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Abstract 

In 2003/2004 a field trial was conducted in Northern Ireland to assess the diagnostic 

accuracy of six serological tests for bovine brucellosis caused by Brucella abortus. Whereas 

between-test comparisons were used to calculate test performances so far, the present 

study used a latent class approach to estimate diagnostic test accuracy parameters in the 

absence of a gold-standard for these six tests simultaneously and to estimate the true 

prevalence, while accounting for clustering in the study population and risk factors for true 

prevalence.  

Results obtained in this study with regard to prevalence, sensitivity and specificity were 

largely in accordance with previous findings. Screening tests (SAT and EDTA) appeared to be 

the most sensitive; however, at low prevalences the EDTA and CFT showed the highest 

positive predictive values of all investigated tests. The specificities and negative predictive 

values of all diagnostic tests were found to be very high. Differences of prevalence between 

three groups of the study population with different risk of exposure could be attributed to 

the mode of sampling indicating that a more risk-based sampling will result in a higher 

prevalence than a cross-sectional sampling mode. Age, dairy status and history of abortion 

were shown to influence the prediction of the latent true infection status. 

Keywords 

Bovine brucellosis, Diagnostic tests, Test accuracy, Prevalence, Covariates 

Introduction 

A brucellosis eradication scheme commenced in Northern Ireland in 1963 and the disease 

was almost eradicated before recrudescence occurred in 1997 [1]. This led to a re-evaluation 
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of the diagnostic tests through a large field trial of approximately 20 000 cattle, which were 

tested in parallel with six different serological tests, all of which were approved by the EU 

before 2006 [2]. Bacteriological culture, the normal gold standard, was only available for a 

small proportion of the animals sampled in order to confirm positive results.  

Tests for bovine brucellosis have been studied extensively in other countries as well, in 

terms of diagnostic accuracy [3] and specific aspects such as conditional dependence [4] or 

diagnostic equivalence [5]. More recently, tests for brucellosis have also been evaluated 

using models that do not require a gold standard [6,7].  

The latter approach uses the concept of latent class analysis [LCA; 8] and addresses the 

problem that comparison to an imperfect gold standard invokes bias in the estimation of 

accuracy parameters. The principle behind this analysis is that the true disease status is 

latent (i.e. unknown), but can be estimated from a number of measureable items providing 

information about the true disease status [i.e. diagnostic test results; 9]. The estimation of 

prevalence and test accuracy has become an issue of major interest in the past 20 years in 

both veterinary and medical disciplines [10] and LCA has been recommended as the method 

of choice for validation of diagnostic tests in the absence of a gold-standard [11, 12]. While 

LCA analysis can be implemented in a frequentist framework and the model parameters can 

be estimated by classical inference [13, 14] it can also be implemented in a Bayesian 

framework where prior information about model parameters is utilised. Key assumptions of 

the approach, (i) different prevalences among the populations included in the model, (ii) 

invariance of the diagnostic performance of the tests across the populations and (iii) 

conditional (i.e. given the true disease status) independence of all tests, have been 

investigated using simulation studies [15]. However, these approaches are often limited in 
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the level of complexity to account for the number of diagnostic tests, the number of 

different categories that can be observed for one test result, survey design issues (i.e. 

clustering of animals within herds, subgroups in the study population), and the analysis of 

risk factors as covariates. Features such as ability to estimate population-specific diagnostic 

performance and flexibility in model building implemented in the LCA procedure in SAS [16] 

may provide new insights into the problem of diagnostic validation without gold 

standard.This study describes some possibilities and limitations of employing Proc LCA in 

SAS® [16] as a LCA modelling approach for the estimation of diagnostic test accuracy. 

Furthermore, the application case will demonstrate the impact of sampling strategies and 

diagnostic test performance on prevalence estimation under natural exposure conditions.  

 Data from a surveillance system on bovine brucellosis gathered under natural exposure 

conditions in Northern Ireland serves as an exemplary dataset. Age, sex, herd type, maternal 

status and history of abortion are factors available from study data and known to be 

associated with brucellosis in cattle [17, 18]. Therefore, they are candidate predictors for the 

latent true infection status.  

Material & Methods 

Study population 

Data were obtained from a field trial conducted in Northern Ireland between 1 January 2003 

and 31 October 2004 [2]. Only results of the first test event were used in these analyses. 

Within the dataset, tested animals were clustered in herds. 

Cattle in the study were classified by their putative exposure risk to brucellosis as described 

elsewhere [2], which reflected the reason why they were tested. A “routine” group 
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comprised cattle that were tested routinely as part of the Northern Ireland surveillance 

system, with no anticipated increased risk of brucellosis. A “risk” group was derived from 

animals tested due to an increased risk of exposure and subjected to more frequent testing. 

These herds included those contiguous to existing or previously infected herds, or with other 

forms of direct or indirect contact (e.g. prior movement of cattle, shared ownership or 

facilities). The third group (“restricted”) consisted of cattle in herds where brucellosis had 

already been identified or the supervising veterinarian had reported strong suspicion of 

infection [2]. As these test reasons are considered to reflect the exposure status of the 

cattle, they will be referred to as subgroups in the study population throughout this paper. 

Diagnostic tests  

The six serological tests applied to the study samples were the complement fixation test 

(CFT), competitive ELISA (cELISA), serum agglutination test (SAT (31iu)),  SAT with EDTA 

(ethylene diamine tetra-acetic acid, EDTA (31iu)) as an addition to improve specificity, 

indirect ELISA (iELISA) and Rose Bengal test (RBT). The screening threshold selected for the 

SAT and EDTA test results was 31 IU as defined by European Union (EU) legislation [19]. The 

CFT, SAT, EDTA, iELISA and RBT are standard tests in the EU and approved for intra-

Community trade testing. The cELISA is a complementary test and not approved for intra-

Community trade testing [19, 20]. All test outcomes were recorded as dichotomous.  

In the context of LCA, the indicators are the underlying observed variables from which the 

latent information is derived. In the study presented here, the observed classification is 

based on the diagnostic test results per animal. Assuming that the indicators are 

dichotomous (Rj=2; positive, negative), a response pattern Y with 1
J
j jW R== ∏  combinations 

of J indicators (j = 1 to 64) can be expected.  
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LCA modelling 

According to the latent class approach, the true infection status in relation to the model 

parameters (prevalence, diagnostic sensitivity and specificity) is an abstract construction and 

not subject to a case definition fixed by the investigator (see causal graph in Figure 1). In the 

context of our study data, the infection status should be interpreted as current or recent 

exposure to Brucella abortus. Proc LCA in SAS® 9.3 was used for the latent-class analysis and 

its extension of multinomial regression was applied to assess the influence of covariates on 

the prevalence status (γ-estimate) regardless of the number of (latent) classes of this 

outcome variable [21, 22, 23]. Thus, a “class” in this context refers to the latent, unobserved 

expression of the infection status being positive or negative. Furthermore, the unknown 

diagnostic sensitivity and specificity for all six tests was estimated (ρ-estimates). Prevalence 

and test accuracy were estimated using maximum likelihood (ML). Structured lack of 

independence, caused by clustering of animals in herds, was accounted for by choosing the 

herd identification as the cluster variable. For models with clustering, robust standard errors 

(SE) were calculated based on Taylor linearization [24]. 

All models were fitted using the default maximum number of 5000 iterations and the default 

maximum absolute deviation of 0.000001. In order to assess model identification, 10 sets of 

random starting values for the γ- and ρ-estimates were generated by specifying a positive 

integer value in the so-called SEED statement. An identical seed was used in order to make 

analysis exactly reproducible. Furthermore, it was ascertained if these starting values 

consistently converge to the same solution. Data-derived flattening priors were invoked in 

order to enable model identification and to stabilize the estimation of models in case of 

sparseness issues [16, 25]. For the model selection, only those models were considered 
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Figure 1: Causal Diagram for conceptualisation of latent class analysis with covariates 

for bovine Brucella abortus infection prevalence estimated using observed 

diagnostic test outcomes. 
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where a maximum likelihood solution was identified with 10 randomly selected starting 

values and all of them were associated with the best fitted model. In those cases, all sets of 

starting values yielded identical results for the G2 likelihood ratio test statistic. The seed 

selected for the best model fit was used for subsequent analyses (i.e. with covariates) in 

order to provide a standard set of starting values. When evaluating a latent class model the 

principles of parsimony, interpretability as well as statistical criteria were considered.  

Model diagnostics 

Despite the fact that the optimal number of latent classes is two (based on the biological 

principle of an animal either being infected or not infected), sensitivity analyses were 

conducted for bias or confounding, and model fit was assessed. 

The optimal number of latent classes was achieved by comparing alternative models using 

convergence and goodness-of-fit criteria. Furthermore, G2-statistics and their p-values 

(significance level of 0.05) were regarded as meaningful only for models where the degrees 

of freedom were <60 [16] and where sparseness was not an issue. P-values for the 

G2-statistic were derived from a comparison with a chi-square distribution with the 

corresponding degrees of freedom. As G2-statistics are only a rough method for comparing 

model fit, AIC and BIC information criteria were also considered, with the smallest values 

indicating the best model fit. Using these criteria, models with one to six latent classes were 

compared.  

To assess the impact of conditional dependence the model selection process and the values 

of the test accuracy estimates were checked and the symmetry of pairwise test results was 

analysed using the posterior probabilities of the model to assign latent class membership 

(threshold: ≥70% concordant tuples) and calculating the kappa coefficient (threshold: ≥0.61). 
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In order to assess whether test accuracy parameters (sensitivity, specificity) were constant 

across the (sub-)groups of the study population, this so-called "measurement invariance" 

was investigated by comparing a stratified, not-restricted and a stratified, restricted model. 

Both models were stratified by the exposure status of the animals. In the not-restricted 

model the test accuracy parameters were allowed to vary across groups, whereas in the 

restricted model the test accuracy parameters were constraint to be equal across groups. G2 

-statistics model fit criteria and item-response probabilities were used to compare the model 

alternatives. Measurement invariance was assumed if the criteria favoured the restricted 

model, because this implies that the imposed restrictions are plausible. To this end, a 

likelihood-ratio difference test was conducted [16].  

Covariates 

Latent class analysis covariates were also assessed as to whether and to what degree they 

predicted the subgroup specific prevalences. The conceptual relationship between the latent 

variable and the observed indicator(s) as well as predictors is shown as a causal diagram (Fig. 

1). The dichotomous candidate predictors, sex (male, female) and abortion (post abortion, 

no abortion/not applicable), were derived from information about reproductive status. The 

herd type was classified as dairy or non-dairy; : “non-dairy” herds consisted mainly of beef-

cow herds, which are the predominant herd-type in Northern Ireland, and a range of other  

types, including weaning, rearing and finishing herds. Non-dairy and mixed herds were 

combined, because the group of mixed herds was relatively small (n=47 herds, 11.19%) and 

for all of these herds the type is not easily discerned. Dairy herds form a minority of herds in 

Northern Ireland (approximately 15%); they are associated with increased risk of certain 

diseases and are readily identified by the breed of female cattle held. The age at the time of 
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testing was available in years. In order to facilitate a basic analysis of covariates all 

qualitative exposure variables were dichotomised prior to analysis. Furthermore, the 

numeric variable age was dichotomized by the mean of its distribution in the overall study 

population. This was necessary, because there was no linear relationship between age and 

latent classification [26].  

The study population was analysed according to the exposure risk of the herds 

(Routine/Risk/Restricted), with one model per subgroup. If the pairwise cross-tabulation of 

covariates and a Cramér’s V ≥0.7 indicated considerable correlation between two covariates, 

only one of these variables was considered for multi-variable modelling to avoid the effects 

of collinearity.  

A logistic regression model was applied with two latent classes to be estimated, where non-

infected cattle was the reference latent class.   

A non-automated forward selection of the four covariates and their interactions was 

conducted comparing the model fit of two models by means of a likelihood ratio χ2 test 

(significance level: p<0.05). Interaction was considered and added to the model by 

calculating a product variable of the two respective covariates. Exposure variables with a 

p-value ≤0.05 in the Type III test of the regression analysis were considered to significantly 

affect the odds of latent class membership. Only results of the final model are reported here. 

Results 

Based on samples and information acquired for more than one year for 19517 animals from 

420 herds, the true prevalence of brucellosis in Northern Ireland was calculated 

simultaneously with test accuracy estimates for the six applied serological tests. Data of 418 
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Table 1: Observed absolute number (n) and prevalence (%) of animals testing positive for 
each serological test. The study population is stratified by exposure groups, where cattle 
was routinely sampled, sampled due to previous risk or sampled due to known or strong 
suspicion of infection of the herd. 

Routine 

(n=5,082) 

Risk 

(n=6,251) 

Restricted 

(n=8,184) 

n 

(tested 

positive) 

% 

n 

(tested 

positive) 

% 

n 

(tested 

positive) 

% 

CFT 31 0.61 73 1.17 133 1.63 

EDTA (31iu) 51 1.00 102 1.63 154 1.88 

Competitive ELISA 39 0.77 137 2.19 147 1.80 

Indirect ELISA 31 0.61 77 1.23 144 1.76 

RBT 34 0.67 86 1.38 150 1.83 

SAT (31iu) 102 2.01 225 3.60 305 3.73 
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further animals was not sufficiently complete for the purpose of this analysis. The observed 

prevalence per serological test varied between 0.61 and 3.73% (table 1). 

The distribution of herds with regard to herd type was 28.81% (n=121), 60.00% (n=252) and 

11.19% (n=47) for dairy, non-dairy and mixed herds, respectively. The number of sampled 

animals per herd was skewed and varied between 1 and 424 (median=22, mean=46.47, 

interquartile range (IQR=2.0-68.5, sd=62.67). Most of the animals (88%) were tested for the 

first time between December 2003 and August 2004. The age of the cattle ranged from 3 

months to 19 years (median=3.5 years, mean=4.34, IQR=1.92-6.17, sd=2.98). Most of the 

animals were female (bulls: 1.77%, n=346) and adult (heifers: 27.73%, n=5,412). The 

percentages of tested animals belonging to the routine, risk and restricted group of herds 

were 26.04% (n=5,082), 32.03% (n=6,251) and 41.93% (n=8,184), respectively. 

Model diagnostics 

When assessing the optimal number of latent classes for the pooled sample with all 

exposure groups, no model fitted the data sufficiently well (G2 p<0.0001; see Table 2). 

However, AIC and BIC pointed to a 3-latent-classes solution. As no meaningful categorisation 

could be assigned to these three classes based on the input data, it was concluded that 

confounding might be an issue and stratification might improve the model fit. Stratification 

was conducted for the exposure status, as the most probable confounder, because it 

reflected on the heterogeneity of sampling schemes applied to gather study data. 

Stratification indicated that even fewer models converged and identified the ML solution 

under the given conditions. For these models, the likelihood-ratio G2 statistic could not be 

conducted due to the high number of degrees of freedom. Hence, the criteria for relative 

model fit were considered indicating that a 2-latent-classes solution would be favourable.  
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Table 2: Optimal number of latent classes for 6 serological tests (with a cut-off of 31 iu for SAT and EDTA; N/W=304.95) 

latent 

classes 

ML solution 

identified with 10 

randomly 

selected starting 

values (seeds) 

percentage of 

seeds 

associated 

with the best 

fitted model  

[%] 

Number 

 of iterations  

for conversion 

dfesti

mated
1

G2 pG2  AIC BIC l Entropy2 

Pooled models 

1 yes 100 2 57 10061.84 <0.0001 10073.84 10121.12 -10065.18 1 

2 yes 100 13 50 777.35 <0.0001 803.35 905.78 -5422.94 1 

3 yes 100 106 43 128.30 <0.0001 168.30 325.88 -5098.41 0.99 

4 no 50 2621 

5 and 6 no NOT CONV 

stratified by "exposure status" + test accuracy estimates not restricted 

1 yes 100 2 173 10058.46 -3 10094.46 10236.28 -9967.52 1 

2 yes 100 72 152 813.38 -3 891.38 1198.66 -5344.98 1 



15 

3 no 30 1450 

4, 5 and 6 no NOT CONV 

stratified by "exposure status" + test accuracy estimates constraint to be equal across groups (restricted) 

1 yes 100 2 185 10065.18 -3 10265.78 10313.06 -10065.18 1 

24 yes 100 13 176 943.35 -3 973.35 1091.54 -5409.97 1 

3 no 40 151 

4, 5 and 6 no NOT CONV 

1 = df<60 allows for trust in G2 statistic 
2 = indicates certainty of class assignment to individuals in subsequent analysis 
3 = p-values not reported due to the magnitude of degrees of freedom 
4 = seed selected for best fitted model: 1444942552 
AIC = Akaike Information Criterion 
BIC = Bayesian Information Criterion 
df = degrees of freedom 
G2 = likelihood ratio test statistic 
l = log likelihood 
NOT CONV = Model did not converge in 5,000 iterations 
N/W=Sparseness; samples size/size of the contingency table  
pG2

 = p-value to the G2-statistic derived from a chi-square distribution considering the df; if p>=0.05, then: by conventional criteria, this difference is considered not to be 
statistically significant.  
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Table 3: Class Membership Probabilities (gamma; within group latent prevalences) and 
Item Response Probabilities (rho; latent Sensitivities and Specificities) for a 
two-latent classes model on Brucella abortus infections in Northern Ireland 
cattle - with the positive and negative predictive values (Standard error is 
shown in parentheses). 

Exposure Group 

Routine  Risk Restricted 

Sample Size 5082 6251 8184 

Prevalence 0.0104 

(0.0034) 

0.0190 

(0.0033) 

0.0217 

(0.0048) 

Sensitivity 

CFT 
0.5680 

(0.1258) 

0.6017 

(0.0764) 

0.7430 

(0.0530) 

EDTA (31iu) 
0.9341 

(0.0414) 

0.8429 

(0.0334) 

0.8602 

(0.0365) 

Competitive ELISA 
0.5286 

(0.1366) 

0.5100 

(0.0541) 

0.6505 

(0.0450) 

Indirect ELISA 
0.4947 

(0.1442) 

0.5099 

(0.0624) 

0.7146 

(0.0567) 

RBT 
0.5680 

(0.1357) 

0.6822 

(0.0666) 

0.8148 

(0.0404) 

SAT (31iu) 
0.9537 

(0.0215) 

0.9603 

(0.0216) 

0.9759 

(0.0109) 

Specificity 

CFT 
1.0000 

(0.0000) 

0.9998 

(0.0002) 

1.0000 

(0.0000) 

EDTA (31iu) 1.0000 0.9998 1.0000 
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(0.0000) (0.0002) (0.0000) 

Competitive ELISA 
0.9980 

(0.0008) 

0.9876 

(0.0031) 

0.9962 

(0.0009) 

Indirect ELISA 
0.9992 

(0.0005) 

0.9974 

(0.0008) 

0.9980 

(0.0008) 

RBT 
0.9994 

(0.0003) 

0.9993 

(0.0004) 

0.9995 

(0.0003) 

SAT (31iu) 
0.9901 

(0.0018) 

0.9820 

(0.0024) 

0.9837 

(0.0024) 

Positive predictive value (ppv) 

CFT 1.00 0.98 1.00 

EDTA (31iu) 1.00 0.99 1.00 

Competitive ELISA 0.74 0.44 0.79 

Indirect ELISA 0.87 0.79 0.89 

RBT 0.91 0.95 0.97 

SAT (31iu) 0.50 0.51 0.57 

Negative predictive value (npv) 

CFT 1.00 0.99 0.99 

EDTA (31iu) 1.00 1.00 1.00 

Competitive ELISA 1.00 0.99 0.99 

Indirect ELISA 0.99 0.99 0.99 

RBT 1.00 0.99 1.00 

SAT (31iu) 1.00 1.00 1.00 
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As the test accuracy estimates were close to one and the favoured model had only two 

latent classes, the possible impact of conditional dependence can be considered low. 

Additionally, in the infected group most pairwise comparisons of test results had less than 

70% concordant tuples. In the not infected group ≥97% of the test results were concordant 

in the pairwise comparison. Kappa coefficients were greater than 0.61 in four out of 15 test 

comparisons, only. As a difference between the stratified, not-restricted model and the 

stratified, restricted model, was identified (G2
Δ=129.97, df=24, p<0.0001) and the criteria of 

relative model fit favoured the not-restricted model, the assumption of measurement 

invariance was dropped. Therefore, it can be concluded that sensitivity and specificity vary 

between the exposure groups in the study population. Hence, the best fitted model would 

account for the three exposure status sub-samples, separately, and have two latent classes, 

each.  

Latent Prevalence and Diagnostic Test Accuracy 

The estimated sensitivities and specificities along with prevalences, positive and negative 

predictive values are summarised in Tab. 3. The calculated prevalence for the routinely 

tested animals (0.0104; 95%CI=0.0078-0.0136) was lower than the prevalence of the other 

two subgroups (0.019, 95%CI=0.0158-0.0227, and 0.0217, 95%CI=0.0187-0.0251, for risk and 

restricted subgroups, respectively).  

For all exposure groups the EDTA (31iu) and the SAT (31iu) test showed the highest 

sensitivities (0.84-0.93, 0.95-0.98, respectively). The sensitivity of the tests varied among the 

exposure groups, where best results were achieved for cattle in the restricted subgroup. 

However, for the test with the highest estimated sensitivity (SAT (31iu)), the probability of 

test-positive animals being true positives was 50-57% given the estimated prevalence for 
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each of the study subgroups; whereas the highest positive predictive values could be found 

for the CFT and the EDTA (31iu) tests (0.98-1.00, 0.99-1.00, respectively). This is due to the 

fact that the positive predictive value is a function not only of the prevalence and the 

sensitivity but also of the specificity, which was lower in SAT (31iu) than in the CFT and the 

EDTA (31iu) tests. 

Regardless of the exposure group the CFT, EDTA (31iu) and the RBT test had the highest 

specificities (0.9998-1.00, 0.9998-1.00, 0.9993-0.9995, respectively). The specificity of tests 

varied between the exposure groups, where best results were achieved for routinely tested 

cattle. The negative predictive values did not vary considerably, neither among tests nor 

among study subgroups (0.99-1.00). 

Covariates 

As Cramér’s V was <0.7 for all pairwise combinations of covariates in all three study 

subgroups, all covariates were considered appropriate for multi-variable modelling. 

However, in the contingency tables for the association between sex and abortion as well as 

between age and abortion empty cells were apparent, which is plausible as bulls or maiden 

heifers could not have an abortion. After the forward selection process of multi-variable 

modelling the best fitted final model identified three covariates for a latent infection with 

brucellosis: Age, dairy status and abortion (see Table 4). Models with interaction terms 

either showed non-identification of the models or a worse model fit than the models 

without interaction. 

Cattle older than 4.34 years were 1.41 times (in the restricted group) to 2.53 times (on the 

routine group) more likely to be infected than younger cattle; a finding that was statistically 

significant only in the risk group (p=0.0426; see Table 4). Being kept on a dairy farm 
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Table 4: Predictors of latent class infection status tested against the reference latent class “non-infected” identified after forward selection 
in the final multi-variable model 

Exposure Group 

Routine Risk Restricted 

Sample Size 5082 6251 8184 

Log likelihood -843.22 -2085.56 -2345.94 

Estimates 

Intercept1 
-5.3328 

(0.6020) 

-4.6134 

(0.4836) 

-4.0081 

(0.5648) 

Odds2 
0.0048 

(0.0015-0.0157) 

0.0099 

(0.0038-0.0256) 

0.0182 

(0.0060-0.0550) 

Age  

(<4.34 years [Ref.]) 
p=0.0527 p=0.0426 p=0.2421 

Coefficient1 
0.9288 

(0.4544) 

0.5731 

(0.2927) 

0.3425 

(0.2797) 

Odds ratio2 
2.5316 

(1.0390-6.1686) 

1.7738 

(0.9995-3.1481) 

1.4085 

(0.8141-2.4370) 



21 

N/A = not measurable; p = p-Value of the Type III beta parameter test; 1=standard error in parentheses; 2=95%-confidence interval in parentheses 

Dairy status  

(non-dairy/Mixed [Ref.]) 
p<0.0001 p=0.1869 p=0.0052 

Coefficient1 
-2.0480 

(0.5494) 

-0.5997 

(0.4676) 

-0.9778 

(0.4243) 

Odds ratio2 
0.1290 

(0.0439-0.3786) 

0.5490 

(0.2195-1.3727) 

0.3762 

(0.1638-0.8640) 

Abortion 

(no [Ref.]) 
p<0.0001 p=0.0220 p=0.0008 

Coefficient1 
3.7204 

(0.4543) 

1.2026 

(0.4702) 

2.1091 

(0.5238) 

Odds ratio2 
41.2809 

(16.944-100.58) 

3.3287 

(1.3245-8.3655) 

8.2408 

(2.9521-23.004) 
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decreased the probability of being infected significantly in the routinely tested (OR = 0.13) 

and the restricted group (OR = 0.38). Cattle tested due to an abortion were significantly 

associated with latent class membership in all exposure groups (OR= 3.3-41.3; see Table 4). 

The distribution of infected and not-infected cattle over the combined covariates abortion, 

dairy status, sex and age was assessed. The most animals considered infected were non-

dairy female cattle without abortion, irrespective of age or exposure group (routine: n=42,  

77,8%; risk: n=77, 64,7%; restricted: n=136, 75,6%). 

Discussion 

The objective of this study was to estimate diagnostic accuracy in the absence of a gold-

standard while simultaneously calculating the true prevalence given a high number of  

different diagnostic tests, clustering, stratification and risk factors. 

LCA modelling 

Diagnostic test performance and true prevalence are best calculated using latent class 

analysis. It is common knowledge that the degree to which the observed (apparent) 

prevalence differs from the true prevalence depends on the accuracy (Sensitivity, Specificity) 

of the diagnostic tests used. However, when calculating the true prevalence, Sensitivity and 

Specificity estimates can only be derived from previous test evaluation studies and these 

studies were often conducted in different populations (e.g. age structure, breed), regions or 

in different laboratories [27]. Therefore, all-in-one solutions like latent class models are 

preferable, where the true prevalence can be assessed along with test accuracy under the 

given field conditions [10]. As the estimation of latent disease status becomes more precise 
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the higher the number of diagnostic tests [28]; six tests, employed under field conditions in 

Northern Ireland, were incorporated in the study presented here.  

Proc LCA is a suitable tool to conduct test accuracy estimations in the future. Although latent 

class modelling is a well-known method of assessing diagnostic test accuracy and true 

prevalence [26], it has only seldomly been conducted using Proc LCA in SAS® [16, 29, 30]. 

However, this tool provides several advantages while yielding the same point and interval 

estimates and model fit as compared to commonly used software tools such as TAGS [14]. It 

is not restricted to two latent classes, a maximum number of diagnostic tests or observed 

two-level diagnostic test results. It also includes an extension to regression modelling in 

order to investigate covariates and accounts for clustering of animals within herds. In other 

frameworks, within-herd dependencies are addressed using random effects, while Proc LCA 

adjusts standard errors in a pseudolikelihood approach [21]. However, one of the most 

interesting features is the possibility of stratifying the study population and calculating strata 

specific prevalence and test accuracy estimates, which enabled the exposure status specific 

estimates presented here. All options can be readily included, without the need for 

advanced programming skills.  

Covariance cannot be directly accounted for in Proc LCA. However, for test evaluation 

studies it might be desirable that the covariance structure between the diagnostic test 

results are verifiable. Ignoring the conditional dependence between tests in such studies 

may yield a simplified and biased overestimation of the diagnostic accuracy parameters and 

true prevalence [9, 28]. This applies especially in cases where the same biological principle is 

inherent in all tests as in this case, where all tests are based on detection of antibodies for 

the diagnosis of Brucella abortus infection. Therefore, conditional dependence or 
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covariance, respectively, was taken into account [31]. However, as we did not conduct a test 

evaluation study per se and, therefore, could not resort to the true disease status in this 

study [31, 32], we considered external information about covariance [4] to introduce more 

rather than less bias due to different study conditions [i.e. target population, region; 27]. 

Furthermore, accounting for covariance parameters of six diagnostic tests would have 

yielded a high total amount of parameters to be estimated in the model. Therefore, 

conditional dependence was assessed based on model estimates and model fit. The fact that 

test accuracy estimates were close to one, the optimal latent class model corresponded with 

what was biologically expected (two classes) and the pairwise concordance between tests 

was lower than threshold, suggests that the model estimates are not relevantly biased by 

conditional dependence. 

Stratification of the study population was deemed inevitable from a contextual and 

statistical point of view. As three different sampling strategies (reflecting different exposure 

status of cattle) were applied when gathering the study data, a pooled model seemed to be 

an inappropriate representative for the composition of the study population. When applying 

stratified modelling the violated measurement invariance [33] indicated a structured sample 

[16], where the grouping variable is associated with the realised test accuracy and 

prevalence estimates. . Considering the sampling strategy, it is understandable that the 

model estimates (Prevalence, Sensitivity, Specificity) vary between the population 

subgroups. Hence, analyses had to be performed for each of the three (exposure) 

subgroups, separately [24]. 
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Latent Prevalence and Diagnostic Test Accuracy 

Comparison of the Sensitivity and Specificity estimates of this study with previous 

publications is hindered as we did not use bacterial culture as a gold standard and calculated 

exposure-group specific test performances. Nevertheless, the results of this study can be 

considered more reliable and meaningful for brucellosis surveillance than foreign or previous 

estimations. Estimating test accuracy in the absence of a gold standard by means of LCA is 

well known [10, 13, 14], less expensive and faster than using culture diagnostic as the gold 

standard test. Nevertheless, the sensitivity and specificity estimates in this study varied (in 

some cases greatly) from estimates published in previous reviews of test performance [5, 

36]. Furthermore, the analysis presented here was exposure-group specific; whereas 

calculation of diagnostic accuracy measures across all groups is biased. Nevertheless, the 

sensitivity and specificity estimates obtained in this study were largely in accordance with 

the estimates of Abernethy et al. (2012), where the same data were analysed using more 

traditional methods. In both analyses the SAT (31iu) yielded the best Sensitivity estimates of 

all tests and both analytical approaches indicated that screening tests (SAT (and EDTA)) 

compared favourably with the other test systems with regards to Sensitivity. Specificity in 

both analytical approaches was almost 100% for most tests [see Tab. 7 in Abernethy et al., 

2012 and Table 3, here). Comparing both approaches, the one presented here provides 

prevalence and test accuracy estimates based on all diagnostic tests together, without the 

need for bacterial culture or a reference panel. This is particularly important where 

bacteriological culture is not available. For example, in the trial that provided this dataset, 

only test-positive cattle were slaughtered, and a negative result was based on concordance 

of multiple tests in a panel. In many other studies, especially where funding is constrained, 

testing is restricted to few tests and often without slaughter or laboratory follow-up. 
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Accordingly, the methods described here are less expensive (as slaughter is not a 

prerequisite), easier to apply and more precise. Furthermore, by considering the low 

prevalence in Northern Ireland when calculating predictive values, the results of our study 

(especially those of the sensitivity estimates) appear to be more qualified and are largely in 

accordance with the predictive values that can be calculated from other authors [6; for RBT 

and cELISA].As the sampling strategy of a surveillance programme influences the estimated 

prevalence and test performance, this should be considered in future disease control 

programmes. In the study presented here (latent) Prevalences ranging from 1.04% to 2.17% 

agreed with a cohort study on risk associated with brucellosis in Northern Ireland 

[Prev.:1.28%; 17]. Furthermore, it could be shown that the more risk-based the sampling the 

higher the prevalence, because then the probability of finding seropositive reactors 

increases [34]. On the one hand, the impact a more risk-based sampling has on the 

prevalence is a desired effect and corresponds with requirements of the final eradication 

stage of brucellosis [35]. On the other hand, our results indicate that the sampling strategy 

not only impacts on the prevalence but also on test accuracy estimates. This applies not only 

on Brucella abortus surveillance but also to other infectious diseases and should be 

accounted for more thoroughly in the future when calculating the true prevalence. 

Therefore, we propose exposure-group specific testing strategies to optimize the diagnosis 

of infectious diseases within surveillance programmes. 

Surveillance programmes should be adapted regarding the choice of diagnostic tests 

according to the intended purpose of use and the eradication stage [“fitness for purpose”, 

37]. As bovine brucellosis prevalence declines worldwide, future surveillance programmes 

need to contemplate the considerable reduction in positive predictive value offered by 

serological tests, meaning that tests adequate for an overall prevalence reduction might not 
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be that adequate in later eradication stages (i.e. ELISA test systems). Hence, in a country 

with a low prevalence in the final eradication stage, it might be advisable to select a test 

system with a high positive predictive value from an economic point of view. This is to assure 

that the animals tested positively actually have the disease when being culled. On the other 

hand, it could have significant financial consequences missing an infected animal, which may 

outweigh any testing costs. Therefore, an inexpensive screening test with a low probability 

for animals tested negatively being diseased (i.e. high negative predictive value) might be 

well complemented by a follow up of animals that test positive using a test with a high 

positive predictive value. The importance of the negative predictive value from a disease 

control (and food safety) point of view has been elaborated elsewhere [20]. In this context 

the EDTA or CFT test fit the requirements as they even have a high specificity under field 

conditions [38]. 

Covariates 

A logistic regression model was used to predict the latent class membership (i.e. being 

infected). An advantage of including covariate analysis in a latent class analysis over 

individual classification or scoring is that this allows uncertainty of the classification to be 

taken into consideration even in covariate analyses [16].  

The study results indicated that sex did not contribute significantly more to the prediction of 

the latent class membership as compared to the baseline model, which can be related to the 

biological assumption that the probability of being infected is not affected by sex. Previous 

findings of differences between sexes in Northern Ireland might reflect age differences as 

well as different susceptibilities due to performance stress [38]. The age-related increasing 
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probability of infection is in agreement with the biological principle of an increasing 

probability of being exposed to the infectious agent the older one becomes [17].  

The herd type seems to impact the probability of infection in the way that cattle on dairy 

farms are less likely to be infected than cattle on other (or mixed) farms. This effect, being 

most obvious in routinely tested cattle, might be attributable to a higher level of between-

herd movement [39] or lower herd sizes in the non-dairy and mixed farms, but should be  

investigated in the future in more detail. 

No distinction was made between the categories “no abortion” and “not applicable” as one 

was wholly dependent on owner information for pregnancy/abortion status for older heifers 

or cows for tests other than those triggered by a reported abortion.  This might have biased 

the results. Nevertheless, the impact of having an abortion on the prediction of latent class 

membership is obvious and can be clearly attributed to abortion being the main clinical 

presentation of Br. abortus infection and the highly infectious nature of an abortion episode 

[40]. 

Conclusion 

Bovine brucellosis is controlled in Northern Ireland since 1963. After a virtual eradication 

recrudescence occurred in 1997. Based on surveillance data this paper set out to 

simultaneously estimate diagnostic test accuracy parameters in the absence of a gold-

standard and the true prevalence, while using a high number of different diagnostic tests  

and accounting for aspects such as clustering, stratification and the influences of covariates. 
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Considering the above mentioned prerequisites and the fact that diagnostic test 

performance and true prevalence are calculated most properly using latent class analysis, 

Proc LCA in SAS is a suitable tool to conduct test accuracy estimations in the future. 

The estimated prevalence of Brucella abortus in Northern Ireland was low across all 

exposure groups. Our estimates of risk factors adjusted for misclassification suggest that 

cattle from non dairy/mixed farms and post abortion cows are rational targets for disease 

control measures under the given epidemiological circumstances. Regarding the serological 

surveillance of Brucella abortus, the EDTA or CFT test could be chosen as they even have a 

high specificity under field conditions. 

Test performances of the six investigated diagnostic tests varied depending of the sampling 

strategy of the surveillance system. This applies not only on Brucella abortus surveillance but 

also on other infectious diseases and should be accounted for more thoroughly in the future. 

Therefore, we propose exposure-group specific testing strategies to optimize the diagnosis 

of infectious diseases within surveillance programmes.  

Furthermore, surveillance programmes should be adapted regarding the choice of diagnostic 

tests according to the intended purpose of use and the eradication stage. Therefore, 

countries, with a low prevalence in the final eradication stage, may opt for a test system 

with high predictive values in order to avoid costs from culling not infected or from missing 

diseased animals.  
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