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Abstract

An area of great interest in current computational fluid dynamics research is

that of Free-Surface Modelling (FSM). Semi-implicit pressure based FSM flow

solvers typically involve the solution of a pressure correction equation. The

latter being computationally intensive, this work involves the implementation

and enhancement of an Algebraic Multigrid (AMG) method for its solution. All

AMG components were implemented in a manner which ensures linear com-

putational scalability and matrix-free storage. In addition, a so-called Freeze

method was developed to address the computational overhead resulting from

the dynamically changing coefficient matrix. The latter involves periodic AMG

setup steps in a manner that results in a robust and efficient black-box solver.

The developed technology was evaluated in two- and three-dimensions via appli-

cation to a dam-break test case. AMG performance was assessed via comparison

of CPU cost to that of several other competitive sparse solvers. The standard

AMG implementation proved inferior to other methods in three-dimensions,

while the developed Freeze version achieved significant speed-ups and proved to

be superior through-out.
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1. INTRODUCTION

One of the most challenging and relevant areas of study in modern computa-

tional fluid dynamics is that of free surface modelling (FSM). Efficient modelling

of free surface flows is having a profound impact on many fields of engineering,

as evidenced by the variety of problems analysed. Examples include fuel slosh-

ing in tanks, breaking waves, flow around ship hulls and casting. The accurate

and efficient modelling of these problems, however, has proven to be challenging

due to the large density and viscosity jumps across the interface between two

phases. Various methods exist to capture this behaviour, the most prevalent of

which include volume of fluid (VoF) methods [1] and level set methods [2]. Re-

gardless, high performance CFD tools are required for industrially usable FSM

simulations.

ElementalTMis one such tool, employing a fractional step pressure predic-

tion solution method combined with CICSAM [3] VoF interface tracking scheme.

The fractional step method consists of three distinct steps [4, 5], one of which in-

volves obtaining a pressure correction value. In the case of the implicit pressure

formulation, the latter involves the solution of a large, sparse and asymmetric

linear system of equations. At present, this is effected by means of a precon-

ditioned Generalised Minimal Residual (GMRES) solver [6, 7, 8]. Though this

solver was demonstrated to be exceptionally efficient it was found to consume

up to 95% computational time. Thus, the motivation for this work was to em-

ploy an alternative solution method in order to improve on solution times and

reduce the contribution of the pressure correction solution step.

From the literature, a number of advanced sparse linear solvers have been ap-

plied to FSM for the purpose of solving the pressure correction equation. These

include successive over-relaxation [9], preconditioned GMRES [10, 8], various

conjugate-gradient type methods [11, 12, 13, 14, 15] and geometric multigrid

methods [16, 17, 18]. Other attempts at solution acceleration include improved

initial condition prediction [19] and algebraic multigrid (AMG) methods [20].

Despite its desirable qualities of being fast and matrix-free, AMG is never cited
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as a preferred sparse solver for FSM simulations. This is expected to be due in

part to computational overheads specific to FSM problems. These are a result

of repeated setup costs due to the dynamic nature of the pressure correction

coefficient matrix.

In an attempt to benefit from the computational efficiency of AMG while

reducing the effect of repeated setup steps, this work is concerned with the

development and implementation of an augmented AMG solver. With focus

on modularity, a classical Algebraic Multigrid (C-AMG) [21] black-box solver

was developed using an object oriented methodology [22]. Priority was given to

obtaining optimal O(N) algorithm complexity. The setup cost was addressed by

extending the basic solver to a so-called Freeze-AMG (F-AMG) method, which

alleviates repeated setup steps by maintaining solution structures over multiple

time-steps in a robust and automatic fashion. Additionally, the Freeze method

was extended to only perform partial setup phases as needed.

Following successful implementation, rigorous evaluation of the solver fol-

lowed. This consisted of application to violent free-surface flows and comparing

solution times using F-AMG and C-AMG to that of a range of pre-conditioned

matrix-free sparse solvers viz. Conjugate Gradient (CG) , Bi-Conjugate Gradi-

ent Stabilised (BiCGSTAB) and GMRES. The latter solvers were purpose built

for this work. Structured and unstructured meshes were employed in two- and

three-dimensions. Performance evaluation metrics included computational time

scaling as a function of mesh topology and CPU time as a function of simulated

time.

2. THE PRESSURE CORRECTION EQUATION

2.1. Governing Equations

In many free-surface simulations, the set of governing equations is the well

known incompressible Navier-Stokes. Combined with an interface tracking equa-

tion, arising from the VoF method, these can be written for a two fluid system
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in terms of locally averaged quantities as:
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where δij is the Kronecker delta and the viscous stress for a Newtonian fluid is

given by

σij = µm

(

∂ui

∂xj

+
∂uj

∂xi

)

. (3)

In the above equations, t and xj denote time and Cartesian coordinate j

respectively, ρm is the local volume averaged density, u is the velocity field, p is

the pressure and µm the mean viscosity. The coefficient α is the volume fraction

of one of the fluids.

2.2. Solution Procedure

In order to solve the governing equation set, ElementalTM employs a frac-

tional step method [23, 24]. Here the velocity ui and the pressure p at the current

time-step n are employed to obtain values at the next time-step n+ 1. In this

work, we consider the semi-implicit method which commences by calculating an

intermediate velocity variable as:
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for i = [1, 2, 3], where ∆t denotes the physical time-step size, ∆t = tn+1−tn.

Next, the pressure correction equation is constructed in an implicit fashion as
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which may be rewritten as:
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The pressure correction may now be solved implicitly from this equation (as

described below).

In the third and final step, the calculated pressure is used to calculate the

velocity at the next time-step as:
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The interface position is updated using:
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where the nomenclature is as defined previously.

2.3. Spatial Discretisation and Equation Construction

Commencing with pressure solution, Equation (6) is written as:

K(pn+1) =
∂

∂xi

(

1

ρnm

∂pn+1

∂xi

)

=
∂

∂xi

(

1

ρm

∆U∗
i

∆t

)

+
1

∆t

∂ui

∂xi

∣

∣

∣

∣

n

, (9)

which is read to mean that some K exists which is linear in pn+1, with

K = f(pm, ρm)|
n
, where the superscript n refers to the current time step. The

equation is now linearised around n as:
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where ∆p = (pn+1 − pn) is the pressure correction sought.
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The manipulated pressure correction equation is now discretised using an

edge-based approach similar to that in [6], resulting in the following system of

linear algebraic equations to be solved:

A∆p = b, (12)

where A is now a sparse, asymmetric coefficient matrix, ∆p the pressure

correction and b the right hand side of the equation system. Importantly, the

matrix A varies as a function of time as the surface interface evolves, which

strongly affects ρm as density varies by a factor 1000 due interface motion.

3. DEVELOPED SOLVER TECHNOLOGY

3.1. Object-Oriented AMG Solver

So called C-AMG [21], has proven to be an effective and robust method for

solving linear systems. In this work, it was necessary to implement an AMG

solver as a stand alone black-box subroutine into ElementalTM. To effect this

a self-contained AMG solver object was developed which is accessed whenever

the pressure correction equation is to be solved. The object accepts a sparse

system matrix in compressed row format, Equation (12), constructs the alge-

braic multigrid hierarchy according to the C-AMG principles found in [25], and

returns the pressure correction solution. This is done repeatedly for successive

time-steps as shown schematically in Figure 3.

A basic outline of C-AMG [25] is given as follows. For convenience the grid

points associated with A are denoted as Ω = {1, 2, 3, ..., N}, where N denotes

the grid size. Superscripts denote level number, such that A = A1 and Ω = Ω1

represent the finest grid. Prior to the C-AMG solver a setup phase is required

to decompose A into consecutively coarser grids (Ω1 ⊃ Ω2 ⊃ Ω3 ⊃ ... ⊃ ΩM )

which result in a series of coarseAk, interpolation operators Ikk+1 and restriction

operators Ik+1
k .

Setup Phase

1. Set k = 1, where k denotes the grid level (fine to coarse).
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2. Partition Ωk into unique sets of coarse (Ck) and fine (F k) grid points.

(a) Set Ωk+1 = Ck.

3. Define interpolation Ikk+1 and restriction Ik+1
k =

(

Ikk+1

)T
operators.

4. Construct next level Ak+1 = Ik+1
k AkIkk+1 (Galerkin condition).

5. If the size of Ωk+1 is smaller than a stopping size then set maximum level,

M = k + 1. Otherwise set k = k + 1 and return to step 2.

As per the above, there are two critical steps in the setup phase, that being

the selection of coarse and fine grid points and the construction of the transfer

operators. C-AMG uses the classic coarsening algorithm by Ruge and Stüben

[21]. The aforementioned algorithm starts by determining the strength of cou-

pling between grid points. Point i is said to strongly depend on j if,

−aij ≥ θ max
k 6=i

{−aik} (13)

where 0 < θ < 1 denotes the coarsening threshold and aij the entry of A (row i

and column j). Point j is also said to strongly influence i, thus for each i a set

of strong influences is defined, Si. With the concept of influence/dependence

defined, next two heuristic criteria are given to guide coarse grid selection, C.

1. For each point j that strongly influences an F -point i, j is either a C-point

or is strongly influenced by a C-point k that also strongly influences point

i.

2. The set of coarse points C should be a maximal subset of all points such

that no C-point strongly depends on another C-point.

The first criteria is used to ensure the quality of interpolation and is thus

enforced, while the second criteria is used as a guide to limit the coarse grid size.

Next the interpolation operator Ikk+1 is constructed to interpolate the error for

F -point i from neighbouring points. These neighbouring points are split into
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three groups being: coarse strong influences (SC
i ), fine strong influences (SF

i )

and points that do not strongly influence i (Wi). The interpolation is given by,

(

Ikk+1e
)

i
=











ei if i ∈ C
∑

j∈SC
i

ωijej if i ∈ F
(14)

where ei is the error at point i and ωij is the interpolation weight that determines

the contribution from neighbouring points given as

ωij = −

aij +
∑

m∈SF
i


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aimamj∑
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i

amk





aii +
∑

n∈Wi

ain
(15)

Following the construction of coarse levels is the solve phase, where a V-cycle

is recursively performed as follows:

Multigrid V-cycle(Ak,bk,xk)

1. If k 6= M then:

(a) Smooth Akxk = bk with µ1 iterations of a Gauss-Seidel Solver.

(b) Set rk+1 = Ik+1
k

(

bk −Akxk
)

.

(c) Apply V-cycle on level k + 1, V-cycle(Ak+1,rk+1,ek+1).

(d) Correct the solution, xk = xk + Ikk+1e
k+1.

(e) Smooth Akxk = bk with µ2 iterations of a Gauss-Seidel Solver.

2. Otherwise, smooth AMxM = bM with µ3 iterations of a Gauss-Seidel

Solver.

The first challenge associated with the development of the AMG object arose

from the requirement that all algorithms were to be of optimal O(N) complexity.

Of specific interest are the coarsening and matrix multiplication algorithms. The

former was effected by taking advantage of an efficient data storage scheme in

which the minimum number of nodes are accessed during each coarsening step.

Matrix multiplication, used when applying the Galerkin approach to obtain-

ing coarse grid operators [25], required special attention due to the compressed
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Figure 1: Comparison of Freeze-AMG and C-AMG methodologies

row format employed. A modified matrix multiplication algorithm, which ac-

cesses coefficients row-by-row, and eliminates expensive column searches was

implemented to address the latter. In order to ensure that linear scaling was

achieved, the solver was evaluated on a single time step of the two-dimensional

dam-break problem in Section 4.1. Employing structured meshes ranging three

orders of magnitude in size, the desired linear complexity was achieved (as de-

picted in Figure 2).

3.2. Freeze-AMG

A major contributor to time taken by the C-AMGmethod is the construction

of the AMG solver structure, which is comparable to the time spent during

solution cycles. While the method is applicable to FSM problems as-is, the

fact that the coefficient matrix in Equation (12) changes as a function of time

necessitates continuous reconstruction of the AMG solution structure. In the

case of free-surface flows, the aforementioned changes in the coefficient matrix

are however often localised, since these changes are due to the evolving fluid
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Figure 2: Solver scaling

interface, which is itself a local phenomenon. A given AMG solution structure

can therefore be expected to converge for coefficient matrices over several time

steps, provided the matrix does not depart too far from the original [26, 27]. As

time progresses however, the coefficient matrix would alter to the point where

the latter is no longer the case.

The above observations gave rise to the concept of only performing peri-

odic AMG setup steps, thus ’freezing’ a given AMG solution structure until

convergence is no longer satisfactory. The basic heuristic used in this work

to measure this was simply the convergence rate between solver iterations. In

addition, a further refinement of the Freeze method was made. This was due

to the fact that the coarsening procedure during AMG setup consumed a large

part of computational effort. Therefore, the concept of performing only a partial

setup when convergence degrades was implemented. Specifically, a previously

obtained coarsening would be used while only updating coefficient magnitudes.

These AMG refinements were dubbed Freeze-AMG (F-AMG) and Extended

F-AMG, and are illustrated in Figure 1.
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Figure 3: Schematic of interaction between the solver and Elemental
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4. SOLVER EVALUATION

In order to evaluate the performance of the solver in terms of efficiency

and computational speed improvements, it was applied to a two- and three-

dimensional dam-break benchmark problem [28]. This case was selected as it

represents a typical fluid sloshing problem with a rapid changing pressure co-

efficient matrix (due to the high speed of the fluid interface). This involves

a greater need for AMG setups and allows more rigorous testing of the ro-

bustness and speed of the proposed freeze methodology. In the interests of a

rigorous evaluation the problem was solved on a wide range of mesh sizes (two-

and three-dimensional) and the CPU cost compared to that achieved if using a

competing matrix-free sparse solver. As such, C-AMG, F-AMG and Extended

F-AMG were pitted against the preconditioned versions of the Conjugate Gradi-

ent (CG), Bi-Conjugate Gradient Stabilised (BiCGSTAB) and GMRES solvers.

Various preconditioners were considered, and Lower-Upper Symmetric-Gauss-

Seidel (LU-SGS) found to be a matrix-free algorithm which offers speed and

efficiency [6]. In addition, solution time scaling as a function of mesh size of

the solvers was evaluated and compared. The following was adhered to for all

simulations:

• The pressure equation was considered solved only once the scaled residual

had been reduced by five orders of magnitude,

• In the interest of automation, the AMG solver was allowed to construct

coarse levels until the coarsest level contained no less than 3 rows, with a

coarsening threshold (θ [25]) of 0.5,

• A V-cycle was employed for solution, which consisted of µ1 = 2, µ2 = 2

and µ3 = 3 smoothing iterations,

• The convergence rate of V-cycles allowed before a solution structure was

deemed inappropriate (i.e. re-coarsening was required) was set as:

‖b−A∆p‖i2
‖b−A∆p‖i+1

2

< 0.8,
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where ‖ • ‖2 is the l2–Norm and i is the iteration number.

The analyses were done on a Dell XPS L702x computer, with a 2nd genera-

tion Intel Core i7-2720 CPU and 8Gb of 1,333Mhz RAM.

4.1. Two-Dimensional Dam-break

The solver performance was evaluated by application to the canonical two-

dimensional dam-break [28]. Here, a column of water of width a = 0.146m

and height 2a is allowed to flow under the influence of gravity, as shown in

Figure 4. All four boundaries are treated as no-slip. This problem exhibits

violent interface motion, as seen in the snapshots of the evolving interface. As

such it offers the opportunity to test the robustness of the developed AMG

setup methodologies. This is of special interest since the matrix coefficients in

Equation (12) will undergo large changes between time steps as the interface

sweeps over the domain. Note that for the purpose of this work, a 0.5 second

simulation interval was modelled as it contains the time period of the problem

characterised by the fastest moving interface. Subsequent to this, the interface

settles down to a large degree.

As noted previously, robustness was assessed by checking that the solver re-

duced the l2–Norm residual by 5 orders of magnitude. This was indeed the case

throughout. Validation consisted of comparing computed to experimental [28]

and published results. These are shown schematically in Figure 5 where the re-

sults obtained from a 3,710 node structured mesh (Figure 6) are shown to agree

well with the available data. Refined mesh sizes converged to the same solu-

tion. Following this, the solver comparisons were performed on two-dimensional

structured and unstructured meshes ranging from 14,795 to 59,853 nodes. The

results obtained are shown in Figure 7. The AMG methods clearly outperform

the other solvers, with marginal differences between the F-AMG methods. Fur-

ther, where F-AMG shows fairly consistent performance over the entire time

period, GMRES suffers from higher CPU cost at 0.3s, which coincides with

the interface reaching the opposite wall, as shown in Figure 4. Here, interface
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Figure 4: Two-dimensional dam-break - Interface evolution
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Structured mesh - 3,710 nodes Unstructured mesh - 3,713 nodes

Figure 6: Two-dimensional dam-break structured and unstructured mesh

motion starts to become much more rapid. F-AMG again offers the best per-

formance, noticeably improving on C-AMG. It is also interesting to note how

CG improves in relative performance on the unstructured mesh (as compared

to structured). This is due to the increase in complexity which favours simpler

methods.

Also depicted in Figure 7 is solver scaling as a function of problem size.

The data again shows the AMG methods exhibiting superior performance, ap-

proaching optimal O(N) complexity. In contrast the other solvers achieved more

non-linear scaling.
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Figure 8: Three-dimensional dam-break interface evolution
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4.2. Three-Dimensional Dam-break

Is it important to evaluate the AMG methodologies on a three-dimensional

problem, as the additional dimension adds computational complexity due to

increased node-node connectivity. The AMG coarsening algorithm thus be-

comes more costly and provides further reason to minimise the number of AMG

setup steps. The three-dimensional mesh was created by extruding the two-

dimensional case into the third dimension. As before, a column of water of

width a = 0.146m, height and depth 2a is allowed to flow under the influence of

gravity, as shown in Figure 8. Again, all boundaries are treated as no-slip and

0.5 seconds is simulated.

The solvers were compared on three structured meshes ranging from 51,714

to 243,165 vertexes (isotropic hex elements were employed). The results are

depicted in Figure 9. Similar to previously, F-AMG performs favourably as

compared to the other solvers. The cost of AMG setups due to increased com-

plexity is evident as C-AMG performs worst. Extended F-AMG in contrast

remains competitive and compares well to preconditioned CG and precondi-

tioned BiCGSTAB.

5. CONCLUSIONS

This paper dealt with reducing the CPU cost associated with the solution

of the pressure correction equation in a free surface modelling context. For this
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purpose, a classic AMG solver was successfully implemented as a plug-in to the

ElementalTMpackage. A modular approach was employed, with special care de-

voted to ensuring optimal algorithm scaling. This solver was extended using two

Freeze methodologies in order to mitigate the AMG setup overhead associated

with changing coefficient matrices arising in FSM problems. These automati-

cally ensure that AMG setup occurs periodically and only as needed. In order

to evaluate the developed solver, it was applied to a two- and three-dimensional

dam-break benchmark problem. Simulation cost was then compared to that

achieved if using other competing preconditioned matrix-free solvers viz. Con-

jugate Gradient (CG), BiConjugate Gradient Stabilised (BiCGSTAB) and GM-

RES. The study revealed that the developed Freeze-AMG methods consistently

achieved either superior or competitive performance on structured and unstruc-

tured meshes. The Freeze-AMG methods exhibited optimal linear scaling with

problem size while achieving significant improvements in speed as compared to

the classic AMG method. The latter was particularly pronounced on three-

dimensional meshes.
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