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Abstract: The problem of estimation within the matrix variate elliptical model is addressed. In
this paper a subjective Bayesian approach is followed to derive new estimators for the parameters
of the matrix variate elliptical model by assuming the previously intractable normal-Wishart prior.
These new estimators are compared to the estimators derived under a normal-inverse Wishart prior
as well as the objective Jeffreys’ prior which results in the maximum likelihood estimators, using
different measures. A valuable contribution is the development of algorithms for the simulation
of the posterior distributions of the matrix variate parameters with emphasis on the new proposed
estimators. A simulation study as well as Fisher’s Iris data set are used to illustrate the novelty of
these new estimators and to investigate the accuracy gained by assuming the normal-Wishart prior.
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1. Introduction

The objective of this paper is to derive estimators for the parameters of the matrix variate elliptical
model from a subjective Bayesian viewpoint. Subjective analysis generally produces more admis-
sible results compared to objective analysis, since added information is used. Although objective
Bayesian analysis for the matrix variate elliptical model was considered by Fang and Li (1999), very
few results and estimators for the Bayesian analysis of model (1) exist. This paper contributes to
the literature by presenting a more general subjective Bayesian estimation framework for the matrix
case in (1). Prior information will be reflected by using the normal-inverse Wishart and the normal-
Wishart prior distributions respectively (see Van Niekerk, Bekker, Roux and Arashi, 2013, for the
multivariate elliptical model). The squared error loss function as well as the loss function defined
by Das and Dey (2010) will be used for the Bayesian inference. The matrix variate elliptical model
with density function

f (XXX) = cs,p|ΣΣΣ|−
s
2 |ΩΩΩ|−

p
2 h
[
tr(XXX−µµµ)′ΣΣΣ−1(XXX−µµµ)ΩΩΩ−1] (1)

is the underlying data generating model. The aim is to estimate the location and scale matrices,
µµµ p×s and ΣΣΣp×p, respectively where ΩΩΩs×s is assumed to be a known hyperparameter (see Section 6
for discussion of this assumption). The considered prior distributions will thus be for µµµ p×s and ΣΣΣp×p

(see Fang and Zhang, 1990). The density function in (1) can also be written as (see Chu, 1973):

f (XXX |µµµ,ΣΣΣ) =
∫

∞

0
w(z) fN

µµµ,z−1Σ⊗ΩΣ⊗ΩΣ⊗Ω
(XXX |µµµ,ΣΣΣ)dz (2)

for a scalar function w(z) where fN
µµµ,z−1Σ⊗ΩΣ⊗ΩΣ⊗Ω

(·) is the matrix variate normal density function having

the same expected value as XXX and where z−1Σ⊗ΩΣ⊗ΩΣ⊗Ω is a scale matrix and ⊗⊗⊗ denotes the Kronecker
product. Note that

∫
∞

0 w(z)dz= 1 and that (2) is different from the class of normal scale mixtures. For
normal scale mixtures, the weighting function is actually a density function where 0≤ w(z)≤ 1 for
all values of z. However, for the elliptical model given in (1), the weighting function does not have
the same restriction but rather −1 ≤ w(z) ≤ 1, for all values of z. Note that w(z) is identified from
the inverse Laplace transform of the density function of the particular elliptical model. See Arashi,
Iranmanesh, Norouzirad and Salarzadeh-Jenatabadi (2014) and Arashi, Saleh and Tabatabaey (2013)
for more details.

In Section 2, an incomplete type II Bessel function of matrix argument is defined. This follows
from representing the cumulative distribution of the largest characteristic root of ΣΣΣ for the Wishart
prior... Section 3 deals with derivations of the posterior distributions, Bayes estimators of the param-
eters of the matrix variate elliptical model for the normal-inverse Wishart prior. The normal-Wishart
prior forms the base of Section 4. The newly developed results of Sections 3 and 4 will be ap-
plied to particular subfamilies of the matrix variate elliptical distribution in Section 5. In Section 6
algorithms for simulating these posterior distributions and calculating the proposed estimators are
presented as an illustration of the theoretical results, followed by the application to the well-known
Fisher’s Iris dataset.

The benefit of this approach is that the Wishart distribution can now be utilized as a prior for the
scale matrix opposed to the inverse-Wishart distribution as applied previously. This is demonstrated
clearly in Section 6 by the comparative simulation study where new algorithms are introduced for
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the calculation of the proposed estimators from a simulated dataset, followed by the application to
Fisher’s Iris dataset.

2. An incomplete Bessel function

The type II Bessel function of Herz (1955), Bδ (NNN), of matrix argument is defined by

Bδ (NNN) =
∫

UUU>000
|UUU |−δ− p+1

2 etr(−NUNUNU−UUU−1)dUUU .

The integral is absolutely convergent for Re(NNN) > 000 if and only if −Re(δ ) > p−1
2 . We now present

an extension to this function, as follows:

Definition 1 The incomplete type II Bessel function of matrix argument, denoted by Bδ (NNN;QQQ), is
defined by

Bδ (NNN;QQQ) =
∫

000<UUU<QQQ
|UUU |−δ− p+1

2 etr(−NU−UNU−UNU−U−1)dUUU ,

where Re(NNN)> 0,Q > 00,Q > 00,Q > 0 and −Re(δ )> p−1
2 .

Remark 1 Replacing NNN by ∆∆∆
1
2 N∆N∆N∆

1
2 ,∆ > 0∆ > 0∆ > 0 and changing the matrix variate MMM =∆∆∆

1
2U∆U∆U∆

1
2 with Jaco-

bian |∆∆∆|−
p+1

2 gives the following more general form:

Bδ (∆,N∆,N∆,N;RRR) = |∆∆∆|δ
∫

000<MMM<RRR
|MMM|−δ− p+1

2 etr(−NM−∆MNM−∆MNM−∆M−1)dMMM (3)

with R = ∆R = ∆R = ∆
1
2 Q∆Q∆Q∆

1
2 .

3. Normal-inverse Wishart prior

Let z be a known positive scalar and ΣΣΣ be a positive definite random matrix of dimension p. Let
ΨΨΨ = z−1ΣΣΣ follow an inverse Wishart distribution with parameter ΦΦΦ and m degrees of freedom. For
any z > 0, a generated variate of ΨΨΨ will produce a generated variate of ΣΣΣ since Σ =Σ =Σ = zΨΨΨ. Now
assume a normal-inverse Wishart prior for (µµµ,Ψ)Ψ)Ψ) with prior distributions for µµµ and ΨΨΨ respectively,
µµµ|ΨΨΨ ∼ Np,s(θθθ p×s,

1
n0

ΨΨΨp×p⊗Ω⊗Ω⊗Ω s×s) and ΨΨΨ ∼W−1(ΦΦΦ, p,m). From eq. 2.2.1, p. 55 and Definition
4.2.1, p. 111 of Gupta and Nagar (2000) the prior densities are

π(µµµ|ΨΨΨ) = (2π)−
sp
2 | 1

n0
ΨΨΨ|−

s
2 |ΩΩΩ|−

p
2 etr

[
−n0

2
ΨΨΨ
−1(µµµ−θθθ)ΩΩΩ−1(µµµ−θθθ)′

]
,µµµ ∈RRRp×s

and

π(ΨΨΨ) =

[
Γp

(
m− p−1

2

)]−1

|1
2

ΦΦΦ|
1
2 (m−p−1)|ΨΨΨ|−

1
2 metr

[
−1

2
ΨΨΨ
−1

ΦΦΦ

]
,ΨΨΨ > 0,Φ0,Φ0,Φ > 000 and m > 2p

with the joint prior density function as

π(µµµ,ΨΨΨ)∝ |ΨΨΨ|−
1
2 (m+s)etr

[
−1

2
ΨΨΨ
−1 (n0(µµµ−θθθ)ΩΩΩ−1(µµµ−θθθ)′+ΦΦΦ

)]
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with known hyperparameters θθθ ,Ω,Ω,Ω, n0 and m where etr(·) denotes exp[tr(·)]. Now

π(µµµ,ΣΣΣ|z)
∝ π(µµµ,ΨΨΨ)|J(ΨΨΨ→ Σ)|Σ)|Σ)|

∝ z−
p(p+1−m−s)

2 |ΣΣΣ|−
1
2 (m+s)

× etr
[
−1

2
zΣΣΣ−1 (n0(µµµ−θθθ)ΩΩΩ−1(µµµ−θθθ)′+ΦΦΦ

)]
, (4)

since the Jacobian is J(ΨΨΨ→Σ) =Σ) =Σ) = z
−p(p+1)

2 . Following Arashi et al. (2014), the conjugate prior for the
matrix variate elliptical model can be obtained as

π(µµµ,ΣΣΣ)∝
∫

∞

0
π(µµµ,ΣΣΣ|z)w(z)dz.

This representation of a prior distribution coincides with the representation in (2). It should be noted
that in (2), z is not a random variable.

3.1. Posterior distributions

The likelihood function is obtained from (2) as follows

L(µµµ,ΣΣΣ|XXX ,VVV )

=
n

∏
i=1

∫
∞

0
w(z) fN

µµµ,z−1Σ⊗ΩΣ⊗ΩΣ⊗Ω
(x|µx|µx|µ,ΣΣΣ)dz

∝
∫

∞

0
w(z)|z−1

ΣΣΣ|−
ns
2 |ΩΩΩ|−

np
2 etr

[
−1

2

n

∑
i=1

(XXX i−µµµ)′zΣΣΣ−1(XXX i−µµµ)ΩΩΩ−1

]
dz

=
∫

∞

0
w(z)z

snp
2 |ΣΣΣ|−

sn
2 |ΩΩΩ|−

np
2

× etr
[
−1

2
zΣΣΣ−1 [VVV +n(XXX−µµµ)ΩΩΩ−1(XXX−µµµ)′

]]
dz, (5)

where

VVV =
n

∑
i=1

(XXX i−XXX)ΩΩΩ−1(XXX i−XXX)′. (6)

From (4) and (5) the joint posterior density function is

q(µµµ,ΣΣΣ|XXX ,VVV ) ∝ π(µµµ,ΣΣΣ)L(µµµ,ΣΣΣ|XXX ,VVV )

=
∫

∞

0
z−

p(p+1−m−s−ns)
2 w(z)|ΣΣΣ|−

1
2 (m+sn+s)

×etr
[
−1

2
zΣΣΣ−1 (n0(µµµ−θθθ)ΩΩΩ−1(µµµ−θθθ)′+ΦΦΦ

)]
×etr

[
−1

2
zΣΣΣ−1 [VVV +n(XXX−µµµ)ΩΩΩ−1(XXX−µµµ)′

]]
dz.
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Theorem 1 The marginal posterior distribution of the location matrix, µµµ , under the model in (1) and
prior (4) is a matrix variate t-distribution with parameters bbb,WWW and 1

n+n0
ΩΩΩ and degrees of freedom

(m+ns−2p) with density function

q(µµµ|XXX ,VVV ) =
Γp
( 1

2 (m+ns+ s− p−1)
)

π
1
2 sp

Γp
( 1

2 (m+ns− p−1)
) | 1

n+n0
Ω|Ω|Ω|−

1
2 p|W |W |W |−

1
2 m

×|IIIp +WWW−1(µµµ−bbb)
(

1
n+n0

ΩΩΩ

)−1

(µµµ−bbb)′|−
m+ns+s−p−1

2 (7)

with WWW = nn0
n+n0

(XXX−θθθ)ΩΩΩ−1(XXX−θθθ)′+Φ+VΦ+VΦ+V and µµµ ∈RRRp×s and with bbb = 1
n+n0

(
nXXX−n0θθθ

)
.

Proof. See Appendix A. �
Let

ς(α) =
∫

∞

0
zα w(z)dz

provided this integral exists. The convergence of this integral is dependent on the specific weight
function w(z) chosen. Consider the matrix variate t-distribution with parameters µµµ p×s and
ΣΣΣp×p⊗Ω⊗Ω⊗Ω s×s and ν0 degrees of freedom, as an example. Then from Table 1, p. 648 of Chu
(1973), the associated weight function is the inverse gamma distribution with density function:

w(z) = (
ν0
2 )

ν0
2 z

ν0
2 −1 exp(−ν0z

2 )

Γ(
ν0
2 )

, hence ς(α) will only exist if α >− ν0
2 .

Theorem 2 The marginal posterior density function of the characteristic matrix, ΣΣΣ, under the model
in (1) and prior (4) is

q(ΣΣΣ|XXX ,VVV ) =
2−

p(m+ns−p−1)
2

Γp

(
m+ns−p−1

2

) |WWW |m+ns−p−1
2 |ΣΣΣ|−

1
2 (m+ns)

×
∞

∑
k=0

(
− 1

2 tr
[
ΣΣΣ−1WWW

])k

k!
ς(− p(p+1−m−ns)−2k

2
) (8)

with WWW as defined in Theorem 1 and ΣΣΣ > 000, provided ς(− p(p+1−m−ns)−2k
2 ) exists.

Proof. See Appendix A. �

3.2. Statistical properties

In this section some statistical properties of the posterior distribution of ΣΣΣ is derived. The character-
istic function for ΣΣΣ is obtained followed by the joint density function of eigenvalues of ΣΣΣ, as well as
the density function of the largest eigenvalue of ΣΣΣ amongst others.

Theorem 3 The characteristic function of ΣΣΣ under the model in (1) and prior (4) is

ϕ (TTT ) =
2−

p(m+ns−p−1)
2 (−i)

p
2 (m+ns)− p(p+1)

2

Γp

(
m+ns−p−1

2

) |WWW |
m+ns−p−1

2 |TTT |
1
2 (m+ns)− p+1

2

×
∫

∞

0
z−

p(p+1−m−ns)
2 w(z)B m+ns−p−1

2

(
− i

2
zTWTWTW

)
dz (9)
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with WWW as defined in Theorem 1, TTT p×p is a real positive definite arbitrary matrix and Bδ (·) is the
type II Bessel function of matrix argument (see (1)).

Proof. From Theorem 2 follows that the characteristic function of ΣΣΣ is

ϕ (TTT ) = E
[
etr (iT ΣT ΣT Σ) |XXX ,VVV

]
=

2−
p(m+ns−p−1)

2

Γp

(
m+ns−p−1

2

) |WWW |m+ns−p−1
2

∫
∞

0
z−

p(p+1−m−ns)
2 w(z)

×
∫

ΣΣΣ>000
|ΣΣΣ|−

1
2 (m+ns)etr [iT ΣT ΣT Σ]etr

[
−1

2
zΣΣΣ−1WWW

]
dΣΣΣdz.

Using eq. 1.6.18 on p. 39 of Gupta and Nagar (2000), (9) follows. �

Theorem 4 The joint density function of the eigenvalues ΛΛΛ = diag(λ1, ...λp), λp > ... > λ1 > 0 of
ΣΣΣ under the model in (1) and prior (4) is

g(ΛΛΛ) =
π

1
2 p2

Γp
( p

2

) p

∏
i< j

(λi−λ j)
1

Γp

(
m+ns−p−1

2

) |WWW |m+ns−p−1
2

p

∏
i=1

λ
− 1

2 (m+ns)
i

×
∞

∑
k=0

∑
κ

(−1)k2−
p(m+ns−p−1)

2 −kCκ

(
ΛΛΛ−1

)
Cκ (WWW )

k!Cκ(IIIp)

×ς

(
− p(p+1−m−ns)

2
+ k
)

with WWW as defined in Theorem 1 and Cκ(·) is the zonal polynomial (see Gupta and Nagar, 2000)
corresponding to κ , provided ς

(
− p(p+1−m−ns)

2 + k
)

exists.

Proof. See Appendix A. �

Theorem 5 The cumulative distribution function of ΣΣΣ under the model in (1) and prior (4) is given
by

P(ΣΣΣ <AAA) =
∞

∑
l=0

∞

∑
k=0

∑
κ

2−k−l (−1)l [tr(AAA−1WWW
)]l

k!l!
ς(l + k)Cκ

(
AAA−1WWW

)
(10)

for any AAA > 000, provided ς(l + k) exists with WWW as defined in Theorem 1.

Proof. See Appendix A. �

Remark 2 Note that λ(p) < a is equivalent to ΣΣΣ < aIIIp since HΛHHΛHHΛH ′ === ΣΣΣ. To obtain the cumulative
distribution function of λ(p), the largest eigenvalue of ΣΣΣ under the model in (1) and prior (4), the
previous theorem can be used with AAA = aIIIp. Also, λ(1) > b is equivalent to ΣΣΣ > bIIIp.

Theorem 6 The cumulative distribution function of λ(p), the largest eigenvalue of ΣΣΣ under the model
in (1) and prior (4) is

Fλ(p)
(a) =

∞

∑
l=0

∞

∑
k=0

∑
κ

(2a)−k−l (−1)l [tr (WWW )]l

k!l!
ς(l + k)Cκ (WWW ) (11)

provided ς(l + k) exists and with WWW as defined in Theorem 1.
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Proof. From (10) the cumulative distribution function of λ(p), the largest eigenvalue of ΣΣΣ under the
model in (1) and prior (4) is

Fλ(p)
(a) = P(ΣΣΣ < aIIIp)

=
∞

∑
l=0

∞

∑
k=0

∑
κ

2−k−l (−1)l [tr( 1
aWWW
)]l

k!l!
ς(l + k)Cκ

(
1
a

WWW
)
.

�

3.3. Bayesian inference

In this section Bayes estimators are derived for the matrix parameters utilizing the two loss functions
mentioned in Section 1.

Theorem 7 Under the squared error loss function, the Bayes estimator of the location matrix, µµµ ,
under the model in (1) and prior (4) is the posterior mean (PM estimator) of µµµ , therefore

µ̂µµ =b =b =b =
1

n+n0

(
nXXX−n0θθθ

)
. (12)

Proof. From Theorem 4.3.1, p. 135 of Gupta and Nagar (2000), the marginal posterior distribution
of the location matrix, µµµ is a matrix variate t-distribution with parameters bbb,WWW , 1

n+n0
ΩΩΩ and degrees

of freedom (m+ns−2p) from (7). Under the squared error loss function the Bayes estimator for µµµ

is

µ̂µµ = E
[
µµµ|XXX ,VVV

]
= bbb.

�

Remark 3 Under the squared error loss function, the Bayes estimator of ΣΣΣ, under the model in (1)
and prior (4) is the posterior mean (PM estimator) of ΣΣΣ, hence

Σ̂ΣΣ = E
[
ΣΣΣ|XXX ,VVV

]
.

Remark 4 Under the loss function L(ωωω,ω̂ωω) = log
[

q(ωωω|XXX ,VVV)
q(ω̂ωω|XXX ,VVV)

]
(see Theorem 1 of Das and Dey,

2010), the Bayes estimators of µµµ and ΣΣΣ, respectively, are the modes of the respective posterior
distributions (MAP estimators).

Lemma 8 The hth posterior moment of |ΣΣΣ| under the model in (1) and prior (4) is

mh = E
[
|Σ|Σ|Σ|h|||XXX ,VVV ;z

]
=

2−phς(ph)Γp

(
m+ns−p−1−2h

2

)
Γp

(
m+ns−p−1

2

) |WWW |h (13)

with WWW as defined in Theorem 1, provided ς(ph) exists.



156 VAN NIEKERK, BEKKER, ARASHI & DE WAAL

Proof. From (8) and Definition 4.2.1, p. 111 of Gupta and Nagar (2000) the hth posterior moment
is given by

E
[
|Σ|Σ|Σ|h|||XXX ,VVV ;z

]
=

2−
p(m+ns−p−1)

2

Γp

(
m+ns−p−1

2

) |WWW |m+ns−p−1
2

∫
∞

0
z−

p(p+1−m−ns)
2 w(z)

×
∫

ΣΣΣ>000
|ΣΣΣ|−

1
2 (m+ns−2h)etr

[
−1

2
zΣΣΣ−1WWW

]
dΣΣΣdz

and (13) follows. �

Theorem 9 Under the squared error loss function, the Bayes estimator of |ΣΣΣ| under the model in (1)
and prior (4) is

|̂Σ|Σ|Σ|=
2−pς(p)Γp

(
m+ns−p−3

2

)
Γp

(
m+ns−p−1

2

) |WWW | (14)

with WWW as defined in Theorem 1, provided ς(p) exists.

Proof. The result is immediate from (13) with h = 1. �

Remark 5 The results derived for the model in (1) and prior (4) simplifies for s = 1 to the results
obtained for the multivariate elliptical model and for s = 1, p = 1 to the univariate elliptical model
(see Van Niekerk et al., 2013).

The question arises whether the normal-Wishart prior performs as well as or better than the
normal-inverse Wishart prior. To this end, we need to study the Bayesian analysis of the elliptical
model under the latter prior structure, which is the focus of the forthcoming section.

4. Normal-Wishart prior

In this section the normal-Wishart prior for the matrix variate elliptical model is considered. Sim-
ilarly to Section 2, the prior distributions for µµµ and Ψ =Ψ =Ψ = z−1ΣΣΣ respectively are from eq. 2.2.1 on
p. 55 and eq. 3.2.1 on p. 87 of Gupta and Nagar (2000), µµµ|ΨΨΨ ∼ Np,s(θθθ p×s,

1
n0

ΨΨΨp×p⊗Ω⊗Ω⊗Ω s×s) and
ΨΨΨ∼W (ΦΦΦ, p,m) with density functions

π(µµµ|ΨΨΨ) = (2π)−
sp
2 | 1

n0
ΨΨΨ|−

s
2 |ΩΩΩ|−

p
2 etr

[
−n0

2
ΨΨΨ
−1(µµµ−θθθ)ΩΩΩ−1(µµµ−θθθ)′

]
, µµµ ∈RRRp×s

and

π(ΨΨΨ) = 2−
mp
2

[
Γp(

m
2
)
]−1
|ΦΦΦ|−

1
2 m|ΨΨΨ|

1
2 (m−p−1)etr

[
−1

2
ΨΦΨΦΨΦ

−1
]
, ΨΨΨ > 0, Φ0, Φ0, Φ > 000 and m≥ p

with the joint prior density function as

π(µµµ,ΨΨΨ)∝ |ΨΨΨ|
1
2 (m−p−1−s)etr

[
−n0

2
ΨΨΨ
−1(µµµ−θθθ)ΩΩΩ−1(µµµ−θθθ)′

]
etr
[
−1

2
ΨΦΨΦΨΦ

−1
]
.

It then follows that

π(µµµ,ΣΣΣ|z)∝ z−
p(m−s)

2 |ΣΣΣ|
1
2 (m−p−1−s)etr

[
−n0z

2
ΣΣΣ
−1(µµµ−θθθ)ΩΩΩ−1(µµµ−θθθ)′

]
etr
[
− 1

2z
ΣΦΣΦΣΦ
−1
]
. (15)
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4.1. Posterior distributions

From (5) and (15) the joint posterior density function follows as,

q(µµµ,ΣΣΣ|XXX ,VVV ) ∝
∫

∞

0
z−

p(m−s−sn)
2 w(z)|ΣΣΣ|

1
2 (m−p−1−s−ns)etr

[
− 1

2z
ΣΦΣΦΣΦ
−1
]

×etr
[
−n0z

2
ΣΣΣ
−1(µµµ−θθθ)ΩΩΩ−1(µµµ−θθθ)′

]
×etr

[
−1

2
zΣΣΣ−1 [VVV +n(XXX−µµµ)ΩΩΩ−1(XXX−µµµ)′

]]
dz

with VVV as defined in (6).

Theorem 10 The marginal posterior density function of the location matrix, µµµ , under the model in
(1) and prior in (15) is

q(µµµ|XXX ,VVV ) =
|ΩΩΩ|−

p
2 (n+n0)

sp
2

(2π)
sp
2 B−m+ns

2

( 1
4ΦΦΦ−1YYY

) |2ΦΦΦ|−
s
2

×B−m+s+ns
2

(
1
4

ΦΦΦ
−1 (Y+Y+Y+(n+n0)(µµµ−bbb)ΩΩΩ−1(µµµ−bbb)′

))
(16)

with YYY = nn0
n+n0

(XXX−θθθ)ΩΩΩ−1(XXX−θθθ)′+VVV and µµµ ∈RRRp×s.

Proof. See Appendix B. �

Remark 6 The marginal posterior distribution of the location matrix in matrix elliptical models is
robust with respect to departures from normality, under the non-conjugate normal-Wishart prior.

Theorem 11 The marginal posterior density function of the characteristic matrix, ΣΣΣ, under model
(1) and prior (15) is

q(ΣΣΣ|xxx,VVV ) =
2

p(−m+ns)
2

B−m+ns
2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ| 12 (−m+ns)|ΣΣΣ|
1
2 (m−p−1−ns)

×
∞

∑
k=0

∞

∑
l=0

(−2)−k−l (tr [ΣΦΣΦΣΦ−1
])k (tr [ΣΣΣ−1YYY

])l

k!l!

×ς

(
− p(m− sn)

2
− k+ l

)
(17)

with YYY as defined in Theorem 10 and Σ > 0Σ > 0Σ > 0, provided ς

(
− p(m−sn)

2 − k+ l
)

exists.

Proof. See Appendix B. �

4.2. Statistical properties

Theorem 12 The characteristic function of ΣΣΣ under model (1) and prior (15) is

ϕ (TTT ) =
2

p(−m+ns)
2

B−m+ns
2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ| 12 (−m+ns)
∫

∞

0
z−

p(m−sn)
2 w(z)

×| 1
2z

ΦΦΦ
−1−−− iTTT ′|

1
2 (m+ns)B−m+ns

2

[
1
4
(
ΦΦΦ
−1−2−2−2 izTTT ′

)
YYY
]

dz
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with YYY as defined in Theorem 10, TTT p×p is a real positive definite arbitrary matrix.

Proof. From (17) the characteristic function of ΣΣΣ|XXX ,VVV is given by

ϕ (TTT ) =
2

p(−m+ns)
2

B 1
2 (−m+ns)

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ| 12 (−m+ns)
∫

∞

0
z−

p(m−sn)
2 w(z)

×
∫

ΣΣΣ>000
|ΣΣΣ|

1
2 (m−p−1−ns)etr

[
− 1

2z
ΣΣΣΦΦΦ
−1 + iTTT ′ΣΣΣ

]
etr
[
− z

2
ΣΣΣ
−1YYY

]
dΣΣΣdz.

Applying eq. 1.6.18, p. 39 of Gupta and Nagar (2000) the proof is complete. �

Theorem 13 The joint density function of the eigenvalues ΛΛΛ = diag(λ1, ...λp), λp > ... > λ1 > 0 of
ΣΣΣ under model (1) and prior (15) has the form

g(ΛΛΛ) =
π

1
2 p2

Γp
( p

2

) p

∏
i< j

(λi−λ j)
2

p
2 (−m+ns)

B−m+ns
2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ| 12 (−m+ns)
p

∏
i=1

λ
1
2 (m−p−1−ns)

i

×
∞

∑
k=0

∑
κ

∞

∑
l=0

∑
λ

1
k!l!

(
−1

2

)k+l

ς

(
− p(m− sn)+2k−2l

2

)

× ∑
φ∈κ,λ

Cκ,λ
φ

(
Λ,ΛΛ,ΛΛ,Λ−1

)
Cκ,λ

φ

(
ΦΦΦ−1,Y,Y,Y

)
Cφ (IIIp)

with YYY as defined in Theorem 10, provided ς

(
− p(m−sn)+2k−2l

2

)
exists.

Proof. See Appendix B. �

Theorem 14 The cumulative distribution function of ΣΣΣ under model (1) and prior (15) is

P(ΣΣΣ <AAA) =
2

p(−m+ns)
2 ς

(
− p(m−sn)

2

)
B−m+ns

2
( 1

4ΦΦΦ−1YYY ;IIIp)

B−m+ns
2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ|
1
2 (−m+ns)|AAA|

1
2 (m−ns)

for any AAA > 000 and B m−ns
2

(·;···);···);···) the incomplete type II Bessel function of matrix argument (see (3)),

with YYY as defined in Theorem 10 and provided ς

(
− p(m−sn)

2

)
exists.

Proof. See Appendix B. �

Theorem 15 The cumulative distribution function of λ(p), the largest eigenvalue of ΣΣΣ under model
(1) and prior (15) has the form

Fλ(p)
(a) =

2
p
2 (−m+ns)a

p
2 (m−ns)ς

(
− p(m−sn)

2

)
B−m+ns

2
( 1

4ΦΦΦ−1YYY ;IIIp)

B−m+ns
2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ|
1
2 (−m+ns) (18)

with YYY as defined in Theorem 10 and provided ς

(
− p(m−sn)

2

)
exists.

Proof. From (10) the cumulative distribution function of λ(p) follows easily. �
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4.3. Bayesian inference

Theorem 16 Under the squared error loss function, the Bayes estimator (PM estimator) of the
location matrix, µµµ , under model (1) and prior (15) is

µ̂µµ = bbb =
1

n+n0

(
nXXX−n0θθθ

)
. (19)

Proof. Under the squared error loss function the Bayes estimator of µµµ is the posterior mean, i.e.
µ̂µµ = E

[
µµµ|XXX ,VVV

]
. Note that the expected value of (µµµ−bbb) is

E
[
µ−bµ−bµ−b|XXX ,VVV

]
=

|ΩΩΩ|−
p
2 (n+n0)

sp
2

(2π)
sp
2 B 1

2 (−m+ns)

( 1
4ΦΦΦ−1YYY

) |2ΦΦΦ|−
s
2

∫
µµµ

(µµµ−bbb)

×B 1
2 (−m+s+ns)

(
1
4

ΦΦΦ
−1 (Y+Y+Y+(n+n0)(µµµ−bbb)ΩΩΩ−1(µµµ−bbb)′

))
dµµµ.

This is an integral of an odd function and hence E
[
µµµ−bbb|XXX ,VVV

]
= 0.0.0. Therefore from Theorem 10 the

Bayes estimator of the location matrix, µµµ , is µ̂µµ =b =b =b = 1
n+n0

(
nXXX−n0θθθ

)
. �

Lemma 17 The hth posterior moment of |ΣΣΣ| under model (1) and prior (15) is

mh = E
[
|Σ|Σ|Σ|h|||XXX ,VVV

]
=

2phς(ph)B−m+ns−2h
2

( 1
4ΦΦΦ−1YYY

)
B−m+ns

2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ|h (20)

with YYY as defined in Theorem 10, provided ς(ph) exists.

Proof. From (17), the hth posterior moment is given by

E
[
|Σ|Σ|Σ|h|||XXX ,V ;V ;V ;z

]
=

2
p(−m+ns)

2

B−m+ns
2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ| 12 (−m+ns)
∫

∞

0
z−

p(m−sn)
2 w(z)

×
∫

ΣΣΣ>000
|ΣΣΣ|

1
2 (m−p−1−ns+2h)etr

[
− 1

2z
ΣΦΣΦΣΦ
−1
]

etr
[
− z

2
ΣΣΣ
−1YYY

]
dΣΣΣdz.

Applying eq. 1.6.18, p. 39 of Gupta and Nagar (2000), the proof is complete. �

Theorem 18 Under the squared error loss function, the Bayes estimator of |ΣΣΣ| under model (1) and
prior (15) is

|̂Σ|Σ|Σ|=
2pς(p)B−m+ns−2

2

( 1
4ΦΦΦ−1YYY

)
B−m+ns

2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ| (21)

with YYY as defined in Theorem 10, provided ς(p) exists.

Proof. The result is immediate from (20) with h = 1. �

Remark 7 The results derived for model (1) and prior (15) simplifies for s = 1 to the results ob-
tained for the multivariate elliptical model and for s = 1, p = 1 to the univariate elliptical model (see
Van Niekerk et al., 2013).
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5. Particular subfamilies

In this section the newly developed results will be applied to the matrix variate normal distribution
and the matrix variate t-distribution as special cases of the matrix variate elliptical model.

Remark 8 (See Remark 4).The marginal posterior distribution of µµµ for all matrix variate elliptical
distributions and a normal-inverse Wishart prior is given in (7) and for the normal-Wishart prior in
(16). The Bayes estimator of µµµ for both prior structures considered is from (12) and (19),

µ̂µµB =b =b =b =
1

n+n0

(
nXXX−n0θθθ

)
.

5.1. Matrix variate normal distribution

Let XXX follow a matrix variate normal distribution with parameters µµµ p×s and ΣΣΣp×p⊗Ω⊗Ω⊗Ω s×s. Then from
Table 1, p. 648 of Chu (1973), the associated weight function is:

w(z) = δ (z−1) = lim
d→0

1
d
√

π
exp
(
− (z−1)2

d2

)
, (22)

where δ (·) is the Dirac delta function.

• First we consider the normal-inverse Wishart case. The marginal posterior density function of
ΣΣΣ for the normal-inverse Wishart prior is obtained by using (8) and (22),

q(ΣΣΣ|xxx,VVV )IW =
2−

p(m+ns−p−1)
2

Γp

(
m+ns−p−1

2

) |WWW |m+ns−p−1
2

×|ΣΣΣ|−
1
2 (m+ns)

∫
∞

0
z−

p(p+1−m−ns)
2 δ (z−1)etr

[
−1

2
zΣΣΣ−1WWW

]
dz

with WWW as defined in Theorem 1. We note that
∫

∞

0 f (x)δ (x)dx = f (0) with x = z−1, f (x) =

(x+1)−
p(p+1−m−ns)

2 etr
[
− 1

2 (x+1)ΣΣΣ−1WWW
]
. Therefore f (0) = etr

[
− 1

2ΣΣΣ−1WWW
]
, and

q(ΣΣΣ|xxx,VVV )IW =
2−

p(m+ns−p−1)
2

Γp

(
m+ns−p−1

2

) |WWW |m+ns−p−1
2 |ΣΣΣ|−

1
2 (m+ns) f (0)

=
2−

p(m+ns−p−1)
2

Γp

(
m+ns−p−1

2

) |WWW |m+ns−p−1
2 |ΣΣΣ|−

1
2 (m+ns)etr

[
−1

2
ΣΣΣ
−1WWW

]
.

Therefore ΣΣΣ |xxx,VVV ∼W−1(WWW , p,m+ns) (see Bekker and Roux, 1995). From (22) and (14) the
Bayes estimator of |ΣΣΣ| is

|Σ̂ΣΣ|B,IW =
2−pΓp

(
m+ns−p−3

2

)
Γp

(
m+ns−p−1

2

) |WWW |
∫

∞

0
zpw(z)dz =

2−pΓp

(
m+ns−p−3

2

)
Γp

(
m+ns−p−1

2

) |WWW |;
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the cumulative distribution function of λ(p), the largest eigenvalue of ΣΣΣ |xxx,VVV from (11) is

Fλ(p)
(a) =

2−
p(m+ns−p−1)

2

Γp

(
m+ns−p−1

2

) |WWW |m+ns−p−1
2 etr

[
− 1

2a
WWW
]

×∑
k

∑
κ

(
− 1

2 (m+ns)+ p+1
)

κ
(−a)k

Γp

(
1
2 (m+ns)− p+1

2 ,−κ

)
k!

×|1
2

W |W |W |−
[

1
2 (m+ns)− p+1

2

]
Cκ

(
1
2

WWW
)

with WWW as defined in Theorem 1.

• Secondly, the normal-Wishart prior is considered. The marginal posterior distribution of ΣΣΣ is
obtained by using (17) and (22),

q(ΣΣΣ|xxx,VVV )W =
2

p(−m+ns)
2 |ΦΦΦ| 12 (−m+ns)

B−m+ns
2

( 1
4ΦΦΦ−1YYY

)
|
|ΣΣΣ|

1
2 (m−p−1−ns)etr

[
−1

2
ΣΦΣΦΣΦ
−1
]

etr
[
−1

2
ΣΣΣ
−1YYY

]
(see Bekker and Roux, 1995) with YYY as defined in Theorem 10. From (22) and (21) the Bayes
estimator of |ΣΣΣ| is

|Σ̂ΣΣ|B,W =
2pB−m+ns−2

2

( 1
4ΦΦΦ−1YYY

)
B−m+ns

2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ|;

from (22) and (18) the cumulative distribution function of λ(p) is

Fλ(p)
(a) =

2
p
2 (−m+ns)a

p
2 (m−ns)B−m+ns

2
( 1

4ΦΦΦ−1YYY ;IIIp)

B−m+ns
2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ|
1
2 (−m+ns)

with YYY as defined in Theorem 10.

5.2. Matrix variate t-distribution

Let XXX follow a matrix variate t-distribution with parameters µµµ p×s and ΣΣΣp×p⊗Ω⊗Ω⊗Ω s×s and ν0 degrees
of freedom. Then from Table 1, p. 648 of Chu (1973), the associated weight function is the inverse
gamma distribution with density function:

w(z) =
( ν0

2 )
ν0
2 z

ν0
2 −1 exp(−ν0z

2 )

Γ( ν0
2 )

. (23)

• As before we consider the normal-inverse Wishart prior. The marginal posterior distribution
of ΣΣΣ using (23) and (1) is,

q(ΣΣΣ|xxx,VVV )IW =
2−

p(m+ns−p−1)
2 ( ν0

2 )
ν0
2

Γp

(
m+ns−p−1

2

)
Γ( ν0

2 )
|WWW |

m+ns−p−1
2 |ΣΣΣ|−

1
2 (m+ns)

×
∫

∞

0
z−

p(p+1−m−ns−ν0+2)
2 exp

[
− z

2
(
tr
(
ΣΣΣ
−1WWW

)
+ν0

)]
dz
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with WWW as defined in Theorem 1. Note that from Gradshteyn and Ryzhik (2007)∫
∞

0
z−

p(p+1−m−ns−ν0+2)
2 +1−1 exp

[
− z

2
(
tr
(
ΣΣΣ
−1WWW

)
+ν0

)]
dz

=
Γ

(
1+ p(m+ns+ν0−p−1)

2

)
(

tr(ΣΣΣ−1WWW)+ν0
2

)1+ p(m+ns+ν0−p−1)
2

,

provided − p(p+1−m−ns−ν0+2)
2 +1 > 0. Therefore

q(ΣΣΣ|xxx,VVV )IW =
2−

p(m+ns−p−1)
2 ( ν0

2 )
ν0
2 Γ

(
1+ p(m+ns+ν0−p−1)

2

)
Γp

(
m+ns−p−1

2

)
Γ( ν0

2 )

×

(
tr
(
ΣΣΣ−1WWW

)
+ν0

2

)1+ p(m+ns+ν0−p−1)
2

|WWW |
m+ns−p−1

2 |ΣΣΣ|−
1
2 (m+ns).

From (23) and (14) the Bayes estimator of |ΣΣΣ| is

|Σ̂ΣΣ|B,IW =
2−pΓp

(
m+ns−p−3

2

)
Γp

(
m+ns−p−1

2

) |WWW |
∫

∞

0
zp (

ν0
2 )

ν0
2 z

ν0
2 −1 exp(− ν0z

2 )

Γ( ν0
2 )

dz.

Hence,

|Σ̂ΣΣ|B,IW =
2−p− ν0

2 ν
−p
0 Γp

(
m+ns−p−3

2

)
Γ( ν0

2 + p)

Γp

(
m+ns−p−1

2

)
Γ( ν0

2 )
|WWW |.

The cumulative distribution function of λ(p), the largest eigenvalue of ΣΣΣ|xxx,VVV from (11) is

Fλ(p)
(a) =

∞

∑
l=0

∞

∑
k=0

∑
κ

(2a)−k−l (−1)k+l [tr (WWW )]l
(
− 1

2 (m+ns)+ p+1
)

κ

k!l!Γp

(
m+ns−p−1

2

)
×

Γp

(
1
2 (m+ns)− p+1

2 ,−κ

)
Γ
(
l + k+ ν0

2

)
(

ν0
2

)l+k
Γ
(

ν0
2

) Cκ (WWW ) .

• Secondly, the normal-Wishart prior is the focus. The marginal posterior distribution of ΣΣΣ using
(17) and (23) is,

q(ΣΣΣ|xxx,VVV )W =
2

p(−m+ns)
2 ( ν0

2 )
ν0
2

B−m+ns
2

( 1
4ΦΦΦ−1YYY

)
Γ( ν0

2 )
|ΦΦΦ|

1
2 (−m+ns)|ΣΣΣ|

1
2 (m−p−1−ns)

×
∫

∞

0
z−

p(m−sn−ν0)+2
2 etr

[
− 1

2z
ΣΦΣΦΣΦ
−1
]

exp
[
− z

2
(
tr
[
ΣΣΣ
−1YYY

]
+ν0

)]
dz,
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with YYY as defined in Theorem 10. Note that∫
∞

0
z−

p(m−sn−ν0)+1
2 etr

[
− 1

2z
ΣΦΣΦΣΦ
−1
]

exp
[
− z

2
(
tr
[
ΣΣΣ
−1YYY

]
+2ν0

)]
dz

= 2

[
tr
(
ΣΦΣΦΣΦ−1

)
(tr [ΣΣΣ−1YYY ]+2ν0)

]− p(m−sn−ν0)−1
4

K p(−m+sn+ν0)+1
2

(√
tr (ΣΦΣΦΣΦ−1)(tr [ΣΣΣ−1YYY ]+2ν0)

)
from Erdelyi, Magnus, Oberhettinger and Tricomi (1953) where Kδ (·) is the Bessel function
of the third kind (see Erdelyi et al., 1953). Hence

q(ΣΣΣ|xxx,VVV )W =
2

p(−m+ns)
2 +1( ν0

2 )
ν0
2 |ΣΣΣ| 12 (m−p−1−ns)|ΦΦΦ| 12 (−m+ns)

B−m+ns
2

( 1
4ΦΦΦ−1YYY

)
Γ( ν0

2 )

[
tr
(
ΣΦΣΦΣΦ−1

)
(tr [ΣΣΣ−1YYY ]+2ν0)

]− p(m−sn−ν0)−1
4

×K
− p(m−sn−ν0)−1

2

(√
tr (ΣΦΣΦΣΦ−1)(tr [ΣΣΣ−1YYY ]+2ν0)

)
.

From (23) and (21) the Bayes estimator of |ΣΣΣ| is

|Σ̂ΣΣ|B,W =
2pB−m+ns−2

2

( 1
4ΦΦΦ−1YYY

)
B−m+ns

2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ|
∫

∞

0
zp (

ν0
2 )

ν0
2 z

ν0
2 −1 exp(−ν0z)
Γ( ν0

2 )
dz

=
2p− ν0

2 Γ(p+ ν0
2 )B−m+ns−2

2

( 1
4ΦΦΦ−1YYY

)
ν

p
0 Γ( ν0

2 )B−m+ns
2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ|.

The cumulative distribution function of λ(p), the largest eigenvalue of ΣΣΣ from (18) is

Fλ(p)
(a) =

2
p
2 (−m+ns)a

p
2 (m−ns)B−m+ns

2
( 1

4ΦΦΦ−1YYY ;IIIp)

B−m+ns
2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ|
1
2 (−m+ns)

∫
∞

0
z−

p(m−sn)
2 w(z)dz

=
2

p
2 (−m+ns−ν0)a

p
2 (m−ns)ν

p(m−sn)
2

0 Γ

(
− p(m−sn)

2 + ν0
2

)
B−m+ns

2
( 1

4ΦΦΦ−1YYY ;IIIp)

Γ( ν0
2 )B−m+ns

2

( 1
4ΦΦΦ−1YYY

) |ΦΦΦ|
1
2 (−m+ns).

6. Applications

In this section we utilize the proposed results to justify the use of the normal-Wishart prior instead
of the normal-inverse Wishart prior in some cases.

6.1. Simulation study

In this section a simulation study is done to calculate the new proposed estimators and to compare
these estimators with the maximum likelihood estimators and the conventional Bayes estimators
derived under the inverse Wishart prior. The Frobenius norm is used as a comparative measure of
the bias of the different estimators. Some other interesting results of the posterior distributions of ΣΣΣ

are displayed and discussed.
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6.1.1. Algorithms

Gibbs sampling (see Chapter 11 of Gelman, Carlin, Stern and Rubin, 1995) is used to simulate the
posterior samples since the posterior density functions in (8) and (17) cannot be solved analytically
to use simulation methods such as the inverse probability transform method.
The posterior distributions of µµµ and ΣΣΣ with the normal-inverse Wishart prior is then simulated as
follows:

Algorithm 1.

1. Initialize µµµ0 and ΣΣΣ0

2. Repeat the following steps for t = 1, ...,100000 times:

a. Generate µµµ t ∼ Np(θθθ ,
1
n0

ΣΣΣt−1).

b. Calculate DDDt = n0(µµµ t −θθθ)(µµµ t −θθθ)′ and AAA∗t =VVV +n(XXX−µµµ t)(XXX−µµµ t)
′.

c. Generate the random matrix ΣΣΣt ∼W−1(AAA∗t +DDDt , p,s+ns+m1).

3. Discard the first couple of observations, i.e. the posterior observations are µµµ1000, ...,µµµ100000

and ΣΣΣ1000, ..., ΣΣΣ100000.

The posterior distributions of µµµ and ΣΣΣ with the normal-Wishart prior is then simulated by using
Gibbs sampling with a Metropolis-Hastings (see Hastings, 1970) algorithm as follows:

Algorithm 2.

1. Initialize µµµ0 and ΣΣΣ0

2. Repeat the following steps for t = 1, ...,100000 times:

a. Generate µµµ t ∼ Np(θθθ ,
1
n0

ΣΣΣt−1)

b. Calculate DDDt = n0(µµµ t −θθθ)(µµµ t −θθθ)′ and AAA∗t =VVV +n(XXX−µµµ t)(XXX−µµµ t)
′

c. Metropolis-Hastings algorithm:

i. Generate the random matrices ΣΣΣ1 ∼W (ΦΦΦ1, p,m2) and ΣΣΣ2 ∼W−1(ΦΦΦ2, p,m∗2) such
that E[ΣΣΣ1] = cE[ΣΣΣ2].

ii. Calculate ΣΣΣ∗ = wΣΣΣ1 +(1−w)ΣΣΣ2 for some 0 < w < 1.

iii. If min
(

f ∗[ΣΣΣ∗|µ|µ|µt ]
f ∗[ΣΣΣt−1|µ|µ|µt ]

,1
)
> u where u is a random uniform(0,1) variate, then ΣΣΣt = ΣΣΣ∗

else ΣΣΣt =ΣΣΣt−1, with f ∗[Σ|µΣ|µΣ|µ t ]∝ |Σ|Σ|Σ|−0.5(m2−p−1−s−ns)etr
[
− 1

2ΣΦΣΦΣΦ−1
]

etr
[
− 1

2ΣΣΣ−1 (DDDt +AAA∗t )
]
.

3. Discard the first couple of observations, i.e. the posterior observations are µµµ1000, ...,µµµ100000

and ΣΣΣ1000, ..., ΣΣΣ100000.

Remark 9 The value of c in Algorithm 2 will determine the efficiency of the algorithm, if it is
chosen to be close to 1 the algorithm will be more efficient.
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6.1.2. Results

A sample of size n is simulated from a multivariate normal (s = 1) distribution with a dimensionality
of p and a zero mean and identity covariance matrix, i.e. XXXn×p ∼ Np(000p, I, I, Ip). The priors are µµµ|ΣΣΣ ∼
Np(θθθ ,

1
n0

ΣΣΣ) and ΣΣΣ ∼W−1(ΦΦΦ, p,m1) and ΣΣΣ ∼W (ΦΦΦ, p,m2), respectively, with θ =θ =θ = 0.5×111p,ΦΦΦ =

4×IIIp,ΦΦΦ1 =ΦΦΦ2 =ΦΦΦ, n = 5,n0 = 1, p = 3,m1 = 9.5, m2 = m∗2 = 3,w = 0.5.
Note that the hyperparameters are assumed to be known and the degrees of freedom of the priors

are chosen such that the priors have the same first moment. An empirical Bayes approach can be
used as an alternative estimation method of the hyperparameters. The Bayes estimators under the
squared error loss (PM estimators) of µµµ and Σ,Σ,Σ, respectively, for the two priors are:

µ̂µµSEL,IW =
[
−0.42 −0.33 −0.26

]
, µ̂µµSEL,W =

[
−0.41 −0.33 −0.26

]
Σ̂ΣΣSEL,IW =

0.99 0.01 0.01
0.01 0.99 0
0.01 0 1

 and Σ̂ΣΣSEL,W =

1.04 0.41 0.19
0.41 0.98 0.19
0.19 0.19 1

 .
The MAP estimators (see Theorem 1 of Das and Dey, 2010) of µµµ and Σ,Σ,Σ,respectively, for the two

priors are:

µ̂µµMAP,IW =
[
0.01 0.03 0.23

]
, µ̂µµMAP,W =

[
0.05 0.19 0.35

]
Σ̂ΣΣMAP,IW =

 0.27 −0.07 −0.03
−0.07 0.36 0.04
−0.03 −0.04 0.56

 and Σ̂ΣΣMAP,W =

0.72 0.35 0.29
0.35 0.54 0.1
0.29 0.1 0.34

 .
The sample estimates are given by:

µ̂µµ = xxx =
[
−0.24 −0.01 0.23

]
and Σ̂ΣΣ = SSS =

 0.78 0.49 −0.24
0.49 0.66 −0.37
−0.24 −0.37 0.73

 .
The Frobenius norm is used as a measure of closeness of the various estimates to the true parameter
value and is defined as follows

||Σ̂ΣΣ−Σ||Σ||Σ||F =

√
tr
(

Σ̂ΣΣ−ΣΣΣ

)′(
Σ̂ΣΣ−ΣΣΣ

)
.

It is known that
lim
r→∞
||
(

Σ̂ΣΣ−ΣΣΣ

)r
||||||

1
r
F = ρ

(
Σ̂ΣΣ−ΣΣΣ

)
where ρ

(
Σ̂ΣΣ−ΣΣΣ

)
is the spectral radius. In Figures 1 and 2, respectively, ||

(
µ̂µµ−µµµ

)r ||
1
r
F and ||

(
Σ̂ΣΣ−ΣΣΣ

)r
||

1
r
F

is plotted against r.
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Figure 1: Frobenius norm for µ̂µµ−µµµ for the PM (left) and MAP (right) estimators.

Figure 2: Frobenius norm for Σ̂ΣΣ−ΣΣΣ for the PM (left) and MAP (right) estimators.
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It is clear that the lowest value of the Frobenius norm corresponds to the estimator with the
smallest bias. In Figures 1 and 2 it is evident under the squared error loss function and the loss
function in Remark 4, respectively, that the Bayes estimator from the Wishart prior is superior to the
Bayes estimator from the inverse-Wishart prior and also the sample estimate.

Some confidence intervals for |ΣΣΣ| were calculated for various parameter values using a bootstrap
Jackknife method and are given in Table 1.

Table 1: 90% confidence intervals, p = 3, n = 5, s = 1 and w = 0.2.

m1 = 7,m2 = 7 m1 = 10,m2 = 5 m1 = 50,m2 = 4
n0 = 1 Wishart prior (1.18;13.16) (0.14;2.5) (0.04;0.61)

Inverse-Wishart prior (0.17;1.97) (0.22;1.93) (0.52;1.58)
Jeffreys prior (0.05;0.47) (0.05;0.47) (0.05;0.47)

n0 = 10 Wishart prior (1.38;13.48) (0.23;3.28) (0.09;1.05)
Inverse-Wishart prior (0.17;1.92) (0.22;1.98) (0.52;1.57)
Jeffreys prior (0.05;0.48) (0.05;0.48) (0.05;0.48)

The Jeffreys prior (see Section 3.1. of Sun and Berger, 2006) is also included for comparison
purposes. From Table 1 it is evident that the performance of the Jeffreys prior is unsatisfactory since
the true value of |ΣΣΣ| = 1 is not contained in the interval. Concerning the two subjective priors, no
one prior is superior to the other, and the choice of prior is left to the practitioner. However, for
demonstrating our assertion regarding the superiority of the normal-Wishart as the prior distribution
we consider the performance of the ratio of the two largest eigenvalues.

To be more specific, Figure 3 illustrates the cumulative distribution function of the ratio of the
two largest eigenvalues of the posterior distribution of ΣΣΣ for the inverse-Wishart and Wishart priors
respectively,

λr =
λW

λIW
.

If this ratio is larger than one, we conclude that the Wishart prior leads to larger posterior eigenvalues
which in turn will result in fewer principal components to explain a larger portion of the variation in
the data.
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Figure 3: Cumulative distribution function of the ratio of the largest eigenvalue of the Wishart and
inverse-Wishart priors, p = 3, m1 = 4, m2 = 7, n = 5, n0 = 1, s = 1 and w = 0.5.

It is evident from Figure 3 that P[λr < 1] = 0.16 and hence P[λr > 1] = 0.84, so that when the
Wishart prior is applied it leads to fewer principal components included in the model with probability
0.84. It is for this reason that the Wishart prior is preferred over the widely used and accepted
inverse-Wishart prior.

6.2. Fisher’s Iris dataset

The Iris dataset is a very well-known dataset of dimension four and a sample size of 150. The data
set was introduced by Sir Ronald Fisher (1936) as an example of discriminant analysis. The data set
consists of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).
Four features were measured from each sample: the length and the width of the sepals and petals, in
centimeters. For the purpose of applying the results to this dataset only a subset of the data is used
— a subset of the Iris setosa subspecies is used, and hence the sample size is 10. The reason for this
is that each of the subspecies’ measures have been shown to follow a four dimensional multivariate
normal distribution.

Let XXX50×4 = sample of Iris setosa measurements ∼ N4(µ,Σµ,Σµ,Σ) with µµµ and ΣΣΣ unknown. Assume
the prior distributions are µµµ|ΣΣΣ ∼ Np(θθθ ,ΣΣΣ) and ΣΣΣ ∼W−1(ΦΦΦ,4,5) and ΣΣΣ ∼W (ΦΦΦ,4,9), respectively,
and as illustration θ =θ =θ =XXX and ΦΦΦ =S =S =S = 1

50 ∑
50
i=1(XXX i−XXX)(XXX i−XXX)′.

The posterior distributions are simulated by using algorithm 1 as in Subsection 6.1. The cumula-
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tive distribution function of the largest eigenvalue of the posterior distribution of ΣΣΣ is given in Figure
4 for the normal-inverse Wishart and the normal Wishart prior.

Figure 4: The cumulative distribution function of the largest eigenvalue of ΣΣΣ under prior 4 (- - -) and
15 (—–), p = 4, m1 = 5, m2 = 9, n = 10, n0 = 10, s = 1.

7. Conclusion

Our main contributions in this paper are summarized as follows:

• New estimators for the matrix parameters of the matrix variate elliptical model was proposed
from a subjective Bayesian viewpoint.

• The normal-inverse Wishart and normal-Wishart priors were considered for the location and
scale matrices of the underlying model.

• The Bayes estimators of the parameters, under two loss functions, as well as the joint poste-
rior density functions and marginal posterior density functions were derived, with the matrix
variate normal and matrix variate t-distribution as particular subfamilies.

• The Bayes estimator under SEL of the location parameter is a robust estimator in the sense
that it is independent of the prior distribution of the scale parameter.
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• For both priors, the posterior distributions for the location and scale matrices of the matrix
variate normal model were simulated, using the two new algorithms, the Bayes estimators
under the two loss functions were calculated and compared using the Frobenius norm.

• The estimator derived under the normal-Wishart prior displayed superior performance in the
simulation study and this justifies the use of a normal-Wishart prior in the Bayesian analysis
of the normal model.
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