PHOTOSENSITIVITY IN SOUTH AFRICA. I. A COMPARATIVE STUDY OF ASAEMIA AXILLARIS (THUNB.) HARV. EX JACKSON AND LASIOSPERMUM BIPINNATUM (THUNB.) DRUCE POISONING IN SHEEP

T. S. KELLERMAN1, P. A. BASSON1, T. W. NAUDÉ1, I. B. J. VAN RENSBURG2 and WILHELMINA G. WELMAN3

INTRODUCTION

Plants that cause hepatoenous photosensitivity abound in South Africa. Steyn (1949) cites the following examples: Tribulus terrestris L.; Bracharia and Panicum grasses; Lippia pretoriensis L.; Lippia pretoriensis Pears., L. rehmannii Pears., L. javanica (Burm. f.) Spreng. (= L. asperfolia A. Rich.); Lupinus spp.; Asaemia axillaris (Thunb.) Harv. ex Jackson; Trifolium pratense L., and the alga Microcystis toxica Stephens. Recently, the causal fungus of facial eczema, Pithomyces chartarum (Berk. & Curt.) M. B. Ellis, was added to the list (Marasas, Adelaar, Kellerman, Minne, Van Rensburg & Burroughs, 1972).

The most important of these syndromes, geeldikkoop, occurs in the Karoo where a severe outbreak can incapacitate more than 500 000 sheep (Steyn, 1949). Geeldikkoop has been experimentally reproduced by feeding Tribulus terrestris plants to sheep (Theiler, 1918; Quin, 1928, 1929; Van Tonder, Basson & Van Rensburg, 1972) but such trials were not always successful (Quin, 1933a; Brown, 1968). Moreover, geeldikkoop could be reproduced in this way only in endemic areas during outbreaks of the disease. At such times factor(s) appear to be present that render Tribulus plants toxic.

The sporadic nature of geeldikkoop outbreaks, and difficulties encountered in reproducing it with T. terrestris, led to speculation that the plant was transiently toxic when climatic or physiologic conditions favoured synthesis of a toxin (Theiler, 1918; Quin, 1928, 1930, 1933a; Quin & Rimington, 1935; Brown, 1959b; Van Tonder et al., 1972). Another theory is that Tribulus plants are periodically contaminated by mycotoxin-containing spores, cf. ryegrass leaves in the case of facial eczema (Brown, 1959a; Brown & De Wet, 1962; Kellerman & Marasas, unpublished data). Van Tonder et al., (1972) concluded that either possibility could explain the aetiology of geeldikkoop.

Although Tribulus plants contain nitrates (Rimington & Quin, 1933), saponins and sapogenins (Enslin & Wells, 1956; De Kock & Enslin, 1958), none of these compounds cause typical signs of geeldikkoop (Brown, 1968). The significance of minerals (notably selenium and copper) in the aetiology of geeldikkoop and enzootic icterus was extensively reported on by Brown in numerous publications (Brown & De Kock, 1959; Brown, 1962, 1963; Brown & De Wet, 1962; Brown, 1964, 1968). The literature on geeldikkoop was reviewed by Brown (1959a, 1968).

Outbreaks of photosensitivity (dikoor) amongst sheep grazing Panicum grasses on cultivated lands were described by Steyn (1928) and Rimington & Quin (1937). The similarity between geeldikkoop and dikoor was noted by Quin (1928, 1930, 1933a) but he considered the latter a milder disease (Quin, 1928). This was confirmed by Van Tonder et al., (1972). Dikoor has not been experimentally reproduced and it is not clear whether the two conditions are separate entities.

Lippia rehmannii, L. pretoriensis and Lantana camara can cause hepatoenous photosensitivity when dosed to sheep (Quin, 1933b; Steyn & Van der Walt, 1941). The active principles are pentacyclic triterpene acids. The structures of the heterogenic agents, i.e. icterogenin and 22 β-angeloyloxyoleanolic acid, were determined by Barton & De Mayo (1954) and Anderson, De Kock & Enslin (1961). A β-orientated hydroxyl group (preferably 3 β-OH) on the A-ring of the molecule, as well as a 22 β-angeloyloxy side chain were shown to be essential for heterogenic activity (Brown, Rimington & Sawyer, 1963; Brown & Rimington, 1964). The toxicity of Lippia plants was related to factors such as pruning and weather (Roets,
PHOTOSENSITIVITY IN SOUTHERN AFRICA. 1. A COMPARATIVE STUDY

In nature cattle alone seem to be affected as no outbreaks have been reported in sheep (Steyn, 1949). Water contaminated with the alga _M. toxica_ can induce severe liver damage, icterus and photosensitivity in domestic animals (Steyn, 1943, 1944, 1945, 1949; Stephens, 1949). The alga is most common in dams and pans of the north-eastern Orange Free State and south-eastern Transvaal (Stephens, 1949).

Two toxins are thought to be involved: phycocyan, a fluorescent pigment that produces photosensitivity (Steyn, 1945) and an alkaloid that causes liver damage (Louw, 1950). More recently compounds such as substituted purines and cyclic polypropetides have been isolated from other algae (Anon., 1964) but these do not cause hepaticogenous photosensitivity.

LPupines are grown in the winter rainfall areas of the Cape Province. The disease lupinosis is a mycotoxicosis (Gardiner, 1966) and is caused by _Phomopsis leptostromiformis_ Kühn. Bubák according to Van Warmelo, Marasa, Adelaar, Kellerman, Van Rensburg & Minna, 1970. The notable lesions are liver damage and icterus (Groenewald, Smit & Adelaar, 1954; Gardiner, 1967) and although photosensitivity can be present, particularly amongst cattle (Gardiner 1967), it is not a constant feature of the syndrome in South Africa.

Trifolium pratense and other clovers are cultivated only to a limited extent in the sheep-rearing areas of South Africa and hence do not contribute greatly to the problem of photosensitization.

The only syndromes of photosensitivity that occur concurrently with _geeldikkop_ and _A. axillaris_ in a sheep where once again liver damage and icterus, photosensitivity is a manifestation of toxicoses that produces photosensitivity of sheep (Steyn, 1949) and an alkaloid that causes liver damage (Louw, 1950). More recently compounds such as substituted purines and cyclic polypropetides have been isolated from other algae (Anon., 1964) but these do not cause hepaticogenous photosensitivity.

Photosensitivity of sheep has long been known from _A. axillaris_ as a typical species of the Upper or Typical form of the Western Mountain Karoo. It is also a typical species of the Central Lower Karoo and penetrates into the False Arid Karoo. The flowering time is from August to May, especially during October and November.

The only other species in this endemic genus is _Inermis_ Phill., which occurs in the Laingsburg, Ceres, Van Rhynsdorp and Moorreesburg districts of the Cape Province. This species differs from _A. axillaris_ in being spineless. The vuursiektebossie can be distinguished from other Karoo bushes by its spines and sessile flowerheads.

Habitat: Vuursiektebossie is common in the vicinity of dams, vleis, pans, rivers, hollows and on alluvial flats. It often grows in depressions where water collects on irrigated lands. The plant becomes common in low-lying places, on trampled-out veld and calcareous, brackish or sandy loam soils.

The following description of _L. bipinnatum_ is given by Adelaar et al. (1964).

Family: Compositae

Name: Lasiospermum bipinnatum (Thunb.) Druce

Synonyms: Lidbeckia bipinnata Thunb.

Lasiospermum radiatum Trevir

Common Names: Ganskweek, gansbossie

Description: Decumbent to erect, herbaceous perennials, up to 40 cm high, with stout, woody, rhizomes. _Stems_ numerous, seldom branched, arising from the crown of the rhizome, decumbent to ascending, terete, striate, glabrous. _Leaves_ alternate, crowded at base, bipinnatisect, up to 10 cm long, 2 to 4 cm wide, green glabrous on both sides, lobes apiculate. _Capitula_ solitary, terminal on long, ascending seldom branched peduncles up to 30 cm long, with membranous, entire to sparsely dentate bracts, capitula more or less disc-shaped, 3 to 3.5 cm in diameter, ray-florets white to pale purplish pink reflexed with age, disc-florets yellow. _Involucr_ somewhat discoid; bracts in 3 rows, more or less elliptic, green, with membranous margins, spreading as the fruits mature. _Achenes_ c. 5 mm long.
covered with yellowish hairs, which gives a woolly appearance to the flowering head as the fruits mature; pappus none.

Distribution: The distribution of *L. bipinnatum* is illustrated in Fig. 2. The plant occurs in the southeastern, southern and western Transvaal, Orange Free State, Griqualand West, south western, central and eastern Cape and Lesotho, but it has not been recorded in Natal.

Habitat: Ganskweek prefers vleis but can grow almost anywhere. It has been found on mountains, on flats, alongside roads and in backyards. The plant also grows well on sweet veld where the soil pH is high. *L. bipinnatum* can bloom throughout the year but it flowers most commonly in summer.

Toxicity Trials

1. *Asaemia axillaris*

Materials and methods

Early fruiting stages were collected at Calvinia late in February 1972, dried in the shade and railed, loosely packed in jute bags, to Pretoria. The material was stored in a well ventilated shed for some weeks before it was used.

Preparatory to dosing, the woody stems were separated from the soft debris (twigs, fruits, leaves and fragments of bark) by beating the bags with sticks. The soft debris was milled to a fine powder for dosing per stomach tube to sheep as described under Results (Table 1).

The sheep were fed on green lucerne, kept in the sun and examined daily. Periodically the following standard chemical pathological determinations were done on the blood:—serum urea nitrogen, serum glutamic oxalacetic transaminase, serum glutamic pyruvic transaminase, bilirubin (only when serum was yellow), total plasma protein, glucose, serum calcium, sodium and potassium. At necropsy specimens were taken from various organs, fixed in 10% formalin, cut in a routine manner and stained with haematoxylin and eosin (HE). Some frozen sections were stained with oil red-O (ORO).
PHOTOSENSITIVITY IN SOUTH AFRICA. 1. A COMPARATIVE STUDY

FIG. 2 The distribution of Lasiospermum bipinnatum

Results
Dosage regimen and clinical signs
Sheep 1. A full-mouth Merino wether of 42 kg live mass was dosed once with 10 g/kg freshly milled debris. Ruminal stasis and extreme lethargy developed within 24 h. On the 2nd day, c. 48 h after dosing, the sheep was destroyed in extremis. It was found lying in lateral recumbency with pronounced icterus, mild tachycardia and dyspnoea. No signs of photosensitivity were observed.

Sheep 2. A milk-tooth Merino wether of 24 kg live mass received 5 g/kg of soft debris daily for 4 days. On the 4th day severe hepatogenous photosensitivity set in. The lamb was icteric, lethargic, and constantly sought shade. Coronitis was present on all four feet and the lips, ears and face were grossly swollen. After exposure to solar radiation for 3 h, the lamb was moved to a stable where it died 15 h later.

Sheep 3. The same debris given to Sheep 1 the previous week was dosed to a milk-tooth Merino wether of 25 kg live mass at the rate of 2.5 g/kg daily for 7 days followed by 5 g/kg for 2 days. Sheep 3 failed to become photosensitive.

Dosing was interrupted for 5 days, then resumed with newly milled material at the rate of 7 g/kg daily for 2 days. The lamb developed icterus, became lethargic and died during the night before other signs could be observed.

Sheep 4. A six-tooth Merino wether of 30 kg live mass received 3.5 g/kg of newly milled material daily for 6 days. The sheep developed ruminal stasis, pronounced icterus, mild coronitis and lethargy on the 7th day. The skin of the nose was slightly reddened and on the 8th day mild submandibular oedema (bottle jaw), that lasted for a day, was observed. Recovery was rapid. When the sheep was slaughtered on Day 14 the habitus was normal but icterus and coronitis were still present. The photosensitized areas of skin on the nose formed crusts that sloughed off.

Chemical pathology
The most conspicuous chemical pathological
Changes in the four sheep were marked concurrent elevations of the serum oxalacetic transaminase (SGOT) and total bilirubin (TBR) levels of the blood (Table 1).

Necropsy findings

Peracute poisoning (Sheep 1): No signs of photosensitivity were noticed on the head and hoofs. The carcase was mildly icteric, generally congested and cyanotic. A moderate ascites, mild hydropericardium, severe hydrothorax and marked oedema of both mediastinum and diaphragm were present. The liver was slightly enlarged, severely congested and reduced in consistency. After bleeding out it was a pale yellow-greyish brown colour with accentuated lobulation. On close inspection the lobules appeared to be discoloured, being greyish white along the periphery and khaki brown at the centre. The liver was severely infested with *Stilesia hepatica*. The gall-bladder was well filled with a foetid brownish green fluid. In addition, numerous dull greyish white areas of necrosis, a few millimetres in diameter, were encountered in the mucosa. The myocardium, which was a pale biscuit colour, had a diffuse parboiled appearance. Impaction of the caecum and colon and slight enterorrhagiae were noticed. The lungs were congested but not conspicuously oedematous. Petechial haemorrhages and oedema occurred bilaterally in and around the nerves of all the limbs, especially along the sciatic nerve and brachial plexus.

Acute poisoning (Sheep 2 and Sheep 3): The two acute cases revealed mild or moderate icterus and localized lesions of photosensitization (erythema and oedema) of the head and hooves. In one sheep the lymph nodes of the head were swollen. The liver was slightly enlarged, very fatty in appearance with reduced consistency and very distinct dull greyish lobulation. Some areas had a slight greenish centrilobular discolouration. The volume of bile was about normal and its colour a greenish khaki. The lungs were markedly oedematous and congested. A mild hydro-
TABLE 1 Changes in serum glutamic oxaloacetic transaminase (SGOT)* and total bilirubin (TBR) levels in the blood of sheep dosed with *A. axillaris* and *L. bipinnatum* plants.

<table>
<thead>
<tr>
<th>Days</th>
<th>A. axillaris</th>
<th>L. bipinnatum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sheep 1</td>
<td>Sheep 2</td>
</tr>
<tr>
<td></td>
<td>Dose</td>
<td>SGOT KU</td>
</tr>
<tr>
<td>1</td>
<td>10.0</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>319</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>267</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>276</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>6</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>7</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>8</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>9</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>10</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>11</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>12</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>13</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>14</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>15</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>16</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>17</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>18</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>19</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>20</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>21</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>22</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>23</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>24</td>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

SGOT in King Units (KU)
necrotic with neutrophil infiltration into the sub-

Peracute case was severe centrilobular necrosis involving at least two thirds of most lobules (Fig. 5, 6, & 7). Along the periphery there remained a narrow zone of vacuolated hepatocytes that reacted positively for lipids with ORO stain. The necrotic areas of adjacent lobules were often confluent, leaving only small islets of viable cells around the portal triads (Fig. 7). Since necrosis was confined to hepatocytes, Kupffer cells and endocytes appeared to be relatively prominent (Fig. 8). Mild bile duct proliferation and round cell infiltration were observed in the portal areas (Fig. 5 & 7).

Gall-bladder: Large areas of mucosa were severely necrotic with neutrophil infiltration into the sub-

mucosa and muscular layers. Large basophilic areas, which appeared to be an admixture of nuclear contents and cytophagia, were also observed (Fig. 9).

Myocardium: Severe intermuscular haemorrhage occurred in muscle fibres below the endocardium and some subendocardial fibres showed cloudy swelling. In addition, small ORO positive vesicles were seen in fibres throughout the myocardium, but the vesicles were not numerous or conspicuous.

Diaphragm: The muscle layers were mildly oedematous.

Kidney: The cytoplasm of the convoluted tubular epithelium was slightly granular in appearance. A few byaline droplets were infrequently seen in a small number of these cells.

Lymph nodes: No lymph nodules were observed but large monocytes were abundant in the medullary sinusoids.

Spleen: Once again no lymph nodules were present but the organ was severely congested.

Other tissues: No distinct lesions of photosensitization were noticed in the skin and hoofs. Mild haemorrhages occurred around the major nerve tracts.

Acute poisoning (Sheep 2 and Sheep 3): Liver: Each lobule had a very characteristic zonal pattern of lesions (Fig. 5). The portal areas revealed mild to moderate bile duct proliferation, while the hepatocytes had a prominent peripheral vacuolated zone of fatty changes, followed by a middle zone of prominent coagulative necrosis and lastly a vacuolated centrilobular area with mild fatty changes. These three zones were approximately equal in width but the severity of the specific changes varied in the two animals. In the most severe case (Sheep 3) necrosis was more prominent and the centrilobular fatty degeneration was either absent or very mild, being partially replaced by the necrosis and varying types of degeneration. The middle zone in Sheep 2 was only partially necrotic and on the periphery a small number of individual necrotic hepatocytes were seen. Bile pigmentation or lipofuscinosis was not observed but very mild megalocytosis was present in the peripheral zone of Sheep 3. Some nuclei in this zone also contained lipid material. In both animals mitotic figures were noticed, some of which appeared to be abortive.
Kidney: Moderate to severe fatty nephrosis was present in the cortex and medullary rays.

Myocardium: The myocardial fibres contained small vesicles which proved to be positive for lipids with ORO stain. This change was only noticeable under high magnification (oil immersion) and proved to be fairly diffuse. A few foci of Zenker's degeneration, as well as localized areas of cloudy swelling were seen in Sheep 3.

Spleen: The splenic corpuscles were small and in one case (Sheep 3) contained karyorrhectic material. Moderate to marked pigmentation was present.

Lymph nodes: Congestion and a few haemorrhages were noticeable. The follicles in Sheep 3 were small and atrophic.

Skin and hoofs: Lesions typical of photodynamic dermatitis were present in Sheep 2. The lesions consisted of congestion, haemorrhages, oedema, a mild infiltration of neutrophils, localized necrosis of the epidermis and dermal papillae and vascular necrosis. These changes were most pronounced in the skin of the nasal area. The papillae in the hoof, especially the coronary papillae, were congested, oedematous and contained a small number of neutrophils. Both the skin and hoof of Sheep 3 revealed congestion and oedema only.

Lungs: Prominent congestion and oedema were present. The oedematous fluid in Sheep 3 was more copious and proteinaceous than in Sheep 2.

Other tissues: The nerves were surrounded by haemorrhages and the hypophysis was congested and mildly oedematous.

Subacute poisoning (Sheep 4): No fatty changes or necrosis were present in the liver, but mild hydropic changes were still evident on the periphery of lobules. The portal areas revealed mild bile duct proliferation, very mild fibroplasia, mild peripheral oedema and foci of very mild mixed-cell reaction. Several small foci of mononuclear infiltration and a few foci of fibrosis were found in the myocardium. These lesions, however, were very mild. Prominent acanthosis, mild hyperkeratosis, moderate oedema and fibroplasia (in the stratum papillare) were present in the skin. The skin surface was covered by a thick necrotic crust and the intima of several vessels was markedly proliferated. Neutrophils were still in evidence. The papillae in the hoof were congested, oedematous and contained mild haemorrhages.

Materials and methods

The experimental procedures were essentially similar to those of Trial I.

Shade dried, flowering L. bipinnatum plants picked in March 1971 at Middelburg (C.P.) were milled en toto and dosed per stomach tube to a sheep at Onderstepoort as described below.

Results

Clinical signs

Sheep 5. A milk-tooth Merino wether of 27 kg live mass received 1 g/kg on Day 1, 2 g/kg on Day 9, and 4 g/kg on Day 21. The sheep did not respond to the first two administrations of L. bipinnatum material. Early on the 2nd day after the last administration mild tetanus was observed (Table 1). Thereafter the condition of the
sheep rapidly deteriorated. The icterus became more pronounced, mild coro­nitis was present, ruminal movements ceased and the animal constantly sought shade. On the 3rd day (c. 52 h after dosing) the sheep died.

Chemical pathology
Once again the most conspicuous change in the blood chemistry was a concurrent elevation of the SGOT and TBR, which occurred when clinical signs were evident (Table 1).

Necropsy findings
The carcase was markedly icteric. Haemorrhages were present in the pericardium, epicardium (pronounced), pulmonary artery, lymph nodes (mild), gall-bladder (mild), subcutis and fascia. The lungs were prominently oedematous and congested. Mild oedema occurred in the mediastinum, perirenal area and subcutis. A slight hydropericardium was present. The liver had a yellowish copperbrown colour with distinct dull grey lobulation. The dull grey mosaic pattern of the lobules was often turned a reddish colour by mild haemorrhages. The colour of the central lobules varied from reddish-brown to yellow-brown. The myocardium had a diffuse parboiled appearance and a suspected mild nephrosis was present. Acute mild lesions of photosensitization were evident on the skin, nasal area, lips and eyelids. Small haemorrhages and even some free blood were visible in the vicinity of the nostrils. The large intestine was mildly impacted.

Histopathological findings
Liver: Examination of lobuli revealed a narrow peripheral vacuolated zone of fatty degeneration followed by a midzonal area of coagulative necrosis (with some kariorrhexis) and a centrilobular area which was either mildly affected or spared. Bile pigment had accumulated in the bile canaliculi, Kupffer cells and hepatocytes. Some of the necrotic material in the Kupffer cells was mineralized. Mild haemorrhages were present and a few neutrophils were seen in the portal areas. Another feature was mild proliferation of the bile ducts.

Kidneys: Mild cloudy swelling and vacuolar (fatty) degeneration were present in the cortex and outer zone of the medulla. Pigmentation was not obvious and cystic changes were absent.

Myocardium: The changes recorded in the myocardium were increased eosinophilia, vacuolization (fatty degeneration), rarefaction and necrosis of myocardi­cal fibres, and mild haemorrhages. These changes were more advanced than those seen in cases of Asaemia poisoning.

Other organs: The lungs were congested and oedematous. Both the skin and hoofs had early lesions of photosensitization which included congestion, mild oedema, haemorrhages and vascular necrosis. The wall of the pulmonary artery contained a few prominent haemorrhages and the adrenal cortex was moderately fatty.

Discussion
The various syndromes of hepatogenous photosensitivity cannot be distinguished by outward appearances alone as the ante mortem signs are similar. A distinction can, however, usually be made between Asaemia and Lasiospermum poisoning on the basis of the geographical distribution of the plants. A. axillaris is almost entirely confined to the western Karoo while L. bipinnatum occurs most commonly in the eastern Karoo and, except perhaps in the central southern Karoo, the plants are seldom found together (Fig. 1 and 2). Geeldikkop occurs throughout the Karoo and can be confused with both A. axillaris and L. bipinnatum poisoning.

The most reliable diagnosis of these conditions is based on pathological findings. Diffuse fatty degeneration and accentuated lobulation of the liver are necropsy features common to lupinosis, Asaemia and Lasiospermum poisoning. However, in our experience photosensitivity is extremely rare in lupinosis; when present it is usually indicative of Asaemia or Lasiospermum poisoning. Moreover, in Lasiospermum poisoning the liver is haemorrhagic and bile-stained. However, neither the pitted areas overlying obliterated bile ducts in the liver nor the cystic nephrosis that is characteristic of geeldikkop, dikoor and facial eczema (Van Tonder et al., 1972), are seen in the entities discussed above. The gall-bladder and urinary bladder lesions commonly found in facial eczema are also lacking. [The gall-bladder lesions seen in the experimental case of peracute Asaemia poisoning (Sheep 1) were not a constant finding and can probably be attributed to the very high dose given.]

Microscopically the hepatic lesions of acute Asaemia poisoning vary considerably from those of geeldikkop, dikoor and facial eczema. The circular, zonal distribution of fatty degeneration and necrosis is not a feature of the latter diseases. Furthermore, the typical crystalloid material of geeldikkop (Van Tonder et al., 1972) and the biliary necrosis and vascular lesions of facial eczema (Mortimer, 1963) are lacking. Pigmentation and Kupffer cell activation are not present in Asaemia poisoning. However, subacute cases of the latter may be difficult to differentiate from mild atypical cases of geeldikkop, dikoor and other hitherto unclassified cases of photosensitivity found in South Africa. In such cases the only feature which would distinguish geeldikkop and dikoor is the presence of typical polarizing, crystalloid material or clefts left by the material after sections are processed. This would necessitate examination of several liver sections from different animals. Characteristic lesions in other tissues, however, should be of considerable assistance in making a diagnosis. In the case of either Asaemia or Lasiospermum poisoning such lesions are fatty changes in the myo­cardium, the absence of cystic changes in the kidneys and the normal appearance of the mucosa of the urinary bladder.

Although peripheral necrosis was reported to be the most characteristic hepatic lesion in Lasiospermum poisoning (Adelaar et al., 1964), the present experimental case showed some similarities to Asaemia poisoning since peripheral fatty changes and midzonal necrosis were present in both. Bile pigmentation and mild haemorrhages, however, were only evident in Lasiospermum poisoning. Fatty degeneration of the myocardium and kidneys occurred in both conditions but the myocardial necrosis was more prominent in Lasiospermum poisoning. Generally speaking, therefore, it is evident that the spectrum of lesions in these two entities may overlap.

In the case of lupinosis (Van Warmelo et al., 1970) the fatty metamorphosis is usually, but not invariably, more diffuse than in Asaemia or Lasiospermum...
poisoning. In addition megalocytosis occurs in lupinosis. Hyaline droplet degeneration may be present in lupinosis and pigmentation is prominent, especially in the midzonal and midzonal lesion. Fibrosis is
in this instance, the most prominent lesion in the portal areas and overshadows the bile duct proliferation.

The peculiar zonal hepatic changes of Asaemia poisoning are difficult to explain but may be due to a combination of a direct toxic action on the liver (peripheral and midzonal lesions) and indirect effects as a result of myocardial involvement (centrilobular lesions).

ACKNOWLEDGMENTS

We are indebted to: Dr. J.A.L. de Wet, State Veterinarian, Calvinia for bringing the problem to our notice and supplying A. axillaris material; Dr. E.L. van Tonder, Regional Veterinary Laboratory, Middelburg (C.P.), for supplying L. bipinnatum plants.

We are also indebted to the following members of the Veterinary Research Institute, Onderstepoort:

Prof. T.F. Adelaar for his sustained interest in this experiment; Mr. B.P. Maartens for technical assistance in the feeding trials; Mr. J.H. Kornelius for help in drawing the figures; Mr. A.M. du Bruyn for the photography and Mr. J.L. de B. van der Merwe and the technical staff of the Pathology Section for preparing the sections.

Mr. J.H. Vahrmiejer of the Botanical Research Institute is thanked for his interest and advice and Mr. S.R. van Jaarsveld of the same institute for supplying photographs of the plants.

REFERENCES

PHOTOSENSITIVITY IN SOUTH AFRICA. 1. A COMPARATIVE STUDY

