
University of Pretoria

Department of Chemical Engineering

Master’s Dissertation

Computationally efficient formulation

of stochastic dynamical control within

the context of switching probabilistic

graphical models

Author:

St. Elmo Wilken

Student Number:

29034133

Co-Supervisor:

Mr. C Sandrock

Department:

Chemical Engineering

Co-Supervisor:

Dr. JP de Villiers

Department:

Electrical, Electronic and

Computer Engineering

August 31, 2015

© University of Pretoria

Contents

1 Introduction 4

I Literature, theory and background material 7

2 Literature review 8

2.1 Stochastic model predictive control . 8

2.2 Switching model predictive control . 12

3 Background theory 16

3.1 Probability theory . 16

3.1.1 Discrete random variables . 17

3.1.2 Continuous random variables . 20

3.2 Graph theory . 24

3.3 Probabilistic graphical models . 25

3.3.1 Bayesian networks . 25

3.3.2 Dynamic Bayesian networks . 28

3.4 Control . 30

3.4.1 Linear quadratic regulator control . 30

3.4.2 Reference tracking . 33

3.4.3 Linear quadratic Gaussian control . 34

3.4.4 Model predictive control . 35

3.5 Matrix identities . 36

4 Hidden Markov models 38

4.1 Markov models . 38

4.2 Hidden Markov models . 39

4.2.1 Filtering . 40

4.2.2 Smoothing . 41

4.2.3 Viterbi decoding . 42

4.2.4 Prediction . 43

4.3 Burglar localisation problem . 45

5 CSTR model 48

1

© University of Pretoria

5.1 Qualitative analysis . 49

5.2 Nonlinear model . 51

5.3 Linearised models . 53

II Single model systems 57

6 Inference using linear models 58

6.1 Kalman filter . 59

6.2 Kalman prediction . 61

6.3 Smoothing and Viterbi decoding . 63

6.4 Filtering the CSTR . 64

7 Inference using nonlinear models 69

7.1 Sequential Monte Carlo methods . 70

7.2 Particle filter . 73

7.3 Particle prediction . 75

7.4 Smoothing and Viterbi decoding . 75

7.5 Filtering the CSTR . 76

8 Stochastic linear control 81

8.1 Unconstrained stochastic control . 82

8.2 Constrained stochastic control . 85

8.3 Reference tracking . 91

8.4 Linear system . 91

8.5 Nonlinear system . 101

8.6 Conclusion . 114

III Multiple model systems 116

9 Inference using linear hybrid models 117

9.1 Exact filtering . 118

9.2 Rao-Blackwellised particle filter . 119

9.3 Rao-Blackwellised particle prediction . 120

9.4 Smoothing and Viterbi decoding . 121

9.5 Filtering the CSTR . 121

10 Stochastic switching linear control using linear hybrid models 130

10.1 Unconstrained switching control . 133

10.1.1 Most likely model approach . 133

10.1.2 Model averaging approach . 140

10.2 Conclusion . 140

11 Inference using nonlinear hybrid models 142

2

© University of Pretoria

11.1 Exact filtering . 143

11.2 Switching particle filter . 143

11.3 Switching particle prediction . 144

11.4 Smoothing and Viterbi decoding . 144

11.5 Filtering the CSTR . 145

12 Stochastic switching linear control using nonlinear hybrid models 150

12.1 Unconstrained switching control . 151

12.2 Constrained switching control . 155

12.3 Conclusion . 162

13 Future work and conclusion 164

13.1 Parameter optimisation . 164

13.2 Generalised graphical models . 164

13.3 Filtering techniques . 165

13.4 Conclusion . 165

3

© University of Pretoria

Chapter 1

Introduction

This dissertation deals with the development of predictive controllers within the framework of

probabilistic graphical models, specifically dynamic Bayesian networks. Dynamic Bayesian

networks are well suited to the study of stochastic processes i.e. processes where there is noise

in both the state evolution and state measurements. By leveraging the natural formulation

of stochastic processes within dynamic Bayesian networks we develop stochastic predictive

controllers, focusing specifically on linear quadratic Gaussian (LQG) and chance constrained

model predictive control (MPC).

The dissertation primarily deals with the two graphical models1 shown in figures 1.1 and 1.2.

Inference is discussed in general, but we focus on filtering and prediction because they are

important for control.

y0 y1 y2

x0 x1 x2

u0 u1

Figure 1.1: Single model probabilistic

graphical model.

y0 y1 y2

x0 x1 x2

u0 u1

s0 s1 s2

Figure 1.2: Model switching probabilistic

graphical model.

The dissertation is structured in 3 parts, each composed of self contained chapters dealing

1Clear circular nodes represent latent variables, shaded circular nodes represent observed variables and

diamond nodes are deterministic variables.

4

© University of Pretoria

with a specific problem area. Part I contains chapters 2 to 5. The literature review, chapter 2,

deals with current papers on topics related to this dissertation. Chapter 3 mainly deals with

background theory found in reference materials (e.g. books). Chapter 4 deals with hidden

Markov models. The goal of this chapter is to gently introduce the uninformed reader to the

power of graphical models. Finally, chapter 5 introduces the continuously stirred tank reactor

(CSTR) example which is used to illustrate the techniques investigated throughout the rest of

the dissertation. If the reader is familiar with graphical models, predictive control and CSTR

design part I may be safely skipped.

Parts II and III each follow the same pattern: a graphical model is introduced and studied

after which a control scheme is implemented using the tenets of the preceding work. We detail

the content and results of these two parts next.

In part II the dynamic Bayesian network, shown in figure 1.1, is investigated within the

context of the Kalman filter model (linear dynamics and Gaussian noise) and the particle

filter model (no assumptions about the dynamics and noise). Using the techniques endemic

to the aforementioned probabilistic graphical models we show:

1. That the LQG controller reduces to the linear quadratic regulator under the assumptions

of normality and linearity 2.

2. That a chance constrained MPC problem can be reduced to the standard form MPC

problem (a deterministic optimisation problem with linear constraints and a quadratic

objective function) under the assumptions of linearity and normality. Furthermore,

since the Mahalanobis distance, a statistically important measure, is used to reduce the

chance constraints to linear constraints it supports the application of the aforementioned

techniques to systems which are nonlinear and non-Gaussian.

In part III the switching model filter, based on the dynamic Bayesian network shown in

figure 1.2, is investigated3. The benefit of generalising figure 1.1 is that it allows one to infer

which model, from a set of possible models, is likely to be generating the observations. This

allows us to extend the stochastic MPC discussed previously to incorporate model switching.

We investigate the following:

1. Using the Rao-Blackwellised particle filter as the switching model filter. In this context

the resultant most likely linear model is used to move the underlying system to different

regions in state space. It was found that the approach caused controller instability

because the current most likely model is often not accurate enough to steer the system

to the target.

2. Using a switching particle filter as the switching model filter. In this context the filter

2This result is not new but the derivation using probabilistic graphical models is both instructive and,

more importantly, intuitive.
3This probabilistic graphical model uses a set of models to perform inference. The stochastic switching

variables (s0, s1, ...) are used to weight the likelihood of each model supporting the observations.

5

© University of Pretoria

was used to identify when a process fault occurred and, based on this event, switch the

model control is based upon. It was found that the algorithm successfully stabilised and

regulated the nonlinear underlying system.

Perhaps most usefully, the dissertation illustrates the advantage of designing model predictive

controllers from within the framework of probabilistic graphical models. While it may seem

that the two fields are not related, most modern control systems perform filtering on system

measurements which is a natural result of the application of probabilistic graphical models.

Therefore, the motivation for this study is not purely esoteric but demonstrates a tacit

relationship between the fields.

A note on implementation:

Although this dissertation spends much time investigating and developing theory there is

also a significant practical aspect. All the results are supported by robust simulations. The

Julia language [7] was used to implement and illustrate the effectiveness of the succeeding

algorithms. Both the Ipopt [61] and Mosek [1] optimisation libraries were used in conjunction

with Julia’s optimisation modelling package JuMP [41]. Matplotlib [30] was used to plot the

results. All the code used in this dissertation is available on Github at https://github.com/

stelmo/Stochastic-Dynamical-Control-Code.

6

© University of Pretoria

https://github.com/stelmo/Stochastic-Dynamical-Control-Code
https://github.com/stelmo/Stochastic-Dynamical-Control-Code

Part I

Literature, theory and background

material

7

© University of Pretoria

Chapter 2

Literature review

This dissertation primarily deals with stochastic model predictive control but applied within the

context of probabilistic graphical models. Section 2.1 briefly covers some recent developments

in stochastic model predictive control literature. Section 2.2 briefly covers control schemes,

primarily based on model predictive control, where the model control is based upon is

automatically adjusted based on plant measurements or manual control laws.

2.1 Stochastic model predictive control

Linear unconstrained stochastic control subject to white additive Gaussian noise is well studied

in literature. The solution of the linear quadratic Gaussian (LQG) controller,

min
u
V (x0,u) = E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
subject to xt+1 = Axt +But + wt with wt ∼ N (0,W),

(2.1)

is one of the most fundamental results in stochastic optimal control theory [15]. The reader

should note that for stochastic processes it is customary to denote the current time step

xt by x0 within the control optimisation problem. Also, xt is a latent variable observable

only through yt ∼ N (Cxt, V). Boldface is used to denote a vector of vectors over time e.g.

u = (u0, u1, ...).

Using stochastic dynamic programming it is possible to show that the solution of (2.1) is

merely the solution of the corresponding fully observed deterministic system, called the linear

quadratic regulator (LQR), given the mean of the current state estimate x0. A significant

drawback of the LQR controller, and by extension the LQG controller, is that it is inherently

linear and unconstrained.

Conventional deterministic model predictive control (MPC) is very well studied in literature [52]

8

© University of Pretoria

and can be seen as the constrained deterministic generalisation of the LQR controller,

min
u
V (x0,u) =

1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

subject to xt+1 = Axt +But

and dTxt + e ≥ 0 ∀ t = 1, 2, . . . , N,

(2.2)

for one constraint with prediction and control horizon length N . The multiple constraint

generalisation is straightforward.

A further generalisation of deterministic MPC is stochastic MPC whereby either the variables,

the constraints or both have stochastic elements. In current literature the trend is to convert

all the stochastic elements of the control problem into deterministic ones. This usually makes

the problem more tractable from an analytic and computational point of view.

This conversion is usually achieved via two distinct approaches. In the first approach, which

is also the one we employ, the probability distributions are assumed to be Gaussian and the

systems linear. This allows one to greatly simplify the problem at the cost of those relatively

strong assumptions. The second approach is to use a particle/sampling approach. Here the

probability distributions are approximated by particles/samples and no assumptions are made

of form of the distributions. It is also not necessary to assume linear dynamics. The major

practical drawback of this approach is that it can quickly become computationally intractable

for large problems.

This is the approach taken by [10]. They attempt to solve the stochastic MPC problem,

min
u

E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
subject to xt+1 = Axt +But + wt

and E[dTxt + e] ≥ 0 ∀ t = 1, ..., N

and Pr(dTxt + e ≥ 0) ≥ p ∀ t = 1, . . . , N,

(2.3)

by approximating the current and predicted distributions with particles. Note that wt is some

stochastic variable with known parametrisation.

In their approach a particle filter is used as the state estimator; the current state distribution

is approximated by particles of equal weight. An integer variable is introduced for each particle

at each predicted time step. The chance constraint is then enforced by requiring that at least

a certain number of particles satisfy the constraint. It is not clearly stated but this approach

is only valid for particles after resampling.

By using the particle approach to model distributions it is possible to convert the stochastic

optimisation problem into a deterministic one. In the case where linear dynamics are used

this becomes a mixed integer linear or quadratic programming problem depending on the

objective function. The chance constraint becomes an integer constraint. Their algorithm is

9

© University of Pretoria

appealing because it is not necessary to assume Gaussian distributions or linearity. However,

it is possible that the algorithm can become computationally intractable due to the integer

constraints which are used to approximate the chance constraints. Since it is necessary to

include an integer variable for each particle at each time step in the prediction horizon the

number of variables can become large. For large problems with long prediction horizons this

can be problematic.

The approach taken by [40] is related to the sampling approach. They convert the stochastic

chance constrained optimisation problem into a deterministic nonlinear optimisation problem.

They then use a simulation approach to ensure that the chance constraints are satisfied. Their

approach is numerically intensive due to the sampling and gradient estimation techniques.

The approach taken by [5] uses a randomized optimisation algorithm in concert with the

empirical mean of the variables. When the states approach a constraint a penalty method

is used to heavily penalise the system to steer it away from the constraint. This causes the

system to conservatively satisfy the constraints.

In [39] the stochastic variables are assumed to be Gaussian and the stochastic optimisation

problem is transformed into a nonlinear optimisation problem. Using the Gaussian assumption

they are able to ensure feasibility and constraint satisfaction albeit conservatively. In [44] the

feasibility of stochastically constrained predictive control is considered. Feasibility becomes a

problem when predicting under uncertainty. Since the current state estimate is not precisely

known and the evolution of the system is stochastic, the certainty of the predicted states

often decreases with the prediction horizon. Ensuring constraint satisfaction can become

problematic in such situations because of the large predicted uncertainty in the future. In [44]

an algorithm enforcing joint chance constraints and recursive feasibility is discussed using a

risk allocation approach. While [55] mainly concerns stochastic parameters in the optimisation

problem it is shown that chance constraints can, in theory, be rewritten as deterministic

constraints if the probability distributions are known and affine constraints are used.

In [58] and [59] an ellipsoidal approximation technique is used to ensure constraint satisfaction

for

min
u
f(x)

subject to xt+1 = Axt +But

and Pr(dTxt + e ≥ 0) ≥ p ∀ t = 1, . . . , N.

(2.4)

The authors use the expected value of the stochastic variables in the objective function and

system dynamics. They also only consider deterministic linear objective functions. The

randomness introduced by the stochastic variables is only addressed in the chance constraint.

If one assumes that each xt is Gaussian with sufficient statistics (µt,Σt) and dimension

n, then the chance constraint can be satisfied by ensuring that the area of each ellipse

(x− µt)TΣ−1
t (x− µt) = k2 for t = 1, ..., N is contained in the feasible region. We have that k2

10

© University of Pretoria

is chosen by solving the integral equation of the Chi Squared distribution

1

2
n
2 Γ(n2)

∫ k2

0
X n

2
−1e−

X
2 dX = p. (2.5)

Using the ellipsoidal approximations the stochastic optimisation problem can transformed into

a second order conic optimisation problem. The authors ensure that each ellipse is contained

in the feasible region by ensuring there exists sufficient “back-off” (the distances z1, z2, z3

and z4) between the predicted ellipses and the constraints as shown in figure 2.1.

z1
z2

z4
z3

d 1
x
+
e 1
=
0

d
2x + e2 = 0

d3x
+ e

3
= 0

d
4x +

e
4 =
0

μt

Figure 2.1: Ellipsoidal approximation to ensure chance constraint satisfaction as used by [58]

and [59].

While this breakthrough is important – we build on it in our approach - the authors do

not state that they are in fact using a form of the Mahalanobis distance to enforce their

chance constraints. The approach of using confidence ellipsoids is further refined in [11]. The

ellipsoidal approximation technique is also further investigated in [9]; they show that it is

possible to reformulate joint chance constraints using univariate Gaussian distributions.

Although [64] and [65] primarily deal with univariate problems they show that if the underlying

system is linear and Gaussian, it is possible to manipulate the constrained stochastic problem

shown in (2.3) into a deterministic problem. Their analysis allows the stochastic objective

function to be transformed into its deterministic equivalent using the properties of Gaussian

integrals. This development is quite important because it allows one to directly evaluate the

stochastic objective function. The constraints are handled by directly evaluating the Gaussian

integral corresponding to the chance constraint in the univariate case. The authors allude to

the fact that this becomes computationally intractable in higher dimensions and suggest that

the approach in [58] be used. The authors also suggest a way to handle the situation where

covariance matrix grows without bound in unstable systems. This is related to the feasibility

problems discussed earlier.

In this dissertation the benefits gained by designing controllers within the framework of

11

© University of Pretoria

probabilistic graphical models is illustrated. This work results in the following conclusions:

1. Under the assumption of normality and linearity it is possible to convert the stochastic

objective function of (2.1) into its deterministic equivalent. The analysis is closely

related to the work of [64] and [65] but we show that these results are immediately

obvious from within the framework of probabilistic graphical models. Thus it is possible

to solve the LQG problem without resorting to stochastic dynamic programming.

2. We generalise our analysis to stochastic MPC and show that by using the statistically

important metric, the Mahalanobis distance, we arrive at a technique for enforcing chance

constraints which is very closely related to the approach by [58] and [59]. Under the

assumption of linearity and normality we show that the constraint satisfaction is ensured.

Owing to the use of the Mahalanobis distance metric we provide some theoretical support

for the use of the “ellipsoidal approximation” technique if the underlying system is

nonlinear or not exactly Gaussian.

3. Combining the previous results we show that it is possible to write the joint chance

constrained stochastic MPC problem as a deterministic MPC problem. Additionally

we show that the joint chance constraints can be written in a linear format. The

entire optimisation problem can then be written in the standard form for quadratic

programming optimisation. Standard deterministic MPC solution techniques can then

be used to solve the stochastic problem.

4. We compare the effect different inference techniques have on the quality of the MPC.

Specifically, if the underlying system is nonlinear it can be beneficial to use nonlinear

particle filtering techniques as opposed to inherently linear techniques like the Kalman

filter.

Lastly, measurement and system noise is ubiquitous in real life systems. Therefore most modern

model predictive control systems use an inference (filtering) technique to estimate the current

system state. By using a filter the control system can be seen as using a probabilistic graphical

model; therefore we are not actually introducing anything exotic but rather highlighting a

connection between two rich fields.

2.2 Switching model predictive control

In model predictive control the model of the plant is used to predict the future behaviour of

the plant given some inputs which are optimised according to some performance criterion.

Classically this model is linear and time invariant. An example of such a model is

xt+1 = Axt +But + wt

yt = Cxt + vt.
(2.6)

12

© University of Pretoria

Since the model includes system (wt) and measurement (vt) noise a state estimator would

typically be used to infer the state, xt, from some observation yt. The mean of the current

state, E[xt] together with the deterministic state model xt+1 = Axt +But would then be used

for prediction [52]. This assumption allows for the use of advanced constrained optimisation

algorithms, typically quadratic programming algorithms. From a practical perspective robust

and fast optimisation is crucial because it allows control inputs to be calculated on-line [43].

Unfortunately modelling errors or omissions often cause poor controller performance within

the context of MPC. This is often observed as steady state offset i.e. the controller takes

no more action and the system is not at the set point. In certain cases it is possible to

account for plant/model mismatch or asymptotically constant disturbances by incorporating

a latent disturbance model within the MPC framework. This is classically called zero offset

regulation [52] and is achieved by augmenting the system model

xt+1 = Axt +But +Bddt + wt

dt+1 = dt

yt = Cxt + Cddt + vt.

(2.7)

By using a state estimator the latent integrating disturbance dt can be estimated. The model

used for prediction is then augmented to incorporate this disturbance xt+1 = Axt + But +

BdE[dt] [37]. The problem with this approach is that it assumes that the model (A,B) is at

least somewhat representative of the underlying dynamics.

Linear models (A,B) are often derived by linearising nonlinear models about a single operating

point. These models are traditionally used in MPC design; a drawback with this approach

is that linear models are fundamentally only accurate in a small region around the point

of linearisation. The further the system moves away from the linearisation point the worse

the accuracy of the model becomes because the model is no longer a good approximation

of the underlying system dynamics. A possible solution to this problem is nonlinear MPC.

In nonlinear MPC a full nonlinear model is used for controller design; it is hoped that this

more complicated model is accurate over the entire problem domain (or a larger part thereof

than the corresponding linear model). Unfortunately this approach is often computationally

intensive, especially for large problems, because it inherently requires nonlinear, usually

non-convex, optimisation. This is a subject of much current research [20].

Another approach is to approximate a potentially complex nonlinear system by a set of linear

functions which are valid in certain ranges. An early attempt at this idea [6] integrated logical

rules for switching between different system dynamics and constraints. Using that approach a

set of logical rules were integrated into the optimisation problem to yield, in the setting of

standard MPC, a mixed integer quadratic program with linear constraints. This approach is

called mixed logical dynamical modelling (MLD) in literature; the system dynamics are then

specified by

xt+1 =

I∑
i=1

δiAixt +

I∑
i=1

δiBiut (2.8)

13

© University of Pretoria

where i = 1, 2, ..., I are the indices of the models approximating the underlying problem.

The binary variable δi ∈ [0, 1] selects which linear model to use at each step in the prediction

horizon within the framework of MPC. Constraints on δi allow the optimisation algorithm

to switch between models based on its position in the state space. The drawbacks with this

approach is that the “IF-THEN-ELSE” rules need to be fully specified before hand and the

mixed integer optimisation problem can become computationally intractable.

The work by [23] and [54] elaborate on this approach. Both papers deal with the control of

continuously stirred tank reactors (CSTRs) throughout different operating regimes. CSTRs

are a good case study because they often have multiple steady states, constraints and can

be quite nonlinear. The approach of [23] and [54] is to linearise the underlying nonlinear

CSTR model about different operating points and use those models to approximate the true

nonlinear dynamics. Computational difficulties are reported because the complexity of the

mixed integer quadratic problem scales exponentially with the number of variables.

The approach by [50] is similar except that they use ellipsoidal regions to develop a multiple

model MPC. Again the approach by [36] is similar except that they attempt to reduce the

complexity of the mixed integer quadratic problem by providing guidelines on selecting the

number of linear models used. More linear models leads to better control but the optimisation

problem becomes correspondingly more difficult. Finally, [49] also investigates hybrid systems

but uses Bayes’ theorem to assign weights to the different models as opposed to only having

one model active in each region. In their approach δi is a continuous variable in the range

[0, 1] and
∑I

i=1 δi = 1. While their approach is also computationally intensive, a nonlinear

optimisation problem needs to be solved, an effort is made to take advantage of the problem

structure to attenuate this problem.

Loosely related to the idea of model switching is model based fault detection. In [31] it is

found that almost 70% of the reviewed papers dealing with fault detection use observer or

parameter estimation methods. The basic idea behind this approach is to estimate the system

outputs using an observer and to compare this to some model of the system. The difference,

often called the residual, is then used to estimate the probability of a fault in the process [25].

The approach followed in [62] combines elements of model switching and state observations.

They use a filter to construct a residual generator which is used to evaluate whether or not

the system has a fault. The filter can switch between the different linear system models based

on the current regime of the system.

Related to this class of model based fault detection algorithms is the switching model filter.

The corresponding probabilistic graphical model is shown in figure 2.2. Classically these types

of models are used to infer the current state estimate (called filtering) given a set of models.

Intuitively, the model which best describes the current observation (yt) is assigned the most

weight in the state estimate. This allows for the modelling of nonlinear and multi-modal

distributions by combining models based on the inferred switching variable (s) [47]. These

models may be used for both filtering and event detection (see [60] for an example) which, in

14

© University of Pretoria

y0 y1 y2

x0 x1 x2

s0 s1 s2

Figure 2.2: Switching filter graphical model.

the setting of control, can be interpreted as fault detection.

In this dissertation we also illustrate the potential control benefits gained by designing

predictive controllers using the switching model probabilistic graphical model of figure 2.2.

We investigate and show the following:

1. Using switching model filters it is possible to accurately estimate the current state as

well as estimate the probability of each model supporting the current observation. The

state estimate can then be used within the controller framework alluded to in section 2.1.

Using this approach it is also possible to change the model control is based upon. The

linear model which best describes the current observations is used for control purposes.

In this way we gain the benefit of model switching but do not incur the significant

computational cost when it is incorporated into the optimisation problem as is the trend

in current literature. We call this approach the switching controller algorithm.

2. We investigate using the Rao-Blackwellised particle filter as the switching model filter. In

this context the resultant most likely linear model is used to move the underlying system

to different regions in state space. It was found that the approach caused controller

instability because the current most likely model is often not accurate enough to steer

the system to the target.

3. We also investigate using the switching particle filter as the switching model filter. In

this context the filter was used to identify when a process fault occurred and, based

on this event, switch the model control is based upon. It was found that the algorithm

successfully stabilised and regulated the nonlinear underlying system. Furthermore,

since the controllers of section 2.1 were used the control scheme was computationally

efficient.

Even more so than section 2.1, the approach used here relies on the application of probabilistic

graphical models to controller design.

15

© University of Pretoria

Chapter 3

Background theory

This chapter is composed of five sections which introduce the main concepts and results used

throughout the rest of the dissertation. Section 3.1 introduces probability theory. Section 3.2

very briefly introduces some useful nomenclature from graph theory. These two sections serve

as an entry point for section 3.3 which deals with probabilistic graphical models. Section 3.4

deals with control theory and section 3.5 introduces an important result from matrix linear

algebra.

It might appear as though sections 3.1 to 3.3 and section 3.4 are not related to each other.

However, the foundational theory introduced here is expanded upon later and the relationship

then becomes clear.

3.1 Probability theory

The calculus of probability theory was developed by Fermat and Pascal in order to better

understand the problems introduced by uncertainty in gambling. From this dubious genesis a

rich and incredibly powerful field has developed. We start our brief introduction of probability

theory by restating Kolmogorov’s three probability axioms - these axioms underpin the entire

theory of probability [34].

Let the set Ω be the universe of possible events, also called the event space; that is, if we are

uncertain about which of a number of possibilities are true then we let Ω represent all of them

collectively. Let P be some real valued function which satisfies the three axioms stated below.

Axiom 3.1. P (Ω) = 1. The probability of any event in Ω occurring is 1.

Axiom 3.2. ∀α ∈ Ω, P (α) ≥ 0. The probability of any one (or set of) event(s) in Ω occurring

is non-negative.

Axiom 3.3. ∀α, β ∈ Ω, if α ∩ β = ∅ then P (α ∪ β) = P (α) + P (β). The probability of two

mutually disjoint sets of events in Ω occurring is equal to the sum of their probabilities.

16

© University of Pretoria

A function P which satisfies these three axioms is known as a probability function. Based on

these three axioms the theory can be extended to theorem 3.1 [34].

Theorem 3.1. ∀α, β ∈ Ω, P (α∪β) = P (α) +P (β) +P (α∩β). The probability of two events

occurring in Ω is equal to the sum of their probabilities less the probability of both occurring

simultaneously.

3.1.1 Discrete random variables

We now make precise what we mean by random variables: a random variable is a non-

deterministic variable which is characterised by some uncertainty in its measurement. Se-

mantically we indicate a specific value taken on by the random variable X as X = x or just

denote it x. Thus, the function P (X = x) = P (x) ∈ R indicates the probability of event

x occurring with respect to the random variable X. We denote P (X) as the probability

function of the random variable X. Thus, for the discrete random variable X we have that

P (X) = (P (x1), P (x2), ..., P (xn))T where xi ∈ X for i = 1, 2, ..., n and
∑

i P (xi) = 1. We

defer the study of the continuous case until later.

Before we proceed let us briefly discuss how we can interpret the function P for any random

variable X. If P (X = x) = 1 we are certain of event x occurring, i.e. X will only take on

the value x. If P (x) = 0 we are certain that event x will not occur, i.e. X will never take on

the value x. Thus our certainty of event x occurring is reflected by the magnitude of P (x).

Attempting to make the statement “our certainty of event x occurring” more precise leads us

to two different physical interpretations of P (x). The first is the frequentist interpretation: to

the frequentist a probability is a long term average of the observations of event x occurring

in the event space. While this interpretation is satisfying if one deals with something which

is easily measured e.g. the probability of a fair die rolling a 6, it fails to explain statements

like: “the probability of it raining tomorrow is 50%”. The reason the last statement is

problematic is because the time span is ill defined. If we rather understand probabilities to

mean subjective degrees of belief in event x occurring this is no longer a problem. To ensure

that these subjective beliefs are rational can be problematic. One way to ensure this is by

requiring that if the probabilities were used in a betting game it is impossible to exploit them

to one’s advantage (or disadvantage). If this is possible then there is no difference between

the interpretations described above [34].

We will deal extensively with joint and marginal probability distributions. Consider the

random variables X and Y . The marginal probability distribution of X is the function P (X)

and describes the probabilities of events involving only the variable X. The joint probability

distribution of X and Y is the function P (X,Y) = P (X ∩ Y) and describes the intersection

(and) of the probability space of X and Y . We introduce, without proof, theorem 3.2.

Theorem 3.2. Marginalisation By marginalising out X we mean we sum out X from the

joint distribution P (Y) =
∑

x P (x, Y). This extends to higher dimensions.

17

© University of Pretoria

We can reduce any joint distribution to a marginal one by summing (or integrating in the

case of continuous random variables) out the appropriate variable.

It is now necessary to define what we mean by conditional probability. Definition 3.1 makes

precise how the knowledge that event y has occurred alters our view of event x occurring.

Definition 3.1. Conditional probability P (X|Y) = P (X∩Y)
P (Y)

Note that if for some y ∈ Y we have P (Y = y) = 0 then definition 3.1 is undefined.

Additionally, the function P (·|Y) is a probability function. We next define what we mean by

a positive probability distribution in definition 3.2.

Definition 3.2. A probability distribution is positive if P (x) > 0 ∀ x ∈ X.

Clearly undefined conditional probabilities are not a problem in the setting of positive

probability distributions. We also define the notion of independence, also sometimes called

marginal independence, in definition 3.3.

As before, let X, Y and Z be random variables. Intuitively X and Y are independent if the

outcome of X does not influence the outcome of Y . It can be shown that independence is a

symmetric property [34].

Definition 3.3. Independence X |= Y ≡ P (X|Y) = P (X)

Generalising the concept of independence we define conditional independence by definition 3.4.

Again this definition is symmetric [34].

Definition 3.4. Conditional independence X |= Y |Z ≡ P (X|Y, Z) = P (X|Z)

Intuitively, if X is conditionally independent of Y given Z then by observing Z one gains

nothing by observing Y . Clearly if Z = ∅ we have (marginal) independence. We also introduce

theorem 3.3 which naturally leads us to the formulation of Bayes’ theorem (using definition 3.1)

as shown in theorem 3.4.

Theorem 3.3. Chain rule Given the random variables X1 and X2 we have P (X1, X2) =

P (X1)P (X2|X1). The generalisation to an arbitrary number of random variables is straight-

forward.

Theorem 3.4. Bayes’ theorem P (X|Y) = P (Y |X)P (X)
P (Y)

Under the Bayesian interpretation of theorem 3.4 we see that the posterior probability of

some hypothesis X given some evidence Y being true is just the likelihood P (Y |X) of the

hypothesis supporting the evidence multiplied by the prior probability of the hypothesis P (X)

normalised by the prior of the evidence P (Y). It is also convenient to notice that P (Y) is a

normalising constant and thus P (X|Y) ∝ P (Y |X)P (X).

To fully describe a system of random variables it is only necessary to know the joint distribution

P (X1, X2, ..., Xn). Given the joint probability distribution inference (reasoning about the

18

© University of Pretoria

variables under uncertainty) may be performed. Common probabilistic queries involve

computing posterior beliefs P (X|Y = y) i.e. the probability function of X given we have

some information about Y . Other queries involve find the most probable explanation (called

a MAP query) of some evidence i.e. finding X which maximises P (X,Y = y). More on this

later.

Example of Bayes’ theorem in action

This section will attempt to develop some intuition behind theorem 3.4. We quote an excerpt

from an article in the Economist [24] and illustrate the use of Bayes’ theorem in a canonical

medical example [35].

“The essence of the Bayesian approach is to provide a mathematical rule explaining how you

should change your existing beliefs in the light of new evidence. In other words, it allows

scientists to combine new data with their existing knowledge or expertise. The canonical

example is to imagine that a precocious newborn observes his first sunset, and wonders whether

the sun will rise again or not. He assigns equal prior probabilities to both possible outcomes,

and represents this by placing one white and one black marble into a bag. The following day,

when the sun rises, the child places another white marble in the bag. The probability that a

marble plucked randomly from the bag will be white (ie, the child’s degree of belief in future

sunrises) has thus gone from a half to two-thirds. After sunrise the next day, the child adds

another white marble, and the probability (and thus the degree of belief) goes from two-thirds

to three-quarters. And so on. Gradually, the initial belief that the sun is just as likely as not

to rise each morning is modified to become a near-certainty that the sun will always rise.”

Now for the canonical medical example. Suppose you get tested for a certain disease. You

know the disease affects 1 in 100 people. You also know that the false positive rate for the

test is 20% and the false negative rate for the test is is 10%. Your test comes back positive.

What are the chances of you having the disease given this information?

The information may be summarised as shown below. Let D be a binary random variable

indicating the presence of the disease and ¬D indicates the absence. Let T be a binary

random variable indicating a positive test and ¬T indicates a negative test.

1. The prior of the disease is P (D) = 0.01.

2. False positive rate P (T |¬D) = 0.2 =⇒ P (¬T |¬D) = 0.8.

3. False negative rate P (¬T |D) = 0.1 =⇒ P (T |D) = 0.9.

A naive approach would conclude that since P (T |D) = 0.9 you are 90% likely to have the

19

© University of Pretoria

disease. However, using Bayesian inference/reasoning we have:

P (D|T) =
P (T |D)P (D)

P (T)

=
P (T |D)P (D)∑

D P (D,T)

=
P (T |D)P (D)∑
D P (D)P (T |D)

=
0.9× 0.01

0.01× 0.99 + 0.99× 0.2

≈ 0.04

Clearly there is a big difference between the naive approach and the Bayesian (correct)

approach. The power of Bayesian inference lies in the ability to reverse causal reasoning.

That is, we know that the disease causes the test to be positive, P (T |D), but we would like to

reverse this reasoning to infer P (D|T). This is immensely powerful as we shall soon discover.

3.1.2 Continuous random variables

So far in our discussion we have implicitly only used discrete random variables; that is, our

probability space consisted out of a finite number of events or states. However, it is also

necessary to make precise what we mean by a continuous random variable. A continuous

random variable is characterised by a density function p which assigns a weight to each

possible value of the variable. Intuitively this weight is related to the probability of that

value occurring1. Although the density function is itself not a probability function, if it

satisfies p(x) ≥ 0 ∀x ∈ X and
∫
p(x)dx = 1, where we have implicitly integrated over the

domain of p, then it can be used to generate one. The cumulative probability function

P (X ≤ a) =
∫ a
−∞ p(x)dx is one such example2.

Arguably the most well known continuous probability density distribution is the Gaussian or

normal distribution. The Gaussian distribution arises naturally from a variety of different

contexts and settings. For example, the central limit theorem, together with some mild

assumptions, tells us that the sum of a set of N random variables is itself a random variable

and in the limit can be described by a Gaussian distribution [8]. The Gaussian is regularly

used because it has some very appealing analytical properties (and also often because it is

physically meaningful) which we will investigate in some depth.

Since the probability of a specific value is not meaningful in the setting of continuous probability

functions we abuse our notation and interchangeably denote the random variable X by x. We

also do not indicate vector quantities in boldface; it can be assumed that all numbers are

vectors unless otherwise noted. We will concern ourselves mostly with vector quantities and it

will be obvious when we deal with scalar valued variables.
1Please note that strictly speaking P (x) = 0 for a specific point x in the domain of p. Technically it is

correct to say that the probability of P (x ∈ [a, b]) =
∫ b

a
p(y)dy; thus, if we want the probability of x occurring

we could just make [a, b] small to get some approximation.
2We have assumed that the domain of X is the entire real line.

20

© University of Pretoria

Definition 3.5. Gaussian distribution The univariate Gaussian or normal distribution of

a random variable x is defined by

N (x|µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
. (3.1)

We call µ the mean and σ2 the variance of the distribution. The multivariate Gaussian

distribution is defined by

N (x|µ,Σ) =
1√
2π

D
2

1

|Σ| 12
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.2)

where µ is a D dimensional mean vector and Σ is a D ×D dimensional covariance matrix.

Note that we often use the inverse of the covariance matrix, called the precision matrix and

define it Λ ≡ Σ−1.

It is also appropriate to define some functions which apply equally well to the discrete case as

to the continuous case (just replace the integration with summation in the setting of discrete

random variables). We define the expectation (or mean or average) in definition 3.6, the

variance in definition 3.7 and the covariance in definition 3.8.

Definition 3.6. Expectation The average value of some integrable function f under the

probability distribution p is denoted E[f] =
∫
p(x)f(x)dx.

We have that E[x] = µ if x is a Gaussian random variable.

Definition 3.7. Variance The variance of f is defined by var[f] = E[(f − E[f])2] and

provides a measure of how much variability there is in f around its mean value E[f].

By expanding out the square we have the familiar formula var[f] = E[f2]− E[f]2. Also note

that for a univariate Gaussian random variable x we have var[x] = σ2.

Definition 3.8. Covariance For two random variables x, y (which may be column vectors)

we define the covariance matrix cov[x, y] = E[xyT]− E[x]E[y].

Note that cov[x, x] = cov[x] = var[x]. Covariance is a measure of how much two random

variables vary together. If x is a D dimensional Gaussian random variable then cov[x] = Σ as

defined in definition 3.5.

The identities in theorem 3.5 will be useful in later sections. We refer the reader to [17] for

justification.

Theorem 3.5. Gaussian expected value identities Suppose there exist constants c ∈ Rn

and C ∈ Rn×n and X is a normal random variable with statistics (µ,Σ). Then the following

identities hold:

1. E[cTX] = cTµ

2. E[CX + c] = Cµ+ c

21

© University of Pretoria

3. E[XTCX] = tr(CΣ) + µTCµ

Now we are in a position to perform some manipulations assuming we are using Gaussian

random variables. We state without proof theorem 3.6.

Theorem 3.6. Partitioned joint gaussians Given a Gaussian distribution N (x|µ,Σ) with

Λ ≡ Σ−1 and x =

(
xa

xb

)
, µ =

(
µa

µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
and Λ =

(
Λaa Λab

Λba Λbb

)
then we have

the conditional distribution

p(xa|xb) = N (xa|µa|b,Λ−1
aa)

with µa|b = µa − Λ−1
aa Λab(xb − µb)

(3.3)

and the marginal distribution

p(xa) = N (xa|µa,Σaa). (3.4)

It is often easier to work with the precision matrix when dealing with conditional distributions.

Next we state and then prove theorem 3.7 which we will use extensively. The proof for

theorem 3.6 uses the same techniques and can be found in [8].

Theorem 3.7. Bayes’ theorem for linear gaussian models Suppose we have a marginal

Gaussian distribution for x and a conditional Gaussian distribution for y:

p(x) = N (x|µ,Λ−1)

p(y|x) = N (y|Ax+ b, L−1).
(3.5)

Then the marginal distribution for y is

p(y) = N (y|Aµ+ b, L−1 +AΛ−1AT) (3.6)

and the conditional distribution for x given y is

p(x|y) = N (x|Σ(ATL(y − b) + Λµ),Σ)

with Σ = (Λ +ATLA)−1.
(3.7)

where b is a known vector or function of some deterministic variable.

Proof. We begin our proof by noticing that for a general Gaussian N (γ|α, β) we can write

the exponent as

−1

2
(γ − α)T β−1 (γ − α) = −1

2
γTβ−1γ + γTβ−1α+ const (3.8)

where const is some real number which does not depend on γ. It is known that Gaussian

distributions are closed under multiplication, i.e. if one multiplies two Gaussian distributions

the product is still a Gaussian distribution (of a higher dimension) [8]. To find the joint

distribution we let z =

(
x

y

)
and consider the logarithm of the joint

log(z) = log(p(x)) + log(p(y|x))

= −1

2
(x− µ)TΛ(x− µ)− 1

2
(y −Ax− b)TL(y −Ax− b) + const

(3.9)

22

© University of Pretoria

Here const denotes constant terms which are independent of x and y. Now we make use of

(3.8) to find the mean and covariance of z. Continuing, we consider only the second order

terms when (3.9) is expanded

− 1

2
xT (Λ +ATLA)x− 1

2
yTLy +

1

2
yTLAx+

1

2
xTATLy

= −1

2

(
x

y

)T (
Λ +ATLA −ATL
−LA L

)(
x

y

)

= −1

2
zTRz.

(3.10)

From this we immediately have the precision of z: the matrix R; we also use a matrix inversion

formula found in [8] to find the covariance

cov[z] = R−1 =

(
Λ−1 Λ−1AT

AΛ−1 L−1 +AΛ−1AT

)
. (3.11)

We now proceed in exactly the same way to find mean of z. By expanding 3.9 and only

considering the first order terms in x and y we have

xTΛµ− xTATLb+ yTLb =

(
x

y

)(
Λµ−ATLb

Lb

)
. (3.12)

Again, by making use of (3.8) and the fact that the covariance of z is R−1 it is possible to

show that E[z] =

(
µ

Aµ+ b

)
as shown in [8]. By using theorem 3.6 we immediately have the

marginal and conditional distributions as required.

We also introduce a useful metric for measuring the similarity between two distributions in

definition 3.9.

Definition 3.9. Kullback-Leibler divergence Consider some unknown distribution p(x)

and suppose we have modelled this distribution by q(x). Kullback-Leibler divergence, also

known as relative entropy, is defined KL(p||q) = −
∫
p(x)ln

(
q(x)
p(x)

)
dx and measures the

additional amount of information, in nats, needed to specify the value of x [8].

Kullback-Leibler divergence can be used to measure the dissimilarity between two distributions.

If the measure is zero the distributions are identical; care needs to be taken when using

Kullback-Leibler divergence because the measure is not symmetric. We introduce theorem 3.8

to measure the dissimilarity between a known distribution and a sampled approximation

thereof. See [8] for the motivation.

Theorem 3.8. Kullback-Leibler sample divergence Suppose we observe a finite set

of points xn for n = 1, 2, ..., N drawn from p(x). Furthermore, suppose we would like

to measure the information loss when p is approximated by q. We can measure this by

KL(p||q) ≈ 1
N

∑N
n=1 (−ln(q(xn)) + ln(p(xn))). This measurement is bounded below by zero.

If, as N →∞, the information loss is zero p and q are functionally equivalent.

23

© University of Pretoria

We also briefly introduce the Mahalanobis distance in definition 3.10.

Definition 3.10. Mahalanobis distance The Mahalanobis distance between x and a

reference point y ∈ Rn given a covariance matrix S ∈ Rn×n, is defined by DM (x|y, S) =√
(x− y)TS−1(x− y).

The Mahalanobis distance is a statistical distance metric which reduces to the Euclidean

distance metric if S = I. It is found in the exponent of the Gaussian distribution density

function and can be used to measure the “closeness” of points between distributions with a

common covariance matrix. We will study it in more detail later.

3.2 Graph theory

A graph, G, is a data structure consisting of a set of nodes χ and edges ξ. A pair of nodes

Xi, Xj ∈ χ can be connected by an edge. We will only consider directed graphs in this

dissertation. This implies that every edge in ξ has a direction associated between the two

nodes it connects i.e. Xi → Xj if there is an edge from Xi to Xj .

We now define some basic concepts which we will rely upon to further describe the types of

graphs we will consider.

Definition 3.11. Directed path We say that the nodes X1, X2, X3, ..., Xn ∈ χ form a

directed path if Xi → Xi+1 for 1 ≤ i ≤ n− 1.

Definition 3.12. Directed cycle A directed cycle is a non-singleton directed path which

starts and ends at the same node.

Definition 3.13. Directed acyclic graph (DAG) A graph G is a DAG if it is directed

and has no directed cycles.

In this dissertation we will only concern ourselves with DAGs. Figure 3.1 is an example of a

DAG.

X0 X1

X2 X3

Figure 3.1: Example of a directed acyclic graph.

Next we define some nomenclature to further describe the nodes of a graph G.

Definition 3.14. Parents We say that the set of nodes κ ⊂ χ are the parents of node Xi if,

for each node in κ, there exists an edge going to Xi.

24

© University of Pretoria

Definition 3.15. Children We say that the set of nodes τ ⊂ χ are the children of node Xi

if, for each node in τ , there exists an edge going from Xi to that node.

Definition 3.16. Descendants We say that the set of nodes γ ⊂ χ are the descendants of

node Xi if, for each node in γ, there exists a directed path from Xi to that node.

We also briefly define a structured approach to encoding a graph.

Definition 3.17. Adjacency matrix For a graph G with n nodes, the adjacency matrix

A is an n × n matrix where Aij = 1 if there is an edge from node i to node j and Aij = 0

otherwise.

The adjacency matrix A for figure 3.1 is shown below:

A =


0 1 0 0

0 0 0 1

0 1 0 0

0 0 0 0


A detailed analysis of graph theory may be found in [19].

3.3 Probabilistic graphical models

Probabilistic graphical models are the union between probability theory and graph theory.

Consider why, in general, it is infeasible to determine an arbitrary joint probability distribution.

Suppose you have a set of n binary random variables and wish to determine their joint. This

equates to finding P (X1, X2, ..., Xn). To fully specify this model we would need to find and

store 2n − 1 probabilities. For even moderately big n this is impractical, and this was for the

simple case of a binary valued random variable. Clearly we require a more efficient way to

represent the joint probability distribution.

3.3.1 Bayesian networks

A Bayesian network is a representation of the joint probability distribution of a set of random

variables parametrised by:

1. A graph depicting local independence relationships.

2. Conditional probability distributions.

The fundamental assumption behind Bayesian networks, and more generally probabilistic

graphical models, is that there is a useful underlying structure to the problem being modelled

which can be captured by the Bayesian network. This underlying structure is available via

conditional independence relationships between the variables.

25

© University of Pretoria

Suppose P is the joint distribution of some set of random variables we require to do inference

on.

Definition 3.18. I-Map The I-Map of P , denoted by I(P), is the set of independence

assertions of the form X |= Y |Z which hold over P .

Let G be a Bayesian network graph over the random variables X1, X2, ..., Xn where each

random variable is a node. We say that the distribution P factorises over the same space if P

can be expressed as the product defined by the chain rule for Bayesian networks.

Definition 3.19. Chain Rule for Bayesian Networks The chain rule for Bayesian net-

works specifies that the joint factorises according to P (X1, ..., Xn) = Πn
i=1P (Xi|Parents(Xi)).

Each of the individual factors of P , as factorised by the chain rule for Bayesian networks,

represents the conditional probability distributions required to parametrise the Bayesian

network. It can be shown that a Bayesian network graph G over which P factorises is not

unique. However, if the graph explicitly models the causality inherent in the system being

modelled the representation is often much sparser [34]. A Bayesian network is then defined as

the tuple (G,P) such that the joint P factorises over the graph G. We state without proof

theorem 3.9.

Theorem 3.9. Let G be a Bayesian network graph over a set of random variables χ and let

P be a joint distribution over the same space. If P factorises according to G then G is an

I-Map for P. Conversely, if G is an I-Map for P then P factorises according to G.

Thus, the conditional independences imply factorisation of P . Conversely, factorisation

according to G implies the associated conditional independences.

To illustrate computational benefit of using Bayesian networks, consider again our simple

system of n binary random variables X1, X2, ..., Xn. Suppose the Bayesian network in figure 3.2

models the system.

X0 X1
. . . XN−1 XN

Figure 3.2: Example of a simple Bayesian network.

Without knowing any structure 2n − 1 parameters were needed to specify the joint. How-

ever, using the chain rule for Bayesian networks we can factorise the joint P (X1, ..., Xn) =

P (X1)P (X2|X1)...P (Xn|Xn−1). This implies that we only require 2n− 1 parameters. From a

modelling perspective this is a significant gain.

The primary reason we would want to have a model of the joint distribution of a set of random

variables is to reason with. To achieve this we invariably manipulate the joint distribution

by either some form of marginalisation or optimisation. To make inference computationally

26

© University of Pretoria

tractable it is desirable to leverage the independence assertions implied by the network

graph. To this end we expand on the independence assertions implied by the graph. Recall

theorem 3.9: since we have that the joint factorises over the graph we also have that any

independence assertions implied by the graph’s connectivity also apply to the joint.

We introduce the concept of d-separation as a method of determining whether a set of nodes

X are conditionally independent of another set Y given the set E. Firstly we generalise the

concept of a directed path to an undirected path between sets of variables.

Definition 3.20. Undirected path An undirected path between two sets of nodes X and

Y is any sequence of nodes between a member of X and a member of Y such that every

adjacent pair of nodes is connected by an edge regardless of direction and no node appears

twice.

Definition 3.21. Blocked path A path is blocked, given a set of nodes E, if there is a node

Z on the path for which at least one of the three conditions holds:

1. Z is in E and Z has one edge leading into it from the path and one edge leading out of

it on the path.

2. Z is in E and Z has both edges leading out of it from the path.

3. Neither Z nor any descendant of Z is in E and both path edges lead into Z.

Definition 3.22. D-separation A set of nodes E d-separates two other sets of nodes X

and Y if every path from a node in X to a node in Y is blocked given E.

To shed some more light on d-separation consider figure 3.3. The first diagram depicts the

first blocked condition, i.e. a causal chain. Node E blocks relevance of X to Y . The second

diagram illustrates the second blocked condition, i.e. a common cause. Node E blocks X

from being relevant to Y . Finally, the third diagram illustrates the third blocked condition or,

more aptly, illustrates how lack of knowledge of the nodes in the path from X to Y implies

that they are conditionally independent [35].

(1) X E Y

(2) X . . . E . . . Y

(3) X

. . .

Y E

Figure 3.3: Examples of d-separation.

27

© University of Pretoria

Using d-separation we can efficiently reason about the conditional independences implied by

the graph and the observed variables (E). This becomes incredibly useful when one attempts

to apply inference techniques because it can simplify the joint calculations significantly. More

on this later.

Bayesian networks are commonly used to model situations which are not time dependent. We

will primarily restrict ourselves to time series modelling in this dissertation. As such we will

not delve deeper into static Bayesian network theory.

3.3.2 Dynamic Bayesian networks

Dynamical Bayesian networks generalise the conventional static Bayesian networks of the

previous section. Dynamic, or temporal, Bayesian networks model systems which evolve with

time. Since sequential, or temporal, data is abundant in most engineering applications we

will primarily concern ourselves with such models. Notationally we denote a time dependent

vector by x1:t = x1, x2, ..., xt, for example the joint P (x1:3) = P (x1, x2, x3).

There are two important classes of analysis one may perform on sequential data using graphical

models. On-line analysis, including prediction and filtering and off-line analysis, including

smoothing and the most probable explanation (sometimes called Viterbi decoding). In both

cases we are generally interested in learning something about a set of hidden state variables

by performing inference on some set of observed variables.

A state space model assumes that there is some underlying hidden state (xt) of the world which

generates observations (yt). These hidden states may evolve with time and may be functions

of some inputs (ut). The hidden states and observations are most generally assumed to be

random variables. Any state space model is fully parametrised by the following information:

1. A prior probability distribution over the states: P (x0)

2. A state transition function: P (xt|x0:t−1, u0:t−1)

3. An observation function: P (yt|x0:t, u0:t−1)

For the purposes of this dissertation we will assume that the state space model is known. If

this model is not known machine learning techniques may be used find these models [47]. To

simplify notation we will sometimes omit the dependence of the probability functions on the

inputs u0:t.

We will assume that all the systems we model satisfy the first order Markov assumption.

Definition 3.23. Nth-order Markov assumption A system satisfies the Nth Markov

assumption if P (xt|x0:t) = P (xt|xt−n:t−1). For example, a first order Markov system satisfies

P (xt|x0:t) = P (xt|xt−1). Similarly with the observation function.

This is not as restrictive as it may seem at first. It is always possible to transform an Nth-order

28

© University of Pretoria

Markov system into a first order Markov system by modifying the state space [47]. We also

assume that the state and observation functions remain the same for all time i.e. they are

time invariant or homogeneous or stationary.

Intuitively, a state space model is a model of how xt generates or causes yt and xt+1. The

goal of inference is to invert this mapping. The four types of inference we will consider in this

dissertation are:

1. Filtering: we attempt to infer P (xt|y0:t), i.e. we attempt to estimate the current state

given all past observations.

2. Smoothing: we attempt to infer P (xt−m|y0:t) with m > 0, i.e. we attempt to estimate

some past state given all the past and future observations. A more apt description of

this process is applying hindsight to state estimation.

3. Prediction: we attempt to infer either P (xt+m|y0:t) or P (yt+m|y0:t) with m > 0, i.e.

we attempt to estimate the future hidden states or observations given all the past

observations.

4. Viterbi decoding: we attempt to perform x∗1:t = arg max
x1:t

P (x1:t|y1:t), i.e. we attempt to

infer the most likely sequence of states which best explain the observations.

It is customary to denote hidden (latent) variables by a clear node, observed (visible) variables

by a shaded node and deterministic variables by a diamond shaped node. Additionally, it

is also customary to separate the input, state and observation variables from each other:

zt = (ut, xt, yt).

To fully specify a dynamic Bayesian network we require the pair (B0, B→). The Bayesian

network B0 defines the prior over the random variables being modelled and B→ defines the

transition and observation functions by means of a Bayesian network graph, typically over

two time slices, see figure 3.4 for an example. This Bayesian network graph may be factorised

according to the Bayesian network chain rule such that at each time slice

P (zt|zt−1) = ΠN
i=1P (zit|Parents(zit)). (3.13)

A dynamic Bayesian network may be unrolled (temporally) into a (long) Bayesian network. If

one views dynamic Bayesian networks as an extension of Bayesian networks all the previous

theory applies. Using the chain rule for Bayesian networks again we can specify the full joint

over time as

P (z0:T) = ΠT
t=1ΠN

i=1P (zit|Parents(zit)). (3.14)

29

© University of Pretoria

y0

x0 x1 x2

u0 u1

y1 y2

Figure 3.4: Example of a dynamic Bayesian network unrolled for 3 time slices.

3.4 Control

In this section we briefly introduce three fundamental control strategies. First, the linear

quadratic regulator (LQR) which deals with the optimal control of linear discrete time invariant

systems. Second, we deal with the stochastic generalisation of the LQR controller: the famous

linear quadratic Gaussian (LQG) controller. Third and finally, we introduce deterministic

model predictive control (MPC). The aim of this section is to introduce and illustrate the

relationship between these controllers.

3.4.1 Linear quadratic regulator control

We start our analysis by assuming we have an accurate, linear, discrete, time invariant state

space representation of a system

xt+1 = Axt +But. (3.15)

The control sequence N steps into the future is denoted u = (u0, u1, ..., uN−1). It is our goal to

derive a linear quadratic regulator (controller) given the system in (3.15) and the initial state

x0. Note that it is customary to assign x0 ← xt at each time step to simplify the succeeding

optimisation problem’s notation.

Definition 3.24. Linear quadratic regulator (LQR) objective function The controller

minimising the quadratic objective function

V (x0,u) =
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN (3.16)

is called the LQR controller.

The optimisation of (3.16) is implicitly subject to the state dynamics (3.15). The matrices Q,

R and Qf are tuning parameters affecting the relative importance of the state and control

inputs to the objective function respectively. We also assume that Q,Pf and R are real and

30

© University of Pretoria

symmetric matrices with the additional assumption that Q,Pf are positive semidefinite and

R is positive definite.

We assume the reader is familiar with dynamic programming, and present theorem 3.10

because it will be useful later. The proof may be found in [52] and follows from algebraic

manipulations.

Theorem 3.10. Sum of quadratics Suppose two quadratic functions V1(x) = 1
2(x −

a)TA(x− a) and V2(x) = 1
2(x− b)TB(x− b) are given. Then the sum V1(x) + V2(x) = V (x)

is also quadratic and V (x) = 1
2(x − v)TH(x − v) + d with H = A + B, v = H−1(Aa + Bb)

and d = V1(v) + V2(v).

We now state the complete LQR problem for finite horizon linear systems

min
u
V (x0,u) =

1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

subject to xt+1 = Axt +But

(3.17)

and analytically solve it using backward dynamic programming. Expanding the objective

function to examine its structure we have

min
u
V (x0,u) = min

u

1

2

N−1∑
k=0

(
xTkQxk + utkRuk

)
+

1

2
xTNPfxN

= min
u0,u1,...,uN−1

1

2

(
xT0 Qx0 + uT0 Ru0 + xT1 Qx1 + uT1 Ru1 + ...+ xTNPfxN

)
= min

u0,u1,...,uN−2

1

2

(
xT0 Qx0 + uT0 Ru0 + ...+ xTN−2QxN−2 + uTN−2RuN−2

)
...

+ min
uN−1

1

2

(
xTN−1QxN−1 + uTN−1RuN−1 + xTNPfxN

)
.

(3.18)

Note that given x0 and the system dynamics all succeeding states are unknown only in the

control input. The expansion of the objective function is recursive; this structure motivates the

use of dynamic programming. By using theorem 3.10 and the constraint xN = AxN−1+BuN−1

we can simplify the last term in the separated minimisation problem of (3.16) by writing

min
uN−1

VN−1(xN , uN−1) = min
uN−1

1

2

(
xTN−1QxN−1 + uTN−1RuN−1 + xTNPfxN

)
= min

uN−1

1

2

(
xTN−1QxN−1 + (uN−1 − v)TH(uN−1 − v)

)
+ d

with H = R+BTPfB

and v = KN−1xN−1

and d =
1

2
xTN−1

(
KT
N−1RKN−1 + (A+BKN−1)TPf (A+BKN−1)

)
xN−1

and KN−1 = −(BTPfB +R)−1BTPfA.

(3.19)

This is the first step of backward dynamic programming used to solve the problem. Given the

form of the objective function we see that the optimal input uN−1 is v and consequently that

31

© University of Pretoria

the optimal control law at time N − 1 is a linear function, KN−1, of xN−1. We also see that

the cost function of the last stage is quadratic. The optimal stage cost and controller action

is

u0
N−1(x) = KN−1x

x0
N−1(x) = (A+BKN−1)x

V 0
N−1(x) =

1

2
xTΠN−1x

KN−1 = −(BTPfB +R)−1BTPfA

ΠN−1 = Q+ATPfA−ATPfB(BTPFB +R)−1BTPfA.

(3.20)

The function V 0
N−1(x) defines the optimal cost to go from state x for the last stage under the

optimal control law u0
N−1(x). Now we proceed with the backward dynamic programming and

solve

min
uN−2

1

2

(
xTN−2QxN−2 + uTN−2RuN−2

)
+ V 0

N−1(xN−1). (3.21)

But now we note the similarity between (3.19) and (3.21). Using xN−1 = AxN−2 +BuN−2

and the same procedure as before we have

u0
N−2(x) = KN−2x

x0
N−2(x) = (A+BKN−2)x

V 0
N−2(x) =

1

2
xTΠN−2x

KN−2 = −(BTΠN−1B +R)−1BTΠN−1A

ΠN−2 = Q+ATΠN−1A−ATΠN−1B(BTΠN−1B +R)−1BTΠN−1A.

(3.22)

The recursion to go from ΠN−1 to ΠN−2 is known as backward Ricatti iteration and is defined

by

Πk−1 = Q+ATΠkA−ATΠkB(BTΠkB +R)−1BTΠkA. (3.23)

With terminal condition ΠN = Pf . We see that to find the optimal control policy we need to

continue with the backward dynamic programming recursion relationships until k = 1. We

summarise one of the most fundamental results in optimal control theory in theorem 3.11.

Theorem 3.11. Solution of the finite horizon LQR control problem Given a finite

horizon N and a discrete linear system as shown in (3.15) the optimal control policy which

minimises the LQR objective function of defintion 3.24 is given by iterating

u0
k(x) = Kkx

Kk = −(BTΠk+1B +R)−1BTΠk+1A
(3.24)

backwards for k = N − 1, N − 2, ..., 1 using backward Ricatti iteration as shown in (3.23).

The optimal cost to go from time k to time N is V 0
k (x) = 1

2x
TΠkx.

After the optimal input u is found only u0 is applied. For a treatment of the continuous case

see [28].

32

© University of Pretoria

Unfortunately optimal control in the setting described above does not guarantee stable

control [52]. It can be shown that the finite horizon controller is not guaranteed to be stable

i.e. there exist non-trivial systems for which the controller is unstable. This problem is fixed

by considering the infinite horizon LQR problem.

Definition 3.25. Infinite horizon LQR problem Find the optimal control sequence u

which solves

min
u
V (x,u) =

1

2

∞∑
k=0

(
xTkQxk + uTkRuk

)
subject to xt+1 = Axt +But

and x0 = x.

(3.25)

The same restrictions on the tuning parameters apply as before.

By assuming that the system under consideration is controllable it is possible to show that

the infinite horizon LQR solution shown in theorem 3.12 is convergent and stabilising [52].

Definition 3.26. Controllability A system is controllable is, for any pair of states x, z in

the state space, z can be reached in finite time from x. That is, x can be controlled to z. It

is possible to characterise a controllable system further. A system with n variables (which

require control) is controllable if and only if rank
(
λI −A B

)
= n for all λ ∈ eig(A).

Theorem 3.12. Solution of the infinite horizon LQR control problem Given the

infinite horizon LQR problem of definition 3.25 it can be shown that the optimal control is

given by

u0
k(x) = Kx

K = −(BTΠB +R)−1BTΠA

Π = Q+ATΠA−ATΠB(BTΠB +R)−1BTΠA.

(3.26)

The optimal cost is given by V 0(x) = 1
2x

TKx. The matrix Π can be found by iterating the

Ricatti equation. This solution is stabilising if the system is controllable [52].

3.4.2 Reference tracking

The LQR control problem, as discussed in the previous section, applies to deterministic

systems where the goal is to drive the controlled variables to the origin. It is straightforward

to extend this approach to systems where it is desired to drive the states to a reference (set)

point rsp.

To achieve this we simply redefine the objective function in terms of deviation variables

x̃t = xt − xsp
ũt = ut − usp.

(3.27)

33

© University of Pretoria

The constants xsp and usp are the state and corresponding controller set point one would like

to drive the system to. The deviation variables are then used in the objective function

min
ũ
V (x0, ũ) =

1

2

N−1∑
k=0

(
x̃TkQx̃k + ũTkRũk

)
+

1

2
x̃TNPf x̃N

subject to x̃t+1 = Ax̃t +Bũt

(3.28)

as opposed to xt and ut. The system dynamics remain the same [52] and only ũ0 is used as

before. We apply u0 = ũ0 + usp to the system. All that is required is that we specify xsp and

usp. This is done by solving(
I −A −B
HC 0

)(
xsp

usp

)
=

(
0

rsp

)
. (3.29)

Note that H relates the observed variables to the controlled variables. If there are more

measured outputs than manipulated variables (3.29) cannot be solved directly. It is possible

to cast (3.29) into an optimisation problem. We refer the reader to [52] for a full treatise on

the subject.

3.4.3 Linear quadratic Gaussian control

The LQR problem dealt with deterministic systems where the states were known exactly.

However, this is problematic from a practical perspective because:

1. The system model is almost never known exactly.

2. The state measurements are almost always noisy.

The linear quadratic Gaussian (LQG) controller for stochastic systems of the form

xt+1 = Axt +But + wt

yt = Cxt + vt
(3.30)

was developed to handle these problems. Additionally we assume wt ∼ N (0,W) and vt ∼
N (0, V) which are independent white noise terms. Because the states and measurements are

stochastic variables we cannot use the LQR objective function as before. Instead we use the

LQG objective function which is a generalisation of the former as shown in definition 3.27.

Definition 3.27. Linear quadratic Gaussian (LQG) objective function The controller

minimising the quadratic objective function

V (x0,u) = E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
(3.31)

is called the LQG controller. The restrictions on the tuning parameters are the same as before.

It is assumed that y0 is used to infer x0 which is then used in the optimisation problem.

34

© University of Pretoria

The full LQG control problem is

min
u
V (x0,u) = E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
subject to xt+1 = Axt +But + wt.

(3.32)

It is indeed possible to solve this controller analytically using stochastic dynamic programming

but the derivation is tedious. We rather employ the separation principle [15]. We do however

re-derive the optimal controller in a later chapter.

Definition 3.28. Separation principle The solution of the LQG problem is obtained by

combining the solution of the deterministic LQR problem and the optimal state estimation

problem. The optimal current state estimate is used as the current deterministic state within

the framework of the LQR controller. This is also sometimes called certainty equivalence.

The optimal state estimate of linear systems under Gaussian noise is known as the Kalman

filter. In later a chapter we devote much time to its derivation but for now we merely introduce

it loosely.

Definition 3.29. Kalman filter The optimal linear state estimator for Gaussian random

variables is called the Kalman filter.

A schematic diagram of the solution of LQG control problem is shown in figure 3.5.

Controller System

Estimator

u x

Figure 3.5: LQG control schematic. The estimator is the Kalman filter and the controller is

the deterministic LQR.

The LQR and LQG controller solutions are two of the most fundamental results in optimal

control theory [28]. In the next section we discuss model predictive control which is a

generalisation of the controllers we have discussed so far.

3.4.4 Model predictive control

Model predictive control (MPC) is the constrained generalisation of the LQR controller. It is

widely used industry and has been the subject of a significant amount of scholarly research.

35

© University of Pretoria

We introduce the classic deterministic linear MPC

min
u
V (x0,u) =

1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

subject to xt+1 = Axt +But

and dTxt + e ≥ 0 ∀ t = 1, 2, ..., N

(3.33)

with coincidental control and prediction horizons N .

It is straightforward to incorporate more constraints of the form dTi xt + ei ≥ 0 if required.

The structure of (3.33) is important: the objective function is quadratic and the constraints

are linear. There are two primary benefits of this structure. Firstly, the problem is provably

convex which means that if a minimum is found it is the global minimum. Secondly, (and as a

consequence of the first benefit) this allows for the use of specialised quadratic programming

techniques which are fast and reliable.

Unfortunately there is no tractable way to analytically compute the control law offline, except

in trivial cases, like the LQR controller. It is invariably necessary to use some optimisation

algorithm to solve for u given x0.

Recent advances in quadratic programming algorithms, like the interior point algorithm,

have made it possible to solve quadratic programming problems almost as fast as linear

programming problems. These solvers typically exploit the sparseness structure inherent in

problems like (3.33) [43]. Thus, it is desirable to make use of these solvers wherever possible by

ensuring that the underlying quadratic programming structure is not lost when modifications

are made to the algorithm.

Finally, the stability and robustness (e.g. when there is plant/model mismatch) of deterministic

linear MPC is well studied and understood in modern literature. See [52] and [43] for details.

Thus, it is likewise desirable to exploit this knowledge rather than attempt to derive an MPC

with completely different or new characteristics.

We will continue our study of linear MPC in later sections.

3.5 Matrix identities

It will be useful in a later section to have access to a block matrix inversion formula. We state

the result without proof and refer the reader to [33] for more details.

Theorem 3.13. Block matrix inversion Suppose we have a square block matrix of the

form

(
A b

cT d

)
where A is an invertible matrix; b and c are conforming vectors; and d is a

real number. Then the identity(
A b

cT d

)−1

=

(
A−1(I + p−1bcTA−1) −p−1A−1b

−p−1cTA−1 p−1

)
(3.34)

36

© University of Pretoria

holds with p = (d− cTA−1b).

37

© University of Pretoria

Chapter 4

Hidden Markov models

In this chapter we consider probabilistic graphical models of the form shown in figure 4.1.

We assume that (X0, X1, . . .) are each n state discrete random variables and that (Y0, Y1, . . .)

are each m state discrete random variables. Models of this form are classically called hidden

Markov models.

Y0

X0

Y1

X1

Figure 4.1: Graphical model used in this chapter.

Intuitively, this model represents the situation where we are not sure about the state of the

world but we can observe some facet of it. At each time step our state changes stochastically

according to the transition function. A new observation is (stochastically) generated from

our new state. Generally, we attempt to infer the state of the world given the observations.

Clearly two new random variables Xt, Yt are created at each time step.

In this chapter we briefly describe Markov models because they link back to previous work

done by the chemical engineering department at the University of Pretoria. We focus on

hidden Markov models for the remainder of the chapter because the techniques we develop

here generalise to linear latent dynamical systems which we discuss in chapter 6.

4.1 Markov models

A first order Markov model (sometimes called a Markov chain) is shown in figure 4.2. Using

the chain rule for Bayesian networks (definition 3.19) we can immediately write down the

38

© University of Pretoria

joint probability distribution

P (X0:T) = ΠT
t=0P (Xt|Xt−1) with P (X0|X−1) = P (X0). (4.1)

X0 X1
. . . XT−1 XT

Figure 4.2: First order markov chain.

This model describes the forward propagation of a discrete random variable through time.

It is interesting to study the marginal distribution of P (XT) as it evolves through time. By

d-separation we know that Xt |= X0:t−2|Xt−1. Thus, we only have to marginalise out the

previous time step to compute the required distribution

P (XT) =
∑
xT−1

P (XT , xT−1) =
∑
xT−1

P (xT−1)P (XT |xT−1). (4.2)

Since we know that the transition function is a row stochastic n × n matrix (the random

variable has n discrete states) we can write (4.2) in vector notation

P (Xt) = pt = Apt−1 = Mt−1p1. (4.3)

Note that P (XT) is a discrete random variable and can thus be expressed as a stochastic

column vector i.e.
∑

i P (xt = i) = 1. We have implicitly rewritten (4.3) in recursive format.

Thus, we have a recursive expression for the marginal distribution of X. If, as T →∞, we

have that pt→∞ = p∞ exists and is independent of p0 we call p∞ the equilibrium distribution

of the chain.

We define the stationary distribution, in matrix notation, by

p∞ = Ap∞. (4.4)

Recalling the definition of the eigenvalue problem we see that the stationary distribution is

just the eigenvector corresponding to the unit eigenvalue of A. While this model may seem

simplistic it is the foundation of Google’s PageRank algorithm [63]. Intuitively p∞ represents

the steady state probability distribution of the random variable X as it is propagated through

time by the transition function A. See the work in [57] for an application specifically geared

towards chemical engineering.

4.2 Hidden Markov models

Hidden Markov models extend Markov models by incorporating the observed random variables

(Y0, Y1, . . .) as shown in figure 4.1. At each time step it is now possible to observe the random

variable Yt which gives more information about the state of Xt. We are still in the setting of

39

© University of Pretoria

discrete random variables. It is not necessary to restrict (Y0, Y1, . . .) to be discrete but we

do so for the sake of simplicity here. In later chapters we will model both hybrid and purely

continuous systems.

In general a hidden Markov model is just a specific case of the general dynamic Bayesian

network class of graphical models. As such we already know that to fully specify the model we

only require a prior state distribution P (X0), the transition probability function P (Xt|Xt−1),

the observation (or sometimes called the emission) probability function P (Yt|Xt) and the

Bayesian network graphs of the initial time step and the next two time steps. We assume

that the model’s structure repeats at each time step and thus we only require the graph as

shown in figure 4.1.

We assume that the transition and observation probability functions are stationary. Conse-

quently they may be represented by the row stochastic square matrices P (xt = i|xt−1 = j) = A

and P (yt = i|xt = j) = B. Intuitively this means that the probability of state xt−1 = j going

to state xt = i is Aij . Similarly, Bij is the probability of observing yt = i if the underlying

state is xt = j.

For the purposes of this dissertation we will always assume that the model parameters are

known. In section 3.3.2 the four primary inference techniques were briefly mentioned. We

now derive recursive expressions for each inference technique for discrete models of the form

shown in figure 4.1. The tools and techniques we develop here will be useful in the following

chapters.

4.2.1 Filtering

The goal of filtering is to find P (Xt|y0:t): the distribution of the current state given all the

past and current observations. The corresponding graphical model is shown in figure 4.3.

Y0

X0

· · ·

· · ·

Yt−1

Xt−1

Yt

Xt

Figure 4.3: Filtering graphical model.

We start the derivation by noting that Xt−1 d-separates Xt from X0:t−2. Thus Xt−1 contains

all the hidden state information of the system up to and including t− 1. This is not surprising

since we have assumed a first order Markov system. This is why we only marginalise over the

40

© University of Pretoria

reduced state joint P (Xt, Xt−1|y0:t) in

P (Xt|y0:t−1) =
∑
xt−1

P (Xt, xt−1|y0:t−1)

=
∑
xt−1

P (xt−1|y0:t−1)P (Xt|y0:t−1, xt−1)

=
∑
xt−1

P (xt−1|y0:t−1)P (Xt|xt−1).

(4.5)

The expansion followed from the chain rule of Bayesian networks (definition 3.19) and the

cancellation followed from the conditional independence assumption of the transition function.

Next we define α(Xt) ≡ P (Xt|y0:t); then

α(Xt) =
P (yt|Xt, y0:t−1)P (Xt|y0:t−1)

P (yt|y0:t−1)

=
P (yt|Xt)P (Xt|y0:t−1)

P (yt|y0:t−1)

=
P (yt|Xt)

∑
xt−1

P (xt−1|y0:t−1)P (Xt|xt−1)

P (yt|y0:t−1)

=
P (yt|Xt)

∑
xt−1

α(xt−1)P (Xt|xt−1)

P (yt|y0:t−1)

(4.6)

follows from (4.5) and by application of Bayes’ theorem (theorem 3.4). It is not actually

necessary to calculate p(yt|y0:t−1) as it is only a normalisation constant. We thus have a

recursion relation for the filtered posterior distribution Xt with initial condition α(X1) =

P (X1, y1) = P (X1)P (y1|X1) by

α(Xt) ∝ P (yt|Xt)
∑
xt−1

α(xt−1)P (Xt|xt−1). (4.7)

One often uses logarithms to perform the filter calculations as machine precision errors become

a problem for large t due to the multiplication of small fractions. The recursive filtering

algorithm we derived is often called the forwards algorithm in literature [4].

4.2.2 Smoothing

The goal of smoothing is to find P (Xt|y0:T) for t ≤ T : the distribution of the state at t

given all the past and future observations to T . The smoothing algorithm we study here is

called the parallel smoothing algorithm. The recursion expression we derive is often called the

backwards algorithm in literature [47]. The graphical model corresponding to this situation is

shown in figure 4.4.

Y0

X0

· · ·

· · ·

Yt

Xt

· · ·

· · ·

YT

XT

Figure 4.4: Smoothing graphical model.

41

© University of Pretoria

We start by splitting the joint P (Xt, y0:T) = P (Xt, y0:t)P (yt+1:T |Xt, y0:t) by the chain rule

and using d-separation to reduce it further P (Xt, y0:T) = P (Xt, y0:t)P (yt+1:T |Xt). Effectively

the last step implies that future observations are independent of past observations given the

current state. We defined β(Xt) ≡ P (yt+1:T |Xt) and continue

P (yt:T |Xt−1) =
∑
xt

P (yt, yt+1:T , xt|Xt−1)

=
∑
xt

P (yt+1:T , xt|Xt−1)P (yt|yt+1:T , xt, Xt−1)

=
∑
xt

P (yt+1:T , xt|Xt−1)P (yt|xt)

=
∑
xt

P (xt|Xt−1)P (yt+1:T |xt, Xt−1)P (yt|xt)

=
∑
xt

P (xt|Xt−1)P (yt+1:T |xt)P (yt|xt).

(4.8)

We have made judicious use of the implied independence assertions (via d-separation) of

figure 4.1. Making use of the definition of β we have

β(Xt−1) =
∑
xt

P (xt|Xt−1)β(xt)P (yt|xt) for 1 ≤ t ≤ T

with β(XT) = 1.

(4.9)

The recursion initial condition β(XT) = 1 stems from Bayes’ theorem (theorem 3.4) and the

definition of α as illustrated by

P (XT |y0:T) =
P (XT , y0:T)

P (y0:T)

= α(XT)β(XT)

= P (XT |y0:T)β(XT)

=⇒ β(XT) = 1.

(4.10)

Note that β is not a probability function. The smoothed posterior is given by applying Bayes’

theorem

P (Xt|y0:T) =
α(Xt)β(Xt)∑
xt
α(xt)β(xt)

. (4.11)

Together the α− β recursions are called the forwards-backwards algorithm and find extensive

use in general purpose exact inference of dynamic Bayesian networks [47].

Numerical issues may also become problematic due to the multiplication of small positive

numbers. In practice it is often necessary to work in the log space to attenuate these

problems [4].

4.2.3 Viterbi decoding

The goal of Viterbi decoding is to find x∗0:T = arg max
x0:T

P (x0:T |y0:T): finding the most likely

sequence of states which best describe the observations by attempting to find the sequence

42

© University of Pretoria

x0:T such that the joint probability function P (x0:T , y0:T) is maximised. This is equivalent to

finding arg max
x0:T

P (x0:T |y0:T) because, if one uses the chain rule on the joint, the observations

will just be a constant factor. The graphical model used here is similar to that of figure 4.4.

Intuitively we first attempt to find the maximum of the joint and then determine which

sequence of states led to this maximal joint. By using the chain rule for Bayesian networks

we can rewrite the joint maximisation problem as

max
x0:T

P (x0:T , y0:T) = max
x0:T

ΠT
t=1P (yt|xt)P (xt|xt−1)

=

(
max
x0:T−1

ΠT−1
t=1 P (yt|xt)P (xt|xt−1)

)
max
xT

P (yT |xT)P (xT |xT−1).
(4.12)

Defining µ(Xt−1) ≡ max
xt

P (yt|xt)P (xt|xt−1) we can rewrite (4.12) as

max
x0:T

P (x0:T , y0:T) = max
x0:T−1

ΠT−1
t=1 P (yt|xt)P (xt|xt−1)µ(xT−1). (4.13)

Thus we have a recursive expression,

µ(xt−1) = max
xt

P (yt|xt)P (xt|xt−1)µ(xt) for 2 ≤ t ≤ T

with µ(xT) = 1,
(4.14)

to find the value of the joint under the most likely sequence of states given the observations.

The recursive expression in (4.14) implies that the effect of maximising over the previous time

step can be compressed into a message (a function) of the current time step. Effectively we

pass theses messages backward in time to find the maximum joint in terms of x0. We then

find the state which maximises this joint and pass this message forward. Continuing in this

way we have

x∗1 = arg max
x1

P (y1|x1)P (x1)µ(x1)

x∗2 = arg max
x2

P (y2|x2)P (x2|x∗1)µ(x2)

...

x∗t = arg max
xt

P (yt|xt)P (xt|x∗t−1)µ(xt).

(4.15)

This algorithm is called the Viterbi algorithm. It is computationally efficient since the

optimisations occur only on a single variable. Readers familiar with dynamic programming

will recognise that we have effectively performed a variant of dynamic programming in the

preceding derivation.

4.2.4 Prediction

The goal of prediction is to find P (Xt+1|y0:t) and P (Yt+1|y0:t): the predicted hidden and

observed state given all the previous observations. The one step ahead prediction expression

for both the states and observations is derived here. The graphical model corresponding to

the state prediction is shown in figure 4.5.

43

© University of Pretoria

Y0

X0

· · ·

· · ·

Yt

Xt Xt+1

Figure 4.5: State prediction graphical model.

We again start by noticing that given all the observations up to time t the current state

d-separates all previous states. Thus, to infer information about the next state we only need

to marginalise out the current state Xt. Furthermore, the next state d-separates the next

observation from all the previous states. Thus, to infer information about the next observation

we additionally only need to marginalise out Xt+1.

We start with predicting the next state distribution. We have applied the chain rule, the

independence assertions and used the definition of α to write

P (Xt+1|y0:t) =
∑
xt

P (Xt+1, xt|y0:t)

=
∑
xt

P (xt|y0:t)P (Xt+1|xt, y0:t)

=
∑
xt

P (xt|y0:t)P (Xt+1|xt)

=
∑
xt

α(xt)P (Xt+1|xt).

(4.16)

Clearly the state prediction uses the filtered state estimate and projects that forward using

the transition function. Next we derive the observation prediction. Again we apply the chain

rule, use the independence assertions and use the definition of α to write

P (Yt+1|y0:t) =
∑

xt,xt+1

P (xt+1, xt, Yt+1|y0:t)

=
∑

xt,xt+1

P (xt|y0:t)P (xt+1, Yt+1|y0:t, xt)

=
∑

xt,xt+1

P (xt|y0:t)P (xt+1|y0:t, xt)P (Yt+1|y0:t, xt, xt+1)

=
∑

xt,xt+1

P (xt|y0:t)P (xt+1|xt)P (Yt+1|xt+1)

=
∑

xt,xt+1

α(xt)P (xt+1|xt)P (Yt+1|xt+1).

(4.17)

Clearly the observation prediction is just an extension of the state prediction. We effectively

just predict the next state and use the observation function to predict the observation

distribution.

It is pleasing that the prediction expressions are closely related to each other and effectively

only depend on the filtered state estimate and the transition or observation functions. This

44

© University of Pretoria

realisation hold for more general problems and will become important when we consider

controlling the system. More on this later.

4.3 Burglar localisation problem

While the focus of this dissertation is not on hidden Markov model type problems it is

nevertheless instructive to consider a simple example to build some intuition about inference

of random variables. Thus, it is desirable to conduct a numerical experiment using the

previously derived inference techniques. The type of problem we consider here is a localisation

problem. This type of problem (and its extensions) has many applications in robotics and

object tracking.

The problem is taken from chapter 23 in Barber’s book Bayesian Reasoning and Machine

Learning [4]. Briefly, it is necessary to infer the location of a burglar in your house given

observations (noises) you perceive from an adjoining room. You discretise the room the

burglar is in into n2 blocks. The room is then the discrete random variable X. You observe

two distinct types of noises: creaks and bumps. From the knowledge of your house you know

which blocks are likely to creak and which are likely to bump if the burglar is on that block

i.e. if the random variable X is in a specific state. This is shown in figure 4.6: a dark block

indicates it is likely to emit a noise with probility 0.9 and a light block will emit a noise with

probability 0.01 if the burglar is on that block. The noises are independent of each other.

Creaks Bumps

Figure 4.6: Burglar problem observations.

The burglar moves up, down, left and right with equal probability where appropriate. See

Barber for more details on the example. It is necessary to perform inference to determine

the path of the burglar both in real time and with the benefit of hindsight. Applying the

inference techniques we developed earlier results in figure 4.7.

45

© University of Pretoria

N
oi

se
s

t=1

T
ru

e
L

oc
at

io
n

F
ilt

er
in

g
S

m
oo

th
in

g
V

it
er

b
i

P
re

d
ic

ti
on

t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

Figure 4.7: Burglar problem: filter, smoothing, Viterbi decoding and prediction.

In this context filtering means we estimate the location of the burglar given all the past

observations at the current time step. This inference can be done on-line. Smoothing means

we attempt to estimate his position with hindsight given all the observations starting from

the first time step and moving forwards. In Viterbi decoding we attempt to estimate the most

likely path path of the burglar. Finally the prediction algorithm is self-explanatory.

It is interesting to note that smoothed posterior converges to the filtered posterior near the end

of the time window. Reflecting on the expression for smoothing this is not surprising since at

t = T the smoothing component of the forwards-backwards algorithm is unity. Therefore we

see that the smoothed state estimate converges to the filtered state estimate as t approaches

T .

It is also interesting to note that the prediction algorithm is very much dependent on the

quality of the transition function. The four block pattern readily apparent in the prediction

distribution originates from the transition function (the burglar is equally likely to move in

any direction). This strongly implies that the closer the transition function is to reality the

better our predictions will be.

Finally, it is important to understand the benefit of using this approach as opposed to the

exhaustive “if this then that” approach. Firstly, the latter approach scales exponentially with

the number of variables because one would need to fully consider all the possibilities to infer

any sort of belief. Secondly, the former approach has an associated probability distribution:

the certainty of our inferred belief is automatically quantified e.g. the darker the blocks the

more sure we are about our inference. Thus, the techniques we developed make room for

uncertainty about the correctness of the answer.

Hidden Markov models are very powerful and have found many uses e.g. speech recognition,

object tracking and bio-informatics [4]. Many extensions of the basic model (see figure 4.1)

46

© University of Pretoria

exist which are much more expressive. However, we are interested in modelling and reasoning

about continuous random variables. For such applications the hidden Markov model, due to

the discrete assumption, is inappropriate. Fortunately, the techniques investigated in this

chapter carry over to the continuous case as we will see in chapter 6.

47

© University of Pretoria

Chapter 5

CSTR model

In this chapter we introduce the model we will use to illustrate the techniques we develop in

this dissertation. The model is a simple continuously stirred tank reactor (CSTR) undergoing

an exothermic, irreversible first order reaction where A → B. A schematic diagram of the

reactor is shown in figure 5.1. The model is taken from literature [45].

CA0 TA0

CATR

Q

Figure 5.1: Diagram of a simple CSTR where the heat added to system is the only manipulated

variable.

The state space equations describing the reactor are

ĊA = f(CA, TR) =
F

V
(CA0 − CA)− k0e

−E
RTRCA

ṪR = g(CA, TR) =
F

V
(TA0 − TR) +

−4H
ρCp

k0e
−E
RTRCA +

Q

ρCpV

(5.1)

with parameters shown in table 5.1. The meaning of the variables is what one would expect

from an intuitive understanding: CA is the concentration of species A, TR is the temperature

of the CSTR and Q is the heat added (or removed for negative Q) from the CSTR.

48

© University of Pretoria

Table 5.1: CSTR parameters

V 5.0 m3 R 8.314 kJ
kmol.K

CA0 1.0 kmol
m3 TA0 310 K

4H − 4.78× 104 kJ
kmol k0 72× 107 1

min

E 8.314× 104 kJ
kmol Cp 0.239 kJ

kg.K

ρ 1000 kg
m3 F 100× 10−3 m3

min

The CSTR model is a familiar control example. Similar models may be found in [23], [12], [51]

and [66]. We use this model because it is low dimensional yet complex enough to illustrate the

principles we investigate. CSTR models are also very popular examples to illustrate control

techniques because they invariably have nonlinear dynamics and multiple steady states. Note

that we have increased the volume of the reactor and reduced the rate constant from the

reactor we quoted in literature. This is primarily to adjust the time scale of the transient

response to be in the order of minutes and not milliseconds when moving to high temperature

regions of operation.

5.1 Qualitative analysis

In this section we use standard mathematical tools, as found in [26], to analyse the qualitative

behaviour of the CSTR. By inspecting (5.1) we see that the model is coupled and nonlinear.

By solving

0 =
F

V
(CA0 − CA)− k0e

−E
RTRCA

0 =
F

V
(TA0 − TA) +

−4H
ρCp

k0e
−E
RTRCA +

Q

ρCpV

(5.2)

we see that for nominal operating conditions (Q = 0) there exist 3 operating points (critical

points) as shown in table 5.2.

Table 5.2: Nominal operating points for the CSTR

Critical Point CA TR Stability(
C1
A, T

1
R

)
0.0097 508 Stable Improper Node(

C2
A, T

2
R

)
0.4893 412 Unstable Saddle Point(

C3
A, T

3
R

)
0.9996 310 Stable Improper Node

The stability of the operating points were found by linearising (5.1) and computing the

eigenvalues of the jacobian,

J(CA, TR) =

−F
V − k0e

−E
RTR −k0e

−E
RTRCA

(
E
RT 2

R

)
−4H
ρCp

k0e
−E
RTR −F

V + −4H
ρCp

k0e
−E
RTRCA

(
E
RT 2

R

)
 , (5.3)

at each critical point. In figure 5.2 we see the operating curve for the CSTR. The curve resem-

bles the classical CSTR operating curve with all the associated potential control complexity

49

© University of Pretoria

e.g. it is possible for one set of control inputs to result in two stable operating points. This

occurs due to the two stable critical points (for Q ∈ [−906, 1145]) of the system and is called

input multiplicity [42].

Also note that the obvious bifurcation parameter for this system is the heat input Q. For

Q = −906 kJ/min we see that we no longer have three critical points but only two, and for

Q < −906 kJ/min we only have one critical point. Likewise, for Q = 1145 kJ/min we see that

we only have two critical points and for Q > 1145 kJ/min we only have one critical point.

The stability of these points are shown in table 5.3.

200 250 300 350 400 450 500 550 600
Steady State Temperature [K]

0

1

2

3

4

5

H
ea

t
R

em
ov

al
R

at
e

[K
/m

in
]

Q=-906 kJ/min

Q=0 kJ/min

Q=1145 kJ/min

Operating Curve

Figure 5.2: CSTR operating curve with different input curves. Nominal operating conditions

are Q = 0 kJ/min.

Table 5.3: Bifurcation analysis of the CSTR at different heat input values. The v notation

indicates that the operating point depends on the precise value of Q.

Heat Input CA TR Stability

Q = −906 kJ/min 0.1089 450 Stable Improper Node

Q = −906 kJ/min 0.9999 272 Stable Improper Node

Q < −906 kJ/min v v Stable Improper Node

Q = 1145 kJ/min 0.0017 558 Stable Improper Node

Q = 1145 kJ/min 0.9263 373 Stable Improper Node

Q > 1145 kJ/min v v Stable Improper Node

The (potentially) multiple stable critical points separated by the unstable critical point makes

control of this system challenging.

50

© University of Pretoria

5.2 Nonlinear model

In this section we evaluate the transient response of the CSTR. The nonlinear differential

equation shown in (5.1) is intractably difficult to solve analytically. For this reason we will

use a numerical method, specifically the Runge-Kutta method [26], to simulate the transient

response. We chose the Runge-Kutta method because it is an explicit, fourth order accurate

method which is easy to implement.

For completeness we show the method here. Suppose we have an autonomous ordinary

differential equation,

ẋ(t) = f(x(t))

with x(t) = xa for t = ta,
(5.4)

and we require its solution over [ta, tb]. This is an initial value problem; for the sake of brevity

we assume that a unique solution always exists. Furthermore, suppose we discretise the time

domain such that [ta, tb] = [t0 = ta, t1 = ta + h, t2 = ta + 2h, ..., tT = tb]. Then the scheme

xt+1 = xt +
h

6
(k1 + 2k2 + 2k3 + k4)

k1 = f(xt)

k2 = f(xt +
h

2
k1)

k3 = f(xt +
h

2
k2)

k4 = f(xt + hk3)

(5.5)

is called the Runge-Kutta method. For sufficiently small time steps, h, the method is stable

and convergent.

By applying the Runge-Kutta method to the CSTR we have figures 5.3 and 5.4. It is clear

that the dynamics are faster (almost two orders of magnitude) when moving to the higher

temperature operating point than they are when moving to the lower temperature operating

point. The impact of the nonlinear kinetics is seen here.

51

© University of Pretoria

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

C
A

[k
m

ol
.m
−

3]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [min]

440

460

480

500

520

540

560

T
R

[K
]

Figure 5.3: Transient response of the CSTR under nominal operating conditions with initial

condition (0.5, 450) and h = 0.1.

0 50 100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

1.0

C
A

[k
m

ol
.m
−

3]

0 50 100 150 200 250 300
Time [min]

300

320

340

360

380

400

T
R

[K
]

Figure 5.4: Transient response of the CSTR under nominal operating conditions with initial

condition (0.5, 400) and h = 0.1.

It is often desirable to linearise a nonlinear system about some point, usually the operating

point, to simplify the model. Computationally this is advantageous because linear techniques

(e.g. linear optimisation) are usually significantly faster than nonlinear techniques. Practically

linearisation is only valid in a small region around the point of linearisation. If the system moves

away from the linearisation point the linear approximation can become grossly inaccurate.

Based on figure 5.3, where the dynamics are fast, we can venture a guess that linearisation

52

© University of Pretoria

will be a bad approximation, except for a very small time period, of plant behaviour because

the states will rapidly move away from the point of linearisation.

On the other hand, based on figure 5.4, we can venture a guess that linearisation will be a

fair approximation of plant behaviour for a meaningful period of time because the dynamics

are slow.

5.3 Linearised models

Linear approximations used for modelling and control are very common both in practice

and literature [42]. Furthermore, the approach of using multiple piecewise affine (linear)

functions for control, based on linearisation around critical points, has also been investigated

in literature [23], [36]. Typically the state domain is discretised into regimes and the linear

approximation of the model in each regime is used for control. We will also use linear models

for the purposes of control. It is therefore prudent to investigate linearisation techniques.

First we present a linearisation technique. Consider an arbitrary point in the state space

(C∗A, T
∗
R). Then(
ĊA

ṪR

)
=

(
f(C∗A, T

∗
R)

g(C∗A, T
∗
R)

)
+ J(C∗A, T

∗
R)

((
CA

TR

)
−
(
C∗A

T ∗R

))
(5.6)

is the general linearised model around (C∗A, T
∗
R) using the notation of (5.1). It is often desirable

to change the variables such that (5.6) has no constant terms. This change of variables, which

holds even if the linearisation point is not a critical point of the model, is(
C̃A

T̃R

)
=

(
CA

TR

)
− J(C∗A, T

∗
R)−1

J(C∗A, T
∗
R)

(
C∗A

T ∗R

)
−
(
f(C∗A, T

∗
R)

g(C∗A, T
∗
R)

)
Q=0

 . (5.7)

We then have

d

dx

(
C̃A

T̃R

)
= J(C∗A, T

∗
R)

(
C̃A

T̃R

)
+B(C∗A, T

∗
R)Q. (5.8)

Note that the input term B originates from

(
f(C∗A, T

∗
R)

g(C∗A, T
∗
R)

)
and in (5.7) we specifically set it

to zero so that it is not removed. We now use the bilinear transform (also known as Tustin’s

transform) to convert (5.8) into the discrete equation(
C̃A

T̃R

)
t+1

= A(C∗A, T
∗
R)

(
C̃A

T̃R

)
t

+B(C∗A, T
∗
R)Q. (5.9)

Observe that (5.9) implicitly depends on the sampling time. Recall that Q is the heat input

to the system. Note that we need to add back the offset we removed in the change of variables

step (5.7) when we want to physically interpret the results of applying (5.9).

53

© University of Pretoria

Next we briefly investigate the accuracy of the linear models. In all the subsequent figures

the first subplot illustrates the accuracy of the linear model if the initial value is close to the

point of linearisation and the second subplot illustrates the accuracy when the initial value is

further away from the point of linearisation.

Figure 5.5 shows the state space response of the linear model which was linearised around the

high temperature, low concentration stable operating point (C1
A, T

1
R) as defined in table 5.2.

0.010 0.012 0.014 0.016
503

504

505

506

507

508

509

T
R

[K
]

0.005 0.010 0.015 0.020 0.025 0.030 0.035
CA [kmol.m−3]

508

510

512

514

516

518

T
R

[K
] Nonlinear model

Linear model

Operating point

Figure 5.5: State space response of the CSTR under nominal operating conditions linearised

around (C1
A, T

1
R) with different initial conditions. The dot indicates where the simulation

started and the cross where it finished. Total simulation time was 30 seconds.

We see that the linear approximation is quite accurate if the initial condition is close to the

linearisation point (as expected). If the initial condition is further away the approximation is

less accurate.

In figure 5.6 we see the state space response of the CSTR using the linear model linearised

around the unstable operating point. Clearly this approximation is less accurate because the

system tend to move away from operating point rather than towards it.

54

© University of Pretoria

0.44 0.45 0.46 0.47 0.48 0.49
410

415

420

425

T
R

[K
]

0.45 0.50 0.55 0.60 0.65 0.70
CA [kmol.m−3]

320

340

360

380

400

420

T
R

[K
]

Nonlinear model

Linear model

Operating point

Figure 5.6: State space response of the CSTR under nominal operating conditions linearised

around (C2
A, T

2
R) with different initial conditions. The dot indicates where the simulation

started and the cross where it finished. Total simulation time was 5 minutes.

If we want to use the linear model around the unstable operating point we will need to effect

control to keep it within some region where the model is accurate.

In figure 5.7 we have the state space response of the CSTR under nominal conditions, like

before, except that we have now linearised around the low temperature high concentration

operating point.

0.985 0.990 0.995 1.000
295

300

305

310

315

T
R

[K
]

0.990 0.992 0.994 0.996 0.998 1.000
CA [kmol.m−3]

310

312

314

316

318

T
R

[K
]

Nonlinear model

Linear model

Operating point

Figure 5.7: State space response of the CSTR under nominal operating conditions linearised

around (C3
A, T

3
R) with different initial conditions. The dot indicates where the simulation

started and the cross where it finished. Total simulation time was 50 minutes.

55

© University of Pretoria

Like figure 5.5, the linear model is quite accurate. The slow dynamics and stability of the

operating point cause this desirable behaviour.

Based on the general linearisation formula in (5.6) there is no reason why one cannot linearise

about an arbitrary point in the state space. It stands to reason that the more linear models

at different linearisation points one has, the better one will be able to model the reactor. By

selecting a model to use based on some metric (taking into account the current observation)

it is reasonable to suppose that one will be able to model the system more accurately than if

only one linear model was available. In part III we take this idea further.

However, in part II we restrict our attention to systems where one linear model is sufficient

for our purposes.

56

© University of Pretoria

Part II

Single model systems

57

© University of Pretoria

Chapter 6

Inference using linear models

In this chapter we consider probabilistic graphical models of the form shown in figure 6.1.

This model is a generalisation of the graphical model seen in chapter 4. We now assume that

the states (x0, x1, x2, . . .) and observations (y0, y1, y2, . . .) are continuous random variables

but the inputs (u0, u1, u2, . . .) are continuous deterministic variables. Models of this form are

called latent dynamical systems - if one assumes linearity and normality the famous Kalman

filter model falls into this category.

y0 y1 y2

x0 x1 x2

u0 u1

Figure 6.1: Graphical model considered in this chapter.

In chapter 4 we developed inference algorithms but assumed that the transition and observation

functions were discrete. We also noted that this assumption is not appropriate for continuous

systems. The reason is that one would invariably need to discretise the domain of the

continuous random variable under consideration. This would result in intractably large

discrete systems if one requires fine resolution. To address this issue we extend the previous

model to include both continuous states and observations.

In this chapter we assume linearity and that all the random variables are Gaussian. While

these are strong assumptions they form the building blocks of much more expressive models

as we will discover in the next chapter. We also assume that the transition and observation

58

© University of Pretoria

functions are time invariant and that the state space model is of the form

xt+1 = Axt +But + wt+1 with N (wt+1|0,W)

yt+1 = Cxt+1 + vt+1 with N (vt+1|0, V).
(6.1)

From the graphical model in figure 6.1 we know that the latent variable xt is observed through

yt. Rewriting the state space model we see that the transition and observation probability

density functions are given by

p(xt+1|xt, ut) = N (xt+1|Axt +But,W)

p(yt+1|xt + 1) = N (yt+1|Cxt+1, V).
(6.2)

We also assume that the system is first order Markov (see definition 3.23). We have implicitly

assumed that the noise is Gaussian and white1. Intuitively one can think of V as the noise

associated with state measurements and W being a form of the uncertainty associated with

the linear model of the plant. Additionally, W can also model any zero mean unmeasured

disturbances which may influence the system2. Thus, larger V and W indicate more uncertainty

in the system.

To fully specify the system we require the transition and observation probability density

functions (these implicitly depend on the internal structure of the graphical model in figure 6.1)

as well as the prior (initial) distribution p(x0).

6.1 Kalman filter

The goal of filtering is to find the posterior distribution p(xt|y0:t, u0:t−1). It is pleasing to

note that this derivation will follow in an analogous manner to the filtering derivation in

section 4.2.1 albeit with continuous Gaussian distributions. The motivation for taking the

joint of only the preceding hidden time step is the same as before. The graphical model

corresponding to filtering is shown in figure 6.2.

y0 y1 · · ·

x0 x1 · · ·

u0 · · ·

yt

xt

ut−1

Figure 6.2: Extended - for illustration - graphical model used for filtering.

1The noise is temporally independent, has zero mean and finite variance.
2Note that for the purposes of this dissertation plant is a synonym for the system.

59

© University of Pretoria

We start with the prediction expression p(xt|y0:t−1, u0:t−1) and assume, due to the clo-

sure of linear conditional Gaussian distributions, that α(xt−1) = p(xt−1|y0:t−1, u0:t−2) =

N (xt−1|µt−1,Σt−1) is available. This allows us to write

p(xt|y0:t−1, u0:t−1) =

∫
xt−1

p(xt, xt−1|y0:t−1, u0:t−1)

=

∫
xt−1

p(xt−1|y0:t−1, u0:t−1)p(xt|xt−1, y0:t−1, u0:t−1)

=

∫
xt−1

p(xt−1|y0:t−1, u0:t−2)p(xt|xt−1, ut−1)

=

∫
xt−1

α(xt−1)N (xt|Axt−1 +But−1,W)

=

∫
xt−1

N (xt−1|µt−1,Σt−1)N (xt|Axt−1 +But−1,W).

(6.3)

Now we use theorem 3.7 (Bayes’ theorem for linear Gaussian models) to evaluate the marginal

expression∫
xt−1

N (xt−1|µt−1,Σt−1)N (xt|Axt−1 +But−1,W) = N (xt|Aµt−1 +But−1,W +ATΣt−1A)

= N (xt|µt|t−1,Σt|t−1).

(6.4)

Intuitively, (6.4) is the one step ahead prediction for the hidden state given all the past

observations and the past and present inputs. Now we make use of theorem 3.4 (Bayes’

theorem) to update our view of xt given the current observation

p(xt|y0:t, u0:t−1) = p(xt|yt, y0:t−1, u0:t−1)

=
p(yt|xt, y0:t−1, u0:t−1)p(xt|y0:t−1, u0:t−2, ut−1)

p(yt|y0:t−1, u0:t−1)

=
p(yt|xt)p(xt|y0:t−1, u0:t−1)

p(yt|y0:t−1, u0:t−1)

∝ p(yt|xt)p(xt|y0:t−1, u0:t−1)

= p(yt|xt)N (xt|Aµt−1 +But−1,W +ATΣt−1A)

= N (yt|Cxt, V)N (xt|µt|t−1,Σt|t−1).

(6.5)

Now we again make use of theorem 3.7 to evaluate the conditional expression

p(xt|y0:t, u0:t−1) = N (yt|Cxt, V)N (xt|µt|t−1,Σt|t−1)

= N (xt|Γ(CTV −1y + Σ−1
t|t−1µt|t−1),Γ)

with Γ = (Σ−1
t|t−1 + CTV −1C)−1.

(6.6)

By using the matrix identity (A + BD−1C)−1 = A−1 − A−1B(D + CA−1B)−1CA−1 and

defining Kt = Σt|t−1C
T (CΣt|t−1C

T + V)−1 we can simplify Γ to the recursive posterior

covariance estimate

Σt = (I −KtC)Σt|t−1. (6.7)

60

© University of Pretoria

Similarly, using the same matrix identity together with (P−1BTR−1B)−1)−1BTR−1 =

PBT (BPBT +R−1) and the definition of Kt we have the posterior mean estimate

µt = µt|t−1 +Kt(yt − Cµt|t−1). (6.8)

Together (6.7) and (6.8) are known as the Kalman filter equations [48]. For the first time step

only the update expression is evaluated as the prediction is the prior of x0.

Intuitively, the Kalman filter equations use the state space model to predict the new state

distribution and then adjust it by a correction factor Kt(yt − Cµt|t−1). This factor depends

on the difference between the actual observation and the predicted observation. The Kalman

gain, Kt, represents the inferred confidence of the model. If the model is deemed accurate

then the predictions make up most of µt but if the model is bad at predicting the observations

then the observations play a bigger part in the next mean estimate [8].

6.2 Kalman prediction

The goal of prediction is to find an expression for the distributions p(xt+h|y0:t, u0:t+h−1) and

p(yt+h|y0:t, u0:t+h−1) with h ≥ 1. Note that these derivations follow in exactly the same way

as the prediction derivations did in section 4.2.4 given the current posterior state estimate

of x0. The reason for this is because the graphical models are the same (the deterministic

inputs don’t change the structure of the underlying random variable network). The graphical

model corresponding to the two step ahead state prediction is shown in figure 6.3.

yt

xt xt+1 xt+2

ut ut+1

Figure 6.3: Graphical model used for state prediction.

61

© University of Pretoria

We start the derivation by considering the one step ahead state prediction

p(xt+1|y0:t, u0:t) =

∫
xt

p(xt+1, xt|y0:t, u0:t)

=

∫
xt

p(xt|y0:t, u0:t−1)p(xt+1|xt, y0:t, u0:t)

=

∫
xt

p(xt|y0:t, u0:t−1)p(xt+1|xt, ut)

=

∫
xt

α(xt)p(xt+1|xt, ut)

=

∫
xt

N (xt|µt,Σt)N (xt+1|Axt +But,W)

= N (xt+1|Axt +But,W +AΣtA
T)

= N (xt+1|µt+1|t,Σt+1|t).

(6.9)

Note that µt and Σt is the filtered mean and covariance found by the Kalman filter. We have

again relied upon theorem 3.7 to evaluate the marginal integral. We now consider the two

step ahead state prediction

p(xt+2|y0:t, u0:t+1) =

∫
xt+1

p(xt+2, xt+1|y0:t, u0:t+1)

=

∫
xt+1

p(xt+1|y0:t, u0:t)p(xt+2|xt+1, y0:t, u0:t+1)

=

∫
xt+1

p(xt+1|y0:t, u0:t)p(xt+2|xt+1, ut+1)

=

∫
xt

N (xt+1|µt+1|t,Σt+1|t)N (xt+2|Axt+1 +But+1,W)

= N (xt+2|Aµt+1|t +But+1,W +AΣt+1|tA
T)

= N (xt+2|µt+2|t,Σt+2|t).

(6.10)

It is clear that we have derived a recursive algorithm to estimate the hth-step ahead state

prediction as shown in

p(xt+h|y0:t, u0:t+h) = N (xt+h|µt+h|t,Σt+h|t)

with µt+h|t = Aµt+h−1|t +But+h−1

and Σt+h|t = W +AΣt+h−1|tA
T

and µt+1|t = Aµt +But

and Σt+1|t = W +AΣtA
T .

(6.11)

Inspecting (6.11) we see that the predictive distribution is just the forward projection, using

the transition function, of the filtered distribution. Note that it is possible for Σt+h|t to

become smaller, in some normed (| · |) sense, for increasing h (obviously bounded by Q below).

For, if the eigenvalues of A are less than unity we have that |AΣt+h|tA
T | ≤ |AΣt+h−1|tA

T |.

Next we consider the observation prediction, p(yt+h|y0:t, u0:t+h−1). Again consider the one

62

© University of Pretoria

step ahead prediction

p(yt+1|y0:t, u0:t) =

∫
xt,xt+1

p(yt+1, xt+1, xt|y0:t, u0:t)

=

∫
xt,xt+1

p(xt|y0:t, u0:t−1)p(yt+1, xt+1|xt, y0:t, u0:t)

=

∫
xt,xt+1

p(xt|y0:t, u0:t−1)p(xt+1|xt, y0:t, u0:t)p(yt+1|xt+1, xt, y0:t, u0:t)

=

∫
xt,xt+1

α(xt)p(xt+1|xt, ut)p(yt+1|xt+1)

=

∫
xt,xt+1

N (xt|µt,Σt)N (xt+1|Axt +But,W)N (yt+1|Cxt+1, V)

= N (yt+1|Cµt+1|t, V + CΣt+1|tC
T).

(6.12)

We have again used theorem 3.7 and used the nomenclature of the one step ahead state

prediction derivation. For the sake of brevity we trust that the reader will see the similarity

between the two derivations and allow us to conclude, without proof, that the hth-step ahead

observation prediction is

p(yt+h|y0:t, u0:t+h−1) = N (yt+h|Cµt+h|t, R+ CΣt+h|tC
T). (6.13)

It is reassuring to note that the observation prediction is just the state prediction transformed

by the observation function.

6.3 Smoothing and Viterbi decoding

For the sake of completeness we state the Kalman smoothing equations and briefly discuss

Viterbi decoding within the context of conditional linear Gaussian systems.

The reason we do not go into detail with the smoothing algorithm is because it follows much

the same structure as the hidden Markov model smoothing algorithm (see section 4.2.2) except

that we make use of theorem 3.7 to simplify the algebra. We are also primarily only interested

in filtering and prediction because they are important for the purposes of control which is the

focus of this dissertation.

The smoothing algorithm, also called the Rauch, Tung and Striebel (RTS) algorithm, for

p(xt|y0:T , u0:T−1) is also a Gaussian distribution of the form N (µ̂t, Σ̂t). The recursion expres-

sions for the posterior mean and covariance are

µ̂t = µt + Jt (µ̂t+1 − (Aµt +But−1))

Σ̂t = Σt + Jt(Σ̂t+1 − Pt)JTt
with Pt = AΣtA

T +W

and Jt = ΣtA
T (Pt)

−1

and µ̂T = µT

and Σ̂T = ΣT .

(6.14)

63

© University of Pretoria

Finally, we know from the definition 3.19 (chain rule for Bayesian networks) and figure 6.1

that the joint distribution for p(x0:T , y0:T , u0:T−1) = p(x1)p(y1|x1)ΠT
t=2p(yt|xt)p(xt|xt−1, ut−1).

Since Gaussian distributions are closed under multiplication this joint distribution is also a

Gaussian distribution. It can be shown that maximising with respect to all latent variables

jointly or maximising with respect to the marginal distributions of the latent variables is the

same because the mean and the mode of a Gaussian distribution coincide [4]. This implies

that Viterbi decoding is just the sequence of means found by the smoothing algorithm.

6.4 Filtering the CSTR

In this chapter we apply the Kalman filter to the nonlinear CSTR introduced in chapter 5.

We use the linear model linearised around the unstable operating point (C2
A, T

2
R) as shown in

(6.15) to describe the nonlinear underlying model. Note that the matrix A and vectors B, b

depend on the step size and should be recalculated for different h. To make things concrete

we have used h = 0.1 here. Note that V indicates that we only measure temperature for now.

A =

(
0.9959 −6.0308× 10−5

0.4186 1.0100

)
B =

(
0

8.4102× 10−5

)
C =

(
0 1

)

W =

(
1× 10−6 0

0 0.1

)
V =

(
10
) (6.15)

The system noise W indicates that the standard deviation of the concentration component of

the model is 0.001 kmol/m−3 and the temperature component is 0.32 K. While these variances

may seem small, bear in mind that noise is added at each time step which compounds its

effect. The measurement noise implies that 68% of the measurements will fall between ±
√

10

of the actual state. We use an initial state with mean at the initial condition and covariance

W .

The focus of this dissertation is on the application of probabilistic graphical models to

control, therefore our investigation into the various aspects which improve or degrade filtering

performance will be relatively superficial and will target factors which are most relevant only.

In this chapter we will primarily only investigate the benefit gained by including more state

measurements.

Before we begin it is prudent to introduce the metric we will use to quantify filter performance.

We define the average estimation error by 1
N

∑N
t=0 | x̂t−xtxt

| where x̂t is the inferred state and

and xt the true underlying state at time t.

In figure 6.4 we illustrate the strengths and weaknesses of the Kalman filter. Since we derived

the recursion equations analytically it is computationally efficient to use, the biggest cost is

a matrix inversion which needs to be computed at each time step3. During the initial part

3It is even possible to avoid this step by noticing that the posterior covariance quickly converges to a

constant covariance which can be precomputed off line.

64

© University of Pretoria

of the simulation the filter very accurately estimates the current system states because the

model is accurate in this region. Thus the filter is able to infer the true state in the presence

of noisy measurements.

Unfortunately the recursion equations assumed that the system can be described by a linear

model throughout the state space. With time the trajectories move away from the linearisation

point (because the linearisation point is unstable) and thus the linear model becomes less

accurate. This has a detrimental effect on the quality of the Kalman filter estimate as the

filter effectively starts to solely rely on the measurements to infer the states. This works

reasonably well for the measured states (TR), but since we do not measure concentration the

filter is forced to incorporate the linear model prediction which is grossly inaccurate.

The average concentration estimation error throughout the run is 22.73% while the average

temperature estimation error is 0.47%. Clearly there is a significant benefit to measuring the

state one wishes to infer.

0 20 40

0.5

1.0

C
A

[k
m

ol
.m
−

3] Underlying model

0 20 40
Time [min]

340

360

380

400

420

T
R

[K
]

Filtered mean

Observations

Figure 6.4: Kalman filter superimposed on the time series evolution of the CSTR with initial

condition (0.50, 400) and measuring only temperature.

In figure 6.5 we see another interesting property of Kalman filters. The posterior covariance

quickly converges to a constant value (the confidence region quickly stops changing shape/size)

which is independent of the observations. This is a general property of linear Gaussian systems

[4] and is evident from the recursion expression. The modelled system dynamics and noise are

the only factors affecting the covariance. If the model is accurate this is not a problem but we

see that as the model becomes less accurate the filter maintains the same level of confidence

in its estimate. This is quite undesirable behaviour because the confidence in the estimate is

not a function of the observations.

It is also interesting to consider the shape of the confidence region. Notice that it is short

65

© University of Pretoria

vertically - indicating less uncertainty in the temperature state dimension but wide horizontally

- indicating more uncertainty in the concentration state dimension. Intuitively this is plausible

because, since we do not measure concentration, we are less sure about the underlying state.

In figure 6.5 we see that while the temperature estimate is still trustworthy (the temperature

mean estimate lines up horizontally with the true underlying state) the concentration estimate

diverges.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
CA [kmol.m−3]

340

350

360

370

380

390

400

410

T
R

[K
]

Underlying model

Filtered mean

90% Confidence region

Figure 6.5: State space diagram of the CSTR with mean and 90% confidence region superim-

posed thereupon. Only temperature is measured.

The root of the problem lies in the unsuitability of the model rather than our inference

technique. It can be shown that for linear systems with Gaussian noise the Kalman filter is

the optimal state estimator [2].

Based on our discussion in chapter 5, where the CSTR example was introduced, we know that

the linear models will not be accurate in regions far removed from their linearisation points.

We therefore modify (6.15) to also incorporate concentration measurements to offset this

weakness. In this case we have that C =

(
1 0

0 1

)
and V =

(
1× 10−3 0

0 10

)
with everything

else the same. The time evolution of the states is shown in figure 6.6 and the state space

representation is shown in figure 6.7.

66

© University of Pretoria

0 20 40
0.4

0.6

0.8

C
A

[k
m

ol
.m
−

3] Underlying model

0 20 40
Time [min]

340

360

380

400

420

T
R

[K
]

Filtered mean

Observations

Figure 6.6: Kalman filter superimposed on the time series evolution of the CSTR with initial

condition (0.50, 400) and measuring both temperature and concentration.

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
CA [kmol.m−3]

340

350

360

370

380

390

400

410

T
R

[K
]

Underlying model

Filtered mean

90% Confidence region

Figure 6.7: State space diagram of the CSTR with mean and 90% confidence region superim-

posed thereupon. Both concentration and temperature are measured.

Comparing figures 6.5 and 6.7 we see that by incorporating the state measurement the state

estimation is much more accurate. The average concentration and temperature estimation

error is only 4.09% and 0.45% respectively. It is not necessary to directly measure concentration

as we have done: any measurement which depends on CA (or even both CA and TR) would

suffice. The second measurement reduces our uncertainty in the concentration state estimate

because we have more to base our inference on than just a bad model.

67

© University of Pretoria

In the next chapter we drop the linearity and normality assumptions at the cost of the closed

form, exact inference solutions. Sections 6.1 and 6.2 form the basis of chapter 8 and we

encourage the reader to familiarise themselves with it.

68

© University of Pretoria

Chapter 7

Inference using nonlinear models

In this chapter we consider probabilistic graphical models of the form shown in figure 7.1.

These models have exactly the same form as the models in chapter 6. The variables retain

their meaning as before but we generalise the model by dropping the linearity assumption.

Unfortunately, this generalisation, although allowing us to expand our investigation to a

much more expressive class of models, makes closed form solutions to the inference problem

intractable in general.

y0 y1 y2

x0 x1 x2

u0 u1

Figure 7.1: Graphical model used in this chapter.

We again assume that the transition and observation functions are time invariant. The state

space model is now of the form

xt+1 = f(xt, ut, wt+1)

yt+1 = g(xt+1, vt+1).
(7.1)

As in chapter 6, we observe yt to infer the latent xt. Note that we make no assumption

about the functional form of the noise terms wt, vt. In practice it is customary to assume

that they have zero mean but otherwise are not restricted. Additionally, to simplify notation

we will omit the dependence on u of f and g and their associated distributions. Since u

is a deterministic variable, by assumption, it is straightforward to incorporate it into later

analysis.

69

© University of Pretoria

7.1 Sequential Monte Carlo methods

Many approximate inference techniques exist in literature, the most notable ones include

Gaussian sum filters [32] and particle based methods. We shall focus only on sequential

Monte Carlo methods, of which particle based methods are a subset, because it is simple to

implement and generalises well (and easily) to more complex graphical models.

Sequential Monte Carlo methods are a general class of Monte Carlo methods which sample

sequentially from a growing target distribution πt(x0:t). By only requiring that γt be known

point-wise we have the framework of sequential Monte Carlo methods in

πt(x0:t) =
γt(x0:t)

Zt

Zt =

∫
x0:t

γt(x0:t).
(7.2)

Note that Zt is some normalisation constant [21]. For example, in the context of filtering we

have that γt(x0:t) = p(x0:t, y0:t) and Zt = p(y0:t) so that πt(x0:t) = p(x0:t|y0:t).

It is possible to approximate the distribution πt(x0:t) by drawing N samples Xi
0:t v πt(x0:t)

and using the Monte Carlo method to find the approximation π̂t(x0:t) by

πt(x0:t) ≈ π̂t(x0:t) =
1

N

N∑
i=1

δ(Xi
0:t, x0:t). (7.3)

We denote the Dirac delta function of x with mass located at x0 by δ(x0, x). It is easy to

approximate the marginal πt(xt) as

π̂t(xt) =
1

N

N∑
i=1

δ(Xi
t , xt). (7.4)

It can be shown that the variance of the approximation error of πt decreases at rate O(1
N).

Unfortunately there are two significant drawbacks to the Monte Carlo approximation. The

first is that often we cannot sample from πt(x0:t) directly and the second is that even if we

could it is often computationally prohibitive.

We use the importance sampling method to address the first problem. We do this by

introducing an importance (sometimes called proposal) density qt(x0:t) such that πt(x0:t) >

0 =⇒ qt(x0:t) > 0. By substituting this into the sequential Monte Carlo framework (7.2) we

have

πt(x0:t) =
wt(x0:t)qt(x0:t)

Zt

Zt =

∫
x0:t

wt(x0:t)qt(x0:t).
(7.5)

Where we have defined the unnormalised weight function wt(x0:t) = γt(x0:t)
qt(x0:t)

. It is possible, for

example, to set qt to a multivariate Gaussian which is easy to sample from. By drawing N

70

© University of Pretoria

samples Xi
0:t v qt(x0:t) and using (7.5) we have

π̂t(x0:t) =
1

N

N∑
i=1

W i
t δ(X

i
0:t, x0:t)

Ẑt =
1

N

N∑
i=1

wt(X
i
0:t)

W i
t =

wt(X
i
0:t)∑N

i=1wt(X
i
0:t)

.

(7.6)

Now we will attempt to modify the importance sampling method to address the second

problem of computational cost incurred by the sampling routine.

We do this by selecting an importance/proposal distribution which factorises according to

qt(x0:t) = qt−1(x0:t−1)qt(xt|x0:t−1) = q0(x0)Πt
k=1qk(xk|x0:k−1). In this way we only need to

sample sequentially at each time step: at time t = 0 we sample Xi
0 v q0(x0), at time t = 1 we

sample Xi
1 v q1(x1|x0) and so we build up Xi

0:t v qt(x0:t) factor by factor.

The weights can be written in the form

wt(x0:t) =
γt(x0:t)

qt(x0:t)

=
γt−1(x0:t−1)

qt−1(x0:t−1)

γt(x0:t)

γt−1(x0:t−1)qt(xt|x0:t−1)

= wt−1(x0:t−1)αt(x0:t−1)

= w0(x0)Πt
k=1αk(x0:k).

(7.7)

Thus, at any time t we can obtain the estimates π̂t(x0:t) and Zt. The major limitation of this

approach is that the variance of the resulting estimates typically increases exponentially with

t [21].

We overcome this problem by resampling and thus introduce the sequential importance

resampling method. So far we have a set of weighted samples generated from qt(x0:t) which

builds the approximation π̂t(x0:t). However, sampling directly from π̂t(x0:t) does not approx-

imate πt(x0:t). To obtain an approximate distribution of πt(x0:t) we need to sample from

the weighted distribution π̂t(x0:t). This is called resampling because we are sampling from a

sampled distribution. Many techniques exist to perform this step efficiently. The crudest and

most widely used one is to simply use the discrete multinomial distribution based on W i
0:t to

draw samples from π̂t(x0:t) [21].

The benefit of resampling is that it allows us to remove particles with low weight and thus

keeps the variance of the estimate in check. We are finally ready to consider the general

sequential importance resampling algorithm:

Sequential importance resampling algorithm

For t = 0:

1. Sample Xi
0 v q0(x0).

71

© University of Pretoria

2. Compute the weights w0(Xi
0) and W i

0 ∝ w0(Xi
0).

3. Resample (W i
0, X

i
0) to obtain N equally weighted particles (1

N , X̄
i
0).

For t ≥ 1:

1. Sample Xi
t v qt(xt|X̄i

0:t−1) and set Xi
0:t ← (X̄i

0:t−1, X
i
t) .

2. Compute the weights αt(X
i
0:t) and W i

t ∝ αt(Xi
0:t).

3. Resample (W i
t , X

i
0:t) to obtain N equally weighted particles (1

N , X̄
i
0:t).

At any time t we have two approximations for π(x0:t):

π̂(x0:t) =
N∑
i=1

W i
t δ(X

i
0:t, x0:t)

π̄(x0:t) =
1

N

N∑
i=1

δ(X̄i
0:t, x0:t).

(7.8)

The latter approximation represents the resampled estimate and the former represents the

sampled estimate [21]. We prefer the former because in the limit as N → ∞ it is a better

approximation of πt. However, as we have mentioned the variance of π̂(x0:t) tends to be

unbounded and thus we often have that most of the particles in the particle population have

very low weight. From a computational point of view this is wasteful. To ameliorate this

we use the latter, resampled, estimate. However, the problem with the resampled estimate

is that it effectively culls low weight particles and this reduces the diversity of the particle

population [47].

We attempt to get the benefit of both worlds by only performing resampling when the weight

variance of the particles becomes large. The effective sample size (ESS) is a method whereby

one determines when to perform resampling according to

ESS =
1∑N

i=1(W i
n)2

. (7.9)

If the effective sample size becomes smaller than some threshold (typically N
2) we resample to

cull low weight particles and replace them with high weight particles. In this manner we have

a computationally feasible method. This is called adaptive resampling and is a straightforward

extension of the sequential Monte Carlo algorithm as shown below.

Adaptive sequential importance resampling algorithm

For t = 0:

1. Sample Xi
0 v q0(x0).

2. Compute the weights w0(Xi
0) and W i

0 ∝ w0(Xi
0).

3. If resample criterion is satisfied then resample (W i
0, X

i
0) to obtain N equally weighted

particles (1
N , X̄

i
0) and set (W̄ i

0, X̄
i
0)← (1

N , X̄
i
0) otherwise set (W̄ i

0, X̄
i
0)← (W i

0, X
i
0).

72

© University of Pretoria

For t ≥ 1:

1. Sample Xi
t v qt(xt|X̄i

0:t−1) and set Xi
0:t ← (X̄i

0:t−1, X
i
t) .

2. Compute the weights αt(X
i
0:t) and W i

t ∝ W̄ i
t−1αt(X

i
0:t).

3. If the resample criterion is satisfied then resample (W i
t , X

i
0:t) to obtainN equally weighted

particles (1
N , X̄

i
0:t) and set (W̄ i

1, X̄
i
t)← (1

N , X̄
i
t) otherwise set (W̄ i

t , X̄
i
t)← (W i

t , X
i
t).

Numerous convergence results exist for the sequential Monte Carlo methods we have discussed

but the fundamental problem with this scheme is that of sample impoverishment. It is

fundamentally impossibly to accurately represent a distribution on a space of arbitrarily high

dimension with a finite set of samples [21]. We attempt to mitigate this problem by using

resampling but degeneracy inevitably occurs for large enough t. Fortunately, for our purposes

we will not be dealing with arbitrarily large dimensional problems because of the Markov

assumption.

7.2 Particle filter

We now apply the adaptive sequential importance resampling algorithm in the setting of

filtering. We set πt(x0:t) = p(x0:t|y0:t), γt(x0:t) = p(x0:t, y0:t) and consequently Zt = p(y0:t).

We use the recursive proposal distribution qt(x0:t|y0:t) = q(xt|x0:t−1, y0:t)qt−1(x0:t−1|y0:t−1).

We then have the unnormalised weights

wt(x0:t) =
γt(x0:t)

qt(x0:t|y0:t)

=
p(x0:t, y0:t)

qt(x0:t|y0:t)

∝ p(x0:t|y0:t)

qt(x0:t|y0:t)

∝ p(yt|xt)p(xt|xt−1)

qt(xt|x0:t−1, y0:t)

p(x0:t−1|y0:t−1)

qt−1(x0:t−1|y0:t−1)

= αt(x0:t)wt−1(x0:t−1).

(7.10)

For filtering we only care about p(xt|y0:t) and thus we do not need the entire trajectory x0:t.

This allows us to choose the proposal distribution qt(xt|x0:t−1, y0:t) = qt(xt|xt−1yt). In this

case the incremental weight αt simplifies to

αt(x0:t) =
p(yt|xt)p(xt|xt−1)

qt(xt|xt−1, yt)
. (7.11)

The most common proposal distribution is, the suboptimal, qt(xt|xt−1|yt) = p(xt|xt−1) because

it is easy to sample from. This implies that the incremental weights simplify to αt(x0:t) =

p(yt|xt). Using such a proposal distribution was initially proposed in [29] in the setting of the

non-adaptive sequential importance resampling method.

For general purpose filtering this is not very efficient because it amounts to “guessing until

you hit”. If the transitions are very stochastic inference can be improved by using the optimal

73

© University of Pretoria

proposal distribution qt(xt|xt−1, yt) = p(xt|xt−1, yt). While this is optimal it introduces some

difficulty because, in general, it is more difficult to sample from. The focus of dissertation is

not on optimal filtering and for the purposes of prediction the suggested proposal distribution

is sufficiently good [47]. We thus restrict ourselves to the proposal distribution p(xt|xt−1) for

simplicity.

Finally, we have mentioned that resampling kills off unlikely particles. An unfortunate

consequence of this is that some particle diversity is lost; this is sometimes called sample

impoverishment. An empirical method used to attenuate this problem is to resample from a

kernel around the particle selected by the resampling process. This is called roughening in

[29]. We thus make a final modification to the adaptive sequential importance resampling

algorithm. We select a particle from the population in the standard way but resample from

a normal distribution centred around that particle and with a diagonal covariance matrix

where the standard deviation of each diagonal is KEN−
1
d . We define E as the range of the

particle’s relevant component, N as the number of particles and d as the dimension of the

problem. K is a tuning factor which specifies how broad the kernel we sample from should be.

For the sake of completeness we present the particle filter algorithm we used here. Recall that

f and g are the transition and observation functions respectively. The algorithm is applied to

each particle i = 1, 2, ..., N .

Particle filter algorithm

For t = 0:

1. Sample Xi
0 v p(x0).

2. Compute the weights w0(Xi
0) = p(y0|Xi

0) = N (y0|g(Xi
0), V) where y0 is the observation.

Normalise W i
0 ∝ w0(Xi

0).

3. If the number of effective particles is below some threshold apply resampling with

roughening (W i
0, X

i
0) to obtain N equally weighted particles (1

N , X̄
i
0) and set (W̄ i

0, X̄
i
0)←

(1
N , X̄

i
0) otherwise set (W̄ i

0, X̄
i
0)← (W i

0, X
i
0)

For t ≥ 1:

1. Sample Xi
t = f(X̄i

t−1, wt) v p(xt|X̄i
t−1,W).

2. Compute the weights αt(X
i
t) = p(yt|Xi

t) = N (yt|g(Xi
t), V) and normalise W i

t ∝
W̄ i
t−1αt(X

i
t).

3. If the number of effective particles is below some threshold apply resampling with

roughening (W i
t , X

i
t) to obtain N equally weighted particles (1

N , X̄
i
t) and set (W̄ i

1, X̄
i
t)←

(1
N , X̄

i
t) otherwise set (W̄ i

t , X̄
i
t)← (W i

t , X
i
t).

The algorithm presented above is a slight generalisation of the bootstrap particle filter as

initially proposed by Gordon et. al. [29].

74

© University of Pretoria

Intuitively the algorithm may be summarised like this: particle filters predict the next hidden

state by projecting all the current particles forward using the transition function and associated

noise. For each particle the likelihood of the observation is calculated given the particle and

measurement noise. This likelihood is related to the weight of each particle. Particles with a

relatively high weight are then deemed to more accurately represent the posterior distribution

and thus we infer the posterior state estimate based on the relative weights of each particle.

The graphical model of particle filtering is exactly the same as that of the Kalman filter

graphical model as shown in figure 6.2. This should not come as a surprise because the general

graphical model of this chapter, figure 7.1, is exactly the same as the general graphical model

of chapter 6 as shown in figure 6.1.

7.3 Particle prediction

We are primarily interested in predicting the future hidden states but we also show how

the future visible states may be predicted within the framework of particle based methods.

Recalling the prediction derivations of chapter 4 and chapter 6 we expect the hidden state

prediction to merely be an n step ahead projection of the current filtered particles. Likewise,

we expect the visible state prediction to just be transformation of the predicted hidden states

under the observation function.

Inspecting the bootstrap particle filter algorithm presented in section 7.2 we are relieved to

find that this is the case. One just removes the observation update steps (steps 2 and 3)

from the algorithm because we cannot observe the future. We illustrate the two step ahead

predictions and trust that the reader can generalise from here.

Particle Prediction Algorithm

1. Sample Xi
t+1 = f(X̄i

t , wt+1) v p(xit+1|yt, X̄i
t)

2. Project Xi
t+2 = f(Xi

t+1, wt+2) v p(xit+2|yt, Xi
t:t+1)

3. Project Y i
t+2 = g(Xi

t+2, vt+2) v p(yit+2|yt, Xi
t:t+1)

Once again, the graphical model depicting this situation is exactly the same as figure 6.3 for

the same reasons as mentioned before.

7.4 Smoothing and Viterbi decoding

In the context of nonlinear transition and observation functions smoothing and Viterbi

decoding are much more difficult than before. For the purposes of this dissertation it is not

important to consider inferences of that type and thus we merely refer the reader to literature

where this is discussed [4], [21], [32], [47] and [48].

75

© University of Pretoria

7.5 Filtering the CSTR

In this chapter we apply the particle filter to the nonlinear CSTR problem introduce in

chapter 5. We first demonstrate the effectiveness of the particle filter by performing inference

using the full nonlinear CSTR model measuring only temperature. Next we use the full

nonlinear model again but measure both temperature and concentration. Finally, we compare

the particle filter and the Kalman filter measuring both states. These investigations are by no

means thorough but serve to illustrate important aspects of probabilistic graphical models

which will affect control.

We do not investigate the effect the number of particles used for inference has on the particle

filter. It is well known that increasing the number of particles increases the accuracy of particle

based methods [47] but at the cost of increased computational complexity. The number of

particles used in this dissertation reflects this trade-off i.e. we use a relatively small number

of particles so that the simulations run quickly but are still accurate enough for practical

purposes.

Although it is not necessary we assume that the process and measurement noise is Gaussian

with the same distributions as those found in section 6.4. This holds for all the other

parameters as well. We have used 200 particles to represent the state posterior. In figure 7.2

we see the state estimates as a function of time.

0 20 40
0.4

0.5

0.6

0.7

0.8

C
A

[k
m

ol
.m
−

3] Underlying model

0 20 40
Time [min]

340

360

380

400

420

T
R

[K
]

Filtered mean

Observations

Figure 7.2: Time series state estimates using the particle filter on the nonlinear CSTR model

with initial condition (0.5, 400) and measuring only temperature. The filter uses 200 particles.

The filter tracks both states reasonable well with a little more variance evident in the

unmeasured state. The benefit of using the full nonlinear model is evident here - since the

model is more accurate than the previously used linear model the filter infers the concentration

76

© University of Pretoria

more accurately. The average concentration and temperature estimation error is 3.15% and

0.20% respectively. Compare this to 22.73% and 0.47% over the same simulation time using a

Kalman filter measuring only temperature. The increased accuracy is also reflected in the

state space evolution curve in figure 7.3.

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
CA [kmol.m−3]

340

350

360

370

380

390

400

410

T
R

[K
]

Underlying model

Filtered mean

90% Confidence region

Figure 7.3: State space evolution of the particle filter on the nonlinear CSTR model with

initial condition (0.5, 450) and measuring only temperature. The filter uses 200 particles.

We also see in figure 7.3 that the variance of the estimates is quite high (the confidence region

is quite big). We expect that by also measuring concentration this will decrease. In figures

7.4 and 7.5 we incorporate concentration measurement to aid inference.

0 20 40
0.4

0.6

0.8

C
A

[k
m

ol
.m
−

3] Underlying model

0 20 40
Time [min]

300

350

400

450

T
R

[K
]

Filtered mean

Observations

Figure 7.4: Time series state estimates using the particle filter on the nonlinear CSTR model

with initial condition (0.5, 450) and measuring both states. The filter uses 200 particles.

77

© University of Pretoria

It is clear that that the particle filter reliably tracks the state evolution in the presence of

plant and measurement noise. The average concentration and temperature estimation error is

0.81% and 0.21% respectively. We see that by also measuring the concentration the size of

the confidence region decreases in figure 7.5.

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
CA [kmol.m−3]

340

350

360

370

380

390

400

410

T
R

[K
]

Underlying model

Filtered mean

90% Confidence region

Figure 7.5: State space evolution of the particle filter on the nonlinear CSTR model with

initial condition (0.5, 450) and measuring both states. The filter uses 200 particles.

Finally we compare the particle filter to the Kalman filter using both temperature and

concentration measurements. First we illustrate that if the underlying model is linear and the

noise Gaussian the particle filter does no better than the Kalman filter. In figure 7.6 we see

that both the particle filter and the Kalman filter are able to accurately estimate the posterior

state distribution over time. Note that we have used 500 particles to meaningfully compare

the distribution estimates (the more particles one uses in the particle filter the more accurate

it becomes).

78

© University of Pretoria

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
CA [kmol.m−3]

330

340

350

360

370

380

390

400

410

T
R

[K
]

Underlying model

Particle filter

Kalman filter

PF 90% Confidence region

KF 90% Confidence region

Figure 7.6: State space evolution of the particle filter and the Kalman filter on the linear CSTR

model with initial condition (0.5, 400) and measuring both temperature and concentration.

The particle filter uses 500 particles.

The average concentration and temperature estimation errors for the particle filter is 0.93%

and 0.23% respectively while the corresponding estimation errors for the Kalman filter is 0.97%

and 0.23% respectively. Since the confidence region overlaps throughout the entire simulation

it is clear that if the underlying model is linear there is no great difference between the two

filters from an accuracy point of view. It does however makes sense, from a computational

point of view, to use the Kalman filter: it is well known that the particle filter does not

perform well in high dimensional problems [56].

Next we consider the same comparison but change the underlying model to the full nonlinear

CSTR as shown in figure 7.7. The average concentration and temperature estimation errors

for the particle filter is 0.83% and 0.19% respectively while the corresponding estimation

errors for the Kalman filter is 4.50% and 0.41% respectively.

79

© University of Pretoria

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
CA [kmol.m−3]

340

350

360

370

380

390

400

410

T
R

[K
]

Underlying model

Particle filter

Kalman filter

PF 90% Confidence region

KF 90% Confidence region

Figure 7.7: State space evolution of the particle filter and the Kalman filter on the non-

linear CSTR model with initial condition (0.5, 400) and measuring both temperature and

concentration. The particle filter uses 500 particles.

Inspecting figure 7.7 we see that throughout the simulation the particle filter’s confidence

region is smaller. Since we are using a significantly more accurate model for the particle filter

this is not surprising. Additionally we see that the Kalman filter state estimates diverge from

the true states as the model moves away from the region where the linear model is accurate.

The same weakness in the Kalman filter was discussed in section 6.4 concerning the usage of

the linear model.

Therefore, while the particle filter may be computationally more expensive to use it is a better

filter if the system exhibits nonlinearity or non-normality. But, if the system is linear and

normal one is better off using the standard Kalman filter.

In the next chapter we design model predictive controllers from within the framework of

probabilistic graphical models.

80

© University of Pretoria

Chapter 8

Stochastic linear control

In this chapter we consider the stochastic reference tracking problem. It is required to move

the states and manipulated variables of the system,

xt+1 = f(xt, ut) + wt+1

yt+1 = g(xt+1) + vt+1,
(8.1)

to the set point (xsp, usp) by manipulating the input variables u. It is assumed that xt is a

latent stochastic variable and yt is an observed stochastic variable.

We assume uncorrelated zero mean additive Gaussian noise (wt and vt) in both the state

function f and the observation function g with known covariances W and V respectively.

Clearly it is not possible to achieve perfect control (zero offset at steady state) because of the

noise terms, specifically wt. For this reason we need to relax the set point goal a little bit.

We will be content if our controller is able to achieve definition 8.1.

Definition 8.1. Stochastic reference tracking goal: Suppose we have designed a con-

troller and set δ > 0 as a controller benchmark. If there exists some positive number t∗ <∞
such that ∀ t > t∗ the controller input causes E[(xt−xsp)TQ(xt−xsp)+(ut−usp)TR(ut−usp)] <
δ we will have satisfied the stochastic reference tracking goal given δ.

While definition 8.1 is pleasing from a theoretical point of view, it is not easy to design a

controller to specifically satisfy a given δ. We again simplify our goal somewhat: we will be

content if the controller we design (without a specific δ in mind) can satisfy definition 8.1 for

some suitably small resultant δ. Intuitively, we would like the mean of the states and inputs

to be “close enough” to the set point.

In this chapter we limit ourselves by only considering controllers developed using a single

linear model of the underlying, possibly nonlinear, system functions f and g. The linearised

model control is based upon is

xt+1 = Axt +But + wt+1

yt+1 = Cxt+1 + vt+1

(8.2)

81

© University of Pretoria

and is subject to the same noise as (8.1). We will endeavour to develop predictive controllers

using the graphical models of chapters 6 and 7.

8.1 Unconstrained stochastic control

Our first goal is to solve the problem

min
u
JLQG(x0,u) = E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
subject to xt+1 = Axt +But + wt

(8.3)

given the current state estimate x0
1. If the system is controllable then solving (8.3) will satisfy

the linear unconstrained stochastic reference tracking goal.

Note that the future inputs u = (u0, u1, . . . , uT−1) are denoted in boldface to emphasise that

it could be a vector of vectors. Inspecting (8.3) we see that this is none other than the LQG

control problem of section 3.4.3. Therefore we know what the optimal solution should look

like.

We start our analysis using the results of chapter 6. We assume that at every sequential time

step we have the current state estimate, which is assumed to be Gaussian, and denote this by

x0.

y0

x0 x1 x2

u0 u1

Figure 8.1: Graphical model for state prediction.

Inspecting figure 8.1 we note that the state prediction equations derived in section 6.2 are

applicable. Thus we can predict the state distributions given the future inputs u.

Before we proceed we prove a very intuitive result in theorem 8.1. We will use this to link

the predictive controller we derive here, using the results of sections 6.1 and 6.2, to the LQR

controller derived in section 3.4.1.

1It is customary to assign x0 ← xt at each time step to simplify the controller optimisation problem’s

notation.

82

© University of Pretoria

Theorem 8.1. Optimisation Equivalence Suppose we have two real valued convex objec-

tive functions f(x0,u) and g(x0,u) and we are required to minimise them with respect to u

over the same space where they are both defined: u ∈ U and x0 ∈ X . Furthermore, suppose

there exists a real number k such that ∀u ∈ U we have that g(x0,u) + k = f(x0,u). Finally,

assume the existence and uniqueness of the global minimiser for each problem. Then the

global minimiser u∗ of g(x0,u) is also the global minimiser of f(x0,u).

Proof. This proof only holds over functions which are at least twice differentiable. By

assumption we know that u∗ is the minimiser of g(x0,u) given x0. By the necessary conditions

for optimality [27] we know that ∇g(x0,u
∗) = 0 and that ∇2g(x0,u

∗) is positive semi-definite.

Since f and g are both twice differentiable and g(x0,u
∗) + k = f(x0,u

∗) it must hold that

∇g(x0,u
∗) = ∇f(x0,u

∗) and ∇2g(x0,u
∗) = ∇2f(x0,u

∗). Since ∇2g(x0,u
∗) is positive semi-

definite it must be that ∇2f(x0,u
∗) is also positive semi-definite. Therefore u∗ is necessarily

a minimum of f . Since f is convex the minimum must also be a global minimum.

Now we are in a position to show the equivalence between the LQR control problem and the

LQG control problem using the results of sections 6.1 and 6.2. Theorem 8.2 shows how this is

possible. It is quite reassuring to note that by starting within the framework of graphical

models we arrive at the most important contribution of [64] and [65] in an intuitively simple

manner.

Theorem 8.2. LQR and LQG objective function difference Consider the LQR,

JLQR(x0,u) =
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

with xt+1 = Axt +But,

(8.4)

and LQG,

JLQG(x0,u) = E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
with xt+1 = Axt +But + wt+1,

(8.5)

objective functions. Suppose x0 is the state estimate, assumed to be Gaussian, given the latest

observation in the stochastic case. In the deterministic case we have that x0 = E[x0] = µ0

because we exactly observe the state. Given any input sequence u ∈ U , where U is the shared

admissible input space, we have that JLQR(x0,u) + 1
2

∑N
k=0 tr(QΣk) = JLQG(x0,u) where

Σt+1 = W +AΣtA
T and Σ0 is the covariance matrix of the current state given by the observer.

Proof. Expanding the LQG objective function (the expected value operator is linear) and

noting that u is deterministic we have

JLQG(x0,u) =
1

2
E
[
xT0 Qx0

]
+

1

2
uT0 Ru0 +

1

2
E
[
xT1 Qx1

]
+

1

2
uT1 Ru1 + . . .

+
1

2
E
[
xTN−1QxN−1

]
+

1

2
uTN−1RuN−1 +

1

2
E
[
xTNPfxN

]
.

(8.6)

83

© University of Pretoria

We know that x0 ∼ N (µ0,Σ0) because the current state estimate was assumed to be Gaussian.

This means that we can evaluate the first expected value in (8.6) using theorem 3.5 to write

E
[
xT0 Qx0

]
= tr(QΣ0) + µT0 Qµ0. (8.7)

Now we turn our attention to the second expected value in (8.6). First note that because

we have x0 and u we can use the result from section 6.2 to predict the distribution of x1.

Therefore we know that x1 ∼ N (Aµ0 +Bu0,W +AΣ0A
T). Now we let µ1 = Aµ0 +Bu0 and

Σ0 = W +AΣ0A
T . Then by using theorem 3.5 we have

E
[
xT1 Qx1

]
= tr(QΣ1) + µT1 Qµ1. (8.8)

Note that tr(QΣ1) does not depend on u0 but only on the initial state estimate x0 which is

independent of the future inputs u. Notice that we can continue in this manner to simplify

the LQG objective function to

JLQG(x0,u) =
1

2

N−1∑
k=0

(
µTkQµk + uTkRuk

)
+

1

2
µTNPfµN +

1

2

N∑
k=0

tr(QΣk)

with µt+1 = Aµt +But

and Σt+1 = W +AΣtA
T .

(8.9)

Now note that except for the last term JLQG(x0,u) is exactly the same as JLQR(x0,u). The

conclusion follows because 1
2

∑N
k=0 tr(QΣk) is independent of u.

Finally we combine theorems 8.1 and 8.2 to produce theorem 8.3.

Theorem 8.3. Solution of the finite horizon LQG control problem We wish to solve

the LQG control problem within the framework of graphical models. The full problem is

min
u
V (x0,u) = E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
subject to xt+1 = Axt +But + wt.

(8.10)

We assume that x0 is the current posterior state estimate, which is Gaussian, supplied by

some observer. The solution of (8.10) is equivalent to solving the LQR problem with initial

state equal to the mean of the initial state estimate supplied by some observer.

Proof. We assume that we have a Gaussian posterior state estimate for x0. We use theorem 8.2

to prove that given x0 and ∀u ∈ U we have that JLQR(x0,u) + 1
2

∑N
k=0 tr(QΣk) = JLQG(x0,u)

with 1
2

∑N
k=0 tr(QΣk) ∈ R a constant depending only on x0. Thus we can use theorem 8.1 to

prove that we only need to solve for the optimal controller input u using the LQR objective

function to solve (8.10).

As we have mentioned before, the separation theorem (sometimes called certainty equivalence)

implies that the solution of the LQG control problem is achieved by using the Kalman filter

to optimally estimate the current state and then using that state estimate in the optimal

84

© University of Pretoria

LQR controller. It is reassuring that theorem 8.3 is confirmed by this result if we use the

Kalman filter as the observer. The primary benefit of the graphical model approach is clear:

we have solved the LQG problem without resorting to stochastic dynamical programming.

Under some circumstances it is also possible to extend the result of theorem 8.3 to the infinite

horizon case as shown in theorem 8.4.

Theorem 8.4. Solution of the infinite horizon LQG control problem If the linear

model of (8.2) is stable then, using, with some minor adjustments, theorems 8.1 and 8.2 it

is possible to show that the infinite horizon LQG problem is solved in a similar manner: a

Gaussian state estimate is used in conjunction with the infinite horizon LQR solution. This

result can also be obtained by using the separation theorem.

To clarify why it is important that the linear system (i.e. the matrix A) is stable, consider

the quantity 1
2

∑N
k=0 tr(QΣk). If it is unbounded the optimisation problem will be ill posed

because the minimum will tend to some infinity. Inspecting Σt+1 = W +AΣtA
T we see that

||Σ∞|| will be unbounded if ||AΣtA
T || becomes unbounded (W is a constant) as t→∞. Note

that || · || is some matrix norm. It can be shown that only if the eigenvalues of A are less

than unity i.e. the linear model is stable, then ||AΣt+1A
T || ≤ ||AΣtA

T || which implies that
1
2

∑N
k=0 tr(QΣk) is bounded and the optimisation is reasonable.

8.2 Constrained stochastic control

The goal of this section is to solve the stochastically constrained MPC optimisation problem

min
u

E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
subject to xt+1 = Axt +But + wt

and E[dTxt + e] ≥ 0 ∀ t = 1, . . . , N

and Pr(dTxt + e ≥ 0) ≥ p ∀ t = 1, . . . , N.

(8.11)

We assume that the underlying system is linear and the probability distributions are Gaussian.

From the results of chapter 6 the probability distributions will be Gaussian if the system

dynamics are linear. However, it is well known [43] that MPC is not in general a linear

controller. From an analytical point of view this is problematic. We assume that the

nonlinearity introduced by the MPC is negligible. We also restrict our analysis to affine

constraints. Note that we only include one affine constraint in the succeeding examples

however, the multiple constraint generalisation is addressed in the theory and are handled in

exactly the same way as the examples using a single constraint. Furthermore, we assume that

the current state estimate x0 is supplied by some observer.

It might seem that the last constraint is a duplicate of the preceding one. Closer inspection

reveals their different character. The first inequality constraint, which we will call the expected

85

© University of Pretoria

value constraint, requires that the predicted states satisfy the constraint “on average” while

the second inequality constraint, which we will call the chance constraint, requires that the

predicted states satisfy the constraint with at least some probability p.

For navigational convenience we supply a link to theorem 8.8 - when the reader reaches that

point the reason will become obvious.

Theorem 8.5 succinctly shows that it is simple to convert the expected value constraint in

(8.11) to a linear deterministic constraint.

Theorem 8.5. Affine expected value constraints Suppose we have a stochastic variable

x with a known Gaussian distribution and we also have d ∈ Rn and e ∈ R. Then the stochastic

constraint E[dTx+e] ≥ 0 simplifies to the deterministic constraint dTµ+e ≥ 0 where E[x] = µ

is the mean of the stochastic variable.

Furthermore, suppose we have the set of n stochastic constraints E[Dx+ e] ≥ 0. In this case

D ∈ Rn×m and e ∈ Rn. Then E[Dx+ e] ≥ 0 simplifies to Dµ+ e ≥ 0.

Proof. We know that x is a Gaussian stochastic variable. By theorem 3.5 we know that

E[dTx+ e] = dTµ+ e and E[Dx+ e] = Dµ+ e. This immediately implies the result.

It is interesting to pause here for a moment and consider theorem 8.3 and theorem 8.5 applied

to a problem of the form

min
u

E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
subject to xt+1 = Axt +But + wt

and E[dTxt + e] ≥ 0 ∀ t = 1, . . . , N.

(8.12)

We assume that the current state estimate is available at each time step, that it is Gaussian

and that E[x0] = µ0. It is clear that by applying theorems 8.3 and 8.5 it is possible to rewrite

(8.12) as

min
u

1

2

N−1∑
k=0

(
µTkQµk + uTkRuk

)
+

1

2
µTNPfµN +

1

2

N∑
k=0

tr(QΣk)

subject to µt+1 = Aµt +But

and dTµt + e ≥ 0 ∀ t = 1, . . . , N.

(8.13)

This implies that the standard deterministic MPC problem (8.13) is equivalent to the stochastic

MPC problem with affine expected value constraints (8.12) under the assumptions of linearity

and normality. This suggests that if chance constraints are not required the standard

deterministic MPC will be sufficient for the control of stochastic processes. The generalisation

of (8.12) to multiple expected value constraints is straightforward due to the second part of

theorem 8.5.

Theorem 8.6 is a necessary step before we can convert the chance constraint of (8.11) into a

nonlinear deterministic constraint.

86

© University of Pretoria

Theorem 8.6. Shortest squared Mahalanobis distance between a hyperplane and

a point Suppose we are given a symmetric positive semi-definite matrix S and a point y.

The shortest squared Mahalanobis distance between y and the hyperplane bTx + c = 0 is

given by (bT y+c)2

bTSb
.

Proof. It is natural to formulate theorem 8.6 as an optimisation problem

min
x

(x− y)TS−1(x− y)

subject to bTx+ c = 0.
(8.14)

Note that S and therefore also S−1 is symmetric. Using conventional calculus we have

∇f(x) = (S−1 + S−1T)x− 2S−1y = 2S−1x− 2S−1y and ∇g(x) = bT . Using the method of

Lagrangian multipliers [27] we have the system of equations

2S−1x− 2S−1y + λb = 0

bTx+ c = 0.
(8.15)

This can be rewritten in block matrix form(
2S−1 b

bT 0

)(
x

λ

)
=

(
2S−1y

−c

)
. (8.16)

The special structure of the left hand side matrix in (8.16) allows us to analytically compute

the inverse (see theorem 3.13 in section 3.5)(
2S−1 b

bT 0

)−1

=

(
1
2S(I − bbTS

bTSb
) Sb

bTSb
bTS
bTSb

− 2
bTSb

)
. (8.17)

To find the arguments which satisfy (8.15) we solve(
1
2S(I − bbTS

bTSb
) Sb

bTSb
bTS
bTSb

− 2
bTSb

)(
2S−1y

−c

)
=

(
S(I − bbTS

bTSb
)S−1y − c Sb

bTSb

2(b
TS
bTSb

+ c
bTSb

)

)
(8.18)

which is equivalent to solving the system of linear equations in (8.16). Therefore, the arguments

which minimise (8.14) are x∗ = S(I − bbTS
bTSb

)S−1y − c Sb
bTSb

. Substituting this into the objective

function we have

(x∗ − y)T S−1 (x∗ − y)

=

(
S

(
I − bbTS

bTSb

)
S−1y − c Sb

bTSb
− y
)T

S−1

(
S

(
I − bbTS

bTSb

)
S−1y − c Sb

bTSb
− y
)

=

(
SbbT y

bTSb
+ c

Sb

bTSb

)T
S−1

(
SbbT y

bTSb
+ c

Sb

bTSb

)
=

(Sb)T

bTSb

(
bT y + c

)T
S−1 Sb

bTSb

(
bT y + c

)
=

bTS

bTSb

(
bT y + c

)T b

bTSb

(
bT y + c

)
=
(
bT y + c

)T bTSb

(bTSb)2

(
bT y + c

)
=

(bT y + c)T (bT y + c)

bTSb

=
(bT y + c)2

bTSb
.

(8.19)

87

© University of Pretoria

We can conclude that the shortest squared Mahalanobis distance between a point y and the

constraint of (8.14) is (bT y+c)2

bTSb
.

In theorem 8.7 we apply theorem 8.6 to convert the chance constraints into nonlinear deter-

ministic constraints.

Theorem 8.7. Gaussian affine chance constraints Suppose the underlying distribution

of a random variable x is Gaussian with sufficient statistics (µ,Σ) and we have that d ∈ Rn

and e ∈ R. Also, suppose that dTµ+ e > 0 is ensured.

Then the chance constraint Pr(dTx + e ≥ 0) ≥ p can be rewritten as the deterministic

constraint (dTµ+e)2

dT Σd
≥ k2 where k2 is the (constant) critical value of the inverse cumulative

Chi Squared distribution with the degrees of freedom equal to the dimensionality of x such

that Pr(X ≤ k2) = p with X a Chi Squared random variable. Note that p > 0.5 due to the

fact that dTµ+ e > 0 is ensured.

Furthermore, suppose D ∈ Rn×m, e ∈ Rn and Dµ+ e > 0 which, again, implies that p > 0.5.

Then joint chance constraint Pr(Dx + e ≥ 0) ≥ p can be written: for all i = 1, . . . , n we

require
(dTi µ+ei)

2

dTi Σdi
≥ k2. Note di is each row in D and ei each corresponding element in e.

Proof. Intuitively theorem 8.7 posits that if the shortest squared Mahalanobis distance is

further away than some threshold k2 the chance constraint Pr(dTx + e ≥ 0) ≥ p will be

satisfied. Figure 8.2 depicts the idea that the minimum squared Mahalanobis distance must

be greater than k2 i.e. ε > 0. The use of the Mahalanobis distance is important because it

takes into account the uncertainty associated with each component of the random variable x.

d Tx	+	e	=	0

(x1-μ
1) T∑	 -1(x1-μ

1)=k 2

μ1

μ2x1

x2

(x2-μ
2) T∑	 -1(x2-μ

2)=k 2+ε	

Figure 8.2: The ellipse centred around µ1 intersects the constraint while the ellipse centred

around µ2 is wholly above (satisfies) the constraint. The shortest Mahalanobis distance will

not necessarily be perpendicular to the constraint.

Since x is a Gaussian stochastic variable we have that E[x] = µ and var[x] = Σ. Let

88

© University of Pretoria

Ω = {x ∈ Rn | (x − µ)TΣ−1(x − µ) ≤ k2} and k2 be the critical value such that for the

Chi Squared distribution with degrees of freedom equal to the dimension of x we have

that Pr(X ≤ k2) = p. Then it is well known [53] that
∫

Ω p(x|µ,Σ)dx = p where p(·|µ,Σ)

is the multivariate Gaussian probability distribution function of x. If the shortest squared

Mahalanobis distance from the mean of x is further away from the affine constraint dT z+e = 0

than k2 it implies that the curve of the function h(z) = (z − µ)TΣ−1(z − µ) = k2 does not

intersect with the constraint - a positive ε in the context of figure 8.2. Therefore Ω is wholly

contained within the feasible region because dTµ + e > 0. This implies, with at least a

probability of p, that the chance constraint will not be violated because the “confidence

ellipse” is contained in the feasible region. Therefore, by applying theorem 8.6 to find

the shortest squared Mahalanobis distance between µ and the constraint we have that
(dTµ+e)2

dT Σd
≥ k2 =⇒ Pr(dTx+ e ≥ 0) ≥ p.

The generalisation to more than one constraint, which should be jointly satisfied, is shown

in figure 8.3. It is required that the ellipse, up to confidence level p, is wholly contained in

the feasible region Dx+ e > 0. If this requirement is satisfied we will satisfy the joint chance

constraint by the same reasoning as before.

d
1x	+	e1 =	0
(x1- μ) T∑	 -1(x1- μ)=k 2	+	ε1

μ

x1

x2
d2x
	+
	e2
=	
0

(x2
-μ
)T ∑
	-1 (
x2-
μ)=

k2
	+	ε

2

(x- μ) T∑	 -1(x- μ
)=
k 2

Figure 8.3: Illustration of the fact that theorem 8.7 holds jointly for multiple constraints. The

ellipse centred around µ must lie wholly within the feasible region. This is guaranteed if the

Mahalanobis constraint is satisfied.

By ensuring that Dµ+ e > 0 and that the shortest squared Mahalanobis distance between µ

and the constraints is bigger than k2 this is guaranteed. This implies that if for all i = 1, . . . , n
(dTi µ+ei)

2

dTi Σdi
≥ k2 then Pr(Dx+ e ≥ 0) ≥ p will be satisfied.

In theorem 8.7 it is important that µ lie within the feasible region. If that is not required then

89

© University of Pretoria

it is possible for the ellipse to be wholly outside the feasible region while still satisfying the

requirement that the shortest squared Mahalanobis distance between µ and the constraints is

at least k2. Clearly the chance constraint will then not be satisfied.

It is interesting to note the striking similarity between the work in [59] and [58] and theorem 8.7

given that we started analysing the problem within the framework of graphical models. The

additional benefit of theorem 8.7 is that it formulates the chance constraint as a function

of the statistical Mahalanobis distance measure. This is useful because it lends a statistical

interpretation to theorem 8.7 even if the underlying distribution is non-Gaussian.

In theorem 8.8 we combine and elaborate on the work of [64], [59] to yield a QP MPC which

exactly satisfies the stochastic MPC in (8.11) given the assumptions of linearity and normality.

Note that the dimensionality of the problem is arbitrary.

Theorem 8.8. Conversion of the stochastic MPC formulation to the standard

deterministic QP MPC formulation Under the assumptions of linearity and Gaussian

distributions we can reformulate the stochastic MPC problem shown in (8.11) as a standard

deterministic quadratic programming MPC problem

min
u

1

2

N−1∑
k=0

(
µTkQµk + uTkRuk

)
+

1

2
µTNPfµN +

1

2

N∑
k=0

tr(QΣk)

subject to µt+1 = Aµt +But

and Σt+1 = W +AΣtA
T

and dTµt + e ≥ k
√
dTΣtd ∀ t = 1, . . . , N.

(8.20)

Other deterministic constraints, e.g. on the input, can be added as usual. Note that we

have assumed that the initial state estimate x0 is available in the form of its mean, µ0, and

covariance, Σ0. It is straightforward to include more chance constraints. Since each chance

constraint is reduced to an inequality constraint which measures the Mahalanobis distance

between the predicted distributions, the resultant feasible points will jointly satisfy all chance

constraints.

Proof. Let the admissible set of controller inputs U be the same for both the stochastic MPC

and the deterministic MPC formulations. Furthermore, let the current state estimate x0

be given. Then by theorem 8.2 the objective function and equality constraints follow. By

theorem 8.5 the expected value inequality constraint in (8.11) can be reformulated to require

that dTµt+e ≥ 0 for each t = 1, 2, . . . , N . The chance constraint in (8.11) can be reformulated

by using theorem 8.7:

(dTµt + e)2

dTΣtd
≥ k2 =⇒ (dTµt + e)2 ≥ k2dTΣtd

=⇒ dTµt + e ≥ k
√
dTΣtd ∀ t = 1, 2, . . . , N.

(8.21)

The first line of (8.21) follows because Σt is positive semi-definite for all t = 1, 2, . . . , N

and d 6= 0 (otherwise it would not be a constraint), therefore it can be multiplied over the

90

© University of Pretoria

inequality sign like a positive number. By theorem 8.3 we have that Σt+1 = W + AΣtA
T ,

therefore the predicted covariance matrices used in (8.21) are well defined. The second line

follows because of the first inequality constraint: we know that dTµt + e ≥ 0 ∀ t = 1, 2, . . . , N

and therefore we can square root both sides of the inequality constraint. Thus we have the

two inequality constraints dTµt + e ≥ 0 and dTµt + e ≥ k
√
dTΣtd for each t = 1, 2, . . . , N .

Since k > 0 (otherwise we do not have a meaningful chance constraint) we can condense

the two inequality constraints into a single constraint: dTµt + e ≥ k
√
dTΣtd > 0 for each

t = 1, 2, . . . , N from which the conclusion follows.

The beauty of theorem 8.8 is that no new theory is necessary to analyse the stability and

convergence results of the new MPC. This is highly desirable because it allows one to merely

“add” the inequality constraint in (8.20) to your existing MPC formulation. Most practical

MPCs will have some form of state estimation and thus no new parameters are introduced

either. Since the problem is in standard QP form it is straightforward to implement and, even

more importantly, it is computationally fast because the problem is trivially convex.

In the work by [64] and [65], which primarily dealt with univariate problems, it was found that

feasibility problems might arise if one uses the predicted covariance estimates in the controller.

If the system is unstable the uncertainty in the estimates can grow with time as discussed in

theorem 8.4. This can cause the ellipses used in theorem 8.7 to become too large to fit inside

the feasible region. The approach adopted by [64] and [65] is to only use the one step ahead

predicted covariance (Σ1) over the entire prediction horizon. This does not ensure feasibility

but restricts the growth associated with infeasibility. The drawback of this approach is that it

might cause constraint violation because the controller will be more aggressive.

8.3 Reference tracking

So far we have only dealt with controllers which drive the system to the origin. The more

general situation we are interested in is arbitrary reference point tracking. Fortunately,

section 3.4.2 applies without modification because the stochastic MPC problem was reduced

to the standard deterministic MPC problem.

8.4 Linear system

In this section we consider the problem of controlling a linear system using the stochastic

MPC formulation of theorem 8.8. More precisely, we assume the linear model linearised about

the unsteady operating point of our CSTR example from chapter 5 accurately represents the

underlying system. For the purposes of illustration we will only use the (somewhat unrealistic)

system where both states are measured. However, there is no theoretical reason why we

cannot use the system where only temperature is measured. The drawback of using the latter

91

© University of Pretoria

system is that inference, as discussed previously, will be worse. The control goal is to steer

the concentration, in the sense of definition 8.1, to the unsteady operating point (CA = 0.49

kmol.m−3) about which the system was linearised. See chapter 5 for more details.

We repeat the relevant system dynamics

A =

(
0.9959 −6.0308× 10−5

0.4186 1.0100

)
B =

(
0

8.4102× 10−5

)
C =

(
1 0

0 1

)

W =

(
1× 10−6 0

0 0.1

)
V =

(
1× 10−3 0

0 10

) (8.22)

using a time step h = 0.1. The tuning parameters used in this and all subsequent chapters

are

Q = Pf =

(
1× 104 0

0 0

)
R =

(
1× 10−6

)
(8.23)

Note that the magnitude difference between the components of Q, Pf and R is necessary

because the units of concentration and heat input are not scaled. We assume that a Kalman

filter supplies the current posterior state estimate x0 at each time step. Additionally, we

assume a zero order hold of 1 min between controller inputs.

It is useful to introduce the measures we will use to quantify the effectiveness of the control

techniques used in this and the following chapters. We define the average energy input by
1
N

∑N
t=0 |ut − us| and the average concentration error by 1

N

∑N
t=0 |

CAt−ysp
ysp

|. Additionally, to

confirm that the results hold true over multiple simulations we will, at the end of sections 8.4

and 8.5, include a Monte-Carlo simulation. The metrics we use for the Monte Carlo simulations

will be the time each simulation spent in violation of the constraints and the total state space

area (measured within the context of the Mahalanobis distance) in violation of the constraint.

First we illustrate the approach of using only the result of theorem 8.3 i.e. we apply the LQG

regulator to the system. Based on our previous results we know that given the Kalman filter’s

current posterior state estimate mean, µ0, we only need to solve the LQR problem,

min
u

1

2

N−1∑
k=0

(
µTkQµk + uTkRuk

)
+

1

2
µTNPfµN

subject to µt+1 = Aµt +But,

(8.24)

to solve the LQG problem. The prediction horizon N is set at 150 time steps i.e. 15 minutes

into the future. Figure 8.4 shows that the system does indeed converge, noisily, to the set

point. This is not surprising because we have effectively just implemented the very well

studied LQG controller. The primary drawback of this method is that there is no easy way to

constrain the system. From a practical perspective this can be problematic.

92

© University of Pretoria

0 20 40 60 80
0.4

0.5

0.6

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 20 40 60 80
400

420

440

460

T
R

[K
] Filtered mean Observations

0 20 40 60 80
Time [min]

−200

−100

0

100

Q
[k

W
]

Figure 8.4: Unconstrained LQG regulator tracking with initial condition (0.55, 450) and

measuring both states.

The average heat energy usage (controller input) over the simulation run is 24.99 kW. The

average set point error is 2.29% over the same 80 min time period.

Next we illustrate the approach of using conventional deterministic MPC to control the

stochastic system. The MPC problem is

min
u

1

2

N−1∑
k=0

(
µTkQµk + uTkRuk

)
+

1

2
µTNPfµN

subject to µt+1 = Aµt +But

and

(
10

1

)T
µt + 412 ≥ 0 ∀ t = 1, . . . , N

and |ut| ≤ 165 ∀ t = 0, . . . , N − 1.

(8.25)

Using MPC allows us to easily add state and input constraints; this is a significant improvement

over conventional LQG as discussed previously. We only use a single state constraint in this

dissertation but the extension to multiple constraints is straightforward. The prediction and

control horizon are equal to each other and set at 150 time steps i.e. 15 minutes into the

future. We additionally constrain the magnitude of the inputs.

Due to assumption of normality and linearity and by theorem 8.3 and 8.5 we can also interpret

the deterministic MPC as a stochastic MPC with an affine expected value constraint. Therefore

the controller in (8.25) is not inappropriate for the control of the stochastic CSTR process

under consideration.

In figure 8.5 we see the reference tracking and controller input for the deterministic MPC. The

average heat energy input and set point error over the simulation run is 28.22 kW and 2.43%

93

© University of Pretoria

respectively. Interestingly the average error is not much different but the controller requires

more energy to track the set point. This is reasonable because the additional constraints

make problem (8.25) a harder problem than (8.24).

0 20 40 60 80
0.4

0.5

0.6

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 20 40 60 80
400

420

440

460

T
R

[K
] Filtered mean Observations

0 20 40 60 80
Time [min]

−200

−100

0

100

200

Q
[k

W
]

Figure 8.5: Deterministic constrained MPC tracking with initial condition (0.55, 450) and

measuring both states.

Like the LQG controller, it is clear that we have noisy convergence to the set point. As

mentioned previously we will never be able to achieve zero set point offset because of the noise

term in the system dynamics (8.1). Note that we have constrained the maximum magnitude

of the inputs such that |ut| ≤ 165 kW. In the unconstrained case the controller required a

maximum absolute input magnitude of over 200 kW; the ability to naturally constrain the

inputs can be practically very useful. The benefit of MPC is apparent here.

In figure 8.6 we see the corresponding state space trajectory of the system together with the

state constraint.

94

© University of Pretoria

0.45 0.50 0.55 0.60
CA [kmol.m−3]

400

410

420

430

440

450

T
R

[K
] Underlying model

Filtered mean

90% Confidence region

Figure 8.6: Deterministic MPC state space trajectory with initial condition (0.55, 450) and

measuring both states. The red line is the constraint.

While the predicted mean state estimates do not violate the constraint (due to the optimisation

constraints) the actual underlying system does. This is clearly seen if one inspects the

confidence region around the lower state estimates in figure 8.6. The confidence region is

deeply violated by the constraint which implies that it is likely that the underlying system

might. This is clearly a problem from a control point of view; the deterministic MPC cannot

ensure that the constraint is satisfied.

We remedy this situation by introducing the chance constrained MPC as discussed in theo-

rem 8.8

min
u

1

2

N−1∑
k=0

(
µTkQµk + uTkRuk

)
+

1

2
µTNPfµN +

1

2

N∑
k=0

tr(QΣk)

subject to µt+1 = Aµt +But

and Σt+1 = W +AΣtA
T

and dTµt + e ≥ k
√
dTΣtd ∀ t = 1, . . . , N

and |ut| ≤ 165 ∀ t = 0, . . . , N − 1.

(8.26)

Note that dT = (10, 1) and e = 412 as before. By consulting a Chi Squared distribution table

we set k2 = 4.6052 which corresponds to the chance constraint Pr(dTxt + e ≥ 0) ≥ 90% ∀ t =

1, . . . , N . Note that problem (8.26) is harder than (8.25) due to the added constraint and

thus we expect that the system will require greater controller input to satisfy the constraint.

In figure 8.7 we see that the stochastic MPC is able to track the set point in a similar manner

as the LQG controller and deterministic MPC. The total average heat input and set point

error over the simulation run is 38.58 kW and 2.58% respectively. This problem is harder

than the preceding one due to the additional constraint and thus more energy is required.

95

© University of Pretoria

0 20 40 60 80
0.4

0.5

0.6

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 20 40 60 80
400

420

440

460

T
R

[K
] Filtered mean Observations

0 20 40 60 80
Time [min]

−200

−100

0

100

200

Q
[k

W
]

Figure 8.7: Chance constrained MPC tracking with initial condition (0.55, 450) and measuring

both states. A Kalman filter is used for inference and the chance constraint is set at 90%.

However, the benefit of adding the chance constraint is apparent in figure 8.8. It is clear that

the constraint on the underlying state is not violated.

0.45 0.50 0.55 0.60
CA [kmol.m−3]

410

420

430

440

450

T
R

[K
] Underlying model

Filtered mean

90% Confidence region

Figure 8.8: Chance constrained MPC state space trajectory with initial condition (0.55, 450)

and measuring both states. A Kalman filter is used for inference and the chance constraint is

set at 90%.

Since the chance constraint is only enforced with probability 90% it is possible that the

underlying system can come “close” to the constraint. This then has the consequence that

the posterior confidence region marginally violates (spills over) the constraint as seen in the

96

© University of Pretoria

lower regions of figure 8.8.

It is interesting to investigate what effect increasing the probability that the chance constraint is

satisfied will have on the system. To this end we modify the chance constraint of (8.26) such that

k2 = 9.21 which corresponds to the chance constraint Pr(dTxt + e ≥ 0) ≥ 99% ∀ t = 1, . . . , N .

We expect that the underlying system will be moved further away from constraint due to this

added level of conservativeness.

In figure 8.9 we see that the stochastic MPC still tracks the set point and figure 8.10 shows

that the expected behaviour is realised.

0 20 40 60 80
0.4

0.5

0.6

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 20 40 60 80
400

420

440

460

T
R

[K
] Filtered mean Observations

0 20 40 60 80
Time [min]

−200

−100

0

100

200

Q
[k

W
]

Figure 8.9: Chance constrained MPC tracking with initial condition (0.55, 450) and measuring

both states. A Kalman filter is used for inference and the chance constraint is set at 99%.

The average heat input and average set point error is 3.49% and 58.39 kW. The added

conservativeness of the MPC prevents it from attempting to get to the set point as fast as

the previous stochastic MPC; consequently there is no set point overshoot in figure 8.9. This

causes the higher average error but the constraints are satisfied more robustly. As before, the

control problem is harder and thus requires more energy.

In figure 8.10 we see the 90% confidence region is above the constraint. Since the probability

that the predicted states are close to the constraint is much lower than before we see that the

confidence region satisfies the constraint more robustly.

97

© University of Pretoria

0.45 0.50 0.55 0.60
CA [kmol.m−3]

410

420

430

440

450
T
R

[K
] Underlying model

Filtered mean

90% Confidence region

Figure 8.10: Chance constrained MPC state space trajectory with initial condition (0.55, 450)

and measuring both states. A Kalman filter is used for inference and the chance constraint is

set at 99%.

It would also be correct to infer that k can be used as an empirical measure of the inherent

stochastic conservativeness of the resulting controller. That is, lower values of k indicate a

more aggressive controller which may violate the chance constraints and higher values of k

indicate a more conservative controller. This can be useful for systems where the normal

assumption is not valid but one would still like to enforce chance constraints in some empirical

sense.

We have made the strong assumption that the system dynamics remain linear and Gaussian

even under the MPC control law which is not necessarily linear [43]. Clearly if the system is

far from Gaussian the Gaussian approach to simplifying the chance constraint will not be

valid. Fortunately this is relatively simple to check and serves as a good way of measuring

controller health. That is, the more Gaussian the filtered distributions are, the better the

linear stochastic controller will work.

Kullback-Leibler Divergence was introduced in theorem 3.8 to estimate the degree to which

samples match a given distribution. From chapter 7 we know that given enough particles

a particle filter can accurately represent any distribution. Thus we temporarily replace the

Kalman filter with a particle filter and use theorem 3.8 to estimate the degree of normality of

the posterior state distributions.

Figure 8.11 shows the degree to which the underlying distribution is Gaussian. Since we

cannot use an infinite number of particles we compare the sampled Gaussian distribution

approximation to a baseline.

98

© University of Pretoria

0 10 20 30 40 50 60 70 80
Time [min]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
iv

er
ge

n
ce

[N
at

s]

Approximation

Baseline

Uniform

Figure 8.11: Kullback-Leibler Divergence between the assumed Gaussian distribution and

different sampled distributions using 5000 particles. The underlying model is linear.

The approximation curve in figure 8.11 shows how much the samples diverge from the

Gaussian distribution approximated using the samples. The baseline curve shows how much

the Gaussian distribution diverges from samples of the same distribution. The uniform curve

shows how much a Gaussian approximation of a Uniform distribution drawn in the interval

(µi − 2σii, µi + 2σii) (for each i in the dimension of the underlying distribution) diverges; this

serves to illustrate the divergence one would expect if attempting to model a distribution

which is decidedly not normal. One would expect the baseline curve to tend to zero as the

number of particles tends to infinity. Sampling error causes divergence from zero for the

baseline curve. Thus we can use the baseline and uniform curves as a crude measure of

normality.

In figure 8.11 we see that the approximation is relatively close to the baseline. Additionally it

is far removed from the uniform curve. The average divergence for the baseline, approximation

and uniform curve (in nats) is: 0.035, 0.069 and 0.322 respectively. This implies that even

though we are using a nonlinear control technique the posterior state distributions are still

approximately Gaussian.

In figure 8.12 we investigate the effect k2 has on the chance constraint. We expect that by

increasing k2 the system becomes more conservative and less likely to violate the constraint.

Under the assumptions of linearity and normality we are assured of this behaviour due to

theorem 8.8. However, as figure 8.11 indicates our assumptions do not strictly hold. In

figures 8.8 and 8.10 we reached the conclusion that the chance constraint was effective by only

considering a single simulation. In figure 8.12 we show the compilation of over 2000 runs to

illustrate the veracity of the claim that the chance constraints are effective.

99

© University of Pretoria

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Mahalanobis area in violation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
in

vi
ol

at
io

n
[m

in
]

Expected value constraint

90% Chance constraint

99% Chance constraint

99.9% Chance constraint

Figure 8.12: Monte-Carlo simulation to investigate the effect increasing k2 has on the constraint

violation characteristics of the MPC controllers. Each region indicates where 90% of the

simulations scored. The mean is indicated by a solid point.

The Mahalanobis area dimension indicates the degree to which the constraint was violated:

larger numbers imply the constraint was deeply violated in state space. The time in violation

dimension indicates the length of time the system violated the constraint. It is clear that the

chance constraints dramatically reduce the violation characteristics of the system.

Interestingly, there seems to be diminishing returns on increasing k2 beyond the 99% chance

interval. Feasibility issues plague the system under the more conservative chance constraint

levels. Intuitively the predicted ellipses become too big to fit inside the feasible region -

especially when projected forward in time. Given that the controller input - the only way

to move them inside the feasible region - is constrained the system reaches a performance

deadlock. In the work by [64] they also noted this problem and solved it by not letting

the confidence ellipses grow as they were projected into the future (see the discussion after

theorem 8.4 and in section 2.2). For this system the issue is not severe enough to warrant

further concern.

Finally, we illustrate that the MPC controllers we developed, using the linear underlying

model, actually drive the system to the set point for many runs - not just the single realisation

we considered so far. In figure 8.13 a Monte Carlo simulation was conducted using 50 runs

per controller.

100

© University of Pretoria

0 20 40 60 80
0.4

0.5

0.6

C
A

(I
)

0 20 40 60 80
0.4

0.5

0.6
C
A

(I
I)

0 20 40 60 80
0.4

0.5

0.6

C
A

(I
II

)

0 20 40 60 80
Time [min]

0.4

0.5

0.6

C
A

(I
V

)

Figure 8.13: Monte-Carlo simulation showing the set point tracking of the MPC controllers

developed in this chapter. Subplot (I) corresponds to the expected value constrained MPC,

subplots (II), (III) and (IV) correspond to the 90%, 99% and 99.9% chance constrained MPC

controllers. The green line is the set point.

It is clear that each controller causes the system to approach set point. However, the more

conservative the systems become (i.e. 99% and 99.9% chance constrained) the longer they

take to reach the set point. We did not include the LQG controller in this analysis because

the theory supporting its convergence is very well studied in literature. The Monte Carlo

absolute average set point errors over the last 10 minutes for each controller are: 1.54%,

1.73%, 2.15% and 3.5% respectively. The controllers come close enough to the set point to

suggest they work (a small δ as per definition 8.1). The increasing average error is caused by

the conservativeness of the system - at the end of the simulation the controllers have not yet

come as close to their set point as the more aggressive controllers.

8.5 Nonlinear system

In this section we consider the problem of controlling the full nonlinear system with a linear

model linearised around the unsteady operating point. The control goal is the same as

before; the only difference between this section and section 8.4 is that the underlying plant is

nonlinear.

The linear control model and noise parameters are the same as (8.22). The control tuning

parameters are the same as (8.23).

As before we first investigate the LQG controller. Figure 8.14 shows the unconstrained

reference tracking results.

101

© University of Pretoria

0 20 40 60 80
0.2

0.4

0.6

C
A

[k
m

ol
.m
−

3]
Underlying model Set point

0 20 40 60 80
350

400

450

500

T
R

[K
] Filtered mean Observations

0 20 40 60 80
Time [min]

−600

−400

−200

0

200

Q
[k

W
]

Figure 8.14: LQG regulator tracking with initial condition (0.55, 450) and measuring both

states.

The average energy usage and concentration error was 50.88 kW and 11.66% respectively over

the 80 min simulation time. Comparing figures 8.4 and 8.14 we see that the maximum absolute

input energy is much greater with the nonlinear underlying dynamics. This is not unexpected

because the controller in both cases is linear: one expects the plant-model mismatch to have

a detrimental effect on control.

In section 8.4 we had a linear underlying model and an almost linear controller. Figure 8.11

also demonstrated that the posterior state distributions were approximately Gaussian. Thus

there was no reason to use nonlinear inference algorithms like the particle filter introduced in

chapter 7. However, in this chapter we are using a nonlinear underlying model and it might be

advantageous to use a more sophisticated inference tool. We investigate using both a Kalman

filter and a particle filter for inference. In the setting of the particle filter we approximate the

samples as Gaussian and use that for control.

As before we first investigate the deterministic MPC. The control problem is

min
u

1

2

N−1∑
k=0

(
µTkQµk + uTkRuk

)
+

1

2
µTNPfµN

subject to µt+1 = Aµt +But

and

(
10

1

)T
µt + 406 ≥ 0 ∀ t = 1, . . . , N

and |ut| ≤ 330 ∀ t = 0, . . . , N − 1.

(8.27)

Note that the constraints are different due to the expected extra difficulty introduced by

the nonlinear underlying model. In figure 8.15 we see that the deterministic MPC using the

Kalman filter for state inference does converge to the set point. The ability to naturally

102

© University of Pretoria

constrain the system is again highlighted in the input: as opposed to the peak |420| kW

required by the LQG controller the MPC manages to control the system while never requiring

more than |330| kW.

0 20 40 60 80
0.0

0.2

0.4

0.6

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 20 40 60 80
350

400

450

500

T
R

[K
] Filtered mean Observations

0 20 40 60 80
Time [min]

−400

−200

0

200

400

Q
[k

W
]

Figure 8.15: Deterministic constrained MPC reference tracking with initial condition (0.55, 450)

and measuring both states. The Kalman filter is used for inference.

In figure 8.16 we see that the state constraint is violated just like figure 8.6. We also see

a somewhat unrealistic jagged state trajectory but this is just a numerical artefact. The

average energy input and concentration error over the simulation run is 88.68 kW and 16.11%

respectively. The added constraints explain why the performance is degraded when compared

to the LQG controller.

103

© University of Pretoria

0.2 0.3 0.4 0.5 0.6
CA [kmol.m−3]

400

410

420

430

440

450

460

470

T
R

[K
] Underlying model

Filtered mean

90% Confidence region

Figure 8.16: Deterministic constrained MPC state space trajectory with initial condition

(0.55, 450) and measuring both states. The Kalman filter is used for inference.

Since we are not using a chance constrained MPC the state constraint violation is not

surprising in figure 8.16. However, a more significant issue is the inability of the Kalman

filter to accurately track the states throughout the simulation (the underlying system briefly

diverges from the state estimates). This can be significantly problematic if a constraint existed

in the left hand side of the state space: the controller wouldn’t know that it was violating the

constraint because the state estimate is poor. This behaviour is caused by the linear model

used by the Kalman filter. The state trajectory moves away from the region close to the

linearisation point and thus, as explained in chapter 6, the state estimate becomes poor.

We can remedy this situation by using a more sophisticated inference algorithm. In figure 8.17

we see the deterministic MPC using a particle filter with 200 particles for inference.

104

© University of Pretoria

0 20 40 60 80
0.3

0.4

0.5

0.6

C
A

[k
m

ol
.m
−

3]
Underlying Model Set Point

0 20 40 60 80
380

400

420

440

460

T
R

[K
] Filtered Mean Observations

0 20 40 60 80
Time [min]

−400

−200

0

200

400

Q
[k

W
]

Figure 8.17: Deterministic constrained MPC reference tracking with initial condition (0.55, 450)

and measuring both states. A particle filter with 200 particles is used for inference.

The average energy input and concentration error is 38.83 kW and 5.81% respectively. This is

a vast improvement over the same controller where the Kalman filter was used for inference.

The benefit of accurate state estimation is apparent here and also in figure 8.18.

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
CA [kmol.m−3]

400

410

420

430

440

450

T
R

[K
] Underlying model

Filtered mean

90% Confidence region

Figure 8.18: Deterministic constrained MPC state space trajectory with initial condition

(0.55, 450) and measuring both states. A particle filter with 200 particles is used for inference.

In figure 8.16 we saw significant estimation deviation from the true underlying state, while in

figure 8.18 the deviation is negligible. We still have that the state constraint is violated but

this is due to the stochastic nature of the underlying system. It is clear that the particle filter

105

© University of Pretoria

MPC combination is superior to the Kalman filter MPC combination in this case. However,

the benefit of using the particle filter should be weighed against the cost of the algorithm

especially in higher dimensions where it is known that the particle filter does not perform

well (recall the discussion following figure 7.7).

Now we introduce the chance constrained MPC

min
u

1

2

N−1∑
k=0

(
µTkQµk + uTkRuk

)
+

1

2
µTNPfµN +

1

2

N∑
k=0

tr(QΣk)

subject to µt+1 = Aµt +But

and Σt+1 = W +AΣtA
T

and dTµt + e ≥ k
√
dTΣtd ∀ t = 1, . . . , N

and |ut| ≤ 330 ∀ t = 0, . . . , N − 1.

(8.28)

Note that the constraints are different than (8.26) for the same reason as (8.27). We have

dT = (10, 1) and e = 406 as before. By consulting the Chi Squared distribution table we set

k2 = 4.6052 which corresponds to the chance constraint Pr(dTxt+e ≥ 0) ≥ 90% ∀ t = 1, . . . , N

exactly as in the previous chapter.

As with the deterministic case we first investigate the system where a Kalman filter is used for

inference. Figure 8.19 illustrates that the chance constrained system does indeed converge to

the set point. The average energy input and concentration error is 80.75 kW and 14.12%. The

average energy usage and average concentration error is reduced compared to the deterministic

system.

0 20 40 60 80
0.2

0.4

0.6

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 20 40 60 80
350

400

450

500

T
R

[K
] Filtered mean Observations

0 20 40 60 80
Time [min]

−400

−200

0

200

400

Q
[k

W
]

Figure 8.19: Chance constrained MPC tracking with initial condition (0.55, 450) and measuring

both states. A Kalman filter is used for inference and the chance constraint is set at 90%.

The benefit of adding the chance constraint is apparent in figure 8.20. It is clear that the

constraint on the underlying state is not violated as much as in figure 8.16.

106

© University of Pretoria

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
CA [kmol.m−3]

400

410

420

430

440

450

460

T
R

[K
] Underlying model

Filtered mean

90% Confidence region

Figure 8.20: Chance constrained MPC state space trajectory with initial condition (0.55, 450)

and measuring both states. A Kalman filter is used for inference and the chance constraint is

set at 90%.

It is clear that the nonlinearity of the underlying system makes stochastic control difficult.

By increasing k2 = 9.21 which corresponds to changing the chance constraint such that

Pr(dTxt + e ≥ 0) ≥ 99% ∀ t = 1, . . . , N we hope to increase the minimum distance between

the constraint and the underlying state.

Figure 8.21 shows the tracking of the modified system. The average energy input and average

concentration error is 69.67 kW and 12.44% respectively. It is quite interesting that the more

conservative system performs better with regard to these to metrics than the less conservative

system.

107

© University of Pretoria

0 20 40 60 80
0.2

0.4

0.6

C
A

[k
m

ol
.m
−

3]
Underlying model Set point

0 20 40 60 80
380

400

420

440

460

T
R

[K
] Filtered mean Observations

0 20 40 60 80
Time [min]

−400

−200

0

200

400

Q
[k

W
]

Figure 8.21: Chance constrained MPC tracking with initial condition (0.55, 450) and measuring

both states. A Kalman filter is used for inference and the chance constraint is set at 99%.

In figure 8.22 we see that the margin of safety is increased although the confidence region still

spills over the constraint. However, there is no constraint violation in this case.

0.3 0.4 0.5 0.6 0.7
CA [kmol.m−3]

400

410

420

430

440

450

460

T
R

[K
] Underlying model

Filtered mean

90% Confidence region

Figure 8.22: Chance constrained MPC state space trajectory with initial condition (0.55, 450)

and measuring both states. A Kalman filter is used for inference and the chance constraint is

set at 99%.

The ability of k to increase or decrease the conservativeness of the constraint lends credibility

to its value, if the system is non-normal, at the very least as an empirical measure to include

stochastic robustness to the MPC in an efficient way.

108

© University of Pretoria

Figure 8.12 illustrates the effect increasing k2 (i.e. the threshold for the chance constraint)

has on the system. Over 2000 simulations were used to illustrate that these tendencies hold

not just for a specific realisation.

0 1 2 3 4 5
Mahalanobis area in violation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

vi
ol

at
io

n
[m

in
]

Expected value constraint

90% Chance constraint

99% Chance constraint

99.9% Chance constraint

Figure 8.23: Monte-Carlo simulation to investigate the effect increasing k2 has on the constraint

violation characteristics of the MPC controllers. Each region indicates where 90% of the

simulations scored. The mean is indicated by a solid point. A Kalman filter was used for

inference.

It is clear that increasing k2 causes the constraints to be violated less (as per the theory). It is

also clear that the expected value constrained MPC (i.e. the deterministic MPC in figure 8.12)

performed significantly worse with the nonlinear underlying model when compared to figure

8.23. The value of the chance constrained MPC is apparent here. Unlike figure 8.12 there

seems to be more value in increasing the chance threshold above the 99% interval.

Figure 8.13 illustrates that the controllers we developed in this chapter, using the Kalman

filter on the nonlinear underlying system, do indeed drive the system to the set point for

many runs (not just the single realisation of our earlier examples). We again do not include a

Monte Carlo simulation for the LQG controller because it is very well studied in literature.

109

© University of Pretoria

0 20 40 60 80
0.0

0.2

0.4

0.6

C
A

(I
)

0 20 40 60 80

0.2

0.4

0.6
C
A

(I
I)

0 20 40 60 80

0.2

0.4

0.6

C
A

(I
II

)

0 20 40 60 80
Time [min]

0.2

0.4

0.6

C
A

(I
V

)

Figure 8.24: Monte-Carlo simulation showing the set point tracking of the MPC controllers

developed in this chapter. Subplot (I) corresponds to the expected value constrained MPC,

subplots (II), (III) and (IV) correspond to the 90%, 99% and 99.9% chance constrained MPC

controllers. The green line is the set point. A Kalman filter was used for inference.

The Monte Carlo simulations (50 per controller) indicated that all the controllers tracked

the set point. The Monte Carlo absolute average set point error over the last 10 minutes for

each controller are: 1.56%, 1.47%, 1.70% and 2.24% respectively. The controllers come close

enough to the set point to suggest they work (a small δ as per definition 8.1). We again see

that the more conservative controllers have larger errors because they take longer to reach set

point. However, this tendency is much less pronounced here than in figure 8.13.

Figures 8.19 to 8.22 all display the undesirable property originally seen in figure 8.15: the

poor state estimation and associated control problems. We attempt to rectify this situation

by using a more sophisticated filter with the chance constrained MPC. We use the MPC as

shown in (8.28) with a particle filter using 200 particles. The tracking results are shown in

figure 8.17.

110

© University of Pretoria

0 20 40 60 80
0.3

0.4

0.5

0.6

C
A

[k
m

ol
.m
−

3]
Underlying model Set point

0 20 40 60 80
380

400

420

440

460

T
R

[K
] Filtered mean Observations

0 20 40 60 80
Time [min]

−400

−200

0

Q
[k

W
]

Figure 8.25: Chance constrained MPC tracking with initial condition (0.55, 450) and measuring

both states. A particle filter with 200 particles is used for inference and the chance constraint

is set at 90%.

One could see the discussion in section 7.5 as a justification for using the particle filter instead

of the Kalman filter for state estimation. Since the underlying model is nonlinear we expect

the particle filter to outperform the Kalman filter (recall the discussion following figure 7.7).

The average input energy and average concentration error is 24.26 kW and 2.34% over the

course of the simulation. This is a vast improvement over the Kalman filter MPC combination.

Clearly the more accurate state estimation is immensely beneficial for control. Figure 8.26

also illustrates that the chance constraint is easily satisfied using the more accurate state

estimator.

111

© University of Pretoria

0.40 0.45 0.50 0.55 0.60
CA [kmol.m−3]

400

410

420

430

440

450

T
R

[K
] Underlying model

Filtered mean

90% Confidence region

Figure 8.26: Chance constrained MPC state space trajectory with initial condition (0.55, 450)

and measuring both states. A particle filter with 200 particles is used for inference and the

chance constraint is set at 90%.

In figure 8.27 we compare the constraint violation characteristics of the Kalman filter and

particle filter based MPCs using over 2000 simulations.

0 1 2 3 4 5
Mahalanobis area in violation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

io
la

ti
on

[m
in

]

Expected value constraint KF

Expected value constraint PF

90% Chance constraint KF

90% Chance constraint PF

Figure 8.27: Monte-Carlo simulation to investigate the effect increasing k2 has on the constraint

violation characteristics of the MPC controllers. Each region indicates where 90% of the

simulations scored. The mean is indicated by a solid point. KF indicates the Kalman Filter

MPC and PF indicates the particle filter MPC.

It is clear that the particle filter based MPC outperforms the Kalman filter based MPC in

112

© University of Pretoria

terms of constraint violation characteristics. This is not surprising because, as we discussed

for the single realisation results, the state estimation ability of the Kalman filter is inferior

due to the nonlinear underlying system.

In figure 8.28 we illustrate that the particle filter based stochastic MPC controllers we

developed track the set point.

0 20 40 60 80
0.2

0.4

0.6

C
A

(I
)

0 20 40 60 80
0.35

0.40

0.45

0.50

0.55

C
A

(I
I)

Figure 8.28: Monte-Carlo simulation showing the set point tracking of the MPC controllers

developed in this chapter. Subplot (I) corresponds to the expected value constrained MPC

and subplot (II) corresponds to the 90% chance constrained MPC controller. The green line

is the set point. A particle filter was used for inference.

The Monte Carlo average set point error over the last 10 minutes of each controller (50

simulations per controller) are: 1.51% and 1.59% respectively. The controllers come close

enough to the set point to suggest they work (a small δ as per definition 8.1).

As before we need to investigate the normal assumption underpinning the theory behind the

chance constraint simplification. We investigate it in exactly the same manner as figure 8.11

using Kullback-Leibler Divergence. To this end, figure 8.29 shows the degree to which the

underlying posterior state distributions are Gaussian given the nonlinear underlying system.

113

© University of Pretoria

0 10 20 30 40 50 60 70 80
Time [min]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
iv

er
ge

n
ce

[N
at

s]

Approximation

Baseline

Uniform

Figure 8.29: Kullback-Leibler Divergence between the assumed Gaussian distribution and

actual distribution using 5000 particles. The underlying model is nonlinear.

It is a relief that the normal assumption seems to hold almost as well in the nonlinear

underlying system case. The average divergence for the baseline, approximation and uniform

curves are: 0.035, 0.071 and 0.324. It is not surprising that the underlying nonlinearity

reduced the degree of normality of the distributions. However, the distribution were not

significantly non-Gaussian to raise any concern - the difference between figures 8.11 and 8.29

is almost negligible.

8.6 Conclusion

We have illustrated the benefits gained by designing model predictive controllers within the

framework of probabilistic graphical models by showing:

1. Under the assumption of normality and linearity it is possible to convert stochastic

quadratic objective functions into their deterministic equivalents. The analysis is

closely related to the work of [64] and [65] but we have shown that these results are

immediately obvious from within the framework of probabilistic graphical models. Thus

it is possible to solve LQG objective type problems without resorting to stochastic

dynamic programming.

2. We have generalised our analysis to stochastic MPC and shown that by using the

statistically important metric, the Mahalanobis distance, we arrive at a technique for

enforcing chance constraints which is very closely related to the approach taken by

[58] and [59]. Under the assumptions of linearity and normality we have shown that

constraint satisfaction is ensured. Due to the use of the Mahalanobis distance metric we

114

© University of Pretoria

have provided some theoretical support for the use of the “ellipsoidal approximation”

technique if the underlying system is nonlinear or not exactly Gaussian.

3. Combining the previous results we have shown that it is possible to write the joint

chance constrained stochastic quadratic MPC problem as a deterministic quadratic

MPC problem. Additionally we show that the joint chance constraints can be written

in a linear format. The entire optimisation problem can then be written in the standard

form for quadratic programming optimisation. Standard deterministic MPC solution

and analysis techniques can then be used to solve the stochastic problem.

4. We have compared the effect different inference techniques have on the quality of the

MPC. If the system is linear and Gaussian the Kalman filter is adequate. If there is

significant departure from linearity or normality it can be beneficial to use the particle

filter. The computational burden of the inference technique must also be taken into

account when designing a controller.

In part III we generalise our graphical models to incorporate switching states. This allows us

to design switching model predictive controllers.

115

© University of Pretoria

Part III

Multiple model systems

116

© University of Pretoria

Chapter 9

Inference using linear hybrid

models

In this chapter we generalise the probabilistic graphical models of chapters 6 and 7 as shown

in figure 9.1. We have added the discrete random variables (s0, s1, s2, . . .), where each variable

has M states, which we will call the switching variables. The goal of adding switching variables

is to allow our graphical models to switch (or more precisely, choose based on the observation)

between M different dynamical models. For the moment we restrict ourselves to linear

transition functions i.e. we use linear state space models. The other variables retain their

meaning as before. Models of this form are usually called switching Kalman filter models [47].

y0 y1 y2

x0 x1 x2

u0 u1

s0 s1 s2

Figure 9.1: Graphical model used in this chapter.

One of the benefits of combining discrete switching variables with linear dynamical models

is that it allows us to model nonlinear, even multi-modal, processes with linear models.

Intuitively, we glue together linear models which each describe a nonlinear model in some

region and use the switch to determine which one (or combination of) to use. The switch

assigns a weight to each model based on its ability to explain the evidence.

117

© University of Pretoria

We model this system as follows. Let st denote a discrete, time homogeneous, M state first

order Markov chain with transition matrix P as discussed in chapter 4. Let each state st = i

be associated with a parameter set (Ai, Bi,Wi, Ci, Vi) used to evaluate the dynamical model

xt+1 = Aixt +Biut + wt with N (wt|0,Wi)

yt+1 = Cixt+1 + vt+1 with N (vt+1|0, Vi).
(9.1)

If st were observed then (9.1) would simplify to a set of latent linear dynamical systems we

could perform inference on using the methods investigated in chapter 6. However, we assume

that st is a hidden random variable.

To fully specify the system we also require the prior distributions p(s0) and p(x0|s0) as well

as the switch transition matrix P . For the purposes of this dissertation we assumed that

the switch transition matrix is available. This matrix can be inferred using the Baum-Welch

algorithm [47] or it can be set using operator expertise as we will show later.

9.1 Exact filtering

The switching variables (s0, s1, s2, . . .) are discrete random variables exactly like the ones

seen in chapter 4. There we derived recursive analytic expressions for inference which were

computationally inexpensive. The structure of the stochastic variables (x0, x1, x2, . . .) and

(y0, y1, y2, . . .) are exactly the same as those found chapter 6. There we derived the famous

Kalman filter equations which were also analytic, recursive and computationally inexpensive.

Taking this into consideration, it seems plausible to believe that inference, specifically filtering,

for hybrid systems like (9.1) can be formulated in a computationally feasible manner.

Unfortunately, it can be shown that this is not possible in general [38], [46] because the

memory requirements scale exponentially with time. Loosely speaking one can see this by

noting that at the first time step the system is described by a weighted set of M Kalman filter

models (due to the linear assumption and the M switching indices). At time step two the

system is described by a weighted set of M2 Kalman filter models. Continuing in this manner

we see that at time step t the memory requirement is M t. Clearly this is computationally

infeasible and calls for approximate methods to be used.

In literature many approximate filtering algorithms exist and it is not clear which is best. Two

of the more popular methods include Gaussian sum filtering [3] and particle filtering based

methods (specifically the Rao-Blackwellisation approach, see [13], [22]). Both of these methods

take advantage of the Gaussian structure of the system and operate in a fixed memory space

making them computationally attractive. We focus on particle based methods because it can

be extended to nonlinear systems with ease.

118

© University of Pretoria

9.2 Rao-Blackwellised particle filter

It is our objective to find the joint posterior distribution p(s0:t, x0:t|y0:t). This joint posterior

admits filtering of figure 9.1 if we discard the trajectory and focus only on st, xt. By the chain

rule (definition 3.19) we immediately have that p(s0:t, x0:t|y0:t) = p(s0:t|y0:t)p(x0:t|y0:t, s0:t).

Given s0:t we see that p(x0:t|y0:t, s0:t) can be evaluated using the Kalman filter equations (see

chapter 6) and thus we are only concerned with finding some approximation for p(s0:t|y0:t).

This is the essence of the Rao-Blackwellised particle filter - taking advantage of the condi-

tionally linear Gaussian nature of the system to analytically evaluate a part of the posterior

distribution [22].

Using the formulation of the adaptive sequential importance sampling algorithm discussed in

chapter 7 we can apply it to find an approximation of p(s0:t|y0:t). We set γt(s0:t) = p(s0:t, y0:t)

and Zt = p(y0:t) and then have that γt(s0:t)
Zt

= p(s0:t|y0:t) as desired. We then choose our

proposal distribution qt(s0:t|y0:t) to be recursive and follow the same procedure as before:

wt(s0:t) =
γt(s0:t, y0:t)

qt(s0:t|y0:t)

=
p(s0:t, y0:t)

qt(s0:t|y0:t)

∝ p(s0:t|y0:t)

qt(s0:t|y0:t)

∝ p(yt|st)p(st|st−1)

qt(st|s0:t−1, y0:t)

p(s0:t−1|y0:t−1)

qt(s0:t−1|y0:t−1)

= αt(s0:t)wt−1(s0:t−1).

(9.2)

As before, we are not interested in the whole trajectory of the switching variable because

we only need to perform filtering. Thus our proposal distribution can be chosen to be the

prior i.e. qt(st|s0:t−1, y0:t) = p(st|st−1). This is suboptimal but easy to sample from [22]. The

incremental weight then simplifies to αt(s0:t) = p(yt|st). We can evaluate this distribution by

marginalising out xt and using the properties of the Gaussian distributions

αt(s0:t) = p(yt|st)

=

∫
xt

p(yt|xt, st)p(xt|s0:t, y0:t−1)

= p(yt|y0:t−1, s0:t)

= N
(
yt|CstAstµt−1, Cst

(
AstΣt−1A

T
st +Qst

)
Cst +Rst

)
.

(9.3)

Where the subscript st denotes the state of the switching variable at time t [47]. Upon

inspection we see that (9.3) is just the one step ahead prediction likelihood as discussed in

section 6.2 [47]. Note that we will still need to resample the switching state from P periodically

to prevent sample impoverishment.

We now have an efficient particle approximation of p(st|yt). To find the filtered posterior

distribution as desired we note that p(st, xt|y0:t) =
∑

iwt(S
i
t)δ(S

i
t , st)p(xt|y0:t, S

i
t) where Sit is

the ith particle within the framework of section 7.1. Each particle thus consists of a weight, a

119

© University of Pretoria

switch sample and the sufficient statistics generated by the Kalman filter for a Gaussian i.e. a

mean and covariance. The complete algorithm is shown below.

Rao-Blackwellised particle filter algorithm

For t = 0:

1. Sample Si0 v p(s0) and µi0|0 v p(x0|s0).

2. Compute the weights w0(Si0) = p(y0|Si0) where y0 is the observation. Normalise W i
0 ∝

w0(Si0).

3. Apply the update step of the Kalman filter to each particle i and associated parameters

to find µi0 and Σi
0.

4. If the number of effective particles is below some threshold apply resampling with

roughening (W i
0, S

i
0, µ

i
0,Σ

i
0) to obtain N equally weighted particles (1

N , S̄
i
0, µ̄

i
0, Σ̄

i
0) and

set (W̄ i
0, S̄

i
0, µ̄

i
0, Σ̄

i
0)← (1

N , S̄
i
0, µ̄

i
0, Σ̄

i
0) otherwise set (W̄ i

0, S̄
i
0, µ̄

i
0, Σ̄

i
0)← (W i

0, S
i
0, µ

i
0,Σ

i
0)

For t ≥ 1:

1. Sample Sit v p(Sit |S̄it−1).

2. Compute the weights αt(S
i
t) = p(yt|Sit) and normalise W i

t ∝ W̄ i
t−1αt(S

i
t).

3. Apply the Kalman filter algorithm to µt−1 and Σt−1 for each particle i to find the

sufficient statistics µt and Σt using the parameters corresponding to the state of Sit .

4. If the number of effective particles is below some threshold apply resampling with

roughening (W i
t , S

i
t , µ

i
t,Σ

i
t) to obtain N equally weighted particles (1

N , S̄
i
t , µ̄

i
t, Σ̄

i
t) and

set (W̄ i
t , S̄

i
t , µ̄

i
t, Σ̄

i
t)← (1

N , S̄
i
t , µ̄

i
t, Σ̄

i
t) otherwise set (W̄ i

t , S̄
i
t , µ̄

i
t, Σ̄

i
t)← (W i

t , S
i
t , µ

i
t,Σ

i
t)

9.3 Rao-Blackwellised particle prediction

Like the particle predictor studied in the section 7.3, performing prediction using Rao-

Blackwellisation is straightforward because there is no weighting (updating the particles based

on the observation) step. Each particle’s switching state is merely propagated forward using

the proposal distribution (the transition matrix P) and the Kalman prediction algorithm is

used to evaluate the predicted mean and covariance. For the sake of brevity we do not supply

an algorithm because it is a straightforward simplification of the Rao-Blackwellised particle

filter algorithm as shown above. The corresponding probabilistic graphical model is shown in

figure 9.2.

120

© University of Pretoria

y0

x0 x1 x2

u0 u1

s0 s1 s2

Figure 9.2: Rao-Blackwellised particle prediction graphical model.

9.4 Smoothing and Viterbi decoding

It is also possible to take advantage of the Gaussian structure in figure 9.1 to derive a so-called

Rao-Blackwellised smoothing algorithm. We do not include it here because it is not necessary

for the purposes of this dissertation. We refer the reader to the relevant literature [13], [22].

Viterbi decoding is likewise not within the scope of this dissertation and as such we refer the

reader to [47] for more information. Suffice to say, by increasing the complexity of figure 9.1

we increase the difficulty of inference in general.

9.5 Filtering the CSTR

We now apply the Rao-Blackwellised particle filter to the CSTR introduced in chapter 5.

The focus of this dissertation is on the application of probabilistic graphical models to

control, therefore our investigation into the various aspects which improve or degrade filtering

performance will be relatively superficial and will target factors which are most relevant only.

We will briefly investigate 3 aspects influencing the accuracy of the filter:

1. The switch transition matrix P .

2. Using more state measurements.

3. Using more models.

Like in chapter 7 we do not investigate the effect increasing the number of particles will have

on inference. The same reasons apply and we use the same motivation in selecting the number

of particles we use in this chapter.

121

© University of Pretoria

Note that we use the same parameters (e.g. noise covariances etc.) unless otherwise noted as

used in chapter 6. Additionally we assume that the underlying model is the nonlinear CSTR

model of chapter 5.

We begin our investigation by only measuring temperature and using 3 linear models, derived

by linearising the nonlinear CSTR model at each nominal operating point. Since the CSTR

has 3 nominal operating points we have 3 linear models. We compare the use of 2 different

switch transition matrices P1 and P2 defined by

P1 =


0.50 0.25 0.25

0.25 0.50 0.25

0.25 0.25 0.50

 P2 =


0.99 0.01 0.00

0.01 0.98 0.01

0.00 0.01 0.99

 . (9.4)

The first index corresponds to the high temperature operating point (M1 = (A1, B1)), the

second index to the unstable operating point (M2 = (A2, B2)) and the third index to the low

temperature operating point (M3 = (A3, B3)). Note that we assume C1 = C2 = C3 because

we do not change the way we measure the states between models; additionally we assume

that the state and measurement noise is common to all models i.e. W1 = W2 = W3 and

V1 = V2 = V3.

Intuitively P1 indicates that we are less sure about the underlying dynamical transitions i.e. we

believe it is possible for the system to jump from the dynamics of the low temperature operating

point to the dynamics of the high temperature operating point. Conversely, P2 indicates

that we believe it is impossible for the system dynamics to jump from the low temperature

operating point to the high temperature operating point without first transitioning through

the unstable operating point. Clearly one could use operator expertise to set the switch

transition matrix; alternatively, if an automatic algorithm is used to set P then operator

expertise could be used to fault check and refine it.

Figure 9.3 shows the state space trajectory of the system we are attempting to perform

filtering on. The operating points (points of linearisation) are superimposed on the state

space.

122

© University of Pretoria

0.0 0.2 0.4 0.6 0.8 1.0
CA [kmol.m−3]

300

350

400

450

500

550

T
R

[K
]

M1

M2

M3

Figure 9.3: State space of the CSTR problem with the position of the 3 linear models

superimposed thereupon. The trajectory followed by the system is also shown, the dot is the

initial point and the cross the final point.

It is clear from figure 9.3 that we expect the filter to use M2 initially and then switch to

M3 as time progresses. Figure 9.4 shows how the Rao-Blackwellised particle filter filters the

CSTR over a simulation window of 150 minutes. The average concentration error is 22.03%

and the average temperature error is 0.43% for the state estimator.

0 50 100 150
0.0

0.5

1.0

1.5

C
A

[k
m

ol
.m
−

3] Underlying model

0 50 100 150
Time [min]

300

350

400

450

T
R

[K
]

Filtered mean

Observations

Figure 9.4: Filtering with the Rao-Blackwellised particle filter using 3 linear models and 500

particles. Switch transition matrix P1 was used.

123

© University of Pretoria

Figure 9.5 shows the state of the corresponding switching variable st over time. Since st is a

discrete random variable we have that at each time slice
∑M=3

i=1 sit = 1.

M
1

M
2

0.0 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 150.0
Time [min]

M
3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 9.5: State of the switching variable st over time. The weight indicates the sum of the

particle weights per model.

From figure 9.4 we see that the filtering error is quite large in the unmeasured state. This has

been the trend when performing inference on an unmeasured state, however the magnitude of

the error does not justify the use of the more complicated graphical model. Additionally, we

see that there is no clear switching point in figure 9.5 - the filter relies on both M2 an M3 to

estimate the state throughout the simulation. This is contrary to what we expected based on

figure 9.3.

Figure 9.6 shows how the Rao-Blackwellised particle filter filters the CSTR over a simulation

window of 150 minutes using P2. The average concentration error is 4.56% and the average

temperature error is 0.23% for the state estimator. This is a vast improvement over the case

where P1 was used.

124

© University of Pretoria

0 50 100 150
0.4

0.6

0.8

1.0

C
A

[k
m

ol
.m
−

3]

Underlying model

0 50 100 150
Time [min]

300

350

400

450

T
R

[K
]

Filtered mean

Observations

Figure 9.6: Filtering with the Rao-Blackwellised particle filter using 3 linear models and 500

particles. Switch transition matrix P2 was used.

Figure 9.7 shows the state of the corresponding switching variable st over time.

M
1

M
2

0.0 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 150.0
Time [min]

M
3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 9.7: State of the switching variable st over time. The weight indicates the sum of the

particle weights per model.

Unlike figure 9.5 we do see a clear model transition around the 20 minute mark in figure 9.7.

This is the behaviour we expected - as the system moves away from the unstable operating

point the corresponding graphical model becomes less important.

These results suggest that the switch transition matrix sets how “sticky” the model transitions

are. The more vague they are, as in the case of P1, the more unsure the filter is about

125

© University of Pretoria

which model is probably generating the observations. On the other hand, in the case of P2,

once the filter switched to the higher probability model it stayed there. The reason for this

behaviour is simple: in the case of P1 the approximate split of particles per model is equal.

Since a relatively large number of particles represent M2 it is reasonable that one of those

particle’s “guesses” will be near the observation. The filter then assigns a high weight to the

inappropriate model and the cycle continues. In the case of P2, once the model switches the

transition matrix ensures that the number of particles representing M2 is greatly reduced.

This then improves filtering performance because the unlikely model does not have a large

share of the available particles while the more likely model has more.

This behaviour is also desirable because it makes the switching variable have physical sig-

nificance (not to mention that it improves filtering performance). However, the immediate

drawback of the “sticky” approach is that the filter may be slow to switch models. Additionally

if a machine learning approach is not used to infer the values of P it could become a tedious

task to set P for a large system. Clearly the values used in P2 were set by hand - more

investigation is necessary to determine proper heuristics if this approach should be adopted in

practice.

Next we investigate the effect measuring both states has on the accuracy of the filter. Due to

the work in chapters 6 and 7 we expect that by measuring concentration we will increase the

filter accuracy. We use the 3 model filter with P2 to demonstrate that this is the case.

In figure 9.8 we see the filtering performance of the Rao-Blackwellised particle filter measuring

both states. The average concentration and temperature error is 0.66% and 0.22%. This is a

significant improvement over the tracking we saw in figure 9.6.

0 50 100 150

0.5

1.0

C
A

[k
m

ol
.m
−

3] Underlying model

0 50 100 150
Time [min]

300

350

400

450

T
R

[K
]

Filtered mean

Observations

Figure 9.8: Filtering with the Rao-Blackwellised particle filter using 3 linear models and 500

particles. Switch transition matrix P2 was used. Both states are measured.

126

© University of Pretoria

In figure 9.9 we see the state of the switching variable over the simulation run. Like figure

9.7 we also see a clear switch occurring at approximately 15 minutes (actually at 20 minutes

when measuring only one state). However, comparing figures 9.7 and 9.9 closely we see less

“switching noise” in the latter. The second measurement allows the filter to compare both

state predictions to discern between models. This is clearly beneficial.
M

1
M

2

0.0 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 150.0
Time [min]

M
3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 9.9: State of the switching variable st over time. The weight indicates the sum of the

particle weights per model.

Finally, we investigate the effect using more models has on the filter which measures both

states. We use the same 3 model filter as before (using P2) but compare it to a 7 model filter.

The state transition matrix for the 7 model filter is

P3 =



0.98 0.00 0.00 0.00 0.00 0.01 0.00

0.00 0.98 0.00 0.01 0.01 0.01 0.00

0.01 0.00 0.98 0.00 0.00 0.01 0.01

0.00 0.00 0.00 0.98 0.00 0.01 0.00

0.00 0.01 0.00 0.00 0.99 0.00 0.00

0.01 0.01 0.01 0.01 0.00 0.96 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.99


. (9.5)

We again assume that the state and measurement noise is common to all models and that

they all share the same observation matrix C. The values of P3 were set using the same

reasoning as before. Figure 9.10 show state trajectory of the system (like figure 9.3) but with

the additional models superimposed thereupon. Clearly M5, M6 and M7 correspond to high

temperature, unstable and low temperature operating points.

127

© University of Pretoria

0.0 0.2 0.4 0.6 0.8 1.0
CA [kmol.m−3]

300

350

400

450

500

550

T
R

[K
]

M1

M2

M3

M4

M5

M6

M7

Figure 9.10: State space of the CSTR problem with the position of the 7 linear models

superimposed thereupon. The trajectory followed by the system is also shown, the dot is the

initial point and the cross the final point.

Figure 9.11 shows the effectiveness of the filter over the simulation window. The average

concentration and temperature error is 0.71% and 0.23% respectively.

0 50 100 150

0.5

1.0

C
A

[k
m

ol
.m
−

3] Underlying model

0 50 100 150
Time [min]

300

350

400

450

T
R

[K
]

Filtered mean

Observations

Figure 9.11: Filtering with the Rao-Blackwellised particle filter using 7 linear models and 500

particles. Switch transition matrix P3 was used.

Interestingly enough we actually observe worse tracking performance when more models are

used compared to the 3 model case with P2. We expected the additional models to increase

the effectiveness of the filter. Figure 9.12 shows the state of the corresponding switching

128

© University of Pretoria

variable st over time. A possible explanation for the performance degradation is evident here.

M
1

M
2

M
3

M
4

M
5

M
6

0.0 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 150.0
Time [min]

M
7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 9.12: State of the switching variable st over time. The weight indicates the sum of the

particle weights per model.

We certainly expected M7 to be the dominant model near the end of the simulation; however

M3, while close to the low temperature operating point, played a significant role in the

state estimate throughout the simulation. The filter uses a weighted combination of model

predictions to estimate the current state; it is evident that there were a non-negligible number

of particles which maintained the M3 hypothesis. This implies that less particles were available

to use the M7 model and thus we see worse performance.

The crux of the problem is model overlap. While it is clear to a human that the system

should only use M7 near the end of the simulation the algorithm has no way of knowing this.

It infers this based on the predictive ability of the models. Clearly M7, M3 and to a lesser

extent M1 and M6 were all able to accurately predict the current state. For this reason they

have non-negligible weights in figure 9.12.

We have in fact already come across this problem in figures 9.4 and 9.5. We saw that it

is possible to attenuate this problem by making the switching transition matrix “stickier”.

Unfortunately this does not solve the underlying problem - the models are not different enough.

Using more models would only make this problem worse.

It should be added that this problem is not necessarily bad for inference. The model switching

and weighting allows the filter to accurately track regions between the linear models i.e.

regions where no one model is accurate. From a filtering perspective this can be beneficial.

In the next chapter we implement switching model predictive controllers using the Rao-

Blackwellised particle filter to select the best model for prediction.

129

© University of Pretoria

Chapter 10

Stochastic switching linear control

using linear hybrid models

In section 2.2 model switching MPC was introduced. In short, a set of models with corre-

sponding binary integer variables are incorporated into the MPC optimisation problem. The

optimisation algorithm changes the model it uses for prediction based on the location of

the previous predicted state. In this way a number of models can potentially be used for

prediction. It is desirable to change models if the system states move far away from the

linearisation point of current linear model. It is hoped that the significant computational

burden this introduces is offset by the increased predictive accuracy of the controller.

In chapter 8 we developed efficient stochastic controller algorithms (LQG and MPC) which use

a single linear model for control. While it is possible to attempt to extend these algorithms

to the aforementioned approach, the computational problems will persist because mixed

integer programming is fundamentally more difficult than quadratic programming [27]. From

a practical perspective one would like to reduce computational complexity because, especially

for large problems, on-line optimisation can become problematic.

In chapter 9 the Rao-Blackwellised particle filter was introduced. Briefly, the filter uses a set

of linear models, Mi = (Ai, Bi) for each model i, to estimate the current state (we assume the

system and measurement noise is common across all models as well as the observation matrix).

The ability of each model to explain the observations is calculated in a Bayesian sense. This

is used to weight the importance of each model’s contribution to the current state estimate.

In this chapter we will attempt to combine the ideas of section 2.2, and chapters 8 and 9 to

create a computationally efficient switching model controller algorithm. We assume that the

underlying process dynamics are described by

xt+1 = f(xt, ut) + wt+1

yt+1 = g(xt+1) + vt+1

(10.1)

where f and g are the nonlinear transition and observation functions of the CSTR process

130

© University of Pretoria

introduced in chapter 5. It is assumed that xt is a latent stochastic variable and yt is an

observed stochastic variable. We also assume that the models used for inference and control

are linear and of the form

xt+1 = Aixt +Biut + wt+1

yt+1 = Cxt+1 + vt+1

(10.2)

for model Mi = (Ai, Bi). The noise terms retain their meaning from chapter 8. It is our aim

to move the system states from the unstable (nominal) operating point to another operating

point. This will clearly cause the system to traverse the state space and necessitate model

switching. We first describe the intuition behind the proposed switching controller algorithm

and then state the algorithm.

As mentioned before, it becomes desirable to have a mechanism to switch the underlying

controller model if the system states move far away from the linearisation point of the current

model. However, it is computationally difficult to perform this switching within the framework

of the optimisation algorithm because it invariably necessitates the introduction of integer

variables. We propose an algorithm which uses the Rao-Blackwellised particle filter to estimate

the current state as well as the models which best describe the current observation. Based

on the results of chapter 9 we expect the weight assigned to each model to skew in favour of

the models which were linearised closest to the current state. Now we have two options to

implement control at each time step1:

1. Use only the most likely model (the model with the highest switch weight) for controller

prediction i.e. use A∗ = Aindmax[st]. See section 10.1.1.

2. Use the weighted average (from the switch weight) of the models for controller prediction

i.e. use A∗ =
∑M

i=1 s
i
tAi. See section 10.1.2.

Since it is not clear which approach is best we investigate both. This “best current model” is

then used in the single model controller algorithms discussed in chapter 8. This approach

falls squarely between the purely single model controllers, as discussed in chapter 8, and

the switching model controllers, where the model switching occurs inside the optimisation

problem, as discussed in section 2.2. By switching models outside the optimisation problem

the scheme will necessarily be more computationally efficient than those found in section 2.2.

Switching controller algorithm:

1. Use a switching filter algorithm, e.g. the Rao-Blackwellised particle filter, to update the

state estimates of the particle population given the current observation. See chapter 9

for more details.

2. Select the best current model to for control based on the model weights also supplied by

the switching filter algorithm.

1Note that A∗ is the model used for control in this explanation.

131

© University of Pretoria

3. Use the mean and covariance information from the current posterior state estimate and

the best current model (from step 2) within the context of the stochastic controller

(LQG or MPC) formulation of chapter 8.

4. Repeat for the next observation.

The astute reader will notice that we are implicitly using the graphical model shown in

figure 10.1 for state estimation (filtering) but the graphical model of figure 10.2 for model

based prediction in step 3.

y0 . . . yt

x0 . . . xt

u0 ut−1

s0 . . . st

Figure 10.1: Graphical model used for state estimation.

y0

x0 x1 x2

u0 u1

s0

Figure 10.2: Simplified graphical model used for prediction. Within the context of prediction

we have that x0 ← xt and s0 ← st at each successive time step to simplify notation.

We are not using the graphical model associated with Rao-Blackwellised particle prediction

(see section 9.3) because that would require that we incorporate stochastic model switching

within the optimisation algorithm.

For the remainder of this chapter we assume that we have a bank of M linear models and that

we measure both states. Each model is derived by linearising the non-linear CSTR model,

132

© University of Pretoria

found in chapter 5, around the nominal operating points discussed in the same chapter as

well as section 9.5. We also use the switching transition matrices P2, P3 found in (9.4) where

appropriate. All other parameters are the same as those found in chapter 8.

10.1 Unconstrained switching control

As mentioned earlier, we will investigate two approaches which can be used to implement the

switching controller algorithm. The first approach, used in section 10.1.1, makes use of only

the most likely model within the controller. The second approach, discussed in section 10.1.2,

makes use of model averaging to construct a model for control.

10.1.1 Most likely model approach

Due to the analysis of section 8.1 we know that it is possible to convert the stochastic

optimisation problem

min
u

E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
subject to xt+1 = Aixt +Biut + wt

(10.3)

into the deterministic optimisation problem

min
u

1

2

N−1∑
k=0

(
µTkQµk + uTkRuk

)
+

1

2
µTNPfµN +

1

2

N∑
k=0

tr(QΣk)

with µt+1 = Aiµt +Biut

and Σt+1 = W +AiΣtA
T
i

(10.4)

for each linear model (M1,M2,M3) given that we have the current state estimate x0, the

model dynamics are linear and the underlying distributions are Gaussian. Throughout this

chapter we make these assumptions2. As before, we also denote the mean and covariance of

the current state estimate x0 by E[x0] = µ0 and var[x0] = Σ0. We use a prediction horizon of

N = 150 i.e. 15 minutes into the future. We have that (10.3) is equivalent to (10.4) under the

aforementioned assumptions.

Given this we apply the switching controller algorithm within the context of the LQG controller

i.e. given a model Mi from the filter we solve the LQG problem and implement that input.

In light of our analysis in chapter 8 it is clear that the switching controller algorithm is

straightforward to implement because it simplifies to M deterministic LQR controllers.

As mentioned before we only use the most likely model for control purposes here. By only

selecting one model to use for control we dramatically simplify the control problem. It allows

us to use the controllers of chapter 8 directly.

2Note that the underlying model is clearly nonlinear but the model used for prediction and inference is

linear.

133

© University of Pretoria

We study 4 control problems using the switching controller algorithm in this chapter. Problems

1 and 2 allow the controller to switch between 3 linear models and problems 3 and 4 allow

the controller to switch between 7 linear models. Furthermore, problems 1 and 3 seek to

drive the system to the low temperature operating point i.e. a concentration set point of

0.998 kmol.m−3 while problems 2 and 4 seek to drive the CSTR to a concentration set point

of 0.90 kmol.m−3. In all cases we use the switching LQG controller as shown in (10.3).

We investigate the first problem in figures 10.3 to 10.5. In figure 10.3 we see the state space

trajectory of the system under control. We expect M2 to be active initially after which only

M3 should be active.

0.0 0.2 0.4 0.6 0.8 1.0
CA [kmol.m−3]

300

350

400

450

500

550

T
R

[K
]

M1

M2

M3

Figure 10.3: State space trajectory of the non-linear CSTR under control of the LQG switching

controller algorithm. The initial point was (0.49, 412)

Figure 10.4 confirms the behaviour we expected: initially M2 best explained the observations

but M2 gives way to M3 throughout the rest of the simulation.

134

© University of Pretoria

M
1

M
2

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0
Time [min]

M
3

Figure 10.4: Most likely model used for control at each time step over the simulation. Black

indicates the model is active.

However, it is clear that there are some problems in figure 10.4. There does seem to be some

slight switching noise. Given that we are using the sticky switching transition matrix P2 it is

clear that model overlap is causing problems. The same problem was identified in section 9.5.

In figure 10.5 we see the set point tracking performance of the switching controller. It is clear

that the controller tracks the set point.

0 50 100 150 200
0.5

1.0

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 50 100 150 200
250

300

350

400

450

T
R

[K
] Filtered mean Observations

0 50 100 150 200
Time [min]

−1000

−500

0

500

Q
[k

W
]

Figure 10.5: Set point tracking and controller input for the LQG 3 model switching controller

algorithm. The initial point was (0.49, 412).

Based on figures 10.4 and 10.5 it would be too easy to surmise that the controller algorithm

135

© University of Pretoria

works. Unfortunately this is not the case in general. In figures 10.6 and 10.7 we study problem

2: tracking the concentration set point of 0.90 kmol.m−3. In figure 10.6 we see significant

model switching noise.

M
1

M
2

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0
Time [min]

M
3

Figure 10.6: Most likely model used for control at each time step over the simulation. Black

indicates the model is active.

In figure 10.7 the detrimental consequence of the switching noise is evident. The controller is

completely unstable and oscillates.

0 50 100 150 200
−0.5

0.0

0.5

1.0

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 50 100 150 200
0

200

400

600

T
R

[K
]

Filtered mean Observations

0 50 100 150 200
Time [min]

−2000

−1000

0

1000

2000

Q
[k

W
]

Figure 10.7: Set point tracking and controller input for the LQG 3 model switching controller

algorithm. The initial point was (0.49, 412).

It is clear that the oscillations are caused by the filter’s inability to stick to a model. There

136

© University of Pretoria

are two major problems with the switching controller algorithm as adopted in this chapter:

1. Fundamentally we are using an inappropriate model for controller prediction during the

initial period of the simulation. If we stayed near the current position in state space

then the most likely model would predict the future well and thus result in good control.

However, we are projecting the controlled states into regions where the current model

control is based upon may not a good approximation at all. This is a fundamental

problem of our approach - it would be better to incorporate the model switching within

the controller prediction (optimisation) process, but this is exactly what we want to

avoid due to the computational burden this introduces!

2. The switching noise is problematic because it can cause the controller to use a model

which is good locally (for the current observation) but inappropriate with regard to

the true underlying position of the system in state space. However, from an inference

perspective the noise is not necessarily undesirable. Switching noise can improve the

state estimate accuracy - especially in regions between models. It is also important in

allowing the filter to switch punctually: making the switching transition matrix too

static retards the sensitivity the filter has to model changes. It is possible to address

the issue of switching noise without making the switch transition matrix too static. The

augmented switching filter model, shown in figure 10.8, is a candidate for this.

y0 y1 y2

x0 x1 x2

u0 u1

s0 s1 s2

Figure 10.8: Augmented switching filter graphical model.

Using this model it is possible to model the influence the state variables (x0, x1, ...)

have on the switching variables (s0, s1, ...). Plausibly this could ameliorate switching

noise while not making the switching transition matrix too sticky. For example, the

switch transition matrix could, in this case, be a function of the location of the current

system state. However, since this would require that we modify the graphical model of

figure 10.1 we leave it for future work.

We rather attempt to ameliorate these problems by extending the number of models available

to the filter. We use more models to bridge the gap between the current most likely model

137

© University of Pretoria

and where it projects the states during prediction. In figure 10.9 we illustrate the state space

trajectory followed by the system when it has 7 models available for inference and control.

0.0 0.2 0.4 0.6 0.8 1.0
CA [kmol.m−3]

300

350

400

450

500

550
T
R

[K
]

M1

M2

M3

M4

M5

M6

M7

Figure 10.9: State space trajectory of the non-linear CSTR under control of the LQG 7 model

switching controller algorithm. The initial point was (0.49, 412)

In figures 10.10 and 10.11 we again attempt to steer the system from the unstable operating

point to the low temperature operating point. Figure 10.10 shows which models were active

over the simulation window.

M
1

M
2

M
3

M
4

M
5

M
6

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0
Time [min]

M
7

Figure 10.10: Most likely model used for control at each time step over the simulation. Black

indicates the model is active.

While there is slight switching noise the model selection is exactly what one would expect.

138

© University of Pretoria

Figure 10.11 shows the controller set point tracking performance over the simulation window.

0 50 100 150 200
0.5

1.0
C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 50 100 150 200
300

350

400

450

T
R

[K
] Filtered mean Observations

0 50 100 150 200
Time [min]

−1000

−500

0

500

Q
[k

W
]

Figure 10.11: Set point tracking and controller input for the LQG 7 model switching controller

algorithm. The initial point was (0.49, 412).

Like figure 10.5 we also have a stable, reference tracking controller. This is not surprising

because the model switching/selection was reasonable. In figure 10.12 and 10.13 we again

attempt to steer the system to a concentration set point of 0.9 kmol.m−3. Since we introduced

M3 to serve as a bridge between M6 and M7 (since the set point is between these two models)

we expect better performance than in figure 10.6 and 10.7. Unfortunately this is not the case

as may be seen in figures 10.12 and 10.13.

M
1

M
2

M
3

M
4

M
5

M
6

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0
Time [min]

M
7

Figure 10.12: Most likely model used for control at each time step over the simulation. Black

indicates the model is active.

139

© University of Pretoria

The same oscillating switching noise and unstable control is present here as there was in

figures 10.6 and 10.7.

0 50 100 150 200
0.2

0.4

0.6

0.8

1.0
C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 50 100 150 200
300

350

400

450

500

T
R

[K
] Filtered mean Observations

0 50 100 150 200
Time [min]

−2000

0

2000

Q
[k

W
]

Figure 10.13: Set point tracking and controller input for the LQG 7 model switching controller

algorithm. The initial point was (0.49, 412).

The underlying reasons for the instability are the same: we are using models to predict into

regions where they are inaccurate and the filter does not robustly enough isolate the model

closest to the current system location in state space. The combination of these two problems

make effective control impossible.

10.1.2 Model averaging approach

The fundamental problem with the switching controllers of section 10.1.1 is that an inap-

propriate model was used for prediction. Unfortunately using a weighted average of all the

models, based on their probability with respect to the switching variable st, will exacerbate

this problem. For this reason we do not explore this approach.

10.2 Conclusion

The goal of the switching controller algorithm was to drastically reduce the computational

burden introduced by modern switching controller implementations as discussed in section 2.2.

The approach of switching the model used for control outside the optimisation algorithm,

while attractive intuitively, suffers from the fundamental problem that a bad model is used to

predict the future states.

140

© University of Pretoria

The switching LQG controllers introduced in this chapter were not robust against this type of

problem. Additionally, we also had severe switching noise which led to controller oscillation.

From a fundamental point of view it seems as if the current approach of incorporating the

model switching inside the optimisation algorithm has the most promise of yielding good

control.

It should be investigated whether it is feasible to incorporate the Rao-Blackwellised particle

prediction (see section 9.3) within the controller optimisation process.

141

© University of Pretoria

Chapter 11

Inference using nonlinear hybrid

models

In this chapter we study the same graphical model as chapter 9, shown in figure 11.1 for

convenience, but we drop the assumption that the dynamic models used for inference are

linear. The variables retain their meaning as before.

y0 y1 y2

x0 x1 x2

u0 u1

s0 s1 s2

Figure 11.1: Graphical model used in this chapter.

Intuitively we are now using the switching variables to decide which nonlinear model (or

combination of) better describes the observed system behaviour. At each point in time we

desire a weighted set of nonlinear models with the weight proportional to the ability of the

model to explain the plant behaviour. Such a system could be used to describe significant

model changes e.g. catalyst degradation in our CSTR or a reactor which breaks suddenly etc..

We model this system as follows. Let st denote a discrete M state first order Markov chain

with transition matrix P as discussed in chapter 9. Let each state st = i be associated with a

142

© University of Pretoria

model set (fi, gi,Wi, Vi) used to evaluate the dynamical model

xt+1 = fi(xt, ut, wt+1) with wt+1 v N (0,Wi)

yt+1 = gi(xt+1, vt+1) with vt+1 v N (0, Vi).
(11.1)

In this dissertation we assume that the the noise distributions are Gaussian but there is no

fundamental reason why they cannot be arbitrary. To fully specify the system we again require

the prior distributions p(s0) and p(x0|s0) as well as the stochastic matrix P . In this chapter

we manually specify the matrix P but it can be computed using the Baum-Welch algorithm.

11.1 Exact filtering

By extending the model to incorporate nonlinear models it becomes even more difficult to

perform inference. It is clear that for the type of systems we consider here no exact inference

algorithm, which is computationally feasible, exists [47]. We again turn to approximate

inference algorithms.

Note that we cannot apply Rao-Blackwellisation (i.e. analytically evaluate the stochastic

dynamical system component and approximate the switching component) as before because

the dynamic models used for inference are no longer linear. We use the adaptive sequential

importance resampling, i.e. the bootstrap particle filter, algorithm as discussed in chapter 7.

11.2 Switching particle filter

We cannot analytically evaluate any part of the desired posterior distribution p(s0:t, x0:t|y0:t)

in a computationally feasible manner, so we must apply the adaptive sequential importance

resampling algorithm to the entire state space of figure 11.1. The algorithm follows straight-

forwardly from our discussion in section 7.1 [47]. We merely state the proposal distribution

and incremental weight function we sample from:

qt(st, xt|s0:t−1, x0:t−1,y0:t) = p(st|st−1)p(xt|st, xt−1)

αt(s0:t, x0:t) = p(yt|xt, st).
(11.2)

Applying the algorithm is a straightforward extension of the bootstrap particle filter introduced

in section 7.2 given the weighting function and proposal distribution as shown below.

Switching particle filter algorithm

For t = 0:

1. Sample Si0 v p(s0) and Xi
0 v p(x0|s0).

2. Compute the weights w0(Si0, X
i
0) = p(y0|Si0, Xi

0) where y0 is the observation. Normalise

W i
0 ∝ w0(Si0, X

i
0).

143

© University of Pretoria

3. If the number of effective particles is below some threshold apply resampling with

roughening (W i
0, S

i
0, X

i
0) to obtain N equally weighted particles (1

N , S̄
i
0, X̄

i
0) and set

(W̄ i
0, S̄

i
0, X̄

i
0)← (1

N , S̄
i
0, X̄

i
0) otherwise set (W̄ i

0, S̄
i
0, X̄

i
0)← (W i

0, S
i
0, X

i
0)

For t ≥ 1:

1. Sample Sit v p(Sit |S̄it−1) and Xi
t v p(Xi

t |Sit , X̄i
t−1).

2. Compute the weights αt(S
i
t , X

i
t) = p(yt|Sit , Xi

t) where yt is the observation. Normalise

W i
t ∝W i

t−1αt(S
i
t , X

i
t).

3. If the number of effective particles is below some threshold apply resampling with

roughening (W i
t , S

i
t , X

i
t) to obtain N equally weighted particles (1

N , S̄
i
t , X̄

i
t) and set

(W̄ i
t , S̄

i
t , X̄

i
t)← (1

N , S̄
i
t , X̄

i
t) otherwise set (W̄ i

t , S̄
i
t , X̄

i
t)← (W i

t , S
i
t , X

i
t)

11.3 Switching particle prediction

The prediction of the hybrid nonlinear states follows in an analogous manner to the prediction

algorithm found in section 7.3. We do not supply an algorithm because it is a straightforward

simplification of the switching particle filter algorithm seen above: effectively there is no

weight update step because there is no observation. The corresponding graphical model is

shown in figure 11.2.

y0

x0 x1 x2

u0 u1

s0 s1 s2

Figure 11.2: Switching particle prediction graphical model.

11.4 Smoothing and Viterbi decoding

Like chapter 9 we refer the reader elsewhere for a detailed discussion on both smoothing and

Viterbi decoding [47]. It suffices to say that given the nonlinear dynamics the aforementioned

inference will be beyond the scope of this dissertation.

144

© University of Pretoria

11.5 Filtering the CSTR

In this chapter we illustrate the use of the switching particle filter using two nonlinear

dynamical model derived from the familiar CSTR example of chapter 5. Since the graphical

model of chapter 9 is identical to that of figure 11.1 we expect that the general trends discussed

in section 9.5 to hold here as well.

For the purposes of illustration we assume a scenario where the rate constant of the CSTR

decreases by an order of magnitude. This scenario is not completely arbitrary, for example,

this could be caused by catalyst degradation due to some environmental factor. It is our aim

to infer when this happens and to be able to track the states accurately despite the significant

model change. Therefore we will have one nonlinear model of the healthy plant M1 and one

nonlinear model of the faulty plant M2.

Note that the character of the inference we are attempting to do is fundamentally different

from that of chapter 9 but that the underlying graphical models are the same. In chapter 9

the Rao-Blackwellised particle filter switched between models which all attempt to describe

the same physical system albeit in different regions of the state space. In this chapter the

switching particle filter will attempt to switch between models which describe completely

different physical systems. This difference informs our choice of the switch transition matrix.

We use 500 particles during all runs for the switching particle filter and use the switching

transition matrix P1 =

(
0.99 0.01

0.01 0.99

)
. For the particle filter, used for a comparative base, we

use 200 particles. We spent much time in section 9.5 discussing the effect the switch transition

matrix has on model selection. The form of the matrix is motivated by physical considerations

as well: once the catalyst denatures it is unlikely to fix itself. Thus, once the model breaks,

switches from M1 to M2, it is unlikely to switch back. In all the simulations the catalyst

denatures at 50 minutes into the run.

We conduct two brief, but illustrative, investigations comparing the effectiveness of the

switching particle filter and the particle filter. In both cases the particle filter uses the healthy

system model - the benefit of the additional complexity of the switching particle filter model

is to be highlighted here. In the first investigation we measure only temperature and in the

second we measure both concentration and temperature.

In figure 11.3 we illustrate the tracking performance1 of the particle filter on the system. Note

that the simulation window is very long - 600 minutes.

1Unfortunately we cannot use the average tracking performance measures used previously. Since the filter

approaches a concentration of 0 kmol.m−3 the average error estimates are not accurate: there is division by

very small numbers. We thus rely on a visual comparison.

145

© University of Pretoria

0 200 400 600
−0.5

0.0

0.5

1.0

1.5

C
A

[k
m

ol
.m
−

3]
Underlying model

Filtered mean

0 200 400 600
Time [min]

300

400

500

600

T
R

[K
]

Observations

Underlying model w/o fault

Figure 11.3: Particle filter using 200 particles tracking the CSTR where the catalyst denatures

at 50 minutes. Only temperature is measured.

It is clear that the particle filter tracks the temperature well, because it is measured, but

tracks the concentration very poorly. It takes almost 300 minutes before the particle filter

estimates the concentration reliably. Clearly the model mismatch causes the filter’s poor

performance - compare this to the excellent tracking in figure 7.5.

In figure 11.4 we see the tracking performance of the switching particle filter measuring only

temperature.

0 100 200 300
−0.5

0.0

0.5

1.0

1.5

C
A

[k
m

ol
.m
−

3] Underlying model

Filtered mean

0 100 200 300
Time [min]

300

400

500

600

T
R

[K
]

Observations

Underlying model w/o fault

Figure 11.4: switching particle filter using 500 particles tracking the CSTR where the catalyst

denatures at 50 minutes.

146

© University of Pretoria

It is clear that the switching particle filter tracks the states very well. However, figure 11.5

indicates that we have the some switching noise problems.

M
1

0.0 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0
Time [min]

M
2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 11.5: Switching particle filter measuring only temperature. The switching weight of

each particle is shown per time step. M1 corresponds to the healthy plant and M2 to the

broken plant.

It is not surprising that there is switching noise: the graphical models of this and chapter 9

are the same. However, we do see that the switching particle filter switches models at about

50 minutes. This indicates that the filter effectively identifies when the process fault occurs.

It seems that after the fault has been identified there is a period where the filter reliably

isolates the correct underlying model thereafter, from about 130 minutes, both models are

equally likely. It seems there is a regime near the unstable operating point where the models

are maximally different. Conversely, near the low temperature operating point (near the end

of the simulation) the models are quite similar. This is physically believable because both

those operating points correspond to a system where almost no conversion occurs; therefore

broken or not the models would generate the similar predictions. Therefore, switching noise

caused by model overlap is only a problem in this region.

Figure 11.6 illustrates the filtering performance of the particle filter using both state measure-

ments.

147

© University of Pretoria

0 100 200 300
−0.5

0.0

0.5

1.0

1.5

C
A

[k
m

ol
.m
−

3] Underlying model

Filtered mean

0 100 200 300
Time [min]

300

400

500

600

T
R

[K
]

Observations

Underlying model w/o fault

Figure 11.6: Particle filter using 200 particles tracking the CSTR where the catalyst denatures

at 50 minutes. Both states are measured.

Clearly measuring both states is beneficial in terms of filter performance. The state estimation

deviation seen in figure 11.3 is significantly less here - by approximately 150 minutes the

particle filter is tracking the underlying system.

Figure 11.7 shows the filtering performance of the switching particle filter.

0 100 200 300
−0.5

0.0

0.5

1.0

1.5

C
A

[k
m

ol
.m
−

3] Underlying model

Filtered mean

0 100 200 300
Time [min]

200

300

400

500

600

T
R

[K
]

Observations

Underlying model w/o fault

Figure 11.7: Switching particle filter using 500 particles tracking the CSTR where the catalyst

denatures at 50 minutes. Both states are measured.

Again the performance is very good - the filter accurately tracks the underlying states. In

figure 11.8 there is significantly less switching noise in the first 100 minutes of the simulation

148

© University of Pretoria

than in figure 11.5.

M
1

0.0 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0
Time [min]

M
2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 11.8: Switching particle filter measuring both concentration and temperature. The

switching weight of each particle is shown per time step.

It is clear that the second measurement helps the filter differentiate between the regimes of

the healthy and broken plant when the system is near the high temperature and unstable

operating points. However, we see the same behaviour near the low temperature operating

point - the models are clearly similar here and we again have the problem of model overlap.

In the next chapter we implement control using the switching particle filter to identify when

the underlying system’s dynamics have changed.

149

© University of Pretoria

Chapter 12

Stochastic switching linear control

using nonlinear hybrid models

We continue our discussion of switching controller algorithms from chapter 10 here. In this

chapter we use the switching particle filter to identify the best model to use in the stochastic

controllers we developed in chapter 8. More precisely, let Mi = (Ai, Bi) be the linearised

model corresponding to the nonlinear models (fi, gi) as discussed in chapter 11. By finding

the most likely nonlinear model, using the switching particle filter, we aim to design a linear

controller (based on the most likely nonlinear model) which is robust against system faults.

The fundamental difference between the controllers we develop in this chapter and those

of chapter 10 is that the linear model used for state prediction is, if the filter behaves as

intended, an accurate approximation of the underlying dynamics. In chapter 10 the controllers

performed poorly because they were used to predict the system states into regions where they

were not accurate. In this chapter we use the switching particle filter to identify when the

underlying dynamics change. The more accurate model is then used for control; however,

the crucial difference is that we do not attempt to traverse the state space as in chapter 10.

We rather solve the more modest goal of keeping the system at set point in the presence of

system faults.

We assume the same scenario as introduced in section 11.5 i.e. we assume we have 2 nonlinear

plant models available. Model M1 corresponds to the healthy CSTR and model M2 corresponds

to the CSTR with denatured catalyst (the faulty model). We will again avail ourselves of the

switching controller algorithm repeated here for convenience.

Switching controller algorithm:

1. Use a switching filter algorithm, e.g. the switching particle filter, to update the state

estimates of the particle population given the current observation. See chapter 11 for

more details.

2. Select the particle with the highest switching weight. Since each particle corresponds to

150

© University of Pretoria

a certain model we implicitly have the most probable model Mi.

3. Use the mean and covariance information encoded by this particle within the context of

the stochastic controller (LQG or MPC) formulation of chapter 8. Use the most likely

model, Mi from step 2, in this setting.

4. Repeat for the next observation.

A coincidental benefit of this approach is that the filter/controller combination will automati-

cally detect the modelled fault. We do not consider the model averaging approach (in finding

the best linear model to use for control) because it will not make physical sense: the plant is

either healthy or broken but cannot be a mixture between the two.

Since the underlying graphical model in chapter 9 and chapter 11 is the same, we expect the

filtering trends to be the same as those found in chapter 9. For the sake of illustration we

exclusively use both state measurements. There is no fundamental reason why one cannot use

only one state measurement except that the filter performance will be worse.

For the remainder of this chapter we assume the control goal is to keep the system at the

unsteady concentration operating point of the healthy model, even in the presence of the

denatured catalyst. In all the simulations the catalyst denatures at 100 minutes. This allows

us to demonstrate that the switching controller is able to regulate both the healthy and faulty

plant.

12.1 Unconstrained switching control

In this chapter we compare the LQG controller (discussed in sections 3.4.3 and 8.1) to the

switching controller algorithm implemented within the context of the LQG controller

min
u

E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
subject to xt+1 = Aixt +Biut + wt.

(12.1)

For the non-switching LQG controller we use a particle filter to estimate the current state.

The same control parameters as those found in section 8.4 are used. Note that the current

state estimate x0 is inferred from the respective observers. Note that we select the most

likely model, Mi = (Ai, Bi), based on the switch weight supplied by the switching particle

filter at each time step. This model is then used in (12.1) and solved using the techniques of

section 8.1.

In figure 12.1 we see the performance of the LQG controller applied to the CSTR system. At

100 minutes the catalyst denatures and the model used to design the controller becomes grossly

inaccurate. The inappropriateness of the model also affects the particle filter’s performance.

151

© University of Pretoria

0 100 200 300
0.4

0.5

0.6

0.7

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 100 200 300
400

420

440

460

T
R

[K
] Filtered mean Observations

0 100 200 300
Time [min]

−1000

−500

0

500

Q
[k

W
]

Figure 12.1: Standard LQG controller applied to the CSTR where the catalyst denatures at 100

minutes. The bootstrap particle filter was used for inference and the Gaussian approximation

of the particles was used.

The average concentration error is 6.79% and the average controller input is 17.08 kW over

the course of the simulation. We can clearly see that there is non-zero set point offset and

control is bad in the sense of definition 8.1. Clearly the LQG controller is ineffective in this

scenario.

We used a constant disturbance model to infer the plant/model mismatch1. This was used to

accordingly adjust the controller predictions as discussed in section 2.2. It is interesting to note

that the state estimator infers that the plant reaches set point but in reality there is non-zero

offset. This is a consequence of using an inappropriate model in the controller/observer.

This motivates the use of a controller which intelligently changes the model control is based

upon, as discussed previously. In figure 12.2 we see the set point tracking ability of the switching

controller algorithm using the LQG controller. We have used the switching transition matrix

P1 =

(
0.99 0.01

0.01 0.99

)
as in section 11.5.

1The results of this chapter implement the constant disturbance model to achieve zero set point offset. To

keep notation the same we do not explicitly show it in (12.2) but mention it here.

152

© University of Pretoria

0 100 200 300
0.3

0.4

0.5

0.6

C
A

[k
m

ol
.m
−

3]
Underlying model Set point

0 100 200 300
400

420

440

460

T
R

[K
] Filtered mean Observations

0 100 200 300
Time [min]

−400

−200

0

200

Q
[k

W
]

Figure 12.2: Switching LQG controller applied to the CSTR where the catalyst denatures at

100 minutes.

The average concentration error is 2.77% and the average controller input is 28.07 kW. It

is clear that we have set point tracking even after the catalyst denatures. By inspecting

figure 12.3 we see that this is not surprising: the filter correctly (for the most part) identifies

when the underlying model changes and then uses the better model for control.

M
1

0.0 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0
Time [min]

M
2

Figure 12.3: Most likely model identified using the particle filter within the context of the

switching LQG controller algorithm.

However, like in sections 10.1.1 and 11.5 we see that there is some switching noise. The

consequence of this noise is spikes in controller input. This happens because the controller

153

© University of Pretoria

uses the incorrect model to calculate the controller input. In chapter 9 this problem was

attenuated by making the switch transition matrix stickier.

In figures 12.4 and 12.5 we use exactly the same algorithm except that we have modified the

switch transition matrix: P2 =

(
0.999 0.001

0.001 0.999

)
. Based on figure 12.4 it is clear that we have

set point tracking even after the catalyst denatures.

0 100 200 300
0.3

0.4

0.5

0.6

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 100 200 300
380

400

420

440

460

T
R

[K
]

Filtered mean Observations

0 100 200 300
Time [min]

−400

−200

0

200

Q
[k

W
]

Figure 12.4: Switching LQG controller applied to the CSTR where the catalyst denatures at

100 minutes. Switch transition matrix P2 was used.

The average concentration error is 2.38% and the average controller input is 19.06 kW. It is not

surprising that the controller, using P2 outperformed the controller using P1. By inspecting

figure 12.5 we see that there is significantly less switcing noise.

154

© University of Pretoria

M
1

0.0 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0
Time [min]

M
2

Figure 12.5: Most likely model identified using the particle filter within the context of the

switching LQG controller algorithm. Switch transition matrix P2 was used.

Since there is less switching noise there are less controller spikes in figure 12.4 and thus less

controller energy is wasted. Finally, a Monte Carlo simulation was performed (using 50 runs)

to illustrate that the switching controller works as desired for not just the realisations shown

in this chapter. The Monte Carlo absolute average concentration error from set point was

1.30% taken over the last 10 minutes of each simulation. This indicates that the controller

works as desired. We defer further Monte Carlo analysis to the next section.

The results here lend further credibility to our claim that the instability seen in chapter 10 is

rooted in the inappropriateness of the model used for prediction rather than the switching

noise. Figure 12.3 had significant switching noise yet the controller was not unstable. While

reducing the amount of switching noise certainly improved control, as figure 12.4 shows,

fundamentally we are not using an inappropriate model for control prediction. This difference

is was causes the significantly better stability properties seen here.

Motivated by the success of the switching LQG controller we incorporate constraints in the

sequel.

12.2 Constrained switching control

In this section we extend the switching controller algorithm of section 12.1 to the deterministic

and stochastic MPCs introduced in section 8.2. We use the same parameters as before. Like in

section 8.4 we first illustrate the performance of the stochastic MPC controller with expected

155

© University of Pretoria

value constraints,

min
u

E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
subject to xt+1 = Aixt +Biut + wt

and E[

(
10

1

)T
xt + 400] ≥ 0 ∀ t = 1, ..., N

and |ut| ≤ 250 ∀ t = 0, ..., N − 1,

(12.2)

(for some model Mi) and then incorporate chance constraints later. Using the results of

section 8.2 we know that (12.2) can be reformulated as a deterministic problem given the

(Gaussian) current state estimate x0. The state estimate is derived from either the particle

filter or switching particle filter using 200 and 500 particles respectively. For the switching

particle filter we use the switch transition matrix P2 due to the results in section 12.1.

In figure 12.6 we see the set point tracking performance of (12.2) using the same particle filter

as used in section 12.1. Since the particle filter only uses the healthy plant model we only use

M1.

0 100 200 300
0.2

0.4

0.6

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 100 200 300
380

400

420

440

460

T
R

[K
] Filtered mean Observations

0 100 200 300
Time [min]

−400

−200

0

200

400

Q
[k

W
]

Figure 12.6: Deterministic MPC using a particle filter as the state estimator. The initial point

is (0.55, 450). An integrating disturbance model was used to estimate the mismatch between

the underlying system and the controller model. The catalyst denatures at 100 minutes.

The average concentration error is 8.33% and the average controller input is 24.21 kW.

Unfortunately we do not observe zero set point offset control but rather zero offset state

estimates. Clearly the controller input generated by the MPC, which is based on the healthy

plant, only drives the particle filter’s predictions to the set point. We can see that the

classic disturbance model approach [37] to ensure zero set point offset fails here because

156

© University of Pretoria

the underlying (faulty) model is too different from the controller model. Intuitively, we are

attempting to control a tricycle (the faulty plant) using a model of a Ferrari.

In figure 12.7 we see the switching controller algorithm applied within the context of (12.2).

The model corresponding to the highest weighted switch at each time step was selected for

control.

0 100 200 300
0.3

0.4

0.5

0.6

C
A

[k
m

ol
.m
−

3]

Underlying model Set point

0 100 200 300
380

400

420

440

460

T
R

[K
]

Filtered mean Observations

0 100 200 300
Time [min]

−400

−200

0

200

400

Q
[k

W
]

Figure 12.7: The switching MPC controller algorithm applied to the CSTR with catalyst

which denatures at 100 minutes.

The average concentration error is 3.19% and the average controller input is 22.61 kW over

the simulation time span. The performance of the switching controller is significantly better

than the non-switching case. This is not surprising because, as figure 12.8 shows, the filter

correctly identifies when the plant breaks. The tell tale controller spike is also evident after

100 minutes indicating that the controller switched.

157

© University of Pretoria

M
1

0.0 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0
Time [min]

M
2

Figure 12.8: Most likely model identified using the particle filter within the context of the

switching MPC controller algorithm.

There is almost no switching noise in figure 12.3 due to the static nature of the switch transition

matrix P2. If P1 were used we would expect more noise. As mentioned in chapter 9 switching

noise is not necessarily bad for inference. We do see that the filter does not immediately

notice that the underlying model has changed. The stickier the switch transition matrix is the

longer it will take for the controller to adjust the model. Depending on the application this

delay could be problematic. On the other hand, the switching noise causes controller input

spikes which could also be bad for control.

In figure 12.9 we see the state space trajectory of the expected value constraint MPC. It is

clear that the operating temperature associated with the set point moves when the catalyst

denatures.

158

© University of Pretoria

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
CA [kmol.m−3]

390

400

410

420

430

440

450

T
R

[K
] Underlying model

Filtered mean

90% Confidence region

Figure 12.9: State space trajectory of the expected value constrained stochastic MPC using

the switching controller algorithm.

Clearly there is a constraint violation - similar to that found in sections 8.4 and 8.5. By

extending the MPC problem of (12.2) to the chance constrained problem

min
u

E

[
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNPfxN

]
subject to xt+1 = Aixt +Biut + wt

and E[

(
10

1

)T
xt + 400] ≥ 0 ∀ t = 1, ..., N

and Pr(

(
10

1

)T
xt + 400 ≥ 0) ≥ 0.99 ∀ t = 1, ..., N

and |ut| ≤ 250 ∀ t = 0, ..., N − 1

(12.3)

we attempt to ensure that the constraint is not violated in this way. The same switching

controller algorithm, as discussed previously, is implemented. We have used the 99% chance

constraint to highlight the effectiveness of the method compared to the expected value version.

In figure 12.10 we see that the switching chance constrained MPC successfully tracks the set

point.

159

© University of Pretoria

0 100 200 300
0.3

0.4

0.5

0.6

C
A

[k
m

ol
.m
−

3]
Underlying model Set point

0 100 200 300
380

400

420

440

460

T
R

[K
]

Filtered mean Observations

0 100 200 300
Time [min]

−400

−200

0

200

Q
[k

W
]

Figure 12.10: The switching MPC controller algorithm applied to the CSTR with catalyst

which denatures at 100 minutes. The chance constrained MPC was used.

The average concentration error is 3.01% and the average controller input is 22.03 kW. In

figure 12.11 we see the familiar model switching diagram. Clearly the controller isolates when

the fault occurs and tracks the set point successfully.

M
1

0.0 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0
Time [min]

M
2

Figure 12.11: Most likely model identified using the particle filter within the context of the

chance constrained switching MPC controller algorithm.

Finally, in figure 12.12 we see that the constraint is not violated.

160

© University of Pretoria

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
CA [kmol.m−3]

390

400

410

420

430

440

450

T
R

[K
] Underlying model

Filtered mean

90% Confidence region

Figure 12.12: State space trajectory of the chance constrained stochastic MPC using the

switching controller algorithm.

Since figure 12.12 only illustrates that the constraint is not violated for a single run we again

use a Monte Carlo technique to justify the assertion that, for this example, the stochastic

controller can successfully reduce the constraint violation probability. In figure 12.13 we have

used the data of over 500 simulations to illustrate the benefit, in terms of constraint violation

characteristics, of using the switching controller algorithm with the stochastic MPC controllers

developed in chapter 8.

0 1 2 3 4
Mahalanobis area in violation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
in

vi
ol

at
io

n
[m

in
]

Expected value constraint

90% Chance constraint

99% Chance constraint

Figure 12.13: Monte Carlo analysis of the switching controller algorithm applied within the

context of the expected value and chance constrained MPCs developed in chapter 8. Each

shaded region is where 90% of the simulations scored.

161

© University of Pretoria

Like in chapter 8 we see a clear benefit in increasing the chance constraint threshold: the higher

the threshold the less the constraint is violated both in time and in severity. Figure 12.14

illustrates that we also have set point tracking. A Monte Carlo simulation using 50 runs each

is plotted for each switching controller to illustrate their effectiveness.

0 50 100 150 200
0.2

0.4

0.6

C
A

(I
)

0 50 100 150 200
0.0

0.2

0.4

0.6

C
A

(I
I)

0 50 100 150 200
0.0

0.2

0.4

0.6

C
A

(I
II

)

0 50 100 150 200
Time [min]

0.0

0.2

0.4

0.6

C
A

(I
V

)

Figure 12.14: Monte Carlo set point tracking for the switching controllers. Subplot (I) shows

the set point tracking of the switching LQG controller. Suplots (II), (III) and (IV) show the

set point tracking of the expected value, 90% chance and 99% chance constrained switching

MPC controllers. The green line is the set point.

In figure 12.14 we clearly see a concentration tracking bump after about 100 minutes - when

the controller breaks. After that it is clear that the controller has switched because we again

have set point tracking. The Monte Carlo absolute set point error over the last 10 minutes

of each simulation is 1.30%, 1.64%, 1.47% and 1.42% for the LQG controller, the expected

value-, 90% chance- and 99% chance constrained MPC controllers.

It is interesting that the same trends observed in chapter 8 are evident here. The chance

constrained MPC controllers show better tracking error than the expected value controller.

Again the aggressiveness of the expected value controller causes the higher error. In all cases

we have set point tracking (a small δ as per definition 8.1) despite the plant fault.

12.3 Conclusion

In this chapter we have developed a switching controller algorithm which detects when a

process fault has occurred by using noisy measurement data in conjunction with a switching

particle filter. The controller uses this knowledge to adapt the model used for control. The

switching particle filter successfully identified when the modelled fault occurred in all the

162

© University of Pretoria

simulations.

The LQG controller, expected value- and chance constrained MPC controllers were all

implemented within the switching controller algorithm framework. It was found that they

were able to stabilise and control the system to set point despite the plant fault. This is was

confirmed using Monte Carlo analysis. Furthermore, the scheme is computationally efficient

because the controllers can be formulated as deterministic, linearly constrained quadratic

programming optimisation problems.

The bottleneck in the switching controller algorithm is inference. Since it is essentially a

particle filter it is reasonable to suppose that there might be problems in higher dimensional

spaces. However, recent work [16] on particle filters looks extremely promising in reducing

the computational problems associated with filters of this kind.

163

© University of Pretoria

Chapter 13

Future work and conclusion

In this chapter we briefly comment on extensions and future research possibilities within

the context of stochastic dynamical control using probabilistic graphical models. Finally we

conclude the dissertation with a brief summary of the major results.

13.1 Parameter optimisation

In chapters 8, 10 and 12 the control tuning parameters were not changed. It could be

argued that the control comparisons (LQG vs. expected value MPC vs. chance constrained

MPC) were unfair because the set of tuning parameters might have favoured one of them

disproportionately. It should be investigated what effect parameter optimisation has on the

results. It could also be interesting to view the tuning parameters as so-called hyper-parameters

within the context of Bayesian optimisation.

13.2 Generalised graphical models

The motivation for this dissertation was the work by [18] and [14]. In the former paper the

author pioneers work on using dynamic Bayesian networks within the context of particle

predictive MPC. The authors use graphical models similar to those of chapters 6 and 7

but do not assume that the inputs are deterministic. It would be interesting to extend the

current approach to this case. In the latter paper the authors use contextual variables in

their graphical models to identify anomalies within the context of maritime piracy. The

graphical model employed by them is significantly more complex but allows for much greater

expressivity. Within the context of fault detecting and controller model modification this

could be quite interesting as well.

Furthermore, while chapter 12 only dealt with a single modelled process fault there is no

fundamental reason why more process faults cannot be incorporated. However, the model

164

© University of Pretoria

overlap problem might become more pronounced in such a setting. It is not physically realistic

to use the augmented switching filter model (see chapter 10) because the current state would

not reliably inform the filter of a process fault. The aforementioned contextual variables could

become useful in such a setting.

13.3 Filtering techniques

The particle filters used throughout this dissertation can become problematic when applied

to high dimensional problems. Recent work in [16] pioneers using a particle flow technique

which, by all accounts, greatly reduces the computational burden particle methods usually

introduce. The degree to which the inference techniques bottleneck the control systems should

be investigated and an effort should be made to incorporate particle flow techniques.

Furthermore, there is no fundamental reason why the switching particle filter could not be

replaced by the Rao-Blackwellised particle filter in chapter 12. This possibility should be

investigated because the latter filter, due to its partly analytic nature, is computationally more

efficient than the former. The obvious drawback of such an approach is that the linear model

used to detect the process fault might not be as sensitive as the nonlinear model currently

used.

13.4 Conclusion

The primary goal of this dissertation was to illustrate the relationship between dynamic

Bayesian networks and model based predictive control. The two most important results were:

1. Assuming linearity and normality it is possible to reformulate the stochastic, chance

constrained MPC problem as a linearly constrained deterministic MPC problem. The

holistic approach adopted here, due to the probabilistic graphical model framework,

makes the proof and derivation both simple and intuitive.

2. By extending the graphical model we were able to formulate a novel switching controller

algorithm by combining the computationally efficient deterministic controllers developed

earlier with a switching particle filter. Using this approach the controller was able to

identify and adapt to a modelled process fault.

Lastly, it is important to realise that graphical models have tacitly been used within control

schemes since state observers were introduced. Therefore, making the connection between

them overt was not a purely academic endeavour but an attempt at highlighting the potential

benefit of understanding stochastic model predictive controllers within the context of graphical

models.

165

© University of Pretoria

Bibliography

[1] MOSEK ApS. MOSEK solver API using the Julia language package JuMP., 2015.

[2] Y. Bar-Shalom, X.R. Li, and T. Kirubarajan. Estimation with applications to tracking

and navigation. John Wiley and Sons, 2001.

[3] D. Barber. Expectation correction for smoothed inference in switching linear dynamical

systems. Journal of Machine Learning, 7:2515–2540, 2006.

[4] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press,

2012.

[5] I. Batina, A.A. Stoorvogel, and S. Weiland. Optimal control of linear, stochastic systems

with state and input constraints. In Proceedings of the 41st IEEE Conference on Decision

and Control, 2002.

[6] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and

constraints. Automatics, 35:407–427, 1999.

[7] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. Julia: A fast dynamic

language for technical computing. September 2012.

[8] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[9] L. Blackmore, Hui Li, and B. Williams. A probabilistic approach to optimal robust path

planning with obstacles. In American Control Conference, June 2006.

[10] L. Blackmore, O. Masahiro, A. Bektassov, and B.C. Williams. A probabilistic particle-

control approximation of chance-constrained stochastic predictive control. IEEE Trans-

actions on Robotics, 26, 2010.

[11] M. Cannon, B. Kouvaritakis, and X. Wu. Probabilistic constrained mpc for multiplicative

and additive stochastic uncertainty. IEEE Transactions on Automatic Control, 54(7),

2009.

[12] A.L. Cervantes, O.E. Agamennoni, and J.L Figueroa. A nonlinear model predictive

control system based on weiner piecewise linear models. Journal of Process Control,

13:655–666, 2003.

166

© University of Pretoria

[13] R. Chen and J.S. Liu. Mixture kalman filters. Journal of Royal Statistical Society,

62(3):493–508, 2000.

[14] J.J. Dabrowski and J.P. de Villiers. A method for classification and context based

behavioural modelling of dynamical systems applied to maritime piracy. Expert Systems

with Applications, 2014.

[15] B.N. Datta. Numerical Methods for Linear Control Systems - Design and Analysis.

Elsevier, 2004.

[16] F. Daum and J. Huang. Particle flow for nonlinear filters. In Acoustics, Speech and

Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 5920–5923,

May 2011.

[17] M. Davidian. Applied longitudinal data analysis. North Carolina State University, 2005.

[18] J.P. de Villiers, S.J. Godsill, and S.S. Singh. Particle predictive control. Journal of

Statistical Planning and Inference, 141:1753–1763, 2001.

[19] N. Deo. Graph Theory with Applications to Engineering and Computer Science. Prentice-

Hall, 1974.

[20] M. Diehl, H.J. Ferreau, and N. Haverbeke. Efficient numerical methods for nonlinear mpc

and moving horizon estimation. Control and Information Sciences, 384:391–417, 2009.

[21] A. Doucet and A.M. Johansen. A tutorial on particle filtering and smoothing: fifteen

years later. Technical report, The Institute of Statistical Mathematics, 2008.

[22] A.D. Doucet, N.J. Gordon, and V. Krishnamurthy. Particle filters for state estimation of

jump markov linear systems. IEEE Transactions on Signal Processing, 49(3):613–624,

March 2001.

[23] J. Du, C. Song, and P. Li. Modeling and control of a continuous stirred tank reactor

based on a mixed logical dynamical model. Chinese Journal of Chemical Engineering,

15(4):533–538, 2007.

[24] The Economist. In praise of bayes. Article in Magazine, September 2000.

[25] C. Edwards, S.K. Spurgeon, and R.J. Patton. Sliding mode observers for fault detection

and isolation. Automatica, 36:541–553, 200.

[26] H.C. Edwards and D.E. Penny. Elementary Differential Equations. Pearson, 6th edition

edition, 2009.

[27] W. Forst and D. Hoffmann. Optimisation - Theory and Practice. Springer, 2010.

[28] O.R. Gonzalez and A.G. Kelkar. Electrical Engineering Handbook. Academic Press, 2005.

167

© University of Pretoria

[29] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear/non-gaussian

bayesian state estimation. IEE Proceedings-F, 140(2):107–113, 1993.

[30] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engi-

neering, 9(3):90–95, 2007.

[31] R. Isermann and P. Balle. Trends in the application of model based fault detection and

diagnosis of technical processes. Control Engineering Practice, 5(5):709–719, 1997.

[32] K. Ito and K. Xiong. Gaussian filters for nonlinear filtering problems. IEEE Transactions

on Automatic Control, 45(5):910–928, 2000.

[33] R. J. Jang and C.T. Sun. Neuro-fuzzy and soft computing: a computational approach to

learning and machine intelligence. Prentice-Hall, 1996.

[34] D. Koller and N. Friedman. Probabilistic Graphical Models. MIT Press, 2009.

[35] K. B. Korb and A. E. Nicholson. Bayesian Artificial Intelligence. Series in Computer

Science and Data Analysis. Chapman & Hall, first edition edition, 2004.

[36] M. Kvasnica, M. Herceg, L. Cirka, and M. Fikar. Model predictive control of a cstr: a

hybrid modeling approach. Chemical Papers, 64(3):301–309, 2010.

[37] J.H. Lee, M. Morari, and C.E. Garcia. Model Predictive Control. Prentice Hall, 2004.

[38] U.N. Lerner. Hybrid Bayesian Networks for Reasoning about Complex Systems. PhD

thesis, Stanford Univesity, 2002.

[39] P. Li, M. Wendt, H. Arellano-Garcia, and G. Wozny. Optimal operation of distrillation

processes under uncertain inflows accumulated in a feed tank. American Institute of

Chemical Engineers, 2002.

[40] P. Li, M. Wendt, and G. Wozny. A probabilistically constrained model predictive

controller. Automatica, 38:1171–1176, 2002.

[41] Miles Lubin and Iain Dunning. Computing in operations research using julia. INFORMS

Journal on Computing, 27(2):238–248, 2015.

[42] W.L. Luyben. Process Modeling, Simulation and Control for Chemical Engineers.

McGraw-Hill, 2nd edition edition, 1990.

[43] J.M. Maciejowski. Predictive Control with constraints. Prentice-Hall, 2002.

[44] O. Masahiro. Joint chance-constrained model predictive control with probabilistic

resolvability. American Control Conference, 2012.

[45] P. Mhaskar, N.H. El-Farra, and P.D. Christofides. Stabilization of nonlinear systems

with state and control constraints using lyapunov-based predictive control. Systems and

Control Letters, 55:650–659, 2006.

168

© University of Pretoria

[46] K.P. Murphy. Switching kalman filters. Technical report, Compaq Cambridge Research

Lab, 1998.

[47] K.P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning.

PhD thesis, University of California, Berkeley, 2002.

[48] K.P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[49] N. Nandola and S. Bhartiya. A multiple model approach for predictive control of nonlinear

hybrid systems. Journal of Process Control, 18(2):131–148, 2008.

[50] L. Ozkan, M. V. Kothare, and C. Georgakis. Model predictive control of nonlinear

systems using piecewise linear models. Computers and Chemical Engineering, 24:793–799,

2000.

[51] T. Pan, S. Li, and W.J. Cai. Lazy learning based online identification and adaptive

pid control: a case study for cstr process. Industrial Engineering Chemical Research,

46:472–480, 2007.

[52] J.B. Rawlings and D.Q. Mayne. Model Predictive Control. Nob Hill Publishing, 2009.

[53] B. Reiser. Confidence intervals for the mahalanobis distance. Communications in

Statistics: Simulation and Computation, 30(1):37–45, 2001.

[54] Y. Sakakura, M. Noda, H. Nishitani, Y. Yamashita, M. Yoshida, and S. Matsumoto.

Application of a hybrid control approach to highly nonlinear chemical processes. Computer

Aided Chemical Engineering, 21:1515–1520, 2006.

[55] A.T. Schwarm and Nikolaou. Chance constrained model predictive control. Technical

report, University of Houston and Texas A&M University, 1999.

[56] C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson. Obstacles to high-dimensional

particle filtering. Mathematical Advances in Data Assimilation, 2008.

[57] S.J. Streicher, S.E. Wilken, and C. Sandrock. Eigenvector analysis for the ranking of

control loop importance. Computer Aided Chemical Engineering, 33:835–840, 2014.

[58] D.H. van Hessem and O.H. Bosgra. Closed-loop stochastic dynamic process optimisation

under input and state constraints. In Proceedings of the American Control Conference,

2002.

[59] D.H. van Hessem, C.W. Scherer, and O.H. Bosgra. Lmi-based closed-loop economic

optimisation of stochastic process operation under state and input constraints. In

Proceedings of the 40th IEEE Conference on Decision and Control, 2001.

[60] H. Veeraraghavan, P. Schrater, and N. Papanikolopoulos. Switching kalman filter based

approach for tracking and event detection at traffic intersections. Intelligent Control,

2005.

169

© University of Pretoria

[61] A. Wachter and L.T. Biegler. On the implementation of a prima-dual interior point filter

line search algorithm for large-scale nonlinear programming. Mathematical Programming,

106(1):25–27, 2006.

[62] D. Wang, W. Wang, and P. Shi. Robust fault detection for switched linear systems with

state delays. Systems, Man and Cybernetics, 39(3):800–805, 2009.

[63] R.S. Wills. Google’s pagerank: the math behind the search engine. Technical report,

North Carolina State University, 2006.

[64] J. Yan and R.R. Bitmead. Model predictive control and state estimation: a network

example. In 15th Triennial World Conference of IFAC, 2002.

[65] J. Yan and R.R. Bitmead. Incorporating state estimation into model predictive control

and its application to network traffic control. Automatica, 41:595–604, 2005.

[66] M.B. Yazdi and M.R. Jahed-Motlagh. Stabilization of a cstr with two arbitrarily switching

modes using model state feedback linearisation. Chemical Engineering Journal, 155(3):838–

843, 2009.

170

© University of Pretoria

	Introduction
	I Literature, theory and background material
	Literature review
	Stochastic model predictive control
	Switching model predictive control

	Background theory
	Probability theory
	Discrete random variables
	Continuous random variables

	Graph theory
	Probabilistic graphical models
	Bayesian networks
	Dynamic Bayesian networks

	Control
	Linear quadratic regulator control
	Reference tracking
	Linear quadratic Gaussian control
	Model predictive control

	Matrix identities

	Hidden Markov models
	Markov models
	Hidden Markov models
	Filtering
	Smoothing
	Viterbi decoding
	Prediction

	Burglar localisation problem

	CSTR model
	Qualitative analysis
	Nonlinear model
	Linearised models

	II Single model systems
	Inference using linear models
	Kalman filter
	Kalman prediction
	Smoothing and Viterbi decoding
	Filtering the CSTR

	Inference using nonlinear models
	Sequential Monte Carlo methods
	Particle filter
	Particle prediction
	Smoothing and Viterbi decoding
	Filtering the CSTR

	Stochastic linear control
	Unconstrained stochastic control
	Constrained stochastic control
	Reference tracking
	Linear system
	Nonlinear system
	Conclusion

	III Multiple model systems
	Inference using linear hybrid models
	Exact filtering
	Rao-Blackwellised particle filter
	Rao-Blackwellised particle prediction
	Smoothing and Viterbi decoding
	Filtering the CSTR

	Stochastic switching linear control using linear hybrid models
	Unconstrained switching control
	Most likely model approach
	Model averaging approach

	Conclusion

	Inference using nonlinear hybrid models
	Exact filtering
	Switching particle filter
	Switching particle prediction
	Smoothing and Viterbi decoding
	Filtering the CSTR

	Stochastic switching linear control using nonlinear hybrid models
	Unconstrained switching control
	Constrained switching control
	Conclusion

	Future work and conclusion
	Parameter optimisation
	Generalised graphical models
	Filtering techniques
	Conclusion

