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SUMMARY

DIRECTION FINDING OF LONG TERM EVOLUTION ENABLED

HANDSETS FOR MONITORING APPLICATIONS

by

Johannes Rossouw van der Merwe

Supervisors: Prof L. P. Linde and Prof W. P. du Plessis

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Electronic Engineering)

Keywords: Array signal processing, Direction-of-arrival estimation, FD-Root-

MuSiC algorithm, 4G mobile communication

Given the widespread adoption of cellular-phones, it can be assumed that the presence of a

phone can predict with good certainty the presence of a human being. Therefore the location

of phones in restricted areas can aid in anti-poaching, anti-smuggling, illegal immigration,

and search-and rescue operations. There are numerous obstacles associated with regulations

and policies which restrict the direct use of the cellular network, therefore the acquisition of

a non-network cooperative (NNC) direction finding (DF) receiver system is required. This

dissertation addresses the development of such a NNC system.

The system requirements for a NNC-DF is analysed to illustrate the design challenges, such

as DF accuracy, dynamic range, inter-channel interference, processing requirements and cost.

Theoretical analysis of different receiver designs, DF estimation algorithms, processing meth-

ods, and sensory input configurations, are done and investigated through simulation. The

simulation results are used to optimise the system parameters in terms of processing time

versus DF accuracy. The optimised results are then used to discuss the design process for an

operational system.

Several Multiple Signal Classification (MuSiC) based algorithms are used for the direction-

of-arrival (DOA) estimation, as these algorithms are super-resolution phase interferometry
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algorithms. Linear and circular sensor arrays of four to six elements are considered for

the investigation. A selection of receivers which use different levels of signal isolation and

integration methods are used and compared.

The simulation results illustrate that receiver designs with high signal separation have su-

perior results, but the associated processing requirements make these receivers impractical.

Many of the simpler receiver architectures achieved competitive DF accuracy, and required

only a fraction of the processing resources. Exploiting the resource block (RB) structure of

Long-Term Evolution (LTE), the 12-carriers per RB can be combined to improve DF estim-

ation. It was found that integration of the autocovariance matrix (ACM) of 12 carriers in a

RB (MuSiC based algorithms require the ACM for estimation) yields the best results. The

Root-MuSiC algorithm resulted in the optimal performance versus processing time for linear

arrays, and the frequency-domain Root-MuSiC algorithm for circular arrays. Advanced forms

of the MuSiC algorithm, which use the weighted least squares (WLS) algorithm, required ad-

ditional processing, but results did not improve significantly. It was also found that the design

of the receiver had a greater influence on the performance than the DF algorithms.

Optimisation was done so as to find the best combination of the following:

• receiver design,

• integration method,

• windowing method,

• DF algorithm,

• antenna configuration and

• antenna size.

The optimisation compared the processing time to DF accuracy of the different DF systems.

It was shown that for uniform circular arrays (UCAs), simple receiver architectures with

ACM integration over a RB, using a rectangular window and the frequency-domain (FD)-

Root-MuSiC algorithm, yielded the best processing time versus DF accuracy. Similar results

were found with uniform linear arrays (ULAs), with the exception that the Root-MuSiC

algorithm performed better. Optimisation proved efficient DF receiver design.

It was concluded that the best possible DF accuracy often requires an impractical system.
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Similarly, arbitrary large arrays yield excellent results, but are expensive and impractical for

mobile applications. Through optimisation of the simulation results the development of a

realisable system with the best possible performance is possible.
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OPSOMMING

RIGTINGPEILING VAN LANGTERMYN EVOLUSIE GEAKTIVEERDE

PLATFORMS VIR MONITERING-TOEPASSINGS

deur

Johannes Rossouw van der Merwe

Studieleier(s): Prof L. P. Linde en Prof W. P. du Plessis

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Magister in Ingenieurswese (Elektroniese Ingenieurswese)

Sleutelwoorde: FD-wortel-MuSiC algoritme, Rigting-van-aankoms estimasie,

Samestelling seinverwerking, 4G mobiele kommunikasie

Gegewe die wydverspreide gebruik van sellulêre fone, kan dit aanvaar word dat die teenwoor-

digheid van ’n selfoon met sterk sekerheid die teenwoordigheid van ’n mens kan voorspel.

Gevolglik kan die bepaalde ligging van ’n selfoon in ’n verdagte gebied help om bv. stropery,

smokkel, en onwettige immigrasie teen te werk, asook help met soek- en reddingsoperasies.

Wette en regulasies bied struikelblokke wat die direkte gebruik van ’n sellulêre netwerk beperk

om die ligging van ’n sellulêre foon te bepaal. Daarom is dit noodsaaklik om ’n nie-netwerk

koherente (NNK) rigtingpeiling (RP) - stelsel te gebruik om die ligging van sellulêre fone te

bepaal. Hierdie verhandeling spreek die ontwerp van so ’n NNK stelsel aan.

Die stelselvereistes vir ’n NNK RP-stelsel word ontleed, terwyl die geassosieerde ontwerpsuit-

dagings, soos akkuraatheid, dinamiese bereik, inter-kanaal steuring, verwerkingsvereistes en

koste in ag geneem word. Die teoretiese analise van verskillende ontvangerontwerpe, rigting-

peiling algoritmes, en verwerking metodes is gedoen en bevestig deur simulasie. Die simulasie-

resultate word gebruik om die stelselparameters te optimiseer in terme van verwerkings-tyd

teenoor rigtingpeilings akkuraatheid. Die resultate wat as optimaal beskou word, word be-

spreek in terme van die ontwerp van ’n operasionele stelsel.
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Verskeie MuSiC-gebaseerde algoritmes word gebruik vir die rigting-van-aankoms estimasie,

omdat hierdie algoritmes super-resolusie fase-interferometriese tegnieke is. Lineêre en

sirkulêre sensorsamestellings met vier tot ses elemente word ondersoek in hierdie studie.

’n Verskeidenheid van ontvangers met verskillende seinisolasietegnieke en integrasiemetodes

word gebruik en vergelyk.

Die simulasieresultate wys daarop dat die ontvangerontwerpe, met hoë seinisolasietegnieke,

bostaande resultate toon, maar dat die verwerkingsvereistes van dié tegnieke onrealisties

hoog is. Eenvoudiger ontvangerontwerpe bereik kompeterende rigtingpeilings akkuraathede,

maar vereis slegs ’n fraksie van die verwerkingshulpbronne. Deur die ontginning van die

verwerkingsblok (VB) van Langtermyn Evolusie (LTE), kan die 12 draers per VB gekom-

bineer word om die rigtingpeiling te verbeter. Daar is bevind dat die integrasie van die

kovariansiematriks van elk van die 12 draers per VB (MuSiC gebaseerde algoritmes benodig

’n kovariansiematriks vir estimasie) die beste resultate lewer. Die Wortel-MuSiC algoritme

het die beste akkuraatheid teenoor verwerkingstyd vir lineêre samestellings gelewer, en die

frekwensie-domein (FD) Wortel-MuSiC algoritme die beste resulate vir sirkulêre samestellings

gebeur. Gevorderde weergawes van die MuSiC-algoritme, wat die geweegde kleinste kwad-

rate algoritme gebruik, vereis addisionele verwerking, maar lewer resultate wat nie beduidend

beter is nie. Dit is ook bevind dat die ontwerp van die ontvanger ’n groter invloed op die

akkuraatheid van die estimasie het as wat die rigtingpeiling algoritmes bied.

Optimisering is gedoen om die beste kombinasie van die volgende faktore te vind:

• ontvanger ontwerp,

• integrasie metode,

• venstermetode,

• rigtingpeilings algoritme,

• antennasamestelling-opstelling en

• antennasamestelling-grootte.

Die optimiseringsproses vergelyk die verwerkingstyd en rigtingpeilings akkuraatheid van

die verskillende stelselparameters. Daar is getoon dat eenvormige sirkulêre samestellings

met eenvoudige ontvanger-argitektuur en kovariansiematriks integrasie oor ’n VB, met die

FD-Wortel-MuSiC-algoritme, die beste verwerkingstyd teenoor rigtingpeilings akkuraatheid
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lewer. Soortgelyke resultate is gevind met eenvormige lineêre samestellings, met die uit-

sondering dat die Wortel-MuSiC algoritme. Die gebruik van optimiseringstegnieke lei tot

doeltreffende rigtingpeilingontvanger ontwerp.

Die mees gewensde rigtingpeilings akkuraatheid vereis dikwels ’n onwerkbare stelsel. Verder

lewer arbitrêre groot samestellings uitstekende resultate, maar is duur en oneffektief vir mo-

biele radio toepassings. Deur optimisering van die simulasieresultate kan werkbare stelsels

ontwikkel word met die beste moontlike werkverigting.
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LIST OF ABBREVIATIONS

3-D Three dimensional

3GPP 3rd Generation Partnership Project

4G 4th generation mobile networks

5G 5th generation mobile networks

ACM Autocovariance matrix

ADC Analogue-to-digital converter

AGC Automatic gain control

AOA Angle of arrival

ARD Amplitude-range-Doppler

ASK Amplitude-shift keying

AWGN Additive white Gaussian noise

BER Bit error rate

BPF Bandpass filter

BPSK Binary phase-shift keying

CDMA Code-division multiple access

CP Cyclic prefix

CPU Central processing unit

CRB Cramér-Rao bound

CRC Cyclic redundancy check

DCT Discrete cosine transform

DDC Digital down-converter

DF Direction finding

DFT Discrete Fourier transform

DL Down-link

DOA Direction-of-arrival
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DoCoMo Do Communications over the Mobile-network

DSP Digital signal processor

E-UTRA Evolved Universal Terrestrial Radio Access

EM Electromagnetic

eNodeB Evolved Node B

EPA Extended pedestrian A

ESPRIT Estimation of signal parameters via rotational invariance technique

ETSI European Telecommunications Standards Institute

ETU Extended typical urban

EVA Extended vehicular A

FD Frequency-domain

FDD Frequency-division duplex

FDMA Frequency-division multiple access

FFT Fast Fourier transform

FIR Finite impulse response

FOV Field-of-view

FPGA Field-programmable gate array

GPU Graphics processing unit

GSM Global System for Mobile Communications

ICI Inter channel interference

IDFT Inverse discrete Fourier transform

IF Intermediate frequency

IFFT Inverse fast Fourier transform

IMT-A International Mobile Telecommunications Advanced

ISI Inter symbol interference

ITU International Telecommunication Union

ITU-R International Telecommunication Union radio-communications Sector

LOS Line of sight

LPF Low pass filter

LQE Linear quadratic estimation

LTE Long-Term Evolution

LTE-A Long-Term Evolution Advanced

MIMO Multiple-input, multiple-output
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MP Matrix pencil

MSE Mean square error

MTN Mobile Telephone Network

MuSiC Multiple Signal Classification

MVDR Minimum variance distortionless response

NB Narrow band

NI National Instruments

NNC Non-network cooperative

NTT Nippon Telegraph and Telephone

OFDM Orthogonal frequency division multiplexing

PAPR Peak-to-average-power ratio

PCA Principal component analysis

PCCC Parallel concatenated convolutional code

PDF Probability density function

PN Pseudo-noise

POI Probability of intercept

PSD Power spectral density

PSK Phase-shift keying

QAM Quadrature amplitude modulation

QoS Quality of service

QPSK Quadrature phase modulation

RB Resource block

RE Resource element

RF Radio frequency

RMSE Root mean square error

RRC Root raised cosine

RWR Radar warning receiver

S/P Serial-to-parallel

SC-FDMA Single-carrier frequency division multiple access

SDMA Space-division multiple access

SDR Software-defined radio

SLL Sidelobe level

SNR Signal-to-noise ratio
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SQNR Signal-to-quantisation-noise ratio

SVD Singular value decomposition

TDD Time-division duplex

TDMA Time-division multiple access

TDoA Time difference of arrival

UCA Uniform circular array

UCA-CE Uniform circular array with a center element

UE User equipment

UL Up-link

ULA Uniform linear array

WB Wide-band

WLS Weighted least squares
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NOMENCLATURE

[·]H Hermitian transpose of a matrix

‖·‖ Magnitude of a vector or absolute value of a scalar

[·]∗ Complex conjugate

[·]T Transpose of a matrix

Am Amplitude value on the mth OFDM carrier

an Complex amplitude of the nth antenna element

Anorm Normalised amplitude

A(θ) Array steering matrix

ȧ(θ) First derivative of the array steering vector

a(θ, φ) Antenna steering vector

b Number of bits

B Factorised steering matrix

B̃ Weighted least squares steering matrix

bef Number of effective bits

Bf Sample bandwidth

Bs Bandwidth of the signal of interest

c Speed of light

CRB Cramér-Rao bound

CRBUCA Cramér-Rao bound of an uniform circular array

CRBUCA Cramér-Rao bound of an uniform circular array with a centre element

CRBULA Cramér-Rao bound of an uniform linear array

D Antenna directivity

d Path length

dA Distance from handset A to DF system

dB Distance from handset B to DF system
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dC Distance from handset C to DF system

4d Distance between two sensors

δ[n] Delta Dirac function

∆θ Angular step size for the Fourier domain Root-MuSiC algorithm

deNB Distance from eNode B to DF system

dn Distance vector of the nth antenna element

ds Inter-element spacing of an uniform linear array

ek The kth eigenvector

EN The noise subspace

ÊN Estimated noise subspace

ES The signal subspace

ÊS Estimated signal subspace

E [·] Expected value

F Fisher information matrix

f Estimated vector of the MuSiC null-spectrum function

Fa Array factor

Fav Average radiation intensity

fc Sinusoidal centre frequency

fD Maximum Doppler frequency shift

Fm The mth root of the Fourier domain Root-MuSiC algorithm

F̆m Null-padded Fourier domain polynomial

Fmax Maximum radiation intensity

fs,min Minimum sampling frequency for TDoA systems

Fm,n The value in the Fischer information matrix in the mth row and nth

column

Fn Noise figure

F {·} Fourier transform

fs Sample rate

fsym OFDM carrier spacing

F (θ, φ) Antenna radiation pattern

f̂(θ) Approximated MuSiC null-spectrum function

f(θ) The MuSiC null-spectrum function

f̆(z) Interpolated MuSiC null-spectrum function
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G Transformation matrix for manifold Root-MuSiC

Gr Antenna gain from receiver

Gt Antenna gain from transmitter

g(θ) Virtual steering vector of an antenna array

Hf [ω] Filter response

Hm Fourier domain weighted least squares polynomial coefficient

I Identity matrix

={·} Imaginary values of a matrix

J Number of one sided samples used for interpolation of the MuSiC

null-spectrum function

j Imaginary unit

Jm (·) Bessel function of the first kind of order m

K Number of data samples

kb Boltzmann’s constant

k(θ, φ) Wave-number of each antenna element for the given signal

L Number of signals

λ Wave-length of a signal

λk The kth eigenvalue

Λ̂N Estimated eigenvalue matrix of the noise subspace

Λ̂S Estimated eigenvalue matrix of the signal subspace

Lp Ideal path-loss

M Number of one sided samples used for the Fourier domain Root-MuSiC

algorithm

M Number of angle of arrival estimates

MSE(θ̂) Mean square error of the angle of arrival

µen Mean of Xen

µn Mean of Xn

Mw Number of one sided samples used for the Fourier domain weighted

least squares Root-MuSiC algorithm

N Number of integrated data samples

Na Number of antenna elements

n(k) Noise signal at time sample k

Nman Manifold number
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N (µ, σ) Gaussian distribution with mean µ and standard deviation σ

Nq Number of quantisation levels

Nsym Number of modulated OFDM carriers
∂
∂θ Partial derivative in terms of angle of arrival

pgaus Probability density function of a Gaussian random variable

φ Elevation angle

φ0 Phase offset

Pmax Maximum received power

Pmin Minimum received power

Pn Average power of Xn

Pr Received power

pRay Probability density function of a Rayleigh random variable

Prel Relative power

Pt Transmitted power

Q Number of test values for the weighted least squares algorithm

r Radius of an uniform circular array

r1 Radius from eNode B to cell edge

r2 Radius from eNode B to nearest handset

Rc Code rate

<{·} Real values of a matrix

pRice Probability density function of a Ricean random variable

V AR(θ̂) Variance of the angle of arrival

RMSE(θ̂) Root mean square error of the angle of arrival

Rnn[l] Ensemble autocorrelation with offset l

Rs Auto-covariance matrix of transmitted signal vector s

Rs|n Cross terms between the signal and noise of the auto-covariance of the

received signal

R̂x Estimated auto-covariance matrix of received signal vector x

Rx Auto-covariance matrix of received signal vector x

Scc(f) Power spectral density of a single modulated OFDM carrier

S(f) Doppler spread

σ2
en Variance of Xen

σn Standard deviation of noise
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σ2
n Variance of Xn

s(k) Transmitted signal at time sample k

SNQR Signal to quantisation noise ratio

S(t,φ)(f) Power spectral density of OFDM symbol with a phase discontinuity

Sxx[m] Power spectral density of x at the mth frequency

T Window period

T0 Time offset

TCP Cyclic prefix period

tdel Time delay

Tf Radio frame of LTE

θ Azimuth angle

θ̂ Estimated angle of arrival

〈θ, φ〉 Direction of arrival set

θ̂post Post estimation integration output

Thf Half frame of LTE

TK Absolute temperature

trace (·) Trace of a matrix

Ts Time unit of LTE

Ts Sampling period

Tsf Subframe of LTE

Tslot Time slot of LTE

Tsym Symbol period of an OFDM symbol

u Fourier domain weighted least squares polynomial vector

v Normalised frequency shift variable

VAR [·] Variance within a function

vp Propagation velocity

vr Polynomial vector

Wrec[m] Rectangular window function

w(θ) Weights for weighted least squares algorithm

Wθ Weighing matrix

Xen Integrated Gaussian distributed random variable

xi[n] Input to a finite impulse response filter at the nth time sample

Xi[ω] Frequency domain input of a finite impulse response filter
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x[k] Observed signal at the kth sample

x(k) Received signal vector at time sample k

X[m] Frequency domain of the received signal at the mth frequency

Xn Gaussian distributed random variable

xn[k] Noise at the kth sample

XOFDM [m] Modulated data on the mth carrier

xOFDM [n] Time domain data of an OFDM symbol at the n sample

xISOFDM [n] Finite time domain representation of an OFDM symbol

XIS,CT
OFDM (f) Frequency domain of the continuous time expansion of an OFDM

symbol

xIS,CTOFDM (t) Continuous time expansion of an OFDM symbol

xo[n] Output from a finite impulse response filter at the nth time sample

Xo[ω] Frequency domain output from a finite impulse response filter

xs[k] Signal with information at the kth sample

Xs[m] Frequency of the information signal at the mth frequency

yf [n] Continuous time expansion of a channeliser output

ym[n] Output from channeliser receiver of the nth sample and the mth tap

z A root of the MuSiC null-spectrum function

Z Integer values
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Mobile communication platforms, such as cellular phones and tabular devices, are widely

used throughout the world. In October 2014 the number of mobile subscribers using the

technology officially surpassed the human population of approximately 7.18 billion [1]. It

can therefore be assumed that there is a strong correlation between the location of such a

device and that of a human being. Locating a mobile communication platform, and implicitly

locating people, can therefore be used for the following applications:

• search, rescue and other emergency operations;

• natural resource protection against poaching;

• border safeguarding for smuggling and illegal immigration;

• policing activities; and

• for spectral monitoring actions (population profiling).

A method used for tracking is to estimate the direction of the communication signal from

the source (mobile communication device) to the receiving system. By combining multiple

direction-of-arrival (DOA) estimates, the location of the target can be obtained through

triangulation. Once the location is known, the target can be tracked. This dissertation

focuses on the DOA estimation of such a system.
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Chapter 1 Introduction

Mobile operators typically have the ability to track and locate the users of the network; how-

ever due to legal, corporate and administrative obstacles it is often not a viable option for

quick response operations. Therefore, in-field tracking without the aid of the cellular network

is required. Non-network cooperative (NNC) DOA estimation is considerably more difficult

and requires a more complex system. The probability of intercept (POI) and system perform-

ance are both reduced due to lack of a-priori signal information, emitter-receiver geometry

and the characteristics that a mobile communication platform transmits asynchronously and

non-continuously. While the techniques underlying NNC DOA are well-known [2], to the

best of the author’s knowledge, the combination use here has not been considered in the

literature.

Long-Term Evolution (LTE) is a 4th generation mobile networks (4G) technology and is

currently the most recent implemented specification for cellular communications. It should

be noted that 5th generation mobile networks (5G) is due to be launched before the year

2020 [3]. Due to the high data rates of the system, LTE has become very popular with the

increased use of smart-phones. LTE is available in South Africa and was quickly adopted.

LTE is a new communication protocol that has not been thoroughly studied for NNC direction

finding (DF) techniques.

1.1.2 Research gap

DF techniques used on orthogonal frequency division multiplexing (OFDM) systems, such

as LTE, usually assumes full network cooperation. This means that the DF algorithms are

optimal as they are fully synchronised with the source communication signal. Further, the

signal properties are known and can be exploited by the receiver, hence the POI is greatly

increased. There is little research on NNC-DF techniques which are focused on cellular

communication signals, hence a research gap is identified.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The object of the research is to determine which processing methods can be used to increase

the DF accuracy through the exploitation of the OFDM signal structure used in LTE.
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Chapter 1 Introduction

1.3 HYPOTHESIS AND APPROACH

DOA estimation techniques in conjunction with spectral estimation can be used to enhance

DF on communication signals, as used in LTE, to obtain the location of a person. By

exploiting the underlying signal structure it should be possible to increase DF accuracy in

the presence of multiple interfering signals.

A DF system that uses an antenna array will be simulated to determine and compare the

effectiveness of different antenna array types on DOA estimation algorithms.

1.4 RESEARCH GOALS

The following goals are specified for the research:

• To determine if the DOA estimation techniques are applicable and can be adapted for

OFDM-based communication signals,

• Investigate the effects of the antenna array configuration on the performance of the

DOA estimation,

• To determine the angular resolution obtainable by a DF system,

• Explore the characteristics of OFDM based signals that can be exploited to increase

DF accuracy.

1.5 RESEARCH CONTRIBUTION

NNC-DF on LTE signals can be beneficial to emergency, security and monitoring services,

without the required cooperation or network infrastructure of the cellular network operators.

The DF of LTE specific signals can also aid in spacial multiplexing within a communication

system to enhance system capacity.

1.6 OVERVIEW OF STUDY

Chapter 2 provides background to the theoretical concepts required for NNC system design

and what is currently used in literature.
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Chapter 1 Introduction

Chapter 3 analyses the NNC receiver problem and shows the associated signal processing

restrictions. The engineering challenge is greatly emphasised by the theoretical concepts

provided in this chapter.

Chapter 4 provides the details of a simulation set-up, shows the results, and discusses what

is observed in the simulations. Further, the results of the simulations are used to determine

the optimal receiver design parameters.

Chapter 5 uses the simulation results of chapter 4 and applies it to practical system design.

This chapter illustrates that the theoretical best results are often impractical for operational

systems.

Chapter 6 summarises the outcomes of the study and draws conclusions on the work

done.
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CHAPTER 2

LITERATURE STUDY

2.1 CHAPTER OBJECTIVES

This chapter provides a background of DF techniques, with emphasis on the Multiple Signal

Classification (MuSiC) algorithm. Related topics such as estimation theory, noise reduction,

signal isolation and integration, and sensor arrays are also discussed. An overview of the LTE

specification, with emphasis on the physical layer, is given.

2.2 DIRECTION FINDING TECHNIQUES

DOA estimation determines the direction from which a signal originates, in both the azimuth

and elevation angles of the receiver system. Angle of arrival (AOA) on the other hand only

estimates a single angle of the DOA. In most cases AOA estimation is applied to the azimuth

angle of the system, however any single measurement-plane can be used.

DOA estimation can be achieved through multiple methods. In this discussion only non-

cooperative electromagnetic (EM) signal DF is considered; however, it should be noted that

some co-operative techniques, such as querying a source to reveal its location, exist.

For EM signal DF, the DOA estimation technique is dependent on the physical attributes of

the sensor system. DOA systems can be categorised as follows:

1. amplitude comparison,

2. time difference of arrival (TDoA),

3. phase comparison.
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Chapter 2 Literature study

Amplitude comparison techniques either use multiple sensors, or multiple measurements at

different positions and/or orientations to perform DOA estimation. The technique compares

the amplitude from different data samples and determines from which direction the source

signal originated from, by selecting the DOA that is associated with the largest measured

amplitude.

By using multiple directional sensors, where each sensor is placed in order to cover a different

sector such that the full 360◦ azimuth is covered, multiple sensors can be used to achieve

amplitude comparison. Another popular method is to use a single directional sensor which

is rotated, and then to select the AOA at the angle at which the signal is observed to be the

most powerful. This is referred to as a spinning-DF. The advantage of the spinning-DF is that

only a single sensor is required. However the drawback is that the mechanical dynamics of

the system requires regular maintenance. Lastly, manual amplitude comparison can be done

by using a single hand-held sensor that can be pointed in the direction of interest. Hand-held

amplitude comparison is often used to locate beacons and illegal broadcast transmissions for

spectral monitoring and regulative tasks.

TDoA requires multiple sensor elements, as the measured time difference caused by the travel

time of the EM signal between these sensors are compared. This method is possible due to

the fact that any signal is limited by its propagation velocity, and in the case of a EM signal

it is the speed of light. The complication with this method is that the sample rate fs of such

a system should be sufficiently high to be able to measure the time differences. Alternatively

the distance between sensors should be increased such that the travel distance for the wave,

and consequently the travel time, is increased. This observation limitation is related to the

propagation velocity, and as a result TDoA is more popular in auditory systems (i.e. SONAR)

than in EM systems. The minimum required sample-rate fs,min for a two element system is

related to the propagation velocity vp (in the case of an EM wave it is the speed of light c)

and the distance between the two sensors 4d:

fs,min = vp
4d

= c

4d
. (2.1)

Phase comparison DF assumes that the sample rate condition is not met by the system (2.1).

In the majority of the cases the condition is not met as the distance between the sensors is

reduced to make the system smaller, in many cases with the objective of being portable. The
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frequency of use, also has a significant influence on the size of the array, hence high frequency

systems may force the separation distance to be reduced. In phase comparison the phase

difference between the sensor elements is used to estimate the DOA. Phase comparison is

also known as phase interferometry.

Phase comparison requires multiple antenna elements. Multiple elements increase system

performance through diversity gain. Typically the system performance increases as the num-

ber of sensor elements are increased. The spatial relations of a uniform linear array (ULA)

has similar mathematical characteristics as the frequency content of a signal, thus signal

frequency estimation techniques can be adapted for DOA estimation [4]. It can therefore be

concluded that a discrete Fourier transform (DFT) can be used to transform a measurement

set from the sensor array to the received power over different incident angles. These methods

are considered similar to DF phase estimation. For other array configurations the techniques

can be adapted, but a mathematical transformation is required. There are multiple frequency

estimation techniques [5] that can be adapted for interferometry.

2.2.1 Super Resolution DF techniques

Super resolution DF techniques are DOA estimation methods with an angular resolution

smaller than the main beam-width of the antenna array. The resolution of a DF system is

defined as the smallest relative incident angle between two independent sources which the

sensor system can differentiate as being independent signals.

A popular super resolution DF technique is the MuSiC algorithm, as it can be used for

any sensor array configuration and allows the DOA of multiple sources to be estimated

simultaneously [6–8]. MuSiC is a principal component analysis (PCA) based technique and

uses eigenvalue decomposition on the autocovariance matrix (ACM) of the received signals

to estimate the signal parameters.

Estimation of signal parameters via rotational invariance technique (ESPRIT) is a super resol-

ution AOA estimation technique that is computationally less complex than MuSiC. However,

it has configurational restrictions on the usable sensor array. MuSiC has been found to have

superior performance over ESPRIT [9], and joint MuSiC-ESPRIT algorithms have also been

considered with improved performance at the cost of a great increase in complexity [10]. Im-
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proved versions of MuSiC and ESPRIT have been developed based on cyclostationarity, but

requires a-priori information of the transmitted signals [11]. Both the MuSiC and ESPRIT

algorithms incorporate a search step to find an optimal solution. Methods to reduce the

parametric search have therefore been developed. A neural network technique has also been

considered and implemented to reduce the parameter search [12].

Matrix pencil (MP) algorithms apply singular value decomposition (SVD) to a windowed

matrix of the received signal to estimate the TDoA between the elements [13]. The MP has

the benefit that it is independent of the ACM and can be used to estimate the TDoA of

non-stationary signals [14]. MP is a mathematical extension on the ESPRIT algorithm and

has a computational benefit of being independent of parametric searches [15,16].

The Capon algorithm, also known as the minimum variance distortionless response (MVDR)

beam-former is based on the Barlett algorithm [17], and was originally used for locating seis-

mic activity. This method aims to impose a unity gain in "look"-direction whilst minimising

the received power in all other directions. The constraint minimisation problem is solved

through the use of Lagrange multipliers. The benefit of this algorithm is that it reduces

interference signals form other directions as it follows a beam-former approach.

2.2.2 Sensor Array

The configuration of the sensor input influences the design of a DF system, as it determines

which DF algorithms can be used, the signal processing, cost, and physical dimensions of a

system. If a mechanically static system is required (hence no moving parts) then a sensor

array should be used. Further, the use of multiple sensors are widely used in DF systems due

to diversity gain and as it allows the use of super resolution techniques.

2.2.2.1 Antennae and Arrays

An antenna is an EM transducer between a transmission line and a propagating EM wave in

an unbounded medium [18]. The physical dimensions and properties of an antenna determines

the radiation pattern of the said antenna in free space.

A wave that is radiated by a point source propagates spherically away from the point. As
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the wave propagates from the source the radius of the sphere increases, and at a sufficiently

large radius it can be assumed that the wave-front at a given point is approximately flat,

relative to the receiver system. The far-field is defined as the region where the wave-front is

approximated to be flat. The radiation pattern is a directional function that characterises

the relative power distribution of an antenna in the far field. The directivity of an antenna

D is defined as the ratio between the maximum radiation intensity Fmax and the average

radiation intensity Fav:

D = Fmax
Fav

. (2.2)

Most phase interferometry algorithms assume that omnidirectional antennas are used. An

omnidirectional antenna radiates equal energy in all directions. In practice dipole antennas

are often used, as the respective radiation pattern F (θ, φ) is only a function of the elevation

angle from the horizon φ and independent of the azimuth angle θ:

F (θ, φ) =
(

cos
(
π
2 sin(φ)

)
cos(φ)

)2

. (2.3)

If multiple antenna elements are phase synchronised, the array factor Fa(θ, φ) of those ele-

ments can be calculated. The array factor Fa is a component sum of the Na array elements,

and is a function of each antenna signal’s complex amplitude an; the position of each antenna

in three dimensional (3-D) space dn; and the wave-number of the signal, k:

Fa =
∣∣∣∣∣
Na−1∑
n=0

ane− jk·dn

∣∣∣∣∣
2

. (2.4)

If all array elements have the same radiation pattern, the radiation pattern with the elements

can be multiplied to the array factor to obtain the radiation pattern of the antenna array.

By altering the signal’s complex amplitudes an for each element, the radiation pattern can

be altered, therefore enabling beam-steering. These signal attributes are also known as the

array steering vector. Given an array of Na antenna elements , the resultant (Na×1) steering

vector a(θ, φ) of that antenna array is described as:

a(θ, φ) =
[

e jk(θ,φ)·d1 . . . e jk(θ,φ)·dNa

]T
. (2.5)

The wave-number k is the spatial vector and a function of the azimuth angle θ, elevation

angle φ and the expected signal’s wave-number, as shown in:

k(θ, φ) = 2π
λ

[
sinφ cos θ sinφ sin θ cosφ

]
. (2.6)
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Most antennas are reciprocal in nature, hence the radiation pattern is equivalent to the power

received from each direction. Therefore the radiation pattern and steering vector can be used

for DOA estimation. Many algorithms address the reverse problem, through estimating the

steering vector which will result in a reproduction of the measured data. This is why a good

understanding of antenna arrays and beam steering is required for DOA estimation.

It should be noted that beam-forming is proven optimal with narrow band (NB) signals.

Similarly, most DOA algorithms are only applicable to NB signals.

Popular configurations that include uniformly spaced arrays are the ULA and the uniform

circular array (UCA). The ULA consists of Na elements located on a straight line with an

equal spacing between them. For example, if all the elements are located along the x-axis

with a spacing of ds, then the position of all the elements d are given by :

d = ds

[
−Na

2 −Na+1
2 · · · Na−1

2
Na
2

]
· x̂. (2.7)

The benefit of a ULA is that the DFT of the steering vector can be used to generate the

radiation pattern of the array:

Fa =
∣∣∣∣∣
Na−1∑
n=0

ane− jnds 2π
λ

∣∣∣∣∣
2

= |F {a}|2 . (2.8)

The wave-number k is set to 2π
λ , where λ is the wavelength of the signal of interest. The

Fourier transform is denoted by F {·}. The use of the DFT greatly simplifies the required

mathematical calculations. The major drawback of a ULA is that the radiation pattern is

symmetrical over the line on which the elements are located, therefore the line-symmetry

causes a 180◦ ambiguity. In practice, directional antennas are used to limit the beam to only

a single side of symmetry in order to resolve the ambiguity. In the process the array has a

smaller field-of-view (FOV).

A UCA consists of Na antenna elements that are located on a circle with radius r. The

spatial vector can be described as:

dn = r · cos
(

2π n

Na

)
· x̂ + r · sin

(
2π n

Na

)
· ŷ. (2.9)

The benefit of a UCA is that it has a 360◦ azimuth coverage, hence making AOA possible in
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all angles, if a sufficient number of elements are used. The main lobe of a UCA is broader

than that of a ULA array, for the same number of antenna elements.

2.2.2.2 Selection of the Sensor Array

ULAs are typically used for multiple-input, multiple-output (MIMO) communications as they

are fairly simple to implement and can form narrow beams [6]. A ULA has a DF ambiguity [4].

However, for cellular communications sectoring is used with directed antenna elements. The

sectoring thus removes the DF ambiguity, at the cost of requiring a ULA for each sector [9].

The adaptation of interferometry algorithms for non-linear antenna arrays has been done,

but increases the algorithm’s complexity [4,7]. Using a ULA for each sector is expensive and

requires multiple replicas of the same system.

Monitoring applications, where NNC-DF is used, typically use a single UCA . This is done

such that a single system is required and that a DF ambiguity is eliminated. A comparison

of the two structures for smart antenna arrays have been done [19], but circular arrays have

not been used for DF on LTE or similar communication systems.

LTE is an agile system with variable bandwidth that can be changed by the base-station

according to the required spectrum within the available allocated spectrum [20]. Furthermore,

the allocated bandwidth for each mobile station can be reallocated per LTE frame of 1 ms.

This also implies that the DOA estimation should be achieved within 1 ms. Each mobile

station can be assigned a different portion of the frequency band and time slots. An additional

step to determine the DOA signal is therefore to determine which resources is allocated to a

user. Hence joint time-, frequency- and DOA estimation should be implemented per mobile

station for successful locating.
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2.3 DOA ESTIMATION PERFORMANCE

2.3.0.3 Estimation

Given a variable θ and the estimator of the variable θ̂, the mean square error (MSE) is defined

as the average power of the error [21]:

MSE(θ̂) = 1
M

M∑
m=1

(θ̂m − θ)2. (2.10)

The root mean square error (RMSE), also referred to as the absolute error, is the square-root

of the MSE:

RMSE(θ̂) =
√
MSE(θ̂) =

√∑M
m=1(θ̂m − θ)2

M
. (2.11)

The RMSE is used as a baseline to determine the performance of an estimator. The benefit

of using the RMSE, rather than the MSE, is that it has the same units as the estimated

variable and is therefore simpler to compare with. Errors are usually caused by the noise in

a system.

2.3.0.4 The Cramér-Rao bound

The Cramér-Rao bound (CRB) is the lower bound for which estimation of θ is possible [2].

The CRB for an estimated variable is defined by the variance expected of that variable:

MSE(θ̂) = VAR[θ̂] ≥ CRB. (2.12)

The CRB for AOA estimation is derived from the Fisher information matrix F and the

number of data points K used in the measurement:

MSE(θ̂) = 1
K

F−1. (2.13)

The Fisher information matrix, for the estimation of a single signal, is a scalar [22]:

F = trace
(

R−1
x

∂Rx

∂θ
R−1
x

∂Rx

∂θ

)
. (2.14)

The covariance matrix Rx is a function of the signal-to-noise ratio (SNR) and the steering

vector of the array a(θ):

Rx = SNR · a(θ)a(θ)H + I, (2.15)
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where I is defined as the identity matrix and the Hermitian transpose is defined by (·)H .

The resultant Fisher matrix can be determined to be a function of the SNR, the number of

antenna elements Na and the derivative of the steering vector:

F = 2SNR× |ȧ(θ)|2 NaSNR
NaSNR + 1 . (2.16)

The CRB for AOA estimation can be simplified if it is assumed that the number of antenna

elements Na is arbitrarily large. Then the CRB can be simplified by:

CRB ≈ 1
2K × SNR× |ȧ(θ)|2

, (2.17)

where K is the number of snapshots of the signal used and ȧ(θ) is the derivative of the

steering vector in terms of the incident angle.

The CRB for multiple signals is typically higher due to the interference between the signals.

The Fisher information matrix for P signals can be defined as:

F =


F1,1 · · · F1,P
... . . . ...

FP,1 · · · FP,P

, (2.18)

where each of the values Fn,m in the Fisher information matrix is defined by the respective

partial derivative of the incident angle set (θm, θn) as shown:

Fm,n = trace
(

R−1
x

∂Rx

∂θm
R−1
x

∂Rx

∂θn

)
. (2.19)

As there are multiple signals present, the definition of the covariance matrix is changed

to:

Rx =
P∑
p=1

SNRpap(θ)ap(θ)H + I. (2.20)

By solving the Fisher information matrix for the given signal set, the CRB for each signal

can be determined.

2.4 THE MUSIC ALGORITHM

The MuSiC algorithm is selected for further discussion, as it is a super resolution DOA

estimation algorithm that can be used on any array configuration. Many DOA estimation
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algorithms are bounded to certain array configurations (e.g. ESPRIT requires two identical

array sets), hence the unbounded property of the MuSiC algorithm is beneficial. The MuSiC

algorithm therefore allows the simple comparison of different array configurations.

2.4.1 Spectral MuSic Algorithm

The MuSiC algorithm is a super resolution interferometry technique used for DOA estima-

tion [23].

The sensor array receives L NB far-field signals, each with a DOA of 〈θ, φ〉. The DOA values

are defined as:

〈θ, φ〉 =
[
〈θ1, φ1〉 . . . 〈θL, φL〉

]T
(2.21)

A single snapshot at a discrete time k of the received signal x can be represented as:

x(k) = A(θ)s(k) + n(k), (2.22)

where s(k) is a (L × 1) vector of the signal waveforms, and A(θ, σ) is the (Na × L) signal

steering matrix. The steering matrix A(θ, σ) is defined as:

A(θ) =
[

a(θ1, φ1) . . . a(θL, φL)
]
, (2.23)

where n(k) is a (L× 1) vector representing the received noise and is assumed additive white

Gaussian noise (AWGN) with a variance of σ2
n. The noise vector is defined as:

n(k) ∼ N (0, σn). (2.24)

The ACM Rx of the received signal is a (Na × Na) Hermitian matrix and is defined as the

expected value of the multiplication of the received signal and its Hermitian transpose:

Rx = E
[
x(k)× x(k)H

]
= ARsAH + σ2

nI. (2.25)

The ACM Rs of the source signals is defined in:

Rs = E
[
s(k)× sH(k)

]
. (2.26)
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The ACM should be approximated from the data. To improve the approximation of the

ACM, K windows of the data can be averaged:

R̂x = 1
K

K∑
k=1

x(k)× xH(k). (2.27)

The ACM can be composed into eigenvalue λk and eigenvector ek pairs:

Rx =
Na∑
k=1

λkekeHk . (2.28)

The largest L eigen-pairs can be regarded as the eigenvalues and eigenvectors describing the

signal subspace:

ES =
[

e1 . . . eL
]
, (2.29)

and the remaining eigenvalues and eigenvectors describe the noise subspace:

EN =
[

eL+1 . . . eNa
]
. (2.30)

Note that the eigen-pairs should be sorted in descending values for this decomposition, as

shown: (
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂Na

)
. (2.31)

The approximation ACM can therefore be separated into a signal ACM and a noise

ACM:

R̂x = ÊSΛ̂SÊH
S + ÊNΛ̂NÊH

N. (2.32)

The eigenvalue diagonal matrices are defined by the signal-subspace eigenvalues:

Λ̂S = diag
(
λ̂1, . . . , λ̂L

)
, (2.33)

and the noise-subspace eigenvalues:

Λ̂N = diag
(
λ̂L+1, . . . , λ̂Na

)
. (2.34)

The MuSiC null-spectrum function is defined by the array steering vector and the noise-

subspace eigenvector-matrix:

f(θ) = aH(θ, φ)ÊNÊH
Na(θ, φ) =

∥∥∥ÊH
Na(θ, φ)

∥∥∥ . (2.35)
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The MuSiC null-spectrum function calculates the relation between the incident angle (both

azimuth and elevation) and the observed signal; finding the minima of this function will yield

the DOA estimation of the L signals.

The spectral MuSiC algorithm searches for the minima of the MuSiC null-spectrum function

by guessing and testing multiple values. This method requires much processing and the

estimator is limited to the testing values, hence it is in the definition biased to the test value

step size. There are many methods for optimising the search of the minima. One such method

is to use a tree-type search algorithm, thus reducing the number of values to be tested.

The MuSiC algorithm is a robust DOA estimation method, however it does require the

receiver to have a-priori knowledge on the number of signals observed in the ACM, as it

influences the assumption of the signal - and noise subspaces. This is often considered as the

greatest drawback of MuSiC based DOA algorithms. One method to counter this problem

is to estimate the number of signals by exploiting the angular diversity of the array [24–26]

.

Through spectral and temporal filtering, signals can be isolated such that the number of

present signals are reduced, thereby improving the performance of the MuSiC algorithm [27].

Further, in the case where the signals are sparse in time or frequency, filtering can lead to the

assumption that only one signal can be present, therefore the problem is reduced to single

signal detection [28].

2.4.2 Non parameter search algorithms

2.4.2.1 Root-MuSiC

A method of reducing the bias whilst reducing the processing required for the DOA estima-

tion, is the Root-MuSiC algorithm [29]. This algorithm calculates polynomial vector vr from

the noise subspace:

vr(m) =
∑

k−l=m

[
ÊNÊH

N

]
k,l
. (2.36)

Each element in the polynomial vector vr is the sum of a diagonal in the matrix ÊNÊH
N.

The roots of the polynomial vector reveal the locations of the stationary points of the MuSiC
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null-spectrum function; by selecting the largest root within the unit circle, the DOA can be

estimated.

2.4.2.2 Manifold Root-MuSiC

It should be noted that the Root-MuSiC algorithm is only directly applicable to a ULA [30]. If

any other antenna array configuration is used, then a transformation matrix should be derived

and used to translate the ACM to the equivalent ACM of a ULA. The manifold separation

technique approximates the actual (1 × Na) steering vector a(θ) by the multiplication of

a (Na ×Nman) transformation matrix G and a virtual (Nman × 1) steering vector g(θ) [31–

33]:

a(θ) ' Gg(θ). (2.37)

The virtual steering vector g(θ) is assumed to be that of a ULA:

g(θ) =
[

e− jNman−1
2 θ . . . e jNman−1

2 θ

]T
. (2.38)

Through substitution the MuSiC null-spectrum function is redefined :

f(θ) ' gH(θ)GHÊNÊH
NGg(θ). (2.39)

Nman should be selected sufficiently large such that the ACM translation is sufficiently ac-

curate for DOA estimation. In the case of UCA, a mathematical transformation can be

derived [34]:

[G]m,n = e
( 2π j(m−Nman−1)(n−1)

Na

)
Na × j(m−Nman−1) × J(m−Nman−1)(2πr

λ )
, (2.40)

where Jm(·) is the Bessel function for the first kind of order m. The approximation of

the transformation matrix becomes arbitrarily accurate for large Na. This means that the

approximation error approaches zero as Na increases. The manifold number Nman in this

case is specified by:

Nman =
⌊
min

(
Na

2 ,
2πr
λ

)⌋
, (2.41)

where b·c indicates that the value should be rounded down to the nearest integer.

The transformation matrix is only valid for a large number of antenna elements which is

typically not viable for most sensor systems [35].
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2.4.2.3 Fourier-Domain Root-MuSiC

The frequency-domain (FD)-Root-MuSiC algorithm, applies the same principal as the Root-

MuSiC algorithm, however it estimates the roots through the Discrete Time DFT. For this

explanation the elevation angle of φ = 0 is selected, hence it assumes all sources are on the

horizontal plane. Further, as only a single angle is estimated, the process is referred to as

AOA estimation. The algorithm assumes that the roots Fm are the DFT coefficients of the

MuSiC null-spectrum function:

f(θ) ≈
M−1∑

m=−(M−1)
Fme jmθ = f̂(θ). (2.42)

If the complex exponential is translated by:

z = e jθ, (2.43)

then the inverse discrete Fourier transform (IDFT) can be used to approximate the MuSiC

null-spectrum function as a polynomial with the coefficients of Fm:

f(z) ≈
M−1∑

m=−(M−1)
Fmz

m = f̂(z). (2.44)

To calculate the Fourier coefficients Fm, a 2M − 1 number of equally spaced azimuth

angles:

∆θ = 2π
2M − 1 , (2.45)

are tested in the MuSiC null-spectrum function, and then the coefficients are calculated

through the IDFT to obtain:

Fm '
M−1∑

m=−(M−1)
f(m∆θ)e jm∆θ. (2.46)

The AOA estimation uses the roots to estimate the minima of the MuSiC null-spectrum

function. Note that the root selection is done differently compared to the conventional Root-

MuSiC algorithm [36]. The roots of this algorithm are either on the unit circle or in reciprocal

pairs that are not on the unit circle. To select the roots of this algorithm, select the largest

root on, or within, the unit circle. If the root is on the unit circle, average it with the closest

root also on the unit circle and use the result to estimate the DOA. If the root is within the
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unit circle, then use it directly for the DOA estimation. The roots relate back, through the

transformation given in (2.43), to the estimated DOA. For better performance, the MuSiC

null-spectrum requires more values to be tested.

The great advantage of the FD-Root-MuSiC is that any antenna array configuration can be

used, as the MuSiC null-spectrum function is estimated without the need of mathematical

derivation of the steering vector. It does require some values to be tested, but it is considerably

less than what is required for the spectral-MuSiC algorithm.

Note that if both the azimuth and the elevation are to be estimated simultaneously the two

dimensional DFT can be used. Further, if an array has a symmetrical ambiguity (e.g. an

ULA)leading to the MuSiC spectrum to be even, then a discrete cosine transform (DCT) can

be used.

2.4.2.4 Fourier-Domain Line-search MuSiC

The disadvantage of the FD-Root-MuSiC algorithm is that it requires polynomial factorisa-

tion of order 2M −2 and some testing of the MuSiC null-spectrum function. AsM increases,

so does the performance of the algorithm. The order of the polynomial also increases and

results in great computational complexity to find the associated roots. It is clear that the

processing for this method can quickly become impractical for real-time systems.

As the DFT is used to approximate the roots, the IDFT can in turn be used to re-estimate

the MuSiC null-spectrum function. By null-padding the FD-Root-MuSiC polynomial:

F̆m =

 Fm if m ≤M − 1

0 if M − 1 < m ≤ J − 1
, (2.47)

and using the IDFT, the MuSiC null-spectrum function can be implicitly interpolated:

f̆(z) ≈
J−1∑

m=−(J−1)
F̆mz

m =
M−1∑

m=−(M−1)
Fmz

m. (2.48)

The ratio of J toM determines the resolution increase. This allows simple and computation-

ally efficient extrapolation from a few measured data points. As the polynomial factorisation

is not required and replaced by a IDFT, this method requires considerable less processing.

It should be noted that this method has a bounded RMSE related to the number of IDFT
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coefficients J :

min[RMSE] = 360◦

4× (2J − 1) . (2.49)

2.4.2.5 Fourier-Domain Weighted Least Squares MuSiC

A close approximation of the MuSiC null-spectrum function at its minima is required for

an accurate estimation of the DOA. By considering the FD-Root-MuSiC as a weighted least

squares (WLS) problem, the function can be made more sensitive around the minima of

the MuSiC null-spectrum function, hence increasing the estimator accuracy [36]. The WLS

problem is defined by:

min
Hm

Q∑
l=1

w(θl)

∣∣∣∣∣∣f(θl)−
Mw−1∑

m=−(Mw−1)
Hme jmθl

∣∣∣∣∣∣ . (2.50)

The weights of the function w(θl) is optimally selected as the inverse of the approximated

MuSiC null-spectrum function:

w(θl) = 1
f(θl)

. (2.51)

The FD-WLS polynomial Hm will be used to determine the roots of the MuSiC null-spectrum

function:

f(z) =
Mw−1∑

m=−(Mw−1)
Hmz

m. (2.52)

The order of the FD-WLS polynomial (2Mw − 1), should be less than the number of tested

values Q, i.e Q > (2Mw − 1).

The WLS problem can be redefined in matrix form (2.53) and is a function of the FD-WLS

polynomial u:

min
u

∣∣∣W1/2
θ (f −Bu)

∣∣∣2 , (2.53)

where the approximated values f of the MuSiC null-spectrum function:

f =
[
f(θ1) · · · f(θQ)

]T
. (2.54)

is obtained through testing of the DOA values empirically; and the factorised

(Q× (2Mw − 1)) WLS steering matrix B:

B =
[

1Q 2<
{
B̃
}

2=
{
B̃
} ]

, (2.55)
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is derived from the implicit Q×Mw WLS steering matrix B̃:

[
B̃
]
l,m

= e jmθl . (2.56)

The Q×Q weighing matrix is a diagonal matrix and is a function of the approximated MuSiC

null-spectrum function and is given by:

Wθ = diag
{
w(θ1) · · · w(θQ)

}
= diag

{
1

f(θ1) · · · 1
f(θQ)

}
. (2.57)

The FD-WLS polynomial u can therefore be expressed as a function of the above defined

matrices:

u =
(
BTWθB

)−1
BTWθf . (2.58)

One of the benefits of the FD-WLS polynomial is that the number of empirically tested values

is greater than the order of the polynomial, hence a processing reduction is achieved in the

polynomial factorisation. The FD-WLS polynomial can either be factorised as in the case

of the FD-Root-MuSiC, or be converted back as in the case of the FD Line-search MuSiC

algorithm.

2.5 SIGNAL CONDITIONING

The DOA estimation can be improved through additional processing. These processing tasks

include: filtering of a signal to isolate it and to reduce the power of out-of-band noise;

integrating the data to reduce the variance of the noise; averaging of ACM matrices to

improve the approximation; signal deinterleaving methods of the multiple access scheme;

and tracking of estimated parameters to enhance the estimation and to stitch the received

data through the multiple access scheme. Such processing tasks are usually not regarded as

part of the estimation of signal parameters. However they greatly benefit the overall system

performance.

Some of these methods are discussed in this section.
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2.5.1 Noise reduction

The effects of noise can be minimised through integration of the data. Define a Gaussian

random variable Xn with a mean µn and variance σ2
n:

Xn ∼ N (µn, σn). (2.59)

Another random variable Xen at time sample k can be defined as the average of Xn over N

samples:

Xen[k] = 1
N

N−1∑
l=0

Xn(Nk + l) (2.60)

Note that Xen will have a data-rate reduction of factor N fromXn [37]. However, the effective

mean µen can be proven to be the same as that of Xn:

E[Xen] = 1
N

N−1∑
l=0

E[Xn] = 1
N

N−1∑
l=0

µn = µn, (2.61)

and the effective variance σ2
en is not the same as that of Xn, but it is related:

VAR[Xen] = 1
N2

N−1∑
l=0

VAR[Xn] = 1
N2

N−1∑
l=0

σ2
n = σ2

n

N
. (2.62)

This shows that the average of N samples of a Gaussian random variable results in a new

Gaussian random variable with the same mean, but with a reduced variance:

Xen ∼ N (µen, σen) = N (µn,
σn√
N

). (2.63)

If the received noise in a system follows a zero-mean Gaussian distribution, the power of the

noise (Pn = σ2
n) is scaled by the number of averaging samples. Therefore, integration gain

decreases the effective observed noise. If the noise (independent from the signal, i.e. not

correlated), that is added to the signal, has zero mean, and is Gaussian distributed, then it

is defined as AWGN.

It should be noted that if the signal is integrated, the noise is reduced at the cost of the

bandwidth of the system. The integration of the data is implicitly affected by a finite impulse

response (FIR) low pass filter (LPF). Define a discrete input signal xi[n] which is passed

through an averaging filter of L samples to obtain the output xo[n]:

xo[n] = 1
L

L∑
l=1

xi[n− l] (2.64)
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The frequency domain output Xo[ω] of the filter can be determined directly from the fre-

quency domain of the input of the system, Xi[ω], due to the linearity property of the Fourier

transform:

Xo[ω] = Xi[ω]
L

L∑
l=1

e− jωl. (2.65)

The transfer function Hf [w] of the averaging filter can therefore be determined as:

Hf [w] = Xo[ω]
Xi[ω] =

∑L
l=1 e jωl

L
= e jωL−1

2

L

sin
(
ωL
2

)
sin
(
ω
2
) . (2.66)

If it is assumed that L is arbitrarily large, the magnitude of the function can then be approx-

imated by:

|Hf [w]| ≈ 1
L

sin
(
ωL
2

)
ω
2

= sinc
(
ωL

2π

)
, (2.67)

where the sinc-function is defined as:

sinc (t) =


sin(πt)
πt t 6= 0

1 t = 0
. (2.68)

If the ratio between the sampling rate and the bandwidth of the observed signal is less than

the number of samples L that are integrated, a portion of the signal bandwidth is lost.

2.5.2 Signal isolation

2.5.2.1 Isolation over multiplexing schemes

There are multiple methods to isolate a signal from a set of signals. Isolating a signal can

be done through deinterleaving the multiplexing scheme. Multiplexing schemes can span the

following dimensions:

• Time

• Frequency

• Code

• Space

If the signal set uses a time-division multiple access (TDMA) scheme, then signal isolation

can be done by identifying and allocating a number of data samples of each signal. This
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requires elaborate and accurate synchronisation in time with each of the signals. In a NNC

DOA system, the geometry between the receiver system and sources may allow the signals to

overlap in time due to the uncontrolled propagation distances, and in return the propagation

times.

For frequency-division multiple access (FDMA) based systems, the channels can be separated

through filtering by using a bandpass filter (BPF) for each frequency channel. This is a

processing intensive task, but it is possible to achieve through the use of channelisers. The

inter channel interference (ICI) of this system can be caused by: the side-lobes of the signals

interfering if great power difference between signals are present; frequency dispersive channels

[38]; and due to frequency reuse allocations. Isolation through filtering is discussed in a later

subsection.

In the case of code-division multiple access (CDMA) schemes, the signals are deinterleaved

by correlating each received signal with its chip code. The chip code is a pseudo-noise (PN)

sequence and should be known by the receiver in order to extract the signal. To achieve

DOA estimation, all the codes should be known in order to isolate the different signals.

This tends to be a processing intensive task. CDMA signals often lie beneath the noise

floor, making them difficult to detect. However it has been proven possible to detect CDMA

signals [39,40].

Lastly, space-division multiple access (SDMA) uses beam-forming to isolate signals in space.

DOA estimation is often required for SDMA systems to render the reciprocal task of beam-

forming. Beam-forming is used to increase spatial isolation in communication systems. By

null-steering or using directional antennas, signals can be isolated in space. The issue however

with SDMA systems is that the receiver system should be located at a position to intercept

the signal. This is very difficult to achieve, and consequently the POI is greatly reduced for

NNC systems. Often the DF system should be mobile in order to manually locate the signals

as they are bounded geographically.

2.5.2.2 Filtering

As discussed earlier, a signal set which uses a FDMA scheme or has a finite bandwidth can

be isolated through filtering.
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If a digital receiver is used, anti-aliasing filtering is essential, as it limits aliasing errors due to

out-of-band interference. An anti-aliasing filter is an analogue LPF or BPF, which depends

on whether lowpass - or bandpass sampling is used. Once a signal is digitised through the

use of an analogue-to-digital converter (ADC), digital filtering can be used to further isolate

signals. The number of quantisation levels of a ADC, Nq, determines the dynamic range of

the receiver system, and is related to the number of bits b by (2.69) [41]:

Nq = 2b. (2.69)

Through the process of digitising a signal, quantisation errors introduce noise into the system.

A measure of the best achievable dynamic range is related to the signal-to-quantisation-noise

ratio (SQNR) and is dependent of the word-length (number of bits b) of the ADC:

SQNR = 10 log
(

3× 22b

2

)
≈ 6.02× b+ 1.76 [dB] . (2.70)

A method to increase dynamic range without increasing the number of bits of the ADC is to

oversample. For each doubling of the sample-rate, a virtual additional bit can be added to

the ADC word length. The effective number of bits bef is dependent on the actual number

of bits b, the sample rate, fs and the bandwidth of the signal of interest, Bs:

bef = b+ 1
2 log2

(
fs
Bs

)
. (2.71)

The drawback is that as the sample rate increases, the spurious free dynamic range decreases

due to non-ideal effects of the ADC. It should also be noted that as the sample rate increases,

so does the thermal noise of the system. Thermal noise, Nth is caused by random movement

of electrons in an electronic system and is related to the Boltzmann’s constant kb, the absolute

temperature TK , the sample bandwidth Bf and the noise figure Fn of the system according

to:

Nth = kb × TK ×Bf × Fn. (2.72)

If the anti-aliasing filter is shaped to the bandwidth of the signal Bs rather than to the

sampling bandwidth Bf , then the thermal noise is not increased through oversampling. This

is an efficient method to increase dynamic range of a system. However, if a densely packed
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spectrum is to be sampled and a set of signals is to be observed, then the anti-aliasing filter

should be designed over the whole bandwidth of interest. Therefore the full noise bandwidth

will be sampled. Once a signal is digitised, the out-of-band noise and interference can still

be filtered out, but the word-length effects of sampling are permanent.

Filtering can be used to reduce out-of-band noise, but it does not remove in-band noise.

Therefore filtering can not completely remove noise from a system. This is an important fact

to remember, as aggressive filtering of a signal does not provide a useful benefit.

2.5.2.3 The DFT

DFT can be used to isolate signals which do not overlap in frequency. The DFT can be seen

as a NB filter over each frequency tap of the algorithm [41]:

X = F {x} for X[m] = 1
K

K−1∑
k=0

x[k]e−
2π jkm
K . (2.73)

A received signal x[n] is composed of a transmitted signal xs[n] and AWGN signal xn[n]:

x[k] = xs[k] + xn[k] (2.74)

The linearity property of the Fourier transform, and consequently the DFT can be used:

X[m] = F {x[k]} = F {xs[k]}+ F {xn[k]} , (2.75)

where xn[k] is AWGN and therefore stationary in the wide sense. The ensemble autocor-

relation of the variable can be determined as being only a function of the variance of the

noise:

Rnn[l] = E [xn[k]x∗n[k + l]] = σ2
nδ[l]. (2.76)

The power spectral density (PSD) of the noise can be determined through the use of the

DFT:

Sxx[m] = E
[
X2
n[m]

]
= 1
K

K−1∑
k=0

Rnn[k]e−
2 jπkm
K = σ2

n

K

K−1∑
k=0

δ[k]e−
2πkm
K = σ2

n

K
. (2.77)

This shows that a reduction of noise per frequency tap, similar to (2.61), is achieved. There-

fore the DFT is a simple method for reducing noise through frequency spreading in a system.
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The expected received signal is therefore shown to have a constant noise level:

X[m] = Xs[m] + σn√
K
. (2.78)

A filter is usually applied through the convolution of a signal and the impulse response of

the filter. Through the duality principle of the Fourier transform, the process can also be

achieved through the multiplication of the frequency response of the filter and the signal.

Therefore a DFT can be used to achieve filtering in the frequency domain.

As a filter is applied by the multiplication of each frequency component, it shows that the

filter will alter the signal and the noise proportionally. This proves that filtering does not

reduce in-band noise.

Redundancy in the processing of a DFT can be removed through the use of a fast Fourier

transform (FFT). However, an FFT is optimal when the number of data samples K is a

power of 2.

2.5.2.4 Windowing

A DFT uses a finite set of data samples, therefore the frequency content of a signal cannot be

accurately represented. If all data samples used in the DFT are selected to have equal weight,

a rectangular window of the data is used. The frequency response of a window, defined over

a period of T , can be derived as:

Wrec[m] =
∫ T

2

−T2
e−2π jftdt = T

sin (2πTf)
2πTf = T sinc (2Tf) . (2.79)

The window is multiplied with the data in the time domain, therefore it is convolved in the

frequency domain. This means that a window causes frequency dispersion of a signal.

If the input signal is a sinusoid with a frequency fc that is an integer dividend k of the inverse

of the rectangular window period T i.e.:

fc = 1
k × T

; k ∈ Z, (2.80)

then the sinusoid will be accurately portrayed, as all the zeros of the window in the frequency

domain overlap with the frequency taps of the DFT.
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If this condition is not met, then the signal will have a component on all frequency taps,

causing interference.

A method to reduce this interference is to use a tapered window. This implies that the

frequency response of the window is altered. Table (2.1) shows some popular window methods

and the corresponding time domain response.

Table 2.1: Popular Window definitions

Window Type Time domain for |k| ≤ K−1
2

Rectangular 1

Triangular 1−
∣∣∣ 2k
K−1

∣∣∣
Hann 1

2

(
1 + cos

(
2πk
k

))

Hamming 0.54 + 0.46 cos
(

2πk
k

)

Blackman-Harris 0.35875− 0.48829 cos
(

2πk
k

)
+ 0.14128 cos

(
4πk
k

)
− 0.01168 cos

(
6πk
k

)

Gaussian e
(
−
√

2k×β
K

)2

Windows are often used with DFTs and as a method to approximate a FIR filter more

accurately. It should be noted that a window and a filter share common principles, however

they differ in application. A filter is applied through a convolution in the time domain and

a multiplication in the frequency domain, whereas a window is a multiplication in the time

domain and a convolution in the frequency domain. This shows that the two are reciprocal

operations of each other. A window is often implemented in conjunction with a filter, however

the convolution in the frequency domain is not applied to the signal, hence the window does

not cause frequency dispersion of the signal. This distinction is important to understand for

system design.

The one sided time domain of the figures are seen in Figure 2.1. The windows are symmetrical,

hence only one-sided plotting of the window is shown.
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Figure 2.1: Time domain of popular windows.

The tapering implicitly places more emphasis on the data samples in the centre of the data

set, hence the data is weighted. If an event of interest in the data (e.g., the start of a

communications signal burst) is not located near the center, then its impact is reduced. It

should therefore be considered that loss of data sensitivity can be caused by windowing.

The signalling properties of the different windows are difficult to compare in the time domain.

The one-sided frequency responses of these windows are shown in Figure 2.2. The frequency

axis fn is normalised to the inverse of the window period T ; alternatively it can also be

considered as being normalised to the frequency resolution of the DFT, where K is the DFT

length and fs the sample rate:

fn = f × T = f ×K
fs

. (2.81)

The frequency domain of the different windows show that the tapering of the signal reduces

the sidelobe level (SLL) of the interference, at the cost of broadening of the main lobe. The
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Figure 2.2: Frequency domain of popular windows.

zeros of the windows are often shifted and are therefore not equally spaced with the reciprocal

of the window width, hence interference is guaranteed even if the sinusoidal period condition

of (2.80) is met.

The benefit of using a window is that the side-lobes are significantly reduced, thus the DFT

has less interference from the side-lobes. The trade-off is that the main lobe is broadened,

hence the frequency components of signals are spread over multiple near-lying frequency

taps.

Windowing can be used as a method to change the properties of a DFT, and hence it is

broadly considered as a method to enhance the isolation of FDMA based signals without the

use of filtering. On its own windowing has no great benefit, however it can be used as a tool

to optimise the performance of filters and transformations.
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2.5.3 DOA estimation improvement

DOA estimation through PCA based methods can be improved by increasing the accuracy

of the approximation of the ACM. By taking only a single snapshot of the data at time k,

the ACM of (2.27) can be expanded:

x(k)xH(k) = As(k)sH(k)AH + As(k)nH(k) +
(
As(k)nH(k)

)H
+ n(k)nH(k), (2.82)

and simplified:

x(k)xH(k) = As(k)sH(k)AH + 2<
{
As(k)nH(k)

}
+ n(k)nH(k), (2.83)

where <{·} denotes the real component of a complex signal. The investigation of each

component individually shows that the dominant signal terms:

lim
K→∞

1
K

K∑
k=1

As(k)sH(k)AH = ARsAH , (2.84)

and noise terms:

lim
K→∞

1
K

K∑
k=1

n(k)nH(k) = σ2
nI, (2.85)

tend to the expected values.

The cross terms between the signal and the noise Rs|n:

Rs|n = lim
K→∞

1
K

K∑
k=1

2<
{
As(k)nH(k)

}
, (2.86)

tend to be negligible, if the signal and the noise is uncorrelated:

Rs|n = lim
K→∞

2
K
<
{

A
K∑
k=1

s(k)nH(k)
}
≈ 0. (2.87)

The expected result tends to what is previously shown:

lim
K→∞

R̂x = ARsAH + σ2
nI = Rx. (2.88)

This means that as the number of samples increases, the estimation tends towards the ex-

pected value. The expected values of the signal cross term Rs|n is defined as:

E
[
Rs|n

]
= 2
K
<
{

A
K∑
k=1

E [s(k)] E
[
nH(k)

]}
. (2.89)
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It shows that Rs|n tends to zero if the signal is uncorrelated with AWGN:

E
[
Rs|n

]
= 2
K
<
{

A
K∑
k=1

E [s(k)]× 0
}

= 0 (2.90)

The variance of the cross term is a function of the multiplication variance of the noise and

the signal:

VAR
[
Rs|n

]
= 2
K2<

{
A

K∑
k=1

VAR
[
s(k)nH(k)

]}
. (2.91)

If the noise is assumed to be AWGN, and the signal has a zero mean and a variance equal to

the power of the signal Ps , the combined variance of the noise and the signal can be derived

as:

VAR
[
s(k)nH(k)

]
= VAR [s(k)] VAR

[
nH(k)

]
+ VAR [s(k)] E

[
nH(k)

]2
+ VAR

[
nH(k)

]
E [s(k)]2 . (2.92)

It is assumed that the signal has a variance equal to the power of the signal Ps:

E
[
s2(k)

]
= Ps, (2.93)

and, if the noise is assumed to be AWGN:

E
[
nH(k)

]2
= 0 , VAR

[
nH(k)

]
= σ2

n, (2.94)

then the combined variance of the noise and the signal obtained through substitution results

in:

VAR
[
s(k)nH(k)

]
= σ2

n

(
VAR [s(k)] + E [s(k)]2

)
, (2.95)

and in:

VAR
[
s(k)nH(k)

]
= σ2

n

(
E
[
s2(k)

]
−E [s(k)]2 + E [s(k)]2

)
= σ2

nPs. (2.96)

The cross term Rs|n can now be determined, and has a variance related to the signal and

noise powers, as well as the number of snapshots taken:

VAR
[
Rs|n

]
= 2σ2

nPs
K
<{A} . (2.97)

Increasing the number of snapshots improves the approximation of the ACM, and in return

the estimation is improved. It can therefore be concluded that multiple snapshots of data is

required to reliably approximate the ACM, and to have acceptable results.
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2.5.4 Estimation Tracking

Multiple DOA estimated values can be combined to increase the estimated parameter. A

Kalman filter is a popular technique and can be used for multiple tasks, such as tracking and

estimation improvement.

A Kalman filter, also referred to as linear quadratic estimation (LQE), uses a series of meas-

urements or estimations to recursively estimate the underlying state of the system. The

Kalman filter consists of two stages: a prediction stage and an update state. During the pre-

diction stage the filter estimates what the next value will be based on previous data. During

the update stage a new measurement is used to update the filter parameters by comparing the

measurement to the predicted values. It is proven that if the underlying system is accurately

known, a Kalman filter has optimal performance.

The disadvantage of using a Kalman filter is that a good estimation of the noise of the system

is normally required for optimal performance. However, there are methods that do not have

this requirement [42,43]. To obtain satisfactory performance, the Kalman filter requires some

convergence time. In the case of signalling systems that reconfigure rapidly (e.g. dynamic

resource allocation, frequency hopping, pulse staggering) or systems with short burst-like

transmission, the required convergence time may not be available. Furthermore, some track-

ing of a signal within a multiplexing scheme is required to achieve efficient estimation.

Alternatively, if it is assumed that the signal source and the sensor system are both stationary,

then consecutive measurements can be integrated; or if multiple signals are transmitted from

the same source and have an accessible multiplexing scheme, the DOA of each individual

signal can be integrated:

θ̂post = 1
K

K∑
k=1

θ̂. (2.98)

The new estimator will be biased if the original value is biased. Similarly it will be unbiased

if the original values are unbiased. The variance of the estimator is reduced by the number

of estimated values averaged:

VAR
[
θ̂post

]
=

VAR
[
θ̂
]

K
. (2.99)

Therefore the RMSE will also reduce proportionally.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Literature study

The issue however with DOA estimation is that if multiple interfering signals are observed, or

if the noise is not AWGN, or if the signals are correlated, it may cause the DOA estimation

to lock onto the wrong minima of the MuSiC null-spectrum function. DOA estimation on the

wrong signal results in large biased errors. If one of these wrong estimated values is summed

with correct estimated values, it may seriously jeopardise the performance of the newly defined

estimator. Further, in the case that the DOA of multiple signals are simultaneously estimated

through the same process (e.g. FDMA separation using DFT), then the same lock - whether

correct or not - tends to be achieved over all signals from the same source. Thus summing

of estimated values in non-ideal situations will result in no performance improvement at

all.

A further issue is that both the azimuth and the elevation angles wrap around. Thus wrapping

errors should be removed before summing, as this will result in very high RMSE values due

to the 360◦ phase shifts in the estimated values.

A weighting function can be used instead of direct averaging, in an attempt to improve

estimation reliability. Take for example a FDMA multiplexing scheme that uses a number of

adjacent frequency channels. The channels on the edges will be more prone to interference

caused by neighbouring signals, than those in the center channels, hence more weight can be

applied to the values in the center channels than those one the edges.

It is therefore possible to decrease the RMSE of the estimated values through post-estimation

integration; however there are multiple obstacles that can reduce the success thereof.

2.5.5 Integration gain in a DF system

Integration gain is the process of increasing the performance of a system through the integ-

ration of data. In the case of PCA based DOA estimation system there are three possible

methods of integration: pre-DOA (signal isolation and noise reduction) integration, DOA im-

provement integration (increase approximation accuracy of the ACM), and post estimation

integration (combining multiple estimated values).

Pre-DOA integration is processing that isolates the signal of interest, this may include filter-

ing and decimation. It should be noted that filtering reduces the total SNR of the signal of
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interest by reducing out-of-band interference and noise. Oversampling of a signal can be used

to increase the dynamic range of a digital receiver. The benefit of pre-DOA integration is that

high sample-rates can be used and reduced through integration before the DOA estimation is

performed; thus less processing on later stages, like eigenvalue decomposition or polynomial

factorisation, is required. Data-rate reduction, memory restrictions and processing restric-

tions are the main reasons to use pre-DOA integration, as it relieves these limitations from

later processing tasks.

DOA improvement integration focuses on improving the approximation of the ACM. Using

a single snapshot of data is suboptimal, as large errors may be present. However increasing

the number of snapshots quickly improves ACM approximation. Once the approximation of

the ACM is sufficiently accurate, then further integration will yield no useful improvement,

as it requires additional processing which can rather be utilised efficiently on other tasks.

DOA improvement integration improves the ACM estimation but does not reduce the noise

within the ACM. Therefore it is important to use DOA improvement integration to get a

good approximation of the ACM, however aggressive integration on this level has no useful

benefits.

Post estimation integration usually requires multiple DOA estimates; hence it implies that

more processing is required on earlier stages. This form of integration is not always available

due to the processing architecture, and it is not always optimal as previously discussed. An

effective application for post estimation integration is with signal detection and classification.

If multiple signals are classified as being from the same source, then their individual DOA

estimated values can be added together to improve accuracy. It should be noted that this

will be highly dependent on the implementation of the classification algorithm.

A combination of all these integration methods will result in optimal system performance.

The system requirements should be analysed to determine where integration should be im-

plemented and how intense the integration should be. For example, if the data-rate and

processing are limiting factors, the integration will be moved to earlier stages in the pro-

cessing chain.

All methods of integration have some sort of performance increase in the system. There are

many limitations concerning implementation of these methods, such as signals of interest, sig-
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nal bandwidth, multiple access scheme of the signal, available processing, data-rate, available

memory, sensor and receiver architecture, and what output is required.

As an example, in the case of bi-static radar, the majority of processing is focused on gener-

ating the amplitude-range-Doppler (ARD) map and target detection. Assuming an ARD per

sensor is generated, and the DOA is to be performed on the ARD data, then the detected

target on the ARDs is highly isolated in both range and Doppler (great pre-DOA estimation

integration), this however leaves no room for DOA improvement integration and only target

tracking is available for post estimation signal processing.

2.6 THE LTE SPECIFICATION

The LTE specification will be discussed in this section.

2.6.1 History and requirements

LTE is a cellular communication standard which complies to the International Telecommu-

nication Union radio-communications Sector (ITU-R) specifications for International Mobile

Telecommunications Advanced (IMT-A). The LTE specifications are open-source and are

maintained by 3rd Generation Partnership Project (3GPP) [44]. LTE is often referred to

as a 4G technology, however it does not meet all the specifications to be classified as a 4G

technology. Long-Term Evolution Advanced (LTE-A) is an extended version of LTE, and

does meet all 4G specifications.

LTE was developed to satisfy the need for greater data-rates, improved system capacity and

reduced latency for cellular networks [45]. The data-rate requirement for LTE include a peak

data-rate of 100 Mbps for the down-link (DL), and 50 Mbps for the up-link (UL), using a

20 MHz signal bandwidth. The first proposition for LTE was made by Nippon Telegraph

and Telephone (NTT) Do Communications over the Mobile-network (DoCoMo) [46], with

the intent of making it an international standard. The first LTE network was launched on 14

December 2009 by the mobile operator TeliaSonera in the cities of Oslo and Stockholm [47].

On 14 July 2011 the first LTE network was launched in South Africa by the mobile operator

Mobile Telephone Network (MTN) in the Gauteng province [48].
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There are 44 Evolved Universal Terrestrial Radio Access (E-UTRA) operational bands that

are specified for use by LTE systems [44]. As each geographical region may have different

spectral allocations, applicable E-UTRA operational bands can be utilised for each region.

Therefore the adoption of LTE systems are simple and for diverse and densely packed spectra.

The operational bands range from 452.5 MHz (Band No. 31) to 3.8 GHz (Band No. 43).

Hence LTE systems should require a great frequency range for operation.

2.6.2 Structure of the physical layer

The LTE specification supports two duplexing modes: frequency-division duplex (FDD) and

time-division duplex (TDD) [20]. FDD can support either full or half duplexing, and TDD

is available only for half duplexing. Table 2.2 shows the structure definitions for the time

frame structure. It should be noted that all timing in the LTE specification is measured in

the time unit Ts, as defined in Table 2.2.

Table 2.2: Time frame structure of Type 2 (TDD) for LTE from [20].

Name Variable duration No. of Ts No. of Tslot

Time unit Ts 32.55 ns 1 1/15360

Time slot Tslot 0.5 ms 15 360 1

Subframe Tsf 1 ms 30 720 2

Half frame Thf 5 ms 153 600 2

Radio frame Tf 10 ms 307 2010 20

The frame structure is shown in Figure 2.3.

Figure 2.3: Time frame structure for LTE. Adapted from 3GPP [20], with permission.
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The frame structure of Type 1 is used for the FDD duplexing mode [20]. The frequency

separation in FDD between the UL and DL is specified for each E-UTRA operational band

and ranges from 10 MHz (Band No. 31) to 400 MHz (Band No. 4 and 10) [44].

The frame structure of Type 2 is used for the TDD duplexing mode [20]. The TDD configur-

ation is half duplexing system, therefore the same radio channel is used for both the UL and

DL. The switching patterns between the UL and DL are divided into sections of subframe

Tsf = 1 ms length; and these patterns are defined in the specification for either a half frame

Thf = 5 ms or radio frame Tf = 10 ms intervals.

The modulation for the LTE DL is OFDM, and single-carrier frequency division multiple

access (SC-FDMA) is used for the UL. Both methods are FDMA based, hence they allow

the spectrum of a channel to be divided between various users. A resource block (RB)

contains 12 sub-carriers, each with a inter-carrier spacing of 15 kHz. The bandwidth of a

RB is therefore 180 kHz. A RB spans a full timeslot Tslot of 0.5 ms. The base-station,

named an Evolved Node B (eNodeB), assigns RBs to each user. The RB allocation can be

dynamically changed by the eNodeB within a subframe Tsf , to efficiently manage the spectral

resources.

The transmission bandwidth for an LTE channel is scalable, to allow efficient deployment

according to the available spectrum for the said channel. The transmission bandwidth is the

allocated bandwidth for the channel. Each channel has an associated number of RBs for its

specified transmission bandwidth. To minimise interference between channels, a guard band

is implemented, therefore the data bandwidth is narrower than the transmission bandwidth.

The digital sample rate is greater than the transmission bandwidth to ensure that the ana-

logue full bandwidth is achievable, this also reduces interference due to non-ideal effects of

the transmitter. In both OFDM and SC-FDMA an inverse fast Fourier transform (IFFT) is

used to modulate (and FFT to demodulate) the data onto the respective carriers. The IFFT

length is determined by the transmission bandwidth, the number of RBs and the sample

rate. A more detailed discussion on the modulation will be given in the subsequent section.

The occupied carriers per symbol are the non-zero FFT taps. All these values are shown in

Table 2.3 for the respective channel sizes.

Through carrier aggregation the transmission bandwidth can be increased by grouping mul-
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Table 2.3: Structural specifications of LTE from [20].

Parameter Values

Transmission bandwidth [MHz] 1.4 3 5 10 15 20

Data bandwidth [MHz] 1.08 2.7 4.5 9 13.5 18

Number of resource blocks 6 15 25 50 75 100

FFT size 128 256 512 1024 1536 2048

Sampling rate [MHz] 1.92 3.84 7.68 15.36 23.04 30.72

Occupied sub carriers per symbol 76 151 301 601 901 1201

S/P encoding modulator
carrier

mapping

N-point

IFFT
CP P/S

Figure 2.4: Block diagram of the DL modulation of the LTE. Adapted from 3GPP [20],

with permission.

tiple channels together [49]. This allows superior data transmission, and allows LTE-A to be

classified as a 4G system, even though the base specification of LTE is not.

2.6.3 Modulation, data-mapping and encoding

The DL of LTE uses OFDM. OFDM modulates multiple carriers simultaneously through

the use of an IFFT. The IFFT ensures that the sub-carriers are orthogonal relative to each

other. ICI between the carriers is minimised by the orthogonality of the system. Spectral

efficiency can be improved by a multi-carrier system with closely placed orthogonal carriers.

The base modulation used for each carrier can be amplitude-shift keying (ASK), phase-

shift keying (PSK) or a combination of the two. The block diagram of the DL is shown in

Figure 2.4.

In the physical layer of the DL, the input data stream is first passed thorough a serial-to-

parallel (S/P) converter, to allow parallel processing for greater efficiency. The data is then

encoded, with a cyclic redundancy check (CRC) code of length 24; and a parallel concatenated

convolutional code (PCCC) turbo encoder which consists of two 8-state constituent encoders

and a turbo code interleaver [50]. The code-rate Rc of the PCCC is 1
3 , this means that the
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output data-rate of the encoder is three times greater than the input data-rate. As part of

the encoding, the data is scrambled; this is done to remove any patterns in the data that

can result in unwanted frequency responses once modulated. Scrambling therefore artificially

increases the randomness of the signal. A scrambler uses a Gold-sequence of length 31.

The DL of LTE uses binary phase-shift keying (BPSK), quadrature phase modulation

(QPSK), 16-quadrature amplitude modulation (QAM), 64-QAM and 256-QAM as base mod-

ulation types. BPSK is used for equalisation and protocol overhead, hence it is not used for

transmission of the message data. The number of symbols per modulation scheme is shown

in Table 2.4. The base modulation is selected for the current function of the RB, and the

quality of service (QoS) as reported by the receiver. The QoS is dependent on the transmitter-

receiver separation distance, the channel, interferences from other sources and the noise level

of the receiver. The modulation scheme with the highest data-rate (i.e. the modulation

scheme with the greatest number of symbols and hence the greatest spectral efficiency) that

provides a satisfactory bit error rate (BER) for reliable communication, is selected. The

errors introduced in the communication system can be detected and in many cases corrected

by the decoding of the data, hence the encoding improves the BER of the system at the cost

of reducing the system capacity.

Table 2.4: Number of modulated symbols per modulation scheme

Modulation type No. of symbols

BPSK 21 = 2

QPSK 22 = 4

16-QAM 24 = 16

64-QAM 26 = 64

256-QAM 28 = 256

A cyclic prefix (CP) is added to each OFDM symbol, to allow synchronisation of the symbols

between the transmitter and receiver. A CP is simply a section of the OFDM symbol that is

repeated, therefore slightly increasing the symbol length and adding redundancy. A diagram

of the CP is shown in Figure 2.5. The CP is used as a guard interval to reduce inter-

symbol interference, and it is also used to reduce the effects of frequency-selective fading in

non-ideal transmission channels. The CP is added redundancy in the system to make the
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communication system more robust. It should be noted that the CP changes the PSD of each

carrier in the OFDM structure, hence orthogonality is lost unless symbol-synchronisation is

achieved at the receiver.

Figure 2.5: CP structure for LTE.

LTE has two configurations for the CP: normal - and extended CP operation [20]. In the

normal CP configuration, there are 7-OFDM symbols per timeslot Tslot. It is assumed that the

inter-carrier spacing of 15 kHz is used, and therefore the first symbol has a CP of 160 · Ts ≈

5.2 µs, and the other 6 symbols have a CP of 144 · Ts ≈ 4.7 µs. In the extended CP,

either 6 OFDM symbols each with a inter-carrier spacing of 15 kHz and a CP of length

512 · Ts ≈ 16.7 µs; or 3 OFDM symbols each with a inter-carrier spacing of 7.5 kHz and a

CP of length 1024 · Ts ≈ 16.7 µs is used. The percentage overhead of the CP is 7.14% for

normal CP, and 25% for extended CP.

A root raised cosine (RRC) filter is used shaped to the transmission bandwidth before the

OFDM signal is transmitted [51].

A resource element (RE) is a subsection of a RB. The number of REs is the product of the

number of OFDM symbols and the number of carriers per RB. As an example, in normal

CP operation, there are 7× 12 = 84 REs per RB. The reference signals, and the modulated

data are mapped to each RE. The reference signals are used for signal equalisation, and to

network specific information. An example of a RB for normal CP operation is shown in

Figure 2.6.

The UL of LTE uses SC-FDMA, and is very similar to the DL. The block diagram of the UL

is shown in 2.7. The only difference is that an additional DFT is used in the transmission

chain. This is done to reduce the peak-to-average-power ratio (PAPR) of the communication

signal in comparison to OFDM. A large PAPR makes it difficult to span the full dynamic

range of analogue amplifiers effectively as the average power does not get amplified greatly;
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Figure 2.6: RB definition for normal CP configuration. Adapted from 3GPP [20], with

permission.

S/P encoding modulator
M-point

DFT

carrier

mapping

N-point

IFFT
CP P/S

Figure 2.7: Block diagram of the DL modulation of the LTE. Adapted from 3GPP [20],

with permission.

as a consequence the non linearities of the amplifiers distort the peaks in an OFDM system.

SC-FDMA is selected for the user equipment (UE) as it has similar performance to OFDM

with the benefit of reduced radio frequency (RF) hardware requirements.

The UL only uses QPSK, 16-QAM and 64-QAM for data modulation, and hence it does

not have the same maximum data-rate capabilities as compared to the UL. The UE has

significantly less transmission power (designed for longer battery life of devices), hence it

cannot guarantee sufficient SNR at the eNodeB to compare with the DL data-rates.
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2.6.4 Handset requirements

The maximum transmission power of a UE for any transmission bandwidth is 23 dBm

(0.2 W) [44] with a tolerance of ±2 dB. The minimum output power for a UE is −40 dBm.

The power and timing delay as received by the eNodeB, is measured and used to adjust

the settings of the UE. The power is adjusted to ensure that the eNodeB has a received

SNR sufficient for reliable communication, whilst reducing inter-cell interference to other

eNodeBs.

2.6.5 Direction finding in LTE

LTE utilises MIMO communications technology, which makes use of multiple antennas to

implement spatial multiplexing in order to increase system capacity [50]. Improved DF and

spatial multiplexing methods for LTE have been proposed by Bartoli et al. [6] to reduce inter-

ference, therefore increasing system performance. Parametric estimation techniques, which

include DF, have been studied and implemented on LTE systems [52]. MIMO communic-

ations already use an array of antennas; therefore the antenna infrastructure is already in

place for DF with interferometry.

2.7 CHANNEL MODELS

Radio propagation testing guidelines are standardised by International Telecommunica-

tion Union (ITU) [53] and adapted by the European Telecommunications Standards In-

stitute (ETSI) for LTE [54]. Further specifications for MIMO channels are also developed

by ETSI [55].

Small-scale fading describes the rapid changes in signal strength over small distance. These

distances usually in the order of a few wavelengths. Multipath propagation, the relative

velocity between the transmitter and receiver and the velocity of path scatterers in the en-

vironment are the sources of small-scale fading. These effects are more prone in urban areas

as it is caused by reflections off buildings and moving vehicles.

Small-scale fading effects include time and frequency dispersion. The EM signal follows

multiple routes as it journeys from the transmitter to the receiver, therefore multiple copies
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of the signal–each with a a different time delay and amplitude–is measured by the receiver,

this is known as time dispersion. The sum of these signals is referred to as multipath, as the

signal uses multiple paths to propagate. The various time-delayed signals interfere with each

other and cause certain frequencies to be attenuated more than others, hence selective fading

occurs. Frequency dispersion is caused by Doppler shifts on the signal. The Doppler shift is

caused by relative movement between a transmitter-receiver pair, as well as any movement

from multipath reflectors in the environment. Frequency dispersion can be considered as

a random frequency modulation of the signal. Small scale fading thus results in delay and

Doppler spread.

A fading channel model incorporates effects of multipath, Doppler frequency shift and noise.

As a multipath component comprises of a time delay and change of amplitude of the original

signal, it can be simulated through the use of an appropriately weighted tapped delay-line.

A digital FIR filter can therefore be used to simulate multipath components. The Doppler

frequency shift can be incorporated by multiplying each multipath signal with a Rayleigh or

Rician distributed variable. A Rician channel has the characteristics of a Rayleigh channel

with an added line of sight (LOS) path signal. Lastly, AWGN can be added to emulate noise

effects.

Three models specified by ETSI is extended pedestrian A (EPA), extended vehicular A (EVA)

and extended typical urban (ETU). The delay and relative magnitude of each multipath

component for these channels are shown in Table 2.5. These channel models are also used

for LTE system evaluation [56].

The Doppler spread of these channels have the classical Doppler spectrum, if omnidirectional

antennas are assumed:

S(f) ∝ 1√
1−

(
f
fD

)2
for f ∈ (−fD, fD) . (2.100)

The maximum Doppler frequency fD is specified as 0 Hz, 5 Hz, 70 Hz and 300 Hz respectively

for the standard ETU channels [56]. The AWGN noise follows a Gaussian probability density

function (PDF), as described in equation:

pgaus(r) = 1√
2πσ

e−
(r−µ)2

2σ2 , (2.101)
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Table 2.5: Summary of ETSI Multipath channel models, with delay of each tap tdel in ns

and the relative power Prel of each tap.

- EPA EVA ETU

Tap tdel [ns] Prel [dB] tdel [ns] Prel [dB] tdel [ns] Prel [dB]

1 0 0.0 0 0.0 0 -1.0

2 30 -1.0 30 -1.5 50 -1.0

3 70 -2.0 150 -1.4 50 -1.0

4 90 -3.0 310 -3.6 50 -1.0

5 110 -8.0 370 -0.6 50 -1.0

6 190 -17.2 710 -9.1 50 -1.0

7 410 -20.8 1090 -7.0 50 -1.0

8 - - 1730 -12.0 50 -1.0

9 - - 2510 -16.9 50 -1.0

where r is the amplitude, µ is the mean and σ is the standard deviation.

Fading channels introduces time and frequency dispersion. Rayleigh and Rician channels

describe the statistical time varying nature of a flat fading signal. A Rician fading channel is

defined as a Rayleigh fading channel with an added LOS component. The probability density

function (PDF) of a Rayleigh distribution is defined as:

pRay(r) =


r
σ2 e

−r2
2σ2 0 ≤ r ≤ ∞

0 r < 0
, (2.102)

and the PDF of a Rician distribution is defined as:

pRice(r,A) =


r
σ2 e−

r2+A2
2σ2 J0

(
Ar
σ2

)
0 ≤ r ≤ ∞ and 0 ≤ A

0 r < 0
. (2.103)

The variable A is the peak amplitude of the LOS signal in a Rician channel, K is the ratio

between the deterministic signal power and the variance of the multipath, and is known as

the Rician factor.

Spatial channel models are specified by ETSI for AOA [57]. These channel model are used

for link testing of mobile communications systems. Advanced channel models which incor-
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porate large-scale fading, small scale fading, antenna modelling, array coupling, and spatial

modelling of the transmitter and receiver are developed and specified in the LTE specifica-

tion [58].

2.8 OPTIMISATION

In system design multiple parameters should be selected. The problem however is to select

the parameters to have an optimal outcome. If multiple system parameters influence a single

system outcome, the outcome cannot be optimised through individual parameter optimisation

as the parameters are not isolated from each other. Therefore to optimise the system, the

joint outcome of the parameters should be optimised.

Pareto optimisation is a optimisation theory used in economics to improve the economic-

output on a system level [59]. Pareto optimisation is used in mathematical programming as

a method to achieve best results of a multi-object system. The aim of Pareto optimisation

is not to obtain a single solution, but rather to obtain a set of compromise solutions. This

is beneficial as many system outputs are conflicting in nature and a optimal solution does

not exist. This allows a greater scope of optimality in system design, even though complete

satisfaction of each output is not achievable. The set of solutions are optimal in trade-off of

characteristics and should be Pareto efficient.

A selection of parameters results in a Pareto efficient object if the outcomes of the object

cannot be improved without worsening any other outcome of the system [60]. Likewise, a

Pareto inefficient object is a system that can be improved in any way without degrading any

other section of the system. A set of Pareto efficient objects form a Pareto front. All of the

objects on the front are regarded as the optimal solutions to the system.

A tutorial on Pareto optimisation is provided in Appendix A for the interested reader.
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CHAPTER 3

PROBLEM ANALYSIS

3.1 CHAPTER OVERVIEW

This chapter investigates the problems associated with NNC DF of OFDM based cellular

signals.

3.2 OFDM BASED SIGNAL ANALYSIS

OFDM is stated as being an FDMA scheme that uses perfect orthogonal carriers, hence in-

terference is minimised. This allows carriers to be placed at a minimum distance apart to

increase the system capacity. It is a popular modulation scheme used in modern communic-

ation systems [61].

3.2.1 Loss of Orthogonality from the CP

This section investigates the orthogonality of an OFDM symbol with an added CP.

The m-th modulated carrier XOFDM [m], with the complex amplitude Am that is normalised

by the intended OFDM symbol length Tsym is defined as [61]:

XOFDM [m] = Am
Tsym

. (3.1)

The discrete time definition xOFDM [n] is the IDFT (denoted by F−1 {·}) of the Nsym mod-

ulated carriers, and is a function of the sample period Ts and the frequency spacing of the
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Chapter 3 Problem analysis

carriers fsym:

xOFDM [n] = F−1 {XOFDM [m]} =
Nsym−1∑
k=0

Ak
Tsym

× e2π jnTskfsym . (3.2)

xOFDM [n] is assumed to be an infinite time function. If a symbol is only present for a duration

of the intended OFDM symbol length Tsym and starts at time T0, the discrete finite signal

xISOFDM [n] is defined as:

xISOFDM [n] = xOFDM [n]×Π
(
nTs − T0
Tsym

)
, (3.3)

where the rectangular function is denoted by Π (·):

Π
(
t

τ

)
=

 1 for |t| ≤ τ
2

0 otherwise
. (3.4)

The function can be expanded to be continuous in time:

xIS,CTOFDM (t) =

Nsym−1∑
k=0

Ak
Tsym

× e2π jtkfsym

×Π
(
t− T0
Tsym

)
. (3.5)

The frequency content of the signal can be obtained through the Fourier transform:

XIS,CT
OFDM (f) =

Nsym−1∑
k=0

Ak
Tsym

δ (f − nfsym)

 ∗ Tsymsinc (fTsym)× e−2π jfT0 , (3.6)

and can be further simplified:

XIS,CT
OFDM (f) =

Nsym−1∑
k=0

Aksinc ((f − nfsym)Tsym)× e−2π j(f+nfsym)T0 . (3.7)

It can be derived that the functions are only orthogonal if the symbol period is the reciprocal

of the frequency spacing:

fsym = 1
Tsym

. (3.8)

This shows that if a CP is added to the symbol (hence the effective symbol period is increased),

the carriers will interfere with each other:

fsym 6=
1

Tsym
= 1
Tsym + TCP

. (3.9)

Therefore symbol synchronisation and accurate sampling of the data is crucial for an OFDM

system to operate.
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Chapter 3 Problem analysis

This point illustrates that if a NNC system is implemented, it uses a number of data points

equal to the period of a OFDM data symbol without the CP, to ensure that the carriers are

orthogonal relative to each other.

Using sample-rates that are integer multiples of the OFDM system sample-rate, will also be

beneficial, however it will increase the system cost and complexity.

3.2.2 Symbol synchronisation

This section discusses the effects of a receiver being asynchronous with the communication

signal, therefore resulting in inter symbol interference (ISI). The PSD for an OFDM carrier

is theoretically [61]:

Scc(f) = A2Tsymsinc (fTsym) , (3.10)

where Tsym is the symbol period, A is the average symbol amplitude and f is the normalised

frequency. Note that this function has zero values for integer multiples of f × Tsym. This

shows that the carrier spacing should be the reciprocal of the symbol period, as discussed

previously in section 3.2.1.

3.2.3 Phase discontinuity

A complex-sinusoid is bounded over a period of Tsym, and undergoes a random phase change

of φ0 at time t0:

x(t) = A×Π
(
t− t0

2
t0

)
× e2π jfct +A×Π

(
t− Tsym+t0

2
Tsym − t0

)
× e2π jfct+jφ0 . (3.11)

The PSD for this case (if it is assumed that the random phase change φ0 follows a uniform

distribution in [0, 2π] and the time-delay t0 follows a uniform distribution in [0, Tsym]) is

proven to be:

S(t,φ)(f) = A2

π2v2Tsym
[1− sinc (2vTsym)]v=f−fc . (3.12)

The full derivation of (3.12) is shown in Appendix B.

Figure 3.1 shows the perfect OFDM PSD of (3.10) compared to the PSD which is asyn-

chronous with the system as it samples over the phase discontinuity that occurs between two

symbols (B.19) (i.e. 180◦ phase discontinuity).
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Chapter 3 Problem analysis

Figure 3.1: PSD of a non synchronous single OFDM carrier

It illustrates that the function is non-zero for all values, hence ICI is inevitable. This further

proves that if symbol synchronisation is not met, then the OFDM system loses orthogonal-

ity.

Figure 3.2 shows the PSD on a decibel scale. In this figure it shows that the PSD with a

phase discontinuity has no zeros, and seems to form a mask that is larger than the ideal value

for |f | > 0.5. Effectively, by sampling asynchronously, the spectral density is spread over a

larger bandwidth.

The PSD is undefined at f = fc, however in Appendix B it is proven to be:

lim
f→fc

S(t,φ)(f) = 2
3A

2Tsym. (3.13)

This shows that the peak has less spectral power than in the orthogonal case. In the previous

section it was shown that it is required that the sample-length of the data should be the same
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Chapter 3 Problem analysis

Figure 3.2: PSD of a non synchronous single OFDM carrier on a decibel scale, normalised

to to the frequency resolution of the DFT.

as the OFDM signal, however it is shown that the measured data should also be synchronised

to ensure carrier orthogonality.

The benefit of the CP is that absolute synchronisation is not required. As long as the block

of samples do not overlap between symbols, orthogonality is kept. A slight sample offset will

only cause a linear phase offset on the modulated OFDM carriers, which can be removed

through the use of an equaliser. Thus the block of data to be sampled for an OFDM symbol

can have a maximum tolerance of half the CP length. In the case of multipath, this tolerance

is reduced.

The use of a Nyquist filter (a RRC Nyquist LPF is used in LTE) will smooth the phase

transition, hence the interference is reduced. However, a Nyquist filter will not be able to

completely correct the lack of orthogonality in this case.
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Chapter 3 Problem analysis

3.2.4 Complex amplitude discontinuity

In the previous case only a phase offset is observed. LTE uses QAM, hence the presence

of an amplitude discontinuity can also be observed. The signal constellation and properties

for QAM are analysed in Appendix C. A signal with a phase and amplitude discontinuity is

given as:

xa(t) = A1 ×Π
(
t− t0

2
t0

)
× e2π jfct +A2 ×Π

(
t− Tsym+t0

2
Tsym − t0

)
× e2π jfct. (3.14)

The PSD for this case (if it is assumed the time-delay t0 follows a uniform distribution in

[0, Tsym] and a QAM signal constellation is used) is proven to be (Appendix B):

S(t,φ),a(f) = A2
norm

π2v2Tsym
[1− sinc (2vTsym)]v=f−fc , (3.15)

where Anorm is the normalised amplitude to the mean of an OFDM modulation scheme (see

Appendix C).

This illustrates that a QAM based modulation with OFDM has a similar result to the

phase discontinuity case. This is largely contributed to the symmetrical properties of QAM.

This further proves that loss of orthogonality is present if symbol-synchronisation is not

achieved.

3.3 SYSTEM GEOMETRY

This section investigates the transmitter receiver configuration for a NNC system. The previ-

ous section explained the problems associated with not having symbol synchronisation within

OFDM, and this section will illustrate why it is not achievable by a NNC system.

Figure 3.3 shows a scenario where a NNC receiver Rx is monitoring a cellular system operating

around a base-station (eNodeB) with three connected cellular handsets (A,B and C). This

geometry is chosen to demonstrate the extremes observed in a NNC-DF system.

Handset A and C are both located on the cell-edge of the system at opposite sides of the

eNodeB, hence they are transmitting at the maximum power Pmax specified for LTE of

0.2 W (23 dBm). Handset B is located very near to the eNodeB, and is transmitting at the
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Chapter 3 Problem analysis

Figure 3.3: Cellular system and receiver geometry.

minimum power Pmin for the cell of 20 µW (−17 dBm) to ensure equal received power at the

eNodeB.

The receiver is located outside of the cell-edge. The cell-edge radius r1 is selected as 5 km,

as it is a minimum coverage E-UTRA requirement for LTE. The radius from the eNodeB to

Handset B is selected as 50 m. The distance from the receiver system Rx to Handset A (dA)

is selected at 50 m.

The propagation time from a transmitter to a receiver is a function of the separation

distance ds and the propagation velocity (in the case of an EM-wave, it is the speed of

light c) (3.16).

tdel = ds
vp

= ds
c

(3.16)

The ideal path-loss Lp can be described by the Friis free-space path-loss equa-

tion (3.17) [18].

Lp = Pr
Pt

= GtGrλ
2

16π2d2 (3.17)
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The path-loss is the ratio between the received power Pr of a receiving system and the

transmitted power Pt from an emitter, and is a function of the transmitting antenna gain Gt,

the receiving antenna gain Gr, the wave-length of the signal λ, and the distance between the

emitter and the receiver d. Note that the Friis equation does not include noise, fading effects,

terrain, interference and atmospheric conditions. Therefore actual path-loss is greater in a

real system.

Unity gain for both antennas and an operational frequency of 900-MHz is assumed in this

scenario. The absolute time delays, relative time-delays, the power received at the eNodeB,

and the power received at the receiver system is shown in Table 3.1.

Table 3.1: Scenario variables

Parameter Unit Handset A Handset B Handset C

Distance from the eNodeB m 5 000 50 5 000

Distance from Rx m 50 5 050 10 050

Absolute time-delay to eNodeB µs 16.67 0.167 16.67

Absolute time-delay to Rx µs 0.167 16.83 33.5

Time-delay to Rx relative to Handset A µs 0 16.67 33.33

Relative Time-delay from Handset A µs 0 33 33.33

to Rx with timing advance

Transmitted power dBm 23 -17 23

Path-loss to eNodeB dB 105.51 65.51 105.51

Received power at the eNodeB dBm -82.51 -82.51 -82.51

Path-loss to Rx dB 65.51 105.6 111.57

Received power at the Rx dBm -42.51 -122.3 -88.57

Received power at the Rx relative to dB 0 -79.79 -46.06

the received power of Handset A

In this scenario the power control and timing advance by the eNodeB to the handsets are

assumed ideal. The power control is implemented to ensure that equal power will be observed

by the eNodeB for each handset. The timing advance is used to ensure that the received

signals have minimal timing offsets as observed by the eNodeB. This reduces ICI as all

symbols are semi-aligned and can therefore be semi-synchronously demodulated.
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In this scenario, the greatest timing difference between the received signals is 33.3 µs. This

timing difference is equal to twice the maximum CP time (512×Ts = 16.6 µs for the extended

CP) of LTE. Therefore inter-symbol interference is guaranteed. This proves why the signal

processing challenges of section 3.2 are realistic for practical systems. In the case of very

small cell-sizes these problems for a NNC system are reduced.

To compare the received signal powers for the NNC receiver, a maximum difference of

79.79 dB is calculated in this scenario. This means that a dynamic range greater than 80 dB

is required for the receiver system to be able to observe both signals simultaneously. This

point illustrates the challenge regarding power differences of cellular handsets. The lowest

received power in this scenario is −122.3 dB, for many systems this power level is below the

noise level, making it very difficult to detect.

In this scenario the 900 MHz range is selected as it is a popular band for cellular com-

munications (E-UTRA band 5, 6, 8, 18, 19, 20, 26 and 27). However the 900 MHz band is

typically used for Global System for Mobile Communications (GSM) and the 1800 MHz band

(E-UTRA band 1, 2, 3, 4, 9, 10, 25, 33, 35, 36, 37 and 39) is used for LTE. There are LTE

systems that do occupy the 900 MHz band. Note that the 1800 MHz band will have greater

attenuation due to the Friis transmission equation (3.17). The 900 MHz band was selected

for this scenario as it should have better performance, and should therefore emphasise that

even with better band selection the power loss associated with monitoring a cellular system

is detrimental to NNC monitoring.

It should be noted that for improved system performance the receiver should be located as

close as possible to the eNodeB to benefit from power control and timing advance. This ideal

scenario is unfortunately not always possible.

3.4 CRAMÉR-RAO BOUND FOR VARIOUS ARRAYS

This section evaluates the CRB for different array configurations, assuming only a single

signal is observed. The full derivation of the CRBs are shown in Appendix D.
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3.4.1 CRB: ULA

The approximate CRB for a ULA with half-wavelength antenna spacing is derived as:

CRBULA ≈
6

K × SNR× π2 cos2(θ)Na(N2
a − 1) . (3.18)

It should be noted that this CRB is a function of the incident angle θ, and is lowest when

the source is located at the broadside of the antenna array, and highest at the end-fire of the

array. This shows that the DOA estimation of a ULA is dependant on the location that the

signal source has relative to the array.

3.4.2 CRB: UCA

The approximate CRB for a UCA with half-wavelength radius is derived as:

CRBUCA ≈
1

K × SNR× π2 ×Na
. (3.19)

This CRB is only a function of the SNR and the number of antenna elements Na.

3.4.3 CRB: UCA-CE

A uniform circular array with a center element (UCA-CE) is an array of Na elements, com-

posed of a UCA of Na − 1 elements and a single element at the origin. The mathematical

derivations of this array is therefore similar to that of a UCA with one less element:

CRBUCA−CE ≈
1

K × SNR× π2 × (Na − 1) . (3.20)

The CRB shows that a UCA-CE has the bound of a UCA with one less element. UCA-CE

configuration are however used for small antenna configurations, as it removes the antenna

structural ambiguity for small arrays.

3.5 CHANNELISER ARCHITECTURE

A channeliser is a software filter-bank that is used to separate signals from different frequen-

cies. There are many architectures for channelisers, however in this section a DFT based

channeliser is discussed.
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Chapter 3 Problem analysis

A channeliser architecture is defined by a running DFT of size K. The discrete input data

x[n] is passed through a DFT to form the output data ym[n] for the m-th frequency tap

(3.21).

ym[n] = 1
K

K−1∑
k=0

x[n+m]e−2π jm k
K (3.21)

For a block of input data of size K, the DFT generates K output points. As the block of data

used for the DFT is shifted on by one sample after each calculation, only one new data sample

of x is introduced and K new outputs are generated. It can therefore be said that once the

original block of data has been replaced with new data samples, then the channelisers has an

increase of factor K samples from input to output.

Theoretically the output is a time-shifted Fourier transform of the data. If a sinusoidal input

with a frequency of fc, a sample-rate of Ts, and a data block-length of Td is used, then the

output can be described:

yf [n] = F

{
Π
(
t

Td

)
× e2π jfc(t+nTs)

}
= Tdsinc (Tdf) ∗ e2π jnTsfδ (f − fc) . (3.22)

Through simplification, it can be shown that the resultant expression is a function of the

rectangular window (refer to section 2.5.2.4) and a shifted sinusoid:

yf [n] = Tdsinc (Tdf) ∗ e2π jnTsfcδ (f − fc) = Tdsinc (Td(f − fc)) e2π jnTsfc , (3.23)

therefore the result is a scaled version of the original signal:

yfc [n] = Tde2π jnTsfc . (3.24)

This shows that the original signal is retrievable at this frequency. The operation therefore

uses a DFT, but the output is a time domain signal. The interference to other channels is

a function of the window used for the DFT. Therefore by selecting the appropriate window

the interference can be decreased more efficiently.

A channeliser efficiently separates a signal into various frequency taps. Once the taps are

generated, further processing can be done, for example additional filtering can be imple-

mented to increase the separation of signals. Due to the structure of a channeliser, it is an
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efficient algorithm for constant-time processing platforms, e.g. a field-programmable gate

array (FPGA).

3.6 PRACTICAL CONSIDERATIONS

The previous chapter gave an overview of the literature. The literature often assumes the ideal

case of a system, especially as most sections of the literature only considers itself in an isolated

scenario. This chapter has analysed and discussed many effects that are detrimental to DOA

estimation of OFDM based cellular communication signals. This section aims to provide

practical considerations required in design and implementation of a NNC DF system.

3.6.1 Location

As underlined in section 3.3, the geometry of a system can greatly influence the performance.

As a cellular system uses multiple base-stations to provide coverage to a area, it is difficult to

cover the same area without the use of multiple NNC receivers. The use of multiple receivers

will greatly increase system cost.

The location of a NNC receiver should be as close as possible to a base station to benefit from

the power and timing control of the handsets. This is however not always possible as the base-

stations are often located on restricted property, hard to reach places (roof tops or mountains),

or they can be hidden (hence some locating of the base-station is also required).

Frequency reuse is implemented in cellular systems to increase system capacity. Frequency

reuse can cause interference for a NNC receiver if the receiver is poorly located between two

base-stations that make use of the same transmission frequency. It should be noted that this

probability can be very low, as the frequency reuse-factor is implemented to limit interference

in a system.

In conclusion, the location selection of a NNC deployment will have a profound influence

on the performance of the system. Adequate planning and scouting before deployment will

therefore be crucial for the system to succeed.
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3.6.2 Antenna array

The selection of the antenna array determines the theoretical best performance of a system,

as discussed in sections 2.2.2 and 3.4. The trade-off between arrays with good performance

per number of antenna elements (e.g. ULA), and arrays which have reduced ambiguity and

hence larger reliable angular-coverage (e.g. UCA-CE) should be evaluated.

In this dissertation only NB antennas with half wave-length antenna spacings are discussed

in order to demonstrate the concept. In practical systems wide-band (WB) signal estimation

is required, and hence WB antenna configurations are required. This is an important point

to realise for a deployable system, however it is beyond the scope of this dissertation.

In literature arbitrary large sensor arrays are used, as it provides superior performance, and

the assumption of (2.17) is valid. This is not necessarily practical for a deployable system.

A receiver-channel is required per antenna element, hence the system cost increases as the

number of antenna elements increases.

The greatest design issue with a large number of receiver channels is to ensure that the chan-

nels are time- , phase- and data-reference synchronised. If the channels are not synchronised,

then coherent comparison is not possible and therefore DOA estimation using interferometry

is void. This is the greatest risk associated with DOA estimation of practical systems. The

phase stability between receivers directly influences DOA estimation accuracy. Synchronising

receivers are achievable on off-the-shelf equipment that have multiple synchronised channels,

however most hardware have limited number of channels and synchronisation between hard-

ware sets proof difficult. In most cases when a large number of channels is required for

a system, the hardware is typically not commercially available; therefore custom hardware

should be developed, which is expensive due to development costs.

The application often limits the antenna configuration. If the system is required to be port-

able, then the absolute size of the system should be sufficiently small. For man-portable

systems additional ergonomic analysis is required. For vehicular systems additional system

specifications such as mounting of the system to the vehicle and to ensure vehicular safety

and regulations are required. The operational frequency and the number of antenna elements

directly influence the size of the system.
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The selection of the antenna is also important. If the array is to be mounted on a planar

surface (e.g. roof of a vehicle), then the use of dipole antennas is restricted. In such cases

monopole-antennas are often used. If the antenna configuration is to be mounted on a planar

surface on the side of a vehicle, then patch-antennas can provide a good solution. In most

cases omnidirectional antennas are preferred; however if the FOV is not required to be the

full range, then directional antennas can have an antenna gain benefit. This shows that

the application will directly influence the selection of the number and configuration of the

antenna elements.

3.6.3 Bandwidth and POI

There are multiple E-UTRA bands assigned for communication. Therefore multiple bands

should be monitored. These bands often have large bandwidths (maximum bandwidth for

FDD is 80 MHz in E-UTRA band 22, and for TDD 200 MHz in E-UTRA bands 40, 42 and

43). This illustrates that a large operational bandwidth is required for a NNC system if the

full communication of LTE in an area is to be monitored.

Systems that have large sample bandwidths are typically costly and bulky. For mobile sys-

tems, this is often not realisable. As soon as the operational bandwidth of a NNC receiver

is reduced, the POI of that system is also severely reduced. There are methods to more

efficiently reduce the operational bandwidth, through monitoring of the base-stations to de-

termine which bands are currently utilised and to allocate the NNC receiver bandwidth

accordingly.

3.6.4 Calibration

All equipment should be calibrated to ensure reliable results. In the case of a sensor array,

phase calibration is required for channel synchronisation. Often the phase offsets of the sensor

array are altered if the environment is changed (i.e. the array is moved), hence portable

calibration should be built into the system.

The receiver hardware may have temperature-sensitive components, hence a change in am-

bient or operational temperature may also influence the synchronisation of the channels.

Calibration-in-the-loop methods are strongly advised to reduce all environmental effects on
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the measurements.

3.6.5 Processing

The tasks that the NNC system should be capable to achieve directly influences the required

processing of the system. If processing intense tasks are required, then suitable hardware

should be selected. Certain tasks are more efficient on certain hardware architectures, hence

processing hardware should be considered carefully. Fixed-length processing tasks are of-

ten best suited for set hardware based architectures (e.g. dedicated hardware of FPGAs).

Variable length processing that benefits greatly from parallel processing is suited for graph-

ics processing unit (GPU) base architectures, and variable length processing that does not

require parallel processing is best suited for digital signal processors (DSPs) or central pro-

cessing units (CPUs).

Analogue processing should not be disregarded as there are benefits, however for a multiple-

channel system calibration is proven difficult. Analogue processing is usually used for filtering

and for automatic gain control (AGC).

3.6.6 Receiver system and cost

Due to the massive power differences of signals on receive (illustrated in section 3.3), a receiver

with a wide dynamic range is required. A wide dynamic range implies that a digital receiver

with an ADC with high resolution is required (e.g. in the scenario of section 3.3 a minimum

word-length of 13 bits is required). With an ADC the trade-off between bandwidth, resolution

and cost should be considered.

In the previous section the trade-offs of the receiver system has already been discussed. In

general the better the performance of a system, the more expensive the system will be. If a

system should be custom made (i.e. does not use off-the-shelf equipment), then development

costs heavily inflate system costs. A deployable system will be more costly than a laboratory

set-up, as the system should be packed and ruggedised. Electrical power for the system is

often an issue for deployable system and should be taken into consideration.
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CHAPTER 4

SIMULATIONS

4.1 CHAPTER OVERVIEW

This chapter presents the simulation results from various DF receivers, sensor array struc-

tures, processing methods and algorithms.

4.2 SIMULATION SET-UP

The input signal is selected as an OFDM communication signal similar to the LTE specific-

ation. An OFDM symbol contains a number of carriers spaced equally in frequency, hence

it is generated optimally by modulating the data on each carrier and using an inverse-FFT

to transpose the symbol into the time domain [61]. In the LTE specification, 12 carriers are

grouped together to form a RB [20, 50]. RBs are assigned to each user to achieve efficient

frequency resource allocation. A CP is added in the time domain to each OFDM symbol for

symbol synchronisation.

It is assumed that two signals from different AOAs are present. The first signal contains

two RBs, they are denoted as RB 1 and RB 2 respectively. The second signal is directly

adjacent in the frequency domain to the first signal and contains a single RB, this is denoted

as RB 3. The second signal is received with 10 dB more power than the first signal. This is

done to test the interference between signals from different sources at different power levels.

The two sources are not time aligned, hence the OFDM symbols of the two sources are not

synchronised at the receiver. This is done as it is assumed the DF system is NNC.
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Chapter 4 Simulations

A 256-point IFFT is used for the OFDM symbol modulation. Only three RBs are modulated

(36 carriers), hence 14% of the spectrum is utilised (percentage of carriers occupied). The

SNR is calculated using the combined power of both signals. Figure 4.1 shows a diagram of

the source signals.

Figure 4.1: Diagram of the source signal properties.

Four different types of receivers are used for the pre-DOA integration. All receivers use 2N

data samples, where N is the number of samples per OFDM symbol (without the CP). Hence

multiple symbols are observed, and in the process the OFDM system loses orthogonality (see

section 3.2). A block diagram of the four receiver types are shown in Figure 4.2.

W1
2N-
FFT

W1
N-

Chan

Rx
1. Basic
FFT

W2 DFT Rx
2. Basic
Chan

BPF DFTW2 Rx
3. Filtered
Chan

Rx
∑
N R̂x

4. Filtered
ACM

Figure 4.2: Block diagram of the pre-DOA and DOA improvement integration.

The four receivers are:

1. A basic FFT method is used, with a FFT size 2N and a window W1, hence every

second frequency tap will coincide with a carrier. This receiver architecture increases
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Chapter 4 Simulations

the carrier spacing by using double the number of required FFT taps. The out of band

noise is also further reduced as the noise is spread over twice the number of frequency

taps. This is also the least processing intensive receiver architecture.

2. A channeliser that uses an N -point FFT with a window W1 to separate the channels.

The N-FFT serves as a time domain filter bank. After 2N − 1 data points have moved

through the channeliser, an N -point DFT with a window W2 is used to integrate each

channel. This receiver architecture increases carrier isolation through channelising the

data. This is more processing intensive than the first receiver.

3. Similar to the channeliser in case 2, however an additional BPF is implemented on

every channel between the channeliser and the DFT to further reduce interference from

neighbouring channels. The added filter increases carrier isolation, hence this receiver

has the greatest out-of-band noise and interference reduction.

4. Similar to the BPF channeliser of case 3, however the ACM per data sample is calculated

and the N -number of ACMs are then added. Hence it focuses on DOA improvement

integration. This receiver uses both carrier isolation and ACM-improvement integration

methods. This means that this receiver should have the best approximation of the ACM.

This receiver type is also the most processing intensive due to the generation of N ACM

calculations.

To exploit the FDMA structure of OFDM, the carrier-structure is used for frequency integra-

tion. A block diagram of the three FDMA integration methods is shown in Figure 4.3.

DF

1. no int

∑
RB DoA

2. RB
post-int

∑
RB R̂x DF

3. RB
pre-int

Figure 4.3: Block diagram of DOA improvement and post-DOA integration.

Three methods are used for every receiver type:

1. Only DF is performed, hence no inter-channel integration is used. This is to demon-

strate the performance without exploiting the multiplexing scheme of the signal.
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Chapter 4 Simulations

2. The DOA estimates per RB are summed (12 carriers), for post-DOA integration. This

method shows a basic post DOA estimation method that can improve the overall es-

timation.

3. The ACM of each carrier of a RB is used for DOA improvement. This method uses

DOA improvement integration over the multiplexing scheme, thus showing that even

though the receiver architecture does not use ACM integration, it can be used in the

processing chain at a later stage.

By combining the receivers and the FDMA integration methods, a total of 12 systems are

simulated. These DOA estimation systems are aimed at different levels of pre-DOA, DOA

improvement and post-DOA integration methods.

The windows used for W1 and W2 in the simulation are:

1. Rectangular,

2. Triangular,

3. Hann,

4. Hamming,

5. Gaussian with BT = 3,

6. Blackman-Harris.

For these simulations it is assumed that if both W1 and W2 are used, they are selected to be

the same window. The receiver sample-rate is 3.84 MHz and assumes a complex baseband

signal. The intermediate frequency (IF) is selected as 1 GHz. The IF determines the relation

between the Doppler frequency shift and velocity, as well as determines the location of the

sensors within the sensor array.

The array structures use 4,5, and 6 elements. These number of elements are selected as it re-

quires relatively few channels which are practically achievable due to cost, size and processing.

The sensor configurations for the arrays are selected as basic uniform arrays:

1. ULA with half wave-length inter-element spacing,

2. UCA with half wave-length radius,

3. UCA-CE with half wave-length radius.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

66

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 4 Simulations

In the simulation multiple array structures are selected to be tested, however in the case where

other parameters are to be tested (i.e. receiver, windowing, and DF algorithms), a 5-element

UCA is selected. This array structure is selected as it is the UCA structure with the fewest

number of elements and a half-wavelength radius that does not have an angular ambiguity.

A UCA is selected as it is a standard structure that has 360◦ azimuth coverage.

Only PCA based AOA estimation algorithms are used in the simulation, in particular the

MuSiC algorithm. These algorithms are selected as they are applicable to the given array

configurations. The following algorithms (with descriptions) are used in the simulation:

1. MuSiC: This is the spectral MuSiC algorithm (see section 2.4.1). As it is computation-

ally expensive to search through all values, a search tree is used. The benefit is that for

the same resolution considerably less data-points need to be evaluated, however an early

error in the search algorithm can cause the whole search to be faulty. Four iterations

of the tree-search is done. The search step-sizes are 10◦, 1◦, 0.1◦ and 0.01◦ respectively.

The search ranges are: full range ( −90◦ to 90◦ for ULA, and −180◦ to 180◦ for UCA

and UCA-CE), ±10◦, ±1◦ and ±0.1◦ for the four stages respectively. This shows that

in the worst case 100 angles are tested through the tree-search algorithm. If all angular

values are to be tested at the same angular resolution of 0.01◦ then 36 000 values should

be tested, therefore the tree algorithm reduces the number of tests by a factor of 360.

The algorithm can have a minimum RMSE of 0.005◦, as it is limited by the angular

search resolution.

2. Root-MuSiC: This algorithm uses the manifold Root-MuSiC(see section 2.4.2.2). The

mathematical translation of equation (2.40) is used for the UCA. Similarly, for a UCA-

CE, the centre element is omitted and is regarded as a UCA for this algorithm; note

that this reduces the performance of a UCA-CE greatly. A mathematical translation

for a UCA-CE is not currently available, and such a derivation is beyond the scope

of this dissertation. This algorithm requires less processing than the spectral MuSiC

algorithm, however it has reduced performance due to approximation errors.

3. Root-Search-MuSiC: This algorithm uses the Root-MuSiC algorithm to estimate an

initial value. This value is then used as a search location and improved through the

use of the spectral MuSiC algorithm. Once again a search tree of two stages is used to

determine the optimal point. An angular resolution of 0.8◦ and 0.16◦ are used for the
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Chapter 4 Simulations

tree searches respectively, over a search range of ±4◦ and ±0.64◦. This algorithm should

provide improved results in comparison to the Root-MuSiC, at the cost of additional

processing.

4. FD-Root-MuSiC: This algorithm is described in section 2.4.2.3. The manifold is

selected as M = 16, hence a total of 2M − 1 = 31 angular values are tested in this

algorithm.

5. FD-Linesearch-MuSiC: This algorithm is described in section 2.4.2.4. The manifold

is selected as M = 16, hence a total of 2M − 1 = 31 angular values are tested in

this algorithm. The IDFT parameter is selected as J = 256, hence a IDFT of size

2J−1 = 511 is used. This shows that the minimum achievable RMSE for this algorithm

is 0.176◦.

6. WLS-FD-Root-MuSiC: This algorithm is described in section 2.4.2.5 with the prin-

cipals of section 2.4.2.3. The manifold is selected as M = 16, and the test parameter

is selected as Q = 2M = 32, hence a total of 2Q− 1 = 63 angular values are tested in

this algorithm.

7. WLS-FD-Linesearch-MuSiC: This algorithm is described in section 2.4.2.5 with the

principals of section 2.4.2.4. The manifold is selected asM = 16, and the test parameter

is selected as Q = 2M = 32, hence a total of 2Q − 1 = 63 angular values are tested

in this algorithm. The IDFT parameter is selected as J = 256, hence a IDFT of size

2J−1 = 511 is used. This shows that the minimum achievable RMSE for this algorithm

is 0.176◦.

The FD-Root-MuSiC is used in the simulations when other parameters are evaluated as it

is applicable to any array configuration (no array-translation is required), less processing

is required in comparison to the spectral-MuSiC algorithm, it is scalable for better resolu-

tions, and renders a good approximation for a configuration with small number of antenna

elements.

The simulations are Monte-Carlo based and each AOA-estimation receiver and method is

run 100 times over 180 DOA sets. The AOA of RBs 1 and 2 are tested in 2◦ steps over

the full azimuth, and the AOA of RB 3 is randomised for every simulation. This is done to

ensure that the full range of AOAs are tested. Hence a total of 18 000 Monte-Carlo runs were

performed. MATLAB version 8.2.0.701 (R2013b) on a LINUX operating system is used for
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Chapter 4 Simulations

the simulations. The computer used for the simulation is a Dell PowerEdge 2950 Generation

3 with two 2.5 GHz Intel Xeon L5420 quad-core processors and 16 GB of RAM.

4.3 RESULTS

The simulation results are shown in this section. As there are multiple parameters that

are tested, only a subsection of the results are presented to illustrate the influence of these

parameters. The results are shown in the subsequent subsections.

The CRB on these graphs are calculated for the case of a single signal, as this is a lower

bound than for the case of multiple signals. The exact bound is not derived for each signal

case due to the mathematical complexity involved.

The performance for a given DOA system and scenario is shown by RMSE for a given SNR.

Typically the RMSE graph has four regions:

1. Noise dominant region: this is the region where the noise is much greater than the

signal, hence parameter estimation will yield false results. This section has a constant

value for AOA estimation, as this parameter wraps for every 360◦. In the case of this

simulation scenario, this region is typically for SNRs smaller than −20 dB.

2. Noise uncertainty region: this is the region where the SNR is sufficient to yield

estimation results, but the noise still causes wrong separation of the eigenvectors to

represent the signal and noise-subspaces. As a result the AOA estimation uses the

wrong subspace and hence it causes large errors. This region typically has monotone

descending RMSE values as the SNR increases, and is the bridge between the noise

dominant region and the signal dominant region.

3. Signal dominant region: this is the region where the correct subspaces are selected

and the SNR is sufficiently large for reliable estimation. Good estimators have RMSE

values that are monotone descending as the SNR increases, and should be as close to

the CRB as possible.

4. Saturation region: this is the upper region of the signal dominant region, where

algorithm-, word-length-, tolerance- and system-deficiencies cause the performance of

an estimator to saturate. This region therefore has a constant value for all the given

SNRs values.
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Chapter 4 Simulations

It should be noted that the noise uncertainty region and signal dominant region are often

difficult to distinguish from each other, especially in cases where the saturation region starts

at low SNRs values.

4.3.1 Algorithm comparison

This section considers the performance of the DF algorithm. The legend for the graphs in

this section is shown in Figure 4.4.

Figure 4.4: Legend for DF algorithm comparison.

Figures 4.5 to 4.13 compare the different DF algorithms. The results are generated from a

simulation for a UCA of 5 elements and a BPF-Channeliser with ACM integration and a

Gaussian window (BT = 3) for the first as well as second window.

A UCA is selected as it allows 360◦ coverage. A UCA array with 5 elements is the UCA array

with the fewest number of elements, with no ambiguities for a half wave-length radius. The

less elements that are used, the less processing is required. The BPF-Channeliser with ACM

integration is used, as the receiver architecture applies maximum signal isolation, hence the

best results are expected. A Gaussian window is used as it has low SLL with a relative small

main lobe width increase.

Figures 4.5 to 4.7 show the performance of the DF algorithms for RB 1 under different

post-integration methods.

The simulation results for the first RB show that they are far away from the general CRB.

This is due to the interference caused by the signal of the third RB, which is received at

higher power levels.

In the case with no post-integration (Figure 4.5) the majority of the algorithms tend to a
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Chapter 4 Simulations

Figure 4.5: DF algorithm comparison using a UCA of 5 elements, a Gaussian window with

BT = 3 and a BPF-Channeliser with ACM integration with no post-integration of RB 1.

Figure 4.6: DF algorithm comparison using a UCA of 5 elements, a Gaussian window with

BT = 3 and a BPF-Channeliser with ACM integration with post-integration over RB 1.
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Chapter 4 Simulations

Figure 4.7: DF algorithm comparison using a UCA of 5 elements, a Gaussian window with

BT = 3 and a BPF-Channeliser with ACM integration and with ACM integration of RB 1.

RMSE of 10◦ as the SNR increases. In the case of post-integration (Figure 4.6) all of the

algorithms tend to RMSE values less than 10◦ as the SNR increases. The result that use

ACM integration over the full RB (Figure 4.7), yields the best results; where the poorest

performance was the FD-Linesearch-MuSiC algorithm that tends to a RMSE of 4◦ as the

SNR increases.

In all three figures (Figures 4.5 to 4.7) the Root-MuSiC and the Root-search-MuSiC al-

gorithms perform as two of the three poorest algorithms. The Root-Search-MuSiC outper-

forms the Root-MuSiC in all three cases. The (spectral) MuSiC and the WLS-FD-Linesearch

algorithms consistently perform best in comparison to the other algorithms.

The noise dominant region for Figures 4.5 and 4.6 is defined for SNR< 0 dB, and for Fig-

ure 4.7 it is defined for SNR< −5 dB. This shows that ACM integration reduces the transition

between the noise dominant - and signal dominant region. In all three cases the noise un-

certainty and signal dominant regions are not distinguishable. Post-integration increases the

slope of the signal-dominant region, in comparison to using no integration.

Figures 4.8 to 4.10 show the performance of the DF algorithms for RB 2 under different
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Chapter 4 Simulations

post-integration methods.

Figure 4.8: DF algorithm comparison using a UCA of 5 elements, a Gaussian window with

BT = 3 and a BPF-Channeliser with ACM integration with no post-integration of RB 2.

Figure 4.9: DF algorithm comparison using a UCA of 5 elements, a Gaussian window with

BT = 3 and a BPF-Channeliser with ACM integration with post-integration over RB 2.

The simulation results for the second RB (Figures 4.8 to 4.10) have poorer results than those
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Chapter 4 Simulations

Figure 4.10: DF algorithm comparison using a UCA of 5 elements, a Gaussian window

with BT = 3 and a BPF-Channeliser with ACM integration and with ACM integration of

RB 2.

of the first RB (Figures 4.5 to 4.7). This is because the second RB is located very close to

the third RB and results in significant interference. The results are biased to the AOA of

the third RB and are hence more times than not associated with the wrong signal. The best

achievable RMSE for the second RB is 30◦ (Figure 4.8).

Figures 4.11 to 4.13 show the performance of the DF algorithms for RB 3 under different

post-integration methods.

Figures 4.11 to 4.13 have better performance and are near the CRB in the signal dominant

region. The differences between the algorithms are larger for the third RB in comparison to

the other RBs (Figures 4.5 to 4.10).

All four regions are clearly visible in Figure 4.13. Consider the data for the Root-search-

MuSiC algorithm. The noise dominant region is defined for SNR values below −25 dB, the

noise uncertainty region ranges from −25 dB to −10 dB, the signal dominant region ranges

for values above −10 dB, and the saturation region ranges for values larger than 20 dB.
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Chapter 4 Simulations

Figure 4.11: DF algorithm comparison using a UCA of 5 elements, a Gaussian window

with BT = 3 and a BPF-Channeliser with ACM integration with no post-integration of RB

3.

Figure 4.12: DF algorithm comparison using a UCA of 5 elements, a Gaussian window

with BT = 3 and a BPF-Channeliser with ACM integration with post-integration over RB

3.
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Chapter 4 Simulations

Figure 4.13: DF algorithm comparison using a UCA of 5 elements, a Gaussian window

with BT = 3 and a BPF-Channeliser with ACM integration and with ACM integration of

RB 3.

For all post-integration methods (Figures 4.11 to 4.13), the FD-Linesearch-MuSiC algorithm

has the poorest performance, as the saturation region starts at the lowest SNR values and

has a fairly high RMSE value of ±3◦. In Figure 4.13, the FD-Linesearch-MuSiC algorithm

saturation region spans the full signal dominant region, and this is clearly visible if compared

to the other results on the same graph.

The ACM integration over a RB (Figure 4.11), yields the best results for all algorithms. In

this figure it shows that the spectral MuSiC, FD-Root-MuSiC and WLS-FD-Root-MuSiC

algorithms achieve the best as well as equal performance. The WLS-FD-Linesearch-MuSiC

algorithm has a clear improvement on the FD-Linesearch-MuSiC algorithm. This shows that

vastly superior performance can be achieved through the weighting function. Similarly, the

Root-Search-MuSiC has a significant improvement over the Root-MuSiC algorithm, as it

reduces the estimation error caused by the array approximation (note that with a ULA the

improvement will not be as dramatic).

Table 4.1 shows the average processing times of all the algorithms. Note that the simula-

tion times for the Basic-FFT is also included, as it is a receiver architecture that uses less
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processing, hence the processing time is mainly as a results of the DF algorithm.

Table 4.1: Average processing times for the different DF algorithms.

Algorithm Receiver

BPF-Channeliser Basic-FFT

MuSiC 22 h 3 min 4 h 34 min

Root-MuSiC 17 h 46 min 59 min

Root-Search-MuSiC 19 h 56 min 2 h 17 min

FD-Root-MuSiC 19 h 19 min 1 h 54 min

FD-Linesearch-MuSiC 19 h 17 min 1 h 42 min

WLS-FD-Root-MuSiC 19 h 45 min 2 h 9 min

WLS-FD-Linesearch-MuSiC 19 h 16 min 1 h 54 min

From the processing times it shows that the most processing intensive algorithm is the spectral

MuSiC algorithm, as is expected. The least processing intensive algorithm is the Root-MuSiC.

All other algorithms have relatively similar processing times. The processing time difference

between the receivers are significant, however it will be discussed in section 4.3.2.

4.3.2 Receiver comparison

This section considers the influence of the receiver architecture on the DF performance. The

legend for this section is shown in Figure 4.14.

Figures 4.15 to 4.17 compare the different receiver architectures and post-integration methods.

The results are generated from a simulation for a UCA of 5 elements with a Gaussian window

(BT = 3) for the first and second windows, and utilises the FD-Root-MuSiC algorithm.

Similar to the previous section, a UCA is selected as it allows 360◦ coverage, has no array

ambiguities and consists of relatively few elements. A Gaussian window is selected as it has

low SLL with a relative small main lobe width increase. The FD-Root-MuSiC algorithm is

used as it requires relatively little processing (in comparison to the MuSiC and WLS-FD-

RootMuSiC), and as it does not require a mathematical array transformation (in contrast to

Root-MuSiC), while it is not limited to a step size (as is the case in the line-search based

algorithms).
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Chapter 4 Simulations

Figure 4.14: Legend for receiver comparison.

Figure 4.15 shows the performance for RB 1, Figure 4.16 for RB 2, and Figure 4.17 for

RB 3.

Figure 4.15: Receiver architecture comparison using a UCA of 5 elements, a Gaussian

window with BT = 3 and the FD-Root-MuSiC algorithm for RB 1.

Using ACM post-integration yields the best result in terms of post-integration methods (Fig-

ure 4.17). There is a clear performance increase in systems that use more than one snapshot

of data for the ACM approximation. However, the difference between 3072 snapshots (ACM
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Chapter 4 Simulations

Figure 4.16: Receiver architecture comparison using a UCA of 5 elements, a Gaussian

window with BT = 3 and the FD-Root-MuSiC algorithm for RB 2.

Figure 4.17: Receiver architecture comparison using a UCA of 5 elements, a Gaussian

window with BT = 3 and the FD-Root-MuSiC algorithm for RB 3.
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Table 4.2: Average Processing Time

Receiver Processing time

Basic FFT 2 h 14 min

Basic Channeliser 4 h 3 min

Filtered Channeliser 6 h 49 min

Filtered ACM-integration Channeliser 19 h 19 min

integration receiver with RB ACM integration) and 12 snapshots (only RB ACM integration

for all results) seem negligibly small for the strongest signal. This demonstrates that excessive

integration of the ACM does not yield significant benefits for the processing it requires.

The channeliser does not have a significant advantage over the Basic-FFT method for strong

signals (RB 3 and Figure 4.17); however, the channeliser has a significant improvement for sig-

nals with greater interference (RB 1 and Figure 4.15). Additional filtering in the channeliser

greatly improves performance as interference and out-of-band noise is significantly reduced

(RB 1 and Figure 4.15). These results show that using good signal separation receivers, like

the channeliser, performance is increased in multi-signal environments, as the interference

is reduced. In the case of OFDM it is a good isolation technique, and it can be applied to

various signalling systems.

An interesting observation is that in Figure 4.16 the results for the RB post-integration are

not monotone descending, as they have a local maximum of the RMSE near 5 dB SNR (the

maximum is slightly different for each case). This local maximum, which causes the RMSE

to increase, may either be due to the fact that the DF algorithms lock onto the neighbouring

signal of RB 3, or due to a deficiency in the integration algorithm, or both.

The average calculation time of simulations for each receiver type is shown in Table 4.2. The

ACM integration method over all channelised data is the most processing intensive, but it

provided the best results for all signals (Figures 4.15 to 4.17). By comparison, the Basic-FFT

method used approximately an eighth of the processing time (Table 4.2), with very similar

results for strong signals. This shows that by selecting the correct receiver architecture a
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Chapter 4 Simulations

reduction in the processing can be achieved without a great loss in performance, hence the

cost of the receiver can be significantly reduced.

It seems that the single greatest means of improvement of performance is to integrate the

ACM of the 12 carriers of each RB (Figures 4.15 to 4.17). The best performance versus

processing time trade-off would be the channelised receiver with a BPF per channel and

a final DFT using RB ACM integration. This indicates that by selecting a combination

of all the integration techniques, relatively good results can be achieved at reduced system

processing cost.

The RB 2, which is received at a lower power level and is directly adjacent to RB 3, has

significantly worse results (Figures 4.16 compared to 4.17). This shows that some frequency

separation between signals is required to reduce the interference. Even with filtering and

using appropriate windows for the FFT, the interference cannot be reduced sufficiently for

reliable results (Figure 4.16). In frequency dispersive channels (i.e. if Doppler spread is

observed), the separation of the signals is even more difficult to achieve [38].

The results show that the receiver selection has a significant impact on the performance of

the DF estimation as well as the processing requirements. It therefore emphasises that the

receiver architecture has the most influential and crucial effect on the design of a system.

It should also be considered to perform simulations on an optimal computational platform.

The simulations are done on a mainly serial-processing platform, therefore parallel processing

methods are not optimal and that other processing platforms (e.g. FPGA or dedicated

hardware) can result in better processing efficiency for the channeliser based receivers.

4.3.3 Windowing

This section considers the influence of windowing-methods on the DF performance. The

legend for this section is shown in Figure 4.18.

Figures 4.19 to 4.24 compare the effects of the different windows used in the receiver ar-

chitecture. The results are from a simulation for a UCA of 5 elements and utilises the

FD-Root-MuSiC algorithm.
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Chapter 4 Simulations

Figure 4.18: Legend for window comparison.

Similar to the previous section, a UCA is selected as it allows 360◦ coverage, has no array

ambiguities and has relatively few elements. The FD-Root-MuSiC algorithm is selected for

its processing, robustness, and it is not limited by search operations.

Figures 4.19 to 4.21 consider a Basic-DFT architecture. A Basic-DFT receiver has double the

number of frequency-taps than the OFDM signal in the given bandwidth, hence the side-lobe

reduction is increased due to oversampling.

Figures 4.19 and 4.22 show the performance for RB 1, Figures 4.20 and 4.23 for RB 2, and

Figures 4.21 and 4.24 for RB 3.

From the results for the Basic-FFT receiver (Figures 4.19 to 4.21), it shows that the best

performing window is the rectangular window. The largest difference in the windows are ob-

served in the saturation region for RB-ACM integration. The Hamming, Hann and triangular

windows have similar performance (Figures 4.19 and 4.20).

The window with the poorest performance for RB-ACM integration for all three RBs is

the Blackman-Harris window (Figures 4.19 and 4.20), and the Gaussian window performing

the second poorest. This is counter-intuitive, as these windows have the lowest SLL, hence

maximum signal isolation. On the other hand, these two windows have the broadest main

lobe, hence signals with little frequency separation experiences great interference.
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Chapter 4 Simulations

Figure 4.19: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a Basic-FFT receiver architecture for RB 1.

Figure 4.20: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a Basic-FFT receiver architecture for RB 2.
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Chapter 4 Simulations

Figure 4.21: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a Basic-FFT receiver architecture for RB 3.

Since the performance difference between the windows is insignificant for RB 3, it can be

concluded that for strong non-interfering signals, windowing has negligible benefits. On

the other-hand, the influence on windowing has a significant effect for interfering signals

(Figures 4.19 and 4.20).

Figures 4.22 to 4.24 consider a channeliser architecture with a DFT. A channeliser architecture

has two DFT stages, hence a window can be placed at both stages and the effective window of

the data for the receiver is the convolved result of the two windows. The SLL reduction and

main lobe broadening will therefore be considerably increased in this architecture. Note that

the architectures that use ACM integration rather than the DFT do not have a secondary

window stage.

The results for the channeliser receiver (Figures 4.22 to 4.24), are similar to the observations

for the Basic-FFT receiver: the differences between the windowing methods are greatest for

interfering signals (RB 1 and RB 2), the rectangular window performs best, the Blackman-

Harris window performs worst, and the performance differences between the windows are

most clearly visible in the saturation region for RB-ACM integration methods.
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Chapter 4 Simulations

Figure 4.22: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a channeliser with a secondary DFT architecture for RB 1.

Figure 4.23: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a channeliser with a secondary DFT architecture for RB 2.
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Figure 4.24: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a channeliser with a secondary DFT architecture for RB 3.

The results have shown that windowing has an effect on interfering signals, however in the

case of the simulation it has shown that using no windowing gives the best results. This

is counter-intuitive, however it shows that side-lobe broadening is more detrimental to the

signal processing than the benefits of SLL reduction.

Another argument can be made that windowing removes the orthogonality from the signal,

hence it causes interference instead of removing it. In frequency-flat stationary channels this

would be true, however fading effects can cause the loss of orthogonality as well. Therefore

there is the possibility that windowing is beneficial in fading channels.

Figures 4.25 to 4.27 consider a Basic-DFT architecture in a EVA 70 Hz channel.

Figures 4.25 to 4.27 show that a rectangular window is no longer the optimal window to

use. For RB 1 the best performing windows in order of merit are the Hamming, triangu-

lar and then the Hann windows (Figure 4.25). The rectangular window still offers better

performance than the Gaussian and Blackman-Harris windows. Similar results are observed

for RB 2 (Figure 4.26). The results for RB 3 show that the influence of the windows are

negligible (Figure 4.27).
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Figure 4.25: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a Basic-FFT receiver architecture for RB 1.

Figure 4.26: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a Basic-FFT receiver architecture for RB 2.
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Figure 4.27: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a Basic-FFT receiver architecture for RB 3.

In comparison to the frequency-flat static channel results (Figures 4.19 to 4.21), the results

for the fading channel are poorer (Figures 4.25 to 4.27). This is shown clearly for RB 3 where

the saturation region occurs earlier in the fading channel (Figure 4.27).

Figures 4.28 to 4.30 consider a channeliser architecture with a DFT in a EVA 70 Hz channel.

These results shows that a rectangular window is optimal, as in the frequency-flat static

channel case (Figures 4.28 to 4.30 vs. Figures 4.22 to 4.24). As with the Basic-FFT case, the

results are slightly poorer due to the fading, and it is best visible for RB 3 (Figure 4.30).

The final results show that windowing is only beneficial in fading channels for Basic-FFT

receivers. For other cases better results are achieved if a rectangular window is used. Windows

with broad main-lobes tend to be detrimental to the AOA estimation in the specified case.

This is due to the fact that the signals do not exhibit enough frequency separation. In the

case where greater frequency separation is achieved between two signals, windowing may have

some benefits.
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Figure 4.28: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a channeliser with a secondary DFT architecture for RB 1.

Figure 4.29: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a channeliser with a secondary DFT architecture for RB 2.
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Chapter 4 Simulations

Figure 4.30: Window comparison using a UCA of 5 elements, the FD-Root-MuSiC al-

gorithm and a channeliser with a secondary DFT architecture for RB 3.

4.3.4 Sensor Array comparison

This section considers the influence of the array geometry on the DF performance. The

legend for this section is shown in Figure 4.31.

Figure 4.31: Legend for array comparison.

Figures 4.32 to 4.34 show the results for no post-integration.

The results are from a simulation using the FD-Root-MuSiC algorithm, as it is applicable
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Figure 4.32: Array comparison with a FD-Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with no post-integration of RB 1.

Figure 4.33: Array comparison with a FD-Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with no post-integration of RB 2.
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Chapter 4 Simulations

Figure 4.34: Array comparison with a FD-Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with no post-integration of RB 3.

to all array configurations without the need of mathematical transformations. The UCA

based arrays are simulated over a 360◦ azimuth, and the ULA based arrays are simulated

over a 120◦ azimuth coverage to compensate for array ambiguities. The ULA based arrays

are assumed for a sectored system that has three sectors, each with a bandwidth of 120◦. A

channeliser with a secondary DFT architecture is selected as it has relative good results and

requires little processing time (see section 4.3.2).

In all figures the RMSE in the noise dominant region is considerably lower for a ULA than for

a UCA (Figures 4.32 to 4.37). This can be explained by the fact that the AOA estimation for

a ULA is bounded to compensate for the 180◦ ambiguity of the array. The ULA arrays only

observe signals over an azimuth range of 120◦, whereas the UCA based arrays observe signals

over the full 360◦ range. Therefore the expected maximum error for a ULA is lower.

The results for both RB 1 and RB 2 (Figures 4.32 and 4.33) show that the ULA have lower

RMSE values than the UCA based arrays. The same is not true with RB 3, as the saturation

region has higher RMSE values for ULA in comparison to the UCA based arrays (Figure 4.34).

This shows that ULA have an improved performance for interfering signals and in low SNR

conditions. All results for RB 1 and RB 2 (Figures 4.32 and 4.33) are poor as none of the
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arrays yield sub 10◦ accuracy. RB 3 does achieve an accuracy smaller than 10◦ at high SNR

for all arrays.

RB 3 has the best RMSE values (Figure 4.38), followed by RB 1(Figure 4.32), and RB 2 has

the poorest values (Figure 4.35). This is consistent with all previous results.

Figures 4.35 to 4.37 show the results for RB post-integration. The results for RB integration

Figure 4.35: Array comparison with a FD-Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with post-integration of RB 1.

shows that improved RMSE values are achieved, this is consistent with previous results and

as expected. The ULA arrays for RB 1 achieve RMSE values near 10◦ for high SNR. This

shows great improvement above the UCA. However it should still be noted that the FOV for

the ULA is smaller, hence improved results is to be expected.

The results for both RB 1 and RB 2 (Figures 4.35 and 4.36) show that the ULA have lower

RMSE values than the UCA based arrays. The same is not true with RB 3, as the saturation

region has higher RMSE values for ULA in comparison to the UCA based arrays (Figure 4.37).

This shows that ULA have an improved performance for interfering signals and in low SNR

conditions.
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Figure 4.36: Array comparison with a FD-Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with post-integration of RB 2.

Figure 4.37: Array comparison with a FD-Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with post-integration of RB 3.
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The 4-element UCA and the 5-element UCA-CE yielded poor results in comparison to the

other arrays, and this is especially evident for non interfering signals (Figure 4.37). This is

caused by an 180◦ array ambiguity which occurs every 90◦ when a far-field signal approaches

the array in line with an element position towards the centre of the array. Typically the

RMSE performance of an array configuration improves as the number of elements increases.

However structural ambiguities cause great errors and results in exceptions.

Figures 4.38 to 4.40 shows the results for ACM-RB integration.

Figure 4.38: Array comparison with a FD-Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with ACM post-integration of RB 1.

The saturation region of the ACM-RB method block for RB 3 (Figure 4.40) for ULAs has

poor results. These are also the only results that have non-monotone RMSE with a minima.

This local minima (e.g. at −10 dB SNR for a 6-element ULA) are caused by the FD-Root-

MuSiC algorithm. To validate this statement a subsection of the results of the Root-MuSiC

algorithm is shown for RB 3 in Figures 4.41 to 4.43. The results of the Root-MuSiC

algorithms show that the graphs are indeed monotone-decreasing over all SNR values. The

UCA-CE still uses the FD-Root-MuSiC algorithm, as the mathematical transformation for

the Root-MuSiC algorithm for this array has not been developed.
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Figure 4.39: Array comparison with a FD-Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with ACM post-integration of RB 2.

Figure 4.40: Array comparison with a FD-Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with ACM post-integration of RB 3.
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Figure 4.41: Array comparison with a Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with no post-integration of RB 3.

Figure 4.42: Array comparison with a Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with post-integration of RB 3.
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Figure 4.43: Array comparison with a Root-MuSiC algorithm using a Gaussian window

channeliser with a secondary DFT architecture and with ACM post-integration of RB 3.

Figure 4.41 shows the results for no post-integration, Figure 4.42 shows the results for RB

post-integration, and Figure 4.43 shows the results for RB-ACM post-integration. The results

show that the Root-MuSiC algorithm does not have an early saturation region (Figures 4.41

to 4.43) as shown for the FD-Root-MuSiC algorithm (Figures 4.34, 4.37, and 4.40).

4.3.5 System optimisation

This section uses the simulation results to determine the Pareto efficiency of the variables

for minimum simulation time (processing requirements) and the minimum RMSE at certain

SNR values.

For the analysis the SNR values of −10 dB, 0 dB, 10 dB and −10 dB are considered as they

present the following cases:

1. Noise dominant: The noise is stronger than the signal present,

2. Weak signal: noise has a significant influence as it has equal power to the signal,

3. Moderate signal: sufficiently high SNR for the signal to be dominant,
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4. Strong signal: high SNR where the influence of the noise is negligible.

A Pareto efficient point is a data point which cannot be improved for a certain parameter

without the reduction of another parameter. This results in a selection of optimal receivers for

multiple parameters. The Pareto efficient points forms a Pareto front which allows selection

of the optimal design parameters.

All the previous results can be incorporated for the analysis. A small subset of additional

simulations can be performed using the simulation profiles that are on the Pareto front and

by changing some of the parameters for these profiles using the conclusions of the previous

results. This results in an efficient method of finding optimal points without the need of large

scale simulations to cover all parameters. The presented results include the additional subset

of simulations.

The legend for this section is shown in Figure 4.44. Note that the post-integration methods

Figure 4.44: Legend for optimisation.

are observed separately. This is done as the post-integration methods are not separated in

the simulations, and hence their contribution to the processing cannot be quantified.

Figure 4.45 shows the analysis for RB 1 and UCA based arrays. Figure 4.46 shows the analysis

for RB 2 and UCA based arrays. Figure 4.47 shows the analysis for RB 3 and UCA based

arrays. The analysis is done separately for UCA and ULA based arrays, as ULA based arrays

have a smaller FOV. A smaller FOV requires more simultaneous systems and should have

better RMSE values, as it makes the assumption that signals originate only in the specified

FOV. It is therefore an invalid comparison between ULA and UCA based arrays.

There are multiple SNR cases observed as well as three different signals. To further analyse

the results, the number of times a simulation profile appears on the Pareto front is calculated.

The more often a receiver is on the Pareto the more cases there is where the receiver design
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Figure 4.45: Optimisation of RB 1 for UCA based arrays

Figure 4.46: Optimisation of RB 2 for UCA based arrays
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Figure 4.47: Optimisation of RB 3 for UCA based arrays

is a valid optimal point. This method allows a quantifiable analysis to select the best receiver

design for a NNC-DF receiver.

Table 4.3 shows the parameters of the simulation profiles which are most frequently on the

Pareto front. These simulation profiles are the short list for DF-receiver design with UCA-

based arrays.

Based on the results, it shows that the UCA-CE do not feature at all, hence it is an inefficient

array configuration, despite the stability it causes on a system.

The most frequent receiver architectures is the Basic-FFT, and it can be contributed to the

fact that it is processing efficient and inexpensive. The use of the FD-Linesearch algorithm

also reduces processing time. However, the results are poor with a minimum RMSE in the

analysis being at 12.1◦.

The use of the FD-Root-MuSiC algorithm has significantly better results with only a slight

increase in processing time.
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Table 4.3: Simulation profiles which are Pareto efficient over multiple scenarios for UCA-

based arrays.

Parameter Simulation parameters

No. of times on Pareto front 11 6 5 4 3 1

Array Type UCA UCA UCA UCA UCA UCA

Number of elements 5 5 5 6 5 5

Receiver type Basic-FFT Basic-FFT Basic-FFT Basic-FFT Basic-FFT Channeliser

NB Filter - - - - - Y

Secondary stage - - - - - ACM-int

Window 1 Triangular Rectangular Hann Rectangular Triangular Gaussian

Window 2 - - - - - Gaussian

AOA algorithm FD-LS FD-Root FD-Root FD-LS FD-Root FD-Root

Post-integration ACM-RB ACM-RB ACM- RB ACM-RB ACM-RB ACM-RB

Processing time 1 h 25 min 1 h 54 min 1 h 54 min 1 h 28 min 1 h 54 min 19 h 33 min

RMSE [deg] for RB 1

SNR = -10 dB 2655 2677 2657 2543 2461 2700

SNR = 0 dB 884 1044 1032 395 990 897

SNR = 10 dB 29.1 7.57 23.7 17.1 20 10

SNR = 30 dB 18.7 3.52 7.6 14.6 8 4.2

RMSE [deg] for RB 3

SNR = -10 dB 14.04 2.2 2.4 13.8 2.2 2.7

SNR = 0 dB 12.27 0.21 0.23 12.4 0.21 0.24

SNR = 10 dB 12.07 0.02 0.023 12.3 0.022 0.024

SNR = 30 dB 12.05 0.0013 0.0014 12.6 0.0013 0.0011

Simulation profile number 42 16 18 41 17 15

Figure 4.48 shows the analysis for RB 1 and ULA based arrays. Figure 4.49 shows the analysis

for RB 2 and ULA based arrays. Figure 4.50 shows the analysis for RB 3 and ULA based

arrays.

Table 4.4 shows the parameters of the simulation profiles which appears most frequently on

the Pareto front for ULA based arrays.

From the analysis the simulation profiles for ULAs it shows that the Basic-FFT receiver

architecture is preferred due to its low processing requirements. The Root-MuSiC has a good

trade-off between processing and performance.

The simulations for the ULA based arrays require less time. This is due to the fact that a

smaller FOV is simulated.

In both the UCA and ULA cases, the use of the Pareto front in conjunction with simulation

conclusions lead to improved simulation profile selections. Simulation profiles numbered 40

and above for UCA based arrays, and profiles of 7 and above for ULA based arrays, are
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Figure 4.48: Optimisation of RB 1 for ULA based arrays

Figure 4.49: Optimisation of RB 2 for ULA based arrays
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Figure 4.50: Optimisation of RB 3 for ULA based arrays

Table 4.4: Simulation profiles which are Pareto efficient over multiple scenarios for ULA

based arrays.

Parameter Simulation parameters

No. of times on Pareto front 12 6 6 5 2 1

Number of elements 4 5 6 6 6 6

Receiver type Basic-FFT Basic-FFT Basic-FFT Basic-FFT Basic-FFT Basic-FFT

Window 1 Gaussian Rectangular Rectangular Hann Rectangular Rectangular

AOA algorithm Root Root Root Root MuSiC Root- Search

Post-integration ACM-RB ACM-RB ACM- RB ACM-RB ACM-RB ACM-RB

Processing time 16 min 18 min 20 min 20 min 1 h 48 min 42 min

RMSE [deg] for RB 1

SNR = -10 dB 1420 3244 3170 1533 3290 3152

SNR = 0 dB 530 1522 564 414 668 606

SNR = 10 dB 23 3.6 1.68 9.78 2.65 2.0

SNR = 30 dB 13 0.55 0.43 8.46 0.33 1.2

RMSE [deg] for RB 3

SNR = -10 dB 1.878 1.03 0.53 0.59 0.54 0.51

SNR = 0 dB 0.18 0.1 0.05 0.055 0.053 0.05

SNR = 10 dB 0.019 0.011 0.0058 0.0064 0.0057 0.0058

SNR = 30 dB 0.0017 0.0011 0.00086 0.00092 0.00091 0.00091

Simulation profile number 9 17 19 28 33 32

selected by changing specified parameters on existing simulation profiles that are initially on

the Pareto front. From the summary of the results (Table 4.3 and Table 4.4) it shows that
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this method is efficient to select a vast parameter space for optimal results.

4.4 CONCLUSION

This chapter presented the simulation results for a NNC-DF receiver system for the case of

two frequency-adjacent LTE based signals. Multiple array configuration, algorithms, receiver

architectures and windowing methods have been investigated. Optimisation of the simulation

parameters have been done through the use of Pareto analysis.
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CHAPTER 5

PRACTICAL SYSTEM DEVELOPMENT

5.1 CHAPTER OVERVIEW

This chapter discusses the development of a practical NNC-DF system, based upon the

simulation results from Chapter 4.

5.2 SENSOR ARRAY

As shown by the simulation results, the sensor array has a significant influence on the per-

formance of the system.

5.2.1 Number of sensor elements

In theory the sensor array should consist of as many as possible elements, however this causes

many practical problems. As the number of elements increase, so does the system cost: as

more sensors are used, a receiver is required for each channel, including processing increased

for the increase of complexity of the associated DF algorithms. Large arrays also require

much space, hence for many applications (especially in the case where mobility is required)

the physical structure is too large and impractical. Too few antenna elements on the other

hand have reduced DOA accuracy.

The receiver clock stability directly influences the RMSE of the estimation. Therefore clock

stability in conjunction with hardware calibration can be used as factors to estimate the lower

bound of the RMSE. A sensor array that can estimate more accurately than the hardware-
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Chapter 5 Practical system development

RMSE bound is therefore considered excessive, hence a limit on the number elements can

be determined. Unfortunately the phase stability of the receiver system should first be

determined for this approach to be applicable.

Another design approach is to consider commercially available hardware. Software-defined

radio (SDR) based architectures offer a relatively cheap and simple commercial option for

system design. Most SDRs only have one or two channel architectures, however there are

some systems with four channel receivers. Two or four channel receivers have poor DOA

estimation for 360◦ azimuth range, hence the use of a single SDR. Many of these architectures

have the option to use external clocking such that multiple devices can be synchronised for

DF. However many of these receivers use digital down-converters (DDCs) which also need

to be synchronised. It is possible to remove the phase offset caused between two DDCs by

calibrating the system on every system start-up, but this is not always a practical approach.

In general a SDR sends the measured data to a host-device for processing, hence stacking

multiple SDRs together requires a single host that is capable of processing the full received

data bandwidth. The host-device is therefore a limiting factor on the total number of SDRs

that can be used in parallel.

Using SDR based architectures, the following options can be considered:

1. Three Ettus B210 SDRs [62,63] with an Octoclock for synchronisation, as it allows

a six-channel receiver to be build. A method of calibrating the DDC offset between

the three SDRs is required for this configuration. Such a system will allow 360◦ un-

ambiguous coverage with relative little required processing and hardware. SDRs from

Ettus are commonly used for research [64–74], due to the low cost, accessibility and

adaptability for multiple applications.

2. A Per Vices Crimson SDR [63, 75, 76] as it is a fully synchronised four-channel

receiver. No additional clocking considerations is required as all channels are on the

same platform. This option limits the array configurations for 360◦ azimuth coverage

as ambiguities may be present. However if a sectored approach is followed (i.e. linear-

arrays are used) the system will be more practical.

National Instruments (NI) offers some commercial options with fully synchronised multiple-

channel receivers (e.g. the FlexRIO [77–79]), however this option is much more expensive
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Chapter 5 Practical system development

than most SDRs. Another option is to develop a hardware platform specifically for the

application, however this will also be very expensive due to development costs.

5.2.2 Array configuration

The array configuration determines whether ambiguities are present, the array size, which

AOA algorithms can be used, and the performance of the algorithms. Many arrays achieve

excellent results forNB signals, however they have ambiguities at other frequencies. Uni-

form arrays tend to have good results for NB operation, but they are not suitable for WB

operation.

Linear arrays have excellent results and are directly applicable to most AOA algorithms,

however they have a limited range of operation caused by ambiguities. If 360◦ operation

is not required or if a sectored system can be developed, then linear arrays have superior

performance and are preferred. The use of non-uniform spacing, such as logarithmic spacing

can easily increased the operational bandwidth of a linear array, hence simple WB systems

can be developed.

If 360◦ azimuth operation is required and only a single system may be used (i.e. no sector-

ing) then circular arrays can be implemented. Circular arrays are less sensitive to system

bandwidth for large arrays, however it is still possible to achieve with a small number of

array elements. Another option is to use stochastic spacing of elements on a plane, as it is

stochastically unambiguous, however it may be difficult to manufacture (custom mounting

at arbitrary positions) and the array may have reduced sensitivity at certain bearings.

As the system design of this dissertation considers a NB signal (540 kHz at 1 GHz), uniform

arrays (i.e ULA and UCA) can be selected for validation purposes. However for a practical

wideband system non-uniform arrays should be considered. Following on section 5.2.1 the

following scenarios are to be considered:

1. Three Ettus B210 SDRs with an Octoclock: use a UCA with a radius equal to a half-

wavelength of the centre frequency of the operational band.

2. Three Ettus B210 SDRs with an Octoclock: use stochastic element spacing normalised

to a half-wavelength of the centre frequency of the operational band.
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3. A Per Vices Crimson SDR: for system validation use a ULA.

4. A Per Vices Crimson SDR: for a operational system use a logarithmically-spaced linear

array.

5.2.3 Sensor type

The sensor used, determines the size and mountability of an array. Here are some popular

choices of sensors that can be used for DF:

1. Dipole antennas: these antennas are cheap to manufacture and are omnidirectional.

The problem however is that they are mounted at the vertical centre of the antenna,

thus they are suitable to be mounted on a mast or on the side of buildings but not on

horizontal planar surfaces. For DF such an array should be mounted around a mast,

making it often impractical to use.

2. Monopole antennas: similar to dipoles, however they are mounted on a plane. These

antennas are suitable for planer mounting such as on the roof of a vehicle or bottom

of an aeroplane. The vertical coverage is not as optimal as in comparison to a dipole

antenna.

3. Patch antenna: these antennas are etched on a substrate, hence they can be manufac-

tured through a similar process used for electronic circuitry. These antennas can easily

be mounted against surfaces, such as the side of a plane or vehicle. As patch antennas

are flat they have aerodynamic benefits to vehicles. Patch antennas are directional

hence they have increase antenna gain.

4. Spiral antennas: Large bandwidth, small size, directional antennas typically used for

radar warning receivers (RWRs).

5. Parabolic dish antennas: popular use in radio-astronomy due to high gain, wide

bandwidth and large directivity.

For practical land-based systems and for system validation, monopole antennas are selected as

they are easy to mount, omnidirectional and relatively cheap. ULAs antenna configurations

can use monopole antennas for laboratory testing, as the 180◦ error can be mitigated and

interference from sources outside the FOV are minimal. For practical ULA based systems,

patch antennas can be used due to directivity, easy to mount on surfaces and low cost.
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Chapter 5 Practical system development

5.3 RECEIVER ARCHITECTURE AND DF ALGORITHM SELEC-

TION

The optimisation in section 4.3.5 has shown that the optimal receiver in terms of processing

versus DOA accuracy is the Basic-FFT. This is mostly attributed to the low processing

requirements. It should however be realised that often sub 10◦ RMSE values are not achieved

(depending on the scenario and DF algorithm), hence this receiver for DOA estimation is

strictly not classified as super-resolution.

Channeliser based receivers achieved considerable better results. However, in different scen-

arios the receiver architectures and windows displayed slightly different performances, res-

ulting in different receivers being optimal in each scenario. Ultimately this slight variance

within the results of these receivers caused the receivers not to be on Pareto front regularly.

It can therefore be suggested that certain receivers are optimal in certain scenarios.

The FD-Root-MuSiC algorithm proved optimal for UCAs when optimising RMSE perform-

ance above processing efficiency. The FD-Linesearch-MuSiC algorithm proved optimal for

UCAs when optimising processing above RMSE performance. The FD-Root-MuSiC al-

gorithm typically takes 39% longer to execute than FD-Linesearch-MuSiC algorithm, however

it has a RMSE improvement of 1 to 4 orders of magnitude (depending on the selected SNR)

(Table 4.3). Given this trade-off, the FD-Root-MuSiC algorithm is selected to be superior

for UCA based arrays.

The Root-MuSiC algorithm has been proven optimal for all ULA arrays (Table 4.4).

The WLS based algorithms provided great performance, however the performance increase

is negligibly small for the given increase of processing required for the algorithms. These

algorithms are therefore not feasible. The MuSiC and Root-Search-MuSiC algorithms are

processing inefficient and are therefore also not feasible.

The following five receivers in conjunction with DF algorithms are regularly found on the

Pareto line and are therefore considered Pareto efficient and consequently optimal:

• Basic-FFT with a rectangular or Gaussian window and the Root-MuSiC algorithm:

processing efficient with fair RMSE values, only applicable for ULAs;
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• Basic-FFT with a rectangular window and the FD-Root-MuSiC algorithm: processing

efficient with fair RMSE values, only applicable for UCAs;

• Channeliser receiver using a DFT for the secondary stage with both windows being

rectangular and using the Root-MuSiC algorithm: increased processing with excellent

RMSE values, only applicable for ULAs;

• Channeliser receiver using a DFT for the secondary stage with both windows being rect-

angular and using the FD-Root-MuSiC algorithm: increased processing with excellent

RMSE values, only applicable for ULAs;

• Channeliser receiver using a NB-BPF and ACM integration for the secondary stage

with both windows being rectangular and using the FD-Root-MuSiC algorithm: high

processing with excellent RMSE values, only applicable for ULAs;

To select the most suitable receiver for a given application, consider the available processing

power of the selected platform. Select the receiver architecture to be the best performing

receiver on the list above, which is not limited by the platforms processing capabilities.

The OFDM based signal with 12-carrier RB structure achieved the best results for RB-ACM

integration. This post-integration method allows a data-rate reduction of factor 12 before

DOA estimation, hence less resources are required for DOA estimation. This post-integration

method therefore both improves accuracy and performance.

5.4 CONCLUSION

This section discussed the design of a NNC-DF system given the simulation results and taking

practical limitations in account.

It was discussed that the biggest practical limitation is the receiver, as it is a trade-off

between dynamic range, bandwidth, number of channels, clock - and phase stability, and

cost. Therefore this should be the starting point of the design.

Sensors (antennas) and the applicable array used, should be selected according to the ap-

plication. For validation of algorithms and receivers, uniform based antennas with monopole

antennas are sufficient, however this is impractical for an operational system.
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Chapter 5 Practical system development

The receiver architecture and algorithms are dependent on the platform (receiver), the sensor

array, and the available processing. As the architecture and algorithms are generally imple-

mented in the software of firmware, they are observed fairly late in the system design.
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CHAPTER 6

CONCLUSION

6.1 CHAPTER OVERVIEW

This chapter discusses the outcomes of the research and draws conclusions based on the

results.

6.2 SUMMARY OF THE WORK DONE

In this dissertation the following work was done:

• a mathematical analysis proving that OFDM signals are only orthogonal for a syn-

chronised system (section 3.2),

• a scenario analysis for a NNC system to emphase the issues of timing delay power

differences (section 3.3),

• simulations done on AOA estimation that investigate the number of elements, the an-

tenna array configuration, the receiver architecture, the effects of windowing on the

data, integration methods in receiver design, the DF algorithms and the effects of dif-

ferent channels for a LTE based signal (chapter 4),

• optimisation of the simulations parameters for better receiver design (section 4.3.5),

• practical system design based upon the simulation results (chapter 5) that incorporate

practical limitations (section 3.6).
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6.3 SUMMARY OF THE RESULTS

The simulations investigated the number of elements, the antenna array configuration, the

receiver architecture, the effects of windowing on the data, integration methods in receiver

design, the DF algorithms and the effects of different channels for a LTE based signal. The

two received signals for the simulation were assumed to be unsynchronised, from different

sources, and to be in adjacent FDMA channels.

From the simulation results the following conclusions were made:

• the increase of antenna elements tend to improve the RMSE, however there are excep-

tions that displayed inferior performance which are caused by array ambiguities,

• ULAs are less complex with regard to simulation and application of AOA estimation

algorithms, as a FFT can be used to relate the antenna positions to the beam-pattern

of the array,

• signals from different sources with almost no frequency separation are the most difficult

to estimate due to ICI,

• increasing signal isolation provides improved results for signals with interference,

• exploitation of the RB structure of LTE can be used to improve parameter estimation

in the frequency domain,

• RB-ACM integration is the most effective integration technique as it reduces the number

of AOA estimations required and improves the estimation by accurately obtaining a

ACM,

• receiver architectures with great signal isolation and integration techniques tend to have

improved results, however the associated processing involved proved inefficient,

• receivers architectures with great signal isolation only show improvement above basic

receivers with the presence of interference,

• windowing only showed some benefits in channels that contain frequency dispersion or

for signals with large frequency separation.

The following conclusions where made by analysing the simulation results through optim-

isation techniques, where the processing time and system performance are selected as the

optimisation objectives:
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• the receiver selection proved to have a larger influence than the DOA algorithm in

system design,

• channeliser receivers have great performance but at great processing cost resulting in

inefficiency throughout many cases

• the WLS-based algorithms are not optimal despite the good performance,

• the Root-MuSiC is the most efficient algorithm for ULAs,

• the FD-based MuSiC algorithms are the most efficient algorithms for UCAs,

• windowing has very low impact on the system and in most cases the rectangular window

(i.e. no windowing) was proven optimal,

• RB-ACM integration is the most effective integration technique in all receivers.

6.4 RESEARCH OUTCOMES

There is limited research on NNC-based DOA estimation techniques which are focused on

cellular communication signals, and this dissertation has discussed both the theoretical and

practical design of applicable systems. The research has adapted and optimised standard

estimation techniques and receiver design to be applicable to NNC-DF systems. NNC based

operations are considerably more difficult than network coherent operations, as the sensor

environment is not optimally configured for the receiver, and therefore it opens a research

field with a different set of challenges.

The research has proven that with correct receiver design and by taking advantage of the

signal properties (such as the RB structure), DF can be done for NNC systems, despite

interference. An angular resolution of sub-10◦ is regularly achieved, and in some cases even

sub-1◦ could be achieved in the presence of interference. The AOA accuracy is dependant

on the SNR and the degree of interference to the signal, as well as practical limitations,

such as measurement precision and dynamic range proved to be further restricting factors for

estimation.

Various DF algorithms, receiver architectures, signal isolation techniques, and integration

methods have been evaluated, and through optimisation techniques the optimal algorithms

and receivers for the application has been identified. For example, it was shown that RB-ACM

integration has superior results in terms of post integration techniques, but this technique is
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only applicable if the bandwidth of the signal is known (in this case it is limited by the RB

as specified in the LTE specification).

Various DF receiver parameters have been simulated, compared and conclusions have been

drawn for optimal design as well as identifying the associated advantages and disadvantages

for the parameter selection. The parameters include the selection of the sensor array, the

receiver and processing of the system. The simulation have shown that despite the loss of

orthogonality of OFDM for NNC systems, AOA estimation can still be achieved despite the

presence of interference. By exploiting the OFDM based signal properties some estimation

improvement was achieved.

6.5 LITERARY CONTRIBUTION

NNC-DF on LTE signals have applications in emergency, security and monitoring services,

without the required cooperation or network infrastructure of the cellular network operators.

Therefore, for quick reaction tasks, where reaction time is directly proportional to loss, such

systems can be proven beneficial.

This research allows a more practical approach to the design of NNC systems. As processing

methods are directly compared, many popular DF techniques that are used in isolation in

literature have been evaluated to determine whether they are applicable to operational DF

systems.

6.6 RECOMMENDATIONS FOR FUTURE WORK

The work was theoretically based and only applied to simulations. However for validation, a

practical experiment is required to prove the accuracy of the simulation. It should be noted

that due to the range and number of simulation parameters incorporated, a vast number of

permutations exist (exactly why optimisation was used to find possible best receivers), there-

fore experimental evaluation of each permutation is impractical. The optimal receivers, which

displayed regularly on the Pareto front, should be selected for experimental evaluation.

Angular multipath was not incorporated in the simulations due to a great increase of chan-

nel simulation complexity. For future research, angular multipath should be incorporated to
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obtain a more accurate representation of a received signal in a realistic operating environ-

ment.

6.7 CONCLUDING STATEMENTS

The design and simulation of a NNC-DF system for LTE which incorporates practical con-

siderations has been addressed in this dissertation. The work done would greatly simplify

the development for an operational system.
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APPENDIX A

PARETO OPTIMISATION EXAMPLE

A.1 INTRODUCTION

This section provides an extended tutorial with Pareto optimisation.

A.2 BASE PROBLEM AND SYSTEM RULES

Pareto optimisation considers a system with multiple outcomes which needs to be optimised.

Firstly it requires the system to be defined (section A.2.2), followed by the evaluation of the

outcomes of the system. Lastly the system inputs that results in optimal outcomes of the

system should be identified and used.

A.2.1 The problem

Two people Alex and Ben (denoted by A and B respectively) are hungry and are presented

with a bowl of fruit containing apples (α), bananas (β), grapefruit (γ), and dates (δ). Each

individual has a preference to certain fruit and therefore enjoy some fruit more than others.

The aim of the optimisation is to divide to fruit such that both A and B receive maximum

satisfaction from the fruit.

A.2.2 The system description

The bowl of fruit consists of a finite number of each fruit:

• Three apples, i.e. N(α) = 3
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Appendix A Pareto optimisation example

• Two bananas, i.e. N(β) = 2

• One grapefruit, i.e. N(γ) = 1

• Two dates, i.e. N(δ) = 2

Therefore a total of eight fruit are in the bowl. Each person must receive a minimum of

one fruit (i.e min [N(A{· · · })] = min [N(B{· · · })] = 1), and a maximum of three fruit (i.e

max [N(A{· · · })] = max [N(B{· · · })] = 3). Therefore 27 different fruit allocations exist for

each user. As an example, the possible allocations for A are listed:

A{α} A{β} A{γ} A{δ} A{α, α} A{α, β}

A{α, γ} A{α, δ} A{β, β} A{β, γ} A{β, δ} A{γ, δ}

A{δ, δ} A{α, α, α} A{α, α, β} A{α, α, γ} A{α, α, δ} A{α, β, β}

A{α, β, γ} A{α, β, δ} A{α, γ, δ} A{α, δ, δ} A{β, β, γ} A{β, β, δ}

A{β, γ, δ} A{β, δ, δ} A{γ, δ, δ}

As the quantity of fruit (resources) are finite, a total of 438 valid fruit allocations exists for

the two individuals.

The two outcomes of the system can be described as the satisfaction of Alex (i.e. O(A{· · · }))

and the satisfaction of Ben (i.e. O(B{· · · })). The general rule is that the satisfaction of

multiple fruit are the sum of each individual fruit, for example:

O(A{α, β}) = O(A{α}) +O(A{β}) (A.1)

Alex (A) has the following preferences and associated satisfaction:

1. Alex receives great satisfaction from apples, O(A{α}) = 5.

2. Alex cannot consume more than one apple without feeling nauseous, O(A{α, α, ·}) =

−2.

3. Alex is allergic to bananas, O(A{β}) = −1.

4. Alex is indifferent to grapefruit and dates, O(A{γ}) = O(A{δ}) = 1.
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Appendix A Pareto optimisation example

Ben(B) has the following preferences and associated satisfaction:

1. Ben prefers apples, O(B{α}) = 2.

2. Ben is indifferent to all other fruits, O(B{β}) = O(B{γ}) = O(B{δ}) = 1.

3. Ben has brumotactillophobia (fear of mixing food), therefore his satisfaction reduces

by 1 for each different fruit, for example O(B{α, β}) = O(B{α}) +O(B{β})− 1

A final rule rule of the system is that Alex and Ben are in direct competition, therefore if

one of them have more fruit, the other has reduced satisfaction:

if N(A{· · · }) > N(B{· · · }),

then Oef (B{· · · }) = O(B{· · · })− (N(A{· · · })−N(B{· · · }))

A.3 BASIC ANALYSIS CONCEPTS

First of all, the desired output is that the maximum satisfaction should be achieved for each

individual. Therefore each resource allocation should be compared, with the emphasis being,

to find the maximum achievable satisfaction.

The system has been thoroughly defined, now the question remains, how do we allocate the

resources (fruit) to the two individuals (system) to obtain the optimal outcomes (satisfac-

tion)?

A.3.1 Pareto efficiency

To explain Pareto efficiency, a single resource allocation is selected and evaluated. Let us

select the following resource allocation:

(A{α, δ}, B{α, γ}) , (A.2)

where the outcomes form a point P :

P = (O (A{α, δ}) , O (B{α, γ})) = (6, 2) (A.3)

The Pareto efficiency of the allocation should now be determined. A solution set (resource

allocation) is Pareto efficient if any outcome can be improved without worsening any other.
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Therefore a single improvement of the outcome should be found such that the allocation can

be classified as Pareto inefficient. An exhaustive search of all the possible allocations should

therefore be made.

An option to improve the outcome O(B{· · · }) is to add another apple (α), to form a new

output of On(B{α, α, γ}) = 4. This shows that the output has improved for B, however

On (A{α, δ}) has decreased to 5. Therefore as a whole the new point N = (5, 4) has not

improved all outcomes. Based on this improvement it seems as if the point P is Pareto

efficient, however all possible improvements should be evaluated to confirm whether point P

is Pareto efficient or not.

Follow the same steps by improving the outcome O(B{· · · }) by adding another apple (α), but

additionally improve the outcome O(A{· · · }) by adding another date (δ). The new outcomes

forms a point M :

M = (Om (A{α, δ, δ}) , Om (B{α, α, γ})) = (7, 4) (A.4)

Point M improves all outcomes of point P , therefore P is Pareto inefficient. Further,

point M improves outcome O(A{· · · }) whilst outcome O(B{· · · }) remains the same when

compared to point N , therefore point N is also Pareto inefficient.

Lastly, the Pareto efficiency of point M should be determined. Outcome A, is already at

the maximum possible value it can achieve of 5 + 1 + 1 = 7. Outcome B can be improved

if and only if the grapefruit (γ) is substituted with an apple (the diversity penalty is then

removed and Ben prefers apples) to obtain a satisfaction level of 6, but the third apple is

already allocated to A. As O(A{· · · }) is at the maximum possible and O(B{· · · }) cannot be

improved without reallocating all resources (i.e. worsening output A), it is concluded that

point M is Pareto efficient.

The three points P , N and M are shown in Figure A.1. The analysis steps from point P to

M are also presented.

A graphical analysis method of Pareto efficiency is to observe the location of each point

relative to all other points. In the case where both system outcomes should be maximised, a

point is Pareto efficient if no points exists that is larger in any aspect. Consider a point P

as its own axis, if there are other points located in its first quadrant, then point P is Pareto
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Appendix A Pareto optimisation example

Figure A.1: Graphical representation of system outcomes.

inefficient. If there are no other points in the relative first quadrant, then point P is Pareto

efficient. In Figure A.1 points N and P have other points in their relative first quadrants,

this is why a small axis with a red first quadrant is drawn.

The graphical technique is relatively simple to implement. If both outcomes should be min-

imized, then the relative third quadrant of each point should be selected. The quadrant

of selection is therefore dependant on whether an output should be maximised or minim-

ized.

All Pareto inefficient points are sub-optimal, as one of their outcomes can be improved. Once

all Pareto efficient points are found on the graph, then they can be used to draw the Pareto

front.

A.4 FULL PARETO ANALYSIS

In this example all resource allocation permutations will be considered. This is not always

possible as a large number of permutations is processing intense to solve. In practice a subset

of the resource allocations is often considered, and then the values on the Pareto front are

used to recursively select an improved resource subset.

All the outcomes are shown in Figure A.2. The size of each circle indicates the number of

times the specified outcomes have been achieved. The dotted red line combines all the Pareto
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Appendix A Pareto optimisation example

Figure A.2: Graphical representation of system outcomes.

efficient points to form the Pareto front. In this case there are only two points on the Pareto

front. The associated resource allocations for all Pareto efficient points is shown in Table

FinResults.

Table A.1: Resource allocation for Pareto efficient outcomes.

A{· · · } B{· · · } O(A{· · · }) O(B{· · · })

γ, δ, δ α, α, α 3 6

α, γ, δ α, α, β 7 4

α, γ, δ α, α, γ 7 4

α, γ, δ α, α, δ 7 4

α, δ, δ α, α, β 7 4

α, δ, δ α, α, γ 7 4

After the Pareto analysis six different resource allocations have resulted in two optimal out-

puts of the system. The optimisation does not result in a single value, therefore some degree

of freedom exist in selection of the final resource allocation.

Now further factors for resource allocation can be added to select the final output. If I

have a deep respect for Ben’s phobia, I’ll select A{γ, γ, δ} and B{α, α, α}, such that I am

as accommodating as possible. On the other hand, if the combined satisfaction should be a

maximum I’d select one of the other six results.
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The same process can be used if more than two outcomes are required to be optimised.

However higher dimension graphing is then required to solve the problem graphically.
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APPENDIX B

DERIVATION OF THE POWER SPECTRAL

DENSITY OF NNC-OFDM SIGNALS

B.1 INTRODUCTION

This section shows the mathematical derivation of the PSD for unsynchronised reception of

a OFDM-based communication signal.

B.2 PHASE DISCONTINUITY

A complex-sinusoid is bounded over a period of Tsym, and undergoes a random phase change

of φ0 at time t0:

x(t) = A×Π
(
t− t0

2
t0

)
× e2π jfct +A×Π

(
t− Tsym+t0

2
Tsym − t0

)
× e2π jfct+jφ0 , (B.1)

through simplification we obtain:

x(t) = A× e2π jfct
(

Π
(
t− t0

2
t0

)
+ Π

(
t− Tsym+t0

2
Tsym − t0

)
× e jφ0

)
. (B.2)

The frequency domain is derived:

X(f) = Aδ(f − fc) ∗
[
t0sinc (ft) eπ jft0 + (Tsym − t0)sinc (f(Tsym − t0)) eπ jf(Tsym+t0)+ jφ0

]
,

(B.3)

and simplified:

X(f) = Aeπ j(f−fc)t0
[
t0sinc ((f − fc)t) + (Tsym − t0)sinc ((f − fc)(Tsym − t0)) eπ j(f−fc)Tsym+ jφ0

]
.

(B.4)
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Appendix B Derivation of the power spectral density of NNC-OFDM signals

The function is redefined to be a function of both the frequency and the time-delay of the

phase change:

Xeq(t, f) = X(f)|t=t0 . (B.5)

Define the time-delay as a random variable with a uniform distribution :

pt0(t) =


1

Tsym
0 ≤ t ≤ Tsym

0 otherwise
. (B.6)

The average spectral power Xt(f) over the time-delay is defined:

Xt(f) = E
[
|Xeq(t, f)|2

]
= 1
Tsym

Tsym∫
0

Xeq(t, f)×X∗eq(t, f)dt. (B.7)

To solve this equation, the power of the signal is defined:

Px(t, f) = Xeq(t, f)×X∗eq(t, f), (B.8)

and solved:

Px(t, f) = A2 ×
{
t2sinc2 ((f − fc) t) + (T − t)2 sinc2 ((f − fc) (T − t))

+ 2t (T − t) sinc ((f − fc) t)×

sinc ((f − fc) (T − t)) cos (πTsym (f − fc) + φ0)
}
. (B.9)

To solve the PSD, use the power of the signal Px(t, f) and devide et impera:

Xt1(f)(v) =
Tsym∫
0

t2sinc2 (vt) dt = Tsym
2π2v2 [1− sinc (2vTsym)] (B.10)

Xt2(v) =
Tsym∫
0

(T − t)2 sinc2 (v (T − t)) dt = Tsym
2π2v2 [1− sinc (2vTsym)] (B.11)

∴ Xt2(v) = Xt1(v) (B.12)

Xt3(v) =
Tsym∫
0

t (T − t) sinc (vt) sinc (v (T − t)) cos (πTsym (f − fc) + φ0) dt (B.13)
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Appendix B Derivation of the power spectral density of NNC-OFDM signals

Xt3(v) = Tsym cos (πvTsym + φ0)
2π2v2 [sinc (2vTsym)− cos (πvTsym)] (B.14)

The average spectral power can therefore be determined through substitution:

Xt(f) = 2A2

Tsym

[
Xt1(v) +Xt3(v)

]
v=f−fc

, (B.15)

and solved:

Xt(f) = A2

Tsym

[
1− sinc (2vTsym) + cos (πvTsym + φ0) sinc (vTsym)

− cos (πvTsym + φ0) cos (πvTsym)
]
v=f−fc

. (B.16)

Define the phase-discontinuity as a random variable with a uniform distribution, independent

from pto(t):

pφ(φ) =


1

2π 0 ≤ φ ≤ 2π

0 otherwise
. (B.17)

Hence the average spectral power over both the time-delay and the phase discontinuity can

therefore be defined:

X(t,φ)(f) = E
[
|Xeq(t, f)|2

]
= 1
Tsym

∞∫
−∞

∞∫
−∞

[
Xeq(t, f)×X∗eq(t, f)

]
× pt0(t)× pφ(φ)dtdφ

= 1
2π

2π∫
0

Xt(f)
∣∣∣
φ0=φ

dφ. (B.18)

The average spectral power over both the time-delay and the phase discontinuity is ob-

tained:

X(t,φ)(f) = A2

π2v2 [1− sinc (2vTsym)]v=f−fc . (B.19)

The PSD for the observer over both the time-delay and the phase discontinuity is therefore

determined:

S(t,φ)(f) = A2

π2v2Tsym
[1− sinc (2vTsym)]v=f−fc . (B.20)
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Appendix B Derivation of the power spectral density of NNC-OFDM signals

B.3 AMPLITUDE AND PHASE DISCONTINUITY

A signal with a phase and amplitude discontinuity is defined:

xa(t) = A1 ×Π
(
t− t0

2
t0

)
× e2π jfct +A2 ×Π

(
t− Tsym+t0

2
Tsym − t0

)
× e2π jfct. (B.21)

Following the same approach as in the phase discontinuity case, the frequency domain ex-

pression can be obtained using the same random variable for the time-delay:

Xeq,a(t, f) = eπ jvt
[
A1tsinc (vt) +A2 (Tsym − t) sinc (v (Tsym − t)) eπ jvTsym

]∣∣∣
v=f−fc

. (B.22)

The average power can be defined:

Px,a(t, f) = Xeq,a(t, f)×X∗eq,a(t, f). (B.23)

and solved:

Px,a(t, f) = |A1|2 t2sinc2 ((f − fc) t) + |A2|2 (T − t)2 sinc2 ((f − fc) (T − t))

+ 2 |A1| |A2| t (T − t) sinc ((f − fc) t) sinc ((f − fc) (T − t))×

cos (π (f − fc)Tsym + ∠A2 − ∠A1) . (B.24)

It is assumed that a QAM based modulation scheme is used. The average spectral power can

therefore be determined in a similar fashion to the previous case (Section B.2):

X(t,φ),a(f) = A2
norm

π2v2 [1− sinc (2vTsym)]v=f−fc . (B.25)

The PSD for the observer over both the time-delay and the symbol discontinuity is therefore

determined:

S(t,φ),a(f) = A2
norm

π2v2Tsym
[1− sinc (2vTsym)]v=f−fc . (B.26)

B.4 LIMIT OF THE PSD AT THE ORIGIN

The average spectral power is defined as:

X(t,φ)(f) = A2

π2v2 [1− sinc (2vTsym)]v=f−fc , (B.27)
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Appendix B Derivation of the power spectral density of NNC-OFDM signals

and the PSD is defined as:

S(t,φ)(f) = A2

π2v2Tsym
[1− sinc (2vTsym)]v=f−fc . (B.28)

The average spectral power of the phase discontinuity is undefined at f = fc. The limit is

solved using multiple applications of L’Hopital’s rule:

lim
f→fc

X(t,φ)(f) = lim
v→0

A2 −A2sinc (2vTsym)
π2v2

= lim
v→0

−A2 cos (2vTsym)
3π2v2

= lim
v→0

A2Tsym sin (2vTsym)
3πv

= lim
v→0

A2T 2
sym2 cos (2vTsym)

3

= 2
3A

2T 2
sym. (B.29)

Similarly the PSD can be obtained:

lim
f→fc

S(t,φ)(f) = 2
3A

2Tsym (B.30)
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Appendix B Derivation of the power spectral density of NNC-OFDM signals
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APPENDIX C

BACKGROUND TO OFDM MATHEMATICS

C.1 INTRODUCTION

This section defines the constellation of QAM and derives the maximum power of a symbol,

the average symbol power and the normalised mean power of the constellation.

C.2 QUADRATURE AMPLITUDE MODULATION

This section provides relevant mathematical background to QAM modulation.

For a rectangularM -QAM system, the number of bits B per symbol is a logarithm of base-2,

of the constellation size M :

B = log2 (M) . (C.1)

In a rectangular QAM system, the symbols are placed in a grid-like fashion within the complex

domain with equal spaces between them. As an example the symbols in 16-QAM are a set

defined:

An ∈ {〈±1± i〉 , 〈±1± 3i〉 , 〈±3± i〉 , 〈±3± 3i〉} , (C.2)

where the imaginary unit i is defined as i =
√
−1. Note that a unit is defined as the smallest

distance between the real and/or imaginary axis and the set of points. This is done to ensure
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Appendix C Background to OFDM mathematics

all values in the constellation are integer values in the Cartesian coordinates.

A rectangular QAM scheme has an even number of bits per symbol, and the constellation is

symmetric along the x-axis, y-axis, the line y = x, the line y = −x, and through the point of

origin.

The maximum real and imaginary components in the constellation is a function of the the

number of bits per symbol:

Amax = max
A
<{An} = max

A
={An} = 1

4
(
B2 − 2B + 4

)
. (C.3)

The maximum power of a symbol in QAM can therefore be calculated as:

Pmax = 2×A2
max = 1

8
(
B2 − 2B + 4

)2
. (C.4)

The average power Pav of the constellation is also a function of the number of bits per

symbol:

Pav =
M∑
n=1

An ×A∗n = 1
24
(
B4 − 4B3 + 20B2 − 32B + 48

)
. (C.5)

The normalised mean power Pnorm of a constellation is therefore given as:

Pnorm = Pav
Pmax

= 1
3 ×

(
1 + 8

B2 − 2B + 4

)
. (C.6)
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APPENDIX D

DERIVATION OF THE CRAMÉR-RAO

BOUND

D.1 INTRODUCTION

This section expands the derivation of the CRB for a ULA, UCA and UCA-CE.

D.2 UNIFORM LINEAR ARRAY CRB

The derivative of the steering vector can be simplified for a ULA:

|ȧ(θ)|2 = k2 cos2(θ)
Na∑
n=1

d2
m = k2d2

0 cos2(θ)Na(N2
a − 1)

12 . (D.1)

The expression is a function of the number of snapshots, the SNR, the wave-number k, the

antenna spacing d0 and the number of antennas. The CRB for a ULA can therefore be

determined:

CRBULA ≈
6

K × SNR× k2d2
0 cos2(θ)Na(N2

a − 1)
. (D.2)

Finally, if it is assumed that half wave-length spacing is used, the CRB can further be

simplified to:

CRBULA ≈
6

K × SNR× π2 cos2(θ)Na(N2
a − 1) . (D.3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Appendix D Derivation of the Cramér-Rao bound

D.3 UNIFORM CIRCULAR ARRAY CRB

The derivative of the steering vector can be simplified for a UCA:

|ȧ(θ)|2 = k2r2
Na∑
n=1

cos2
(2πn
Na
− θ

)
= k2r2Na

2 . (D.4)

It can be derived that for a UCA the CRB is a function of the number of snapshots, the

SNR, the wave-number, the radius of the circle r and the number of antennas:

CRBUCA ≈
1

K × SNR× k2r2 ×Na
. (D.5)

If it is assumed that the radius of the circle is half a wave-length, the CRB can further be

simplified to:

CRBUCA ≈
1

K × SNR× π2 ×Na
. (D.6)

D.4 UNIFORM CIRCULAR ARRAY WITH A CENTRE ELEMENT

CRB

The derivative of the steering vector can be simplified for a UCA-CE:

|ȧ(θ)|2 = 0 + k2r2
Na−1∑
n=1

cos2
( 2πn
Na − 1 − θ

)
= k2r2(Na − 1)

2 . (D.7)

It can be derived that for a UCA-CE the CRB is a function of the number of snapshots, the

SNR, the wave-number, the radius of the circle and the number of antennas (D.8):

CRBUCA−CE ≈
1

K × SNR× k2r2 × (Na − 1) . (D.8)

If it is assumed that the radius of the circle is half a wave-length, the CRB can further be

simplified to (3.20):

CRBUCA−CE ≈
1

K × SNR× π2 × (Na − 1) . (D.9)
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