the model. These

researchers found that their qualitative conclusions support the numerical bifur-

cation analysis and conjunctures reported in Hilker et al. (2009). In addition,

some new bifurcations phenomena are explored such as pitchfork bifurcation,

Bogdanov-Takens (BT) bifurcation of codimension two, degenerate Hopf bifur-

cation and degenerate BT bifurcation of codimension three in elliptic case Cai

et al. (2013). These bifurcations exhibit complicated dynamical behaviors of

the model in Cai et al. (2013) such as multiple attractors, homoclinic loop, and

limit cycles, whose respective biological consequences are disease persistence,

host population extinction and disease cycles.

In a similar note, Thieme et al. (2009) developed an SI model with a strong

Allee effect in the host demographics that incorporated distinct fertility and

mortality functions compared to those used in the model of Hilker et al. (2009).

Another distinguishing feature of their model with those in (Deredec and Cour-

champ, 2006; Hilker et al., 2009) is the assumption that the infected individuals

do not reproduce. Thieme et al. (2009) proved that the transition from host’s

population decline to extinction is mediated by a Hopf bifurcation and is marked

by the occurrence of a heteroclinic orbit. This means that there is an oscillation

in the host population in form of limit cycles before the disappearance of the

population, leading to an epidemic break out in a periodic manner in the host

population.

This work is motivated by the fact that the presence of an Allee effect in

host demographics affects qualitatively the dynamics of a population, see the

review in (David and Luděk, 2002) and the references therein. In this study

we chose the per capita growth rate function that is used in the model intro-

duced by Hilker et al. (2009) and apply the demographic model given by the

generalized logistic equation as presented in (Zhou and Hethcote, 1994). The

decomposition of the growth rate into birth rate and death rate potentially can

have a significant impacts on epidemiological dynamics of the model. The birth

and death terms in our chosen structure are both modeled as quadratics polyno-

mials. The model presented in this paper can be considered an extension of the

one introduced by Hilker et al. (2009) where the death rate is assumed linear.
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Using a quadratic death rate and one additional parameter provides a more re-

alistic representation of the population dynamics particularly at low population

density or size. As this is a mortality rate in populations where there is a posi-

tive correlation between individual survival probability and population density

due to factors like joint defence, cooperative feeding and/or breeding and lower

exposure to predators. More precisely, our chosen quadratic birth and death

rate functions generalize the constant birth, linear death, and constant death

rates considered in (Deredec and Courchamp, 2006; Hilker et al., 2009; Thieme

et al., 2009), respectively. The advantage of these quadratic birth and death

rate functions over those in the aforementioned studies is that they effectively

capture species’ differential susceptibility due to the Allee effect. That is, the

Allee effect is more intense when the parameter β > 0 then for β ≤ 0. This

follows from the fact that an Allee effect is more intense in some species than

others (Courchamp and Mackdonald, 2001; Stephens and Sutherland, 1999). As

for the relevant aforementioned models, our model exhibits complex dynamical

behaviors such as stable limit cycles, leading to disease cycles. Moreover, it is

shown that a disease-induced extinction is possible when the disease-induced

death rate µ and transmissibility λ are above some threshold values µ∗ and λ1,

respectively. Using a similar approach as in (Friedman and Yakubu, 2012a),

we derive conditions for host population persistence (with or without infected

individuals) and host extinction for the special cases of the model.

The paper is organized as follows: In Section 2, we introduce the basic as-

sumptions and equations of the model and introduce the demographic functions.

Section 3 presents the basic qualitative features of the model in a re-scaled form.

The effects of disease-induced mortality rate on the model is also investigated

in Section 3. In order to complete the investigation, the special cases of the

model are analyzed in Section 4. In Section 5, conditions for host population

persistence and extinction for each of these cases are derived. Regions of host

population persistence and extinction for certain parameter ranges are illustrat-

ed via numerical simulations also in Section 5.

2. Model formulation

Let the host population density at time t be denoted by P (t). The densities

of susceptible and infected individuals when a disease divides the population

into two parts are denoted by S(t) and I(t) respectively, see Figure 1.

There is no recovery from the disease and newborns of infected individ-

uals move to the susceptible class (no vertical transmission). We assume a

density-dependent transmission, which is described by mass action rate σSI.

An additional constant disease-related death rate µ is assumed for infectious

individuals. The per capita net growth rate function in which the strong Allee
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Figure 1: Flow diagram of model (1)

effect is manifested, denoted by G(P ) and given in (2), is split into fertility func-

tion B(P ) ≥ 0, and mortality function D(P ) ≥ 0. Thus, the model equations

are then described by the following system of differential equations:

dS

dt
= B(P )P − σSI −D(P )S,

dI

dt
= σSI −D(P )I − µI.

(1)

The following per capita net growth rate is assumed to be in the form of the

generalized logistic model introduced in (Gao and Hethcote, 1992).

G(P ) = a(K+ − P )(P −K−), 0 < K− � K+, (2)

where the strong Allee effect is manifested through the minimum viable density

K−. As usual, the parameter K+ is the carrying capacity and the coefficient

a > 0 adjusts the maximum per capita growth rate.

We represent the demographic functions B(P ) and D(P ) in the following

form

B(P ) = a{−(1− α)P 2 + [K+ + (1− β)K−]P +K+Γ},
D(P ) = a(αP 2 − βK−P +K+K− +K+Γ),

(3)

where α, β and Γ are real parameters. The parameter α ∈ [0, 1) determines the

splitting of the quadratic term in (2) between the functions B(P ) and D(P ).

Moreover, α and β determine the intensity of the Allee effects on both the

demographic rate functions B(P ) and D(P ). As in Hilker et al. (2009), the

parameter Γ determines the effect of density-independence of the demographic

rate functions. The basic requirement that both demographic functions need to

be nonnegative places some constraints on the values of β and Γ. We assume that

β ≤ min{1, 2
√

2α} and that Γ ≥ 0. It is easy to see that under these restrictions

of the parameters both functions are positive on the interval [0,M ] where M =
(1−β)K−+K+

1−α . It should be noted that, since B(P ) is a quadratic polynomial
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with negative leading coefficient it cannot be positive on an infinite interval.

Therefore our aim is to have it positive on a practically relevant interval. In this

regard, let us remark that the interval [0,M ] contains all disease free equilibrium

states of the population. The decomposition G(P ) = B(P )−D(P ) with B(P )

and D(P ) given by (3) is intended to model the factors causing the Allee effect.

In Figure 2, for example, the steep gradient of the curve B(P ) (i.e., the rapid

population growth due to the decreasing mortality rate) is when P is small.

This reflects factors like improved access (e.g. via cooperative strategies) to

abundant resources. For small populations D(P ) is either increasing at a slower

rate (β ≤ 0) or is decreasing (β > 0) while the values of all other parameters

are fixed, representing what is referred to as safety in numbers (joint defence,

lower individual exposure to predators, cooperation in raising the young). From

biological point of view, the parameter β measures the intensity of an Allee effect

and hence, our chosen fertility and mortality rate functions effectively capture

species’ differential susceptibility to the Allee effect since some species are more

susceptible to the Allee effect than others. The two graphs intersect at the

unstable equilibrium K−. This critical value of P , a minimum viable population,

is precisely the manifestation of the strong Allee effect. The graphs also intersect

at the stable equilibrium K+. When P is large, for example with values around

K+, the functions B(P ) and D(P ) exhibit the usual behavior of decreasing

and increasing, respectively, due to adverse conditions caused by the larger

population (food scarcity, stressful conditions owing to a strong competition, rise

in predator numbers). As mentioned earlier, the demographic model described

in terms of the functions B(P ) and D(P ) in (3) extends the model of Hilker

et al. (2009) by using quadratic functions for modeling both the birth and the

death rate with the aim of providing more realistic modeling tool as explained

above. Note that the model in Hilker et al. (2009) is a particular case of (1)

with (3) for α = 0 and some negative value of β.

To make the system (1) non-dimensional, we introduce the following dimen-

sionless quantities as in Hilker et al. (2009):

p =
P

K+
, i =

I

K+
, s =

S

K+
, u =

K−
K+
∈ (0, 1).

Substituting these quantities in system (1) the model equations are given by

dp

dt
= k(1− p)(p− u)p− µi,

di

dt
= [−τ − k(αp2 − βup) + λp− λi]i,

(4)

where

k = aK2
+, λ = K+σ, τ = µ+ k (u+ γ) , γ = Γ/K+. (5)

6



Figure 2: The demographic functions B(P ) and D(P ) for β > 0

Furthermore, since P is considered in the practically relevant interval [0,M ], we

have p ∈ [0,m] where

m =
M

K+
=

1 + (1− β)u

1− α
.

In what follows, we will base the model analysis on the ecologically interesting

case in which the Allee threshold is far from the carrying capacity as in Hilker

et al. (2009), i.e. 0 < u < 1
2 .

3. Basic Qualitative Features of the Model

3.1. Model (4) as a dynamical system.

Theorem 1. The system of ordinary differential equations (4) defines a dy-

namical system on the domain

F = {(p, i) : 0 ≤ i ≤ p ≤ m}.

Proof. We show first that all solutions of (4) initiated in F remain in F on the

increasing interval of their existence. We consider the three line segments which

make the boundary of F , see Figure 3.

(a) This line segment represents the disease free state of the population. It is

positively invariant and contains the three disease free equilibria of the

model.
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Figure 3: Domain F

(b) If p = m one can see from the first equation of (4) that dp/dt < 0. Therefore

the vector field defined by the system (4) is directed inwards on this line

segment.

(c) In order to prove that the vector field is directed inwards on this line segment

we need to show that dp/dt− di/dt > 0. Let i = p ∈ [0,m]. Then

dp

dt
− di

dt
= pb(p) > 0,

which proves the required inequality.

Combining the results for the boundary segments (a), (b) and (c) we obtain that

the solutions of (4) initiated in F do not leave this domain. Then using the fact

that F is compact these solutions exist for t ∈ [0,∞) (Stuart and Humphries,

1998, Theorem 2.1.5). Hence (4) defines a dynamical system on F . �

3.2. Threshold quantities

We introduce the critical host population density for disease establishment

(the disease threshold) and the basic reproduction number as in Hilker et al.

(2009). From the second equation of system (4) the replacement number of the

disease is given by

R(p) =
λp

τ + k(αp2 − βup)
. (6)

Notably, the replacement number is expressed as a function of p because the

population size is variable. This threshold quantity R(p) is defined to be the
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average number of secondary infections produced by an infective individual dur-

ing the entire infectious period Hethcote (2000). It should be noted that some

authors use the term reproduction number/ratio instead of replacement number

as in (Hilker et al., 2009; Hilker, 2010). Since in the absence of the disease the

population being above the Allee threshold will settle at its carrying capacity

then setting p = 1 in Eq. (6) gives the basic reproduction number

R0 =
λ

τ + k(α− βu)
.

Notice that τ+k(α−βu) = µ+ku(1−β)+k(α+γ) > 0 since β ≤ min{1, 2
√

2α}.
For the disease threshold (also known as critical community density or crit-

ical host density), set R(p) = 1 in (6) and solve for p in the equation

kαp2 − (kβu+ λ)p+ τ = 0. (7)

In the following analysis, we assume that α 6= 0 so that Eq. (7) is a quadratic

equation. We shall see later that the results in Hilker et al. (2009) can be

obtained when α→ 0. Note from Eq. (7) that

(i) there are two distinct real roots if (kβu+ λ)2 > 4kατ,

(ii) there is one real root with multiplicity 2 if (kβu+ λ)2 = 4kατ,

(iii) there is no real root if (kβu+ λ)2 < 4kατ .

Denote by λ∗ the threshold value of λ which discriminates between the three

cases. Namely, λ∗ = 2
√
kατ − kβu is such that (7) has two, one or zero real

roots according as λ > λ∗, λ = λ∗ and λ < λ∗, respectively.

Note that λ∗ > 0. Using the relation τ = µ+ ku+ kγ > ku and β < 2
√

2α we

obtain

λ∗ =2
√
kατ − kβu,

>2
√
k2αu− 2ku

√
2α,

=2k
√

2αu

(√
1

2
−
√
u

)
> 0 since u < 1/2.

It follows that, for λ > λ∗, Eq. (7) has the following two real roots.

(pT )1,2 =
(kβu+ λ)±

√
(kβu+ λ)2 − 4kατ

2kατ
. (8)

Remark 1

(1) We note that, if (λ+ kβu) ≤ 0, then by the second equation of (4)

i(t)→ 0 as t→∞,

so that the infected population goes extinct. Hereafter, we assume that

(λ+ kβu) > 0.
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(2) λ > λ∗ implies that (λ + kβu) > 0. Therefore, the roots (pT )1,2 are

positive whenever they exists.

3.3. Existence and stability of equilibria

3.3.1. Disease-free equilibria

In the absence of the disease, the steady states of system (4) are: the trivial

extinction state E0 = (0, 0), the Allee threshold state E1 = (u, 0) and the

carrying capacity state E2 = (1, 0).

Theorem 2. For the dynamical system (4),

(i) the trivial extinction state E0 is always a stable node,

(ii) if R0 < 1, the carrying capacity state E2 is a stable node and is a saddle

point when R0 > 1,

(iii) the Allee threshold state E1 is a saddle point if R0 < 1 and is an unstable

node or a saddle point when R0 > 1.

Proof. The Jacobian matrix of system (4) evaluated at a disease-free equilibrium

(p, 0), denoted by J(p, 0) is as follows:

J(p, 0) =

(
−k[3p2 − 2(1 + u)p+ u] −µ

0 A

)
,

where A = λp− τ − kp(αp− βu).

(i) It follows that the trace and determinant of J(E0) are tr(E0) = −(ku+τ) < 0

and det(E0) = kuτ > 0, respectively. The eigenvalues of J(E0) have negative

real parts and hence E0 is stable by the Routh Hurwitz criterion Sánchez (1979).

Moreover, E0 is always a stable node since the eigenvalues −τ and −ku are real

and of negative sign irrespective of whether R0 ≶ 1.

(ii) Similarly, the eigenvalues of the Jacobian matrix J(E2) evaluated at E2

are, respectively, given by −k(1 − u) and − λ
R0

(1 − R0), which are real and of

negative sign whenever R0 < 1 (noting that u ∈ (0, 1)). Hence E2 is a stable

node. If R0 > 1, the first eigenvalue is still negative while the second eigenvalue

is positive, which indicates that E2 is saddle point.

(iii) the first eigenvalue of J(E1) is ku(1− u) > 0 and the second eigenvalue is

−(τ + ku2α) + u(λ+ kβu),

which is negative if R0 < 1 since (λ+ kβu) ≤ 0 and positive or negative when

R0 > 1. Therefore, E1 is either a saddle point or an unstable node. �
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We infer from Theorem 2 that a disease cannot establish itself from arbitrar-

ily small introductions into the host population at carrying capacity if R0 < 1.

More precisely, if R0 < 1 the host population either settles at the carrying ca-

pacity or undergoes extinction, depending on the initial condition being above

or below the Allee threshold u, respectively. Hence, the dynamics of the sys-

tem is only determined by the Allee effect. From biological point of view, this

conclusion shows that the presence of an Allee effect in the host demographics

could play a stabilizing and protective role in relation to invasion of a disease.

3.3.2. Endemic equilibria

Endemic equilibrium is the steady state solution of (4) when the infected

compartment i is non empty. Hence, setting the right-hand side of (4) to zero,

gives

i =
k

µ
(1− p)(p− u)p,

i =
1

λ
[−τ − k(αp2 − βup) + λp].

(9)

Then, we obtain the following cubic equation by equating and rearranging the

equations in (9).

Ap3 +Bp2 + Cp+D = 0, (10)

where

A = −k,B = (k/λ)[λ(1 + u) + αµ], C = −(1/λ)[ku(βµ+ λ)− λµ], D = τ.

Notice that A is negative, B and D are positive while C is negative or positive or

zero. Therefore, there is at least one sign change in the sequence of coefficients

{A, ...,D}. Hence, by Descartes rule of sign (Polyanin and Manzhirov, 2007),

there is at least one positive real root of (10). Consequently, we obtain the

following result.

Theorem 3. If (pT )1 < 1 and (pT )2 > 1 then model (4) has:

(i) a unique endemic equilibrium if C ≥ 0;

(ii) a unique endemic equilibrium or three endemic equilibria if C < 0.

We cannot exclude the existence of two endemic stationary states depending

on the parameter values as in Figure 4, despite the fact that Theorem 3 does not

state that. This is because it is algebraically impossible to find explicit necessary

and sufficient conditions for the possible number of endemic equilibria of system
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(4) depending on all the values of the model parameters (see the comment in

Cai et al. (2013)). According to the first case of Theorem 3, it is possible for

model (4) to have a unique endemic equilibrium. Thus, we obtain the following

result.

Theorem 4. Let Q(p) =
d

dp
[k(1− p)(p− u)p]. If 0 < u < (pT )1 < 1 < (pT )2,

then model (4) has a unique endemic equilibrium point E∗ = (p∗, i∗) with

(pT )1 < p∗ < 1, i∗ > 0,

and E∗ is locally asymptotically stable if

Q(p∗) <
λp∗

R(p∗)
[R(p∗)− 1]. (11)

Proof. See Appendix A

3.4. The effect of disease-induced mortality on the model

In order to explore the effect of disease related death on the stability results of

model (4), we denote by λ0, the denominator of the basic reproduction ratio R0.

That is, λ0 = τ + k(α− βu) so that R0 ≤ 1 if and only if λ ≤ λ0. Furthermore,

the respective non-trivial nullclines of the model (4) are represented as follows:

Λp : i = φ1(p) :=
k

µ
p(p− u)(1− p),

Λi : i = φ2(λ, p) := p− kp(αp− βu) + τ

λ
.

It is to be noted that dp/dt = 0 and di/dt = 0 on the curves Λp and Λi,

respectively, with only Λi depends on the coefficient of the force of infection

λ. Also, one can easily see that φ2(λ, p) < p and limλ→∞ φ2(λ, p) = p. The

dynamical system (4) behaves in two essentially different ways depending on

wether or not Λp intersects the line i = p. These two cases are distinguished

below via the threshold value

µ∗ =
k(1− u)2

4

of the disease induced mortality µ, which is obtained by substituting i = p in

the first equation of (9).
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3.4.1. The model with low disease-induced mortality: µ < µ∗

For the case when λ > λ0 system (4) always has an equilibrium Ê2 on the

decreasing portion of Λp. Moreover, it may or not have a second equilibrium

Ê1 on the increasing side of Λp.

Proposition 1. Let λ > λ0,

(i) then the endemic equilibrium Ê2 is asymptotically stable,

(ii) if the two endemic equilibria Ê1 and Ê2 exist, then Ê1 is unstable (saddle

point) and Ê2 is asymptotically stable. Therefore, for every p ∈ (u,m]

there exists δ > 0 such that any solution of system (4) initiated at a point

(p, i) with i < δ converges to Ê2.

This proposition simply asserts that if the population is above the Allee

threshold, the disease will establish itself in the population. This is illustrated

in Figure 4A (one endemic equilibrium) and Figure 4B (two endemic equilibria).

Figure 4: (A) Low disease-induced mortality and unique endemic equilibrium; (B) Low

disease-induced mortality and two endemic equilibria. The green curve Λp is the p-

nullcline and the cyan curve Λi is the i-nullcline. The diagonal magenta line is the

line p = i.

3.4.2. The model with high disease-induced mortality: µ > µ∗

In this case, for sufficiently large λ the graph of Λi is very close to the line

i = p so that Λi and Λp do not intersect. Denoting λ1 = min{λ : φ1(p) ≤
φ2(λ, p)} and F0 = {(p, i) : i = 0}, we obtain the following result.
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Proposition 2. If λ > λ1 the only stable equilibrium of the dynamical system

(4) is the origin and its basin of attraction is F \ F0.

In simple terms, for λ > λ1 the disease drive the host population to extinc-

tion (see Figure 5A). On the other hand, when λ ∈ (λ0, λ1) the disease can

either persist endemically or drive the host population to extinction. That is,

the eventual outcome (endemic state or extinction) depends on the host popu-

lation size and the size of the initial number of infection. As λ decreases from

λ1 to λ0 the dynamics presented in Figure 5B-D can be observed.

Figure 5: (A) Extinction: λ > λ1; (B) Unique unstable endemic equilibrium; (C) Stable

endemic limit cycle and (D) Stable Spiral point. The green curve Λp is the p-nullcline

and the cyan curve Λi is the i-nullcline. The diagonal magenta line is the line p = i.

Biologically, the results of propositions 1 and 2 follow from the fact that

the maximum degree of depression of the host population equilibrium, here
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leading to extinction, is achieved by a disease with intermediate pathogenicity

(Anderson, 1979; Anderson and May, 1979). If a disease pathogenicity is low

(µ < µ∗), the disease has a little detrimental effect on the host and so, the host

persists at endemic state with large population density. On the other hand, if

the disease pathogenicity is high, i.e. µ > µ∗ such that λ ∈ (λ0, λ1), the infection

can either be stably maintained in the population or drive the host to extinction

depending on the initial sizes of the host and infected sub-populations owing

to the strong Allee effect. Furthermore, if the disease pathogenicity is high

(µ > µ∗) and λ > λ1 then the disease drive the host population to extinction.

4. Special cases of the model

In this section, we consider the dynamics of system (4) for the case when

α = 0 and β 6= − 1
ku , which implies that the mortality rate function of system

(4) becomes linear (i.e. different from that of Hilker et al. (2009)).

Case I: α = 0 and β 6= 0

When α = 0 and β 6= 0 such that β 6= − 1
ku , system (4) reduces to

dp

dt
= k(1− p)(p− u)p− µi,

di

dt
= [−τ + (λ+ kβu)p− λi]i.

(12)

Setting α to zero in equations (6) and (7), we obtain the following pertinent

threshold quantities for model (12). The replacement number,

R(p) =
λp

τ − kβup
(13)

and the basic reproduction number,

R0 =
λ

τ − kβu
. (14)

The disease threshold,

pT =
τ

λ+ kβu
, (15)

is the point at which the linear i-nullcline crosses the horizontal axis (p-axis).

Moreover, 0 < pT < 1 is equivalent to R0 > 1, and pT > 1 is equivalent to

R0 < 1.

The results of Theorem 1, Theorem 3 and the existence and stability results

of the disease free equilibria follow for α = 0. Moreover, for α = 0 and pT as

defined in (15), Theorem 4 is restated as follows.
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Theorem 5. Let Q(p) =
d

dp
[k(1− p)(p− u)p]. If 0 < u < pT < 1, then model

(12) has a unique endemic equilibrium point E∗ = (p∗, i∗) with

pT < p∗ < 1, i∗ > 0,

and E∗ is locally asymptotically stable if

Q(p∗) < (λ+ kβu)(p∗ − pT ).

It is worth mentioning here that, if α = 0 and β = − 1
ku , then model (4) reduces

to that of Hilker et al. (2009). Detailed analysis of this case can be found in

(Cai et al., 2013; Friedman and Yakubu, 2012a; Hilker et al., 2009).

Case II: α = β = 0

For the case when α = β = 0, the model (4) reduces to

dp

dt
= k(1− p)(p− u)p− µi,

di

dt
= [−τ + λ(p− i)]i.

(16)

The feasible region (Theorem 1) and the disease free equilibria with their

associated stability results are as that of system (12). For the endemic equilibria    

Eq. (10) becomes

Ap3 +Bp2 + Cp+D = 0, (17)

where

A = −k,B = k(1 + u), C = −(ku+ µ), D = µpT ,

so that A,C are negatives and B,D are positives. Then there are three sign

changes in the sequence of coefficients of Eq. (17). Therefore, Theorem 3

becomes

Theorem 6. If 0 < u < pT < 1 then model (16) has either a unique endemic

equilibrium or three endemic equilibria.

It follows that Theorem 4 holds if a unique endemic equilibrium exists. More-

over, it is observed that the results of Theorem 6 and similar results for model

(12) do not exclude the existence of two endemic stationary states, depending

on the parameter values as in Figure 7B. The threshold quantities: replacement
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number, basic reproduction number and disease threshold are respectively, given

by

R(p) = λp/τ, (18)

R0 = λ/τ, (19)

and

pT = τ/λ. (20)

5. Persistence and Extinction

Following (Friedman and Yakubu, 2012a), here we state the conditions for

persistence/extinction of the infected/host population of model (12) and model

(16). All the theorems, lemmas and their proofs we present here are based on

the approach in (Friedman and Yakubu, 2012a).

Before we state the conditions for persistence/extinction, we claim the fol-

lowing auxiliary results.

Lemma 1. Let 0 < pT < 1. Then for any 0 < ρ0 < 1 − u, there exists a

sufficiently small ρ > 0 and a function t0 = t0[ρ, ρ0, i(0)] such that if

0 < i(0) < ρ and u+ ρ0 < p(0) ≤ 1,

then

i(t1) = ρ for some t1 < t0[ρ, ρ0, i(0)].

Proof. Suppose

i(t) < ρ for all t < t0∗. (21)

Then we need to show that t0∗ has a bound in terms of ρ, ρ0, and i(0). We claim

that

p(t) > u+ ρ0 for all t < t0∗. (22)

Proof of the claim: If the assertion in (22) is not true, then there is a smallest

t = t1 such that p(t1) = u+ ρ0, so that dp(t1)
dt ≤ 0. But by the first equation of

(12) and inequalities (21) and (22)

dp

dt
> k(1− p)(p− u)p− µρ = k[1− (u+ ρ0)]ρ0(u+ ρ0) > 0
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at t = t1 for

ρ <
k[1− (u+ ρ0)]ρ0(u+ ρ0)

µ
,

which is a contradiction. Thus, inequality (22) holds.

We further claim that

dp

dt
> 0 whenever p(t) < 1− ρ1,

where ρ1 = vρ and v is a positive constant such that u + ρ0 ≤ 1 − ρ1 ≤ 1. In

fact, by the first equation of (12) and inequalities (21) and (22), at any time t2 

  where p(t2) < 1 − ρ1, we have

dp

dt
> kρ1ρ0(u+ ρ0)− µρ = µρ

for

ρ1 =
2µρ

kρ0(u+ ρ0)
= vρ.

It follows that,

p(t) > 1− vρ if t > t01(ρ, ρ0) for some t01 = t01(ρ, ρ0). (23)

Also, from the second equation of (12) and inequalities (21) and (23), we have

di(t)

idt
=− τ + (λ+ kβu)p− λi,

>− τ + (λ+ kβu)(1− vρ)− λρ,

=
1

pT
(1− pT )τ − v1ρ = ξτ − v1ρ,

where t > t01(ρ, ρ0), ξ = 1−pT
pT

> 0 and v1 > 0 is a constant. Therefore,

i(t) > i[t01(ρ, ρ0)]e(1/2)ξτ [t−t
0
1(ρ,ρ0)] for ρ ≤ 1

2v1
ξτ.

Hence, i(t1) > ρ for some t1, where

t1 ≤ t0∗ ≡ t01(ρ, ρ0) + t02(ρ, ρ0, i[t
0
1(ρ, ρ0)]). (24)

It is to be noted that, i[t01(ρ, ρ0)] depends on the initial condition i(0), as such if

i(0)→ 0, then i[t01(ρ, ρ0)]→ 0. Hence, the right-hand side of Eq. (24) is indeed

a function t0 of ρ, ρ0 and i(0) which approaches infinity as i(0) approaches 0. �
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Lemma 2. Let 0 < pT < 1 and

i(ta) = ρ, p(ta) > u+ ρ0 for some ρ0 ∈ (0, 1− u),

where, ρ is a sufficiently small positive number depending on ρ0. If i(t) ≤ ρ for

ta < t < tb, then

tb − ta < t0(ρ, ρ0).

Theorem 7. If

0 < u < pT < 1 (25)

and

max
u≤x≤pT

{k(1− x)(x− u)x} > µ(λ+ kβu)

λ
(1− pT ) (26)

then for any solution (p(t), i(t)) of (12) with p(0) > u + ρ0, 0 < i(0) < ρ for

some positive numbers ρ0 and ρ, there exists an η > 0 depending on ρ0 and ρ

and a time t0 = t0[ρ, ρ0, i(0)] such that

(27)i(t) ≥ η for all t ≥ t0[ρ, ρ0, i(0)].   

 Proof. See Appendix B

As stated earlier, in model (12), all the trajectories (p(t), i(t)) with p(0) < u

lead to the extinction of the host population. But for 0 < pT < 1, Theorem 7

asserts that in the presence of disease infection, the host population size need

to be larger than the Allee threshold u in order to guarantee persistence of the

infected population. That is, the Allee threshold is increased to u+ ρ0.

Remark 2

(i) If g(x) = k
µ (1−x)(x−u)x and xc =

1+u+
√

(1+u)2−3u
3 , then (26) becomes

(λ+ kβu)

λ
(1− pT ) < max

u≤x≤pT
g(x)

=

{
g(pT ) if u ≤ pT ≤ xc,
g(xc) if u < xc < pT .

(28)
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(ii) If pT ≤ xc as in the first case of (i), the inequality (26) becomes

k(pT − u)pT >
µ(λ+ kβu)

λ
. (29)

We illustrate in Figure 6 that inequality (26) is satisfied whenever the maximum

value of g in the second case of (28), g(xc) is greater than (λ+kβu)
λ (1−pT ), where

u < xc < pT .

Figure 6: Inequality (26) holds where u < xc < pT and the i-nullcline, Λi =
(λ+kβu)

λ
(1−pT ),

is below the maximum value of the p-nullcline, Λp = k
µ

(1− p)(p− u)p.

We observe that in model (12), it is possible for the host population to go

extinct with 0 < pT < 1 and p(0) ≥ u+ ρ0. This can be seen when we consider

pT < u instead of pT > u in (26). Hence, we obtain the following result.

Theorem 8. If 0 < pT < u and

max
u≤x≤1

{
k(1− x)(x− u)x− µ(λ+ kβu)

λ
(x− pT )

}
≤ ρ (30)

for some small enough ρ > 0, then any solution of model (12) with 1 − η <

p(0) ≤ 1 for any sufficiently small η > 0 and i(0) > 0 satisfies

p(t)→ 0 and i(t)→ 0 as t→∞.
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Proof. See Appendix C

Inequality (30) holds whenever the p-nullcline, Λp, is below the i-nullcline,

Λi, of system (12) (see Figure 7A). It is to be noted that, the assumption that

ρ in condition (30) is small is necessary. As shown in Figure 7B, for example,

if the two nullclines intersect at two points ω1 and ω2 which are not sufficiently

close, then any solution (p(t), i(t)) of model (12) with initial condition that

p(0) ∈ (1 − η, 1] and a very small number of infectives i(0) converges to ω2 as

t→∞.

Figure 7: (A) Inequality (30) holds where pT < u < 1 and the p-nullcline Λp is

below the i-nullcline Λi; (B) Two interior positive equilibrium points of model (12)

and a solution (circles) with initial condition (p(0), i(0)) = (1, 0.0001) converges to an

equilibrium point ω2 as t → ∞. Parameter values used are: k = 1.3; γ = 1.8, u =

0.2, β = 0.07, λ = 19.797 and (A) µ = 0.3; (B) µ = 0.25.

On the issue of persistence and extinction for model (16), Lemma 1 and

Lemma 2 hold. But Theorem 7 and Theorem 8, respectively, become

Theorem 9. If

0 < u < pT < 1 (31)

and

max
u≤x≤pT

{k(1− x)(x− u)x} > µ(1− pT ) (32)

then for any solution (p(t), i(t)) of (16) with p(0) > u + ρ0, 0 < i(0) < ρ for

some positive numbers ρ0 and ρ, there exists an η > 0 depending on ρ0 and ρ
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and a time t0 = t0[ρ, ρ0, i(0)] such that

i(t) ≥ η for all t ≥ t0[ρ, ρ0, i(0)]. (33)

Remark 3

(i) If g(x) = k
µ (1−x)(x−u)x and xc =

1+u+
√

(1+u)2−3u
3 , then (32) becomes

(1− pT ) < max
u≤x≤pT

g(x)

=

{
g(pT ) if u ≤ pT ≤ xc,
g(xc) if u < xc < pT .

(34)

(ii) If pT ≤ xc as in the first case of (i), the inequality (32) becomes

k(pT − u)pT > µ. (35)

Theorem 10. If 0 < pT < u and

max
u≤x≤1

{k(1− x)(x− u)x− µ(1− pT )} ≤ ρ (36)

for some small enough ρ > 0, then any solution of model (16) with 1 − η <

p(0) ≤ 1 for any sufficiently small η > 0 and i(0) > 0 satisfies

p(t)→ 0 and i(t)→ 0 as t→∞.

We can biologically conclude that the results of Theorems 8 and 10 indicate

that the synergistic interplay between Allee effects and infectious diseases is

death blow for the host population if the disease threshold pT is low and the

transmissibility λ is large. That is, the eventual outcome in such a situation is

the extinction of the whole population.

5.1. Numerical simulations

Here, we focus on the model parameters where a small number of individu-

als infected with a fatal disease cause the host population subject to the strong

Allee effect in the vital dynamics with p(0) = 1 to persist or to go extinct.

If extinction occurs for no matter how small the initial number of the infect-

ed individuals, i(0) is, then the model parameters are in the host extinction

phase; otherwise they are said to be in the host persistence phase (Friedman

and Yakubu, 2012a).

According to Theorem 7, when 0 < pT < 1, under conditions (25) and (26),

if p(0) > u + ρ0 for some ρ0 > 0 (p(0) = 1, in particular), the inequality (27)
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holds for any small number of infected individuals i(0). Hence, (u, λ) is a point

of persistence of the infected population and also of the host population by

Theorem 1. If 0 < pT < min{u, 1} and inequality (30) holds, then by Theorem

8, (u, λ) is a point of host extinction.

For illustration, in Figure 8, we vary the Allee threshold, u and the trans-

missibility, λ, keeping all other parameters fixed, see Table 1 for the parameter

values, which we adopt from (Friedman and Yakubu, 2012a; Hilker et al., 2009).

Table 1: Parameter values

Parameter Nominal value

k 0.2

γ 1.25 (scaled by k to 0.25)

µ 0.1

u (0, 0.5)

β -0.6 (Assumed)

Define

(1) The curve Λ1 : λ = λ1(u) by setting pT to 1 in (15).

(2) The curve Λ2 : λ = λ2(u) by setting pT to u in (15).

(3) The curve Λ3 : λ = λ3(u) such that with λ = λ3(u), equality holds in

inequality (26). Then inequality (26) holds if λ > λ3(u).

(4) The curve Λ4 : λ = λ4(u), such that with λ = λ4(u), equality holds in

inequality (30). Then inequality (30) holds if λ > λ4(u).

By the assertion of Theorem 7, the region between Λ3 and Λ2 is a region of

persistence of the infected population. The region λ > λ4(u) + ε for some ε > 0

is a region of host population extinction as asserted by Theorem 8. Points of

disease population persistence or extinction may either be points in the regions

between Λ1 and Λ3 and between Λ2 and Λ4. In Figure 8, simulations depict

points of host population persistence with no infected individuals (tildes), points

of disease persistence (stars), and points of host population extinction (open

circles).

For system (16), we define the curves Λ1 and Λ2 by replacing Eq. (15)

with Eq. (20). The curves Λ3 and Λ4 are defined respectively, by replacing

inequalities (26) and (30) with inequalities (32) and (36). Then we have in

Figure 8B, numerical simulations similar to that of system (12).

It should be noted that, if α = 0 and β = − 1
ku , then model (4) reduces to

that of Hilker et al. Hilker et al. (2009) with λ > 1, see simulations in Figure

8D and compare with Figure 5 in Friedman and Yakubu (2012a).
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One can observe from Figure 8 that it is possible for the model parameters

to shift from host population persistence phase to host population extinction

phase if we increase the transmissibility λ and the Allee threshold u, respectively,

while the values of all the other parameters are fixed. Moreover, it can also be

seen that the regions for persistence and extinction vary in size with altering

value of β, noting that Figure 8A-D are drawn with β = 0.6, 0,−0.6, and − 1
ku ,

respectively, and the same set of values of all the other parameters.

Figure 8: Region of disease extinction (host persistence) is denoted by ’tildes’, region
of disease persistence is denoted by ’stars’, and region of host extinction is denoted by
’open circles’ in (u, λ)-plane with initial condition (p, i) = (1, 0.0001). (A) α = 0, β =
0.6, λ > 0; (B) α = β = 0, λ > 0; (C) α = 0, λ > 0; (D) β = − 1

ku
and the values of

other parameters are as stated in Table 1.
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Discussion and conclusion

The Allee effects and parasitism are some of the extinction drivers that

recently received considerable attention in extinction research. Their joint in-

terplay have long been recognized to drive host population to extinction. An SI

model with a strong Allee effect in which the vital dynamics (birth and death)

are both modeled as quadratic polynomials is designed and rigorously analyzed.

This approach provides ample opportunity for taking into account the major

contributors to the Allee effect and makes the presented model more general.

The specific choice of the mortality rate in Eq. (3) arises from the Allee mech-

anisms that affect survival or both survival and reproduction at all densities

Berec et al. (2006) and intraspecific competition. This allow us to explore a

range of values of the parameter α and that of β, which determine the inten-

sity of the Allee effects on both fertility and mortality rate functions. More

specifically, the mortality rate decreases when β > 0 and it increases if β ≤ 0

while the values of all the other parameters are fixed, showing that some species

are more susceptible to the Allee effects than others. This follows from the fact

that species whose individuals benefit from the presence of conspecifics are more

susceptible to the Allee effects than others (Courchamp and Mackdonald, 2001;

Stephens and Sutherland, 1999). This study generalizes some of the previous

studies in the sense that if α = β = 0, we have a nonlinear fertility function and

a constant mortality rate as in Thieme et al. (2009). For α = 0, β = − 1
ku , the

demographic functions of the proposed model are quadratic and linear similar to

those in Hilker et al. (2009). In this case the presented model can be considered

as an extension of the model of Hilker et al. (2009).

If R0 < 1, the host population will either undergo extinction or settles at

the carrying capacity depending on the initial population size (Theorem 2). In

such a case the disease cannot invade from arbitrarily small introductions into

the host population at carrying capacity. From biological point of view, in the

absence of disease the presence of an Allee effect in the host demographic plays

a protective and a stabilizing role in relations to the disease invasion. On the

other hand, in the presence of infection an additional disease-related mortality

increases the likelihood of population extinction. More precisely, the disease

establishes an effective host eradication threshold above the Allee threshold u

(Theorem 7).

It is well known that the maximum degree of depression of a host popula-

tion equilibrium is achieved by intermediate disease pathogenicity, i.e. low to

moderate pathogenicity (Anderson, 1979; Anderson and May, 1979). In view of

that, we obtain two important threshold quantities λ0 and λ1 of the transmis-

sibility λ. If the disease pathogenicity is low (µ < µ∗) such that λ > λ0, the

disease could establish itself in the host population (Figure 4). In contrast, if

the disease pathogenicity is high, i.e. µ > µ∗ such that λ ∈ (λ0, λ1), the disease
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can either invade the population or drive the host population to extinction de-

pending on the initial sizes of the host and infected sub-populations due to the

strong Allee effect. For some high value of µ, the dynamics of system (4) could

undergo some substantial changes as λ decreases from λ1 to λ0. First, the stable

endemic equilibrium becomes unstable and so, both the total population and

the infected sub-population start oscillating in form of stable limit cycles (illus-

trated in Figure 5C). This mathematically corresponds to a Hope bifurcation

scenario. Then, the oscillations disappear as a results of a coalition between

the increasing limit cycles and the Allee threshold state E1, which is known

as a Homoclinic bifurcation. Despite the disappearance of the limit cycles, the

unstable endemic equilibrium still persist and so, there is no endemic attractor

any more. This leads to the extinction of the whole population. Moreover, the

unstable endemic equilibrium also disappears when the total population falls

below the Allee threshold due to disease related mortality. As expected, the

model presented in Hilker et al. (2009) exhibits all these dynamical behaviors

being a special case of the extended model in this paper. In addition, if the

disease pathogenicity is high (µ > µ∗) and λ > λ1 the disease drive the host

population to extinction. Thus, the system is rendered monostable with the

trivial extinction state E0 being the only global attractor, see for example Fig-

ure 5A. In particular, when λ > λ1 there is a disease-induced extinction for any

initial state.

In a recent study, (Friedman and Yakubu, 2012a) used the model of Hilk-

er et al. (2009) and focused on the role of the Allee effect at large population

densities. Following the approach in (Friedman and Yakubu, 2012a), verifiable

conditions for the special cases of the proposed model that guarantee host per-

sistence (with or without infected individuals) and host extinction are derived

via the relative position of a disease threshold to the Allee threshold and host

population carrying capacity. This extinction scenario shows how a small per-

turbation to the disease-free equilibrium can lead to the catastrophic extinction

of the host population (Theorems 8 and 10). In addition, we prove that there

is an effective increase in the Allee threshold when a fatal disease invades the

host population whose demographics are manifested with a strong Allee effect

(Theorems 7 and 9).

In summary, the results of the proposed model indicates that if a strong Allee

effect would be present in the host demographic both the host and disease dy-

namics might be very sensitive to parameter perturbations. As a consequence,

intensified host population depression, increased prevalence, cycling, or host ex-

tinction could be the possible outcomes. These results are obtained before in

(Friedman and Yakubu, 2012a; Hilker et al., 2009), which shows the robustness

of the presented model. In addition, the quadratic birth and death rates func-

tions introduced here effectively capture species’ susceptibility variations due to
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the Allee effects since the range of values of the parameters α and β determine

the intensity of the Allee effects on both the fertility and mortality rate function-

s B(P ) and D(P ). This support the results in (Courchamp and Mackdonald,

2001; Stephens and Sutherland, 1999) that an Allee effect is more intense in

some species than others and the fact that animal species that aggregate due

to the Allee effects would be more prone to negative effects of parasite Christe

et al. (2006).

Mathematically, we provide a new approach to investigate species’ differen-

tial susceptibility to the Allee effects. An approach which makes the present-

ed model more general than some of the previous studies (Hilker et al., 2009;

Thieme et al., 2009). Indeed, determining the range of values of the parameters

α and β which determine the intensity of the Allee effects on both the fertility

and mortality rate functions B(P ) and D(P ) would be of crucial importance in

ecology and conservation for identifying potential extinction risks and guiding

management actions.
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Appendix A. Proof of Theorem 4

Proof. It should be noted that E∗ is an endemic equilibrium point with i∗ > 0

if and only if x = p∗ is a zero of the function

q(x) = kx(1− x)(x− u)− µ

λ
[τ + k(αx2 − βux)][R(x)− 1]

= kx(1− x)(x− u)− µx [R(x)− 1]

R(x)
.

This may occur only in the interval (pt)1 < x < 1. It can be verified that  q(1) < 0, 
q[(pt)1] > 0 and q′′(x) < 0 if u < x < 1. Thus, by Intermediate Value

Theorem Stewart (2008), q(x) has precisely one zero x = p∗ in the interval

(pt)1 < x < 1. But the slope of the i-nullcline is greater than that of the

p-nullcline at E∗, that is,

Q(p∗) <
µ

R(p)

{
[R(p)− 1] +

p

R(p)

d

dp
[R(p)]

}
. (A.1)
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The Jacobian matrix of system (4) at E∗ is

J(E∗) =

(
Q(p∗) −µ

(λ− k(2αp∗ − βu))i∗ Hi∗

)
,

where

Hi∗ =
λp∗

R(p∗)
[R(p∗)− 1]− 2λi∗, i∗ =

p∗

R(p∗)
[R(p∗)− 1].

The eigenvalues of J(E∗) have negative real parts if the trace, tr[J(E∗] < 0 and

the determinant, det[J(E∗)] > 0. That is

tr(E∗) = Q(p∗) +Hi∗ = Q(p∗)− λp∗

R(p∗)
[R(p∗)− 1] < 0,

which is the inequality (11) and

det[J(E∗)] =Q(p∗){ λp∗

R(p∗)
[R(p∗)− 1]− 2λi}

+
µ

R(p∗)

{
[R(p∗)− 1] +

p∗

R(p∗)

d

dp
[R(p∗)]

}
i∗,

=
λp∗

R(p∗)
[R(p∗)− 1]

×
{

µ

R(p∗)

(
[R(p∗)− 1] +

p

R(p)

d

dp
[R(p∗)]

)
−Q(p∗)

}
> 0

only with inequality (A.1). �

Appendix B. Proof of Theorem 7

Proof. Considering Lemma 2, it suffices to show that i(t) is bounded from

below in the interval ta < t < tb, where i(t) ≤ ρ and ta > 0. Let (ta, tb) be

a maximal interval for which i(t) ≤ ρ so that i(ta) = ρ and then, i(t) > ρ

for some t < ta. Suppose t1 is the largest value of t, t < t1 such that i(t) is

monotonically decreasing from t1 to ta. Then,

i(t) < i(t1) for t1 < t < ta (B.1)

and

di(t1)

dt
= 0,

or by the second equation of (12),

− τ + (λ+ kβu)p(t1)− λi(t1) = 0. (B.2)
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Hence,

λp(t1) = pT +
λ

λ+ kβu
i(t1) > pT = u+ ρ1, (B.3)

where ρ1 ≡ pT − u > 0.

Now, we claim that there exists ρ∗0 ∈ (0, ρ1) such that

p(t) > u+ ρ∗0 for all t1 < t ≤ ta. (B.4)

In fact, since p(t1) > u + ρ1 > u + ρ∗0, if the assertion (B.4) is not true, then

there exists t∗1 ∈ (t1, ta) such that

p(t) > u+ ρ∗0 if t1 < t < t∗1, p(t
∗
1) = u+ ρ∗0.

Thus,

dp(t∗1)

dt
≤ 0,

or by the first equation of (12), we have

k[1− (u+ ρ∗0)]ρ∗0(u+ ρ∗0)− µi(t∗1) ≤ 0

so that

i(t∗1) ≥ k

µ
[1− (u+ ρ∗0)]ρ∗0(u+ ρ∗0).

But, by inequality (B.1) and Eq. (B.2),

i(t∗1) ≤ i(t1) =
1

λ
[(λ+ kβu)p(t∗1)− τ ] <

1

λ
[(λ+ kβu)− τ ],

so that,

k[1− (u+ ρ∗0)]ρ∗0(u+ ρ∗0) <
µ

λ
(λ+ kβu)(1− pT ).

Indeed, this is a contradiction to inequality (26) when ρ∗0 is chosen for x = u+ρ∗0
to be the value at which the left-hand side of (26) attains the maximum. We

infer that with this chosen value of ρ∗0, (B.4) holds and specifically,

p(ta) > u+ ρ∗0.

Therefore, by applying Lemma 2, we can now deduce that

tb − ta < t0(ρ, ρ∗0).

Considering the way ρ∗0 is determined, t0(ρ, ρ∗0) may be taken as a function

depending on ρ only (i.e. t0 = t0(ρ)). We also observe from the second equation

of (12) that
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di

dt
≥ −ci for all t > 0,

where c > 0 is a constant. Therefore,

i(t) ≥ ρe−c(tb−ta) ≥ ρe−ct
0(ρ) ≡ η if ta < t < tb.

Indeed, this estimate is true for any such interval ta < t < tb, where i(t) ≤
ρ and i(ta) = ρ. It follows that, i(t) > η if t > t0[ρ, ρ0, i(0)] by combining

this estimate and Lemma 1. �

Appendix C. Proof of Theorem 8

Proof. Let Λi and Λp be the i- and p-nullclines of model (12) respectively. Define

Π1 ={(p, i) ∈ [0,∞)× [0,∞) : i > 0, pT < p < 1},
Π2 ={(p, i) ∈ [0,∞)× [0,∞) : i = 0, 0 < p ≤ pT },
Π3 ={(p, i) ∈ [0,∞)× [0,∞) : i > 0, u < p < 1},
Π4 ={(p, i) ∈ [0,∞)× [0,∞) : i = 0, 0 < p ≤ u}.

We denote by Λ+
i the union of Λi ∩Π1 and the interval, Π2, that is

Λ+
i = Λi ∩Π1 ∪Π2

and Λ+
p the union of Λp ∩Π3 and the interval, Π4, so that

Λ+
p = Λp ∩Π3 ∪Π4.

Therefore,

dp

dt
> 0 below Λ+

p and
dp

dt
< 0 above Λ+

p ,

di

dt
> 0 below Λ+

i and
di

dt
< 0 above Λ+

i .

Considering condition (30), where

max
u≤x≤1

{
k(1− x)(x− u)x− µ(λ+ kβu)

λ
(x− pT )

}
< 0

we have

Λi ∩ {(p, i) ∈ [0,∞)× [0,∞) : i > 0}

to be strictly above
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Λp ∩ {(p, i) ∈ [0,∞)× [0,∞) : i > 0}.

Thus,

di

dt
≥ ρ1 below Λ+

p and
dp

dt
≤ −ρ1 above Λ+

i , for some ρ1 > 0.

Hence, every trajectory of model (12) must cross Λ+
i at some time to enter the

region above Λ+
i unless if it is initially above it. Then it remains there so that

p(t)→ 0 and i(t)→ 0 as t→∞.

Consider now the case when equality holds in inequality (30) with ρ = 0.

Then, Λ+
p and Λ+

i are tangent to each other with point of intersection ω =

(p∗, i∗). The Jacobian matrix of (12) evaluated at ω

J(ω) =

(
Q(p) −µ

(λ+ kβu)i∗ −λi∗

)
has eigenvalues 0 and µ(λ+kβu)

λ −λi∗. Therefore, ω is a single degenerate point,

so that no trajectory (p(t), i(t)) which is above Λ+
i can converge to ω for some

time t = t1 as t approaches infinity.

Figure 9: Phase plane of model (27) with the i-nullcline Λi tangent to the p-nullcline Λp and

a solution (circles) with initial condition (1, 0.0001) converges to (0, 0) as t → ∞. Here,

k = 1.2, µ = 0.232, γ = 1.27, u = 0.2, β = 0.07 and λ = 19.997.
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It follows, as illustrated in Figure 9, that any trajectory (p(t), i(t)) with

(p(0), i(0)) = (1 − η1, η2) must cross Λ+
p and Λ+

i , where η1 ≥ 0 is sufficiently

small and η2 > 0. Hence, (p(t), i(t)) → (0, 0) as t → ∞ as in the first case

considered above. Precisely, p(tη) < 1
2u for some finite time tη.

Furthermore, when ρ in condition (30) is small enough, the i-nullcline Λi
intersects the p-nullcline Λp at two points ω1 and ω2 such that |ω1 − ω| and

|ω2−ω| are sufficiently small. Then, by continuity, the corresponding trajectory

(p∗(t), i∗(t)) with (p∗(0), i∗(0)) = (1− η1, η2) satisfies p∗(tη) < u, where η1 ≥ 0

is small enough and η2 > 0. Hence, p∗(t)→ 0 as t→∞.
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