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SUMMARY
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by
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Degree: Philosophiae Doctor (Electronic Engineering)
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network applications, neural network architecture

Multimodal dataset shifts consisting of both concept and covariate shifts are addressed in this study
to improve texture-based land-use classification accuracy for optical panchromatic and multispectral
remote sensing. Multitemporal and multisensor variances between train and test data are caused by
atmospheric, phenological, sensor, illumination and viewing geometry differences, which cause
supervised classification inaccuracies. The first dataset shift reduction strategy involves input
modification through shadow removal before feature extraction with gray-level co-occurrence matrix
and local binary pattern features.

Components of a Rayleigh quotient-based manifold alignment framework is investigated to reduce
multimodal dataset shift at the input level of the classifier through unsupervised classification, followed
by manifold matching to transfer classification labels by finding across-domain cluster correspondences.
The ability of weighted hierarchical agglomerative clustering to partition poorly separated feature
spaces is explored and weight-generalized internal validation is used for unsupervised cardinality
determination. Manifold matching solves the Hungarian algorithm with a cost matrix featuring
geometric similarity measurements that assume the preservation of intrinsic structure across the dataset
shift. Local neighborhood geometric co-occurrence frequency information is recovered and a novel
integration thereof is shown to improve matching accuracy.

A final strategy for addressing multimodal dataset shift is multiscale feature learning, which is used
within a convolutional neural network to obtain optimal hierarchical feature representations instead of
engineered texture features that may be sub-optimal. Feature learning is shown to produce features that
are robust against multimodal acquisition differences in a benchmark land-use classification dataset.
A novel multiscale input strategy is proposed for an optimized convolutional neural network that
improves classification accuracy to a competitive level for the UC Merced benchmark dataset and
outperforms single-scale input methods. All the proposed strategies for addressing multimodal dataset



shift in land-use image classification have resulted in significant accuracy improvements for various
multitemporal and multimodal datasets.
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Multimodale datastelverskuiwings wat bestaan uit beide konsep- en kenmerkverskuiwings word
in hierdie studie bestudeer om tekstuurgebaseerde landsgebruikklassifikasie-akkuraatheid te
verbeter vir optiese panchromatiese and multispektrale afstandswaardneming. Multitemporale
en multisensorvariansies tussen afrig- en toetsdata word veroorsaak deur atmosferiese,
fenologiese, sensor-, verwerking, illuminasie- en besigtigingsgeometrieverskille wat gekontroleerde
klassifikasie-onakkuraathede veroorsaak. Die eerste datastelverskuiwingverminderingstrategie
behels insetverandering deur beide beeldpunt- en voorwerpgebaseerde skaduweeverwydering voor
kenmerkbepaling met grysvlak-samevallingsmatriks- en lokale binêre patroonkenmerke.

Komponente van ’n Rayleigh kwosiëntgebaseerde struktuurbelyningsraamwerk word gebruik
om multimodale datastelverskuiwing te verminder by die insetvlak van die klassifiseerder deur
ongekontroleerde klassifikasie gevolg deur struktuurpassing om klassifikasie-etikette oor te dra. Die
vermoë van geweegde hiërargiese agglomeratiewe groupering om swak geskeide kenmerksruimtes te
verdeel word ondersoek en gewigsveralgemeende interne validasie word benut vir kardinaliteitsbepaling
sonder toesig. Menigvoudspassing los die Hongaarse algoritme op wat ’n koste-matriks met
geometriese ooreenkomsmetings gebruik onder die aanname van die onderhouding van intrinsieke
struktuur in die datastelverskuiwing. Lokale-omgewing- geometriese samevallingsfrekwensie-
informasie word teruggewin en verbeterde klassifikasie-akkuraatheid word aangetoon met ’n nuwe
integrasie van hierdie informasie.

’n Finale strategie vir die hantering van multimodale datastelverskuiwing is menigskaalkenmerkleer,
wat gebruik word binne ’n konvolusionale neurale netwerk om optimale hiërargiese
kenmerkevertonings te verkry in plaas van ontwerpde tekstuureienskappe wat suboptimaal
kan wees. Kenmerkleer produseer eienskappe wat gewys word om robuust te wees teen multimodale



verskille in ’n maatstaf-grondgebruikklassifikasiedatastel. ’n Nuwe menigskaalinsetstrategie word
voorgestel vir ’n geoptimeerde konvolusionale neurale netwerk wat klassifikasie-akkuraatheid verbeter
tot ’n mededingende vlak vir die UC Merced-datastel en verbeter op enkelskaal-insetmetodes. Al die
voorgestelde strategië vir datastelverskuiwingvermindering het gelei tot beduidende verbeterings in
akkuraatheid vir verskeie multitemporale en multimodale datastelle.



“Yesterday I was clever, so I wanted to change the world.
Today I am wise, so I am changing myself.” – Rumi
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

The accuracy of trained classifiers across domains acquired under varying measurement modes is of
cardinal importance in pattern recognition and classification. This study aims to demonstrate methods
and systems engineered to produce more accurate land-use classifications under multimodal dataset
shifts and to contribute general methods and algorithms that could be used in artificial intelligence
areas outside remote sensing.

The proposed research theme is feature classification under measurement mode variances, with specific
application to the remote sensing scenario of across-date and across-sensor settlement type and land-use
classification. The aim is to develop general methods that can improve land-use classification accuracy
if there are differences in illumination and viewing geometries between the train and test images, due
to different acquisition times, or sensor differences due to different satellites being used.

1.1.1 Context of the problem

In the advent of electro-optical high spatial resolution digital satellites new avenues have been opened
for detailed information extraction, especially in the area of land-use thematic mapping. Careful
management of the earth’s resources is becoming more critical, and an essential part of earth observation
is environmental and land-use monitoring. As the global population is expected to rise to nine billion
by 2050, and as the era of abundant cheap resources is drawing to a close, the need for intelligent
resource management becomes evident.

Environmental conservation, natural resources management, land-use enforcement and the mapping of
urban sprawl all benefit from information extracted from remotely sensed images. Settlement type
and land-use classification, as well as settlement type change detection, can assist city planners in
monitoring the expansion of informal settlements, for example, and help improve service delivery to
those areas. Assisted classification of the earliest image can be used to train a basic classifier (shown
in Figure 1.1) that can then automatically classify settlements on images acquired at later dates. An
important theme in the proposed research is that of pattern classification with varying features, as it
extends to a wide range of general classification problems.

The higher resolution images provided by current satellites require updated techniques and methodology
to make full use of the underlying information. Although plenty of attention has been given to
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Figure 1.1. Basic supervised classification system.

multispectral high-resolution remote sensing, there is still insufficient research specifically into
panchromatic-only information extraction. It is important to address this omission, as there are
panchromatic-only satellites such as WorldView-1, a commercial earth observation satellite owned by
DigitalGlobe, which provides high-resolution imagery with wide and frequent earth coverage that is
sensitive to light of a colors in a given spectral band.

In addition, while most earth observation satellites provide both panchromatic and multispectral
imagery, there is a distinct cost premium on multispectral data that makes panchromatic-only products
the only affordable choice for many institutions. However, the panchromatic sensor typically provides
imagery that is four times denser than multispectral, so there is a strong incentive to develop techniques
specifically for panchromatic data.

1.2 DATASET SHIFT

Classification of multimodal remote sensing imagery is complicated by dataset shift, which is a change
that happens between the training and testing environment of the classifier that causes inaccurate
classification. Understanding dataset shift is critical to effectively addressing multimodal remote
sensing classification, since dataset shift presents strongly in the remote sensing acquisition differences.
In this section the subject of dataset shift is reviewed and its strong relation to the study in this thesis is
emphasized.

1.2.1 Overview

Given a multidimensional feature or covariate x and a target or class variable y, the joint probability
distribution P(y,x) can be written as P(y|x)P(x) in settings where class labels are causally determined
by covariates. The prototypical classifier with parameters ω assigns a label f (x,ω) ∈ [1, . . . ,K] with
one of K values corresponding to a particular class to an input covariate x. A loss function that detects
classification errors when f (x,ω) does not equal the groundtruth label y is defined as

L(y, f (x,ω)) =

{
0 if f (x,ω) = y
1 if f (x,ω) 6= y.

(1.1)

The risk functional that quantifies the overall classification error with classifier parameters ω is then
given by

R(ω) =
∫ ∫

L(y, f (x,ω))p(y,x)dx dy. (1.2)
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The study objective is to minimize the risk R(ω) by discovering the optimal classifier design parameters
ω0 so that ω0 = argminω R(ω). Ideally the parameters for two classifiers trained on the training data
and test data, respectively, should be equivalent so that ωtr ≈ ωtst.

The assumption in supervised discriminative classification is that the input prior probability density
function (PDF) P(x), class prior PDF P(y) and conditional class PDF P(y|x) remain unchanged
between the training and testing scenarios [1]. In real world applications achieving this equivalence
is complicated by variations between training and testing environments. Dataset shifts appear when
the joint distribution P(y,x) of the input and class variables (x and y) differ between the training and
testing datasets (Xtr and Xtst). The concept of dataset shift is illustrated in Figure 1.2.

.

Train
image

Test
image Test features

Train features

Dataset shift

Figure 1.2. Supervised classification system affected by dataset shift.

Such dataset shifts may be caused by a non-stationary classification environment or domain shift,
which is characterized by a change in the measurement system, or method of description [2]. This is
prevalent in remote sensing, where training and testing dataset mismatches may appear in response to
seasonal changes or a terrain distribution difference between the datasets.

1.2.2 Types of dataset shift

In general there are four types of dataset shifts [2], which vary in terms of prevalence and correction
difficulty:

1. Covariate shift occurs when Ptr(x) 6= Ptst(x) and Ptr(y|x) = Ptst(y|x).

2. Concept shift occurs when Ptr(y|x) 6= Ptst(y|x) and Ptr(x) = Ptst(x).

3. Prior probability shift occurs when Ptr(y) 6= Ptst(y) and Ptr(x|y) = Ptst(x|y).

4. Dataset shift occurs when Ptr(x) 6= Ptst(x) and Ptr(y|x) 6= Ptst(y|x).

The covariate shift is well covered in the literature and there are several examples in different
applications such as off-policy reinforcement learning [3], spam filtering [4], bioinformatics [5],
brain-computer interfacing [6] and sample selection bias in economics [7]. Prior probability shifts are
relevant only to classification scenarios where the class label y causally determines the values of the
covariates x [2], but in the discriminative classification considered in this thesis the reverse is true,
namely that the class label is causally determined by the covariate values x.

Dataset shifts that cause a change in both the conditional class probability distribution P(y|x) (concept
shift), conditioned on the input variable x, and the prior input probability distribution (covariate shift)
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P(x) are rarely discussed in the literature and are considered impossible to solve in the absence of
assisting assumptions [2]. This fourth type of dataset shift is the one that is considered in this thesis,
since multimodal remote sensing image variations can cause extracted texture features of the same
class to change (P(x)) while also simultaneously changing the class definitions (P(y|x)).

1.2.3 Causes of dataset shift

The two main causes of dataset shift are sample selection bias, which is a form of covariate shift, and
non-stationary measurement environments. Non-stationary measurement scenarios include adversarial
classification problems, such as spam filtering and network intrusion detection. A set of benchmark
datasets has been compiled by Moreno-Torres et al. for testing methods that deal with dataset shifts [8],
but most of the datasets in the repository are synthetic or are derived from real-life datasets through
artificial shifts.

Real-life reasons for dataset shift according to Storkey [9], [10] include:

1. Simple covariate shift is where the probability distributions of covariates x change and
everything else stays the same.

2. Prior probability shift is where the probability distribution of y changes and everything else
stays the same.

3. Sample selection bias is where training and test distributions differ as a result of an unknown
instance rejection process.

4. Imbalanced data are a deliberate dataset shift for modeling or computational convenience.

5. Domain shift involves changes in measurement between the training and test samples.

6. Source component shift involves changes in the strength of contributing components. Three
types are specified as follows:

• Mixture component shift is where samples of (x,y) can come from a number of different
sources s, but where the source priors can change, i.e. Ptr(s) 6= Ptst(s) and Ptr(x,y|s) =
Ptst(x,y|s).

• Mixing component shift is an aggregate of mixture component shifts that are sampled
independently and identically distributed so that observations x are the average of
observations drawn from each of the mixture component samples.

• Factor component shift is where the data are dependent on a number of different factors,
each of which can be decomposed into a form and strength. The forms of the factors
remain the same, but the strengths can vary between the training and test scenario.
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1.2.4 Solutions

1.2.4.1 Dataset shift characterization

The existence and characteristics of dataset shift between datasets have been determined in the literature
through the following methods:

1. Correspondence tracing is where the effects of dataset shift are explored through the
comparison of rule-based classifiers trained on both datasets, which uncovers the classification
characteristics that qualitatively describe the nature of the dataset shift [11].

2. Conceptual equivalence discovers discrepancies between datasets as a method of contrast
mining [12].

3. Statistical analysis has been used as a framework to analyze the changes between the training
and test probability distributions [13].

1.2.4.2 Solutions for covariate shift

Sample selection bias is an important case of covariate shift where a training instance is drawn
from the test distribution, then selected into the training sample with some probability or discarded
otherwise [14]. The training and test probability distribution is reflected in the training and test samples,
and can be estimated using kernel density estimation [15]. The estimated density ratio can subsequently
be used to either weight or resample the training instances. The estimation of the density ratio is
model-based and a classifier derived from the adjusted training sample is dependent on the adjustment
process and is consequently generally non-optimal.

The case of training samples that are only biased with respect to the class ratio, i.e. a sample selection
bias that depends only on the class label, has also been investigated [16]. Resampling weights for the
training instances have been estimated by minimizing the Kullback-Leibler divergence between the
test sample and weighted training sample [17].

A list of important solutions to the more general case of covariate shift is as follows:

1. Weighting the log-likelihood function: The loss on the test data distribution is minimized by
weighting the loss on the training distributions with an instance-specific factor [10], based on
knowledge of the training and test data distributions [18].

2. Importance weighted cross-validation: Under a covariate shift the standard model selection
techniques such as cross-validation do not work, so an adjustment called importance weighted
cross-validation is presented by Sugiyama et al. [19].

3. Integrated optimization problem: Bickel et al. derived a purely discriminative solution that is
expressed as an integrated optimization problem, which leads to kernel logistic regression and
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an exponential model classifier for covariate shift [14].

4. Kernel mean matching finds a weighting for the training instances so that the first statistical
moments of the test sample and weighted training sample in the reproducing kernel Hilbert
space (i.e. a high dimensional feature space) are close [20].

5. Sub-class re-estimation: Unlabeled test data can be used to adapt classifier outputs when class-
conditional probability densities change because of changes in prior subclass probabilities [21].

6. Genetic programming has been used to address the dataset shift problem in a cancer diagnosis
case study [22]. Genetic operators such as selection, mutation and crossover are applied to
the test dataset to optimize the test accuracy, a computationally expensive approach that also
requires a large proportion of test labels.

1.2.4.3 Solutions for concept shift

Klinkenberg addresses concept shift in information filtering, which involves the adaptive classification
of documents with respect to a particular user interest where both user interest and document content
can change over time [23]. The filtering system uses adaptive time windows over the training data,
representative training sample selection and example weighting.

1.2.4.4 Solutions for prior probability shift

There are adaptive and robust approaches to prior probability shifts, which can adjust the classifier
when the class prior PDFs of the training and test datasets differ. Robust approaches base classifier
selection on measurements that are ideally transparent to changes in class distribution, such as receiver
operator curve analysis [24], [25], [26].

Adaptive approaches first train the classifier and then adapt the classifier parameters by using the
test data, which are usually unlabeled. Adjustments can be brought about by the end-user, as in the
detection of oil spills in remote sensing data where class imbalance is addressed [27], or through
the dynamic updating of classification rules [28]. Automatic adjustment is another type of adaptive
approach and an example is the iterative procedure of expectation-maximization presented by Saerens
et al. for adjusting the outputs of the trained classifier with respect to changed priors, without having
to refit the model or without having to know the priors in advance [29].

1.2.4.5 Manifold alignment

Manifold alignment refers to the alignment of two feature space manifolds so that similar across-
domain classes are distance-wise close and dissimilar across-domain classes are distance-wise far after
alignment. Manifold is a term used here to refer to the intrinsic structure of an associate feature space
or dataset, and is used in a general sense with no implied relation to a strict mathematical manifold. A
typical example of a manifold is the feature space connected by a k-nearest neighbor graph; the basic
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structure of manifold alignment is shown in Figure 1.3.

Test features

Train features

Manifold Correspondence Aligned
features

Test
labels

Figure 1.3. Manifold alignment for improving classification accuracy.

Manifold learning is a class of non-linear dimensionality reduction that attempts to describe the
functional underlying structure or manifold of a dataset with a minimal number of features. Manifold
learning methods include isometric mapping (Isomap) [30], locally linear embedding [31], Laplacian
eigenmaps [32], Hessian eigenmapping [33], local tangent space alignment [34], and multi-dimensional
scaling [35]. Isometric mapping seeks such a lower-dimensional embedding while preserving
geodesic distances between manifold points. Locally linear embedding also uses partial eigenvalue
decomposition, but instead preserves distances within local neighbourhoods. Spectral embedding or
Laplacian eigenmaps find non-linear embedding via a graph Laplacian transformation of an adjacency
graph before partial eigenvalue decomposition.

Manifold reduction as used in this thesis is a term that describes the unsupervised classification
process of separating a dataset into distinctive classes or sub-classes for the purpose of establishing
across-domain correspondences between the train and test manifolds in less computational time during
manifold matching. Manifold alignment is a joint manifold learning method, since it finds a joint
lower-dimensional embedding via generalized eigenvalue decomposition, but with the added function
of preserving across-domain correspondences. Manifold reduction as used in this thesis is an initial
component of effective joint manifold learning.

Manifold matching is strongly associated with the classification problem, since it aims to find
correspondences between across-domain classes defined in the train and test manifolds. Non-injective
or non-surjective manifold matchings incur severe computational complexity penalties, but design
assumptions such as bijection and affine transformations are used to deliver a feasible demonstration
of manifold matching.

1.2.5 Research gap

Land-use classification is one of the main tasks of remote sensing, and settlement type classification
in particular is becoming more important in earth observation. A primary assumption in pattern
classification is that of relative feature constancy, but in remote sensing especially, this feature
invariance is not guaranteed because of the varying nature of satellite-borne image acquisition. This is
a major problem that requires intense research efforts to introduce artificial invariance into the remote
sensing classification system.
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1.2.5.1 Multimodal domain adaptation

The primary research gap is the need for improved classification strategies for multimodal land-use
classification, since only a few studies have investigated dataset shift correction or domain adaptation
methods that address such dataset shifts. A Bayesian classifier that adapts class statistical parameters
to match those of the testing dataset was used by Bahirat et al. [36] to update multitemporal land-cover
maps.

Other domain adaptation methods have been applied in remote sensing, including those relying on
cluster-distance metrics [37] and semi-supervised methods [38]. The deliberate transformation of a
feature space to match a target space can be investigated, producing either a modified training or testing
sample that may be used with any classifier, unlike the aforementioned classifiers that effectively adapt
specific classifiers instead of datasets.

1.2.5.2 Panchromatic shadow detection

Accurate shadow detection is a necessary prerequisite for the introduction of input modification in
Figure 1.4, but most of the available literature depends on color and multispectral distinction for
detection. Shadowing is an inevitable acquisition artifact and the proposed research will endeavour to
advance shadow detection techniques for panchromatic images especially. In particular, a watershed
segment-merging algorithm has to be developed that can consistently produce quality panchromatic
segmentation regardless of the specific image contrast [39]. The effect of shadow removal on settlement
classification accuracy also has to be investigated for across-date imagery.

.

Test features

Train features

Dataset shift
Test image

Train image

Figure 1.4. Supervised classification system with input dataset shift correction.

1.2.5.3 Post-feature dataset shift correction

Unlike shadowing, the viewing geometry requires augmented data such as digital surface models and
relative satellite positioning to remove differences accurately in multitemporal images. This additional
complexity may be avoided while maintaining a favorable result, by exploring semi-supervised
and transductive classification or domain adaptation techniques such as the manifold alignment
in Figure 1.5. These strategies can also reduce the dataset shift stemming from multisensor and
phenological differences.
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.

Dataset shift
Test image

Train image

Test features

Train features

Test features

Train features

Figure 1.5. Supervised classification with manifold alignment dataset shift correction.

1.2.5.4 Weighted clustering for manifold reduction

Manifold alignment computational time can be managed by reducing given domain representations
from the full set of samples to a representative description such as through statistical descriptors of
salient clusters. Multiclass specimens appear in real world scenarios, especially in remote sensing,
and there is an opportunity to demonstrate how weighted clustering can create artificial separation in
feature spaces where classes cannot be properly distinguished.

The research gap can be filled by introducing sample weighting based on target properties and then
properly investigating the effect of weighting on agglomerative clustering accuracy and internal
validation. Weighted generalizations for select internal validation indices have been defined by
Studer [40], which includes point-biserial correlation, Hubert’s Gamma, Hubert’s D, Hubert’s C,
Silhouette, Calinski-Harabasz and Pseudo R2. A further research gap is the weighted generalization
of many other known internal validation indices, such as those in the comprehensive compendium
collected by Desgraupes [41].

1.2.5.5 Geometric similarity for manifold matching

The manifold alignment framework of Tuia et al. [42], reviewed in Appendix B, demands direct
correspondence between across-domain clusters or points. Wang et al. [43] have demonstrated that
geometric similarity measures can be used for manifold alignment and there is an opportunity to
experiment with geometric similarity in texture feature spaces.

Geometric similarity calculations produce optimal neighborhood permutations, and there is a prospect
for reusing using this information, which is normally discarded during manifold matching in the
manifold alignment process of Wang et al. [43]. The research gap is to formulate a manifold matching
measure suitable for features such as gray-level cooccurrence matrix (GLCM) texture features,
incorporating geometric similarity. This requires a novel contribution, since the exact manifold
matching measure depends on optimization for the specific features and classification scenario.
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1.2.5.6 Multiscale feature learning

The main requirement for multimodal feature learning is that the training dataset should contain
multimodal examples that display a large extent of the expected dataset shift. During classification
the test examples should fall within the learned range of datasets with high probability, i.e. it should
not cause a dataset shift outside of the previously observed dataset shifts. It is shown in this thesis
that texture features such as GLCM and local binary patterns (LBP) are affected by the dataset
shift in multimodal remote sensing, so there is a requirement for more robust features. A feature
extractor/classifier should be learned that obtains features that are ideally unaffected by the type of
dataset shifts that have been witnessed for the classification problem.

More specifically, there is a need for multiscale deep learning that can handle sample characteristics
with varying sizes of representation, such as storage tanks in land-use imagery. Feature learning
discovers the optimal features that optimize the multimodal classification objective and these features
will consequently be minimally affected by multimodal dataset shift.

Competitively good feature representations for spatially organized forms of data such as images can be
learned through methods such as convolutional neural networks (CNN) [44], which use the concept
of receptive fields or filter definition field originating from Hubel and Wiesel’s study of the feline
striate cortex [45]. By using a sufficiently large number of convolutional layers a hierarchical feature
representation can be obtained, which is a method of deep learning [46].

1.3 RESEARCH OBJECTIVES AND QUESTIONS

1.3.1 Dataset shift correction

The primary research objective is to improve land-use classification accuracy with optical remote
sensing imagery under multimodal dataset shifts by exploring modifications and additions to the
classification system that can minimize the detrimental effect of dataset shift. Dataset shift components
or causes that can be isolated and addressed at each stage of classification must be determined. An
outline of the main dataset shift correction methods is shown in Figure 1.6.

Chapter 3 Chapter 4 Conference Chapter 5 Chapter 6

Main objective

Theme 1 Theme 2

Chapter 7

Theme 3

Figure 1.6. An outline of the thesis in terms of the main dataset shift correction objective.
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1.3.2 Input modification

The aim is to engineer an input modification that can reduce dataset shift before feature extraction and
to devise feature space manipulations that reduce dataset shift between train and test datasets before or
during supervised classification, as shown in Figure 1.7.

Train

Test
image

Train

Test
labels

Test
features

Train Test
features

Train

Test
modified
image

Figure 1.7. Supervised classification system with input modification.

1.3.3 Manifold matching and reduction

A main objective is to instantiate various components of the manifold alignment in Figure 1.8 to
achieve a dataset shift correction. A dataset shift correction at the classification layer relies on the
knowledge of across-domain correspondences, which is a task of the manifold matching component of
manifold alignment. The manifold reduction component simplifies and imparts structure to the feature
space to produce a manifold representation for computationally feasible manifold matching.

Train

Test
image

Train

Test
labels

Test
features

Train

Test
features

Train

Test
features

Train Test

Figure 1.8. Supervised classification system with manifold alignment.

Unsupervised classification, shown in Figure 1.9, must be investigated by clustering a relatively large
feature space into clusters that strongly relate to a target classification, and the challenge is specifically
to undertake difficult clustering scenarios that require artificial feature space separation. Such complex
clustering scenarios are prevalent because of the use of area texture-based features and land-use areas
exhibiting features from multiple classes, which densifies interclass regions in the feature space and
consequently deteriorates class separability.

Minimum-supervision or unsupervised manifold matching must be attempted by solving the
classification problem under the assumption of the preservation of manifold geometry across the
dataset shift. This will address the specific aim of correcting larger dataset shifts through manifold
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Figure 1.9. Basic unsupervised classification system.

reduction and manifold matching. For manifold alignment under a small dataset shift assumption
the objective is to exploit the assumption or knowledge of a relatively small dataset shift, such as a
multitemporal same-sensor scenario, to design a dataset shift correction measure.

1.3.4 Multiscale feature learning

The purpose of feature learning through CNN is to address dataset shift by discovering a hierarchical
feature extraction that accurately characterizes the different classes despite the variations caused
by dataset shift. The aim is to show how feature learning through CNN can produce competitive
multimodal land-use classification accuracy when compared to current methods published in the
literature for a benchmark remote sensing problem based on the UC Merced land-use dataset.

1.3.5 Research questions

1.3.5.1 Major research questions

1. How can the detrimental effect of multimodal dataset shift on remote sensing land-use
classification be reduced to improve classification accuracy?

2. At which stages of pattern classification can dataset shift factors be removed or minimized?

3. What effect do multitemporal and multisensor dataset shifts have on texture-based land-use
classification accuracy?

4. How can the manifold reduction and manifold matching stages of manifold alignment be
implemented to address small and large dataset shifts?

5. How well can feature learning optimize a classifier for multimodal land-use classification in
remote sensing images with within-class multiscale characteristics?

1.3.5.2 Chapter 3

1. How do the different threshold-based segmentations from the thresholding algorithm taxonomy
of Sezgin and Sankur [47] compare in terms of panchromatic shadow detection accuracy?

2. How does global thresholding compare to locally adaptive thresholding in terms of panchromatic
shadow detection accuracy?
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1.3.5.3 In “The effects of segmentation-based shadow removal on across-date settlement type
classification of panchromatic QuickBird images” [39]

1. How is shadow detection accuracy influenced when using segmentation or object-based shadow
detection instead of fixed threshold shadow detection?

2. What is the relationship between change in shadow detection accuracy and change in settlement
classification accuracy?

1.3.5.4 Chapter 4

1. Which strategy can be employed at the input level of feature extraction to deal with dataset shift
in optical remote sensing?

2. What effects do multitemporal (same satellite) shadow profile differences have on texture-based
settlement classification accuracy?

3. How does one achieve effective panchromatic shadow removal?

4. How much does adaptive threshold shadow detection improve classification accuracy compared
to global threshold detection?

1.3.5.5 In “Mean translation of GLCM texture features for across-date settlement type
classification of QuickBird images” [48]

1. What strategy can be employed after the output level of feature extraction to deal with dataset
shift?

2. What strategy can be used to improve classification accuracy under a relatively small dataset
shift?

3. How can manifold landmark points be obtained in the test data, under a relatively small dataset
shift assumption, to enable the search for manifold matching?

1.3.5.6 Chapter 5

1. What manifold reduction strategy can be employed to create clustering separation in a poorly
separated feature space?

2. How can a relevant sample weighting be obtained for texture-based land-use classification in
remote sensing images?

3. What approach should be followed to obtain a scale-selective feature space when dimensionality
reduction is used?

4. Which agglomerative clustering linkage is best for weighted clustering?

5. How can the optimal number of clusters be found, given a weighted feature space and hierarchical
dendrogram?
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6. Which internal validation indices perform best in a weighted clustering setting, and what role do
sample weightings play in cardinality fitness?

1.3.5.7 Chapter 6

1. How does one perform unsupervised manifold (perfect) matching for relatively larger dataset
shifts?

2. How can information derived during the optimal neighborhood permutation search be used to
improve geometric similarity matching accuracy?

3. How should geometric similarity be employed, and which other correspondence measures should
be applied to perform manifold matching accurately?

1.3.5.8 Chapter 7

1. How can features be learned that are optimal for minimizing the classification loss function
under multimodal image variances?

2. How should a deep convolutional neural network (DCNN) be harnessed to improve classification
where there are multiscale presentations of certain class characteristics, such as storage tanks
that can vary in size depending on the sample?

3. How can a basic DCNN implementation be improved upon in order to increase classification
accuracy?

4. What is the optimal DCNN architecture and configuration for the UC Merced dataset?

1.4 APPROACH AND HYPOTHESES

The basic supervised classification system is modified with the specific intent of reducing the
detrimental effect of multimodal dataset shift on land-use classification accuracy, thereby producing
a better classification system serving the primary aim of this study. The three predominant themes
are input modification, manifold alignment and feature learning, which are approached separately
with eventual demonstration of classification accuracy improvement. Two alternative approaches are
discussed, namely generalized canonical correlation analysis and semi-supervised learning.

1.4.1 Input modification

The structured nature of viewing and illumination geometry variances in across-date imagery suggests
that input correction measures are indeed plausible and can be developed. Shadowing is an example of
one of the illumination effects that presents with more adverse variance in multitemporal imagery, but
it is that well defined presentation that makes it possible to do shadow detection and removal, as in
Figure 1.10

The hypothesis is that input modification should reduce feature dataset shift by removing shadows
entirely from both train and test images, since existing shadow profile differences are a potential cause
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Shadow mask
Input image

.

.

Figure 1.10. Feature extraction with shadow invariance input modification.

of dataset shift. Pixel-based thresholding and object-based segmentation are two different methods
tested for shadow detection, and shadow removal is achieved either by producing a new image with the
shadows corrected/lifted or by interfacing with feature extraction via a shadow masking process.

1.4.2 Manifold reduction and matching

To correct viewing geometry variation, phenological and other acquisition differences in the input is
difficult in the absence of digital surface models and other augmenting information. Such complex
variations may, however, be accounted for after feature extraction through a strategy such as manifold
alignment. In the case of smaller dataset shifts due to the train and test inputs having been acquired
from the same imaging vehicle, a small dataset shift assumption can alleviate the design burden of a
normally unknown dataset shift.

In this situation supervised classification can be used to define an initial test manifold, as shown in
Figure 1.11, and simplified divergence minimization can estimate a manifold match. Modal feature
space translation correction can then be applied to ensure train and test manifold statistical moments
coincide to reduce the associated dataset shift. This small dataset shift correction approach has been
omitted from the thesis, but can be found in Luus et al. [48].

Train

Test
image

Test
labels

Test
features

Train

Train

Test
features

MatchingManifold

Manifold alignment framework

Train
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labels

Figure 1.11. Supervised classification system with manifold alignment framework for small dataset
shifts.

For the manifold alignment approach the assumption is made that the intrinsic structure or manifold
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of the train feature space undergoes an easily reversible transformation, e.g. an affine transformation,
to produce the test feature space. This allows for a solution that discovers the transformation by
attempting to preserve the manifold structure through the process shown in Figure 1.12, with the
additionally required manifold learning, which is not indicated. Manifold learning informs the manifold
alignment process of how the manifold geometry has to be preserved during alignment.

Train

Test
image

Test
labels

Test
features

Train

Train

Test
features

MatchingManifold

Manifold alignment framework

Figure 1.12. Supervised classification system with manifold alignment framework.

Manifold reduction is applied through unsupervised classification where target class properties enhance
test feature space separability that enables weighted clustering to produce a target classification fit for
the intended application. The target feature property of texture regularity is used to augment the feature
space, producing a weighted feature space after scale-selective feature composition and kernel weight
smoothing. Manifold matching is the most difficult component of manifold alignment, since nothing is
known about the severity of the dataset shift, thus a small shift assumption or affine transformation
assumption needs to be made to approach a solution.

Furthermore, in order to demonstrate minimum-supervision manifold matching in this thesis, one-
to-one bijective correspondence (as indicated in Figure 1.13) between train and test classes is
assumed, since correspondences that are either non-injective or non-surjective significantly escalate
computational complexity.

Bijective: Injective &
surjective

Non-injective & non-
surjective

Injective & non-
surjective

Non-injective &
surjective

Figure 1.13. Bijective, injective and surjective function combinations.
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1.4.3 Multiscale feature learning

Input modification requires domain-specific expert knowledge of the factors that cause dataset shift
and manifold alignment is constrained by assumptions and the low confidence of manifold matching.
The genericity of manifold alignment can be retained with the approach of feature learning, without
the need for expert knowledge of input modification. The feature learning approach to classification
with dataset shift is illustrated in Figure 1.14.

.

Dataset shift
Test image

Train image

Test features

Train features

Feature
extractor

Figure 1.14. Supervised classification system with multimodal feature learning.

The end-to-end learning capability of deep learning allows for optimal features to be obtained that
minimize the classification risk, which is very appropriate for addressing multimodal dataset shift
when the training dataset contains sufficient multimodal variation so that robust features can be learned.
This preemptive approach contrasts with the dataset shift correction strategies of shadow removal and
manifold alignment, since it is expected to largely remove the need for these corrective measures.

The filter banks in the convolutional neural network (CNN) are iteratively modified to minimize the
system loss, but the normal CNN structure first proposed by LeCun et al. [44] uses fixed scale features
per convolutional layer. This may limit its expressiveness so strategies such as multiple input views [49],
hybrid CNN [50] with variable receptive receptive field sizes and the Inception architecture of Szegedy
et al. [51], which uses computationally efficient multiscale filter modules, have been proposed.

Deep convolutional neural networks can attain an average classification accuracy on a dataset with a
rich set of different classes, such as the UC Merced land-use dataset [52] which displays multimodal
variations. However, in order to achieve above-average classification accuracy that is competitive with
the best methods available, a new strategy for harnessing the neural network has to be devised. The
multiview strategy [49] is explored in Chapter 7 with the added dynamic of multiscale windows that
can exploit the hypothesis of sub-sample redundancy in remotely sensed land-use images.

1.4.4 Semi-supervised learning

Instead of introducing illumination invariance into the texture features with shadow masking, as
discussed previously, there is also the possibility of implementing effective invariance in the classifier
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itself. This will rely on a semi-supervised or transductive learning approach, and could have the
capability of regulating complex acquisition variance.

Most natural learning occurs in a semi-supervised regime, where unlabeled data form part of the
learning information. Intra-class variance shifts may be corrected with transductive classification and
unlabeled clustering. A standard transductive classifier is the transductive support vector machine
(TSVM), which uses unlabeled data to enhance a normal support vector (SVM) using the cluster
assumption, which states that a decision boundary should lie in a low density region [53].

A TSVM was applied for pixel classification in remote sensing images [54], and also for semi-
supervised learning in general remote sensing problems [55]. Semi-supervised SVMs outperform
expectation maximization clustering, semi-supervised fuzzy c-means and indirect maximum likelihood
with multivariate Gaussian distributions in a land-cover classification problem [56].

The SVM classifier uses the kernel trick, which performs a fixed mapping of feature vectors into a
higher dimension in order to discover the nonlinear structure of the data. A data-independent kernel is
used in that instance, such as a Gaussian or polynomial kernel, but it may not be consistent with the
intrinsic manifold structure, geodesic distance, curvature or homology of the data [57].

An enhanced methodology involves warping the structure of the reproducing kernel Hilbert space to
reflect the underlying geometry of the data. The local geometry may be captured by a nearest neighbor
graph; the graph Laplacian can then be incorporated into the manifold adaptive kernel space and active
learning can be performed [58].

1.4.5 Hypotheses and deductions

Conjectures are proposed in this subsection to explain observations and measurements acquired during
the characterization phase of the study. Some immediate deductions are also made based on the
associated hypotheses in order to initiate the engineering approach to the scientific method.

1.4.5.1 Major hypotheses

1. If dataset shift aspects between the train and test inputs to the feature extraction layer are
corrected or equalized, then the dataset shift at the classification layer will also be reduced owing
to the resulting features having smaller dataset shift.

2. Manifold alignment can be used to partially correct dataset shifts between the train and test
feature spaces, because there are weakly supervised or unsupervised methods of manifold
matching, which find the manifold correspondences and align them.
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1.4.5.2 Chapter 3

1. Threshold-based shadow detection can relatively accurately delineate shadows because of the
low intensity property of shadows.

2. Locally adaptive thresholds detect shadows below a threshold relative to local image intensity,
which should produce more accurate shadows than with a global fixed threshold, since relatively
low intensity admits greater sensitivity in images with contrast variation than globally low
intensity.

1.4.5.3 In “The effects of segmentation-based shadow removal on across-date settlement type
classification of panchromatic QuickBird images” [39]

A segmentation or object-based shadow detection approach can delineate shadow boundaries better
than a threshold-based approach, since local features and contrast are taken into account.

1.4.5.4 Chapter 4

1. If dataset shift aspects between the classifier train and test inputs to the feature extraction layer
are corrected or equalized, then the dataset shift at the classification layer will also be reduced
because of the resulting features having smaller dataset shift.

2. Shadow profile differences between the classifier train and test images cause dataset shift at
the classifier, and the removal of shadows in order to remove the shadow profile differences as
well will reduce the corresponding dataset shift component and improve classification accuracy
because of the resulting features having smaller dataset shift.

3. The more extreme a dataset shift becomes because of shadow profile differences, the more
settlement classification accuracy will improve for an improvement in shadow removal accuracy,
since more of the input dataset shift will be corrected with more accurate shadows.

1.4.5.5 In “Mean translation of GLCM texture features for across-date settlement type
classification of QuickBird images” [48]

1. Definition can be created by induction in the test dataset to obtain landmark points in the test
manifold as the first moment of each test class, since classification accuracy will be reasonable
under a small dataset shift.

2. Manifold matching can be achieved under a relatively small dataset shift assumption by finding
a perfect match between the two sets of manifold landmarks that minimises basic divergence,
since there should be reasonable coincidence between train and test classes.

3. Feature space correction can improve classification accuracy by retraining the classifier after
translating the training classes to have their first moments coincide with those of the test classes,
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or by translating the test classes and reclassifying, since the corresponding dataset shift will also
be reduced.

1.4.5.6 Chapter 5

1. Weighted clustering can attract cluster centroids toward classes with certain target properties,
since agglomeration centroids gravitate toward higher weight regions.

2. Textural regularity as a target property can attract clusters toward more salient classes, since the
target classification promotes classes with greater textural regularity.

3. Multiscale dimensionality reduction can be obtained with the principal components of only one
particular scale, since the same groundtruth underlies the textures and the expectation is that
sample importance will correspond well over the different scales.

4. Clustering linkages that incorporate sample weightings in the agglomerated cluster centroid
calculation, but also the effective pairwise cluster dissimilarities, will provide more accurate
clusterings, since the sample weightings have a greater impact on agglomeration.

5. Maximal weight input selection involves samples in the internal index calculation that improve
cardinality decision accuracy compared to random selection, because the samples possess target
characteristics and a greater affinity to the groundtruth classification.

1.4.5.7 Chapter 6

1. Local texture feature geometry is preserved across a multimodal dataset shift, since the feature
relationships between classes are maintained and good features separate classes based on relative
dissimilarity.

2. Across-domain classes that are more frequently matched together in optimal local neighborhood
matchings are more likely to be matched in the across-domain matching, because such across-
domain class pairs demonstrate a higher local geometry similarity.

3. Global translation and a basic divergence minimization objective can improve matching accuracy,
since it corrects global domain differences and attempts to find the dataset shift with fewest
assumptions, as stated by Occam’s razor.

4. Relative class variances are possibly maintained under a dataset shift, since certain classes will
usually have more , such as informal settlements, and other classes will have less variance, such
as the non-builtup class.
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1.4.5.8 Chapter 7

1. Basic texture features will distinguish poorly between distinct land-use classes where there
are both multimodal and semantic within-class variations, because the low-level features may
simultaneously be common across different classes, which causes excessive confusion.

2. The negative impact of multimodal image variances on classifier accuracy can be reduced with
deep learning, since features are learned that are optimal for minimizing the classifier cost
function.

3. A single DCNN with multiscale multiviews can improve composition-based inference of classes
containing size-varying objects compared to single-scale multiview, since the size-varying
objects have a greater probability of being featured at the right scale.

4. Increasing the number of different view scales can improve classification accuracy further, since
a wider variety of object scales can then be accommodated.

1.5 RESEARCH GOALS

The primary intention is to develop processes and systems that can be used in more general problem
scenarios, so that the contribution of this work can definitely be applied in problem domains other
than texture-based land-use classification and remote sensing. The main research goal is to address
multimodal dataset shift in texture-based land-use classification and to show that specifically engineered
dataset shift reduction processes can increase classification accuracy.

1.5.1 Input modification

A specific goal is to remove across-domain differences in the input images, such as differing shadow
profiles, so that the related dataset shift component is effectively reduced in the resulting features. The
associated engineering task involves the design of a shadow detector and shadow removal method, and
the aim is to explore threshold-based shadow detection but also more advanced object-based detection
to improve shadow detection accuracy. A related target is to indicate experimentally that there is a
strong correlation between shadow detection accuracy change and land-use classification accuracy
change during shadow removal.

1.5.2 Manifold reduction and matching

Manifold alignment is a very appropriate framework for correcting dataset shifts, and the intention is to
instantiate its critical parts, including manifold reduction and manifold matching. The instantiation of
manifold reduction involves unsupervised classification and the target is to contribute a methodology
specifically for the land-use classification problem, but also very general associated method novelties
such as low-complexity weighted agglomerative clustering and weighted internal validation. The
methods must show good use of the weighting information and result in a definite improvement in
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unsupervised classification accuracy.

Using manifold matching the desired contribution is a minimum-supervision or unsupervised
method that can produce relatively accurate across-domain correspondence for multiple multimodal
experiments. An impactful contribution would be the improvement of geometric similarity, which is a
standard inclusion in manifold alignment without correspondence.

The intention is to achieve accurate classification under large dataset shift purely through the fact that
test classes are established with manifold reduction and labels are transferred through correspondence
derived from manifold alignment. A full conventional manifold alignment is thus not required if its
components are established as stated.

1.5.3 Multiscale feature learning

The challenge of implementing a competitive deep learning solution for the UC Merced dataset involves
the optimization of the CNN architecture and usage configuration. In addition, the need for a novel
CNN usage strategy is emphasized in order to obtain competitive classification performance. The
goal is to produce evidence for the hypothesis that label-preserving sub-sample redundancy in the UC
Merced land-use image samples can improve classification accuracy.

1.6 RESEARCH CONTRIBUTIONS

Several methods, systems and study contributions have been made and a number of peer-reviewed
articles have been produced based on this work. This student is responsible for 90% of the concepts and
methodologies that are stated as being novel, and this student is also responsible for the implementation
and execution of the research except where stated otherwise.

The social and economic impact of the contributions relate to the value of automation and integration
of artificial intelligence and improving machine learning technologies can lead to increased value and
subsequent impact. The benefit to academia and industry pertain to increased efficacy and improved
functionality of a key technology for the future, namely machine learning.

1.6.1 Main contributions

A detailed list of the main contributions arising from all completed doctoral study activities are shown
below.

1.6.1.1 Method contributions

1. Locally adaptive thresholding for panchromatic shadow detection.

2. Local contrast-robust segment-merging segmentation for panchromatic shadow detection [39].

3. Classifier-generic global and modal translation correction of feature spaces [48].
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4. Scale-optimized texture feature space composition.

5. Weighted internal index generalisations.

6. Extremum-interpreted internal index knee-point accentuating filter.

7. Disruption-interpreted internal index suppression derivative.

8. Geometric similarity co-occurrence frequency.

9. Geometric similarity integrations of co-occurrence frequency.

10. Joint translation, divergence and geometric similarity manifold matching cost matrix.

11. Multiscale, multiview deep learning for multispectral land-use classification.

1.6.1.2 System contributions

1. Supervised and unsupervised object-based shadow detectors [39].

2. Texture-based land-use classification with input modification dataset shift correction.

3. Texture-based land-use classification with modal translation for small dataset shift
correction [48].

4. Texture-based land-use classification with manifold matching based manifold alignment.

5. A CNN implementation with multiscale input views and classification probability averaging that
produces a competitive classification accuracy for the UC Merced land-use dataset.

1.6.1.3 Study contributions

1. Threshold-based shadow detection comparison.

2. Shadow removal effect on multitemporal land-use classification accuracy.

3. Small dataset shift correction analysis [48].

4. Weighted agglomerative clustering linkage comparison.

5. Input-truncated internal index weighting analysis.

6. Manifold matching accuracy comparisons with instantiations of geometric similarity.

7. A CNN implementation with a heuristically optimized architecture that produces above-average
accuracy on the UC Merced land-use dataset.

1.6.2 Research publications

Two internationally peer-reviewed conference papers, three internationally peer-reviewed ISI rated
journal articles and another submission to an ISI rated journal have been produced based on the work
presented in this thesis. The doctoral candidate was the lead author and researcher for all publications
and was responsible for the concepts, methodology and execution. The list of generated publications is
shown below.
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1.6.2.1 Peer-reviewed conference publications

1. F.P.S. Luus, F. van den Bergh, and B.T.J. Maharaj, “The effects of shadow removal
on multitemporal settlement type classification,” in IEEE Geoscience and Remote Sensing
Symposium (IGARSS 2012), pp. 6196-6199, July 2012.

2. F.P.S. Luus, F. van den Bergh, and B.T.J. Maharaj, “Mean translation of GLCM texture features
for across-date settlement type classification of QuickBird images,” in IEEE Geoscience and
Remote Sensing Symposium (IGARSS 2013), July 2013.

1.6.2.2 Peer-reviewed journal publications

1. F.P.S. Luus, F. van den Bergh, and B.T.J. Maharaj, “The effects of segmentation-based shadow
removal on across-date settlement type classification of panchromatic QuickBird images,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6, no. 3, pp.
1274-1285, 2013.

2. F.P.S. Luus, F. van den Bergh, and B.T.J. Maharaj, “Adaptive threshold-based shadow masking
for across-date settlement classification of panchromatic QuickBird images,” IEEE Geoscience
and Remote Sensing Letters, vol. 11, no. 6, pp. 1153-1157, 2014.

3. F.P.S. Luus, B.P. Salmon, F. van den Bergh, and B.T.J. Maharaj, “Multiview deep learning
for land-use classification,” IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 12, pp.
2448-2452, Dec. 2015.

1.6.2.3 Submitted journal publications

1. F.P.S. Luus, F. van den Bergh, and B.T.J. Maharaj, “Weighted agglomerative clustering
for multimodal high-resolution multispectral land-use segmentation,” IEEE Transactions on
Geoscience and Remote Sensing, Submitted, Dec. 2014.

1.7 OVERVIEW OF STUDY

This thesis is organized into chapters pertaining to each of the separate study goals as shown in
Figure 1.15. Each chapter defines its own particular research objective and presents a methodology and
experimental results, thus allowing each chapter to be considered in relative separation. A just-in-time
approach is used for literature study and technique and method definitions to minimize cross-reference,
with the exception of Chapter 2, which includes longer definitions that would obstruct the readability
if included in the relevant chapter.

Four main datasets are used in this work, as shown in Figure 1.16, each exhibiting the desired
multitemporal or multimodal properties that would properly demonstrate the efficacy of dataset shift
correction measures and feature learning. Because of the multimodal nature of the datasets, chapter
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Main objective

Theme 1 Theme 2

Chapter 4

Conference paper

Chapter 5

Chapter 6

Chapter 7

Theme 3

Chapter 3

Figure 1.15. An outline of the thesis chapters.

results are only shown for particular relevant datasets. These datasets have been acquired in either
panchromatic or pansharpened multispectral form over the United States of America, Rio de Janeiro
(Brazil), Soweto and Johannesburg South (South Africa) as specified. The exact details of each dataset
are shared in each associated study chapter.

Chapter 3

Chapter 4

Conference paper

Chapter 5

Chapter 6

Chapter 7

Figure 1.16. An overview of the datasets used by each study.

A literature study for the shadow detection and shadow removal methods used in input modification
is performed in Chapter 2. Threshold-based shadow detection implementations are then explored in
Chapter 3, followed by Chapter 4, which investigates dataset shift reduction based on input modification.
Unsupervised classification based on weighted agglomerative hierarchical clustering is performed in
Chapter 5 in order to reduce land-use feature manifold representations. Manifold alignment under
a perfect match scenario is investigated with a reduced manifold in Chapter 6, which improves a
geometric similarity measure that produces more accurate domain matching.
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In Chapter 7 the role of feature learning in addressing classification problems with intra-training dataset
shift is explored, and a multiscale input strategy is presented that provides competitive multimodal
land-use classification performance. The thesis concludes in Chapter 8 with an overview of the
approach and the results achieved, as well as a discussion of possible future research.
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CHAPTER 2 SHADOW REMOVAL

2.1 CHAPTER OVERVIEW

A literature study of shadow removal is presented in this chapter with a focus on the causes of shadow
variances, a radiometric modeling of the remote sensing (RS) system, as well as exploring the main
components of shadow removal. Shadow removal firstly requires shadow detection, which is the first
necessary preprocessing step of shadow removal, followed by de-shadowing or the actual shadow
removal phase [59]. The purpose of this chapter is to provide an overview of all the relevant methods of
shadow detection and shadow removal so that method selection can be performed for use in subsequent
chapters. Synthesis beyond taxonomical integration would transport the study scope too far outside the
focus on dataset shift in classification scenarios, so extensive incision into the technical merits/demerits
is performed only in subsequent experimental analyses.

Three surveys have largely informed the content of this chapter and provided the elements of the
shadow detection and shadow removal taxonomies presented here. The three important literature
surveys on shadow detection and shadow removal have been contributed by Dare [60], Adeline et
al. [59] and Shahtahmassebi et al. [61], as follows:

1. Dare [60] - “Shadow analysis in high-resolution satellite imagery of urban areas.”

2. Adeline et al. [59] - “Shadow detection in very high spatial resolution aerial images: A
comparative study.”

3. Shahtahmassebi et al. [61] - “Review of shadow detection and de-shadowing methods in remote
sensing.”

The goal of input modification in this RS study is to address dataset shift, which can hypothetically
be achieved by removing a source of variance, namely shadows. By removing shadows a major
component of illumination variance can be addressed. While shadows are regarded as a nuisance
factor in this study, they do contain valuable information, which has been exploited for purposes such
as 3D building reconstruction [62], building height estimation [63] and estimating solar incidence
characteristics [64].
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2.2 ACQUISITION-DEPENDENT SHADOW VARIATION

Remote sensing imaging introduces errors that are geometric in nature owing to the topography
of scenes and atmospheric effects [61]. Shadows are a widely analyzed type of geometric effect,
partly because of being a nuisance factor obscuring object details in scenarios such as land-use
classification [65]. The acquisition-dependent variation of shadow profiles in temporal multimodal
image analysis negatively influences applications such as change detection [66] and supervised
classification [60].

2.2.1 Sun-synchronous satellites

Visible and infrared wavelength RS satellites normally follow sun-synchronous orbits, because of the
consistent lighting and illumination angles. Seasonal implications for sun-synchronous satellites such
as Ikonos involve changes in solar elevation angles, specifically producing a low elevation in winter
(longer shadows) and a high elevation in summer (shorter shadows). An illustration of the seasonal
influence on sun-synchronous satellites is shown in Figures 2.1(a) and 2.1(b).

Spring

Satellite
orbit

Winter

Summer

Autumn

Orbital
plane

North

Constant
sun angle

Lower
illumination angle

Higher
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(a) Sun-synchronous satellite orbit illustration

Summer

Tangent plane

Sub-satellite point

Solar
elevation

zenith
Spring/Fall

Winter
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90°=nadir

Look
angle

(b) Solar elevation angle and satellite look angle

Figure 2.1. Sun-synchronous satellite orbit, solar elevation and the seasonal effect.

Sun-synchronous satellites acquire images at a fixed time every day, such as Ikonos with an equatorial
crossing time of 10:30, so the cause of shadow profile variation is predominantly the seasonal solar
elevation changes [60]. The earlier crossing time is chosen instead of 12:00, since the generally clearer
atmosphere at that time of day is more important than the small gain in solar elevation. The look angle
of the satellite can be increased to point to an off-nadir ground area with a later local solar time, which
will reduce the apparent shadowing in the acquired image at the cost of increased feature occlusion
because of the off-nadir attitude [60].
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2.2.2 Urban shadow variation

The assumption of a flat scene geometry is usually made in the case of shadow correction for clouds,
which is a popular topic in the literature for medium-resolution satellite images [67]. However, in
this thesis the case studies consider mainly urban/suburban land-uses and non-builtup land-use to test
builtup/non-builtup distinction.

Urban areas pose a greater challenge for shadow correction algorithms, because of higher proportions
of shadow and higher object density, but also because of the high-resolution imagery, which reveals
more shadows along with the scene detail [68]. An across-date example of panchromatic QuickBird
imagery is shown in Figure 2.2 for urban/suburban land-uses, where the shadow profile differences
due to the seasonal solar elevation differences are apparent.

(a) Formal settlements with backyard
shacks (d1)

(b) Formal settlements with backyard
shacks (d2)

(c) Formal settlements (d1) (d) Formal settlements (d2)

Figure 2.2. Shadow difference examples in urban land-use images for two different dates d1 (early
summer) and d2 (early winter). Panchromatic QuickBird images courtesy of DigitalGlobe™.
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2.3 SHADOW MODELING

2.3.1 Radiometric modeling

To understand shadows in the context of RS it is necessary to formulate its properties in terms of a
radiometric framework, which decomposes irradiance as the source of light in the scene and radiance
as the collection of light at the satellite sensor. Shadows negatively affect land-use analysis in RS by
causing radiometric distortions, such as radiative impact on the estimation of the reflective properties
of surface materials [69].

2.3.1.1 Radiometry definitions

The radiometric framework is defined in terms such as radient flux, radiance, irradiance, spectral radiant
flux, spectral radience and spectral irradiance. These terms are generally defined as follows:

1. Radiant flux is the radiant energy emitted, transmitted, reflected or received per unit time.

2. Spectral radiant flux is the radiant flux per unit wavelength.

3. Radiance, or historically called intensity, is the radiant flux emitted, transmitted, reflected or
received by a surface, per unit solid angle per unit projected area, measured in the SI unit of watt
per steradian per square meter.

4. Spectral radiance, or specific intensity, is the radiance of a surface per unit wavelength,
measured in watt per steradian per square meter per nanometer.

5. Irradiance is the radiant flux received by a surface per unit area, measured in watt per square
meter.

6. Spectral irradiance is the irradiance of a surface per unit wavelength, measured in watt per
square meter per nanometer.

2.3.1.2 Ground irradiance

Adeline et al. define the total irradiance at ground level as the sum of the direct solar irradiance, the
downwelling atmospheric irradiance due to light scattering by the atmosphere, the irradiance due
to multiple scattering between the atmosphere and the ground, as well as the irradiance due to light
reflection from surrounding surfaces [59]. The formulation for total ground level irradiance is given
by

Itotal = Idirect + Idiffused + Icoupling + Ireflected. (2.1)

1. Itotal: ground level total irradiance.

2. Idirect: direct solar irradiance.

3. Idiffused: downwelling atmospheric irradiance due to light scattering by the atmosphere.

4. Icoupling: irradiance due to multiple scattering between the atmosphere and ground.

5. Ireflected: irradiance due to light reflection from surrounding surfaces.
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2.3.1.3 Sensor radiance

The radiance incident on the sensor surface is decomposed by Adeline et al. into the summation of
direct radiance from the target scene to the sensor, the upwelling atmospheric radiance, as well as the
scattered radiance light reflected from surrounding targets by the atmosphere in the field of view of the
satellite sensor [59]. The composition of sensor level radiance is defined as

Rsensor = Rdirect +Renvironment +Ratmospheric. (2.2)

1. Rsensor: total incident radiance on sensor’s surface.

2. Rdirect: direct radiance from target to sensor.

3. Ratmospheric: upwelling atmospheric radiance.

4. Renvironment: scattered radiance light reflected from the surrounding targets and scattered by the
atmosphere in the field of view of the sensor.

2.3.2 Radiometric properties

Adeline et al. analyzed the radiometric properties of shadow and identified the radiometric
characteristics that distinguish shadow regions from sunlit regions [59]. Four unique shadow properties
were identified through a simulation of a synthetic urban scene containing surfaces with Lambertian
reflectance profiles.

These shadow properties are listed as follows based on the work of Adeline et al. [59]:

1. Shadow has much lower sensor radiance than sunlit counterparts over the whole reflective
spectrum.

2. In constrained environments such as urban scenes the reflection effects due to 3D surroundings
may not be negligible in shadow regions.

3. The sensor radiance component from shadowed regions decreases from short to long wavelengths
because of scattering, so near-infrared channels can be used for better shadow detection.

4. The sensor radiance component from shadowed regions is material-dependent and material
property retrieval can possibly be performed as in sunlit areas.

2.3.2.1 Radiance characterization

The most important observation regarding the radiative nature of shadow regions is that they receive
less total irradiance, which is primarily due to significantly less direct irradiance. Irradiance of shadow
regions that is caused by reflectance from surrounding surfaces, i.e. Ireflected, is another major source of
shadow irradiance, which can reach between 10%-50% of the total irradiance [59].

A common false negative error in the use of radiative properties for shadow detection is the
misclassification of high reflectance materials in shadow regions, since these bright surfaces are
consequently much brighter than their lower reflectance counterparts in shadow regions. False positive
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errors are also possible when low reflectance objects such as dark cars in sunlit areas are misclassified
as shadow because of the lower radiance from the object compared to sunlit counterpart surfaces.

2.3.2.2 Chromatic characterization

The chromatic characterization of shadows was defined in terms of the color properties of shadows,
which are described by Tsai [70] as follows:

1. Lower luminance/intensity, because of most direct irradiance being blocked.

2. Higher saturation in blue-violet wavelengths, because of atmospheric Rayleigh scattering [71].

3. Increased hue values, i.e. the blue-magenta region towards the end of the hue-saturation-value
(HSV) hue range.

4. The change of intensity of an area when shadowed or sunlit is positive proportional to the
wavelength [72], or in other words the intensity reduction in shadow is larger for longer
wavelengths, which is the reason blue-violet wavelengths have higher saturation in shadow.

The radiative impact of the atmosphere is significant in shadow regions, since Idiffused is the dominant
component of shadow irradiance and directly involves the atmosphere as a radiative factor. However,
scattering effects significantly decrease for longer wavelengths, which is seen as a wavelength-
dependent reduction in Idiffused and Icoupling for shadow areas [59].

At shorter wavelengths Idiffused > Ireflected, but as wavelength increases the scattering effects in the
atmosphere decrease, which makes reflected irradiance the dominant component, i.e. Idiffused < Ireflected.
The reduction in scattering effects for longer wavelengths is also seen in the composition of the radiance
that is incident on the satellite sensor, where Ratmospheric, Renvironment and Rdirect drop with increase in
the wavelengths.

2.3.3 Shadow component modeling

2.3.3.1 Shadow definitions

Shadow detection aims to separate an RS image into two regions, namely sunlit and shadow regions,
with the goal of removing shadows, which potentially cause notable variances in multitemporal imagery.
Shadow regions are formed when a non-zero fraction of direct irradiance from an illumination source
is blocked.

Arévalo et al. categorized shadows into two classes [73], namely:

1. Self-shadows: the portion of the object surface that is not illuminated by direct irradiance.

2. Cast shadows: the shadow projected by the object in the direction of the light rays of the direct
irradiance.

Shadows in RS imagery are generally cast shadows, because of the satellite look angle at acquisition
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time, which orients the rays of the sensor radiance in the same direction as the rays of the irradiance of
the sun. In other words, the satellite looks in the same direction as the sunlight so that self-shadows
will generally not be visible, as they are on the opposite side of the objects in the scene.

It is interesting to note that cast shadows are usually darker than self-shadow, because self-shadows
receive more reflected radiance from surrounding surfaces [60]. Cast shadows also cause a significant
reduction in spectral variation, which causes correlation failure when using stereo-autocorrelation, a
technique that requires adequate spectral variation to enable correlation measures [74].

Cast shadows consist of two distinct components or regions [73], defined as follows:

1. Umbra: the part of the shadow where the direct irradiance is fully obscured.

2. Penumbra: the part of the shadow where the direct irradiance is only partly obscured.

2.3.3.2 Penumbra

The penumbra of the shadow is normally the transition between the umbra and sunlit regions in the
image, and the penumbra width becomes more important for high-resolution RS, as it directly affects
the shadow detection and removal approach. The penumbra width is strongly related to the solar
angular width, which is related to the cross-sectional width of the sun as witnessed from the surface of
the earth.

Dare uses trigonometry to calculate the penumbra width in terms of the solar elevation, solar angular
width and object height, which is summarized as follows:

1. Penumbra width: w

2. Solar elevation: e

3. Solar angular width: ε

4. Object height: H

The trigonometry-based formulation for penumbra width is given by

w = H
(

1
tan(e− ε/2)

− 1
tan(e+ ε/2)

)
(2.3)

and a depiction of the problem scenario is shown in Figure 2.3. To put the penumbra width into
perspective for high-resolution RS, consider the penumbra for a building height of H = 25 m, a solar
elevation of e = 38◦ and a solar angular width of ε = 0.266◦. Firstly, the general shadow length of the
building is given by H/ tan(e), which is 32 m in this case. The penumbra width result is 0.61 m, which
covers one pixel in a QuickBird panchromatic high-resolution image.

The penumbra is problematic in shadow detection and removal, since it contains ambiguity that
requires a non-binary approach to handle correctly. However, the penumbra usually only occupies
a small percentage of the cast shadow area, so many shadow removal approaches use only a binary
shadow-sunlit classification, instead of a multi-level classification that can properly place the partial
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Figure 2.3. Penumbra width determination.

shadow characteristics of the penumbra region in relation to absolute shadow and absolute sunlit
areas.

Dare suggests a threshold level in threshold-based shadow detection that does not classify the penumbra
as shadow, since a subsequent shadow removal based on radiometric enhancement will generally create
a bright border around corrected shadow areas [60]. Alternatively, shadow region processing can
be used that excludes penumbra pixels from a detected shadow mask through a technique such as
morphological erosion with a minimal structuring element. Shu and Freeman suggests defining three
regions, namely sunlit, penumbra and umbra, instead of just sunlit and shadow, and then adjusting the
brightnesses independently during shadow removal [75].

2.4 SHADOW DETECTION

2.4.1 Taxonomy

2.4.1.1 Categorization by Arévalo et al. and Adeline et al.

Arévalo et al. characterize shadow detection approaches into two classes, namely property-based
and model-based methods [73]. Adeline et al. extend this shadow detection taxonomy by including
physics-based and machine learning methods [59].

The general characteristics of the four classes of shadow detection approaches can be summarized as
follows:

1. Property-based: uses shadow properties generally directly deduced from image data, such as
radiometric attributes and spectral features.

2. Model-based: relies on augmenting information, such as the 3D geometry of the scene and
atmospheric illumination conditions.
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3. Physics-based: uses the physical properties of materials and knowledge of illumination
conditions.

4. Machine learning: unsupervised an supervised classification generally based on shadow
properties.

2.4.1.2 Categorization by Dare

In the shadow detection survey by Dare four general categories are specified [60], which are listed
as follows, together with a categorization placing them in the combined taxonomy of Adeline et al.
above:

1. Thresholding: Property-based, a large subcategory based on image data.

2. Classification: Machine learning.

3. Region growing segmentation: Property-based, object-based image analysis.

4. Three-dimensional modeling: Model-based, geometry-based shadow detection.

2.4.1.3 Categorization by Shahtahmassebi et al.

Shahtahmassebi et al. divide shadow detection methods into four categories and they introduce a new
category called shade relief, which produces a categorization listed as follows:

1. Thresholding: Property-based, using color band ratios and spectral values.

2. Invariant color model: Property-based, using spectral properties of shadows.

3. Modeling: Model-based, three-dimensional modeling.

4. Shaded relief: Model-based, using solar zenith, solar elevation and digital elevation models to
identify self-shadows.

2.4.1.4 Derived taxonomy

A shadow detection taxonomy was compiled from the aforementioned categorizations and
classifications, and an overview is shown in Table 2.1.

2.4.2 Property-based shadow detection

2.4.2.1 Property-based characterization

Property-based shadow detection methods use the unique properties of shadows that can generally
directly be deduced from the image information, so no augmenting data such as digital elevation
models, 3D models or atmospheric information are required [59]. The types of shadow properties that
are generally used for property-based shadow detection include the following [59]:

1. Radiometric attributes.
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Table 2.1. Shadow detection taxonomy used in this study, composed from the classifications of Arévalo
et al. [73] and Adeline et al. [59].

Property-based shadow detection Arévalo et al. [73]
Thresholding Adeline et al. [59]
Invariant color models Adeline et al. [59]
Object-based algorithms Adeline et al. [59]
Machine learning Adeline et al. [59]

Supervised learning Adeline et al. [59]
Unsupervised learning Adeline et al. [59]

Model-based shadow detection Arévalo et al. [73]
Geometry-based Adeline et al. [59]
Physics-based Adeline et al. [59]

2. Spectral features.

3. Textural attributes.

4. Spatial features.

One of the most important shadow properties is the radiometric property of shadows, which has been
explored in subsection 2.3.2 and can be summarized as follows:

1. Radiance property of low intensity.

2. Chromatic property of high hue and high blue-violet saturation.

The subcategories that property-based shadow detection methods are divided into are listed as
follows:

1. Thresholding.

2. Invariant color models.

3. Object-based algorithms.

4. Machine learning.

The list of examples found in the literature for each of the property-based shadow detection methods is
shown in Table 2.2.

2.4.2.2 Thresholding

The shadow property of low intensity can be used to good effect for shadow detection [94],
where histogram thresholding is a predominantly panchromatic detection method [76]. Histogram
thresholding is property-based and is popular because of its speed and simplicity, since the assumption
is made that there is a clear separation between shadow and sunlit histogram levels to facilitate the
separation of the shadow and sunlit classes [66]. Object class variability can produce histogram shapes
that are different from the assumed bimodal case, which increases the difficulty of defining an optimum
threshold [59].
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Table 2.2. Property-based shadow detection methods: Histogram thresholding, invariant color models,
object-based algorithms and machine learning.

Property-based shadow detection Arévalo et al. [73]

Thresholding Adeline et al. [59]
Bimodal histogram splitting Dare [60], Wei et al. [76]
Gaussian mixture model Otsu [77]
Number of peaks and valleys Chen et al. [78]
First valley detection Liu and Yamazaki [66]
First peak classification Wei et al. [76]
Visual inspection Yamazaki et al. [79]
Improved object-based thresholding Liu and Yamazaki [66]

Invariant color models Adeline et al. [59]
Spectral ratio thresholding Tsai [70]
Successive thresholding scheme Chung et al. [80]
NIR exploitation Teke et al. [81]
RGB+NIR Fredembach [82], Nagao et al. [83]
Retinex theory Wang and Wang [84], Aytekın et al. [85]

Object-based algorithms Adeline et al. [59]
Region growing segmentation Dare [60]
Heuristic segmentation Liu and Yamazaki [66]
Rule-based object classification Zhou et al. [86]
Morphological shadow index Huang and Zhang [87]

Machine learning Adeline et al. [59]
Supervised learning Adeline et al. [59]

SVM Levine and Bhattacharyya [88]
Pulse-coupled neural networks Huang et al. [89]
Intrinsic image discrimination Tappen et al. [90]
Wavelet features Lorenzi et al. [91]

Unsupervised learning Adeline et al. [59]
Intensity clustering Yamazaki et al. [79]
Hyperspectral clustering Ashton et al. [92]
Gaussian mixture models Martel-Brisson [93]
Outlier detection Shahtahmassebi et al. [61]

The property-based thresholding approaches found in the literature are summarized below:

1. Bimodal histogram splitting: Described by Dare as the most robust threshold selection for the
pixel-level classification of shadow and sunlit areas [60], which involves setting the threshold as
the mean of the two peaks in the bimodal histogram. Bimodal histogram splitting is suitable
for large shadow detection, but finding a suitable threshold for the smaller shadows of urban
structures is non-trivial [60].
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2. Gaussian mixture model: Also known as Otsu’s threshold, which is a robust binarization
threshold [77].

3. Number of peaks and valleys: Chen et al. recognizes that a bimodal histogram with two
classes featured as approximate Gaussian distributions would produce two different combined
histograms, one with a single mode when the distribution means are close and another with
two modes if the distribution means are sufficiently separated [78]. In the first case of a single
combined mode the best threshold is at the single peak, but in the case of the bimodal histogram
the best threshold is at the valley between the peaks.

4. First valley detection: A special case of a bimodal histogram corresponding to the decision
process of Chen et al. [78] for the two Gaussian distributions being sufficiently separated to form
a detectable valley between the two modes. The best threshold is then selected as the minimum
location between the two Gaussian peaks.

5. First peak classification: Effective intensity thresholding was used by Wei et al. by choosing the
lowest intensity class from unsupervised clustering by first peak selection in the histogram [76].

6. Visual inspection: Yamazaki et al. use a binarization threshold to distinguish between shadow
and sunlit regions, and optimize the threshold based on visual inspection of the result [79].

7. Improved object-based thresholding: Liu and Yamazaki use a combined object-based and
threshold approach by first performing object segmentation and then bimodal first valley
threshold selection for thresholding the objects with [66].

Thresholding tends to perform worse for lower resolution imagery, since spectral mixing occurs within
single pixels, thus obscuring the unique shadow properties. A common problem with thresholding
is the confusion between shadows and water bodies, but several approaches have been developed to
address the misclassification:

1. The misclassification of sunlit dark objects (water as shadows) or shadowed bright objects
as sunlit, can be corrected afterward using texture features, edge features and other spectral
information.

2. Dare uses region filtering where a variance threshold is set by visual inspection, based on the
observation that shadow regions have higher variance than water regions [60].

3. Chen et al. use a spectral shape index to distinguish shadow from water regions [78].

2.4.2.3 Invariant color models

Adeline et al. divide invariant color model methods into two categories, namely red-green-blue
(RGB) combinations and shadow invariant images [59]. The standard image colorspace RGB
integrates radiance and chromaticity information, but the radiance and chromaticity can be separated by
performing a color-space conversion to HSV, for example. The chromaticity information can be used
separately to obtain lightening and shadow invariant derivations, or the true color at each image pixel
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can be retrieved as if shadows were absent, but color constancy is the main challenge here [73].

Invariant color models use the chromatic properties of shadows to perform shadow detection in
multispectral imagery, rather than simpler histogram thresholding methods that only use intensity
information [66]. Note that Dare compared shadow detection methods on panchromatic and
pansharpened imagery, but achieved similar accuracy, indicating the strong radiometric effect of
shadows over their chromatic character [60].

The unique chromatic properties of shadows include the following:

1. Higher saturation in the blue-violet wavelengths.

2. Increased hue values.

3. Greater intensity reduction for longer wavelengths.

4. Low intensity in NIR band.

Generally invariant color models assume that diffused irradiance dominates for the entire visible
spectrum, i.e. Idiffused � Ireflectance. However, simulation by Adeline et al. shows that in shadow
regions this is not normally the case, since Idiffused < Ireflectance for greater wavelengths [59]. This
means that the dominance of reflective irradiance at higher wavelengths can compromise the integrity
of wavelength-dependent shadow properties, such as lower intensity at longer wavelengths.

The shadow detection approaches falling under the invariant color model category are listed as
follows:

1. Spectral ratio thresholding: Tsai [70] presented an algorithm that uses the ratio value of the
hue over the intensity to construct the ratio map for shadow detection in color aerial images.
To accomplish this the RGB input image is first converted into a color invariant model, such as
hue-saturation-intensity (HSI), and the ratio map is then calculated as R = H/I, which is then
thresholded with Otsu’s thresholding method.

2. Successive thresholding scheme: The detection accuracy was improved with a successive
thresholding scheme used by Chung et al. [80]. Chung et al. stretch the gap between shadow
and sunlit pixels in the ratio map (the one first proposed by Tsai [70]) by using an exponential
function, and then perform global thresholding followed by local thresholding to refine candidate
shadow regions.

3. NIR exploitation: Teke et al. primarily use the NIR band and the low NIR intensity property of
shadows to perform shadow detection [81].

4. RGB+NIR: Relying only on the NIR property can produce confusion between water bodies
and shadows, so Fredembach generates a combined space with both RGB and NIR channels
where water and black objects have lower spectral responses than shadow, thus enabling the
separation of shadow from water [82]. Nagao et al. created a linear combination of RGB and
NIR channels, which can also improve shadow discrimination [83].
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5. Retinex theory: The shadow property of maintained relative color but reduced intensity
is embodied in the retinex theory, which has been exploited in several shadow detection
approaches [84], [85], [91].

2.4.2.4 Object-based algorithms

Object-based or object-oriented shadow detection methods use the following enriched information,
which has been shown by Chen et al. to improve shadow classification accuracy [95]:

1. Context

2. Texture

3. Spatial information

4. Radiometric pixel features

5. Spectral features of pixels

The object-based image analysis (OBIA) approach often involves segmentation as a first step [96],
since it is an efficient technique of incorporting local information, such as texture and context [97].
Huang and Zhang have shown that, in contrast to pixel-based methods that cannot use spatial and
contextual information, object-based methods can avoid false positives such as dark vehicles in sunlit
areas being classified as shadow [87].

Pixel-based shadow detection methods generally produce more small shadows and more false negatives
in the case of high reflectivity materials, such as bright roofs in shadow, but using neighborhood
relationships the object-based shadow detection methods have a higher probability of classifying such
surfaces as shadow [66].

1. Region growing segmentation: A popular category of region-based, bottom-up segmentation
is region growing segmentation, which provides comparatively more control in the level of
segmentation that is achieved. For segmentation with shadow detection as main purpose, it
makes sense to choose starting or seed points corresponding to low-intensity pixels.

Dare relates that a common merging predicate is the spectral distance and mean intensity of
the neighborhood, since it can exclude radiometrically dissimilar pixels from merging with a
segment [60]. Dare states that the optimal parameter for pixel agglomeration may be found in
the histogram of the input image.

2. Heuristic segmentation: Liu and Yamazaki employed a heuristic segmentation algorithm
that uses scale, color, smoothness and compactness information to optimize segment spectral
homogeneity and spatial complexity [66], [98]. The scale parameter determines the maximum
allowable heterogeneity in a segment, where a higher scale generally produces larger objects,
and the smoothness and compactness parameters influence the properties of the eventual segment
borders. Segment filtering can be used as a post-processing step in order to remove or regularize
smaller objects.
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3. Rule-based object classification: Zhou et al. use fractal net evolution for bottom-up
region merging as the first step of segmentation [86]. The region merging segmentation
is initialized at pixel level and a similarity-based merging predicate is then used, which is
based on segment properties such as scale, color and shape. Rule-based classification is then
performed with membership functions and a class hierarchy for eight land cover classes, using
brightness thresholding for shadow/sunlit distinction based on visual interpretation with internally
homogenous segments [86].

4. Morphological shadow index: Huang and Zhang proposed a morphological shadow index that
is based on the spectral-structural characteristics of shadows, in order to indicate the presence of
shadows in high-resolution imagery automatically through the local extraction of dark structures
within a range of sizes in different scales and directions [87].

2.4.2.5 Machine learning

Shadow detection methods based on machine learning often involve classification approaches, in order
to divide an image into shadow and sunlit regions. The machine learning category was first specified
in the shadow detection taxonomy by Adeline et al. [59], but it should be noted that machine learning
methods such as unsupervised classification do occur in other categories, such as thresholding. The
categoric separation of machine learning from other categories in which it may appear, is motivated
when the machine learning method is central to a shadow detection approach.

Li et al. divide shadow detection methods into supervised and unsupervised techniques [99]. Supervised
machine learning methods for shadow detection require training samples from a groundtruth in order
to train a classifier, such as the shadow examples manually determined by Zhan et al. [97].

Some important supervised machine learning methods for shadow detection are shown as
follows:

1. SVM: Levine and Bhattacharyya use an SVM to classify shadow boundaries after the initial
process of segmentation [88].

2. Pulse-coupled neural networks: Huang et al. employ a pulse-coupled neural network in a
supervised setting to differentiate between shadow and sunlit regions [89].

3. Intrinsic image discrimination: Tappen et al. decompose a given image into two intrinsic
images, namely a shading image that gives the illumination, and a reflectance image that gives
the albedo or diffuse reflectivity under a Lambertian surface assumption [90]. The goal of
the separation of intrinsic images is to remove the effects of shading from the reflectance
information, which in effect removes shadows. Since there are two intrinsic images a dual
purpose is served, namely shadow detection by using the shading image, and shadow removal
by using the reflectance image.

A supervised classifier is required that is trained with examples of shading and reflectance
images, and the classifier can then be used to classify image derivatives as shading changes or
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reflectance changes. The classifier uses color information and it recognizes local patterns to
detect shading, but Markov random field belief propagation is required afterward to propagate
confident information to ambiguous regions.

4. Wavelet features: Wavelet features are calculated by Lorenzi et al. and used to conduct
supervised multispectral shadow detection [91].

Unsupervised classification is the second category of machine learning methods for shadow detection
and does not require training examples, since techniques such as clustering, Gaussian mixture models
and outlier detection can naturally reveal classifications that can be used for shadow detection.

Important unsupervised classification approaches for shadow detection are given as follows:

1. Intensity clustering: Basic clustering methods such as k-means clustering can be used for
shadow detection, since Yamazaki et al. have shown that the shadow class usually occurs in its
own cluster [79]. The cluster corresponding to the lowest magnitude values can then be used to
identify the shadow cluster.

2. Hyperspectral clustering: Ashton et al. have used k-means clustering on hyperspectral data
in order to perform illumination suppression [92]. An issue with k-means clustering is the
requirement of spherical clusters and an a priori cardinality, but the spectral variability of
materials and the geometry in urban scenes can complicate the cardinality decision.

3. Gaussian mixture models: Martel-Brisson and Zaccarin have used GMMs to better fit
multimodal distributions for moving cast shadow detection [93].

4. Outlier detection: Shahtahmassebi et al. suggested using outlier detection through clustering
to perform shadow detection, instead of a simpler thresholding approach [61].

2.4.3 Model-based shadow detection

Shahtahmassebi et al. and Adeline et al. defined the model-based shadow detection category, which is
defined as the group of shadow detection methods that is primarily based on a model [61], [59]. Where
property-based shadow detectors use only the information present in the input imagery, the model-
based shadow detection methods rely on extraneous and augmenting information, such as knowledge
of the 3D geometry of the captured scene or atmospheric illumination conditions [59].

Adeline et al. categorized geometrical methods under the model-based category, but physics-based
methods also depend on models, such as the blackbody radiator model, surface material models and
reflectance correction models [59]. Physics-based shadow detection methods are consequently also
included in the model-based category, which also addresses the situation of a singleton subcategory
if only geometrical methods were included under the model-based category. The categorization of
model-based shadow detection methods is shown in Table 2.3.
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Table 2.3. Model-based and physics-based shadow detection approaches.

Model-based shadow detection Arévalo et al. [73]
Geometrical methods Adeline et al. [59]

Shade relief Shahtahmassebi et al. [61]
Ray tracing Thirion [100]
Line-of-sight analysis Tolt et al. [101]
Terrain illumination correction Wu et al. [102]

Physics-based approaches Adeline et al. [59]
Linear unmixing Boardman [103]
Backward radiance correction Colby [104]
Blackbody radiator model Makarau et al. [105]

2.4.3.1 Geometric methods

Geometric methods are the most common types of model-based shadow detection methods, since a
number of options exist to obtain information about the topography and geometry of remotely sensed
scenes. Sunlight models for the acquisition time can be combined with 3D information on the imaged
scene, but the scene geometry and the sensor location and light source location relative to the scene
is required, which may not always be available [106]. Working with such augmenting information is
troublesome, as data availability is a prime concern and a further dimension of complexity is added to
the analysis.

Moreover, the accuracy of geometric methods is limited by the accuracy of the 3D model accuracy. 3D
models can be acquired through the following methods [59]:

1. Aerial photogrammetry (multiview, stereoscopic image pairs).

2. Satellite photogrammetry (multiview, stereoscopic image pairs).

3. Airborne laser scanning.

4. Terrestrial laser scanning.

5. Interferometric SAR.

6. Topographic data.

Photogrammetry performs poorly in a low-texture region and requires precise homologous point
matching, while laser scanning can experience high multipath reflection and reduced accuracy in the
presence of materials with strong absorption and reflection [59]. Rau et al. aim to generate true ortho-
images of urban scenes through shadow removal that is based on geometric shadow detection with
subsequent radiometric enhancement that has parameters determined by local histogram matching [107].
The actual elements on the ground that can cause shadows in RS are grouped into three categories by
Shahtahmassebi et al. [61]:

1. Topography, such as shadows caused by mountains.
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2. Urban objects, such as buildings and trees.

3. Clouds.

Important geometrical methods for shadow detection found in the literature are shown below:

1. Shade relief: Shahtahmassebi et al. listed shade relief as a primary shadow detection category,
but it is rather a specific example of geometric model-based shadow detection methods [61].
Shade relief only identifies self-shadow components by using solar elevation, solar zenith and
digital elevation models (DEMs).

2. Ray tracing: To perform shadow detection Thirion used DEMs and ray tracing, which is a
method of calculating the paths of lightwaves from the sources of irradiance to the sensor [100].

3. Line-of-sight analysis: Shadow profiles have also been directly determined via a line-of-sight
analysis, using information on the solar position and elevation in conjunction with surface
models [101].

4. Terrain illumination correction: Topographic correction of surface reflectance was done by
Li et al. [108] and terrain illumination correction was performed by Wu et al. [102] with shadow
and occlusion detection using digital surface models.

2.4.3.2 Physics-based approaches

The second model-based shadow detection subcategory is physics-based, which describes a set of
methods that primarily uses models of the physical properties of surface materials, illumination
conditions and atmospheric influence on radiance and irradiance. Reflectance is essentially obtained,
which is radiance converted by performing atmospheric correction that is influenced by the location of
the scene, the solar elevation, solar zenith, viewing angle and aerosol profiles.

1. Linear unmixing: Linear unmixing determines the end-members or spectral source components,
which should ideally match pure materials. The main assumption of linear unmixing is that
the pixel reflectance is a mixture of linearly independent and fully illuminated end-member
spectra. Shadows can form an end-member and can be identified as the end-member with the
lowest radiance, but then there is the risk of confusion between shadows and low-reflectance
non-shadow regions [103].

2. Backward radiance correction: Colby developed a backward radiance correction model using
the Minnaert constant to minimize brightness differences for similar surface materials caused by
topographic conditions, shadows or seasonal illumination changes [104].

3. Blackbody radiator model: The relationship between direct sunlight and scattered light may be
modeled by a blackbody radiator model, as was done by Makarau et al. to perform multispectral
shadow detection in a supervised setting [105].
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2.4.4 Evaluation of shadow detection methods

2.4.4.1 Evaluation measures

The result of a shadow detector is a binary shadow mask, which indicates each pixel as either belonging
to the shadow or sunlit classes. A groundtruth or producer’s shadow mask represents the best possible
result of shadow detection or the most accurate shadow mask. The shadow detector or user’s shadow
mask represents the shadow mask that needs to be evaluated for accuracy, which is done by performing
a comparison with the producer’s shadow mask.

An equivalence comparison of two binary images can produce four possible outcomes, which are
defined as follows:

1. FP: False positive, producer pixel is shadow but corresponding user pixel is sunlit.

2. T P: True positive, both the producer pixel and corresponding shadow pixel are shadow.

3. FN: False negative, producer pixel is sunlit but corresponding user pixel is shadow.

4. T N: True negative, both the producer pixel and corresponding shadow pixel are sunlit.

The following four evaluation measures are subsequently defined as in Adeline et al. [59]:

1. Producer shadow accuracy (recall): Ps =
T P

T P+FN .

2. Producer non-shadow accuracy: Pn =
T N

T N+FP .

3. User shadow (precision): Us =
T P

T P+FP .

4. User non-shadow: Un =
T N

T N+FN .

Two combination measures of accuracy are also commonly used, namely overall accuracy and the
F-score [109]. Congalton explains why overall accuracy is a good combination measure [110]
(see [59]). These shadow detection evaluation measures are defined in terms of the above parameters
as follows:

1. Overall accuracy: T P+T N
T P+T N+FP+FN .

2. F-score: 2 PsUs
Ps+Us

.

2.4.4.2 External validation indices

External validation indices measure how well a classification corresponds with a groundtruth
classification. In the case of shadow detection, external validation indices measure how well a
detected shadow mask corresponds with a groundtruth shadow mask. External validation indices are
also composed of true positive, true negative, false positive and false negative terms.

The following external validation indices are used to measure shadow detection accuracy
with [41]:
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1. Czekanowski-Dice index: 2·T P
2·T P+FN+FP .

2. Jaccard index: T P
T P+FN+FP .

3. Rand index: T P+T N
T P+T N+FN+FP .

4. Rogers-Tanimoto index: T P+T N
T P+T N+2·(FN+FP) .

5. Sokal-Sneath index: T P
T P+2·(FN+FP) .

The Rand index is equivalent to the overall accuracy, but the Jaccard index omits the true negative term
T N. The F-score also omits T N and this results in a more appropriate accurate measure if the positive
class has a low prior probability, which might be the case for the shadow class. Note that the F-score is
equivalent to the Czekanowski-Dice index, since

2
PsUs

Ps +Us
= 2

T P
T P+FN

· T P
T P+FP

/( T P
T P+FN

+
T P

T P+FP

)
(2.4)

= 2
T P

T P+FN
· T P

T P+FP

/(T P(T P+FP)+T P(T P+FN)

(T P+FN)(T P+FP)

)
(2.5)

=
2 ·T P

2 ·T P+FN +FP
. (2.6)

2.4.4.3 Shadow detector performances

Adeline et al. ranked diversely different types of shadow detection methods in various high-resolution
urban shadow detection scenarios, and found the following ranking in their experiments [59]:

1. Histogram thresholding, first valley detection with a modified intensity channel from Nagao et
al. [83]

2. Linear unmixing, matched filter approach

3. Supervised machine learning, SVM

4. Invariant color model, YIQ (luma, in-phase and quadrature components)

5. Unsupervised machine learning, k-means

2.5 SHADOW REMOVAL

Shadow removal is the primary objective of this chapter and is performed after the initial step of
shadow detection, which was discussed in the preceding section. The aim of shadow removal is to
eliminate the varying factors that can cause dataset shift, which are shadows in this case as they vary
mainly with seasonal acquisition differences. Several options exist for removing shadows, since the
removal is actually intended to be part of a larger classification system and the shadow removal can
consequently be performed at various stages of the classification system.

Three main shadow removal techniques given in the survey by Dare, which are listed as
follows [60]:

1. Shadow masking.
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2. Radiometric enhancement.

3. Multisource data fusion.

Only two primary categories for shadow removal are defined in this section, namely shadow masking
and shadow restoration. Shadow restoration is fundamentally different from shadow masking, since
shadow pixel values are not set to zero but are radiometrically enhanced to reveal details that were
obscured by shadow. The result of shadow restoration often produces the effect as if objects did not
obscure direct irradiance.

The multisource data fusion approach of Dare is categorized under shadow restoration in this section,
since it involves the same type of image enhancement that characterizes shadow restoration, even if it
involves multiple data sources [60].

Alternative names for shadow restoration have been defined by different authors as follows:

1. Shadow restoration, Zhou et al. [86].

2. Image restoration, Shahtahmassebi et al. [61].

3. Radiometric enhancement, Dare [60].

4. Shadow compensation, Li et al. [99].

Shadow masking and shadow restoration are the two main categories of shadow removal discussed in
the remainder of this section.

2.5.1 Shadow masking

Shadow masking is significant in the context of the study of dataset shift, since it can allow a classifier
to ignore selected image components that can vary across different acquisitions. Shadow pixels can be
set to black to produce a modified image, but the modified image may not be appropriate for visual
interpretation afterward or for producing a shadow restoration later on [60].

A classifier can receive the modified image and choose to ignore black pixels in the feature calculations,
which is one method of achieving shadow masking in a land-use classifier. Another method is to input
two images into the classification system, namely the original image and a binary shadow mask. The
binary shadow mask can be used during feature extraction to decide whether to use a pixel or not. This
approach incurs an increased implementation complexity in the classification system.

2.5.2 Shadow restoration

Shadow compensation, shadow restoration, image restoration and radiometric enhancement are grouped
under one category of shadow removal, namely shadow restoration. There are minor differences
between these terms, but the differences in nomenclature pertain mostly to the primary information
types and methods used to achieve the same goal.
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The strong commonality underlying these terms is that they intend to recover useful information in
shadow regions [111]. Sarabandi et al. hypothesized that there is useful information in the weak
radiance from shadow regions [112], and Nolè et al. noted that the sunlit regions neighboring shadow
regions can be used in shadow restoration [113].

Shadow compensation refers to the adjustment of shadow pixels, in order to compensate for the unique
properties of shadow pixels such as low intensity. Shadow restoration and image restoration are more
general terms that relate more about the goal than the exact method to reach the goal. Radiometric
enhancement is a more specific case of shadow compensation and shadow restoration, since it defines
both the intent of enhancing the image and the type of information and method used.

Li et al. divided shadow compensation methods into two subcategories, namely intensity domain and
gradient domain categories [99]. However, gradient domain shadow compensation methods have not
been widely applied in shadow removal for RS, so the gradient domain subcategorization is not made.
Gradient methods do feature in some intrinsic image methods, which were discussed in the supervised
machine learning shadow detection, so gradient methods are subsumed here under an intrinsic domain
category.

Li et al. specify two distinct modes of intensity domain shadow removal methods, which are
characterized by the use of spatial similarity and by the modeling of shadowed images as products of
shadow-free images and a shadow scale [99]. The product model of images strongly relates to intrinsic
images, which are shadow and reflectance components of a given image. Several methods related to
this approach have been applied in general shadow removal and are consequently listed as potential
methods for shadow removal in RS. The subcategories of the shadow restoration category of shadow
removal are listed in Table 2.4.

2.5.2.1 Intensity domain

Li et al. defined a popular category of shadow compensation, namely intensity domain shadow
compensation [99]. An important mode of intensity domain methods are characterized by the use of
spatial similarity to restore shadow regions, which implies the use of information in the surrounding
sunlit regions to assist in the shadow compensation. Intensity domain methods primarily operate under
the radiometric property of reduced pixel intensity of shadow regions, and generally resort to the use
of local information of sunlit regions to perform shadow corrections.

Shu and Freeman suggested three methods that can be categorized under the intensity
domain [75]:

1. Histogram equalization.

2. Algebraic grayscale transformation.

3. Mean and variance transformation.

The mean and variance transformation, or linear-correlation method as it is more commonly known,
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Table 2.4. A categorization of shadow restoration methods.

Shadow restoration Zhou et al. [86]
(Image restoration, Shahtahmassebi et al. [61]
radiometric enhancement, Dare [60]
shadow compensation) Li et al. [99]

Intensity domain Li et al. [99]
Histogram matching/equalization Sarabandi [112]/Shu and Freeman [75]
Gamma correction Nakajima et al. [68]
Spatial autocorrelation Zhu et al. [114]
Linear-correlation Nakajima et al. [68], Dare [60]
Piecewise linear-correlation Zhan et al. [97]
Supervised chromatic correction Makarau et al. [105]

Intrinsic domain Li et al. [99]
Entropy minimization Finlayson et al. [115]
Product model Arbel and Hel-Or [116], Wu and Tang [117]
Poisson method Xu et al. [118]

Multisource methods
Multisource data fusion Dare [60]

is a popular intensity domain method and has been found to perform relatively well [75]. There is
similarity in the approaches of histogram matching and linear-correlation correction, since linear-
correlation correction can be viewed as a special case of histogram matching, seeing that it uses only the
primary statistical moments to approximate a histogram equalization. However, since linear-correlation
correction is a popular intensity domain method, it is listed in a class of its own.

Multisource data fusion forms a separate category, as suggested by Dare [60], since the approach
is unique in its use of local information across different sources. This approach is different from
intensity domain shadow compensation approaches, since it pertains to substitution operations of
shadow pixels with across-source sunlit counterparts rather than to a compensation transformation
such as linear-correlation correction.

The listing of intensity domain methods is given below:

1. Histogram matching/equalization: Dare suggested radiometric enhancement that is similar
to image balancing in orthomosaic generation, where radiometric differences across region
boundaries are reduced by matching neighboring region histograms [60]. Histogram matching
has also been proposed by Shu and Freeman as a main shadow removal method [75], and has
been used by Sarabandi et al. for radiometric restoration by matching shadow region histograms
with the histograms of sunlit regions of the same class [112]. Spatial radiometry variations are
generally present in shaded images, so Dare states that it is best to perform histogram matching
at a local level.
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2. Gamma correction: Nakajima et al. describe a basic gamma correction method, which modifies
shadow pixels exponentially so that the mean shadow pixel intensity µshadow and mean sunlit
pixel intensity µsunlit match [68]. The gamma correction is more appropriate for higher resolution
image restoration, according to Shahtahmassebi et al. [61].

Gamma is determined as the ratio of the logarithms of the normalized shadow intensity mean
and normalized sunlit intensity mean, which is then used to convert all shadow pixel intensities
with the second equation

γ =
log(µshadow/G)

log(µsunlit/G)
(2.7)

µsunlit = G×
(

µshadow

G

)1/γ

. (2.8)

3. Spatial autocorrelation: Shahtahmassebi et al. suggest geo-statistical methods using the
spatial autocorrelation technique of Zhu et al. [114], if the uniform variability assumption of
interpolation techniques does not hold [61].

4. Linear-correlation/mean and variance transform: Linear-correlation is also called the mean
and variance transformation by Dare [60], as well as Shu and Freeman [75]. Linear-correlation
correction is sensitive to the local window size used to obtain sunlit region examples, since that
will affect the sunlit statistics that are used by the method to perform compensation [112].

The shadow and sunlit intensity means are given by µshadow and µsunlit, and the shadow and sunlit
intensity standard deviations are given by σshadow and σsunlit in the following equation. This is
the linear-correlation equation for adjusting shadow pixel intensity values through a simplified
histogram matching where only the first and second statistical moments are employed, given by

y =
σsunlit

σshadow
(x−µshadow)+µsunlit. (2.9)

5. Piecewise linear-correlation: A prominent concern of linear-correlation is that only a single
linear equation is used, which may cause notable variation in the corrected shadow areas. If the
penumbra width is significant or if there are distinct shadow intensities, then it is better to use a
piecewise linear equation [119].

Liu and Yamazaki divide shadow objects into dark (bottom 5% DN), medium and light-shadow
(top 5% DN) classes, where a, b and c are the dark, medium and light shadow thresholds,
respectively [66]. The piecewise division of shadows is given as follows by the modification
coefficient Θ representing the darkness of a shadow, which has a range of [−1,1]:

Θ =


x
a if 0 < x≤ a
1 if a < x≤ b

b+c−2x
c−b if b < x < c.

(2.10)
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The piecewise linear-correlation correction is then produced by the following equation, where r
is the ratio of the radiances in the shadow and sunlit areas:

y = Θ · 1
r
(x−µshadow)+µsunlit. (2.11)

6. Supervised chromatic correction: Makarau et al. used a supervised approach to compute
chromaticity, using manual selection of shadow and sunlit pixels across a shadow edge as
training examples [105].

2.5.2.2 Intrinsic domain

The intrinsic domain of shadow restoration methods refers to the decomposition of shaded images
into two integral images, namely a shading image and a reflectance image. The dual purposes of
intrinsic decomposition have been mentioned in the previous section on supervised shadow detection
methods [90]. The first function of integral images is to provide a shadow mask, and the second
function is to obtain a shadow-free reflectance image, which is the function explored in this set of
methods.

Examples of shadow removal methods that belong in the intrinsic domain are given as follows:

1. Entropy minimization: Finlayson et al. [115] derive illumination invariant images through
entropy minimization, without the need for calibration. They seek a projection through entropy
minimization that results in a reflectance-information only image that is independent of lightning.

2. Product model: Li et al. describe a second mode of intensity domain shadow removal methods,
where a shadowed image is defined as the product of a shadow-free image and a shadow
scale [99]. A thin plate spline can be used to smooth the shadow scale, but the smoothness
assumption does not hold in the case of compound shadows, which is prominent in dense urban
areas [116]. This product model implicates intrinsic images and this method is consequently
categorized as an intrinsic domain method.

3. Poisson method: Wu and Tang use an image model where the observed shadowed image is the
shadowless image scaled by the shadow image [117]. They estimate the shadow and shadow-
free PDFs with GMM from the corresponding histograms and solve the shadowed image via
a Bayesian framework before estimating the shadowless image with a Poisson equation. This
is also an example of a product model and intrinsic domain method, but the use of a Poisson
method differentiates this example.

2.5.2.3 Multisource methods

Dare demonstrated multisource data fusion for high-resolution RS imagery [60], but multisource data
fusion has also been done in a low-resolution setting for the removal of cloud shadows by Wang
et al. [67]. Multisource data fusion uses co-registered images and replaces shadow pixels in one
image with co-registered pixels in the other image, if these pixels are classified as being in sunlit
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regions.

The typical sun-synchronicity of optical high-resolution satellites means that it will be difficult to
find sunlit counterparts for all shadow pixels. However, local summer acquisitions have higher solar
elevation and shorter cast shadows than winter acquisitions, so winter shadows can be replaced by
summer sunlit counterpart pixels.

Multisource data fusion that uses aerial and satellite imagery requires more sophisticated radiometric
conversions, because of the sensing differences between aerial and satellite imaging vehicles [60].
Accurate registration is also a requirement, but topographic variation exacerbates poor registration.
Zhou et al. showed that multisource fusion can perform relatively well as a method for shadow
detection [86].

The following chapter on shadow detection evaluates a selection of methods reviewed in this chapter
in addition to methods not used for shadow detection before.
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3.1 CHAPTER OVERVIEW

In the previous chapter a literature study was performed for shadow removal and shadow detection.
Shadow detection was shown to be an important first step in shadow removal, and it was indicated
that there are two main approaches to shadow detection, namely pixel and object-based methods.
Image segmentation and thresholding are two important components of pixel and object-based shadow
detection, so this chapter explores different categories of segmentation and thresholding. This chapter
studies threshold-based shadow detection methods that can subsequently be used as part of the input
modification strategy to reduce dataset shift, so it is placed under the input modification theme to
address dataset shift, as shown in Figure 3.1.

Chapter 3 Chapter 4 Conference Chapter 5 Chapter 6

Main objective

Theme 1 Theme 2

Chapter 7

Theme 3

Figure 3.1. Indication of where this chapter fits into the thesis.

3.1.1 Contributions

1. Panchromatic shadow detection algorithms from the thresholding subcategory (Adeline et
al. [59]) of property-based shadow detection (Arévalo et al. [73]) in Table 2.2 are reviewed on
the Soweto panchromatic land-use dataset.

2. The shadow detection accuracy of unsupervised global thresholding methods are compared using
the Czekanowski-Dice (F-score), Jaccard, Rand (overall), Rogers-Tanimoto and Sokal-Sneath
external validation indices previously discussed in paragraph 2.4.4.2.

3. A qualitative and quantitative comparison is performed for 10 unsupervised global thresholding
methods, but local adaptive thresholding (LAT) is also employed and its results are compared to
those of global thresholding for a panchromatic land-use classification scenario.
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4. LAT for panchromatic shadow detection is contributed to the known taxonomy of Adeline et
al. [59] and shown to outperform global thresholding when threshold selection is supervised.

The problem statement follows in the next section where the hypotheses and research questions for this
chapter are stated. Image segmentation is briefly reviewed and taxonomized in Section 3.3, where the
general segmentation objective is described in terms of the gestalt laws of grouping and ideal segment
properties. Image thresholding can typically be categorized as a region-based parallel type of image
segmentation, but because of its importance in shadow detection a separate section is dedicated to
image thresholding in Section 3.4 with a review of image thresholding taxonomy and descriptions of
the main thresholding methods. Section 3.5 investigates global and LAT for panchromatic shadow
detection with the Soweto dataset used to measure and compare shadow detection accuracies for
various thresholding methods.

3.2 PROBLEM STATEMENT

Toward the goal of instantiating a method of input modification where shadows are removed before
feature extraction, the various shadow detection options explored in the literature study of the previous
chapter have to be evaluated.

3.2.1 Hypotheses

1. Threshold-based shadow detection can relatively accurately delineate shadows because of the
low intensity property of shadows.

2. Locally adaptive thresholds detect shadows below a threshold relative to local image intensity,
which should produce more accurate shadows than with a global fixed threshold, since relatively
low intensity admits greater sensitivity in images with contrast variation than globally low
intensity.

3.2.2 Research questions

1. How do the different threshold-based segmentations from the thresholding algorithm taxonomy
of Sezgin and Sankur [47] compare in terms of panchromatic shadow detection accuracy?

2. How does global thresholding compare to locally adaptive thresholding in terms of panchromatic
shadow detection accuracy?

3.3 IMAGE SEGMENTATION

Computer vision is generally a problem of inference, since it aims to determine the cause behind
observed data [120]. One of the fundamental problems in computer vision is image segmentation,
which is usually the first step of the process of image analysis. Image segmentation has been defined as
“partitioning an image into several disjoint subsets such that each subset corresponds to a meaningful
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part of the image” [121]. Image segmentation is a key process in a wide range of applications in areas
and problems such as medical image processing, remote sensing, recognition, object tracking and
image reconstruction.

3.3.1 Segmentation objective

3.3.1.1 Gestalt laws of grouping

Two-dimensional image segmentation produces a number of spatially continuous regions or segments
that normally display some pattern of coherence within. Wertheimer’s Gestalt theory described a
fundamental model of the perceptual clustering evident in the human perceptual system [122], which
consisted of the following laws of grouping:

1. Proximity: Components that are closer together are perceived as a group.

2. Similarity: Components that share the same characteristics, such as color and texture, are
perceived as a group.

3. Closure: A group with only a partial appearance can still be identified because of the tendency
of perception to complete the appearance through a form of interpolation.

4. Common fate: Components that move together are perceived as a group.

5. Good continuation: Groups that overlap can be distinguished if there is a continuation of a
characteristic (such as color) at the intersection.

6. Good form: Overlapping forms can be distinguished by differentiating them according to the
characteristics of shape, pattern, color, etc.

3.3.1.2 Segment properties

Haralick and Shapiro [123] defined the following four properties generally desired for segments, which
correspond partially to the concepts present in the Gestalt laws of grouping:

1. Uniform and homogeneous with respect to some characteristics

2. Simple interiors with strong regularity

3. Dissimilar adjacent regions

4. Simple and spatially accurate boundaries.

The specific application in which segmentation plays a role will influence the grouping objectives
used. Therefore, Peng et al. [121] suggest that image segmentation should incorporate mid- and
high-level knowledge of the application to obtain domain-specific segmentation. For object-based
shadow detection the first step involves segmentation, and the unique properties of shadow, such as
low intensity, can be used as a desired property as well.
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3.3.2 Segmentation taxonomy

The categorization and classification of segmentation algorithms, methods and approaches are reviewed
in this subsection. Various categorizations of segmentation methods can be found in the literature, such
as the work of Tilton [124], who divided image segmentation approaches into three classes:

1. Characteristic feature thresholding or clustering, which does not usually exploit spatial
information.

2. Boundary detection, which exploits spatial information but can suffer from incomplete edge
detection on noisy images.

3. Region extraction, such as region growing, which can depend on the exact merging sequence
followed.

Zhang [125] provides a general categorization of segmentation algorithms into four different categories,
namely edge-based parallel, edge-based sequential, region-based parallel and region-based sequential.
The methods are either sequential or parallel, as well as either edge-based or region-based, and specific
examples of segmentation methods are given in Table 3.1 for each category. A third class of methods is
noted in this thesis, namely graph-based segmentation, since graph-based approaches often incorporate
both edge and region-based criteria.

3.3.2.1 Sequential and parallel

Gray-level image segmentation is generally based on the principles of similarity and discontinuity [126],
and segmentation algorithms can be categorized into two types, namely sequential and parallel
algorithms [127]. Sequential algorithms are characterized by the subsequent use of earlier information
that is generated in the earlier stages of processing, which thus requires sequential steps where earlier
information is used in later steps. Parallel algorithms base decisions on independent and simultaneous
processing operations, such as histogram shape thresholding.

3.3.2.2 Edge-based and region-based

There is an additional type of categorization, namely whether a segmentation method is edge-
based or region-based. The principle of similarity is used in region-based segmentation algorithms
to form regions or segments where the constituent pixels or components have similar properties,
such as intensity, hue or texture. Discontinuity can be considered the complement to similarity
and is used in edge-based segmentation algorithms, which finds object contours explicitly to form
segments [125].

3.4 IMAGE THRESHOLDING

One of the important segmentation methods that is frequently used in shadow detection is
thresholding [60]. Image thresholding approaches are reviewed in this section with a specific focus
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Table 3.1. Categories of segmentation algorithms, partly according to Zhang [125].

Segmentation algorithm categorization
Sequential Parallel

Edge-based Edge-based sequential Edge-based parallel
Edge linking Edge detection based
Boundary following Canny edge detection
Dynamic programming for contouring SUSAN operator

Region-based Region-based sequential Region-based parallel
Multiresolution segmentation Thresholding
Region split and merge Clustering
Watershed segmentation Histogram concavity analysis
Region growing Entropy minimization
Statistical region merging

Graph-based Graph-based sequential Graph-based parallel
Felzenszwalb and Huttenlocher [128] Wassenberg et al. [129]
Graph-cut segmentation Copty et al. [130]
Urquhart [131] Tilton [124]

on algorithms that will be subsequently tested in the shadow detection analysis performed in the next
chapter. This section places thresholding in the context of shadow detection and then an overview of
the categorization of thresholding algorithms is given. The main categories of thresholding are then
reviewed in terms of their subcategories, with the main categories listed as:

1. Histogram shape thresholding

2. Clustering-based thresholding

3. Entropy-based thresholding

4. Attribute similarity thresholding

5. Spatial thresholding

6. Locally adaptive thresholding.

3.4.1 Thresholding for shadow detection

A segmentation produced through thresholding usually consists of only foreground and background
segments, which is a type of binary segmentation. This segmentation does not differentiate between
spatially separated segments of the same class, namely the foreground or background class, so there
are essentially only two segments. A binary segmentation is thus a direct way of producing a shadow
mask, which indicates all shadow regions in an image. However, the binary segmentation cannot be
used for object-based approaches, since a more detailed segmentation is required so that individual
objects can be characterized.

Thresholding requires a global threshold T or a local threshold T (x,y), and an image binarization
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operation can then be performed for input image I as described below. For a global threshold T the
pixels (x,y) of binary image Ib are defined as

Ib(x,y) =

{
1 if I(x,y)≤ T
0 otherwise.

(3.1)

For a local threshold T (x,y) the pixel (x,y) of binary image Ib is defined as

Ib(x,y) =

{
1 if I(x,y)≤ T (x,y)
0 otherwise.

(3.2)

3.4.2 Thresholding taxonomy

Segmentation approaches that are often used are the region-based methods of thresholding and
histogram concavity analysis, which are categorized in Table 3.1 in the previous section. The actual
thresholding step itself can be considered as fully parallel, although the threshold decision usually
involves more of a sequential type of processing. Histogram concavity analysis is a specific approach
to determining which threshold to use, and it is a prominent approach in thresholding.

A number of thresholding based methods have been developed specifically for the separation of objects
from the background, such as the separation of shadow from sunlit regions [132], [77]. In this section
the foreground is shadow and the background is sunlit regions. Saha and Ray divided thresholding
techniques into local and global types [133]. Sezgin and Sankur reviewed image thresholding
techniques, which they characterized according to types of information used [47]. A categorization of
thresholding is shown in Table 3.2, which is based on the taxonomy of Sezgin and Sankur [47].

3.4.3 Thresholding algorithm notation

In the following subsections the different categories of thresholding will be reviewed and some of the
algorithm descriptions will entail the following basic notations: p(g) is the normalized histogram or
probability mass function (PMF) for an input image I with intensity range g = gmin . . .gmax, where
gmax ≤ G is the maximum intensity value. The cumulative probability function associated with p(g) is
denoted by

P(g) =
g

∑
i=0

p(i). (3.3)

3.4.4 Histogram shape thresholding

In histogram shape thresholding the shape properties of the histogram are used in different forms to
calculate an optimal threshold. The following types of histogram shape thresholding methods are
considered in this subsection:

1. Convex hull thresholding

2. Peak-and-valley thresholding
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Table 3.2. Image thresholding algorithm categorization, based on the taxonomy of Sezgin and
Sankur [47].

Image thresholding categorization
Histogram shape thresholding

Convex hull thresholding Rosenfeld’s method [134]
Peak-and-valley thresholding Sezan [135]
Shape-modeling thresholding Ramesh et al. [136]
Bimodal mean thresholding Prewitt and Mendelsohn [137]
First valley thresholding Prewitt and Mendelsohn [137]

Clustering-based thresholding
Iterative thresholding Ridler and Calvard [138]
Clustering thresholding Otsu’s method [77]
Minimum error thresholding Kittler and Illingworth [139]
Iterative minimum error thresholding Kittler and Illingworth [139]
Fuzzy clustering thresholding Jawahar et al. [140]

Entropy-based thresholding
Entropic thresholding Kapur et al. [141]
Cross-entropic thresholding Li and Lee [142]
Fuzzy entropic thresholding Shanbag [143]

Attribute similarity thresholding
Moment preserving thresholding Tsai [144]
Edge field matching thresholding Hertz and Schafer [145]
Fuzzy similarity thresholding Huang and Wang [146]
Topological stable-state thresholding Pikaz and Averbuch [147]
Maximum information thresholding Leung and Lam [148]
Enhancement of fuzzy compactness thresholding Pal and Rosenfeld [149]

Spatial thresholding
Co-occurrence thresholding methods Pal and Pal [150]
Higher-order entropy thresholding Abutaleb [151]
Thresholding based on random sets Friel and Molchanov [152]
2D fuzzy partitioning Cheng and Chen [153]

Locally adaptive thresholding
Local variance methods Niblack [154]

Sauvola and Pietikäinen [155]
Wellner [156]

Local contrast methods White and Rohrer [157]
Bernsen [158]

Center-surround schemes Kamel and Zhao [159]
Surface-fitting thresholding Yanowitz and Bruckstein [160]
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3. Shape-modeling thresholding

4. Bimodal mean thresholding

5. First valley thresholding.

3.4.4.1 Convex hull thresholding

Rosenfeld’s method selects as threshold one of the deepest concavity points on the histogram, by first
calculating the convex hull of the histogram [134]. The optimal threshold Topt according to Rosenfeld’s
method is given by

Topt = argmax
g
{Hull(p(g))− p(g)} . (3.4)

Hull(p(g)) is the convex hull of the normalized histogram or probability mass function p(g) for
g = gmin . . .gmax, where gmax ≤ G is the maximum intensity value. Hull(p(g)) can also be described
as the smallest convex polygon that contains p(g).

The goal of Rosenfeld’s method is to find the concavities of H, which are the connected components
of the set-theoretic difference Hull(p(g))− p(g). The PMF denoted by p(g) is already bounded on
the left, right and bottom by (gmin,0)(gmin, p(gmin)), (gmin,0)(gmax,0) and (gmax,0)(gmax, p(gmax)),
respectively. In this notation an edge from point (a,b) to (c,d) on the (x,y)-plane is given by
(a,b)(c,d).

To construct the top part of Hull(p(g)) we can use the Rutovitz algorithm for in-line generation of a
convex cover [161]:

1. Starting at point (k, p(k)) for k = gmin, compute the slopes −90◦ < Θi < 90◦ of line segments
(k, p(k))(i, p(i)) for k+1≤ i≤ gmax.

2. Find the rightmost point k1 = argmaxi{Θi} having the slope max{Θi} and let (k, p(k))(k1, p(k1))

form a side of Hull(p(g)).

3. Repeat the process by replacing k with k1 and finding the slopes of line segments
(k1, p(k1))(i, p(i)) for k1 +1≤ i≤ gmax, until reaching k j = argmaxi{Θi}= gmax. The method
thus produces j top boundary lines of p(g), which are combined with the bottom and side edges
to form Hull(p(g)).

3.4.4.2 Peak-and-valley thresholding

Sezan reduces the histogram to a two-lobe function through convolution with a smoothing and
differencing kernel [135]. The threshold is selected between the first terminating and second initiating
zero crossing.
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3.4.4.3 Shape-modeling thresholding

Ramesh et al. minimize the sum of square error between a bilevel functional approximation of
p(g) through an iterative search for the optimal threshold, which defines the mean foreground and
background levels of the approximation [136].

3.4.4.4 Bimodal mean thresholding

Prewitt and Mendelsohn smooth the histogram p(g) through an iterative three-point mean filtering
until the PMF is bimodal [137]. Specifically, starting with p1(g) = p(g), a three-point mean filtering
pi+1(g) = pi(g)? [1,1,1]/3 is performed with a convolutional filter [1,1,1] until pi+1(g) is bimodal.
The global threshold is then set as the mean Topt = (T0 +T1)/2 of the two peaks, where the two peaks
can be written as

{T0,T1}= argg

{(
d p(g)

dg
= 0
)
∧
(

d2 p(g)
d2g

< 0
)}

. (3.5)

3.4.4.5 First valley thresholding

Prewitt and Mendelsohn also perform iterative smoothing [137] to ensure bimodality, after which the
threshold is set as the minimum between the first two peaks, i.e.

Topt = argmin
g
{T0 < g < T1}. (3.6)

3.4.5 Clustering-based thresholding

Clustering analysis can also be used to determine optimal thresholds, but the number of clusters is
set to two to ensure a binary segmentation. The distinction can then be made between two clusters,
namely shadow and sunlit regions. Examples of clustering-based thresholding that are considered in
this subsection include the following:

1. Iterative thresholding

2. Clustering thresholding

3. Minimum error thresholding

4. Iterative minimum error thresholding

5. Fuzzy clustering thresholding.

3.4.5.1 Iterative thresholding

Ridler and Calvard use two-class Gaussian mixture models in an iterative scheme, where at iteration i a
threshold Ti is set as the average of the foreground and background class means [138]. The termination
condition is based on a sufficiently small |Ti−Ti+1|. The optimal threshold is then defined as

Topt = lim
i→∞

m f (Ti)+mb(Ti)

2
(3.7)
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with the foreground class mean given by

m f (Ti) =
Ti

∑
g=0

g · p(g) (3.8)

and the background class mean given by

mb(Ti) =
G

∑
g=Ti+1

g · p(g). (3.9)

3.4.5.2 Clustering thresholding

Otsu’s method determines the threshold that minimizes the weighted sum of within-class variances of
the foreground and background pixels, which is equivalent to maximizing the between-class scatter [77].
Otsu’s method is one of the most popular global thresholding algorithms, but does not work well for
images with significant overlap between the histograms of foreground objects and the background due
to poor illumination [133].

Otsu’s threshold can be defined in terms of the cumulative probability function P(g), the foreground
class mean m f (g) given in Equation 3.8, the background class mean mb(g) given in Equation 3.9 and
the foreground and background region variances σ2

f (g) and σ2
g (g), as follows:

Topt = argmax
g

{
P(g)(1−P(g))(m f (g)−mb(g))2

P(g)σ2
f (g)+(1−P(g))σ2

b (g)

}
. (3.10)

The variance of the foreground region is given by

σ
2
f (T ) =

T

∑
g=0

(g−m f (T ))2 p(g) (3.11)

and the variance of the background region is given by

σ
2
b (T ) =

G

∑
g=T+1

(g−mb(T ))2 p(g). (3.12)

3.4.5.3 Minimum error thresholding

Kittler and Illingworth characterizes an image by a mixture distribution of foreground and background
pixels [139]. They solve a minimum-error Gaussian density-fitting problem, without assuming equal
variances, to produce the following threshold

Topt = argmin
g

{
P(g) log(σ f (g))+(1−P(g)) log(σb(g))

−P(g) log(P(g))− (1−P(g)) log(1−P(g))
}

. (3.13)
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3.4.5.4 Iterative minimum error thresholding

Kittler and Illingworth also proposed an iterative version of their algorithm in addition to the direct
algorithm of minimum error thresholding [139]. The iterative implementation of minimum error
thresholding defines a decision rule that requires a solution to the following quadratic equation:

g2

(
1

σ2
f (T )

− 1
σ2

b (T )

)
−2g

(
µ f (T )
σ2

f (T )
− µb(T )

σ2
b (T )

)
+

(
µ2

f (T )

σ2
f (T )

−
µ2

b (T )
σ2

b (T )

)
+2(log(σ f (T ))− log(σb(T )))−2(log(P(T ))− log(1−P(T ))) = 0. (3.14)

The iterative algorithm converges to the optimal threshold with the use of the following
procedure:

1. Choose the initial threshold T as the average intensity value.

2. Compute µ f , µb, σ f , σb and P(T ) with the current T value.

3. Solve Equation 3.14 with the computed terms, and set the new T with the solution.

4. Repeat from step 2 until the new T value is unchanged.

3.4.5.5 Fuzzy clustering thresholding

Jawahar et al. assign fuzzy clustering memberships to pixels according to pixel value differences
to the class means [140]. The threshold is established as the crossover point of the membership
functions.

3.4.6 Entropy-based thresholding

In entropy-based thresholding a maximum information transfer to the thresholded image is achieved
through maximization of its entropy. Alternatively, cross-entropy can be minimized between the input
and output images to preserve information. The following entropy-based thresholding examples will
be reviewed in this subsection:

1. Entropic thresholding

2. Cross-entropic thresholding

3. Fuzzy entropic thresholding.

3.4.6.1 Entropic thresholding

Kapur et al. [141] optimized the threshold by maximizing the sum of the foreground and background
entropies, i.e.

Topt = argmax
g

{
H f (g)+Hb(g)

}
(3.15)
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with the foreground and background entropies defined as

H f (T ) =−
T

∑
g=0

p(g)
P(T )

log
(

p(g)
P(T )

)
and (3.16)

Hb(T ) =−
G

∑
g=T+1

p(g)
1−P(T )

log
(

p(g)
1−P(T )

)
. (3.17)

3.4.6.2 Cross-entropic thresholding

Li and Lee calculate the optimal threshold as the one that minimizes the information theoretic
distance between the input and thresholded images, specifically by using the Kullback-Leibler
distance [142].

3.4.6.3 Fuzzy entropic thresholding

Shanbag finds the optimum as the threshold that minimizes the sum of the fuzzy membership
entropies [143].

3.4.7 Attribute similarity thresholding

In attribute similarity thresholding a threshold is chosen to preserve a similarity measure or attribute
quality between the input image and thresholded image. The types of attribute similarity thresholding
methods that will be reviewed in this subsection are:

1. Moment preserving thresholding

2. Edge field matching thresholding

3. Fuzzy similarity thresholding

4. Topological stable-state thresholding

5. Maximum information thresholding

6. Enhancement of fuzzy compactness thresholding.

3.4.7.1 Moment preserving thresholding

Tsai modeled the gray-level input image as the blurred version of an ideal binary image [144]. The
optimal threshold should produce a binary image with its first three statistical moments equal to the
first three input image moments. The search for this moment equality can be formulated as

Topt = argmin
T

{( G

∑
g=0

p(g)g−
T

∑
g=0

p(g)
T

∑
g=0

gp(g)−
G

∑
g=T+1

p(g)
G

∑
g=T+1

gp(g)
)2

+
( G

∑
g=0

p(g)g2−
T

∑
g=0

p(g)
T

∑
g=0

g2 p(g)−
G

∑
g=T+1

p(g)
G

∑
g=T+1

g2 p(g)
)2
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+
( G

∑
g=0

p(g)g3−
T

∑
g=0

p(g)
T

∑
g=0

g3 p(g)−
G

∑
g=T+1

p(g)
G

∑
g=T+1

g3 p(g)
)2
}

. (3.18)

3.4.7.2 Edge field matching thresholding

Hertz and Schafer determine a global threshold as the value that maximizes the count of matching
Sobel generated edges between the input grayscale image and thresholded image [145].

3.4.7.3 Fuzzy similarity thresholding

Huang and Wang find the threshold that minimizes the entropy of pixel fuzziness membership values
with foreground and background classes [146].

3.4.7.4 Topological stable-state thresholding

Pikaz and Averbuch perform threshold selection based on the stability of object shapes and edges [147].
They measure the number of foreground objects or connected components with a minimum number of
pixels and select the threshold at the point of maximum stability of this cardinality measure.

3.4.7.5 Maximum information thresholding

Leung and Lam established the optimum threshold as the one that minimizes the average residual
pixel class uncertainty or maximizes the decrease in uncertainty after the thresholded image has been
observed [148].

3.4.7.6 Enhancement of fuzzy compactness thresholding

Pal and Rosenfeld choose the threshold that maximizes the compactness of the connected components
in the foreground set, where compactness is defined as the ratio of object area to the squared
perimeter [149].

3.4.8 Spatial thresholding

Spatial thresholding generally uses the pixel neighborhood information for context and to calculate
correlations and dependence models. The following main examples of spatial thresholding are
considered in this subsection:

1. Co-occurrence thresholding methods

2. Higher-order entropy thresholding

3. Thresholding based on random sets

4. 2D fuzzy partitioning.
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3.4.8.1 Co-occurrence thresholding methods

Pal and Pal defined the optimal threshold as the threshold producing the maximum number
of background-to-foreground and foreground-to-background transitions, specifically by using
the entropies of the co-occurrence probabilities of gray values in the foreground and
background [150].

3.4.8.2 Higher-order entropy thresholding

Abutaleb selects as optimum threshold the specific threshold that minimizes the entropy of the co-
occurrence histogram of pixel values and pixel neighborhood means [151].

3.4.8.3 Thresholding based on random sets

Friel and Molchanov produce a distribution of a random set from the input image and choose a threshold
that generates a foreground with pixels possessing similarity in terms of their Chamfer distance [152],
[162].

3.4.8.4 2D fuzzy partitioning

Cheng and Chen combine fuzzy entropy and local pixel co-occurrence histograms to find the threshold
that maximizes the sum of foreground and background entropies at the crossover point of largest
fuzziness [153].

3.4.9 Locally adaptive thresholding

Thresholds are calculated for each pixel using the local statistics like range and the variance of the
pixel neighborhood. Local thresholding is superior to global thresholding for poorly and unevenly
illuminated images [133]. The following types of locally adaptive thresholding are considered in this
subsection:

1. Local variance methods

2. Local contrast methods

3. Center-surround schemes

4. Surface-fitting thresholding.

3.4.9.1 Local variance methods

Niblack defines a pixel threshold as the sum of the local pixel mean and a scaled version of the
standard deviation for a given local window size [154]. For a given mean intensity m(x,y) and standard
deviation σ(x,y) in a local window centered at (x,y), Niblack defines a threshold with a typical
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parameter k =−0.2 as

T (x,y) = m(x,y)+ k ·σ(x,y). (3.19)

The local window mean and standard deviation around pixel (x,y) are defined for a square window
width w as

m(x,y) =
x+w−1

2

∑
i=x−w−1

2

y+w−1
2

∑
j=y−w−1

2

I(i, j)
w2 (3.20)

σ(x,y) =

√√√√√ 1
N−1

x+w−1
2

∑
i=x−w−1

2

y+w−1
2

∑
j=y−w−1

2

(I(i, j)−m(x,y))2. (3.21)

Sauvola and Pietikäinen improved on Niblack’s threshold by adapting the scaling of the standard
deviation [155]. Their threshold incorporates an extra parameter R with a typical value of R = 128, but
parameter k now has a typical value of k = 0.2. The threshold is defined as

T (x,y) = m(x,y)+1+ k (σ(x,y)/R−1) . (3.22)

Wellner sets an adaptive threshold in terms of the local window mean [156], which is defined for a
typical parameter k = 15 as

T (x,y) = m(x,y)(1− k/100). (3.23)

In a binarization algorithm comparison for the thresholding of 3D X-ray microtomographies of
trabecular bone [163] it was shown that Wellner outperforms the local adaptive thresholds of
Niblack [154] and Sauvola and Pietikäinen [155].

3.4.9.2 Local contrast methods

White and Rohrer set the threshold as a scaled version of the local neighborhood pixel mean [157].
The threshold is defined for a typical parameter k = 1.1 as follows

T (x,y) = m(x,y)/k. (3.24)

Bernsen sets the local threshold as the mean of the minimum and maximum pixel values in the local
neighborhood, provided that the difference between the extremes is large enough [158].

3.4.9.3 Center-surround schemes

Kamel and Zhao proposed a threshold calculation optimized for scenarios with well-defined objects
such as text, since their method compares the average gray value in blocks proportional to the object
with the surrounding neighborhood [159].
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3.4.9.4 Surface-fitting thresholding

Yanowitz and Bruckstein combined edge and gray-level information to render a threshold surface,
which can be used to obtain the optimal threshold [160].

3.5 SHADOW DETECTION

3.5.1 Input modification

The input modification strategy to address dataset shift involves the identification of isolatable input
components that are related to the dataset shift. The reasoning behind input modification is that the
presence of these input components, which are caused by varying measurement modes, can cause
dataset shift in a classifier. So the hypothesis is that the removal of these varying components may
reduce subsequent dataset shift, since a contributing factor to dataset shift is no longer present.

A major cause of dataset shift in remote sensing is the effect of seasonal changes on solar elevation,
which introduces a subsequent variation in lighting geometry. A potentially strong factor of visible
change in the remote sensing imagery is shadow, but its contrastive appearance may also allow for
identification and isolation of affected image regions. There is a potentially wide variance of shadow
profiles, especially in across-seasonal image pairs.

3.5.2 Shadow detection approaches

The identification and removal of shadows have the potential to improve subsequent feature constancy,
which can improve land-use classification accuracy. The identification step initiates the process of
shadow removal and it involves shadow detection. Panchromatic shadow detection algorithms are
chosen from the thresholding subcategory (Adeline et al. [59]) of property-based shadow detection
(Arévalo et al. [73]) in Table 2.2, for reasons of relatively low computational time requirements and
since the other subcategories of property-based shadow detection are not as suitable, namely invariant
color models, object-based algorithms and machine learning. Threshold-based shadow detection
strategy is based on a binary classification of shadow or sunlit area, namely pixel-based shadow
detection that classifies individual pixels as either shadow or sunlit.

Threshold-based segmentation and shadow detection explored in this chapter can be directly related to
the bimodal histogram splitting used by Dare [60] and Wei et al. [76], the number of peaks and valleys
used by Chen et al. [78], the first valley detection used by Liu and Yamazaki [66], and the first peak
classification used by Wei et al. [76]. Several other important thresholding algorithms from Table 3.2
are also tested to expand the set of threshold-based shadow detectors found in the literature.
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3.5.3 Data description

A 4.85×9.86 km2 section of the subtropical highland of Soweto (Gauteng, South Africa) was selected
as the study site, as shown in Figure 3.2. Panchromatic QuickBird imagery of the site was captured
at a 0.6×0.6 m2 pixel resolution, with a nominal 30◦ off-nadir wide accessible ground swath, on 18
October 2005 (d1, early summer, rainy season) and 30 May 2006 (d2, early winter). The across-date
settlement classification is investigated for these two dates denoted by d1 and d2, of which QuickBird
acquisitions are shown in Figure 3.3.

Figure 3.2. Soweto across-date dataset selection for this experiment.

The settlement classifier is evaluated in a study area with three main settlement types, as shown in
Figure 3.3, namely formal settlements (FS), formal settlements with backyard shacks (FSB) and
ordered informal settlements (OIS). NBU is the fourth class and includes natural vegetation; it is
added to test classifier separability between builtup and non-builtup areas. FS are characterized by
permanent residential structures that are positioned in a planned manner, while FSB have larger
residential structures accompanied by smaller backyard shacks. An OIS is constituted when permanent
and semi-permanent residential structures are arranged in a planned manner.

3.5.4 Global thresholding

3.5.4.1 Shadow detection groundtruth

Groundtruth shadow masks were created for the Soweto dataset, featuring representative coverage over
FS, FSB and OIS polygons for both dates in the dataset. Appendix A contains the groundtruth shadow
masks for the Soweto dataset, where shadows are indicated by red regions. In Figure 3.4 a groundtruth
shadow mask is shown for a formal settlement polygon for the first date of the Soweto dataset.

3.5.4.2 Shadow detection accuracy

For global thresholding the same threshold is used to classify each pixel as shadow or sunlit, and
the accuracy of the global thresholding for a given threshold can be determined with an external
validation index and a groundtruth shadow mask. The global thresholding accuracy is illustrated in
Figure 3.5, mainly in terms of the Czekanowski-Dice external validation index, which is equivalent to
the F-score.
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(b) QuickBird-2 (30 May 2006)

Figure 3.3. Across-date acquisitions of the study area of Soweto, with polygon selections of the
various land-use classes. Class polygons outlined include ( ) FSB, ( ) FS, ( ) OIS, and ( ) NBU.
Panchromatic background images courtesy of DigitalGlobe™.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

70



CHAPTER 3 SHADOW DETECTION

(a) FS - Date 1 (Soweto). (b) Groundtruth shadows in red (FS - Date 1).

Figure 3.4. Groundtruth shadows for a co-registered formal settlement polygon over the two
acquisitions of the Soweto dataset. Panchromatic background images courtesy of DigitalGlobe™.

Figures 3.5(b) and 3.5(d) show the Czekanowski-Dice index values of global thresholding for the
representative groundtruth settlement types for both acquisitions of the Soweto dataset. Figure 3.5(c)
is the averaged Czekanowski-Dice index values for both dates of the dataset, and it is observed that the
shadows on date 2 have a lower intensity than on date 1. This is probably due to the reduced irradiance
in winter for date 2 than in summer for date 1, because of the lower solar elevation during winter. The
reduced irradiance also cause lower pixel intensities and reduced shadow intensities.

3.5.4.3 Rand index imbalance

Figure 3.5(a) compares the Czekanowski-Dice index with the Rand index, and it can be seen that the
Czekanowski-Dice index penalizes very low shadow probabilities where the Rand index does not. The
Rand index or overall accuracy is formulated as (T P+T N)/(T P+T N +FP+FN), which becomes
imbalanced for a small prior probability of shadow occurrence, since the proportion of true negative
samples will be relatively large. A large value for T N can then be obtained even with an empty shadow
mask that contains no shadow occurrences, which still results in a high overall accuracy.

The Rand index or overall accuracy is thus not ideal for measuring shadow detection accuracy, since
it contains the true negative term in the numerator. The McNemar, Phi, Rogers-Tanimoto and Sokal-
Sneath external indices also contain the true negative term in the numerator and are therefore also not
the most suitable accuracy measures for shadow detection.
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(a) External indices for FS - Date 1.
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(b) Czekanowski-Dice index for polygons of Date 1.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

Gray−level intensity value [integer]

E
x
te

rn
a

l 
in

d
e

x
 |
 A

c
c
u

ra
c
y

 

 

Czekanowski−Dice (Date 2)
Czekanowski−Dice (Date 1)

(c) Mean Czekanowski-Dice indices for both dates.
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(d) Czekanowski-Dice index for polygons of Date 2.

Figure 3.5. Global thresholding accuracy measure of shadow detection with groundtruth shadow
masks for the Soweto dataset.

3.5.5 Unsupervised global thresholding

3.5.5.1 Shadow detection accuracy

The unsupervised global thresholding methods are differentiated only by how well they can choose
binarization thresholds, since the shadow detection accuracy depends only on the global threshold.
Two thresholding selection methods that choose the same threshold will thus have the same shadow
detection accuracy for global thresholding. The goal of the unsupervised thresholding method is to
separate the shadow density from the sunlit density with minimum error in an applicable intensity
range.
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The shadow detection accuracy of unsupervised global thresholding methods is compared in Table 3.3,
using the Czekanowski-Dice (F-score), Jaccard, Rand (overall), Rogers-Tanimoto and Sokal-Sneath
external validation indices previously discussed in paragraph 2.4.4.2. The best thresholds are found at
the maximum external validation index values and so the shadow detection accuracy of the external
validation indices are measured as a percentage of the maximum external validation index values with
separate consideration of each external validation index.

Table 3.3. Unsupervised global thresholding accuracy.

Method Threshold Czekanowski- Jaccard Rand Rogers- Sokal-
Dice Tanimoto Sneath

Maximum index 0 ±0 0.777±0.1 0.638±0.1 0.98±0.1 0.961±0.0 0.473±0.1

Percentage of maximum index value

Minimum error 254 ±0 19.0 ±4.9 12.6 ±3.5 47.4±13 32.4 ±12 8.95 ±2.6

Entropic 156 ±35 22.6 ±2.2 15.3 ±1.8 59.1±19 44.5 ±19 11.0 ±1.7

Bimodal mean 151 ±53 27.4 ±15 19.6 ±13 62.2±21 48.6 ±23 14.7 ±11

Moment pres. 113 ±17 30.1 ±5.9 20.9 ±4.4 71.7±7.3 56.8 ±8.5 15.3 ±3.5

First valley 187 ±94 33.9 ±27 26.8 ±26 63.4±25 51.5 ±30 22.0 ±25

Mean 104 ±18 35.0 ±8.4 24.9 ±6.7 77.0±5.7 63.4 ±7.4 18.6 ±5.4

Iterative 104 ±18 35.1 ±8.7 25.1 ±6.9 77.1±6.2 63.5 ±7.8 18.7 ±5.5

Clustering 104 ±18 35.2 ±8.9 25.1 ±7 77.1±6.3 63.6 ±7.9 18.7 ±5.5

Convex hull 68.8±22 69.8 ±25 61.9 ±29 93.2±5.8 87.9 ±9.8 55.5 ±32

Iter. min. error 59.3±29 80.1 ±27 74.9 ±30 95.8±6.7 92.6 ±11 70.2 ±31

The Czekanowski-Dice (F-score), Jaccard and Sokal-Sneath indices are more appropriate for shadow
detection accuracy measurement, since these indices omit the true negative term that causes poor
accuracy measures when the positive shadow class has a low prior probability. The following shadow
detection accuracy observations can be made from Table 3.3 for the various unsupervised global
thresholding methods:

• Minimum error thresholding [139] (paragraph 3.4.5.3) performs poorest, since the shadow
and sunlit densities overlap too much for the intended minimum Bayes error to be detected.

• Entropic thresholding [141] (paragraph 3.4.6.1) performs poorly, since it tends to select the
right-tail boundary, which is normally at a relatively high intensity.

• Bimodal mean thresholding [137] (paragraph 3.4.4.4) is not robust because of the occasional
occurrence of the second mode at a high intensity, which causes misinterpretation when the
shadow mode is not present.

• Moment preservation [144] (paragraph 3.4.7.1) finds a robust threshold, but does not consider
the shadow class specifically so the thresholds are generally larger than the optimum.
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• First valley thresholding [137] (paragraph 3.4.4.5) suffers from the same bimodal
misrepresentation that misses the shadow mode, so the results are not robust and depend on the
correct bimodal representation.

• Mean, iterative [138] (paragraph 3.4.5.1) and clustering thresholding [77] (paragraph 3.4.5.2)
all find thresholds that are generally too large for shadow detection, since the shadow mode
specifically is not regarded in these methods, as they aim to find general image binarization
thresholds.

• Convex hull thresholding [134] (paragraph 3.4.4.1) use concavities to define peak and valley
locations rather than requiring explicit bimodality, which results in a more robust determination
of the valley between the shadow and sunlit modes.

• Iterative minimum error thresholding [139] (paragraph 3.4.5.4) outperforms minimum error
thresholding, since it can avoid boundary minimums and focus on a relevant intensity range in
the minimum error search.

3.5.6 Local adaptive thresholding

3.5.6.1 Wellner’s thresholding

The local variance method of Wellner was reviewed in paragraph 3.4.9.1 and it was stated that it
outperformed the local adaptive thresholds of Niblack [154] and Sauvola and Pietikäinen [155] in
the thresholding of 3D X-ray microtomographies of trabecular bone [163]. Wellner sets the adaptive
threshold in terms of the local window mean [156], which is defined with an offset parameter k
as

T (x,y) = m(x,y)− k ·m(x,y)/100. (3.25)

Wellner’s threshold is thus a fixed percentage of the local intensity mean m(x,y) around the pixel at
coordinate (x,y), with the local mean calculated in a square window of width w. White and Rohrer’s
threshold is a percentage of the local intensity mean as well [157], but Niblack [154] and Sauvola and
Pietikäinen [155] in addition incorporate local standard deviation. This incorporation of local standard
deviation may be problematic, for instance with Niblack’s threshold

T (x,y) = m(x,y)+ k ·σ(x,y). (3.26)

In this case, if the local standard deviation is small then it may produce a threshold that is too large
for shadow detection. The LAT algorithm used in this subsection is Wellner’s threshold, since it
does not require the use of local variance measures and has been found in other studies to perform
best. Sales ranked the different LAT algorithms as follows, based on the thresholding of 3D X-ray
microtomographies of trabecular bone [163]:

1. Wellner
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2. Bernsen

3. White and Rohrer

4. Sauvola and Pietikäinen

5. Niblack.

3.5.6.2 Shadow detection accuracy

Wellner’s thresholding method was used for LAT shadow detection on the Soweto dataset for both
dates of the dataset. Shadow detection accuracy is measured with the Czekanowski-Dice external
validation index, which is the same index that was used for the evaluation of global thresholding.
Wellner’s thresholding has two parameters, namely the window size w and the percentage parameter k.
A large k value results in a low threshold and shadow probability, while a small k value results in a
threshold close to the window mean and a higher shadow probability.

The results for Wellner’s thresholding for the FS, FSB and OIS settlement types of both dates of the
Soweto dataset are shown in Figure 3.6. The settlement type averaged external validation index values
over the two dates of the Soweto dataset are given in Figure 3.7. It can be noted that Wellner’s k
parameter is larger for date 2 than date 1, which means that date 2 requires a lower shadow detection
threshold than date 1. It can also be seen that the local window size has a greater effect in the one
to 11 pixel width range, since the external validation index stabilizes above a window size of 11
pixels.

3.5.6.3 Unsupervised local adaptive thresholding

LAT algorithms generally have at least two parameters, namely the local window size and an offset
parameter that defines a threshold in terms of the local window statistics. The local window size can
be fixed for a type of imagery and the thresholding can perform well, provided that the local window
size is not too small. Evidence for this statement can be seen in the Figure 3.7, where a local window
size of 29 can be chosen and provide a mean stability in the high accuracy region of the two LAT
parameters.

Using unsupervised global thresholding the input image histogram can be analyzed and a bimodal
separation strategy can be used to find a good threshold. In the previous subsection it was shown that
convex hull thresholding and iterative minimum error thresholding can provide relatively good global
thresholds. These same methods can be used in LAT, since the only difference is that the histograms
are determined over local square regions instead of the entire image.

Unsupervised threshold selection based on local histograms incurs a computational penalty, since the
histograms have to be calculated around the local window for every pixel. The unsupervised threshold
selection algorithm will also have to be run for each of the histograms. If the window is too small then
the local histogram may not contain enough samples to define the shadow density, which will result in
the unsupervised threshold selection algorithm not being able to function correctly.
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(a) FS polygon - Date 1 - Soweto.
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(b) FS polygon - Date 2 - Soweto.
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(c) FSB polygon - Date 1 - Soweto.
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(d) FSB polygon - Date 2 - Soweto.
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(e) OIS polygon - Date 1 - Soweto.
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(f) OIS polygon - Date 2 - Soweto.

Figure 3.6. LAT accuracy of the different settlement types in terms of the Czekanowski-Dice index
with the shadow groundtruth dataset.

For these reasons unsupervised LAT is not explored further in this thesis, but a supervised parameter
decision is rather made on the shadow detection accuracy curves of the representative groundtruth
shadow mask dataset, as shown in Figure 3.7. The local window size is set to a fixed size to eliminate
further decisions for the window size parameter and to produce accuracy curves only in terms of
Wellner’s k value.
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(a) Date 1 - Soweto.
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(b) Date 2 - Soweto.

Figure 3.7. Mean LAT accuracy over the three settlement types (FS, FSB and OIS) for both dates of
the Soweto dataset in terms of the Czekanowski-Dice index with the shadow groundtruth dataset.

3.5.7 Comparison: Global thresholding and local adaptive thresholding

3.5.7.1 Shadow detection accuracy

The primary measurement of shadow detection accuracy is the Czekanowski-Dice external validation
index, which is equivalent to the F-score as shown in paragraph 2.4.4.2. This is an appropriate
evaluation measure that works especially well in cases with low shadow probability. Global
thresholding is compared with LAT for the two dates of the Soweto dataset, in terms of the Czekanowski-
Dice index in Figure 3.8.
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(a) Global thresholding.
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Figure 3.8. Shadow detection accuracy comparison between global thresholding and LAT in terms of
the mean LAT accuracy over the three settlement types (FS, FSB and OIS) for both dates of the Soweto
dataset. Accuracy is measured in terms of the Czekanowski-Dice index with the shadow groundtruth
dataset.

Note that the y-axis ranges in Figures 3.8(a) and 3.8(b) are the same so that the shadow detection
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accuracies can be compared directly. A summary of the shadow detection accuracy of global
thresholding and local thresholding is given in Table 3.4 for good operating points specified in terms
of the global threshold T , the local window width w and Wellner’s parameter k.

Table 3.4. Comparison between global thresholding and LAT for both dates of the Soweto dataset in
terms of the Czekanowski-Dice index calculated with the groundtruth shadows for two FS polygons
and single polygons of the FSB and OIS settlement types.

Polygon Date 1 - Johannesburg Date 2 - Johannesburg
Global Local adaptive Global Local adaptive
(T=60) (w=30, k=50) (T=30) (w=30, k=70)

FS 1 0.703 0.804 0.739 0.807

FS 2 0.771 0.746 0.671 0.632

FSB 0.582 0.678 0.647 0.801

OIS 0.635 0.722 0.643 0.707

Mean (µ 0.673 0.738 0.675 0.737

±σ ) ±0.082 ±0.053 ±0.044 ±0.084

For both dates of the Soweto dataset the LAT algorithm of Wellner outperforms global thresholding,
although this requires a specific optimal window size derived from the mean accuracy graphs in
Figure 3.7. A local window size of 29 pixels places the algorithm at the start of the stable high accuracy
plateau in Figure 3.7, but the algorithm can still benefit from a relatively small window size.

3.5.7.2 Shadow mask comparison

The groundtruth shadows for a formal settlement polygon are shown in Figures 3.9(a) and 3.9(d). The
detected shadow masks of global thresholding are shown in Figures 3.9(b) and 3.9(e) and for LAT they
are shown in Figures 3.9(c) and 3.9(f). The near-optimal thresholds for global thresholding and LAT
are selected specifically for each date of the Soweto dataset, but the thresholds are not differentiated
over different settlement types.

For some of the dark roofs in the formal settlement polygon of date 1 it can be seen that global
thresholding selects more of the roof area as shadow than the LAT. The benefit of LAT is that the
algorithm will take the local roof intensity into consideration in the decision on whether a region is
shadow or not. In date 2 the difference in false positive overselection is less pronounced between
global and LAT.

3.6 CONCLUSION

The objective is to instantiate shadow removal for input modification, so shadow detection solutions
are explored in this chapter. The hypothesis that threshold-based shadow detection can relatively
accurately delineate shadows because of the low-intensity property of shadows was investigated, as
well as the hypothesis that LAT can produce more accurate shadows than global thresholding, since
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(a) Groundtruth shadows (Date 1). (b) Global thr., k=50 (Date 1). (c) LAT,k=50,w=29 (Date 1).

(d) Groundtruth shadows (Date 2). (e) Global thr., k=25 (Date 2). (f) LAT,k=70, w=29 (Date 2).

Figure 3.9. Detected shadow masks for a co-registered formal settlement polygon over the two
acquisitions of the Soweto dataset. Panchromatic background images courtesy of DigitalGlobe™.

relatively low intensity admits greater sensitivity in images with contrast variation than globally low
intensity.

Panchromatic shadow detection algorithms from the thresholding subcategory (Adeline et al. [59],
Table 2.2) of property-based shadow detection (Arévalo et al. [73]) are used on the Soweto panchromatic
land-use dataset. Select thresholding algorithms from the taxonomy of Sezgin and Sankur [47] are
also compared for shadow detection accuracy in terms of Czekanowski-Dice (F-score), Jaccard, Rand
(overall), Rogers-Tanimoto and Sokal-Sneath external validation indices (paragraph 2.4.4.2). Locally
adaptive thresholding is compared to global thresholding in terms of panchromatic shadow detection
accuracy.

The minimum Bayes error is difficult to detect with minimum error thresholding because of extensive
overlap of shadow and sunlit densities, so it achieves the lowest unsupervised global thresholding
accuracy. Iterative minimum error thresholding avoids boundary minimums and focuses on a
relevant intensity range so it achieves the highest shadow detection accuracies of the thresholding
methods considered. Convex hull thresholding can robustly determine the threshold valley as no
explicit bimodality is required, and this thresholding method attains the second highest accuracy for
unsupervised global threshold detection.
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Wellner’s LAT is used for more accurate shadow detection and it is shown that the local window size
parameter is robust despite multitemporal shadow profile differences. The potential shadow detection
accuracy of global thresholding was compared to that of LAT and for both dates of the Soweto dataset
LAT outperformed global thresholding. Global thresholding produced more false positives in the
shadow mask, but LAT can take local intensity into account to reduce this and produce more accurate
maps.

The following chapter on input modification uses the shadow detection methods evaluated in this
chapter for dataset shift reduction.
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CHAPTER 4 INPUT MODIFICATION

4.1 CHAPTER OVERVIEW

Multitemporal satellite-borne image acquisition introduces complex variances owing to a conflation of
differences in viewing angles, illumination characteristics and environmental factors of the captured
scenes. Multitemporal land-use analysis has to filter out these artificial differences to obtain an
accurate account of actual land-cover changes. In the case of supervised land-use classification
with limited groundtruth data, such calculated invariance can substantially improve across-date
classification accuracy. The varying viewing and illumination geometry in multitemporal imagery
must be accounted for, since those differences will normally become embedded in the classification
features and compromise the supervised labeling.

Chapter 3 Chapter 4 Conference Chapter 5 Chapter 6

Main objective

Theme 1 Theme 2

Chapter 7

Theme 3

Figure 4.1. Indication of where this chapter fits into the thesis.

The focus of this study is on demonstrating the input modification strategy to reduce dataset shift
for land-use classification with high-resolution panchromatic acquisitions, using texture features to
distinguish between settlement classes. Texture features are used as they have been shown to be a
good measure of settlement patterns (see [164]). The important multitemporal variance component of
shadow is effectively removed before feature extraction, which allows for weakly supervised across-
date classification. The effect of shadows on classification accuracy is specifically investigated in this
study by performing shadow removal, before the calculation of texture features, which are then used as
classifier inputs.
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.

Shadow mask
Input image

Figure 4.2. Basic input modification strategy.

4.1.1 Contributions

1. Dataset shift is reduced at the classifier level by removing the shadow component of illumination
geometry at the input level of feature extraction.

2. It is shown that popular texture features are sensitive to differences in shadow profiles, and that
across-date classification accuracy can be improved with shadow removal.

3. Shadow detection based on locally adaptive thresholding is employed and experimentally shown
to outperform existing global threshold shadow detectors in increasing settlement classification
accuracy.

4. The strong relationship between the best shadow detection threshold and the best settlement
classification accuracy is indicated for the study data set.

5. An improved shadow correction algorithm that relies on region growing and localized histogram
matching is contributed in this design, and demonstrated to be more effective than basic shadow
correction methods.

6. It is shown that fine correction leads to more accurate classification across a wide range of
shadow thresholds, compared to shadow correction that relies on global histogram matching.

7. Both same and across-date settlement accuracies are significantly improved with shadow masking
during feature calculation.

8. A statistical study was performed and found to support the hypothesis that the increased accuracy
is due to shadow masking specifically.

9. Alternative masking unrelated to shadows is applied to obtain evidence that it is shadow masking
specifically that can improve land-use classification.
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4.2 PROBLEM STATEMENT

The QuickBird satellite acquires scenery at potentially very different azimuth angles because of
its maximum 45◦ off-nadir wide accessible ground swath. Viewing geometry variations aggravate
the strong directional differences seen in urban surface features [165]. The sun elevation and solar
illumination characteristics during acquisition may also have significant across-date differences, which
produce considerable illumination variance, of which shadowing is a dominant factor. Changes in
dynamic range of the scene intensity are another effect of illumination variance, but shadowing is
more adverse since its presentation is locally coupled with surface features and thus more difficult to
remove.

Apart from image brightness and reflection differences, which can be partially addressed with histogram
matching, there can also be changes in cast shadow direction, length and area. It has been shown
that texture features are sensitive to spurious differences in viewing and illumination geometry [164].
This study focuses specifically on the effect shadow differences have on land-use classification
accuracy.

Shadow variances are among the more acute of across-date differences, and this is indicated in the
comparison shown in Figure 4.3. Sample areas of the three main settlement types are shown for each
of the study dates and the shadows detected with locally adaptive thresholding are shown in color. For
a particular settlement type the same area is shown for both dates so that the shadow differences may
be directly compared. Since the image for date 1 (d1) was acquired during the summer season, and
date 2 (d2) during winter, the shadows of d2 are longer because of the sun being in a more northerly
position.

Pattern classification relies on differential measures to distinguish between different classes, but in
the instance of across-date land-use classification the potentially severe shadow variances can cause
intra-class feature variation. This leads to a higher incidence of class confusion and overlap, so it is
the objective of shadow invariance to remove the significant illumination variance from the feature
calculation.

4.2.1 Hypotheses

1. If dataset shift aspects between the classifier train and test inputs to the feature extraction layer
are corrected or equalized, then the dataset shift at the classification layer will also be reduced
because of the resulting features having smaller dataset shift.

2. Shadow profile differences between the classifier train and test images cause dataset shift at
the classifier, and the removal of shadows in order to remove the shadow profile differences as
well will reduce the corresponding dataset shift component and improve classification accuracy
because of the resulting features having smaller dataset shift.

3. The more extreme a dataset shift becomes because of shadow profile differences, the more
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(a) FS - Date 1 (b) FSB - Date 1 (c) OIS - Date 1

(d) FS - Date 2 (e) FSB - Date 2 (f) OIH - Date 2

Figure 4.3. Examples of the across-date shadow differences for three of the settlement classes found
in Soweto. Panchromatic background images courtesy of DigitalGlobe™.

settlement classification accuracy will improve for an improvement in shadow removal accuracy,
since more of the input dataset shift will be corrected with more accurate shadows.

4.2.2 Research questions

1. Which strategy can be employed at the input level of feature extraction to deal with dataset shift
in optical remote sensing?

2. What effects do multitemporal (same satellite) shadow profile differences have on texture-based
settlement classification accuracy?

3. How does one achieve effective panchromatic shadow removal?

4. How much does adaptive threshold shadow detection improve classification accuracy compared
to global threshold detection?
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4.3 TEXTURE FEATURES

The fundamental characteristics that can be used in image classification are spectral, textural and
contextual features. Spectral features are based on tonal or intensity variations in spectral bands, and
textural features are based on the spatial distribution of intensity variations, whereas contextual features
are derived from image objects, background and domain-specific knowledge thereof.

Texture is one of the most valuable discriminative features, since it is an intrinsic property of almost all
image components. It contains information on the structural configuration of image elements and its
relationship relative to the surroundings. Texture has an inextricable relationship with pixel intensity
and this is exploited to derive the texture features presented in this section.

4.3.1 Gray-level co-occurrence matrix features

The calculation of GLCM features is reviewed in this subsection and is based on the seminal work by
Haralick [166]. Given an X-by-Y two-dimensional digital image I : X×Y → G quantised to the set of
G ∈ {1,2, · · · ,Ng} possible pixel gray-level values, a gray-tone spatial-dependence matrix or GLCM
can be obtained for a given horizontal or vertical spatial relationship.

The GLCM is a two-dimensional histogram P : Ng×Ng→Z that captures the frequency of two distinct
tones co-occurring in a given spatial relationship where the tones are on the same horizontal, vertical or
diagonal (45◦ or 135◦) image grid line with a specified L1 norm or Manhattan distance between them.
These spatial relationships are indicated in image I1 below for a horizontal and vertical Manhattan
distance of 1 and a diagonal Manhattan distance of 2. An example of unnormalised GLCM is given by
P for image I2 below and it is shown how pixel value pairs (i, j) increment the corresponding matrix
element in P.
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The fundamental characteristics that can be used in image classification are spectral, textural
and contextual features. Spectral features are based on tonal or intensity variations in spectral
bands, and textural features are based on the spatial distribution of intensity variations,
whereas contextual features are derived from image objects, background and domain-specific
knowledge thereof.

Texture is one of the most valuable discriminative features, since it is an intrinsic property
of almost all image components. It contains information on the structural configuration of
image elements and its relationship relative to the surroundings. Texture has an inextricable
relationship with pixel intensity and this is exploited to derive the texture features presented
in this section.

4.3.1 Gray-level co-occurrence matrix features

The calculation of GLCM features is reviewed in this subsection and is based on the seminal
work by Haralick [166]. Given an X-by-Y two-dimensional digital image I : X × Y →
G quantised to the set of G ∈ {1, 2, · · · ,Ng} possible pixel gray-level values, a gray-tone
spatial-dependence matrix or GLCM can be obtained for a given horizontal or vertical spatial
relationship.

The GLCM is a two-dimensional histogram P : Ng × Ng → Z that captures the frequency
of two distinct tones co-occurring in a given spatial relationship where the tones are on the
same horizontal, vertical or diagonal (45◦ or 135◦) image grid line with a specified L1 norm
or Manhattan distance between them. These spatial relationships are indicated in image
I1 below for a horizontal and vertical Manhattan distance of 1 and a diagonal Manhattan
distance of 2. An example of unnormalised GLCM is given by P for image I2 below and it is
shown how pixel value pairs (i, j) increment the corresponding matrix element in P .

I1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 5
2 3 5
4 1 2
7 2 9
1 3 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

I2 =

⎡
⎢⎢⎢⎢⎢⎣

1 1 5 6 8
2 3 5 7 1
4 5 7 1 2
8 5 1 2 4

⎤
⎥⎥⎥⎥⎥⎦

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(i,j) 1 2 3 4 5 6 7 8

1 1 2 0 0 1 0 0 0
2 0 0 1 1 0 0 0 0
3 0 0 0 0 1 0 0 0
4 0 0 0 0 1 0 0 0
5 1 0 0 0 0 1 2 0
6 0 0 0 0 0 0 0 1
7 2 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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4.3.1.1 Notation

The following basic constructs are defined as they are subsequently used to calculate the statistical
GLCM features [166]:

Ng, Number of distinct gray-levels.
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P, Unnormalised Ng×Ng GLCM.

p, Normalized GLCM.

p(i, j) = P(i, j)/∑P, (i, j)th entry in the normalized GLCM.

px(i) =
Ng

∑
j=1

p(i, j), ith entry in the marginal-probability matrix.

py( j) =
Ng

∑
i=1

p(i, j), jth entry in the marginal-probability matrix.

px+y(k) =
Ng

∑
i=1

Ng

∑
j=1

i+ j=k

p(i, j), k = 2,3, · · · ,2Ng.

px−y(k) =
Ng

∑
i=1

Ng

∑
j=1

|i− j|=k

p(i, j), k = 0,1, · · · ,Ng−1.

µi =
Ng

∑
j=1

ip(i, j), Mean row intensity level.

µ j =
Ng

∑
i=1

jp(i, j), Mean column intensity level.

µx =
Ng

∑
i=1

px(i)/Ng, Mean of px.

µy =
Ng

∑
i=1

py(i)/Ng, Mean of py.

σ
2
x =

Ng

∑
i=1

(px(i)−µx)
2/Ng, Variance of px.

σ
2
y =

Ng

∑
i=1

(py(i)−µy)
2/Ng, Variance of py.

HX =−∑
i

px(i) log(px(i)) , Entropy of px.

HY =−∑
j

py( j) log(py( j)) , Entropy of py.

HXY 1 =−∑
i

∑
j

p(i, j) log(px(i)py( j)) , Specific entropy for feature f12.

HXY 2 =−∑
i

∑
j

px(i)py( j) log(px(i)py( j)) , Specific entropy for feature f13.

Q(i, j) = ∑
k

p(i,k)p( j,k)
px(i)py(k)

, Required for feature f14.
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4.3.1.2 Textural features

For a given spatial relationship 14 GLCM features can be calculated, and the features of multiple
spatial relationships can be combined to produce a single set of 14 feature means and 14 feature
standard deviations that form the final features.

The GLCM is calculated for all possible patterns that occur in a specified window centered at a
particular image location for a given spatial relationship, thus producing 28 features at each window
center location. The window position is slid horizontally and vertically to cover the entire image and
thus produce a GLCM feature image. The GLCM feature calculations are given below with the aid of
the previously defined notations [166].

1) Angular second moment: f1 = ∑
i

∑
j
{p(i, j)}2 (4.1)

2) Contrast: f2 =
Ng−1

∑
n=0

n2


Ng

∑
i=1

Ng

∑
j=1

|i− j|=n

p(i, j)

 (4.2)

3) Correlation: f3 =
∑i ∑ j(i j)p(i, j)−µxµy

σxσy
(4.3)

4) Sum of squares: f4 = ∑
i

∑
j
(i−µi)( j−µ j)p(i, j) (4.4)

5) Inverse difference moment: f5 = ∑
i

∑
j

1
1+(i− j)2 p(i, j) (4.5)

6) Sum average: f6 =
2Ng

∑
i=2

ipx+y(i) (4.6)

7) Sum variance: f7 =
2Ng

∑
i=2

(i− f8)
2 px+y(i) (4.7)

8) Sum entropy: f8 =−
2Ng

∑
i=2

px+y(i) log(px+y(i)) (4.8)

9) Entropy: f9 =−∑
i

∑
j

p(i, j) log(p(i, j)) (4.9)

10) Difference variance: f10 =

√√√√ 1
Ng

Ng−1

∑
i=0

(
px−y(i)−

Ng−1

∑
j=0

px−y( j)
Ng

)2

(4.10)

11) Difference entropy: f11 =−
Ng−1

∑
j=0

px−y( j) log(px−y) (4.11)

12) Inform. meas. of correlation 1: f12 =
f9−HXY 1

max(HX ,HY )
(4.12)

13) Inform. meas. of correlation 2: f13 =
√

1− exp(−2(HXY 2− f9)) (4.13)

14) Max correlation coefficient: f14 = (Second largest eigenvalue of Q)1/2 (4.14)
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4.3.2 Local binary patterns

The second powerful texture feature used in this thesis is LBP, which capture both structural and
statistical properties of the microstructures embodying the image textures. Gray-scale and rotation
invariant uniform LBP are employed, and the literature is reviewed in the subsection according
to [167].

4.3.2.1 Gray-scale invariant patterns

LBP achieves gray-scale invariance through a binary comparison between a center pixel of a pattern and
the neighborhood members of the pattern placed according to the quantised angular space. Gray-scale
invariance reduces the pattern information to binary relationships so that exact pixel value differences
do not need to be stored, and in addition the remote sensing illumination variances do not affect the
capturing of the same patterns as severely.

Gray-scale invariance is incorporated through a binary comparison between a center pixel and its
neighborhood members. For a center pixel with value gc and for a neighbor pixel value gp with a
P-point circularly symmetrical pattern of radius R the gray-scale invariant pattern can be coded as
LBPP,R [167]

LBPP,R =
P−1

∑
p=0

s(gp−gc)2p, s(x) =

{
1, x≥ 0
0, x < 0

. . (4.15, 16)

4.3.2.2 Rotation invariant patterns

There is a possibility of the reoccurrence of a specific texture but at a different orientation, which would
then require rotation invariant features to establish eventual texture similarity. Rotation invariance
reduces all possible patterns to the smaller set of unique patterns so that texture equivalency is possible
despite texture rotations.

The pattern set reduction is modeled so that equivalent patterns that are rotated are placed in the same
pattern histogram bin. Rotation invariance (ri) can be accommodated in LBPri

P,R by minimizing the
circular bitwise right-shift ROR(·) of a pattern LBPP,R, which then represents equal patterns with a
rotation variance as exactly the same pattern value [167],

LBPri
P,R = min{ROR(LBPP,R, i) | i = 0,1, · · · ,P−1} . (4.17)

4.3.2.3 Uniform patterns

In practice nonuniform patterns with more than two transitions have a relatively small occurrence
probability, so for the purpose of reducing the LBP features to the essential minimum, only uniform
patterns are considered. For a neighborhood size of P a histogram with P+2 bins is constructed, with
a bin for each of the P+1 uniform patterns and a final bin to contain all the nonuniform pattern counts.
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The number of circular transitions U(LBPP,R) of a given pattern LBPP,R is evaluated as [167]

U(LBPP,R) = |s(gP−1−gc)− s(g0−gc)|+
P−1

∑
p=1
|s(gp−gc)− s(gp−1−gc)|. (4.18)

A pattern is declared uniform if it has two or fewer transitions and the rotation invariant pattern is
then allocated to the correct LBP histogram bin. The resulting histogram LBPriu2

P,R conceptualised in
Figure 4.4(a) contains rotation invariant (ri) and uniform patterns with two or fewer transitions (u2),
and is determined as [167]

LBPriu2
P,R =

{
∑

P−1
p=0 s(gp−gc), if U(LBPP,R)≤ 2

P+1, otherwise
. (4.19)

(a) LBPriu2
8,1 rotation invariant uniform patterns (b) LBPriu2

8,2 (c) LBPriu2
8,3

Figure 4.4. Local binary pattern examples for different pattern radii, namely R = 1,2,3.

4.3.2.4 LBP feature calculation

Each bin in the LBP histogram represents the unnormalised probability of encountering a given pattern
at any orientation or gray-scale level, which constitutes the final features. The LBP histogram is
calculated by fitting a given circular neighborhood template over every unique image position within a
defined sampling window and incrementing the bin associated with the detected pattern.

The LBP features are then representative of the texture inside the sampling window at its center. An
LBP image can then be formed through sampling window placements that achieve maximum coverage
of a given image.

4.4 METHODOLOGY

4.4.1 Global threshold shadow detection

Shadow detection is the initial step, after which effective shadow removal is achieved through mainly
shadow correction or masking. The shadow-effect mitigation method involves shadow detection and
removal, as shown in Figure 4.5, where detection is the determination of a binary shadow mask
indicating the perceived occlusion of sunlight. Global intensity thresholding can be applied to produce
a rudimentary shadow mask [94] by declaring all pixels with an intensity less than the fixed threshold as
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shadow, but here the accuracy of the mask depends strongly on the specific threshold chosen. Shadow
intensity may vary across different parts of the same scene, and a shadow area can then form a local
gradient with intensities both less than and exceeding the fixed threshold.

4.4.2 Locally adaptive threshold shadow detection

Locally adaptive thresholding allows for more robust shadow detection, especially for gradient shadows,
and its threshold parameters require less across-date modification than fixed thresholding. Locally
adaptive thresholding is better suited as a panchromatic detector since the actual threshold is determined
relative to the mean intensity in a local window. A pixel is declared as shadow in the mask if its
intensity is less than the mean pixel intensity in the square window centered at that pixel, minus a given
offset intensity value, which gives locally adaptive thresholding two main parameters, i.e. window
size (number of edge pixels) and adaptive parameter. Shadow intensity perturbations in the same
scene and across-date dynamic range differences may thus be better accommodated than with a fixed
threshold.

To simplify analysis the shadow detection experiments are performed in terms of only one threshold,
so multi-date images are initially histogram-matched to reduce dynamic range variances and then the
threshold detector classifies every pixel with an intensity less than the threshold as shadow. Global
intensity thresholding is used as a benchmark to test locally adaptive thresholding against, where
Wellner’s LAT method [156] (paragraph 3.4.9.1) is used with the main parameter k that is the percentage
below the window mean at which to set the threshold and a supervised parameter w that is the local
window size.

Date 1 imagery

Area A Area B

Date 2 imagery

Area A Area B

Histogram matching

Fixed | Adap ve
Shadow detec on

Shadow 
masks

Measure shadow 
detec on accuracy

Es mated 
shadow 

ground truth

Train Test

Train Test

Tile
extrac on

Train Test

GLCM | LBP | LBPA
Texture featuresTrain Test

Tile labels 
(test)

Measure classi ca on 
accuracy

Tile labels (train) Se lement
Classi er

Trained classi er

Matched 
images

Train shadow 
mask

Test shadow 
mask

Train les Test les

Train features

Test
features

Shadow removal

Figure 4.5. An outline of the experiment methodology, and the separation of same-date ( ) and
across-date ( ) experiments (top left).
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4.4.3 Texture feature calculations

GLCM [166] and LBP [167] texture features have been shown to perform well in settlement
determination (see [164]) and are used in this study. However, texture features such as GLCM
and LBP are sensitive to viewing and illumination geometry differences [164], so these features have
the potential to benefit from calculated feature invariance.

4.4.3.1 GLCM features

Texture features are calculated per labeled tile, using either GLCM or LBP features. The first 13
of Haralick’s GLCM features [166] are determined with the GLCM window having tile dimensions
of 200×200 pixels. Using the first 13 GLCM features proved to be more accurate for the study
area, compared to using a feature subset of size 6 based on information gain or correlation feature
selection, or only the most relevant features (energy, contrast, variance, correlation, entropy and the
inverse difference moment). GLCM pairs are used in all cardinal and ordinal directions with respective
`1-norms of 1 and 2, and the features are averaged over the four spatial relationships.

4.4.3.2 LBP features

LBP features use the 10 basic patterns [167] in an eight-point circle with radii of one, four and
eight pixels to render a total of 30 features. As shadow masking is performed the GLCM pairs or
LBP patterns that fall within a shadow area are ignored during feature calculation. Both global and
locally adaptive thresholding shadow detectors are tested and compared as part of the shadow masking
process.

4.4.4 Shadow masking

The original image and its detected shadow mask are used to perform shadow masking, and in this study
it has the purpose of effectively removing multitemporal shadow variances by removing the shadows.
Histogram matching, gamma correction and linear-correlation correction [66] are popular methods
of shadow correction, where shadows are lifted to have similar intensity to that of the surroundings.
Corrected shadows suffer from posterization and the effect on classification accuracy is of concern.
Alternatively this study will opt for shadow masking, where shadows are ignored during feature
calculation.

Test data images are firstly histogram-matched to the train data image to address differences in image
brightness. Image regions with gray-scale intensities smaller than a global shadow threshold, which is
the same for both train and test images, are then classified as shadows. Shadow masking removes all
shadow regions from texture feature calculations, whereas correction lifts shadow region intensities to
match the outside.

The binary shadow mask provided by the detector is then directly used during texture feature calculation
in order to mask out shadow areas. Every GLCM pixel pair is skipped if one of those pixels is located
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in shadow, which then effectively removes off-diagonal entries in the co-occurrence matrix that would
have resulted with no masking. The LBP features are calculated in a similar manner so that a pattern is
not placed when its central pixel forms part of a shadow area.

4.4.5 Shadow restoration

Histogram equalization, proposed by Shu and Freeman [75] and used by Sarabandi et al. [112], from
the intensity domain (paragraph 2.5.2.1) of the shadow restoration taxonomy in Table 2.4 can be
employed for shadow removal. A variant of histogram equalization is correction by adding to every
shadow pixel the intensity difference between the polygon intensity mean and the corresponding
shadow region mean. A two-pixel-wide transition edge outside each shadow region is then locally
median-filtered in a five-pixel-wide window [168].

(a) Scene from d1 (b) Shadow corrected (d1) (c) Scene from d2 (d) Shadow corrected (d2)

Figure 4.6. Illustration of the differences in shadow profiles for the same area acquired on different
dates, and the corresponding scenes with fine shadow correction. (a) and (c) courtesy of DigitalGlobe™.

Finer shadow correction is possible by taking as non-shadow mean the most frequently occurring
intensity value in a two-pixel-wide edge outside the transition edge. This blends the lifted shadow
better than with a global intensity mean, and addresses the situation where a shadow is surrounded by
surfaces with distinctly different intensities.

Fine shadow correction is displayed in Figure 4.6(b) and 4.6(d) for images with notably different
shadow profiles in Figure 4.6(a) and 4.6(c). For a shadow threshold of 25% not all shadows are
detected, but many of the larger shadow differences are corrected between the two dates.

The across-date differences in shadow profiles are depicted in Figures 4.7, 4.8 and 4.9 for different
settlement types. The uncorrected images for the different acquisition dates d1 and d2 are denoted by
d1-image and d2-image, and the shadow-corrected images are given by d1-corrected and d2-corrected.
The shadow correction has been performed with the refined algorithm and shadow masks detected with
a global threshold of 0.25Ymax (maximum possible intensity is Ymax).
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(a) d1-image (b) d1-corrected (c) d2-image (d) d2-corrected

Figure 4.7. FS and corresponding shadow-corrected images for different acquisition dates. (a) and (c)
courtesy of DigitalGlobe™.

(a) d1-image (b) d1-corrected (c) d2-image (d) d2-corrected

Figure 4.8. FSB and corresponding shadow-corrected images for different acquisition dates. (a) and
(c) courtesy of DigitalGlobe™.

(a) d1-image (b) d1-corrected (c) d2-image (d) d2-corrected

Figure 4.9. OIS and corresponding shadow-corrected images for different acquisition dates. (a) and
(c) courtesy of DigitalGlobe™.

4.4.6 Feature classification

A multi-layer perceptron (learning rate of 0.3, momentum rate of 0.2, 500 training epochs, and unipolar
sigmoid activation functions) is used as classifier with texture features as input and with four classes
of FS, FSB, OIS and NBU areas as separate output units. The number of input units is equal to the
number of texture features (13 for GLCM and 30 for LBP) and the number of units in the single hidden
layer is the sum of the number of attributes and classes, divided by two. All features are numerical and
are normalized in the range [−1,1] simultaneously for both the train and test datasets.
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The perceptron is trained with each one of the datasets (Ad1 , Ad2 , Bd1 or Bd2) in turn, and tested on
each of the remaining datasets. That means the classifier can be trained with the test set Bd1 and tested
on the train set Ad2 to give an experiment denoted by Bd1 → Ad2 . In this manner each experiment
pairs different datasets and is performed for 10 repetitions, where the perceptron network weights are
reinitialised with a different random seed each time.

4.5 DATA DESCRIPTION

The study area (selected in Figure 4.10) is a 2.7×9.3 km section of Soweto (Gauteng, South Africa),
a subtropical highland of which two 0.6×0.6 m resolution panchromatic QuickBird images were
captured on 18 October 2005 (d1, early summer, rainy season) and 30 May 2006 (d2, early winter).
There are notable viewing and illumination geometry differences between the two images, especially
in the shadow profiles where d2 exhibits longer shadows because of the northern hemisphere being
inclined towards the sun. Figure 4.11 shows the latest acquisition of the study area and the area
selections of the land-use classes are indicated.

Figure 4.10. Soweto across-date dataset selection for this experiment.

Three prominent settlement types were considered, as shown in Figures 4.7, 4.8 and 4.9, namely FS,
FSB and OIS. FS have permanent residential structures positioned in a planned manner, while FSB
have residential structures accompanied by smaller shacks. OIS have permanent and semi-permanent
residential structures ordered in a planned manner. In addition there is an NBU class that includes
natural vegetation, to test the separability between non-builtup areas and urban land-use types.

Representative polygon pairs of each settlement type were extracted in an assisted manner for both
dates, most of which form spatially adjacent selections of the same settlement class for the purpose
of creating separate training and testing sets. Training and testing data sets are denoted by A and B,
respectively, and the data sets are used interchangeably for either training or testing purposes.

The 11-bit panchromatic QuickBird scenes were converted to eight-bit images to enable visual
inspection after each step and to simplify the texture feature calculations. The number of GLCM
co-occurrence matrix entries is reduced by a factor of 26 with this change in bit-depth, and LBP features
remain largely unaffected, since the intensity modification is a monotonic transformation. Across-date
polygon pairs were then histogram-matched and square image tiles with representative dimensions of
120×120 m were obtained from every polygon.
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Figure 4.11. The study area of Soweto, acquired on 30 May 2006, with polygon selections of the
various land-use classes. Class polygons outlined include ( ) FSB, ( ) FS, ( ) OIS, and ( ) NBU.
Panchromatic background courtesy of DigitalGlobe™.

4.6 EXPERIMENTAL SETUP

The primary objective of the main experiment is to determine the efficacy of shadow removal in
improving across-date land-use classification accuracy, and to investigate the relationship between
shadow detection accuracy and land-use classification accuracy improvements. The purpose of the
experiments in this study is to determine and compare the shadow detection accuracy of the various
shadow detectors, and also to measure the change in land-use classification accuracy for the different
shadow removal algorithms.

The experimental input includes at least two high-resolution panchromatic images of the same area
without metadata, acquired on different dates with significant shadow profile differences, and a small
set of ground truth shadow masks for the image of each date. The ground truth shadow masks cover
part of each settlement type to give a fully representative shadow mask sample to the supervised
segment-based shadow detector. For land-use classification two texture features are compared, namely
LBP and GLCM features.

Shadow detection comparisons are performed between a global threshold pixel-based shadow detector
and a locally adaptive thresholding pixel-based shadow detector. The shadow removal methods that
are compared include shadow masking, basic shadow correction and fine shadow correction. Basic
shadow correction using global histogram matching is compared in this study against fine correction
that relies on region growing and localized histogram matching. Shadow masking removes shadow
areas from the texture feature calculations without the need for image correction. The land-use
classification performance with shadow masking under global thresholding detection and LAT is also
investigated.
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4.6.1 Settlement classification accuracy

A distinction is made between same-date and across-date experiments based on the hypothesis that
shadow removal in the case of differing shadow profiles with across-date experiments will have a
greater effect on land-use classification accuracy. For two-date experiments with area separation there
are four possible same-date experiments and eight different across-date experiments, as shown in
Figure 4.5.

The scenery of a specific date is divided into two parts, namely areas A and B, to provide separate
training and testing data in order to reduce classifier overfitting. The area separation is performed
in terms of whole polygon selections, which are depicted in Figure 4.11, with the aim of obtaining
an approximately equal number of samples for both areas. The same area selections are used for
images from other dates, so that an area is the identical set of polygon locations for all dates, but the
actual image is then obtained from the specific date. Areas A and B are used interchangeably as either
training or testing datasets to allow for more experiments to be performed.

Datasets consist of particular texture features and the corresponding groundtruth land-use type
classification associated with every extracted tile. The training data sets (Ad1 and Ad2) have 55, 148, 70,
and 133 tiles respectively for the FS, FSB, OIS and NBU land-use types. The testing data sets (Bd1 and
Bd2) contain 50, 120, 67, and 113 tiles for the FS, FSB, OIS and NBU classes, respectively. The training
and testing data sets are also used respectively as testing and training data sets, while area separation
between training and testing data sets is always maintained for same-date experiments.

4.6.2 Shadow detection accuracy

The shadow detection accuracy is measured with the F-score or Czekanowski-Dice similarity coefficient
using a representative sample of groundtruth shadow masks over all settlement types for both dates.
This similarity index was used in the previous chapter on shadow detection analysis, since it emphasizes
the true positive rate more than the true negative rate. This yields a more accurate measure for low
positive probability shadow masks, since the true negative rate may still be high despite a poor true
positive rate.

The set of groundtruth shadow masks used here are shared in Appendix A and consists of shadow
masks for two FS, one FSB and one OIS polygons, which are repeated for acquisitions from both
dates. These groundtruth masks have been determined with a human expert using a fuzzy selection
tool locally to identify shadows. The fuzzy selection tool allows the user to expand and contract a
closed two-dimensional selection based on increasing and decreasing the intensity variance in the
selection.

The shadow detection accuracy is measured firstly to assess how similar a detected mask is to a
human interpretation of the shadows via the groundtruth shadow masks. The inherent lack of object
distinction in panchromatic imagery, and the gradient presentation of shadows can cause substantial
subjectivity even in the human treatment of shadow selection. This ambiguity that complicates all
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panchromatic shadow detection methods, means that there is no absolute groundtruth, but the human-
aided benchmark is set nonetheless to provide a point of reference. The detection accuracy is measured
for every specific threshold value of the global threshold detector, as well as for the entire range of
Wellner’s k parameter for LAT detection.

4.6.3 Results and discussion

4.6.3.1 Land-use classification accuracy comparison

Input modification with basic shadow correction, fine shadow correction and global thresholding
shadow masking is compared in Figures 4.12(a), 4.12(b), 4.12(d) and 4.12(e) in terms of the mean of
Cohen’s κ for ten-fold cross-validated land-use classification experiments. A comparison of Cohen’s κ

values are made between land-use classification with GLCM and LBP texture features for LAT shadow
masking in Figures 4.12(c) and 4.12(f).

The land-use classification experiments are separated based on the texture features used and whether the
training and testing datasets are from the same acquisition (same-date) or across different acquisitions
(across-date). This produces the following four testing scenarios:

• GLCM same-date

• GLCM across-date

• LBP same-date

• LBP across-date.

For the shadow removal algorithms that use global thresholding as shadow detector the progression of
increased shadow removal occurs from left to right on the x-axis in Figures 4.12(a), 4.12(b), 4.12(d)
and 4.12(e). If the global threshold is 0, the shadow mask is empty and no shadow removal will take
place. In contrast, the LAT shadow masking progresses from right to left on the x-axis in Figures 4.12(c)
and 4.12(f) for Wellner’s locally adaptive thresholding algorithm, since Wellner’s k value indicates
how far below the local window mean the threshold is set. If k =100 the threshold is 0 and no shadows
will be detected.

For the same-date experiments the shadow profiles are expected to be similar for similar land-use
classes, so in general shadow removal should not improve classification accuracy. However, for
GLCM same-date experiments the fine shadow correction appears to improve accuracy slightly and
for LBP same-date experiments the global shadow masking also appears to improve accuracy. These
improvements are probably unrelated to the shadow component of dataset shift, since there should be
no shadow profile differences in same-date imagery.

In shadow masking the GLCM and LBP histograms will probably have fewer entries, because of
the omission of patterns incident on shadow pixels. The histograms are normalized, but there is the
potential for same-date shadow masking to improve differentiation of land-use classes based on the
shadow masking differentiating the class histograms. Some land-use classes have less shadow than
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(a) GLCM same-date.
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(b) LBP same-date.
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(c) LAT same-date.
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(d) GLCM across-date.
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(e) LBP across-date.
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(f) LAT across-date.

Figure 4.12. Land-use classification accuracy comparison in terms of Cohen’s κ for GLCM and LBP
texture features using global threshold shadow masking, LAT masking (Wellner, w=29), basic and fine
shadow corrections with same and across-date distinctions. The fixed shadow threshold on the x-axis
is the percentage of the maximum possible pixel value at which global thresholding is used to produce
a shadow mask.

others, such as the NBU class that may have less shadow than the FS class. There can thus be a
difference in how many pixels are ignored during feature calculation depending on the land-use class,
which can cause class-specific deficiencies in the texture histograms that can help distinguish between
classes.

The shadow detection parameters for optimal shadow removal are set as the global threshold and
Wellner’s k (w=29) where the maximum land-use classification accuracy is achieved. The shadow
detection parameters and corresponding optimal land-use classification results are compared in
Table 4.1 for basic correction, fine correction, global threshold masking and LAT masking. Cohen’s
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κ is the primary measure of classification accuracy, but the ratio of true positive classifications to all
classified instances is also shown, as it is a more common accuracy measure. The null-hypothesis that

Table 4.1. Shadow removal comparison between no removal (T=0, k=100) and optimal removal
(argmaxT (κ)) in terms of Cohen’s κ and land-use classification accuracy. The p-value of Welch’s
t-test with a null-hypothesis stating that κ and max(κ) have the same mean is shown in the final
column.

Cohen’s κ Classification accuracy
No removal Optimal removal No removal Optimal
κ (µ±σ ) max(κ) argmaxT (κ) Accuracy Max acc. p-val

(T=0,k=100) (µ±σ ) (T=0,k=100)

GLCM
Same-date
Basic correction 0.887±0.025 0.887±0.025 T =0 0.920±0.017 0.920±0.017 1.000
Fine correction 0.887±0.025 0.891±0.027 T =15 0.920±0.017 0.922±0.018 0.860
Global masking 0.887±0.025 0.887±0.025 T =0 0.920±0.017 0.920±0.017 1.000
LAT masking 0.887±0.025 0.887±0.025 k =100 0.920±0.017 0.920±0.017 1.000
Across-date
Basic correction 0.786±0.069 0.786±0.069 T =0 0.847±0.050 0.847±0.050 1.000
Fine correction 0.786±0.069 0.831±0.060 T =20 0.847±0.050 0.880±0.043 0.196
Global masking 0.786±0.069 0.837±0.063 T =30 0.847±0.050 0.884±0.044 0.151
LAT masking 0.786±0.069 0.855±0.075 k =10 0.879±0.050 0.897±0.052 0.081

LBP
Same-date
Basic correction 0.894±0.016 0.894±0.017 T =5 0.923±0.012 0.924±0.012 0.985
Fine correction 0.894±0.016 0.894±0.017 T =5 0.923±0.012 0.924±0.012 0.975
Global masking 0.894±0.016 0.912±0.020 T =20 0.923±0.012 0.937±0.015 0.224
LAT masking 0.894±0.016 0.904±0.059 k =40 0.884±0.012 0.930±0.043 0.785
Across-date
Basic correction 0.770±0.061 0.772±0.061 T =5 0.837±0.043 0.838±0.043 0.961
Fine correction 0.770±0.061 0.796±0.083 T =20 0.837±0.043 0.856±0.057 0.502
Global masking 0.771±0.061 0.809±0.071 T =20 0.837±0.043 0.865±0.048 0.270
LAT masking 0.771±0.061 0.812±0.070 k =30 0.865±0.043 0.865±0.052 0.230

κ and max(κ) have the same mean is tested with Welch’s t-test for populations with potentially unequal
variances. The value of interest here is the p-value, which indicates the probability of observing a
statistic at least as extreme given that the null-hypothesis is true. If this probability is high then there
is good evidence that shadow removal makes no statistically significant impact on the classification
accuracy, but this is under the assumption that the same-date experiment accuracies and the across-date
experiment accuracies are both normally distributed and i.i.d.

Since there are only four same-date experiments and eight across-date experiments the sample counts
are low, which can exaggerate the p-value. However, if these conditions are met, there is good evidence
in the last column of Table 4.1 that there is no real accuracy difference for most shadow removal
techniques at a standard significance level of 0.05. Across-date experiments do have lower p-values
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than same-date experiments and both global masking and LAT masking with GLCM across-date
experiments can reject the null-hypothesis at a significance level of 0.15.

Shadow differences are significantly aggravated in the case of taller buildings, and the shadow mask
has the potential to occupy a relatively large portion of the image area. This might occur at lower solar
elevations and shadow masking would then be a poor choice of shadow removal in view of the large
area that would have to be masked. Alternatively, shadow correction would retain the entire image
area for texture calculation, at the expense of the inaccuracies caused by posterization.

Differing viewing angles may also cause significant changes in the texture of scenes with medium- and
high-rise buildings, and paired with the shadow differences a loss in settlement classification accuracy
is expected with texture features. The amplified anisotropy of land surfaces with tall buildings requires
a specialized approach, but for the relatively flat texture of the settlement types considered the texture
features perform well.

4.6.3.2 Classified land-use map

An across-date classification of the study area as imaged on d1 was performed with global shadow
masking using T = 30 and GLCM features, where the classifier was trained with all of the d2 data.
A mean accuracy of 88.4% was achieved after 10 experiments, of which a classification instance is
depicted in Figure 4.13, which was obtained with majority voting from redundant tile cover of each
polygon. The classification results are relatively accurate for the FSB, OIS and NBU classes when
compared to Figure 4.11, but there is confusion between the FS class and the FSB and OIS classes
primarily owing to the small FS training data size. There is also underlying similarity between the FS
and FSB classes that is hard to separate based on the texture features that were used.
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Figure 4.13. A second image of the study area, acquired on 18 October 2005, with thematic
classification using training data from another date. Class polygons outlined include ( ) FSB,
( ) FS, ( ) OIS, and ( ) NBU. Panchromatic background courtesy of DigitalGlobe™.
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4.6.3.3 Confusion analysis

There are four same-date experiments and eight across-date experiments involving the two acquisitions,
each with dual area separation. The sum of confusion tables over all experiments pertaining to either
same or across-date scenarios is given in Table 4.2 for GLCM land-use classification over the Soweto
dataset using no shadow removal and global threshold masking. The objective of the confusion analysis
is to determine the effect of shadow removal on classifier confusion, which is achieved through a
comparison of shadow removal and global threshold masking.

Table 4.2. Confusion table without shadow removal and with shadow removal.

Global threshold masking No removal
Same-date
True label Predicted label

FS FSB OIS NBU FS FSB OIS NBU
FS 144 32 34 0 161 29 20 0
FSB 15 508 13 0 18 512 6 0
OIS 16 45 211 2 31 15 228 0
NBU 0 0 5 487 0 0 1 491

Across-date
True label Predicted label

FS FSB OIS NBU FS FSB OIS NBU
FS 258 113 44 5 183 139 92 6
FSB 67 986 19 0 163 897 12 0
OIS 15 52 470 11 13 51 471 13
NBU 2 0 8 974 1 1 11 971

Higher classification accuracy generally corresponds to lower overall classifier confusion, so the
expectation is that there will be reduced confusion where shadow removal is effective in improving
classification accuracy. For the same-date experiments there is overall greater confusion with shadow
removal, since there are no significant shadow profile differences that can benefit from correction. The
largest confusion in this case is between FSB and OIS, probably because both land-use types include
the presence of shacks.

For across-date experiments there is overall reduced confusion between classes if shadow removal is
used, except for the OIS class. The OIS class is confused slightly more with the FS and FSB classes.
The largest reduction in confusion with shadow removal is between the FS and FSB classes, which
involve the largest structures and thus potentially the largest shadow profile differences.

4.6.3.4 Shadow detection accuracy

Two main shadow detectors are used in this chapter, namely global thresholding and LAT. Unsupervised
threshold parameter optimization is not used here, but the full parameter range is rather investigated
to properly detect land-use classification accuracy improvements and to determine the relationship
between shadow detection accuracy and land-use accuracy improvements. Histogram matching is
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employed in the experiments of this chapter to enable the shadow detection accuracy evaluation in
Figure 4.14 for both acquisitions under the same shadow detector parameters.
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(a) Global threshold masking.
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(b) LAT masking.

Figure 4.14. Shadow detection accuracy in terms of the mean Czekanowski-Dice index using the
shadow mask groundtruth data given in Appendix A.

The histogram matching allows for the use of a single shadow detector parameter as opposed to
dual parameters, while improving overall shadow detection accuracy when compared to not using
histogram matching. Figure 4.14(a) indicates that the optimal global threshold is 25 for both histogram
matched acquisitions, and Figure 4.14(b) shows that a k of 50 is optimal for LAT in terms of the
shadow detection accuracy measured with the Czekanowski-Dice agreement index using a subset of
groundtruth shadows.

4.6.3.5 Correlation analysis: land-use classification accuracy vs. shadow detection
accuracy

It is instructive to evaluate the relationship between land-use classification accuracy and shadow
detection accuracy in the case of shadow removal, since this relationship can help characterize the
role of shadow removal in improving land-use classification accuracy through input modification for
addressing dataset shift. Figure 4.15 indicates the correlation between land-use accuracy and shadow
detection accuracy, respectively measured with Cohen’s κ and the Czekanowski-Dice index.

Linear function fittings are also included for each set of experiments over the independent shadow
detection parameter range, which provides a visual comparison of the correlation differences
between same-date and across-date experiments. The distinction between same-date and across-
date experiments is important in this relationship analysis, since the expectation is that shadow removal
should be a lot more effective in the case of shadow profile differences, as is the case for across-date
experiments.

The observation that the land-use classification accuracy and shadow detection accuracy correlation is
positive for across-date experiments indicates that land-use classification could possibly improve as
a result of more accurate shadow removal. If the correlation is negative, then more accurate shadow
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(a) Global threshold masking, GLCM.
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(b) Basic correction, GLCM.
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(c) Fine correction, GLCM.

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Czekanowski−Dice index

C
o
h
e
n
’s

 k
a
p
p
a

 

 

Same−date
Same−date
Across−date
Across−date

(d) Global threshold masking, LBP.
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(e) Basic correction, LBP.
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(f) Fine correction, LBP.

Figure 4.15. Linear fittings for the correlation between land-use classification accuracy (Cohen’s κ)
and shadow detection accuracy (Czekanowski-Dice index) for global threshold masking, basic and fine
corrections with same and across-date distinctions.

removal could be responsible for deteriorating class distinction. For all global thresholding shadow
removal algorithms in Figure 4.15 it appears that the across-date correlations are more positive than
the same-date correlations. In Figure 4.16 the correlations are given for LAT shadow masking.

The Pearson’s correlation coefficients (denoted by ρ) of the same-date and across-date data points
for fixed thresholding paired with the various shadow removal algorithms are shown in Table 4.3.
A Pearson’s correlation coefficient measures the linear dependence between two variables and is
defined as the covariance of the two variables divided by the product of their standard deviations. The
correlation coefficient ranges from −1 to 1, where a value of 1 implies that a linear equation can
perfectly describe the relationship between the two variables. A linear relationship where one variable
increases as another decreases is characterized by a correlation coefficient of −1. If the value is 0 then
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(a) LAT masking, GLCM.
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(b) LAT masking, LBP.

Figure 4.16. Linear fittings for the correlation between land-use classification accuracy (Cohen’s κ)
and shadow detection accuracy (Czekanowski-Dice index) for LAT shadow masking (w=29) with same
and across-date experiment distinctions.

there is no discernible linear relationship between the two variables.

Table 4.3. Correlation coefficients and statistical significance.

GLCM LBP
Basic correction
Same Across Same Across

Correlation ρ -0.195 -0.264 -0.437 -0.153
Correlation p-val 0.565 0.433 0.179 0.654
Compare ∆p-val 0.357 0.108

Fine correction
Same Across Same Across

Correlation ρ 0.026 0.313 -0.130 0.191
Correlation p-val 0.941 0.349 0.703 0.574
Compare ∆p-val 0.046 0.046

Global threshold masking
Same Across Same Across

Correlation ρ -0.404 0.513 0.057 0.591
Correlation p-val 0.218 0.107 0.867 0.056
Compare ∆p-val 0.018 0.011

LAT masking
Same Across Same Across

Correlation ρ -0.654 -0.051 -0.015 -0.076
Correlation p-val 0.029 0.881 0.966 0.824
Compare ∆p-val 0.127 0.441

The statistical significance of each correlation was also determined in terms of a p-value calculated
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using the Student’s t-distribution for a transformation of the correlation. A p-value is the probability
of obtaining a test statistic at least as extreme as the one actually observed, assuming that the null-
hypothesis is true. The null-hypothesis here is that there is no correlation between shadow detection
accuracy and settlement classification accuracy, i.e. ρ = 0, formulated with the aim of rejecting the
null-hypothesis to show that there is in fact correlation between the variables.

A p-value less than a low significance level of 0.05 would imply that the probability of obtaining a
test statistic at least as observed given that the null-hypothesis is true is less than 5%, which would
constitute strong evidence against a zero correlation. In that case it can be stated that the observed
correlation is probably not zero with statistical significance at a significance level of 0.05. The most
significant correlations occur for GLCM same-date experiments with LAT masking and for both
GLCM and LBP across-date experiments with global threshold masking at a significance level of
approximately 0.1.

Emphasis is placed on the null-hypothesis test of equal correlation for the same-date and across-
date samples of a specific shadow removal algorithm, and it is seen that there is a relatively small
probability ∆p-val of obtaining correlation differences at least as extreme as were observed, given
that the null-hypothesis is true. The ∆p-val is a notation used here to refer to the p-value of the test
statistic that measures the correlation difference between same-date and across-date experiments. The
∆p-val is calculated according to the correlated correlation coefficients case given by Meng et al. [169],
where the Czekanowski-Dice similarity coefficient is the shared variable between the same-date and
across-date samples.

At a significance level of 0.1 it can be seen in Table 4.3 that the global thresholding masking and
fine correction shadow removal algorithms for both GLCM and LBP features produced a significant
correlation difference between same-date and across-date experiments. This supports the hypothesis
that more accurate shadow removal produces greater improvements in land-use classification accuracy
in the case of across-date experiments with notable shadow profile differences between the training
and testing datasets. At a significance level of 0.15 there is also evidence that there is a correlation
difference for GLCM experiments with LAT shadow masking.

4.6.3.6 Shadow masking vs. top-down masking

Global threshold shadow masking effectively removes low-intensity pixels from the feature calculations,
which may cause some class-specific feature alterations that can enhance distinction between classes.
A comparison is therefore made between shadow masking and top-down masking, which is a masking
unrelated to shadows and unrelated to the potential factor of dataset shift. The goal of this comparative
experiment is to determine whether it is likely the shadow removal specifically that enhances class
distinction, rather than simply intensity-based masking. This comparison is shown in Figure 4.17 with
differentiation between GLCM and LBP texture features, as well as between same-date and across-date
experiments.

It is the expectation that in across-date experiments the shadow masking will lead to greater land-use

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

105



CHAPTER 4 INPUT MODIFICATION

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Global threshold

C
o
h
e
n
’s

 k
a
p
p
a

 

 

Top−down masking
Shadow masking

(a) GLCM same-date.
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(b) LBP same-date.
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(c) GLCM across-date.
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Figure 4.17. Land-use classification accuracy.

classification accuracy improvements than with masking unrelated to across-date image differences.
The alternative masking that is used in this experiment is top-down masking, which masks out pixels
higher than a given global threshold. The top-down masking thus masks above a threshold, as opposed
to shadow masking which masks below a threshold. The top-down masking can thus accentuate shadow
profile differences and increase the effect of the dataset shift, thus potentially leading to a reduction
in land-use classification accuracy. In Figure 4.17(c) and 4.17(d) it is observed that shadow masking
improves accuracy at certain thresholds, whereas top-down masking does not manage to improve
accuracy over the accuracy with no masking. This provides further evidence that it is shadow masking
specifically that could be responsible for land-use classification accuracy improvements.

4.7 CONCLUSION

Effective feature variance occurs during across-date land-use type classification owing to differences
in viewing and illumination geometry. The purpose of this study was to reduce dataset shift through
input modification by detecting and removing shadow differences that can cause detrimental variation
in texture features, and to test its efficacy in improving land-use type classification accuracy. A variant
of histogram equalization, proposed by Shu and Freeman [75] and used by Sarabandi et al. [112], from
the intensity domain (paragraph 2.5.2.1) of the shadow restoration taxonomy in Table 2.4, has been
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employed for shadow correction.

The relationship between shadow detection accuracy and increases in land-use type classification
accuracy was investigated experimentally and statistically. It was observed that there is a
definite stronger trend with across-date classification where more accurate shadow removal resulted
in a typically larger improvement in the measured land-use accuracy compared to same-date
experiments.

GLCM shadow correction and LBP shadow masking have improved settlement classification accuracy
in same-date experiments, and both GLCM and LBP shadow correction and shadow masking can
improve settlement classification accuracy in across-date experiments. The most statistically significant
improvements in settlement classification accuracy were seen for GLCM across-date LAT masking,
GLCM across-date global threshold masking, GLCM across-date fine shadow correction, LBP same-
date global threshold masking, LBP across-date LAT masking and LBP across-date global threshold
masking.

A confusion analysis revealed that the largest reduction in confusion was between the FS and FSB
classes, probably because these classes typically involve the largest structures and thus the largest
shadow profiles. Correlation between settlement type classification accuracy and shadow detection
accuracy showed statistically significant differences between same-date and across-date experiments
for both GLCM and LBP with fine shadow correction and global threshold masking.

Top-down masking was used as a control test to obtain further evidence that the land-use classification
accuracy improvements are related to shadows in particular, which was seen in the results where
top-down masking could not improve classification accuracy at all, whereas shadow masking could.
These results support the theory that it is the shadow removal specifically that improves classification
accuracy, and that while increases in same-date accuracies were witnessed, the main benefit lies in
across-date classification situations.

The following chapter investigates the manifold reduction component of a manifold alignment
framework for dataset shift reduction.
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CHAPTER 5 WEIGHTED AGGLOMERATIVE
CLUSTERING

5.1 CHAPTER OVERVIEW

The main goal of this chapter is to illustrate the ability of weighted clustering to invoke partitionings that
more closely resemble a targeted groundtruth classification than with standard unweighted clustering.
This weighted agglomerative clustering can be used as a form of manifold reduction, which is typically
required for computationally feasible manifold matching. Texture feature sample weighting based
on region salience is used in an unsupervised setting to influence clustering to produce clusters that
favor prominent homogeneous land-use occurrences. Clustering accuracy is measured in absolute and
relative terms for multiple multimodal datasets over a complex land-use configuration in terms of a
groundtruth classification promoting regions with greater textural regularity.

Chapter 3 Chapter 4 Conference Chapter 5 Chapter 6

Main objective

Theme 1 Theme 2

Chapter 7

Theme 3

Figure 5.1. Indication of where this chapter fits into the thesis.

Multiscale, multichannel GLCM features are used with feature space compression via principal
component analysis (PCA) and adaptive scale selection based on minimizing spatial feature variance
is employed. Spatial feature variance at the optimal scale for each mapping unit is converted into a
sample weighting later used for weighted clustering. Unweighted clustering is tested with standard
linkages and compared against weighted clustering with weight-sensitive linkages.

A full dendrogram is constructed by the agglomerative clustering so that weakly supervised cardinality
determination can be investigated. Weighted generalizations of numerous major internal validation
indices are employed and a reduced computational time implementation with input sampling is
proposed. The hypothesis is tested that maximal weight input selection involves samples in the internal
index calculation that improve cardinality decision accuracy compared to random selection.
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5.1.1 Contributions

1. It is demonstrated that weighted clustering leads to improved accuracy compared to unweighted
clustering in terms of a target classification.

2. Internal validation algorithms with reduced computational time are used to allow for the
processing of larger datasets.

3. Texture scale-selective sample composition that handles the multiscale presentation of land-use
types is shown to improve clustering accuracy as well.

4. Input truncated implementations of weighted generalizations of multiple internal validation
indices are deconstructed experimentally, and maximal weight input selection is shown to be
responsible for improved clustering cardinality decisions.

5. A knee-point accentuating extremum filter and a suppressed first derivative alternative to
disruption interpretation of internal validation criteria are further contributions and their efficacy
is illustrated experimentally.

5.2 PROBLEM STATEMENT

Target clustering produces partitions desired for specific applications [170] and an unsupervised method
of informing the clustering process via sample weighting is investigated in this study for complex
land-use segmentation problems. Artificial separation can be achieved in a feature space by applying
scalar real weights to each sample and thereby simulating varying density where high weight regions
can attract cluster barycenters and distinguish between salient classes over regions of lower weight
density.

Sample weighting enriches the clustering problem space in a manner that the addition of another feature
dimension cannot replicate, at the cost of providing some engineered weight attribute. Dimensional
expansion of a feature space accessed primarily through distance metrics requires the addition of a
powerful new feature to separate classes and define class centers better. Even with the inclusion of
such features the use of proper sample weighting still enhances separability and localization of target
classes.

The hypothesis that weighted clustering can attract cluster centroids toward classes with certain target
properties is investigated by translating the desired properties into an applied weighting of samples.
Samples that more strongly possess target traits receive higher salience attribution. The clustering
objective is the promotion of land-use types with greater textural regularity in order to provide target
definition in an otherwise complex and poorly separated feature space. In scenarios with confusing
and blending land-use occurrences a segmentation that emphasizes prominent homogeneous land-use
classes is more useful than an arbitrary result producing no clear semantic separation.

A complex land-use clustering problem is considered with numerous land-use classes displaying
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irregular boundaries and many regions displaying confused class attribution. The clustering scenario is
complicated by the blending of classes in regions bordering multiple different classes, which erodes
the class separations in the feature space. The multimodal aspect of the study firstly enlarges the
number of problem datasets by the inclusion of multiple high-resolution multispectral acquisitions
from different imaging vehicles acquired under various acquisition conditions over a considerable
timespan. This enables the proper demonstration of the ability of the clustering system to produce
accurate results under a notable range of input characteristics, such as differences in image sharpness,
texture presentation, color profiles, illumination and viewing geometry, atmospheric conditions, and
phenological cycles.

5.2.1 Hypotheses

1. Weighted clustering can attract cluster centroids toward classes with certain target properties,
since agglomeration centroids gravitate toward higher weight regions.

2. Textural regularity as a target property can attract clusters toward more salient classes, since the
target classification promotes classes with greater textural regularity.

3. Multiscale dimensionality reduction can be obtained with the principal components of only one
particular scale, since the same groundtruth underlies the textures and the expectation is that
sample importance will correspond well over the different scales.

4. Clustering linkages that incorporate sample weightings in the agglomerated cluster centroid
calculation, but also the effective pairwise cluster dissimilarities, will provide more accurate
clusterings, since the sample weightings have a greater impact on agglomeration.

5. Maximal weight input selection involves samples in the internal index calculation that improve
cardinality decision accuracy compared to random selection, because the samples possess target
characteristics and a greater affinity to the groundtruth classification.

5.2.2 Research questions

1. What manifold reduction strategy can be employed to create clustering separation in a poorly
separated feature space?

2. How can a relevant sample weighting be obtained for texture-based land-use classification in
remote sensing images?

3. What approach should be followed to obtain a scale-selective feature space when dimensionality
reduction is used?

4. Which agglomerative clustering linkage is best for weighted clustering?

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

111



CHAPTER 5 WEIGHTED AGGLOMERATIVE CLUSTERING

5. How can the optimal number of clusters be found, given a weighted feature space and hierarchical
dendrogram?

6. Which internal validation indices perform best in a weighted clustering setting, and what role do
sample weightings play in cardinality fitness?

5.3 RELATED WORK

5.3.1 Weighted clustering

Clustering is a fundamental data analysis form and is popularly used especially in remote sensing
applications, but the application of weighted clustering is less prevalent. Clustering algorithms are
characterized as weight-sensitive, weight-robust or weight-considering in [171]. Weight-sensitive
partitional clustering algorithms include k-means, k-medoids, k-median, and Min-sum, and weight-
sensitive hierarchical algorithms include Ward’s method and bisecting k-means.

Weighted model-based clustering is used for remote sensing imaging analysis in [172] where higher
salience is granted to samples with relatively less noise. In other applications, such as brain magnetic
resonance imaging segmentation [173], Gaussian smoothing of the feature space is used before fuzzy
c-mean clustering to reduce noise and feature weighting is then used to bootstrap the clustering.

5.3.2 Multiscale features

Hierarchical segment merging has been used for high-resolution multiscale segmentation [174] and
the fusion of samples from different feature scales based on combining the pixel means in all scales
has been proposed [175] for urban change detection. The boost-classifier given in [176] is composed
of weak classifiers, one for every segmentation level, which detects scale and feature sets best suited
for a given dataset. Here classification results are combined in lieu of sample fusion to deal with the
multiscale segmentation problem.

Sliuzas et al. specify two spatial scales for urban remote sensing analysis, namely a local scale
concerned with the recognition of objects such as individual buildings and a strategic scale, which
covers general land-use such as residential, commercial and industrial areas at city-block scale [177].
The increased availability of high-resolution imagery has produced an increased interest in local
scale spatial classification and analysis that combine spatial and spectral information [178]. Land-use
classification has been shown to benefit from higher spatial resolutions corresponding to sub-meter
ground sampling distances [179].

OBIA is commonly used for accurate classification at local scale [180], but per-pixel interpretation of
remotely sensed images is usually performed at a strategic scale because of the poor results of per-
pixel-based methods at local scale [181]. However, pixel-based texture information can in some cases
yield good accuracy in urban land-use classification, especially at the strategic scale [182]. Graphs
of local variance have been used to anticipate the optimal scale parameter for forest classification
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in multispectral Ikonos images [183]. Multiscale features are determined in this study by selecting
feature scales corresponding to the scale with minimum feature variance.

5.3.3 Land-use segmentation

Land-use maps are important for environmental monitoring such as pollution and deforestation analysis,
but also for socio-economic purposes such as urban and transportation planning [184]. The three main
methods of generating land-use or land-use land-cover maps from spatial, spectral, textural, contextual
and relational information derived from remotely sensed images are pixel-based, object-based and field-
based methods [185]. In general an image object is a group of pixels with similar textural or spectral
properties [186] and size, shape, color, texture, pattern and shadow properties [187]. Homogeneous
image objects are defined in OBIA primarily through segmentation and are then classified based on
spatial, spectral, textural, contextual and relational properties [188].

Object-based classification consists of two main steps, namely image segmentation and image
classification based on the derived spatially compact image objects [189]. OBIA is the best choice
for efficient and rapid classification of medium-resolution optical remote sensing images [190], since
representation in terms of discrete objects satisfy human understanding better [191] and because OBIA
produces more visually consistent segmentations than pixel-based methods [192]. Urban features are
typically defined by contextual arrangements, rather than individual pixel characteristics [193].

Wei et al. showed that OBIA can achieve a 94.4% classification accuracy for land-use, land-cover
classification in medium-resolution imagery from forest-agriculture ecotones, which outperforms the
61.4% accuracy of a pixel-based approach [194]. Panchromatic pixel-based classification at local scale
to classify roads, residential and commercial buildings has outperformed OBIA in one study when
training and test samples were extracted from separate reference objects [179].

Segmentation algorithms are generally grouped into three types, namely point-based, edge-based and
region-based techniques [195] of which region-based methods are widely used because of a guarantee
of closed regions [196]. Numerous remote sensing segmentation algorithms have been proposed, but
only a few are robust under operational settings [197]. The proprietary multi-resolution segmentation
algorithm of eCognition Developer is a region-based technique that has shown strong performance in
many remote sensing problems [198].

Multi-resolution segmentation can in general be controlled by shape, scale, smoothness and
compactness parameters, of which the scale parameter is the most important, as it has a direct impact on
the subsequent segmentation [199]. Qualitative visual inspection is commonly practiced in an iterative
optimization approach [180], but because of its labor intensiveness and subjectivity of inspection the
better approach involves supervised and unsupervised methods [200].

Measuring segmentation quality can be based on the number of closed regions in the segmentation,
the number of pixels in each region and the color error of each region [201], or measures of region
contrast and uniformity can be combined in a quality measurement function [202]. An unsupervised
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segmentation quality measure that combines a spatial autocorrelation indicator, which detects region
separability, and a variance indicator that expresses region homogeneity has also been proposed for
region-growing segmentation [192]. Classification reliability tends to be lower for urban settings than
in rural areas because of the high spectral variability of urban materials and the occurrence of spectral
signatures in multiple different urban classes [203].

5.4 AGGLOMERATIVE HIERARCHICAL CLUSTERING

5.4.1 Clustering linkages

Agglomerative hierarchical clustering with different linkages is generalized under the infinite family of
algorithms defined by the recursive Lance-Williams function given by [204]

d(i∪ j,k) = αid(i,k)+α jd( j,k)+βd(i, j)+ γ|d(i,k)−d( j,k)|. (5.1)

Single, complete, average, median, centroid and Ward linkages are all different measurements of
dissimilarity between a pair of existing clusters, and the Lance-William update coefficients for each
linkage are given in Table 5.1. The clustering algorithm has the objective of finding the pair of clusters
with the smallest dissimilarity, according to a particular linkage, so that the pair of clusters can be
merged into one new cluster [204].

Table 5.1. Agglomerative hierarchical clustering linkages described in terms of Lance-Williams
coefficients [204]. The weight or number of points in a cluster i is given by |i|, which corresponds to
the cluster weight Wi in the following subsection.

Linkage Lance-Williams coefficients

Single linkage αi,α j =
1
2 β = 0 γ =−1

2

Complete linkage αi,α j =
1
2 β = 0 γ = 1

2

Average linkage (UPGMA) αi,α j =
|i|
|i|+| j| β = 0 γ = 0

McQuitty’s method (WPGMA) αi,α j =
1
2 β = 0 γ = 0

Median linkage (WPGMC) αi,α j =
1
2 β =−1

4 γ = 0

Centroid linkage (UPGMC) αi,α j =
|i|
|i|+| j| β =− |i|| j|

(|i|+| j|)2 γ = 0

Ward linkage αi,α j =
|i|+|k|
|i|+| j|+|k| β =− |k|

|i|+| j|+|k| γ = 0

5.4.2 Lance-Williams clustering algorithm

The Lance-Williams recurrence formula is used to update all the pairwise cluster distances that are
effectively changed owing to the newest agglomeration, and the dissimilarity updates are performed
after each agglomeration. Initially the input feature space consists of a set of feature samples or points
that form the first singleton clusters at the start of the clustering algorithm. The pairwise cluster
dissimilarities are normally initialized to the squared Euclidean distance between the two clusters in a
cluster pair. At each agglomeration the new cluster center is determined, as shown in Table 5.2.
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Table 5.2. Cluster center updates and cluster dissimilarity equivalents and initialisations [204]. A
cluster center gi is a d-dimensional vector and the Euclidean distance is given by ‖ · ‖.

Linkage Cluster center Dissimilarity between cluster

of (i∪ j) centers gi and g j

Median linkage gi+g j
2 ‖gi−g j‖2

Centroid linkage |i|gi+| j|g j
|i|+| j| ‖gi−g j‖2

Ward linkage |i|gi+| j|g j
|i|+| j|

|i|| j|
|i|+| j|‖gi−g j‖2

5.5 CARDINALITY DETERMINATION

5.5.1 Internal validation indices

An internal validation index is a quantitative measure for evaluating the quality of a clustering, and
are usually formulated in terms of the within-cluster and between-cluster dispersion and scattering. A
number of different internal validation indices listed in Table 5.3 have been formulated in the literature,
and a good review and comparison of these indices can be found in [41] and [205]. The asymptotic
computational complexities are specified in Table 5.3, in addition to the references in the literature.

5.5.2 Weighted generalization

The internal validation index is generally used as a relative measure to find the optimal number of
clusters or optimal cardinality, which is done by determining the index for a range of cardinalities
and choosing the optimal cardinality. The hypothesis is that a more relevant clustering quality can be
measured, to detect clusterings with improved salience balance over the clusters, if the internal indices
directly incorporate sample weightings.

Weighted clustering and weighted generalizations for point-biserial correlation, Hubert’s Gamma,
Hubert’s D, Hubert’s C, Silhouette, Calinski-Harabasz and Pseudo R2 internal validation indices are
described in [40]. However, several more of the well-known indices [41] are generalized for weighted
samples (included in Appendix C); this forms part of the contribution of this chapter.

5.5.3 Internal index interpretation

Hierarchical clustering produces a dendrogram that stores the clusterings for all cardinalities from N
(the number of samples) down to one cluster (the dataset). The dendrogram structure thus allows for
the computation of internal index interpretations at different cardinalities without having to recompute
partitions. Usually a cardinality range 1≤ k ≤ K is chosen with a maximum considered cardinality
K that is appropriate for the given scenario. The optimal cardinality according to a given internal
validation index can normally be identified as the cardinality with a notable disruption or an extremum
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Table 5.3. List of the internal validation indices considered in this chapter with citations and asymptotic
computational complexities.

Internal index Citation Computational complexity
Baker-Hubert’s Gamma [206] O(dN2 +N4/k)
Ball-Hall [207] O(dN)

Banfield-Raftery [208] O(dN)

C-index [209] O(N2(d + log2 N))

Calinsky-Harabasz [210] O(dN)

Davies-Bouldin [211] O(d(k2 +N))

Det_Ratio [212] O(d2N +d3)

G+ [213] O(dN2 +N4/k)
GDI [214] O(dN2)

Ksq_DetW [215] O(d2N +d3)

Log_Det_Ratio [212] O(d2N +d3)

Log_SS_Ratio [216] O(d(k2 +N))

McClain-Rao [217] O(dN2)

PBM [218] O(d(k2 +N))

Point-Biserial [219] O(dN2)

Ratkowsky-Lance [220] O(d2N)

Ray-Turi [221] O(dN)

S_Dbw [222] O(dNk2)

Scott-Symons [212] O(d2kN +d3k)
Silhouette [223] O(dN2)

Tau [224] O(dN2 +N4/k)
Trace_W [225] O(dN)

Trace_WiB [226] O(d2N +d3)

Wemmert-Gançarski [227] O(dNk)

value.

5.5.3.1 Extremum interpretation

There are two main interpretations of internal validation indices, namely optimization-like criteria or
an extremum interpretation and a difference-like criteria or a disruption interpretation [205]. The
extremum interpretation finds a cardinality for an internal index C= {ck : 1≤ k ≤ K} with either the
global max(C) or min(C) in the signal, depending on the nature of the internal validation index, e.g.
the Ball-Hall index measures the mean cluster dispersion over a partition, which should ideally be a
minimum to ensure that the clusters are as compact as possible.

5.5.3.2 Disruption interpretation

The disruption interpretation can indicate more relevant cardinalities, where extremum interpretations
sometimes tend toward global extrema outside a usable cardinality range. The disruption interpretation
is performed as an extremum interpretation on a function g(C) of the internal index C, so a conversion
is explicitly done to move derivative magnitude in an extremum interpreted domain. Vendramin et
al. [205] instantiate Milligan and Cooper’s difference between hierarchical dendrogram levels [228]
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with the following three possible realizations of the disruption conversion function g(C):

g(C) =
∣∣∣∣dCdk

∣∣∣∣ (5.2)

g(C(k)) =
∣∣∣∣dC(k)dk

∣∣∣∣− ∣∣∣∣dC(k+1)
dk

∣∣∣∣ (5.3)

g(C(k)) =
∣∣∣∣dC(k)dk

/
dC(k+1)

dk

∣∣∣∣ . (5.4)

The absolute values (| · |) of the derivatives are proposed by Vendramin et al. [205] in Equations 5.2
and 5.3. The use of the absolute of the first derivative of the internal index in Equation 5.2 allows
for the detection of the cardinality at the single greatest change in the index with an extremum
interpretation. However, by using the absolute function there can be no differentiation between
decremental or incremental changes, which could be an important distinction depending on the specific
interal validation index used.

Similarly, in Equation 5.3 a difference is made between the absolute of two successive derivatives,
but a peak formed by two line sections with derivatives of 1 and -1 will result in a zero due to the
absolute function and can thus not be detected as a disruption. Equation 5.4 partially addresses this
destructive superposition by allowing for a ratio comparison of successive derivative magnitudes,
although the absolute function again removes discrimination between disruption polarities and the
disruption measure is non-linear. These potential issues are avoided in this chapter by removing the
absolute function and by using the proper second derivative to convert the internal index for extremum
interpretation, according to

g(C) =
d2C

dk2 . (5.5)

5.6 METHODOLOGY

The weakly supervised clustering system in Figure 5.2 receives a rectangular three-channel red-
green-blue (RGB) image and produces internally a compressed salience-weighted scale-selective
GLCM feature space. The weighted samples are clustered with a weighted hierarchical agglomerative
clustering algorithm and an internal validation estimate of the optimum clustering cardinality is made.
The output is a clustering with the number of clusters specified by the cardinality estimate.

5.6.1 Texture feature extraction

The first 13 of Haralick’s GLCM features [166] are used to construct a multiscale feature set of six
scales × three RGB channels × 13 features with six GLCM square window widths (s1 to s6) of 50,
100, 150, 200, 300 and 400 m all centered on 25 m-wide square mapping units for a total of N = X×Y
mapping units. GLCM calculations are performed on the underlying high-resolution image at the
full resolution provided by each respective imaging vehicle. GLCM pairs are used in all cardinal and
ordinal directions with respective `1-norms of one and two, and the features are then averaged over
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Figure 5.2. Segmentation methodology based on salience-weighted clustering.

the four spatial relationships. The effect of different GLCM window sizes on features is shown in
Figure 5.3.
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Figure 5.3. Selected multiscale GLCM features for 50, 200 and 400 m windows over the Rio de
Janeiro area (D8).

5.6.2 Dimensionality reduction

The multiscale feature sets A(1) to A(6) for a given acquisition are N× p matrices with p = 3× 13
feature dimensions. A PCA feature space compression is performed on the concatenation of all 10
dataset acquisitions at each of the six feature scales, meaning six scales× 10 acquisitions× N samples
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× p features to produce a joint PCA over a 60N× p feature space. The concatenated 60N× p feature
space is column-normalized and centered to standard N(0,1) distributions before performing the
PCA.

The PCA produces a 60N× p score that is split into the respective scales and acquisitions in order to
calculate optimal sample feature scales and associate sample weightings. The multiscale feature sets
A(1) to A(6) are thus compressed with a joint PCA to give F(1) to F(6). An Euclidean distance measure
in the new space naturally incorporates the dimensional loadings reflecting feature importance.

5.6.3 Sample weighting

The framework in which weighted clustering is investigated requires a weight associated with each
sample, which is modeled as local spatial feature variance. Spatial feature variance u for a given GLCM
window size s j is calculated as u(s j) = ‖std({M})‖2, namely the Euclidean norm of the standard
deviation of the features {M ∈ F( j−1)} of all the smaller scale GLCM windows that best fit inside and
cover the single larger scale window s j at a particular map location.

100m window

50m cover window

25m map grid

… 

Figure 5.4. Conceptualization of sample salience for a 100 m scale calculated as the variance of the
smaller 50 m scale GLCM window features, involving smaller windows that completely cover the
larger scale window.

The process is illustrated in Figure 5.4 for a 100 m window size (s j), where the smaller 50 m window
(s j−1) is used to find the variance. The window size vi = argmin j(u(s j)) containing the smallest
feature variance is selected for its map location i as the most appropriate feature scale and the spatial
feature variance value ui = min(u(s j)) at that scale as the associated textural regularity. 1×N vectors
U = {ui} and V = {vi} respectively denote all the textural regularity values mapped to the range [0,1]
and the feature scales.

Sample textural regularity is changed into sample salience by U ← max(U)−U . The probability
density function of U is adjusted by moving the previous mean U to approximately 0.2 with wi =

ulog0.2/ logU
i forming the final salience or weight vector W= {wi} when mapped to the range [0.1,1].

Reducing the mean weight allows fewer high-salience samples to influence the weighted clustering to
a greater degree, as they will then possess relatively larger weights.
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5.6.4 Multiscale feature sample composition

The multiscale texture interpretation of different land-use classes is addressed through multiscale
feature sample composition based on the derived salience values. Given the optimal window size
vi = argmin j(u(s j)) for map location i, the corresponding feature in F(vi) is chosen to compose a
new scale-selective feature space F = {F(vi)

i : ∀i}. The option to smooth the weightings W based on
Gaussian kernel density estimation can be executed to produce a smoothed weighting W(S)= {w(S)

i : ∀i}
according to

w(S)
i =

∑ j
w j

2πH j
exp
(
−‖Fi−F j‖2

2
2H2

j

)
∑ j

1
2πH j

exp
(
−‖Fi−F j‖2

2
2H2

j

) . (5.6)

Adaptive bandwidth H j = w j‖F j − knn(F j,100)‖2 can be used where knn(F j,k) is the k-nearest
neighbor of F j. The adaptive bandwidth is weighted to enlarge high-salience kernels relatively, and
the k-nearest neighbor distance is used for bandwidth estimation. The smoothing result is shown
in Figure 5.5 and the effect is that the mean adaptive neighborhood weighting is imparted to every
sample.

(a) Projection of F with W (b) Projection of F with W(S)

Figure 5.5. Effect of weight smoothing with kernel density estimation for an example dataset.

5.6.5 Weighted clustering

Hierarchical agglomerative clustering with weight-sensitive linkages is used to incorporate sample
weightings into the agglomeration process. Single, complete, weighted (WPGMA) and median
(WPGMC) linkages are weight-independent, while average (UPGMA), centroid (UPGMC) and Ward
linkages are weight-sensitive. Weighted versions of centroid and Ward linkages are explored in this
study, and the effect of sample weightings in moving cluster centroids toward higher weight regions is
shown in Figure 5.6.
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Weighted data Ward Weighted Ward Centroid Weighted Centr.
(Rand=0.81) (Rand=0.91) (Rand=0.85) (Rand=0.88)

Figure 5.6. Toy problem as a weighted uniform distribution with partitionings (k=5) from both normal
unweighted and weighted versions of Ward and centroid linkages. Clustering accuracy is shown in
terms of the Rand index.

5.6.6 Cardinality determination

5.6.6.1 Weak supervision

Weighted generalizations C of internal validation indices C are used to determine the optimal number
of clusters in the weakly supervised system. It should be noted that in an otherwise unsupervised
clustering system, the weak supervision is incorporated only in the cardinality determination. This
weak supervision is required as a supervised selection of the top performing internal validation indices
for a given clustering linkage, but the assumption is made that the top performing indices will in
general always perform well.

5.6.6.2 Maximum weight input sampling

Computational time can be reduced by restricting the internal validation calculation to the largest
weighing N1/N fraction of samples per cluster, where there are a total of N dataset points and a
sub-sample of size N1. The computational time reduction is directly proportional to the given internal
index complexity O( f (N)), such as a time of N2 for the Silhouette index being reduced to an (N1/N)2

time for an O(N2) complexity.

5.6.6.3 Alternative internal index interpretation

A validation criterion C is optimized either by finding an extremum or disruption, and two alternative
interpretations are proposed. For indices that tend to increase or decrease monotonically a disruption
must be found to indicate a significant relative change in the criterion, usually with d2C

dk2 . The first
derivative dC

dk has the potential to become relatively large, so d
dk arctan

(dC
dk

)
is proposed to produce

fairer angle-based disruption comparisons.

The extremum of the disruption interpretation or of the direct criterion C= {ck} can then be obtained
by finding either the global max(C) or min(C) in the signal, depending on the nature of the criterion. If
the index is optimal at a minimum then a maximum disruption max

(
d2C
dk2

)
needs to be found, and vice

versa. For direct extremum interpreted indices that still tend to be monotonic, a knee-point accentuating
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filter f (C) is proposed to promote smaller usable cardinalities and is defined for maximum considered
cardinality K by

f (ci) = ci +
K

∑
j=i

c j/(K− i+1)−
i

∑
j=1

c j/i. (5.7)

5.7 DATA DESCRIPTION

The primary dataset characteristic requirement for this study is a compact area containing a complex
arrangement of a wide variety of land-use classes that are predominantly without clearly defined
boundaries. Such a site presents a difficult segmentation and clustering scenario where class/cluster
boundaries become densified and disappear in the feature space because of intermediate points (areas)
simultaneously containing characteristics of different classes.

22
◦ 5

3′
44
′′ S

22
◦ 5

6′
36
′′ S

43◦12′42′′W 43◦10′07′′W

Rio de Janeiro

Figure 5.7. Overview map of the coregistered Rio de Janeiro image acquisitions (Courtesy of Google™

Maps).

A 5.25×4.475 km2 rectangular area of the city proper of Rio de Janeiro was selected (see Figure 5.8)
as shown in Figure 5.7, stretching from the coastline north of downtown Rio de Janeiro (22◦53′44′′S)
to the south of Flamengo (22◦56′36′′S), and from the Canal do Mangue in the west (43◦12′42′′W) to
the coastline in the east (43◦10′07′′W). Notable land-use types include formal and informal settlements
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(19 separate favelas), industrial areas, low-rise building areas, skyscraper areas, as well as non-builtup
classes featuring sea, forest, park and greenbelt areas.

Figure 5.8. Rio de Janeiro multimodal dataset selection for this experiment.

A multimodal investigation of the study area is possible with a multitemporal and multisource selection
of acquisitions, featuring three different pansharpened multispectral images for GeoEye-1 (GE1) and
two images for each of the WorldView-2 (WV2), QuickBird-2 (QB2), and Ikonos-2 (IK2) satellites, as
well as an additional aerial image obtained from Google™ Earth. Land-use class samples are shown
for the different acquisitions in Table 5.5 and the acquisition characteristics are shown in Table 5.4.
The multitemporal study period ranges from 2002 to 2013, but the isolated cases of land-use change
mostly due to building upgrades have a negligible impact on the research objectives of larger-scale
segmentation granularity with texture features.

Table 5.4. Multi-satellite imagery class samples of 10 acquisitions from Aerial, GeoEye-1 (GE1),
WorldView-2 (WV2), QuickBird-2 (QB2), and Ikonos-2 (IK2) satellites (Courtesy of Google™ Earth).

Acquisition Date Max Angle Max Min Sun Cloud
Off Nadir GSD Elev. Cover

D6 (Aerial) 2009/06/25
D1 (GE1) 2013/05/28 11.22◦ 0.42 m 38.94◦ 0%
D5 (GE1) 2009/09/18 25.89◦ 0.50 m 53.86◦ 5%
D7 (GE1) 2009/05/23 18.27◦ 0.45 m 38.99◦ 0%
D2 (WV2) 2013/04/12 20.38◦ 0.53 m 50.89◦ 0%
D3 (WV2) 2012/09/15 12.07◦ 0.49 m 57.22◦ 1%
D8 (QB2) 2006/05/17 12.96◦ 0.65 m 43.21◦ 5%
D9 (QB2) 2005/09/30 10.41◦ 0.62 m 61.95◦ 6%
D4 (IK2) 2011/10/06 20.60◦ 0.96 m 59.71◦ 0%
D10 (IK2) 2002/04/20 20.64◦ 0.92 m 47.21◦ 0%

5.8 EXPERIMENTAL SETUP

The objectives of the experimental analyses include quantitative and qualitative clustering accuracy
comparisons between weighted and unweighted clustering, as well as determining the efficacy
of internal index input truncation and different internal index interpretations. The following six
main experiments are conducted to evaluate weighted clustering and weakly supervised cardinality
determination:
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Table 5.5. Multi-satellite imagery class samples of 10 acquisitions from Aerial, GeoEye-1 (GE1),
WorldView-2 (WV2), QuickBird-2 (QB2), and Ikonos-2 (IK2) satellites (Courtesy of Google™ Earth).

Acquisition Sea Forest Park Green- Informal Formal Indus- Low- Sky-

Date belt trial rise scraper

D6 (Aerial)
2009/06/25

D1 (GE1)
2013/05/28

D5 (GE1)
2009/09/18

D7 (GE1)
2009/05/23

D2 (WV2)
2013/04/12

D3 (WV2)
2012/09/15

D8 (QB2)
2006/05/17

D9 (QB2)
2005/09/30

D4 (IK2)
2011/10/06

D10 (IK2)
2002/04/20

Labeled samples 824 604 169 750 475 1155 610 2736 997

• Experiment 1: Clustering accuracy comparison

• Experiment 2: Clustering confusion evaluation

• Experiment 3: Visual clustering analysis

• Experiment 4: Cardinality decision accuracy

• Experiment 5: Internal index input truncation analysis

• Experiment 6: Internal index interpretation comparison

5.8.1 Clustering accuracy

The clustering objective is the maximization of partition similarity relative to groundtruth classes with
penalization for larger cardinality decisions via Y = {1− k/K : 2 ≤ k ≤ K}. The groundtruth class
selection prefers areas with greater texture regularity, but is not exhaustive in its labeling and only aims
to provide an example of salient classes.
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Table 5.6. External index definitions with concordant (yy and nn) and discordant (yn and ny) pairs and
NT = yy+nn+ yn+ny.

External index Formula

Kulczynski 1
2

(
yy

yy+ny +
yy

yy+yn

)
Czekanowski-Dice 2yy

2yy+yn+ny

Rogers-Tanimoto yy+nn
yy+nn+2(yn+ny)

Folkes-Mallows yy√
(yy+yn)×(yy+ny)

McNemar nn−ny√
nn+ny

Russel-Rao yy
NT

Hubert Gamma NT×yy−(yy+yn)(yy+ny)√
(yy+yn)(yy+ny)(nn+yn)(nn+ny)

Jaccard yy
(yy+yn+ny)

Sokal-Sneath-1 yy
yy+2(yn+ny)

Phi yy×nn−yn×ny
(yy+yn)(yy+ny)(yn+nn)(ny+nn)

Rand yy+nn
NT

Sokal-Sneath-2 yy+nn
yy+nn+(yn+ny)/2

External validation indices E(i) (1≤ i≤ 12) in Table 5.6 are determined for partition cardinalities of 2
to K = 50 and are combined into a single objective

E=
1
12

12

∑
i=1

E(i)�Y
max(E(i)�Y )

. (5.8)

External indices of different clustering algorithms are pooled together to find max(E(i)�Y ) in order to
show relative accuracy in terms of the overall best index value for all algorithms compared. External
indices are defined in terms of concordant (yy and nn) and discordant (yn and ny) pair counts using the
groundtruth partition as reference. If a pair of samples belongs to the same cluster in the groundtruth
as well as the clustering attempt then the yy count is incremented. If a pair belongs to different clusters
in both partitions then nn is incremented, as it is a concordant pair. However, if a sample pair is in
the same groundtruth cluster but in different clusters in the clustering attempt, then it increments the
discordant pair count yn and vice versa for ny. The concordant nn count tends to grow with cardinality
increase, which necessitates the inclusion of the cardinality penalty Y .
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5.8.2 Experiment 1: Clustering accuracy comparison

Unweighted single, complete, average, median, weighted, unweighted centroid, weighted centroid,
unweighted Ward and weighted Ward linkages are compared for the datasets D1 to D10 in terms of E.
This accuracy measure is only relative to the best accuracy across all methods for each external index
separately. Random cluster assignment is also tested for the range of considered cardinalities to serve
as a baseline.

5.8.3 Experiment 2: Clustering confusion evaluation

Cross-tabulation of sample designations for the clustering and the groundtruth classes provides a view
of the ability of the clustering to distinguish between groundtruth classes and to identify high-salience
clusters. The interpretation of the resulting confusion table serves as a basis for qualitatively comparing
the effect of weighted clustering to unweighted clustering in terms of groundtruth class distinction and
high-salience clustering.

The cardinality of the clustering is set to k = 9 in each case, since there are nine groundtruth classes.
In addition to the groundtruth samples there are also unlabeled samples, but no additional class is
added for the unlabeled samples, since it is assumed that they must fit into the most similar groundtruth
class. This assumption is not necessarily correct, as there might be other classes not accounted for
in the groundtruth class set, but for the purpose of demonstrating the effect of sample weighting the
assumption is reasonable.

The confusion table is filled column by column with each cluster distribution, where the rows account
for a specific groundtruth class. Thus, considering a cluster in a column, the exact sample count
breakdown of the cluster can be seen in terms of how the cluster of samples is distributed across the
groundtruth classes. The objective of using the confusion table is to compare unweighted and weighted
clustering in terms of cluster salience and groundtruth class separation.

5.8.4 Experiment 3: Visual clustering analysis

In addition to the previously discussed confusion evaluation, a visual analysis for evaluating clustering
quality can also be conducted. The dimensionality reduction performed before clustering assists in
this respect, since it compresses greater discrimination into two-dimensional representations just as it
removes dimensional dependence for stronger distance measures. A PCA feature map will also be
shown in addition to a salience map to visually qualify the discriminative power of the samples, based
on color differentiation correlated to a groundtruth map.

The sample weightings will also be depicted for the viewer to ascertain the correspondence between
groundtruth class feature space locations and high-weight pockets/regions. The main result planned
here is the visual comparison between clusterings and the groundtruth classes in the dimensionally
reduced feature space. The cluster locations on the geographical map are also shown, since the
weight/volume of dense clusters can be hard to estimate visually in the feature space depiction.
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A comparison is made between unweighted and weighted Ward clustering in terms of the clusterings
as shown on the geographical maps. The comparison will be made in terms of visual clustering
quality, with specific consideration of cluster spatial distribution and cluster weight/volume equality.
The criteria for better visual clustering are based on a balanced spatial distribution of clusters with
weight/volume concentrated at the cluster centroids and all clusters having appreciable salience.

5.8.5 Experiment 4: Cardinality decision accuracy

The 10 best internal indices with the highest clustering accuracy are determined for all the datasets
combined for the best performing linkage. The cardinality mode for the selection of interpreted indices
serves as the weakly supervised choice in partition size, estimating the optimal number of clusters.
Each cardinality decision for the datasets is then scrutinized in terms of the clustering accuracy at that
partition size. Both absolute and relative accuracy measures are provided, including Czekanowski-Dice,
Jaccard and Rand criteria and the relative E clustering accuracy measure as main objective.

5.8.6 Experiment 5: Internal index input truncation analysis

The computational time of internal index calculation can be reduced by truncating the internal index
sample input to restrict the input to a reduced size sample. The main aim of this experiment is to test
the hypothesis that a maximal weight input selection will influence the validation criterion in a manner
that more closely adheres to the salience-based groundtruth accuracy assessment.

This is tested by comparing the clustering accuracy E of maximal weight and random input selection
for weighted Ward linkage. The accuracy measure is normalized relative to the maximum external
indices of the clustering, since the cardinality determination only requires a performance measure
relative to the best possible cardinality for a particular clustering. The effect of using weightings in
the internal validation calculations is also analyzed by comparing unweighted and weighted internal
criteria for both maximal weighting and random input selections.

Random input selection or random sampling is tested multiple times (≥ 10) and one-sample t-tests
check whether accuracies compared to maximal weight and random input selection differ significantly
for a given dataset. Maximal weight selection with weighted internal indices is then compared to other
truncation configurations in terms of the percentage ratio of the number of datasets for which maximal
weight selection with weighted internal indices is significantly more accurate or matches the accuracy
of the other configuration, to the number of datasets in which the other configuration is significantly
more accurate or matches the accuracy.

5.8.7 Experiment 6: Internal index interpretation comparison

The same relative clustering accuracy E described for the previous experiment is used to indicate
how well an internal index interpretation reaches the maximum possible accuracy of the optimal
cardinality for the given clustering dendrogram. This experiment compares extremum and disruption
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interpretations for all the internal validation indices considered, for the weighted Ward linkage.
Extremum knee-point accentuating filtering and the alternative d

dk arctan
(

dC
dk

)
are also compared

to indicate the indices for which these interpretations can improve performance.

5.9 RESULTS AND DISCUSSION

5.9.1 Experiment 1: Clustering accuracy comparison

The clustering accuracy comparison is shown in Table 5.7 in terms of the pooled joint external
validation index accuracy measures per dataset, where the maximum possible accuracy is reported for
every method at its optimal cardinality given a specific dataset. The purpose of pooling the external
validation indices in this manner is to aggregate the different definitions of what a good clustering is
and to represent the result as a scalar that could be interpreted as a comparative accuracy percentage
measure.

Table 5.7. Clustering accuracy comparison of linkages for all considered Rio de Janeiro images.
Standard linkages, centroid and Ward linkages are all considered.

Rio de Janeiro acquisition Mean
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 µ±σ

Unweighted linkages
Single 39.5 48.0 42.4 43.7 39.3 43.8 32.2 17.2 41.5 38.4 38.6±8.59
Random 54.8 59.6 56.8 54.9 50.5 53.0 47.6 56.8 54.5 50.0 53.9±3.63
Average 62.9 64.3 57.7 55.1 54.9 52.6 58.7 54.6 52.7 52.5 56.6±4.24
Centroid 62.8 62.5 58.6 55.1 57.0 53.4 60.6 53.7 53.9 53.3 57.1±3.80
Median 72.9 69.1 60.3 58.9 74.3 56.2 68.2 64.0 53.0 60.5 63.7±7.17
Weighted 75.5 75.6 64.7 59.0 74.8 61.9 75.3 65.8 59.0 62.2 67.4±7.14
Complete 84.0 75.1 57.8 60.8 68.9 68.0 73.3 69.4 65.4 84.3 70.7±8.77
Ward 81.7 88.1 93.2 91.6 91.9 90.3 90.5 97.3 93.4 87.9 90.6±4.15

Weighted linkages
Centroid 62.8 63.0 58.0 55.9 55.8 54.3 59.0 53.8 52.2 54.0 56.9±3.75
Ward 99.0 94.4 91.4 98.9 99.8 85.0 92.5 99.8 93.4 99.4 95.4±4.92

Ward linkage consistently significantly outperforms the baseline of random cluster assignment (two-
tailed p-val less than 0.0001 with Welch’s unpaired t-test, with mean difference 95% confidence
interval of 33.0 to 40.4), whereas other linkages do only slightly better. Complete linkage achieves the
second highest mean clustering accuracy, followed by weighted linkage. Incorporating sample weights
into the clustering with weighted clustering improves the mean clustering accuracy for both centroid
and Ward linkages. In only two of the datasets, namely D3 and D6, the weighted Ward linkage does
not outperform unweighted Ward linkages. At a significance level of 0.05, weighted Ward significantly
outperforms unweighted Ward for a two-tailed p-val of 0.03 with Welch’s unpaired t-test, with mean
difference 95% confidence interval of 0.51 to 9.10.
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5.9.2 Experiment 2: Clustering confusion evaluation

The cross-tabulation between the Ward clustering for D5 and the groundtruth classes is shown in
Table 5.8. The confusion table for weighted Ward clustering is given in Table 5.9 so that a qualitative
discernment can be made about the effect of sample weighting on clustering confusion. The clustering
cardinality is set at k = 9 and the distribution of each cluster is given per column, where each row is
associated with a different groundtruth class or the remaining unlabeled samples class.

Table 5.8. Cross-tabulation of Ward cluster assignment (D5) and groundtruth classes for k = 9.

Ward cluster assignment
Class label 1 2 3 4 5 6 7 8 9

Sea 404 213 202 0 3 0 0 2 0
Forest 0 0 0 387 0 30 187 0 0
Park 0 0 0 0 0 92 14 45 18
Greenbelt 0 0 0 0 35 657 29 0 29
Informal 0 0 0 0 0 9 48 418 0
Formal 0 0 0 0 0 0 259 896 0
Industrial 0 0 0 0 0 0 0 299 311
Low-rise 0 0 0 0 0 0 11 539 2186
Skyscraper 0 0 0 0 0 17 0 0 980
Unlabeled 138 501 83 266 873 3050 5512 11108 7739

It should be noted that the groundtruth classes may share commonalities and that the class distinction
was made by a human operator for the purposes of obtaining basic class distinction in order to
evaluate clustering accuracy. For example, forest, park and greenbelt have similar textural and spectral
properties and clustering of samples may place these classes in the same cluster. For both normal and
weighted Ward clustering the sea class is spread mainly over three clusters, because of the sea textures
transforming to more extreme GLCM points that spread across the feature space extremities.

Table 5.9. Cross-tabulation of weighted Ward cluster assignment (D5) and groundtruth classes for
k = 9.

Weighted Ward cluster assignment
Class label 1 2 3 4 5 6 7 8 9

Sea 398 216 208 0 0 0 0 0 2
Forest 0 0 0 414 28 162 0 0 0
Park 0 0 0 0 92 14 1 0 62
Greenbelt 0 35 0 0 602 57 0 0 56
Informal 0 0 0 0 7 42 418 0 8
Formal 0 0 0 0 0 232 916 7 0
Industrial 0 0 0 0 0 0 161 424 25
Low-rise 0 0 0 0 0 11 283 2103 339
Skyscraper 0 0 0 0 6 0 0 741 250
Unlabeled 115 1391 122 245 2462 5519 8980 4004 6432

Weighted clustering concentrates the forest class more strongly into cluster 4 than unweighted
clustering, and the park class is also concentrated more strongly with weighted clustering. The
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greenbelt class, however, has a higher concentration with unweighted clustering than with weighted
clustering, but unweighted clustering assembles a low salience cluster (cluster 5) with a very low
percentage of target class contribution. There is some confusion between forest and formal settlement
classes for both clusterings, which is probably due to formal settlements frequently being surrounded
by green space.

Weighted clustering produces higher saliency clusters, as evidenced by the lack of low-saliency
clusters like cluster 5 for unweighted clustering. This permits weighted clustering to utilize cluster
assignment better, which results in improved differentiation between industrial/low-rise/skyscraper
collectives and low-rise/skyscraper collectives in clusters 8 and 9. There is stronger confusion between
informal/formal settlement collectives and industrial/low-rise collectives with unweighted clustering,
and industrial, low-rise and skyscraper classes do get confused in general for both unweighted and
weighted clusterings.

5.9.3 Experiment 3: Visual clustering analysis

The ability of the clustering system to recreate the groundtruth classes, given the same cardinality
of k = 9, is inspected visually in Figures 5.9, 5.10, 5.11, 5.12, 5.13 for D1, D3, D7, D9 and D10.
The salience maps show the adjusted salience distributions as used for the clustering, which promotes
high-salience outliers to the upper end of the salience range. In some instances there are only a few
high-salience outliers, such as with some sea and forest samples in Figure 5.11 for D7.

The PCA feature maps generally show good distinction between builtup, non-builtup and water classes.
The larger skyscraper class normally presents with a distinct color representation in the compressed
feature display, although low-rise, industrial, formal and informal settlement classes appear less
distinct. It should be noted that the color selection for the groundtruth feature projections (d) and
salient groundtruth classes (f) does match, and that the color selection for the feature projection (e)
matches with that of the clustering map (g). However, there is not necessarily a color scheme match
between the groundtruth displays (d, f) and the clustering displays (e, g).

The core of the feature space generally has greater density and class occupancy, which can make it
difficult to interpret the feature projections accurately and compare them to the groundtruth feature
projection. The clustering maps allow for a more accurate assessment in this case, since they depict
the clustering balance and distribution. The comparison of geographical clustering maps of clustering
with weighted Ward linkage (g) and unweighted Ward linkage (h) generally reveals a more balanced
cluster distribution for weighted Ward linkage.

5.9.4 Experiment 4: Cardinality decision accuracy

The performance of the internal validation index strategy for obtaining the optimal clustering cardinality
is measured in Table 5.10 in percentage terms of the clustering accuracy relative to that at the real
optimal cardinality for the given linkage and dataset. Absolute clustering accuracy measures are also
given as Czekanowski-Dice, Jaccard and Rand criteria.
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(a) Salience map (b) PCA feature map (c) Projection of F (W)

(d) Groundtruth feature projection (e) Feature projection (WWard)

(f) Salient groundtruth classes (g) Clustering map (WWard) (h) Clustering map (Ward)

(i) Salient classes with color codes
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(j) Dendrogram (WWard)
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(k) Dendrogram (Ward)

Figure 5.9. Clustering results for Rio de Janeiro D1 (GE1 - 2013/05/28), with batch weighted Ward
for k=9 with the sample weighting W. Multispectral images courtesy of Google™ Earth.
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(a) Salience map (b) PCA feature map (c) Projection of F (W)

(d) Groundtruth feature projection (e) Feature projection (WWard)

(f) Salient groundtruth classes (g) Clustering map (WWard) (h) Clustering map (Ward)

(i) Salient classes with color codes
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(j) Dendrogram (WWard)
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(k) Dendrogram (Ward)

Figure 5.10. Clustering results for Rio de Janeiro D3 (WV2 - 2012/09/15), with batch weighted Ward
for k=9 with the sample weighting W. Multispectral images courtesy of Google™ Earth.
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(a) Salience map (b) PCA feature map (c) Projection of F (W)

(d) Groundtruth feature projection (e) Feature projection (WWard)

(f) Salient groundtruth classes (g) Clustering map (WWard) (h) Clustering map (Ward)

(i) Salient classes with color codes
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(j) Dendrogram (WWard)
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(k) Dendrogram (Ward)

Figure 5.11. Clustering results for Rio de Janeiro D7 (GE1 - 2009/05/23), with batch weighted Ward
for k=9 with the sample weighting W. Multispectral images courtesy of Google™ Earth.
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(a) Salience map (b) PCA feature map (c) Projection of F (W)

(d) Groundtruth feature projection (e) Feature projection (WWard)

(f) Salient groundtruth classes (g) Clustering map (WWard) (h) Clustering map (Ward)

(i) Salient classes with color codes
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(j) Dendrogram (WWard)
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(k) Dendrogram (Ward)

Figure 5.12. Clustering results for Rio de Janeiro D9 (QB2 - 2005/09/30), with batch weighted Ward
for k=9 with the sample weighting W. Multispectral images courtesy of Google™ Earth.
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(a) Salience map (b) PCA feature map (c) Projection of F (W)

(d) Groundtruth feature projection (e) Feature projection (WWard)

(f) Salient groundtruth classes (g) Clustering map (WWard) (h) Clustering map (Ward)

(i) Salient classes with color codes
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(j) Dendrogram (WWard)
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(k) Dendrogram (Ward)

Figure 5.13. Clustering results for Rio de Janeiro D10 (IK2 - 2002/04/20), with batch weighted Ward
for k=9 with the sample weighting W. Multispectral images courtesy of Google™ Earth.
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Table 5.10. Cardinality decisions per acquisition as the interpretation mode of the top 10 indices
(fixed for all acquisitions) specifically for weighted Ward linkage. Clustering accuracies are shown at
the chosen cardinalities in percentage terms of the objective, Czekanowski-Dice, Jaccard and Rand
measures with the maximum possible cardinality decision accuracy.

Rio de Janeiro acquisition Mean
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 µ±σ

Cardinality decision 4 5 3 6 5 4 7 7 8 4
Objective 85.1 85.1 50.0 95.5 83.1 72.0 95.9 93.3 90.6 87.2 83.77±13.81
Objective opt. 95.3 91.7 92.4 96.1 95.3 89.5 95.9 93.3 92.5 97.3 93.92±2.43
Czekanowski-Dice 49.7 41.7 32.6 56.1 54.2 37.7 64.4 53.2 53.0 56.6 49.89±9.71
Czekanowski-Dice opt. 59.7 44.2 49.7 56.9 70.1 45.9 65.0 56.1 58.2 65.7 57.14±8.57
Jaccard 33.0 26.3 19.4 39.0 37.2 23.2 47.4 36.2 36.1 39.4 33.73±8.45
Jaccard opt. 42.5 28.4 33.1 39.8 54.0 29.8 48.1 39.0 41.0 48.9 40.45±8.39
Rand 69.4 67.1 30.9 78.7 79.0 63.3 87.4 79.4 79.8 76.4 71.14±15.83
Rand opt. 85.8 83.9 85.3 85.7 90.4 85.7 88.2 86.0 88.3 88.5 86.78±1.97

The cardinality decision involves obtaining the most frequent cardinality suggestion among the 10 best
internal indices for a given clustering algorithm and linkage, obtained by evaluating the indices for all
datasets combined. This weak supervision is motivated by providing evidence of good accuracy for
most multimodal datasets, which is the case for weighted Ward linkage. The ability of the best internal
index selection to perform well under multimodal dataset changes is measured to provide an indication
of its generalization ability and thus support its fixed inclusion in the clustering system.

The objective opt. (optimum), Czekanowski-Dice opt., Jaccard opt. and Rand opt. rows in Table 5.10
give the best possible values that can be obtained at the optimal cardinality for the given clustering
accuracy measure. The weakly supervised cardinality estimate achieves accuracies that are in general
within 10-20% of the optimum.

5.9.5 Experiment 5: Internal index input truncation analysis

The main internal validation indices are analyzed in Table 5.11 under a truncated input scenario
to determine whether maximal weight input selection and weighted index generalization improve
cardinality decision accuracy. There are three main column sections representing the following internal
index calculation sampling comparisons:

1. Wmax:Urnd compares weighted maximum salience selection with unweighted random
selection.

2. Wmax:Wrnd compares weighted maximum salience selection with weighted random selection.

3. Wmax:Umax compares weighted maximum salience selection with unweighted maximum
salience selection.

A selection is weighted if sample weights are used in a weighted internal index calculation, otherwise
the selection is unweighted. A maximum weight/salience selection chooses the N points from the
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Table 5.11. Weighted/unweighted and maximum/random selection performance comparisons for
internal indices with sample sizes of N1=1000, N2=2000, and N3=4000. Weighted maximum select is
compared against unweighted random select (Wmax:Urnd), weighted random select (Wmax:Wrnd),
and unweighted maximum select (Wmax:Umax) in terms of the ratio of experiments (shown as a
percentage) in which weighted maximum select significantly outperforms each alternative.

Weighted Ward
Wmax:Urnd Wmax:Wrnd Wmax:Umax

Internal index N1 N2 N3 N1 N2 N3 N1 N2 N3

Point-Biserial 100 75 67 100 67 67 90 90 89
Baker-Hubert Gamma 100 100 100 90 90 100 100 100 100
Tau 100 100 100 100 100 100 100 100 100
G+ 100 100 100 100 100 100 100 100 100
PBM 57 100 140 44 75 160 100 100 129
Davies-Bouldin 100 100 100 114 100 114 100 100 90
Det_Ratio 10 33 33 150 250 167 114 100 100
Ratkowsky-Lance 129 129 143 78 67 89 125 100 100
Wemmert-Gançarski 111 111 111 125 111 111 100 100 125
Silhouette 129 114 150 114 89 113 100 100 100
Trace_W 100 100 100 117 200 200 100 80 100
S_Dbw 89 133 140 100 225 114 100 111 100
Ball-Hall 114 167 200 100 129 167 100 90 111
Calinsky-Harabasz 100 175 175 129 114 150 100 143 100
C index 225 140 120 129 180 129 100 113 90
McClain-Rao 160 180 180 133 143 113 80 129 125
Banfield-Raftery 71 100 180 180 167 333 60 100 129
Ksq_DetW 88 67 86 160 225 160 200 114 250
GDI23 250 180 160 200 167 129 100 100 100
GDI33 250 150 200 167 180 150 100 100 90
Ray-Turi 63 75 117 450 250 160 129 129 129
GDI25 225 500 300 200 333 180 111 143 100
Log_SS_Ratio 175 100 120 225 300 1000 113 100 125
Log_Det_Ratio 180 129 100 1000 1000 333 111 111 129
GDI35 450 500 1000 200 250 333 125 143 100
Scott-Symons 1000 333 500 500 500 250 200 140 71
Trace_WiB 200 1000 1000 1000 1000 1000 100 70 90
Mean 169 178 209 213 226 215 109 107 106

dataset such that the sum of the sample weights is larger than or equivalent to any different selection
of the same size. A selection is random when sample weights are not incorporated into the selection
process and only random choices are made for constructing an N-sized sample. Each sampling
comparison shown in a column section is divided into three subcolumns, which correspond to three
different sample sizes, namely N1=1000, N2=2000, and N3=4000. The values shown for each internal
index for a given comparison and sample size is the percentage ratio of datasets for which weighted
maximum salience selection outperforms the alternative selection with statistical significance.
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The 10 internal index cardinality accuracy (E) measures for the 10 acquisitions with a given sampling
method A forms a vector {a1, · · · ,a10} of accuracies, which are normally scalar values for deterministic
samplings such as maximum weight sampling. However, accuracy distributions summarized by mean
and standard deviations are used for random sampling. The accuracy for an alternative sampling
scheme B is described similarly by vector {b1, · · · ,b10}, and accuracy comparisons are made for
(ai,bi),1≤ i≤ 10, where a t-test can be used if standard deviations are available for multiple accuracy
assessments in the case of non-deterministic sampling.

There are three possible outcomes to comparison (ai,bi) for a given dataset i:

c1 : Sampling A assists in producing cardinalities with a significantly greater clustering accuracy
than sampling B.

c2 : There is no significant difference between the clustering accuracies produced.

c3 : Sampling B assists in producing cardinalities with a significantly greater clustering accuracy
than sampling A.

Consideration of all 10 datasets can provide the counts (∑c j) for the three conditions to construct
the comparison ratio (∑c1 +∑c2) : (∑c3 +∑c2) or ∑c1+∑c2

∑c3+∑c2
, which is expressed as a percentage in

Table 5.11.

Maximum weight input selection clearly appears to produce better cardinalities than random input
sampling, whereas the use of weights with weighted internal indices has a minimal effect overall. In
the comparison with unweighted random sampling an increase in sample size on average produces
a greater discrepancy in weighted maximum input selection. However, for the comparisons with
weighted random sampling and unweighted maximum input selection there is on average no distinct
comparative change with increases in sample size.

Random sampling consistently performs worse for the Wemmert-Gançarski, C index, McClain-Rao,
GDI, Scott-Symons and Trace_WiB indices. Using weighted internal indices with maximum input
selection manages to consistently outperform unweighted internal indices also with maximum input
selection for the Ksq_DetW, Ray-Turi and Log_Det_Ratio indices. A more in-depth investigation is
needed to determine why certain internal indices perform worse with random sampling or unweighted
internal index calculations.

5.9.6 Experiment 6: Internal index interpretation comparison

Different internal index interpretation methods are compared in Table 5.12 for the major internal indices,
and the best choice between extremum (denoted by “min” and “max”) and disruption (denoted by
“mind” and “maxd”) intepretations is given in the final column. The comparison is performed in terms
of the average percentage of the maximum joint clustering quality of the optimal cardinality for the
given weighted Ward linkage. A greater average percentage means that the cardinality determination
was more accurate.
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Table 5.12. Internal index performance comparison as average percentage of the maximum joint
clustering quality of the optimum cardinality. Extremum (Ext.) and disruption ( d2

dk2 ) interpretations
are compared, including extremum filtering (Filt.) and the suppressed disruption derivative alternative
(atan).

Extremum Disruption
Index Ext. Filt. d2

dt2 atan Interpretation

Det_Ratio 0.00 0.00 7.05 10.73 mind
Log_Det_Ratio 0.79 8.32 69.40 56.01 mind
Banfield-Raftery 0.00 3.05 79.88 72.39 maxd
Log_SS_Ratio 0.00 5.09 79.68 75.60 mind
Trace_WiB 35.16 32.17 64.22 55.32 max
McClain-Rao 36.08 32.05 57.00 77.61 min
Ball-Hall 8.74 50.40 78.11 78.64 min
Point-Biserial 31.89 47.90 59.92 82.49 mind
Ray-Turi 54.65 53.58 57.30 64.06 min
Trace_W 0.00 74.25 77.28 85.98 min
S_Dbw 10.33 69.48 80.66 83.84 min
C index 45.00 49.99 76.26 80.20 min
G+ 22.91 60.15 85.35 84.65 min
Silhouette 54.65 40.90 83.64 83.64 max
Davies-Bouldin 54.65 46.82 82.23 80.04 min
Scott-Symons 54.69 54.69 84.29 71.72 maxd
Ksq_DetW 45.35 71.42 82.61 72.64 maxd
GDI25 54.58 54.69 78.72 85.52 max
GDI35 54.58 54.69 78.96 85.52 max
GDI33 54.69 54.69 83.55 84.43 max
GDI23 54.69 54.69 83.74 85.50 max
PBM 68.51 68.56 75.30 74.53 mind
Ratkowsky-Lance 67.88 64.65 78.42 76.86 mind
Wemmert-Gançarski 73.13 72.64 72.64 70.25 max
Baker-Hubert Gamma 75.15 76.15 81.99 80.31 max
Calinsky-Harabasz 74.52 76.23 84.17 79.87 max
Tau 76.96 80.92 80.80 81.37 max
Mean 38.77 49.58 73.33 73.35 max

Knee-point accentuating filtering before extremum interpretation improves accuracy for 16 indices,
where the more significant improvements are seen for Ball-Hall, Trace_W, S_Dbw and G+. The
disruption interpreted indices do not really benefit from the knee-point accentuating filtering, since this
filtering is designed to improve extremum interpretation. The alternative d

dk arctan
(

dC
dk

)
disruption

interpretation improves accuracy for 13 indices in the case of weighted Ward linkage clustering.

It appears from Table 5.12 that disruption interpretation of internal indices generally perform better than
extremum interpretation, possibly because of the observed tendency of extremums located at higher
cardinalities. Knee-point accentuating filtering clarifies the extremums for more accurate extremum
interpretation, but disruption interpretation directly isolates the knee-points without the extremum
requirement having to be fulfilled.
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Examples of knee-point accentuating filtering and the alternative d
dk arctan

(
dC
dk

)
disruption

interpretation are shown in Figures 5.14(a) and 5.14(b).
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Figure 5.14. Examples of internal index interpretations contributed in this chapter.

At every cardinality the extremum filter compares the signal mean for lower cardinalities with the
mean for larger cardinalities and identifies major mean changes, which are then added to the original
signal to press the knee-points out, thereby reducing the likelihood of large cardinality decisions in an
otherwise generally monotonic signal.

5.10 CONCLUSION

The main objective of the study was to investigate whether clustering accuracy can be improved by
imparting unsupervised context through sample salience that reveals the preferential utility embedded
in the groundtruth reference. The preference for greater textural regularity present in the groundtruth is
modeled as multiscale texture feature variance converted into a salience weighting for the feature space.
The hypothesis that weighted agglomerative clustering differentiates between clusters through the
tendency to move cluster centroids towards higher weight regions was tested indirectly by assuming
that the salience weighting modeled the groundtruth preference for textural regularity reasonably
well.

Weighting the feature space can create an artificial separation in a space where classes tend to blend
owing to the presence of samples sharing traits from multiple classes simultaneously, such as a region
geospatially bordering different classes. For the 10-date Rio de Janeiro multispectral dataset it was
shown that weighted clustering with the Ward linkage achieves a greater mean clustering accuracy.
Confusion analysis presented evidence that weighted clustering produces more salient clusters and
differentiates better between certain groups of classes.

Weighted internal validation indices were used for weakly supervised clustering cardinality
determination, and input truncated implementations were used to reduce computational time for
large datasets. Sample weighting was used to good effect and it was experimentally illustrated that
the main contributor to improved internal index performance was maximal weight input selection.
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Improved internal index extremum and disruption interpretations were proposed and results indicated
performance improvements for the majority of internal indices.

The following chapter investigates the manifold matching component of the manifold alignment
framework, as a next step to the manifold reduction studied in this chapter.
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CHAPTER 6 GLCM MANIFOLD MATCHING WITH
GEOMETRIC SIMILARITY
MEASURES

6.1 CHAPTER OVERVIEW

Across-satellite texture feature matching is considered in this chapter, with the purpose of optimizing
domain matching with the use of geometric similarity. The preservation of GLCM feature space
geometry across imagery from different high-resolution optical satellites is investigated by determining
how the addition of geometric similarity to a graph matching cost function influences matching accuracy.
The manifold matching of this chapter fits into the manifold alignment strategy for addressing dataset
shift, where the previous chapter dealt with manifold reduction aspect required to render manifold
matching computationally feasible.

Chapter 3 Chapter 4 Conference Chapter 5 Chapter 6

Main objective

Theme 1 Theme 2

Chapter 7

Theme 3

Figure 6.1. Indication of where this chapter fits into the thesis.

A generalized eigenvalue decomposition framework for manifold alignment [42] is reviewed in
Appendix B and its requirement of correspondence knowledge or across-domain matching information
is addressed in this chapter. The manifold matching problem is isolated to test directly whether a
geometry-based matching performs well for GLCM feature spaces, so the Hungarian algorithm is
used as solver and execution of manifold alignment is omitted. The focus is placed on engineering
a matching cost function that simultaneously results in good matches for multiple land-use based
matching problems.

A geometric similarity formulation is contributed that combines varying neighborhood sizes to eliminate
the need to find an optimal neighborhood size, as is required by the geometric similarity from [43].
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A local geometry matching co-occurrence matrix is introduced to access novel geometry pattern
information, and it is shown how it can be best used to add novel information not included in basic
geometric similarity. To facilitate the direct measurement of matching accuracy in this study, there is a
strong assumption of perfect correspondence between across-domain areas through co-registration
for all satellite images, so that all domain components can be matched for both domains and a perfect
match can be found.

6.1.1 Contributions

1. Minimum-supervised manifold matching for relatively large dataset shifts and perfect
correspondence is contributed.

2. A geometric similarity formulation is provided that eliminates the need for an optimal
neighborhood size, yet maintains similar accuracy.

3. Local geometry matching co-occurrence is introduced as a new perspective on geometric
similarity, and it is used in a manner that complements basic geometric similarity by contributing
novel information.

4. Various cost function instantiations with geometric similarity components are tested on numerous
domain-matching problems, and it is shown that the proposed modifications and additions to
basic geometric similarity improve matching accuracy.

5. Supervised parameter learning for these cost functions is employed, but good generalization is
shown for problems with the same domain cardinality.

The problem statement is given next in Section 6.2, followed by Section 6.3 on related work. The
across-satellite imagery and dataset organization are described in Section 6.4 and then the different
similarities, including geometric similarity and its variants, together with the combination thereof into
the main cost function, are explained in Section 6.5. Key experiments are described and the main
results of this chapter are given in Section 6.6 and the important observations and confirmations of
hypotheses are discussed, before conclusions are drawn in Section 6.7.

6.2 PROBLEM STATEMENT

Feature matching in image registration is an important and challenging problem, especially in the
case of severe dataset shifts [229]. A dataset shift appears when the joint distribution of the input
and class variables differs between source and target datasets. Such dataset shifts may be caused by
a non-stationary classification environment or domain shift, which is characterized by a change in
the measurement system, or method of description. This is prevalent in remote sensing, where image
mismatches may appear in response to seasonal and illumination changes, terrain distribution or sensor
differences between the datasets.
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A supervised across-satellite and across-date feature matching cost function, based on divergence,
standard deviation similarity and geometric similarity [43], is developed in this chapter for GLCM
features. The GLCM feature descriptors of areas with uniform land-use type are calculated from
different high-resolution optical images acquired at different times and/or with different satellites. The
objective is to optimize a graph matching cost function that can accurately find the correspondence
between texture feature descriptors of two sets of areas with relatively similar land-use types and the
same land-use prior probabilities.

The limitation to this very specific scenario, exemplified by a coregistration problem, is motivated
partly by the difficulty of solving a non-perfect across-date cluster matching problem under dataset
shift where some domain elements are unmatched or have multiple matchings. The problem scope is
thus limited to perfect matching scenarios so that a feasible solution can be demonstrated.

6.2.1 Hypotheses

1. Local texture feature geometry is preserved across a multimodal dataset shift, since the feature
relationships between classes are maintained and because good features separate classes based
on relative dissimilarity.

2. Across-domain classes that are more frequently matched together in optimal local neighborhood
matchings are more likely to be matched in the across-domain matching, because such across-
domain class pairs demonstrate a higher local geometry similarity.

3. Global translation and a basic divergence minimization objective can improve matching accuracy,
since it corrects global domain differences and attempts to find the dataset shift with the fewest
assumptions as stated by Occam’s razor.

4. Relative class variances are possibly maintained under a dataset shift, since certain classes
will usually have more variance, such as informal settlements, and other classes will have less
variance, such as the non-builtup class.

6.2.2 Research questions

1. How does one perform unsupervised manifold (perfect) matching for relatively larger dataset
shifts?

2. How can information derived during the optimal neighborhood permutation search be used to
improve geometric similarity matching accuracy?

3. How should geometric similarity be employed, and which other correspondence measures should
be applied to perform manifold matching accurately?
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6.3 RELATED WORK

Graph matching has recently been used in remote sensing to match multitemporal sequences of
hyperspectral images by modeling the graphs for both domains as two observations of one common
underlying hidden Markov random field, using similarity based on multivariate Gaussian probability
density functions [230]. Pixel-level correspondences between across-date images are found through
graph matching with simplified nearest neighbor graphs in [231].

The correspondence obtained between domains can be used for feature space manifold alignment to
transfer labels between domains, for example, or as part of an image registration process. Feature
point matching is used for image registration in [229], but spatial relationships are employed directly.
Local spatial relationship and pattern similarity are exploited in [232] for feature point matching for
the purpose of image registration.

The focus of this research is, however, on investigating the preservation of GLCM feature space
geometry across imagery from different satellites by determining how a geometric similarity measure
addition to the cost function influences domain-matching accuracy. This knowledge of the dataset shift
behavior of texture features can be employed to improve feature point matching.

The manifold alignment framework of Tuia et al. [42] requires direct correspondence between across-
domain clusters or points, which is basically classification of a test domain from a train domain.
So the classification problem and the dataset shift problem essentially needs to be solved to obtain
direct correspondence information. Manifold alignment then allows for previously unseen points to
be mapped to a joint manifold to be classified, so it smooths the discrete probability function to a
continuous function.

Note that the geometric similarity concept introduced by Wang et al. [43] is for a manifold
alignment framework without correspondence, so no direct correspondence information is required, as
neighborhood geometry relationships are used to establish across-domain relationships as part of the
generalized eigenvalue decomposition. In this study the concept of geometric similarity is isolated
from the manifold alignment without correspondence, since the extended study dataset lends itself to
a manifold alignment with correspondence. So the task is to use the concept of geometric similarity
and to evaluate its preservation for a texture feature space in a land-use classification remote sensing
scenario.

The relationship of manifold alignment to the classification system is shown in Figure 6.2.

6.4 DATA DESCRIPTION

Twelve polygons, each of a uniform land-use type, were selected from the subtropical highland of
Johannesburg (Gauteng, South Africa) (see Figure 6.3). Most land-use types are settlements, including
informal, formal with backyard shacks, and formal housing. Non-builtup areas, open fields, a cemetery
and golf course are included to define key diverse characteristics of the texture feature spaces. Each
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Train
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features
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MatchingManifold

Manifold alignment framework

Figure 6.2. Supervised classification system with manifold alignment framework.

polygon is co-registered over six different across-date pansharpened satellite acquisitions, of which
samples from the 6×12 polygons are shown in Table 6.1.

Figure 6.3. Johannesburg multimodal dataset selection for this experiment.

The QuickBird-2, WorldView-2 and GeoEye-1 pansharpened color images had initial respective
resolutions of 0.6, 0.46 and 0.41 m/pixel-edge, which were then reduced to a common 0.6×0.6 m/pixel
and converted to grayscale. Image tiles of dimensions 100.2×100.2 m (100.2 m = 167 pixels × 0.6
m/pixel) were then extracted from each polygon, with a mean coverage of 99.1% and an average
coverage redundancy of 2.27 tiles/pixel. The first 13 of Haralick’s GLCM features were determined for
each tile (feature 14 omitted because of its computational complexity), with a 167×167 pixel window
and GLCM pairs used in all cardinal and ordinal directions with respective `1-norms of one and two,
and the features were averaged over the four spatial relationships.

6.5 METHODOLOGY

6.5.1 Study objective

Domain U = {u j}|U |j=1 is a p×|U | matrix (set cardinality denoted by | · |) with co-domain V = {v j}|V |j=1,
where u j and v j are defined in a p-dimensional feature space (p = 13 for GLCM). A partitioning
or labeling function cU(·) partitions U = {Ui}m

i=1 into η(U) = m subsets Ui ⊆ U so that {∀i ∈
[1,m], ∀a,b ∈ Ui, ∀e ∈ U \Ui | cU(a) = cU(b), cU(a) 6= cU(e)}, and cV (·) partitions V = {Vi}n

i=1

similarly.
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Table 6.1. Multi-satellite imagery (S) of six acquisitions from QuickBird-2 (QB), WorldView-2 (WV)
and GeoEye-1 (GE) satellites, coregistered over 12 different areas, each of a uniform land-use type.
Imagery samples courtesy of Google™ Earth.

Satellite Eldorado Diepkloof Devland Diepkloof Chiawelo Molapo
& Date Park East East South Zone 2 East
D1 (QB)
2007-9-18

D2 (QB)
2008-9-7

D3 (WV)
2011-3-31

D4 (WV)
2011-7-2

D5 (GE)
2012-1-1

D6 (WV)
2012-6-6

Area 0.2863 km2 0.7417 km2 0.2179 km2 0.2457 km2 0.2819 km2 0.5999 km2

# Tiles 61×6 76×6 39×6 105×6 82×6 107×6
Satellite Orlando Olifantsvlei Protea Avalon Soweto Klipriviers-
& Date East South Cemetery Golf Club oog South
D1 (QB)
2007-9-18

D2 (QB)
2008-9-7

D3 (WV)
2011-3-31

D4 (WV)
2011-7-2

D5 (GE)
2012-1-1

D6 (WV)
2012-6-6

Area 0.7902 km2 0.4192 km2 0.4061 km2 0.6699 km2 0.3788 km2 0.5606 km2

# Tiles 220×6 68×6 69×6 148×6 80×6 78×6
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Γ(C) = Γ(C(U ,V )) = arg f (C) min∑iCi f (C)i is a bijection ( f (C)) that one-to-one matches partitions
in {Ui} to those in {VΓ(C)i} with all partitions matched and each partition matched to exactly one
across-domain partition, which can be solved by the O(n3) Munkres or Hungarian algorithm [233].
The η(U)×η(V ) cost matrix C (with η(U) = η(V )), with matrix indicing Ci j indicating row i and
column j, captures the cost of matching across-domain subsets Ui and Vj. For perfect correspondence
each subset Ui is uniquely matched to one subset Vj and vice versa (m = n), with the best possible
match given by 1×η(U) vector ΓUV .

For multiple source and target domain pairs S = {(Ds(i),Dt(i))}
|S|
i=1, where source domains are denoted

by Ds(i) (a p×|Ds(i)| matrix) and target domains by Dt(i) (a p×|Dt(i)| matrix), the study objective is
to devise an overall cost matrix (function) C∗ = argC minΘS(C) that minimizes the overall matching
error. Equation 6.1 defines the normalized root-mean-square error ΘS(C) ∈ [0,1] between the best
match ΓUV and Γ(C) over all separately matched domain pairs, where δ (i, j) denotes the Kronecker
delta function, which is 1 if i and j are equal and 0 otherwise, overall given by

ΘS(C) =

√√√√√ ∑
(U ,V )∈S

(
∑

η(U)
i=1 δ (ΓUV i ,Γ(C(U ,V ))i)

)2

η(U)2|S|
. (6.1)

Matching accuracy is noted in this chapter as 100(1−ΘS(C)) and is measured for S consisting of all
possible pairs of acquisitions in the study dataset.

6.5.2 Data preprocessing

The data sets are normalized simultaneously to Student’s t-statistic T (U ,V )i = (Ui−µ(U∪V )) ·σ(U∪
V )−1, where µ(·) and σ(·) are respectively the row-wise means and standard deviations. Standardized
partition means X = X(U ,V ) = {xi = µ(T (U ,V )i)}m

i=1 (p×m matrix) and Y = Y (V ,U) = {yi =

µ(T (V ,U)i)}n
i=1, as well as partition standard deviations Xσ = Xσ (U ,V ) = {σ(T (U ,V )i)}m

i=1 and
Yσ = Yσ (V ,U) = {σ(T (V ,U)i)}n

i=1 describe the simplified domain and co-domain manifolds.

6.5.3 Divergence and standard deviation similarity

An assumption in this chapter is that there are GLCM features that undergo an overall constant shift
or translation because of dataset shift resulting in a divergence unrelated to other types of geometry-
preserving shifts. Divergence between domains resulting from an overall sample mean mismatch
between domains can be reduced by using cost matrix C∆ with specific matrix entries C∆(δ ,U ,V )i j

given in Equation 6.2, representing the Euclidean norm (‖ · ‖2) between subsets Ui and Vj as

C∆(δ ,U ,V )i j =

∥∥∥∥X(U ,V )i−Y (V ,U) j +δ

(
µ
(
X(U ,V )

)
−µ

(
Y (V ,U)

))∥∥∥∥
2
. (6.2)

Coincidence of domain and co-domain sample means is obtained through mean translation [48] with
correction factor δ = 1, as shown in Figure 6.4. Here the matching accuracy improves as δ → 1, which
is indicative of possible evidence for the assumption of feature translation under dataset shift. An
example of an across-satellite feature space transformation and domain matching based on corrected
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divergence is seen in Figure 6.5.

Another assumption is relative variance similarity between matched across-domain subset or cluster
pairs, since the associated across-domain classes are expected to have a similar degree of feature
variance relative to other classes. A smaller normalized difference between across-date cluster standard
deviations indicates a higher likelihood of a match under this assumption. Normalized differences
between subset standard deviations are used for component Cσ with scalar entries Cσ (U ,V )i j as shown
in Equation 6.3 given by

Cσ (U ,V )i j =

∥∥∥∥Xσ (U ,V )i−Yσ (V ,U) j

Xσ (U ,V )i +Yσ (V ,U) j

∥∥∥∥
2

. (6.3)
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Figure 6.4. The influence of mean translation (Eq. 6.2) on domain-matching accuracy (100(1−ΘS(C)))
for divergence only (C∆(δ )) and divergence plus standard deviation similarity (C∆(δ ) +Cσ ) cost
matrices. The relative scaling between C∆(δ ) and Cσ is equal for this illustration, but is optimized in
the remainder of this chapter.
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Figure 6.5. Domain-matching snapshot (D4↔ D5) with divergence (C∆(1)). Each axis indicates the
GLCM feature number. Correct point matches ( ) from D4 ( ) to D5 ( ) are indicated, also
incorrect matches ( ) with corrections ( ).
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6.5.4 Geometric similarity calculation

The determination of geometric similarity outlined in [43] is reviewed in this subsection, before it
is used in domain matching cost functions. The local geometry of a point xi is represented by a
(k+ 1)× (k+ 1) matrix Rxi , which contains the pairwise Euclidean distances between the nearest
neighbours of xi. Similarly, Ry j is a (k+1)× (k+1) matrix representing the local geometry of yi. The
distance between xza and xzb is recorded as Rxi(a,b) =‖ xza − xzb ‖2, where z1 = i and {z2, . . . ,zk+1}
are xi’s k nearest neighbor’s indices. The k nearest neighbours of xi are denoted as Nk(xi) = {zl}k+1

l=1 ,
and a permutation {Nk(xi)}h fixes z1 and permutes {z2, . . . ,zk+1} according to permutation number
0≥ h≥ k!. {Rxi}h is the associated matrix corresponding to the permutation {Nk(xi)}h.

A permutation-specific geometric similarity of the local contact patterns (size k) around points x and
y is given by dk(x,y,h), for a specific y neighborhood permutation {Nk(y)}h. Since x and y are from
different domains, the neighborhood scales may differ, so either Rx or {Ry}h is scaled as in Equation 6.4
before calculating the difference between geometries, depending on which scaling minimizes the
Frobenius norms of the difference matrices, scaling given by

dk(x,y,h) = min

(∥∥∥∥∥{Ry}h−
tr
(
RT

x {Ry}h
)

Rx

tr(RT
x Rx)

∥∥∥∥∥
F

,

∥∥∥∥∥Rx−
tr
(
{Ry}T

h Rx
)
{Ry}h

tr
(
{Ry}T

h {Ry}h
) ∥∥∥∥∥

F

)
. (6.4)

The k nearest neighbor geometric similarity between x and y is dk(x,y) = min1≥h≥k! dk(x,y,h), for the
local matching Γ

(k)
xy = arg{Nk(y)}h

min1≥h≥k! dk(x,y,h) between the neighbours of x and y that minimizes

the geometric dissimilarity. The mean geometric similarity dXY
(k)

between simplified domains X and
Y is shown in

dXY
(k)

= ∑
|X |
i=1 ∑

|Y |
j=1 dk(xi,y j)

/
(mn) (6.5)

and the geometric similarity matrix d(k)
XY in

d(k)
XY = ∑

|X |
i=1 ∑

|Y |
j=1 dk(xi,y j)J(i, j)

/
dXY

(k)
(6.6)

gives the normalized geometric similarities of each possible across-domain point pair for neighborhood
size k. J(a,b) is a single-entry matrix where only Jab = 1, with the rest of the elements being
zero.

6.5.5 Basic geometric similarity cost function

The cost matrix C1 in Equation 6.7 is based upon geometric similarity with growing neighborhood sizes,
with a maximum size K < min(|X |, |Y |), where larger neighbourhoods contribute more information to
the degree controlled by parameter λ , overall formulated as

C1(λ ,U ,V ) =
K

∑
k=2

d(k)
XY exp(k/λ )

/
K

∑
k=2

exp(k/λ ) (6.7)

The larger weight of larger neighborhoods is motivated by the fact that these include more information
than smaller neighborhoods. The matrix is normalized to allow for integration into more complex cost
matrices. The cost matrix C1 constitutes a baseline formulation for domain matching with geometric
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similarity.

6.5.6 Geometric similarity and matching co-occurrence cost functions

The local geometry matching co-occurrence matrix Ω
(k)
A (X ,Y ) in Equation 6.8 records how often each

possible across-domain pair is matched in optimal geometric similarity permutations for a neighborhood
size of k, overall formulated as

Ω
(k)
A (X ,Y ) = ∑

x∈X
∑
y∈Y

k+1

∑
l=1

J
(

Nk(x)l ,Γ
(k)
xy (l)

)
exp(1)

(k+1)exp
(

dk(x,y)

dXY
(k)

) . (6.8)

Each co-occurrence increment is conditioned by the normalized geometric similarity dk(x,y)/dXY
(k)

of the base pair (x,y), so that the co-occurrence of matched neighbours (xNk(x)l
,y

Γ
(k)
xy (l)

) is promoted
when the geometries of the neighbourhoods Nk(x) and Nk(y) are more similar. J(a,b) is a single-entry
matrix where only Jab = 1, with the rest of the elements being zero.

This co-occurrence matrix is incorporated into the denominator of cost matrix C2 in Equation 6.9, since
higher co-occurrence counts should translate to lower matching cost, overall given by

C2(λ ,γ ,U ,V ) =

( K

∑
k=2

exp
( k

λ
− 10

γ

))
�
( K

∑
k=2

exp
( k

λ
−10d(k)

XY/γ

)
�Ω

(k)
A (X ,Y )

)
. (6.9)

The Hadamard (element-wise) product and division are respectively denoted by � and �. The
geometric similarity matrix is moved to a heatmap formulation exp(−10d(k)

XY/γ) controlled by factor γ ,
as this construct proved to perform best in conjunction with the co-occurrence matrix for the study data.
γ is scaled by a factor of 1/10 to get the parameter into a similar functional range as λ for aesthetic
purposes; this scaling factor was determined based on the results in Figure 6.6.

An alternative local geometry matching co-occurrence matrix Ω
(k)
B is presented in Equation 6.10, where

co-occurrences are suppressed for base pairs with greater geometric similarity, instead of promoting
such co-occurrence increments as with Ω

(k)
A , overall given by

Ω
(k)
B (X ,Y ) = ∑

x∈X
∑
y∈Y

k+1

∑
l

J
(

Nk(x)l ,Γ
(k)
xy (l)

)
(k+1)dXY

(k)
dk(x,y)−1

. (6.10)

Co-occurrence matrix Ω
(k)
B is used in cost function C3 in Equation 6.11, which has the same form as

C2, overall given by

C3(λ ,γ ,U ,V ) =

( K

∑
k=2

exp
( k

λ
− 10

γ

))
�
( K

∑
k=2

exp
( k

λ
−10d(k)

XY/γ

)
�Ω

(k)
B (X ,Y )

)
. (6.11)

The earlier co-occurrence matrix Ω
(k)
A could possibly repeat information already given by the geometric

similarity matrix, because of the promotion of more geometrically similar base pairs. The suppression
of information in Ω

(k)
B from across-domain pairs with a higher likelihood of being matched allows

for Ω
(k)
B to contribute information not present in the geometric similarity d(k)

XY . The interactive effect
of parameters λ and δ on matching accuracy with C3 is illustrated in Figure 6.6 (D described in
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Section 6.6), where standard deviation similarity is added to resolve some of the remaining subset
confusion.

γ

λ
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Figure 6.6. Domain matching accuracy 1−ΘS(C3(λ ,γ)+Cσ ) as a colormap function of geometric
similarity parameters λ and γ .

6.5.7 Combined cost function

Domain matching only with geometric similarity leads to significant confusion between close
neighbours, as seen in the matching of Figure 6.7. Divergence, geometric and standard deviation
similarities are thus combined in a cost function with optimal utility Θ̂S(Ci) given in

Θ̂S(Ci) = min
α ,β ,δ ,
λ ,γ ,ξ

ΘS
(
αC∆(δ )+βCi(λ ,γ)+ξCσ (·)

)
. (6.12)

The contribution coefficients have property α +β +ξ = 1, so ξ = 1−α−β . Correction coefficient
δ = 1 optimizes the divergence cost matrix, and γ = 1 simplifies C2 and C3 without practical loss
of generality, which leaves parameters α , β and λ to be learnt. The second cost term selects from
geometric similarity measures C1, C2 or C3. The matching accuracy is measured as a percentage-like
100(1− Θ̂S(Ci)).

6.6 EXPERIMENTS AND RESULTS

An array S′ of domain pairs is populated in |D|!/|T |! different ways with every combination (Di,D j)

of two images from every unique set of |T | training images, selected from the study imagery of |D|
different acquisitions. At least one image from each different satellite is included in the training images
T . Each training array S′ has a corresponding test array S\S′, where domain pair array S is populated
from every two-image combination of all |D| acquisitions.

The generalization performance of the combined cost function with geometric similarity (K = 11)
was tested for different training sizes |T |, where parameters (α ,β ,λ ) were optimized for the training
array S′ and the test matching accuracy measured with the optimized parameters on the previously
unseen test array S\S′. In the single case of |T |= |D| the accuracy was tested on the training array
only, corresponding to the last row in Table 6.2. Since there are multiple ways of instantiating S′, the
domain-matching accuracy means and standard deviations are calculated over the different S′.
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12 4 13 6 3
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Figure 6.7. Domain-matching snapshot (D2↔ D5) with C1(6). Each axis indicates the GLCM feature
number. Correct point matches ( ) from D2 ( ) to D5 ( ) are indicated, also incorrect matches
( ) with corrections ( ).

Table 6.2. Training accuracies 100(1− Θ̂S′(Ci)) and test accuracies 100(1− Θ̂S\S′(Ci)) with optimal
parameters 100(α ,β ,λ ) for different training image set sizes.

Training accuracy (µ ±σ) Test acc. (µ ±σ)

C1 C2 C3 C1 C2 C3

3 87.6 ±2.2 90.3 ±10 92.0 ±9.5 83.8 81.2 84.3

(34, 35, 580) (42, 34, 132) (46, 28, 145) ±0.7 ±8.9 ±8.0

4 88.9 ±2.3 88.7 ±3.8 93.2 ±6.1 82.2 82.9 88.7

(34, 35, 580) (46, 28, 148) (46, 28, 145) ±0.9 ±3.9 ±2.7

5 87.3 ±2.6 87.9 ±1.5 90.1 ±1.9 82.4 84.6 89.0

(39, 32, 580) (46, 28, 174) (46, 28, 154) ±3.2 ±7.0 ±3.2

6 85.9 87.8 89.5

Tr
ai

ni
ng

se
ts

iz
e
|T
|

(38, 32, 600) (46, 28, 126) (46, 28, 154)

The domain-matching errors, out of a uniform maximum error of 12, for every domain pair are shown in
Table 6.3 for different combined cost functions. The cost functions were optimized using all available
domain pairs in array S. A comparison between the matching accuracy of different cost functions is
shown in Table 6.4. For a training set size of 5 datasets there is a significant difference (with level of
0.1) between using C1 and C3 with two-tailed p-val of 0.09 using Welch’s unpaired t-test, with a mean
difference 95% confidence interval of -0.6 to 6.2. The variance appears to reduce with training set
size and the mean difference appears to increase, which indicate the possibility of greater significant
difference between using C1 and C3 with increase in training set size.
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Table 6.3. Domain-matching errors for the different optimized geometric similarity cost functions,
indicating only one off-diagonal triangular of each symmetric error matrix.

0.38C∆(1)+
0.32C1(6) + 0.3Cσ

D1D2D3D4D5D6
D1 • 0 3 0 0 0
D2 0 • 2 0 2 0
D3 0 2 • 3 0 3
D4 0 0 3 • 2 0
D5 2 2 0 4 • 2

C
∆

(1
)+

C
σ

D6 0 0 4 0 4 •

0.46C∆(1)+
0.28C3(1.54) + 0.26Cσ

D1D2D3D4D5D6
D1 • 0 0 0 0 0
D2 0 • 2 0 0 0
D3 0 2 • 2 0 0
D4 0 0 2 • 0 0
D5 2 2 0 0 • 4

0.
46
C

∆
(1

)+
0.

28
C

2(
1.

26
)+

0.
26
C
σ

D6 0 0 0 0 4 •

Table 6.4. Domain-matching accuracy (100(1−ΘS(C))) comparison for different cost functions C

Cost function Match accuracy

C1(6) 32.5

C2(1.26) 39.3

C3(1.54) 39.3

C∆(0) 57.9

C∆(1) 62.8

Cσ 64.7

C∆(1)+Cσ 81.0

0.49C∆(1)+0.19d(11)
XY +0.32Cσ 83.8

0.50C∆(1)+0.08d(3)
XY +0.42Cσ 85.9

0.38C∆(1)+0.32C1(6)+0.3Cσ 85.9

0.46C∆(1)+0.28C2(1.26)+0.26Cσ 87.8

0.46C∆(1)+0.28C3(1.54)+0.26Cσ 89.5

6.7 DISCUSSION AND CONCLUSION

In this study the geometric similarity concept of Wang et al. [43] is isolated from the manifold
alignment without correspondence, since the extended study dataset lends itself to a manifold alignment
with correspondence. The objective was to use the concept of geometric similarity and to evaluate
its preservation in a texture feature space for a land-use classification remote sensing scenario.
The manifold matching problem can then be addressed and a solution for GLCM feature spaces
can be demonstrated by using the Hungarian algorithm as solver and focusing on engineering a
multicomponent cost matrix that performs generally well.

A multicomponent cost formulation for domain-matching with geometric similarity was presented,
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integrating divergence and standard deviation similarity to improve matching accuracy. There is
confusion between nearby neighboring domain points, because of a relatively similar geometry with
respect to the rest of the points. If divergence and standard deviation similarity is added to C1 geometric
similarity, the domain-matching accuracy improves from 32.5 to 85.9, out of a maximum 100, which
would correspond to no errors being made for any matching between domain pairs in S. Geometric
similarities for a range of different neighborhood sizes have been combined into a new geometric
similarity formulation C1, eliminating the need to find an optimal neighborhood size, which can vary
significantly depending on the specific across-domain geometry. The combined formulation C1 can
achieve the same matching accuracy (85.9) as geometric similarity for an optimal neighborhood size
of k = 3.

Local geometry matching co-occurrence was introduced to provide novel information on geometric
similarity, and improved matching accuracy was achieved when combined with geometric similarity in
cost function C2, improving from 85.9 with C1 to 87.8 with C2. Local geometry matching co-occurrence
matches the neighbourhoods of across-domain base pairs so that geometric dissimilarity is minimized.
By suppressing across-domain point matches stemming from relatively geometrically similar base
pairs, new information is probably contributed that is not given by geometric similarity alone. This
reweighting of matching co-occurrences is implemented in C3 and it increases matching accuracy
from 87.8 for C2 to 89.5 with C3, for a dataset containing 15 different domain-matching problems.
The parameters of the combined cost function with C3 are also more stable and generalize better than
with either C1 or C2, with the optimal α and β remaining unchanged and with λ varying relatively
little.

The next chapter studies a feature learning strategy for reducing dataset shift in the case where there is
no clear separation of dataset shift parts.
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CHAPTER 7 MULTIVIEW DEEP LEARNING FOR
LAND-USE CLASSIFICATION

7.1 CHAPTER OVERVIEW

In this chapter a multiscale input strategy for multiview deep learning is proposed for supervised
multispectral land-use classification and it is validated on a well-known dataset. The hypothesis that
simultaneous multiscale views can improve composition-based inference of classes containing size-
varying objects compared to single-scale multiview is investigated. The end-to-end learning system
learns a hierarchical feature representation with the aid of convolutional layers to shift the burden
of feature determination from hand-engineering to a deep convolutional neural network (DCNN).
This allows the classifier to obtain problem-specific features that are optimal for minimizing the
multinomial logistic regression objective, as opposed to user-defined features, which trade optimality
for generality.

A heuristic approach to the optimization of the DCNN hyper-parameters is used, based on empirical
performance evidence. It is shown that a single DCNN can be trained simultaneously with multiscale
views to improve prediction accuracy over multiple single-scale views. Competitive performance is
achieved for the UC Merced dataset where the 93.48% accuracy of multiview deep learning outperforms
the 85.37% accuracy of scale-invariant feature transform (SIFT) methods and the 90.26% accuracy of
unsupervised feature learning.

Chapter 3 Chapter 4 Conference Chapter 5 Chapter 6

Main objective

Theme 1 Theme 2

Chapter 7

Theme 3

Figure 7.1. Indication of where this chapter fits into the thesis.
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7.1.1 Contributions

1. Demonstration of pervasive and non-compartmentalized dataset shift when low-level features
are used and the associated classification issues that arise from this dataset shift.

2. A basic DCNN with an architecture that produces above-average accuracy on the UC Merced
dataset.

3. An improved DCNN with multiscale multiview input and classification probability averaging
that results in a very competitive accuracy for the UC Merced dataset.

The problem statement is defined in terms of hypotheses and research questions in Section 7.2,
whereafter related work is discussed in Section 7.3. An overview of the UC Merced dataset is given in
Section 7.4 and the dataset shift problem is illustrated with low-level features in the form of GLCM
texture features in Section 7.5. The deep learning design and methodology is discussed and the
multiscale input method is described in Section 7.6, with the results presented in Section 7.7 where
class confusion, convergence, visualization of the inner workings of the network, and comparison to the
results of other published methods are addressed before a conclusion is reached in Section 7.8.

7.2 PROBLEM STATEMENT

Feature design has been a mainstay in classifier applications and much effort has been invested
in hand-engineering specific features that are suitable only for select use-cases. The advent of
graphics processing unit (GPU)-accelerated computational resources made feasible the implementation
of multilayer convolutional neural network (CNN) approaches for classification. Deep learning
discovers optimal features for the given problem in order to minimize the log loss cost function
during classification. It is thus important to investigate the performance benefits of using the optimal
problem-specific features learned by deep learning instead of using user-defined features that trades
problem-specific optimality for general applicability.

The features discovered by deep learning are optimal in the sense that they minimize the multinomial
logistic regression objective, and improved accuracy is expected compared to the use of more general
user-defined features such as SIFT and Gabor features. The objective of this research was to design a
DCNN for the UC Merced land-use dataset [52], a dataset compiled in 2010 and used as a benchmark
in several land-use classification studies [52], [234], [235], [236], [237], [238]. The challenge is to
optimize classification accuracy by finding a proper selection of DCNN hyper-parameters, which are
defined as all the DCNN settings that exclude the learned neuron weights and biases, such as the
architecture design, convolutional filter bank specifications, pooling layer specifications, and learning
rate and momentum values.

While the hyper-parameter selection and the reduction of overfitting through data augmentation do
have a significant impact on deep learning performance, an additional strategy is needed to achieve
competitive performance. This requires moving beyond simple label-preserving transformations such
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as mirroring and rotation to augment the input dataset, while still adhering to the guiding principle of
minimum intervention so that most of the feature learning burden can be delegated to the deep learning
solution.

The approach contributed in this chapter is a generalization of the multiview strategy used by Krizhevsky
et al. [49] that admits multiple view scales used to extract partial input sample patches. Classes with
size-varying objects, such as storage tanks, can then potentially be recognized more accurately if
consensus on multiscale views are used, a hypothesis tested in this research.

7.2.1 Hypotheses

1. Basic texture features will distinguish poorly between distinct land-use classes where there
are both multimodal and semantic within-class variations, because the low level features may
simultaneously be common across different classes, which causes excessive confusion.

2. The negative impact of multimodal image variances on classifier accuracy can be reduced with
deep learning, since features are learned that are optimal for minimizing the classifier cost
function.

3. A single DCNN with multiscale multiviews can improve composition-based inference of classes
containing size-varying objects compared to single-scale multiview, since the size-varying
objects have a greater probability of being featured at the right scale.

4. Increasing the number of different view scales can improve classification accuracy further, since
a wider variety of object scales can then be accommodated.

7.2.2 Research questions

1. How can features be learned that are optimal for minimizing the classification loss function
under multimodal image variances?

2. How should a DCNN be harnessed to improve classification where there are multiscale
presentations of certain class characteristics, such as storage tanks that can vary in size, depending
on the sample?

3. How can a basic DCNN implementation be improved upon in order to increase classification
accuracy?

4. What are the optimal DCNN architecture and configuration for the UC Merced dataset?
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7.3 RELATED WORK

Deep learning has been used previously in remote sensing for hierarchically extracting deep features
with deep belief networks [239] or stacked auto-encoders in combination with PCA and logistic
regression for hyperspectral data classification [240]. A hybrid DCNN was presented by Chen et
al. [50] for improved vehicle detection in satellite images where variable-scale features are extracted
through the use of multiple blocks of variable receptive field sizes or max-pool field sizes.

Remote sensing image fusion with deep neural networks (DNN) has been done by Huang et al. [241]
using stacked modified sparse denoising auto-encoders for pretraining the hidden layers of the DNN to
avoid the “diffusion of gradients” caused by random neuron initialization. Compressed-domain ship
detection has also been performed with a DNN that provided high-level feature representation and
classification in conjunction with an extreme learning machine that was used for feature pooling and
decision making [242].

7.4 DATA DESCRIPTION

The UC Merced land-use dataset [52] is investigated, which is a set of aerial ortho-imagery with a
0.3048 m (1 foot) pixel resolution extracted from United States Geological Survey national maps.
The UC Merced dataset has been used as a benchmark for land-use classifier evaluation in numerous
publications [52], [234], [235], [236], [237], [238]. The dataset has been compiled from imagery over
the US regions of Birmingham, Boston, Buffalo, Columbus, Dallas, Harrisburg, Houston, Jacksonville,
Las Vegas, Los Angeles, Miami, Napa, New York, Reno, San Diego, Santa Barbara, Seattle, Tampa,
Tucson and Ventura.

Figure 7.2. UC Merced dataset selection for this experiment.

The dataset consists of 21 land-use classes containing a variety of spatial patterns, some with texture
and/or color homogeneity and others with heterogeneous presentation, as shown in Figure 7.3. The
dataset was compiled from a manual selection of 100 images per class, each RGB image being
approximately 256×256 pixels. The 21 land-use types include (a) agricultural, (b) airplane, (c)
baseball diamond, (d) beach, (e) buildings, (f) chaparral, (g) dense residential, (h) forest, (i) freeway,
(j) golf course, (k) harbor, (l) intersection, (m) medium density residential, (n) mobile home park, (o)
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overpass, (p) parking lot, (q) river, (r) runway, (s) sparse residential, (t) storage tanks, and (u) tennis
court classes.

7.5 MULTISPECTRAL GLCM FEATURE CLASSIFICATION

7.5.1 Separability of basic features

Ordinarily with dataset shift there is a distinct change in measurement mode or difference between the
training and testing data that can invalidate learnt class distinction rules. In the UC Merced dataset
there is a pervasive dataset shift that makes it difficult to separate the samples into a train/test split
that would display the conventional dataset shift scenario between the train and test datasets. This
is because of the wide location variety of samples for any given class, where high-level semantic
features are the predominant reason for class labeling. This stands in contrast to larger-area land-use
classification problems, which are more accurately characterised by lower-level features such as texture
features.

Classifications that depend on high-level features, such as the presence of certain objects and
combinations of semantic elements, may display poorly separable low-level features. Differences
between samples, such as different crops in agriculture and different sized storage tanks, can be high-
level causes of dataset shift between the samples. Heterogeneous presentation of low-level features
throughout a dataset presents a more severe form of dataset shift, where the solution to accurate
supervised classification cannot exploit an explicit shift between the train and test data.

7.5.2 Multispectral GLCM features

To demonstrate that lower-level features become poorly separable in the case of higher-level semantic
classification, multispectral GLCM texture features are investigated and their separability tested in
supervised classification. The land-use image samples of approximately 256×256 pixels are converted
into four GLCMs with pair offsets (row offset, column offset) of (2, 0), (0, 2), (-2, 2), and (2, 2).

The statistics calculated for each of the GLCMs include contrast, correlation, energy and homogeneity.
The contrast measures local variations, correlation measures joint probability occurrence of pixel pairs,
energy measures the sum of squared GLCM entries and homogeneity measures the closeness of the
distribution of elements in the GLCM to the diagonal of the GLCM.

Contrast: f1 = ∑
i, j
|i− j|2 p(i, j) (7.1)

Correlation: f2 =
∑i ∑ j(i j)p(i, j)−µxµy

σxσy
(7.2)

Energy: f3 = ∑
i, j

p(i, j)2 (7.3)

Homogeneity: f4 = ∑
i

∑
j

1
1+ |i− j|

p(i, j) (7.4)
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Agricultural Airplane BaseballCourt Beach Buildings Chaparral Dense resident.

Forest Freeway Golf course Harbor Intersection Medium Mobilehome
residential park

Overpass Parking lot River Runway Sparse resident. Storage tanks Tennis court

Figure 7.3. Image samples of the UC Merced land-use dataset classes, courtesy of United States
Geological Survey National Maps.
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The mean of each statistic fi over the four GLCMs is used to obtain four features for a given color
channel, which contribute to a total of 12 multispectral GLCM texture features (4×3 color channels)
for a given image sample.

7.5.3 Principal component analysis

The fitness of dense multispectral texture features to distinguish between the higher-level semantic
classes in the UC Merced dataset can be evaluated visually through PCA. PCA finds linear combinations
of texture features that account for most of the variance observed in the feature samples, with
orthogonality between different combinations. High fitness will manifest as clear separation between
the primary principal component score clusters of different classes.

In Figure 7.4 the 21 different UC Merced class principal component score clusters are depicted for the
two most significant principal components with color differentiation between classes. Each cluster is
accompanied by a 1σ -ellipse centered at the class score mean. It is apparent that the multitude of classes
are highly overlapped in the principal component space, with some exception for the agricultural (red)
and mobile home park (blue) classes.
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Figure 7.4. UC Merced class separation with multispectral GLCM features.

Consequently, the separability of the classes with multispectral texture features is likely to be poor,
as depicted by the visual PCA in Figure 7.4. The 21 different land-use classes in UC Merced are
also displayed separately in Figure 7.5, to show the details occluded in Figure 7.4 more clearly. Most
classes appear to be unimodal with relatively low variance, with the notable exception of the mobile
home park class, which presents with two modes, and the agricultural class, which has relatively higher
variance.

7.5.4 Classification with neural network

Visual analysis in the principal component space in the previous subsection revealed high overlap
of classes, so there is an expectation of a relatively low supervised classification accuracy. This
expectation is tested by performing machine learning with the multispectral texture features using a
neural network that is trained with standard backpropagation. The main objective is to measure the
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(a) Agricultural
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(b) Airplane
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(c) Baseball diamond
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(d) Beach
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(e) Buildings
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(f) Chaparral
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(g) Dense residential
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(h) Forest
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(i) Freeway
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(j) Golf course
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(k) Harbor
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(l) Intersection
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(m) Medium density resid.
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(n) Mobile home park
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(o) Overpass
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(p) Parking lot
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(q) River
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(r) Runway
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(s) Sparse residential
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(t) Storage tanks
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(u) Tennis court

Figure 7.5. PCA of multispectral GLCM features of the UC Merced land-use classes.
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Table 7.1. Multispectral GLCM NN confusion matrix for the lexicographically sorted UC Merced
land-use classes for the full-sample training dataset.

Predicted class label
a b c d e f g h i j k l m n o p q r s t u

a Agricultural 87 0 0 0 0 4 0 6 0 1 0 0 0 0 0 2 0 0 0 0 0
b Airplane 0 68 6 7 0 0 4 0 2 2 2 0 1 0 1 3 0 1 1 2 0
c Baseball diamond 0 4 70 6 0 0 1 0 1 6 0 0 1 0 1 0 0 1 6 2 1
d Beach 0 0 17 78 0 0 0 0 4 0 0 0 0 0 0 0 0 0 1 0 0
e Buildings 0 19 0 1 20 0 10 0 8 1 5 0 6 4 1 9 0 0 1 15 0
f Chaparral 16 0 0 0 0 69 0 8 0 1 0 0 0 0 0 1 0 0 5 0 0
g Dense residential 1 5 1 0 0 0 59 0 1 0 1 0 15 0 5 5 0 0 2 2 3
h Forest 12 1 1 0 0 6 0 71 0 2 0 0 0 0 0 0 6 0 1 0 0
i Freeway 0 5 8 4 1 0 1 1 42 1 0 0 6 0 6 3 2 1 13 5 1
j Golf course 1 3 38 2 0 0 0 2 0 42 0 0 0 0 0 0 4 0 8 0 0
k Harbor 0 11 0 0 0 0 0 0 0 0 82 0 0 0 0 7 0 0 0 0 0
l Intersection 0 3 3 3 1 0 17 0 19 0 0 3 6 0 14 6 3 1 13 7 1

mMedium residential 0 1 5 0 2 0 36 0 6 0 0 1 16 0 0 10 4 0 16 0 3
n Mobile home park 0 3 0 0 4 0 38 0 0 0 0 0 8 30 0 7 0 0 8 2 0
o Overpass 4 17 2 0 3 0 15 0 12 0 0 0 8 1 24 5 0 1 0 8 0
p Parking lot 0 0 0 0 0 1 2 0 0 0 4 0 2 0 0 89 0 0 1 1 0
q River 2 2 8 1 0 1 0 5 5 7 2 0 0 0 1 12 31 0 19 2 2
r Runway 0 21 28 12 0 0 0 0 8 7 0 0 0 0 6 0 0 4 1 13 0
s Sparse residential 0 0 17 3 0 5 5 2 3 5 0 0 9 1 0 0 6 1 41 0 2
t Storage tanks 0 17 8 10 3 0 2 0 6 6 0 0 0 3 1 9 0 1 2 31 1
u Tennis court 0 3 21 2 1 0 10 0 4 6 0 0 7 1 1 3 1 0 14 11 15

training accuracy, which can help to assess the fitness of the features to distinguish accurately between
classes.

7.5.4.1 Neural network design

The 12 multispectral GLCM features are standardized before being input to a neural network with one
hidden layer, with a number of units consisting of the geometric mean of the number of features and
the number of classes or output nodes. The 16 hidden units have a sigmoid nonlinear function (s(x) =
(1+exp(−x))−1) and the 21 output nodes are modeled by a softmax layer (o(z) j = exp(z j)/∑k exp(zk)).
The learning rate is set at 0.05 and the number of backpropagation iterations is 1000. The neural
network is given adequate capacity to learn class distinctions, but the expectation is that poor features
will not allow for the neural network to learn the necessary distinctions. This is tested by allowing
the neural network to train on all the available data and then to measure the training accuracy and
confusion, as shown in Table 7.1.

7.5.4.2 Classification accuracy

An instance training accuracy of 46.3% is observed when training the neural network with all available
samples, which is a comparatively poor accuracy, since good features with adequate neural network
capacity should normally obtain an accuracy close to 100%. An over-capacity neural network, i.e.
a neural network with many more hidden units than the sum of input and output units, will usually
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overfit given a large enough number of training iterations and a suitable learning rate. Overfitting will
increase the training accuracy even further, although the neural network is not likely to be able to
generalize that performance. For the given machine learning task a significant increase in the number
of hidden units did not increase training accuracy at any point.

7.5.4.3 Confusion analysis

According to the confusion table in Table 7.1 the best distinguishable classes include parking lot,
agriculture, harbor, beach and forest. Some of these classes appear to have more homogeneous and
sometimes dense textures that can be accurately characterized with GLCM features, which is a possible
explanation for these classes being distinguishable with multispectral texture features alone. Some of
the classes confused most often with texture feature classification are intersection, runway, tennis court
classes and buildings, which tend to be classes with larger features defining the semantic character of
the class, where the features are not likely to be characterized well with dense textures.

7.6 METHODOLOGY

In this section an overview of the training of a DCNN is first given, followed by a description of the
important processing layers of a DCNN. The specific DCNN architecture instantiation developed for
the UC Merced dataset is then defined and then methods of reducing training overfitting are given. A
multiscale multiview input strategy is then described that utilizes the defined DCNN.

7.6.1 Deep learning

Deep learning is characterized as an end-to-end learning system typically consisting of more than five
processing layers, which is usually supervised and produces a discriminative classification for a given
input. The burden of feature determination is shifted to a DCNN, which learns the optimal features for
the given problem in order to minimize a loss cost function. The features are learned in a hierarchical
manner where higher-level features are learned in deeper convolutional layers as combinations of
lower-level features determined in shallow layers.

7.6.1.1 Learning objective

Improved accuracy is expected by directly learning the features that minimize the multiclass log loss
cost function L =− 1

N ∑
N
i=1 ∑

K
j=1 yi, j log(pi, j) for a given dataset with N samples, compared to using

predetermined features. The natural logarithm of the probability pi, j of sample i belonging to class j is
counted by setting yi, j = 1 only if i belongs to class j. Stochastic gradient descent can be used since
the loss function is a sum of differentiable functions, and Nesterov’s accelerated gradient in particular
has been shown to be effective despite the use of noisy gradient estimates [243]. The update increment
vt+1 and the updated network parameters wt+1 are calculated as

vt+1 = µ · vt − ε ·

〈
∂L
∂w

∣∣∣∣
wi+µ·vt

〉
Bi

(7.5)
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wi+1 = wi + vt+1 (7.6)

with momentum µ and learning rate ε .

The loss gradient estimate ∂L
∂w is determined for the average loss over a smaller batch Bi of input

samples for the DCNN parameters equal to wi +µ · vt .

7.6.1.2 Stopping condition

A validation split of the training data is omitted, since explicit measures are taken to reduce the
likelihood of potential overfitting, such as data augmentation and dropout. So the expectation is that
early stopping with validation set accuracy tracking is not required, as the test accuracy will stabilize
because of very little overfitting with extended backpropagation learning. The final DCNN weight and
bias parameters are based on the epoch registering the minimum value for the log loss cost function on
the training data, which is a stopping condition that does not require a validation dataset.

7.6.2 Architecture definitions

7.6.2.1 Convolutional layers

A CNN consists of convolutional layers, each followed by optional sub-sampling and regularization
layers, and ending in fully connected 1D hidden layers. A convolutional layer receives a 3D input and
creates a 3D output that measures the filter responses at each input location, calculated as the sum of
the element-wise incidence product between the filter and image window. This convolutional response
encodes the input in terms of learned templates to systematically reduce input dimensionality as part
of feature determination.

7.6.2.2 Activation functions

Each filter response becomes the input to a nonlinear activation function, which should be non-
saturating in order to accelerate learning. Rectified linear units (ReLU) ( f (x) = max(0,x)) are used in
lieu of saturating nonlinearities after every convolutional and fully connected layer, except for the final
dense layer, which uses softmax activation ( f (x j) = ex j/∑k exk ) to maximize the multinomial logistic
regression objective. Network implementation is simplified with the use of ReLU, as this activation
function does not require input normalization to avoid saturation, although local normalization can
promote improved generalization [49].

7.6.2.3 Sub-sampling layers

Sub-sampling layers normally proceed convolutional layers to further reduce feature dimensionality,
but also to achieve translation invariance in the case of max-pool sub-sampling layers [49]. For
example, a 2×2 max-pool layer divides the convolutional layer output into a set of non-overlapping
2×2 cells and only records the maximum activated filter response in each cell, thereby halving the input
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Figure 7.6. CNN architecture with four convolutional layers accepting 96×96×3 inputs and resolving
to a 21-class softmax output layer.

dimensions and producing features that are increasingly invariant to image object translations.

7.6.3 Architecture instantiation

The DCNN design given in this subsection was heuristically selected based on experimental
investigation that adhered to the objective of layer dimension reduction, since it develops a strong
hierarchical feature representation. The DCNN designed for the UC Merced dataset accepts a 96×96×3
input, which can be converted from an RGB to HSV color model. The HSV color model can more
directly concentrate chromaticity to single filter layers, which can potentially simplify features and
allow for the reduction of network complexity.

The input is converted to 45×45×64 neurons with the first convolutional layer using 64 filters of
7×7×3 operating at a stride of (2,2), before being sub-sampled with a 2×2 max-pool layer to obtain
a 23×23×64 output with 10% dropout. The second convolutional layer uses 192 filters of 3×3×64
with a (1,1) stride to produce a 21×21×192 output, which is sub-sampled with a 2×2 max-pool to
give a 11×11×192 output with 20% dropout, as shown in Figure 7.6.

A third convolutional layer with 192 filters of 3×3×192 and a stride of (1,1) produces a 9×9×192
output followed by a 2×2 max-pool layer, which outputs 5×5×192 neurons with 30% dropout. The
final convolutional layer has 224 filters of 2×2×192 with a (1,1) stride and gives a 4×4×224 output,
which is max-pooled with 2×2 cells to render a 2×2×224 output with 40% dropout. A fully connected
dense layer with 256 hidden units is used with ReLU activation and 50% dropout follows, after which
another dense layer with 256 hidden units is used before resolving to 21 units in a softmax output layer.
All neuron biases are set to 0 and network weights are initialized randomly according to normalized
initialization U

[
−

√
6√

n j+n j+1
,

√
6√

n j+n j+1

]
given by Glorot et al. [244] where n j and n j+1 are the number

of neurons in layers j and j+1, respectively.
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7.6.4 Reducing overfitting

7.6.4.1 Dropout

Convolutional and fully connected layers can be interconnected so that hidden neuron outputs are
deactivated with probability p during training, with the remainder of the outputs multiplied by 1

1−p .
This strategy reduces the co-adaptation of neurons, since dropout forces neurons to provide more
useful and robust contributions in combination with arbitrary active neuron combinations [49]. The
set of dropped neurons changes randomly at every epoch, which changes the architecture and reduces
overfitting at the cost of approximately 1

1−p times the convergence period compared to training without
dropout.

7.6.4.2 Data augmentation

The original input dataset can be expanded with label-preserving transformations such as horizontal
and vertical flips and rotation. This presents the network with an enlarged set of inputs, which may
contain examples present in the test dataset but not in the original training dataset, thus improving
classification accuracy. During training all views are flipped horizontally or vertically with probability
of 0.5, but for testing the model averaging only considers the untransformed views. The classifier is
trained with transformed views so that any untransformed view can be recognized during testing.

7.6.5 Multiview deep learning

Another form of data augmentation involves the use of multiple partial views of a given input sample
to train with, and classifying test samples with the mean softmax output averaged over a predetermined
set of classified patches or views, i.e. model averaging [49]. Some classes are distinguished by the
presence of certain objects, such as airplanes and storage tanks, which only occupy a portion of a given
sample. If these objects vary in size across different samples then multiscale views can potentially
produce stronger activations with higher probability than single-scale views.

The main contribution proposed is that a single DCNN can be trained with multiscale views to obtain
improved classification accuracy compared to using multiple views at one particular scale only. The
UC Merced dataset samples are downsampled from 256×256 to 96×96 based on empirical evaluation
of the optimal input size, and 10 multiscale views are extracted as described below. The first four
augmenting views are acquired at the image corners at 75% input coverage, while the fifth view has
100% coverage. Views six to ten are obtained at the corners and center at 50% input coverage, and all
extracted views are scaled to the input size of 96×96, as shown in Figure 7.7.
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Figure 7.7. Partial view selection specifications for composing a multiview input dataset consisting of
10×96×96×3 inputs per sample.

7.7 RESULTS AND DISCUSSION

7.7.1 Experimental setup

The standard benchmark conditions for the UC Merced dataset first stipulated in [52] are followed
to measure classification accuracy. Five-fold stratified cross-validation is used for all experiments,
where four folds are used for training and model selection, and the remaining unseen fold of 20% of
the dataset is classified to measure accuracy.

Initial empirical evaluation indicated that the salient hyper-parameters that influence accuracy most
include the input size, first convolutional filter size and filter amount, and the network learning rate.
Hyper-parameter range selections are based on values that resulted in high classification accuracy
during an initial evaluation. Various architecture instantiations are evaluated empirically with the focus
on optimizing the aforementioned hyper-parameters with full knowledge of the test accuracy.

The use of knowledge of test accuracy for hyper-parameter optimization is motivated as follows:

1. The hyper-parameter selection is highly constrained with relatively few values to be optimized.

2. Routine full-knowledge optimization is implicitly involved in the creation of machine learning
architectures in the literature, where architectures or solutions with inferior performance would
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Table 7.2. Five-fold cross-validation accuracy for various DCNN architectures. All instantiations use
Nesterov Accelerated Gradient (linear momentum µ = 0.9→ 0.999, linear learning rate decrease to
0.0001, batch sizes |Bi|= 128)

Parameter Architecture
#1 #2 #3 #4 #5 #6 #7

Input size 80×80 96×96 128×128
Filter 1 size 7×7 7×7 7×7 7×7 7×7 9×9 9×9
Learning rate 0.005 0.005 0.005 0.005 0.005 0.005 0.01
Max epochs 1000 1000 300 300 300 1000 1000
Multiview 1 1 5 5 10 1 1
Multiscale × × × X X × ×
HSV: Acc. (µ 86.76 88.00 90.53 91.18 92.34 87.10 83.29
±σ ) ±1.74 ±2.88 ±1.87 ±1.62 ±1.25 ±1.98 ±2.83

RGB: Acc. (µ 87.14 91.10 92.76 93.48
±σ ) ±3.77 ±0.80 ±1.46 ±0.82

be discarded based on test accuracy.

3. Full-knowledge hyper-parameter optimization is used for both single-scale and multi-scale
DCNN solutions, so performance differences of these multiview strategies can be highlighted.

4. The main learning task of the DCNN is still preserved with knowledge only of the training
information.

7.7.2 Architecture selection

Several architectures have been evaluated to obtain the best performing DCNN for the UC Merced
dataset, and the results are shown in Table 7.2. The important design choices include the reduction
in learning rate, using model averaging with an increasing number of multiple views, and finding the
optimal input size of 96×96. The single-scale multiview input of Krizhevsky et al. [49] has been
implemented in arch. #3, but its 91.1% accuracy is outperformed by the 92.75% of multiscale input
(arch. #4). Using the first five views (arch. #4 in Table 7.2) specified in Figure 7.7 improved test
accuracy from 87.14% to 92.76%, but using model averaging with all 10 views (arch. #5 in Table 7.2)
resulted in an accuracy of 93.48% for RGB inputs.

Multiview (single-scale) input significantly (level of 0.05) improves over single-view given a two-tailed
p-val of 0.05 using Welch’s unpaired t-test, with a mean difference 95% confidence interval of -0.01 to
7.9. Multiscale significantly (level of 0.1) improves over single-scale given a two-tailed p-val of 0.07
using Welch’s unpaired t-test, with a mean difference 95% confidence interval of -0.2 to 3.5.
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7.7.3 DCNN weight visualization

Figure 7.8 displays a visualization of the trained single-view DCNN architecture #2 (see Table 7.2),
showing the first convolutional filters and the convolutional responses for a selection of UC Merced
classes. The first max-pool and dropout outputs are also shown to illustrate their functions of sub-
sampling and omission noise. The second, third, and fourth convolutional filter banks are too large to
display and are not included. The convolutional filters are the core features that are learnt by the DCNN
and it is seen that the network reduces convolutional response dimensions to a final single-dimensional
response appropriate for the use of softmax activation.

(a) Filters convolution 1: Trained 7×7×3 convolutional filters (64 filters)

(b) Convolution 1: 45×45×64 output from 96×96×3 input convoluted with 7×7×3 filters

Agricultural:

Airplane:

Buildings:

Dense
residential:
Medium
residential:

Storage tanks:

(c) MaxPool 1: 23×23×64 output from 45×45×64 input maxpooled with (2,2). Outputs shown for dense residential and
storage tanks.

(d) DropOut 1: 23× 23× 64 output from 45× 45× 64 maxpooled input with 10% dropout. Outputs shown for dense
residential and storage tanks.

(e) Convolution 2: 21× 21× 192 output from 23× 23× 64 input convoluted with 3× 3× 64 filters. Outputs for dense
residential and storage tanks.

(f) Convolution 3: 9×9×192 output from 11×11×192 input convoluted with 3×3×192 filters. Dense residential (above)
and storage tanks (below).

(g) Convolution 4: 4×4×224 output from 5×5×192 input convoluted with 2×2×192 filters. Dense residential (above)
and storage tanks (below).

Figure 7.8. Filters and CNN layer outputs for single-view architecture #2 (see Table 7.2) and inputs
from a selection of classes. Output visuals are mapped to full channel range and combined in some
cases to occupy all RGB channels.

7.7.4 Convergence analysis

The convergence rate is illustrated for architecture #5 (see Table 7.2) in Figure 7.9, comparing the
progression of training and testing accuracies in terms of training epochs. The single-view test
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Figure 7.9. Averaged five-fold cross-validation accuracy graphs for multiview architecture #5 (see
Table 7.2).

accuracy is also shown, which performs more poorly than with multiview model averaging. The best
test accuracy loss is obtained around epoch 100 and degrades from that point, while training loss keeps
improving. However, the measures employed to reduce overfitting allow for the test accuracy to keep
improving by 1-2% even while the multinomial logistic regression score deteriorates.

7.7.5 Confusion analysis

A confusion matrix for a given DCNN instantiation is calculated in this section as the sum of the five
confusion matrices on the test data of each fold in a five-fold cross-validation setup, so as to obtain
full representation of all available data samples as test samples. The confusion matrix for single-view
architecture #2 (see Table 7.2) is shown in Table 7.3, and the confusion matrix for 10-view architecture
#5 is given in Table 7.4. The confusion matrix for architecture #3 (see Table 7.2) with five single-scale
multiviews is shown in Table 7.5, where the predicted class label counts are given for each correct class
row. The confusion matrix for architecture #4 with five multiscale multiviews is shown in Table 7.6,
which is compared against the confusion matrix for architecture #3.

The largest class-specific accuracy increases with multiscale views over single-scale views (arch. #4
vs. #3) are seen in the buildings, intersection, storage tanks, overpass, beach, dense residential,
runway and tennis court classes. The largest class-specific accuracy decreases with multiscale views
over single-scale views are seen in the sparse residential, river and baseball diamond classes. Some
of the largest clarifications made by multiscale views over single-scale views (arch. #4 vs. #3) are
sparse residential-forest, sparse residential-golf course, storage tanks-medium density residential.
The largest confusions introduced by multiscale views include buildings-overpass, overpass-freeway,
intersection-freeway, medium density residential-dense residential and beach-agriculture.

Sparse residential samples often present characterizing buildings at widely different scales, whereas
beach and agriculture classes often present with more homogeneous textures. Large characterizing
structures such as overpasses, intersections and freeways may not always be captured coherently in
one view as easily as smaller structures such as storage tanks. The result is that multiscale views can
introduce confusion in the case of large features, but on the other hand it can present more consistent
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Table 7.3. Confusion matrix with arch. #2 for a five-fold cross-validation sample result.

Predicted class label
a b c d e f g h i j k l m n o p q r s t u

a Agricultural 96 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
b Airplane 0 87 1 0 2 0 0 0 0 1 1 0 0 0 1 0 0 5 0 2 0
c Baseball diamond 1 0 92 1 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 1 2
d Beach 4 0 0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
e Buildings 0 2 0 0 63 0 11 0 2 0 0 1 1 1 2 3 0 0 0 6 8
f Chaparral 2 0 0 0 0 97 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g Dense residential 0 0 0 0 4 1 70 1 1 0 0 0 16 3 0 1 0 0 0 0 3
h Forest 1 0 0 0 0 2 0 96 0 0 0 0 0 0 0 0 1 0 0 0 0
i Freeway 0 0 0 1 0 0 0 0 93 0 0 1 0 0 2 0 1 2 0 0 0
j Golf course 2 0 1 4 0 0 0 0 0 89 0 0 0 0 0 0 2 1 1 0 0
k Harbor 0 0 0 0 0 0 0 0 0 0 98 0 0 1 0 0 0 1 0 0 0
l Intersection 0 0 0 0 0 0 0 0 5 0 0 86 2 0 3 1 2 0 0 0 1
m Medium residential 0 0 0 0 0 0 6 0 0 0 0 1 87 3 0 1 1 0 0 0 1
n Mobile home park 0 0 0 0 0 0 0 0 0 0 3 1 5 88 0 3 0 0 0 0 0
o Overpass 0 0 0 1 2 0 0 0 3 0 0 5 0 0 86 0 1 1 0 0 1
p Parking lot 0 0 0 0 0 2 0 0 1 0 1 1 1 0 0 94 0 0 0 0 0
q River 2 0 0 0 0 0 0 6 2 4 0 0 0 0 0 0 82 4 0 0 0
r Runway 0 0 0 2 0 0 0 0 3 1 0 0 0 0 0 0 0 94 0 0 0
s Sparse residential 0 0 0 0 0 0 1 1 0 8 0 0 3 0 0 0 5 0 78 3 1
t Storage tanks 0 4 2 1 8 0 0 0 0 3 1 5 0 1 0 0 0 0 10 64 1
u Tennis court 0 0 3 1 3 0 1 3 1 0 0 1 5 0 1 1 5 0 2 1 72

Table 7.4. Confusion matrix with arch. #5 for a five-fold cross-validation sample result.

Predicted class label
a b c d e f g h i j k l m n o p q r s t u

a Agricultural 98 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
b Airplane 0 95 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 2 0 0 0
c Baseball diamond 1 0 94 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 1
d Beach 1 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e Buildings 0 0 1 0 80 0 4 0 0 0 0 0 0 2 0 0 1 0 2 10 0
f Chaparral 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g Dense residential 0 0 0 0 1 0 81 0 0 0 0 3 12 1 0 0 0 0 1 1 0
h Forest 0 0 0 0 0 0 0 97 0 0 0 0 0 0 0 0 2 0 1 0 0
i Freeway 0 0 0 1 0 0 0 0 97 0 0 0 0 0 2 0 0 0 0 0 0
j Golf course 1 0 1 0 0 0 0 0 0 95 0 0 0 0 0 0 0 0 3 0 0
k Harbor 0 1 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0
l Intersection 0 0 0 0 2 0 3 0 2 0 0 87 1 1 2 0 1 0 0 1 0

m Medium residential 0 0 0 0 0 0 5 1 0 0 0 1 86 1 0 0 1 0 4 1 0
n Mobile home park 0 0 0 0 0 0 0 0 0 0 0 0 3 96 0 1 0 0 0 0 0
o Overpass 0 0 0 0 1 0 0 0 6 0 0 1 0 0 91 0 0 0 0 1 0
p Parking lot 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 98 0 0 0 0 0
q River 0 0 0 2 0 0 0 2 3 1 0 1 0 0 0 0 91 0 0 0 0
r Runway 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 99 0 0 0
s Sparse residential 0 0 0 0 1 0 1 2 0 0 0 0 3 0 0 0 1 0 92 0 0
t Storage tanks 0 0 1 0 4 0 1 1 0 0 0 4 1 0 0 0 2 0 3 83 0
u Tennis court 0 0 0 0 2 0 1 0 0 0 0 2 4 0 1 0 1 0 3 3 83
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Table 7.5. Confusion matrix with arch. #3 for a five-fold cross-validation sample result.

Predicted class label
a b c d e f g h i j k l m n o p q r s t u

a Agricultural 94 0 0 2 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0
b Airplane 0 95 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0
c Baseball diamond 0 1 94 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 0 0 0
d Beach 5 0 0 94 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
e Buildings 0 0 0 1 70 0 7 0 1 0 0 1 1 1 7 0 0 0 2 5 4
f Chaparral 0 0 0 0 0 99 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
g Dense residential 0 0 0 0 2 0 80 1 0 0 0 3 8 3 0 0 0 0 2 0 1
h Forest 1 0 0 0 0 1 0 97 0 1 0 0 0 0 0 0 0 0 0 0 0
i Freeway 0 0 0 1 0 0 0 0 97 0 0 2 0 0 0 0 0 0 0 0 0
j Golf course 2 0 2 0 0 0 0 0 0 95 0 0 0 0 0 0 1 0 0 0 0
k Harbor 0 1 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0
l Intersection 0 0 1 1 0 0 1 0 6 1 0 85 1 0 1 1 0 0 1 1 0

m Medium residential 0 0 0 0 1 0 13 1 0 0 0 1 80 0 0 0 0 0 3 1 0
n Mobile home park 0 0 0 0 0 0 0 0 0 0 0 1 4 94 0 1 0 0 0 0 0
o Overpass 0 0 0 0 1 0 0 0 13 0 0 4 0 0 80 0 0 2 0 0 0
p Parking lot 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 98 0 0 0 0 0
q River 0 0 0 1 0 0 0 3 2 2 0 0 0 0 0 0 89 1 1 1 0
r Runway 0 0 0 1 0 0 0 0 2 0 1 0 0 0 0 0 1 94 0 1 0
s Sparse residential 0 0 1 0 0 0 1 2 0 2 0 0 4 0 0 0 0 0 87 0 3
t Storage tanks 0 0 1 2 5 0 1 1 1 0 1 5 0 0 1 0 2 1 7 71 1
u Tennis court 0 0 3 1 1 0 3 1 0 0 0 3 1 0 1 0 3 0 3 1 79

Table 7.6. Confusion matrix with arch. #4 for a five-fold cross-validation sample result.

Predicted class label
a b c d e f g h i j k l m n o p q r s t u

a Agricultural 95 0 2 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
b Airplane 0 96 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0
c Baseball diamond 0 0 92 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 2 1 1
d Beach 1 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e Buildings 0 0 0 0 78 0 5 0 0 0 0 2 2 0 2 0 1 0 0 5 5
f Chaparral 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g Dense residential 0 0 0 0 2 0 85 0 0 0 0 1 10 1 0 1 0 0 0 0 0
h Forest 0 0 0 0 0 1 0 98 0 0 0 0 0 0 0 0 1 0 0 0 0
i Freeway 0 0 0 0 0 0 0 0 96 0 0 3 0 0 1 0 0 0 0 0 0
j Golf course 2 0 3 0 0 0 0 0 0 94 0 0 0 0 0 0 1 0 0 0 0
k Harbor 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
l Intersection 0 0 0 0 2 0 0 0 2 0 0 93 1 0 1 0 1 0 0 0 0
m Medium residential 0 0 0 0 0 0 9 0 0 0 0 1 82 1 0 0 1 0 4 1 1
n Mobile home park 0 0 0 0 2 0 1 0 0 0 1 1 2 93 0 0 0 0 0 0 0
o Overpass 0 0 0 0 0 0 0 0 8 0 0 3 0 0 87 0 0 2 0 0 0
p Parking lot 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 97 0 0 0 0 0
q River 0 0 0 3 0 0 0 5 2 1 0 0 0 0 0 0 86 2 0 1 0
r Runway 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 99 0 0 0
s Sparse residential 0 0 1 0 0 1 0 5 0 5 0 0 3 0 0 0 1 0 83 0 1
t Storage tanks 0 0 1 0 5 0 0 0 0 0 0 3 3 0 0 0 0 0 8 79 1
u Tennis court 0 0 1 1 0 0 2 0 0 1 0 0 3 0 0 0 2 0 3 3 84
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Table 7.7. UC Merced accuracy comparison.

Date Method Accuracy (%)
2010 SPM [52] 74.00
2010 SPCK++ [52] 76.05
2015 Saliency-UFL [234] 82.72±1.18
2014 Bag-of-SIFT [235] 85.37±1.56

Single-view Deep Learning 88.00±2.88
2014 SAL-LDA [236] 88.33
2015 Pyramid of Spatial Relatons [237] 89.1
2014 UFL [235] 90.26±1.51

Multiview Deep Learning 93.48±0.82
2014 VLAT [238] 94.3

views in the case of smaller objects or features that occur at different scales.

7.7.6 Accuracy comparison

A five-fold stratified cross-validation comparison of all the important methods employed in the literature
for the UC Merced dataset is shown in Table 7.7. The highest accuracies for the UC Merced dataset
have been achieved with unsupervised feature learning (UFL) [235] and the vector of locally aggregated
tensors (VLAT) method [238], which is an extension of visual dictionary approaches such as bag-of-
words. Single-view DCNN is outperformed by these methods, but the 90.26% accuracy of UFL can
be improved upon with a multiview DCNN, which achieves 93.48%. Multiview deep learning quite
significantly improves over single-view given a two-tailed p-val of 0.01 using Welch’s unpaired t-test,
with a mean difference 95% confidence interval of 1.8 to 9.2.

The VLAT implementation of Negrel et al. [238] uses multispectral features in conjunction with a
histogram of oriented gradient descriptors at four different scales. Descriptor clustering covariance
matrices are used and PCA orthogonalization of the descriptor vector space forms highly discriminative
aggregated descriptor tensors, which outperforms a singular DCNN that does not incorporate the
benefit of clustering covariance.

7.7.7 Implementation details

Dataset augmenting through rotation did not improve performance in conjunction with horizontal and
vertical flips, so it was omitted. Using a secondary neural network to combine the softmax arrays
of multiple views for a given sample did not improve performance over model averaging. For the
10-view DCNN instantiation #5 (Table 7.2) a running time of 36.6 seconds per epoch was attained
on an Amazon Elastic Compute Cloud g2.2xlarge instance with a GRID K520 GPU possessing 1536
CUDA cores and 4 GB video memory, of which 1 GB was used. A Python implementation was
used based on Theano and Lasagne libraries [245], which provides a GPU-accelerated computational
differentiation platform that automatically computes gradients for complex systems.
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7.8 CONCLUSION

Dataset shift is normally defined in terms of two groups of samples where there is a distinct change
in measurement mode between the two sample groups. The grouping itself needs to be provided as
part of the problem definition and measurement metadata, or the grouping can be discovered with
unsupervised or semi-supervised methods. The agglomerative clustering performed previously is an
example of how the grouping can be discovered with unsupervised methods. Another type of dataset
shift was demonstrated in this chapter, where there are no clearly defined groupings and thus no clearly
defined shift to correct, yet there are many changes in measurement modes. The problem with this
dataset shift was demonstrated for low-level features, specifically multispectral GLCM features.

An end-to-end learning system with hierarchical feature representation was designed in this chapter for
complex land-use classification of high-resolution multispectral aerial imagery. DCNN architecture
hyper-parameters were optimized in terms of cross-validation accuracy on the UC Merced land-use
dataset, and it was shown that multiscale views can be used to train a single network and increase
classification accuracy compared to using single-view samples. A specific comparison was made
between the single-scale multiview strategy of Krizhevsky et al. [49] and the multiscale multiview
strategy proposed in this chapter as a generalization of the single-scale DCNN input method.

The main hypothesis is that multiscale views allow for a greater range of object scales to be detected
by the DCNN, and thus give a higher likelihood of class recognition. A confusion analysis was
performed to ascertain the qualitative differences between five-view single-scale and multiscale input
strategies, and it was observed that large structures such as overpasses and freeways can become more
confused with multiscale views, although classes with typically smaller features such as storage tanks
can benefit from multiscale views. In general, competitive performance was shown where multiview
DCNN outperformed both SIFT-based methods and unsupervised feature learning on the UC Merced
dataset.
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8.1 RESEARCH OVERVIEW

The study involves land-use classification for multimodal remote sensing where the challenge was to
improve classification accuracy by addressing multimodal dataset shifts. Such dataset shifts occur when
acquisition differences between the train and test datasets cause class features and class definitions
to differ between the two datasets, rendering a trained classifier inaccurate. Dataset shift reduction is
employed at the input-level of feature extraction and at the classifier layer.

The first strategy for reducing dataset shift involves isolating and removing an image component
that differs consistently between the train and test datasets. A predominant isolatable component is
shadowing, which was dealt with through a shadow removal system consisting of shadow detection and
correction or feature masking. The ability of this input modification to increase classification accuracy
was demonstrated using multiple different texture features and shadow removal methods.

The alternative approach of manifold alignment was identified with the intention of aligning
corresponding train and test classes or directly transferring train labels via manifold matching after
test class separation through unsupervised classification. An important contribution in this study is
the investigation of the effect of weighting features for weighted clustering and weighted cardinality
determination, including weighted generalization of internal validation indices. This unsupervised
clustering investigation is the primary means of manifold reduction, which precedes manifold matching
in order to reduce its computational time.

A third strategy namely, multiscale feature learning, is investigated for addressing dataset shift in
land-use classification of remotely sensed images. This strategy takes into account an approximation of
the full range of expected dataset shift in order to learn optimal feature representations that are robust
for similar dataset shifts. The research overviews and important contributions of each specific chapter
are given in the section below; these are then followed by suggestions for future research.

Appropriate baseline or control strategies and methods are used throughout to emphasize how the
proposed methods are set apart, although there are not necessarily always an appropriate comparison
of full dataset shift solutions to counterparts in the literature. Internal decomposition of methods are
used together with extensive quantitative and qualitative analyses to contribute to validation of the
techniques. The focus is thus on proposing and comparing functional techniques more at a component-
level within the setting of remote sensing classification. Emphasis in the conclusion is placed on
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literature methods and how the proposed methods can introduce improvements.

8.2 SHADOW DETECTION

Shadow detection options are explored as part of instantiating shadow removal for the input modification
strategy to dataset shift. The hypothesis that threshold-based shadow detection can relatively accurately
delineate shadows because of the low-intensity property of shadows was investigated, as well as
the hypothesis that local adaptive thresholding can produce more accurate shadows than global
thresholding, since relatively low intensity admits greater sensitivity in images with contrast variation
than globally low intensity.

Panchromatic shadow detection algorithms from the thresholding subcategory (Adeline et al. [59],
Table 2.2) of property-based shadow detection (Arévalo et al. [73]) are used on the Soweto panchromatic
land-use dataset. Select thresholding algorithms from the taxonomy of Sezgin and Sankur [47] are
also compared for shadow detection accuracy in terms of Czekanowski-Dice (F-score), Jaccard, Rand
(overall), Rogers-Tanimoto and Sokal-Sneath external validation indices (paragraph 2.4.4.2). The
comparative analyses of shadow detection methods introduce thresholders not previously used for
shadow detection.

The minimum Bayes error is difficult to detect with minimum error thresholding because of
extensive overlap of shadow and sunlit densities, so it achieves the lowest unsupervised global
thresholding accuracy. Iterative minimum error thresholding avoids boundary minima and focuses on
a relevant intensity range so it achieves the highest shadow detection accuracies of the thresholding
methods considered. Convex hull thresholding can robustly determine the threshold valley, as no
explicit bimodality is required, and this thresholding method attains the second highest accuracy for
unsupervised global threshold detection.

Wellner’s local adaptive thresholding is used for more accurate shadow detection and it is shown that the
local window size parameter is robust despite multitemporal shadow profile differences. The potential
shadow detection accuracy of global thresholding was compared to that of local adaptive thresholding
and for both dates of the Soweto dataset local adaptive thresholding outperformed global thresholding.
Global thresholding produced more false positives in the shadow mask, but local adaptive thresholding
can take local intensity into account to reduce this and produce more accurate maps.

8.3 INPUT MODIFICATION

An isolatable illumination and viewing geometry component of dataset shift was identified, namely
shadowing, and a shadow removal strategy was implemented to reduce effective dataset shift through
input modification. Panchromatic shadow removal was achieved through a system consisting of a
pixel-based shadow detector and a shadow removal stage featuring either modified feature extraction
with shadow pixel masking or shadow correction to produce a shadow-corrected input. A variant of
histogram equalization, proposed by Shu and Freeman [75] and used by Sarabandi et al. [112], from
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the intensity domain (paragraph 2.5.2.1) of the shadow restoration taxonomy in Table 2.4 has been
employed for shadow correction. Input modification addresses causal components of dataset shift
particular to given data, so it constitutes a unique instantiation that is not compared to alternative
strategies in the literature at a system level.

GLCM shadow correction and LBP shadow masking have improved settlement classification accuracy
in same-date experiments, and both GLCM and LBP shadow correction and shadow masking can
improve settlement classification accuracy in across-date experiments. The most statistically significant
improvements in settlement classification accuracy were seen for GLCM across-date LAT masking,
GLCM across-date global threshold masking, GLCM across-date fine shadow correction, LBP same-
date global threshold masking, LBP across-date masking and LBP across-date global threshold
masking.

A confusion analysis revealed that the largest reduction in confusion was between formal settlement
and formal settlements with backyard shack classes, probably because these classes typically involve
the largest structures and thus the largest shadow profiles. Correlation between settlement type
classification accuracy and shadow detection accuracy showed statistically significant differences
between same-date and across-date experiments for both GLCM and LBP with fine shadow correction
and global threshold masking.

Top-down masking was used as a control test to obtain further evidence that land-use classification
accuracy improvements are related to shadows in particular, which was seen in the results where
top-down masking could not improve classification accuracy at all, whereas shadow masking could.
These results support the theory that it is the shadow removal specifically that improves classification
accuracy, and that while increases in same-date accuracies were witnessed, the main benefit lies in
across-date classification situations.

8.4 WEIGHTED AGGLOMERATIVE CLUSTERING

The feature spaces generated from acquisitions of areas with complex land-use cases display poor
separability because of samples exhibiting multiclass or unclassified traits. The notion that the
separation of such a feature space can be obtained by weighting samples according to importance as
defined by a target classification was explored in this chapter. The target property of texture regularity
is exploited to create sample weights and scale-selective feature space composition is performed
based on maximizing the component-wise saliences. This manifold reduction study focuses on the
components of hierarchical agglomerative clustering and contrasting the benefit of sample weighting
through the evaluation of how the proposed methods are set apart.

For the 10-date Rio de Janeiro multispectral dataset it was shown that weighted clustering with
Ward linkage achieves greater mean clustering accuracy. Confusion analysis presented evidence that
weighted clustering produces more salient clusters and differentiates better between certain groups of
classes. An important demonstration shows how target properties can be derived to augment features
with weight information, and how those weights can be used to improve unsupervised classification.
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Random unweighted clustering formed a baseline unsupervised classification accuracy score of 53.9
for the multimodal Rio de Janeiro dataset. Hierarchical agglomerative clustering with an unweighted
Ward linkage improved to a score of 90.6, and weighted Ward linkages achieved 95.4. The optimal
number of clusters is searched for with internal validation index ensembles in truncated form where
sample weights are used to improve performance. It is shown that sample weightings are best used
for maximum weight selection of the truncated internal index input. An important contribution is
weighted input-truncated internal validation indices designed to admit larger datasets through reduced
computational complexity. The weighted generalization of a number of internal validation indices for
cardinality determination has also been made in this work, including improved interpretations of these
indices, to expand the weighted generalization defined by Studer [40] to those in the comprehensive
compendium collected by Desgraupes [41].

Weighted internal validation indices were used for weakly supervised clustering cardinality
determination, and input truncated implementations were used to reduce computational complexity
for large datasets. Sample weighting was used to good effect and it was experimentally illustrated
that the main contributor to improved internal index performance was maximal weight input selection.
Unsupervised cardinality determination was implemented and an overall objective score of 83.77 was
reached out of a maximum objective of 93.92 for the multidate Rio de Janeiro dataset.

Maximum weight input selection clearly appears to produce better cardinalities than random input
sampling, whereas the use of weights with weighted internal indices has a minimal effect overall. In
the comparison with unweighted random sampling an increase in sample size on average produces a
greater discrepancy between weighted maximum input selection. However, for the comparisons with
weighted random sampling and unweighted maximum input selection there is on average no distinct
comparative change with increases in sample size.

Improved internal index extremum and disruption interpretations were proposed and results indicated
performance improvements for the majority of internal indices. Knee-point accentuating filtering before
extremum interpretation improved accuracy for 16 indices, where the more significant improvements
are seen for Ball-Hall, Trace_W, S_Dbw and G+. The disruption interpreted indices do not really
benefit from the knee-point accentuating filtering, since this filtering is designed to improve extremum
interpretation. The alternative d

dk arctan
(

dC
dk

)
disruption interpretation improves accuracy for 13

indices in the case of weighted Ward linkage clustering.

8.5 GLCM MANIFOLD MATCHING WITH GEOMETRIC SIMILARITY
MEASURES

Larger dataset shifts due to both multitemporal and multisensor acquisition differences were addressed
through partial manifold alignment consisting first of a manifold reduction stage covered in the previous
chapter’s unsupervised learning and then a manifold matching stage that works under the assumption
of manifold preservation. Manifold matching is tested separately with the objective of minimizing
correspondence cost through the Munkres algorithm based on a cost matrix that features geometric
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similarity, basic divergence and relative variance similarity.

The geometric similarity formulation of Wang et al. [43] is improved by incorporating the co-occurrence
frequency information generated during optimal neighborhood permutation searches, which is normally
discarded. The geometric similarity of Wang et al. is used in the isolated context of manifold matching,
but it is integrated into multi-component cost matrices. The focus is on this integration and on
improving information usage by geometric similarity, but comparisons at the system-level have no
inclusion of further methods in the literature outside of the manifold alignment context.

Minimum-supervision manifold matching is contributed for bijective correspondence problems, with a
manifold reduction prerequisite that presents class statistical moments as input. The matching is based
on a cost function that depends on basic divergence, relative variance similarity, as well as geometric
similarity. Geometric similarity calculations generate co-occurrence information that is normally
discarded, but this information has been used to improve the geometric similarity cost function.

A matching cost function based only on basic divergence achieved an overall matching accuracy of
62.8% for the multimodal Johannesburg dataset, and with only variance similarity an accuracy of
64.7% was reached. Using textbook geometric similarity with divergence and variance similarity
an accuracy of 85.9% was achieved, and a further improvement to 89.5% was possible when local
geometry matching co-occurrence was incorporated into the geometric similarity cost.

8.6 MULTIVIEW DEEP LEARNING

If the full extent of dataset shift can be observed in a dataset for all classes, a classifier can be obtained
that is accurate for test examples falling within the observed dataset shift range. Feature learning
is an alternative approach investigated in this thesis, which overcomes the limitation of engineered
features such as GLCM and LBP. Engineered features are probably sub-optimal since they have to be
applicable in a wide range of problems.

Feature learning can discover the optimal features that minimize the classification objective loss
function. The performance of feature learning in producing features and a classifier that can accurately
classify remotely sensed land-use images is evaluated and compared against several methods for the
UC Merced land-use dataset. Convolutional neural networks are used and optimized for the given
problem and a CNN usage technique is designed to significantly improve classification accuracy.

An end-to-end learning system with hierarchical feature representation was designed for complex
land-use classification of high-resolution multispectral aerial imagery. DCNN architecture hyper-
parameters were optimized heuristically in terms of cross-validation accuracy on the UC Merced
land-use dataset, and it was shown that multiscale views can be used to train a single network and
increase classification accuracy compared to using single-view samples. A specific comparison was
made between the single-scale multiview strategy of Krizhevsky et al. [49] and the multiscale multiview
strategy proposed as a generalization of the single-scale DCNN input method.
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The primary hypothesis is that multiscale views allows for a greater range of object scales to be
detected by the DCNN, and thus gives a higher likelihood of class recognition. A confusion analysis
was performed to ascertain the qualitative differences between five-view single-scale and multiscale
input strategies, and it was observed that large structures such as overpasses and freeways can be
confused more easily with multiscale views, although classes with typically smaller characteristics
such as storage tanks can benefit from multiscale views. In general, competitive performance was
shown where multiview DCNN outperformed both SIFT-based methods and unsupervised feature
learning on the UC Merced dataset.

8.7 FUTURE RESEARCH

8.7.1 Weighted mean shift clustering

Unsupervised classification that incorporates sample weightings could alternatively be accomplished
through density-based mean shift clustering, which is adapted to use the weightings. The weight
adaptation could be achieved by factoring in the weightings into the adaptive bandwidth of mean shift
to promote greater kernel sizes for more salient features. A potential problem that would need to be
overcome is the issue of large variation in feature space density, since this may result in an uneven and
unprioritised partitioning if the bandwidth adaptation is not sufficient. A further issue is that mean
shift tends to find a natural partitioning cardinality, at least for well-behaved problem spaces, but in
practice further steps need to be taken to ensure proper prioritization and refining to a partitioning of
desired cardinality.

8.7.2 Non-bijective manifold matching

Bijective classification problems were the focus of this study, since non-bijective problems incur
numerous added difficulties. The bijection assumption allows for solutions to be ventured upon, such
as the use of an affine fit, but if this assumption cannot be made then options quickly become limited
and confidence levels of solutions are reduced. Graph-based manifold matching methods could be
applied to non-bijective problems where there is a definite overlap in train and test classes but not
perfect correspondence. The challenge is in estimating the confidence level of the solution and basing
the extent of the subsequent manifold alignment on that information or integrating the information into
the manifold alignment framework.

8.7.3 Generalized eigenvalue decomposition manifold alignment

Manifold alignment based on the Rayleigh quotient framework involves an extra processing stage
of generalized eigenvalue decomposition that is used after manifold matching to actually correct the
dataset shift. Since classification was the only objective in this study, the solution only required
manifold matching to transfer train labels to the test clusters. The opportunity exists to investigate
whether actual dataset shift correction and normal supervised classification afterward can improve on
simpler label transfer.
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APPENDIX A SOWETO DATASET GROUNDTRUTH
SHADOWS

(a) FS - Date 1 (Soweto) (b) Groundtruth shadows in red

(c) FS - Date 2 (Soweto) (d) Groundtruth shadows in red

Figure A.1. Groundtruth shadows for a co-registered formal settlement polygon over the two
acquisitions of the Soweto dataset. Panchromatic images courtesy of DigitalGlobe™.
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(a) FS - Date 1 (Soweto) (b) Groundtruth shadows in red

(c) FS - Date 2 (Soweto) (d) Groundtruth shadows in red

Figure A.2. Groundtruth shadows for a second co-registered formal settlement polygon over the two
acquisitions of the Soweto dataset. Panchromatic images courtesy of DigitalGlobe™.
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APPENDIX A SOWETO DATASET GROUNDTRUTH SHADOWS

(a) FSB - Date 1 (Soweto) (b) Groundtruth shadows in red

(c) FSB - Date 2 (Soweto) (d) Groundtruth shadows in red

Figure A.3. Groundtruth shadows for a co-registered polygon of class formal settlement with
backyard shacks over the two acquisitions of the Soweto dataset. Panchromatic images courtesy
of DigitalGlobe™.
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(a) OIS - Date 1 (Soweto) (b) Groundtruth shadows in red

(c) OIS - Date 2 (Soweto) (d) Groundtruth shadows in red

Figure A.4. Groundtruth shadows for a co-registered informal settlement polygon over the two
acquisitions of the Soweto dataset. Panchromatic images courtesy of DigitalGlobe™.
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APPENDIX B GENERALIZED EIGENVALUE
DECOMPOSITION MANIFOLD
ALIGNMENT

B.1 OVERVIEW

The concept of manifold alignment plays an important role in dataset shift reduction, since this
framework describes the required components and how they interact to make supervised classification
more accurate. Manifold alignment that is solved through generalized eigenvalue decomposition of the
dual objective Rayleigh quotient formulation is effectively joint manifold learning with dataset shift
reduction. This approach is attractive, since it preserves the structural relationships of the manifold
and because it practically assures solvability through eigenvalue decomposition.

The generalized eigenvalue decomposition framework for manifold alignment is reviewed [42] in
this thesis, since it is important to indicate how the study contributions of manifold reduction and
manifold matchings can fit into this attractive solution. Manifold reduction produces an unsupervised
classification of the target domain, which is used to form inter- and intra-domain similarity and
dissimilarity objectives. Manifold matching establishes the across-domain class relationships, which is
also required to formulate the relaxed similarity and dissimilarity constraints.

B.2 BASIC NOTATION

Given M feature domains derived from a multimodal array of image inputs, the associated data matrices
are noted as Xm ∈ Rdm×nm for domains m = 1, . . . ,M. The framework reviewed in this section allows
for both labeled and unlabeled samples to be aligned, according to the algorithm provided in [42]. A
data matrix Xm = {xm

i ∈ Rdm}nm
i=1 can then consist of both unlabeled samples {xm

i ∈ Rdm}um
i=1 as well

as input-output labeled sample pairs {xm
j ∈ Rdm ,ym

j ∈ Z}lm
j=1 for a total of nm = lm +um samples for

domain m.

Manifold alignment attempts to discover for each domain m= 1, . . . ,M a projection function fm ∈Rdm×d

onto a joint manifold F with dimensionality dim(F) = d, where d = ∑m dm. The number of samples
per domain is not necessarily equal (nm 6= nm′) and domain dimensions may differ (dm 6= dm′). Joint
matrix formulations are thus required, find the M mapping functions to a common latent space through
generalized eigenvalue decomposition, and the joint block diagonal matrix X = diag(X1, . . . ,XM) ∈
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Rd×N can be conceptualised as in Equation B.1, with the total number of samples given by N = ∑m nm.
The joint projection matrix F ∈ Rd×d contains the individual projection functions fm

i ∈ Rdm for each
domain and each new dimension, as given in Equation B.2.

X =


X1 0 0 0
0 X2 0 0

0 0
. . . 0

0 0 0 XM

 F =


f1

f2

...
fM

=


f1
1 · · · f1

d
f2
1 · · · f2

d
...

...
...

fM
1 · · · fM

d

 (B.1, 2)

B.3 RAYLEIGH QUOTIENT FORMULATION

The standard Rayleigh quotient or Rayleigh-Ritz ratio in Equation B.3 can be used to accommodate
the generalized dual objectives of A and B, which can produce an optimized joint projection matrix
Fopt. The sample relationships that are to be minimized are quantified in A, and the relationships to be
maximized are encoded into B.

Fopt = argmin
F

{
tr
(
(F>BF)−1F>AF

)}
(B.3)

The minimized relationships of A = µG+S in this setting involve the minimization of the distances
between samples in the aligned common latent space F. These relationships include those between
within-domain samples that are geometric neighbours (G with trade-off constant µ), as well as between
inter- and intra-domain samples that belong to the same class (S). The relationships to be maximized,
namely B = D, involve the relative maximization of aligned space distances between inter- and
intra-domain samples that belong to different classes (D).

B.4 MANIFOLD GEOMETRY PRESERVATION

In Equation B.3 the minimization objective A = µG+ S contains G, which aims to preserve the
manifold geometry in the transformation, but only the within-domain geometries. Standard graph
methods such as KNN can be used to establish neighborhood relationships between within-domain
samples, which are encoded in the local geometry matrices Wm

g ∈ Rnm×nm for each domain m as
follows:

Wm
g (i, j) =

{
0, if i and j are not graph neighbours.
1, if i and j are graph neighbours.

(B.4)

Squared Euclidean distances in the aligned common latent space F are used between samples, and
only those neighboring sample pairs that need their distance relatively minimized are activated in the
objective Wm

g . The objective G associated with G first projects each dm-dimensional sample xm
i onto

the d-dimensional latent space F via fm>xm
i (Rd×dm×Rdm×1→ Rd).

G =
M

∑
m=1

nm

∑
i, j=1

W m
g (i, j)

∥∥∥fm>xm
i − fm>xm

j

∥∥∥2
= tr(F>XLgX>F) (B.5)
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This objective formulation allows for re-expression using a joint graph Laplacian matrix Lg =

diag(L1
g, . . . ,LM

g ) ∈ RN×N , which consists of the domain-specific Laplacians Lm
g ∈ Rnm×nm . Each

Laplacian Lm
g is the difference between the degree matrix Um

g (i, i) and the adjacency matrix Wm
g .

Um
g (i, i) = ∑

j
Wm

g (i, j) Lm
g = Um

g −Wm
g (B.6, 7)

B.5 CLASS SIMILARITY OBJECTIVE

The second minimization component of A = µG+S is the objective S, which aims to minimize the
distances between samples that belong to the same class both within and across all domains. Class
similarity matrices Wm,m′

s ∈ Rnm×nm′ are devised to include in the objective only those sample pairs
that belong to the same class, as given below.

Wm,m′
s (i, j) =

{
0, if ym

i 6= ym′
j , or when ym

i or ym′
j are unlabeled.

1, if ym
i = ym′

j .
(B.8)

The joint graph Laplacian matrix Ls is associated with the joint class similarity matrix Ws = [Wm,m′
s ]

and is determined as shown previously. The objective S associated with S can then be similarly
expressed as with G, with the alternative formulation utilizing the Laplacian matrix.

S =
M

∑
m,m′=1

nm,nm′

∑
i, j=1

W m,m′
s (i, j)

∥∥∥fm>xm
i − fm′>xm′

j

∥∥∥2
= tr(F>XLsX>F) (B.9)

It should be noted that there are two requirements, namely a classification for each domain and
class correspondence or domain matching between the different domains in order to establish class
equivalency. The manifold reduction used in this thesis produces unsupervised classification for the
test feature space and summarises the manifold, whereafter manifold matching is used to establish
across-domain class correspondence.

B.6 CLASS DISSIMILARITY OBJECTIVE

In order to reduce the likelihood of a trivial solution to the eigenvalue decomposition, as when all points
are mapped onto the same location, a maximization objective B=D needs to be integrated to spread the
projected samples onto a proper solution. Class dissimilarity matrices Wm,m′

d ∈Rnm×nm′ are constructed
to distance sample pairs if they belong to different classes, which are given as follows.

Wm,m′
d (i, j) =

{
0, if ym

i = ym′
j , or when ym

i or ym′
j are unlabeled.

1, if ym
i 6= ym′

j .
(B.10)

The objective D that is associated with D in the original Rayleigh quotient can be expressed as in
Equation B.11. The joint graph Laplacian matrix Ld is based on the joint class dissimilarity matrix
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Wd = [Wm,m′
d ], and is used to permit integration into the Rayleigh quotient formulation.

D =
M

∑
m,m′=1

nm,nm′

∑
i, j=1

W m,m′
d (i, j)

∥∥∥fm>xm
i − fm′>xm′

j

∥∥∥2
= tr(F>XLdX>F) (B.11)

B.7 ALIGNMENT PROJECTION

Using substitution, it can be shown that the generalized Rayleigh quotient formulation can be rewritten
as in Equation B.12, where three Laplacian matrices Lg, Ls and Ld encode the desired sample
relationships respectively embedded in the objectives G, S and D.

Fopt min
F

{
tr
(
(F>XLdX>F)−1F>X(µLg +Ls)X>F

)}
(B.12)

The overall minimization problem is solved through generalized eigenvalue decomposition where
the eigenvectors ϕi with the smallest eigenvalues λi form the desired projections. The generalized
eigenvalue decomposition is given as follows:

X(µLg +Ls)X>ϕ = λXLdX>ϕ (B.13)

The optimal projection Fopt to the common latent space F is then calculated from the eigenvectors and
eigenvalues as shown in Equation B.14. The individual projections can then be ascertained as shown
below, in order to project each individual domain onto the common space.

Fopt =
[√

λ1ϕ1

∣∣∣ · · · ∣∣∣√λdϕd

]
=


f1
1 · · · f1

d
f2
1 · · · f2

d
...

...
...

fM
1 · · · fM

d

 (B.14)

The projection P (Rd×dm×Rdm×nm → Rd×nm) of a dataset Xm
∗ is then the matrix multiplication of the

associate projection function fm> with the dataset, as given below.

P(Xm
∗ ) = fm>Xm

∗ (B.15)
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APPENDIX C WEIGHTED GENERALIZATION OF
INTERNAL INDICES

Weighted clustering and weighted generalisations for point-biserial correlation, Hubert’s Gamma,
Hubert’s D, Hubert’s C, Silhouette, Calinski-Harabasz and Pseudo R2 internal validation indices are
described in [40]. Several more of the well-known indices [41] are generalized for weighted features
in this appendix for use in the thesis.

C.1 PRELIMINARIES

The normal and weighted formulations of internal validation indices are denoted respectively by C and C.
The overline notation is also used to refer to the weighted alternatives to each variable occurring in this
generalization treatment. The generalization objective is to admit partial, fractionalised or otherwise
real valued points that contribute variable representative amounts to a validation index calculation, so
that points with greater salience affect the calculation to a greater degree. The generalized formulation
guideline is adherence to the coincidence of normal and weighted formulations when all point weights
w = {wi, 1≤ i≤ N} are one, as given by

lim
w:wi→1
1≤i≤N

C(w) = C (C.1)

There are N observations denoted by M, with real scalar weights w. The number of clusters for a
given calculation is K, and the weight per cluster Wk and total weight W are given by

Wk = ∑
i∈Ik

wi W =
K

∑
k=1

Wk (C.2, 3)

The number NW of unordered within-cluster pairs and the weight NW of those pairs are

NW =
K

∑
k=1

nk(nk−1)
2

NW =
K

∑
k=1

∑
i, j∈Ik

j>i

wiw j (C.4, 5)

Similarly, the total number NT of unordered pairs and the associated weight NT are

NT =
N(N−1)

2
NT =

N

∑
i, j=1

j>i

wiw j (C.6, 7)
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The number NB of unordered between-cluster point pairs and their weight NB are the difference
between total and within-cluster values, such as

NB = NT −NW NB = NT −NW (C.8, 9)

The global centroid G and its weighted counterpart G are calculated as

G =
1
N ∑

1≤i≤N
Mi G =

1
W ∑

1≤i≤N
wiMi (C.10, 11)

The centroid Gk for cluster k and the weighted centroid Gk are given by

Gk =
1
nk

∑
i∈Ik

Mi Gk =
1

Wk
∑
i∈Ik

wiMi (C.12, 13)

Between-group dispersion BS and the weighted version BS are calculated as

BS =
K

∑
k=1

nkd(Gk,G)2 BS =
K

∑
k=1

Wkd(Gk,G)2 (C.14, 15)

Normal and weighted within-cluster dispersions WS and WS are the sum of individual dispersions, so
that

WS =
K

∑
k=1

∑
i∈Ik

d(Mi,Gk)
2 WS =

K

∑
k=1

∑
i∈Ik

wid(Mi,Gk)
2 (C.16, 17)

The global scatter matrices T and T consist of the following entries Ti j and T i j calculated in terms of
coordinates Mli = Ml(i), µi = G(i) and µ i = G(i) for feature dimension i, so that

Ti j =
N

∑
l=1

(Mli−µi)(Ml j−µ j) T i j =
N

∑
l=1

wl(Mli−µ i)(Ml j−µ j) (C.19)

Normal and weighted individual within-group scatter matrices WG{k} and WG{k} are calculated in
terms of µ

{k}
i = Gk(i) and µ

{k}
i = Gk(i) for dimension i, giving the matrix entries

WG{k}i j = ∑
l∈Ik

(Mli−µ
{k}
i )(Ml j−µ

{k}
j ) (C.21)

WG{k}i j = ∑
l∈Ik

wl(Mli−µ
{k}
i )(Ml j−µ

{k}
j ) (C.22)

Total within-group scatter matrices WG and WG are the sum of individual matrices producing the
matrix entries

WGi j =
K

∑
k=1

WG{k}i j WGi j =
K

∑
k=1

WG{k}i j (C.23, 24)

Between-group scatter matrices BG and BG are determined in terms of coordinate differences between
cluster and global barycenters as follows:

BGi j =
K

∑
k=1

nk(µ
{k}
i −µi)(µ

{k}
j −µ j) (C.25)

BGi j =
K

∑
k=1

Wk(µ
{k}
i −µ i)(µ

{k}
j −µ j) (C.26)
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C.2 WEIGHTED GENERALIZATIONS

C.2.1 Ball-Hall index [207]

The mean C (C) of the individual mean cluster dispersion within each cluster k with barycenter Gk (Gk)
is

C=
1
K

K

∑
k=1

∑
i∈Ik

d(Mi,Gk)
2

nk
C=

1
K

K

∑
k=1

∑
i∈Ik

wid(Mi,Gk)
2

Wk
(C.27, 28)

C.2.2 Banfield-Raftery index [208]

The weighted sum C (C) of the logarithms of the individual mean cluster dispersions is

C=
K

∑
k=1

nk log

(
1
nk

∑
i∈Ik

d(Mi,Gk)
2

)
(C.29)

C=
K

∑
k=1

Wk log

(
1

Wk
∑
i∈Ik

wid(Mi,Gk)
2

)
(C.30)

C.2.3 C-index [209]

The sum SW (SW ) over all clusters of the sum of the NW (NW ) distances between all unordered pairs in
each cluster is

SW =
K

∑
k=1

∑
i, j∈Ik

j>i

d(Mi,M j) SW =
K

∑
k=1

∑
i, j∈Ik

j>i

wiw jd(Mi,M j) (C.31, 32)

The subset Pmin of the set PA of all NT unordered global point pairs is such that the sum of distances
of the NW pairs in Pmin is minimum, according to

Pmin = argmin
P⊆PA
|P|=NW

(
∑

{(i, j)}∈P
d(Mi,M j)

)
(C.33)

The weighted version Pmin includes the point pairs with minimum distances such that their combined
weight is NW , as shown by

Pmin = argmin
P⊆PA

NW≈∑
P

wiw j

(
∑

{(i, j)}∈P
d(Mi,M j)

)
(C.34)

Similarly, the subset Pmax of the set PA of all NT unordered global point pairs is such that the sum of
distances of the NW pairs in Pmax is the maximum, according to

Pmax = argmax
P⊆PA
|P|=NW

(
∑

{(i, j)}∈P
d(Mi,M j)

)
(C.35)
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The weighted version Pmax includes the point pairs with maximum distances such that their combined
weight is NW , as shown by

Pmax = argmax
P⊆PA

NW≈∑
P

wiw j

(
∑

{(i, j)}∈P
d(Mi,M j)

)
(C.36)

Consequently, the sum Smin (Smin) of the NW (NW ) smallest global distances is

Smin = ∑
(i, j)∈Pmin

d(Mi,M j) Smin = ∑
(i, j)∈Pmin

wiw jd(Mi,M j) (C.37, 38)

The sum Smax (Smax) of the NW (NW ) largest global distances is given by

Smax = ∑
(i, j)∈Pmax

d(Mi,M j) Smax = ∑
(i, j)∈Pmax

wiw jd(Mi,M j) (C.39, 40)

The C index thus measures the ratio of a type of within-cluster dispersion to the maximum possible
dispersion for same-sized clusters, which is calculated as

C=
SW −Smin

Smax−Smin
C=

SW −Smin

Smax−Smin
(C.41, 42)

C.2.4 Calinski-Harabasz index [210]

The variance ratio criterion is given in terms of between-cluster variance BS (BS) and within-cluster
variance WS (WS), so that

C=
BS/(K−1)

WS/(N−K)
C=

BS
(
N−K

)
WS(K−1)

(C.43, 44)

C.2.5 Davies-Bouldin index [211]

The mean distance δk (δ k) between points in a cluster k and the cluster barycenter is

δk =
1
nk

∑
i∈Ik

d(Mi,Gk) δ k =
1

Wk
∑
i∈Ik

wid(Mi,Gk) (C.45, 46)

The distance ∆kk′ (∆kk′) between two cluster barycenters is

∆kk′ = d(Gk′ ,Gk) ∆kk′ = d(Gk′ ,Gk) (C.47, 48)

The mean over all clusters of the maximum ratio for each cluster and a paired cluster of the sum of
their cluster radii to intercluster distances forms the index given by

C=
1
K

K

∑
k=1

max
k′ 6=k

δk +δk′

∆kk′
C=

1
K

K

∑
k=1

max
k′ 6=k

δ k +δ k′

∆kk′
(C.49, 50)
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C.2.6 Det_Ratio index [212]

The ratio C (C) of the determinants of the total scatter matrix T (T ) and the within-group scatter matrix
WG (WG) is

C=
det(T )

det(WG)
C=

det(T )
det(WG)

(C.51, 52)

C.2.7 Generalized Dunn’s indices (GDI) [214]

GDIi j is the ratio C (C) of minimum between-cluster δi (δ i) to maximum within-cluster distance ∆ j

(∆ j) for various instantiations of these distances. The ratio is given by

C=
mink 6=k′ δi(k,k′)

maxk ∆ j(k)
C=

mink 6=k′ δ i(k,k′)
maxk ∆ j(k)

(C.53, 54)

A within-cluster distance ∆1(k) = maxi, j∈Ik
i6= j

d(Mi,M j) is omitted, since it is weight-robust and does

not admit a weighted generalization. Within-cluster distance ∆2 (∆2) is the mean distance between all
ordered pairs of a cluster as defined by

∆2(k) =∑
i∈Ik

∑
j∈Ik\i

d(Mi,M j)

nk(nk−1)
∆2(k) =∑

i∈Ik

wi ∑
j∈Ik\i

w jd(Mi,M j)

Wk(Wk−wi)
(C.55, 56)

The within-cluster diameter ∆3 (∆3) is calculated in terms of the cluster centroid so that

∆3(k) = ∑
i∈Ik

2d(Mi,Gk)

nk
∆3(k) = ∑

i∈Ik

2wid(Mi,Gk)

Wk
(C.57, 58)

Between-cluster distances δ1 (δ 1) and δ2 (δ 2) are weight-robust and are not generalized. These are
defined as single-linkage and complete-linkage distances

δ1(k,k′) = min
i∈Ik
j∈Ik′

d(Mi,M j) δ2(k,k′) = max
i∈Ik
j∈Ik′

d(Mi,M j) (C.59, 60)

The average linkage δ3 (δ 3) between clusters k and k′ is

δ3(k,k′) =∑
i∈Ik

∑
j∈Ik′

d(Mi,M j)

nknk′
δ 3(k,k′) =∑

i∈Ik

wi∑
j∈Ik′

w jd(Mi,M j)

WkWk′
(C.62)

The centroid linkage δ4 (δ 4) is defined as the distance between cluster barycenters so that

δ4(k,k′) = d(Gk,Gk′) δ 4(k,k′) = d(Gk,Gk′) (C.64, 65)

The weighted mean δ5 (δ 5) of the mean distances between cluster points and their barycenter is
formulated as

δ5(k,k′) =
∑i∈Ik

d(Mi,Gk)+∑ j∈Ik′
d(M j,Gk′)

nk +nk′
(C.66)

δ 5(k,k′) =
∑i∈Ik

wid(Mi,Gk)+∑ j∈Ik′
w jd(M j,Gk′)

Wk +Wk′
(C.67)
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The Hausdorff (DH) distance δ6 (δ 6) is not weight-sensitive and is defined as

δ6(k,k′) = max
{

sup
i∈Ik

inf
j∈Ik′

d(Mi,M j), sup
j∈Ik′

inf
i∈Ik

d(Mi,M j)

}
(C.68)

C.2.8 Baker-Hubert’s Gamma [206]

The number of concordant quadruples (pair of unordered pairs) s+ (s+) where a point pair from
different clusters have a larger distance than a same-cluster pair is given by

s+ =

different-cluster pair︷ ︸︸ ︷
K

∑
k,k′=1
k′>k

∑
r∈Ik

∑
s∈Ik′

(same-cluster pair︷ ︸︸ ︷
K

∑
l=1

∑
u,v∈Il
v>u

1
2

(
1 + sgn

(
d(Mr,Ms) − d(Mu,Mv)

)))
(C.69)

s+ =
K

∑
k,k′=1
k′>k

∑
r∈Ik

∑
s∈Ik′

wrws

(
K

∑
l=1

∑
u,v∈Il
v>u

wuwv

2

(
1 + sgn

(
d(Mr,Ms) − d(Mu,Mv)

)))
(C.70)

Similarly, the number of discordant quadruples (pair of unordered pairs) s− (s−) where a point pair
from different clusters has a smaller distance than a same-cluster pair is given by

s− =
K

∑
k,k′=1
k′>k

∑
r∈Ik

∑
s∈Ik′

(
K

∑
l=1

∑
u,v∈Il
v>u

1
2

(
1 − sgn

(
d(Mr,Ms) − d(Mu,Mv)

)))
(C.71)

s− =
K

∑
k,k′=1
k′>k

∑
r∈Ik

∑
s∈Ik′

wrws

(
K

∑
l=1

∑
u,v∈Il
v>u

wuwv

2

(
1 − sgn

(
d(Mr,Ms) − d(Mu,Mv)

)))
(C.72)

The Gamma index C (C) is then a measure of the ratio of concordant quadruples so that

C=
s+− s−

s++ s−
C=

s+− s−

s++ s−
(C.73, 74)

C.2.9 G+ index [213]

Using the number of discordant quadruples s− (s−) from Baker-Hubert’s Gamma index as a ratio C (C)
to the total number of unordered quadruples renders the G+ index as

C=
s−

NT (NT −1)/2
C=

2s−

NT (NT −1)
(C.75, 76)
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C.2.10 Ksq_DetW [215]

This index is also known as k2|W | and is formulated in terms of the number of clusters K and the
within-group scatter matrix WG (WG) as

C= K2 det(WG) C= K2 det(WG) (C.77, 78)

C.2.11 Log_Det Ratio [212]

The logarithmic version of the Det_Ratio is defined in terms of the total scatter T (T ) and the within-
group scatter WG (WG) as follows:

C= N log
(

det(T )
det(WG)

)
C=W log

(
det(T )

det(WG)

)
(C.79, 80)

C.2.12 Log_SS Ratio [216]

The logarithm C (C) of the between-cluster dispersion BS (BS) and the total within-cluster dispersion
WS (WS) is

C= log(BS/WS) C= log
(
BS/WS

)
(C.81, 82)

C.2.13 McClain-Rao index [217]

The sum SW (SW ) over all clusters of the sum of the NW (NW ) distances between all unordered pairs is
used as defined for the C index. The between-cluster distance sum SB (SB) is similarly formulated as
the sum of the NB (NB) distances between all unordered between-cluster pairs, producing

SB =
K

∑
k,k′=1
k′>k

∑
i∈Ik

∑
j∈Ik′

d(Mi,M j) (C.83)

SB =
K

∑
k,k′=1
k′>k

∑
i∈Ik

∑
j∈Ik′

wiw jd(Mi,M j) (C.84)

The relationship between the mean within-cluster distances and mean between-cluster distances is
then shown by

C=
SW/NW

SB/NB
C=

SW NB

NW SB
(C.85, 86)
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C.2.14 PBM index [218]

The maximum possible between-cluster distance DB (DB) is calculated as

DB = max
k<k′

d(Gk,Gk′) DB = max
k<k′

d(Gk,Gk′) (C.87, 88)

The sum EW (EW ) of within-cluster distances is given by

EW =
K

∑
k=1

∑
i∈Ik

d(Mi,Gk) EW =
K

∑
k=1

∑
i∈Ik

wid(Mi,Gk) (C.89, 90)

The total sum of distances ET (ET ) between observations and the global barycenter is

ET =
N

∑
i=1

d(Mi,G) ET =
N

∑
i=1

wid(Mi,G) (C.91, 92)

The index by authors Pakhira, Bandyopadhyay and Maulik [218] is then defined as

C=

(
1
K
· ET

EW
·DB

)2

C=

(
ET DB

K ·EW

)2

(C.93, 94)

C.2.15 Point-Biserial index [219]

Using the definitions SW (SW ) from the C index and SB (SB) from Mclain-Rao the point-biserial
correlation coefficient can be shown to be equivalent to

C=

(
SW

NW
− SB

NB

)√
NW NB

NT
C=

(
SW

NW
− SB

NB

)√
NW NB

NT
(C.95, 96)

C.2.16 Ratkowsky-Lance index [220]

The square root of the sum over all feature dimensions of the quotient of the cluster dispersion and the
total dispersion for a given feature dimension is

C=

√√√√√√ 1
pK

p

∑
j=1

∑
K
k=1 nk

(
∑i∈Ik

Mi j/nk−∑
N
i=1 Mi j/N

)2

∑
N
i=1

(
Mi j−∑

N
i=1 Mi j/N

)2 (C.97)

C=

√√√√√√ 1
pK

p

∑
j=1

∑
K
k=1Wk

(
∑i∈Ik

wiMi j
Wk
−∑

N
i=1

wiMi j
W

)2

∑
N
i=1 wi

(
Mi j−∑

N
i=1 wiMi j/W

)2 (C.98)
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C.2.17 Ray-Turi [221]

The ratio of the mean within-cluster dispersion to the smallest possible between-centroid squared
distance is provided as

C=
WS/N

min
k<k′

d(Gk,Gk′)2 C=
WS/W

min
k<k′

d(Gk,Gk′)2
(C.99, 100)

C.2.18 Scott-Symons index [212]

The weighted sum C (C) of the logarithm of the determinant of each mean within-group scatter matrix
is defined by

C=
K

∑
k=1

nk logdet

(
WG{k}

nk

)
C=

K

∑
k=1

Wk logdet

(
WG{k}

Wk

)
(C.101, 102)

C.2.19 S_Dbw index [222]

The global feature variance Vi (Vi) for feature dimension i is determined in terms of µi = Gk(i)

(µ i = Gk(i)) as

Vi =
1
N

N

∑
l=1

(Mli−µi)
2 Vi =

1
W

N

∑
l=1

wl(Mli−µ i)
2 (C.103, 104)

The cluster feature variance V
{k}
i (V

{k}
i ) for feature dimension i is determined in terms of µ

{k}
i = Gk(i)

(µ{k}i = Gk(i)) so that

V
{k}
i =

1
nk

∑
l∈Ik

(Mli−µ
{k}
i )2 V

{k}
i =

1
Wk

∑
l∈Ik

wl(Mli−µ
{k}
i )2 (C.105, 106)

The average scattering S (S) for clusters is then formulated as the sum of quotients of the norms of the
cluster feature variance and global feature variance as shown by

S=
1
K

K

∑
k=1

√
∑

p
i=1

(
V
{k}
i

)2√
∑

p
i=1

(
Vi
)2

S=
1
K

K

∑
k=1

√
∑

p
i=1

(
V
{k}
i
)2√

∑
p
i=1

(
Vi
)2

(C.107, 108)

Densities γkk′(M) (γkk′(M)) are determined as the number of points from both clusters k and k′ in a
ball with radius σ (σ ) centered at a point M. The radius is a measure of the norm of the standard
deviation of clusters divided by the number of clusters, so that

σ =
1
K

√√√√ K

∑
k=1

√
p

∑
i=1

(
V
{k}
i

)2
σ =

1
K

√√√√ K

∑
k=1

√
p

∑
i=1

(
V
{k}
i
)2 (C.109, 110)
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The density γkk′(M) (γkk′(M)) is then the number of points in the union of clusters k and k′ that are
within the σ -ball (σ -ball) centered at point M, as given by

γkk′(M) = ∑
i∈Ik∪Ik′

sgn
(
σ −d(Mi,M)

)
+1

2
(C.111)

γkk′(M) = ∑
i∈Ik∪Ik′

wi

(
sgn
(
σ −d(Mi,M)

)
+1

2

)
(C.112)

The ratio Rkk′ (Rkk′) of the density at the midpoint between clusters k and k′ to the maximum of the
cluster densities at their barycenters is defined as

Rkk′ =
γkk′
(
(Gk +Gk′)/2

)
max

(
γkk′(Gk),γkk′(Gk′)

) (C.113)

Rkk′ =
γkk′
(
(Gk +Gk′)/2

)
max

(
γkk′(Gk),γkk′(Gk′)

) (C.114)

The between-cluster density G (G) is the mean of the cluster densities between all unordered cluster
pairs as given by

G=
2

K(K−1) ∑
k<k′

Rkk′ G=
2

K(K−1) ∑
k<k′

Rkk′ (C.115, 116)

The final criterion is formulated as the sum of the average scattering and the average between-cluster
density, as shown by

C= S+G C= S+G (C.117, 118)

C.2.20 Silhouette index [223]

The mean distance a(i) (a(i)) between a point i and the other points in its cluster k is

a(i) = ∑
i′∈Ik
i′ 6=i

d(Mi,Mi′)

nk−1
a(i) = ∑

i′∈Ik
i′ 6=i

wi′d(Mi,Mi′)

Wk−wi
(C.119, 120)

Similarly, the mean distance b(i) (b(i)) between a point i and the points of another cluster k′, chosen
so that the distance is the minimum, is given by

b(i) = min
k′ 6=k

(
∑
i′∈Ik′

d(Mi,Mi′)

nk′

)
b(i) = min

k′ 6=k

(
∑
i′∈Ik′

wi′d(Mi,Mi′)

Wk′

)
(C.121, 122)

The global silhouette index is then defined as the mean of the mean silhouette per cluster, which is a
relatively good indication of how well points belong to their closest clusters, and is defined by

C=
1
K

K

∑
k=1

1
nk

∑
i∈Ik

b(i)−a(i)
max

(
a(i),b(i)

) (C.123)

C=
1
K

K

∑
k=1

1
Wk

∑
i∈Ik

wi
b(i)−a(i)

max
(
a(i),b(i)

) (C.124)
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C.2.21 Tau index [224]

The τ index of Kendall is re-appropriated in terms of the difference between concordant and discordant
cardinalities defined for Baker-Hubert’s Gamma as a ratio to the number of unordered quadruples,
formulated as

C=
s+− s−√

NBNW

(
NT (NT−1)

2

) C=
s+− s−√

NBNW

(
NT (NT−1)

2

) (C.125, 126)

C.2.22 Trace-W index [225]

The trace of the within-group scatter matrix is equivalent to the within-cluster dispersion, which defines
this index as

C= Tr(WG) =WS C=WS (C.127, 128)

C.2.23 Trace-WiB index [226]

The trace of the quotient of the between-group scatter and within-group scatter matrices forms the
Trace_W−1B index as

C= Tr(WG−1 ·BG) C= Tr(WG−1 ·BG) (C.129, 130)

C.2.24 Wemmert-Gançarski index [227]

Using a less computationally complex alternative to the silhouette index is possible by measuring
the ratio Rk (Rk) of the distance of a point to the barycenter of its own cluster k to the distance of the
closest barycenter of another cluster k′, as formulated in

Rk(M) =
‖M−Gk‖

min
k′ 6=k
‖M−Gk′‖

Rk(M) =
‖M−Gk‖

min
k′ 6=k
‖M−Gk′‖

(C.131, 132)

The index then sums over the clusters the difference between the number of cluster points and their
values Rk (Rk), if the difference is larger than 0, and finally divides by the total number of points so
that

C=
1
N

K

∑
k=1

max
{

0,nk−∑
i∈Ik

Rk(Mi)
}

(C.133)

C=
1

W

K

∑
k=1

max
{

0,Wk−∑
i∈Ik

wiRk(Mi)
}

(C.134)
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