FURTHER STUDIES ON THE EPIZOOTIOLOGY OF NEMATODE PARASITES OF SHEEP IN THE KAROO

J. H. VILJOEN, Veterinary Investigation Centre, Beaufort West

Abstract

VILJOEN, J. H. Further studies on the epizootiology of nematode parasites of sheep in the Karoo. Onderstepoort J. vet. Res., 36 (2), 233-264, (1969).

The dominant parasites in the Karoo are Nematodirus spathiger (Railliet, 1896) and Trichostrongylus falculatus Ransom, 1911. In the moister eastern regions Haemonchus contortus (Rudolphi, 1803) and Oesophagostomum columbianum (Curtice, 1890) occur but they decrease markedly as the region becomes more arid. Ostertagia circumcincta (Stadelmann, 1894) is of little or no significance.

The free-living stages of N. spathiger are highly resistant to heat and desiccation, but T. falculatus cannot survive if the mean monthly mean temperatures exceed $20^{\circ} \mathrm{C}$ and even if the monthly rainfall exceeds 50 mm , there is but a slight increase in worm burdens. Both species reach peak worm burdens in winter. The presence of H. contortus or possibly O. columbianum has a deleterious effect on N. spathiger.

Strategic drenching is recommended in March and July and tactical drenching when climatic conditions are favourable.

Introduction

Studies on the seasonal incidence of nematode parasites of sheep have been carried out in different areas of the Cape Province (Fig. 1) by Barrow (1964), Rossiter (1964), Viljoen (1964) and Muller (1968). The studies at Grootfontein (Viljoen, 1964) were extended to the central Karoo to include Nelspoort and Klerefontein (Fig. 1); the results of these experiments are described in this paper.

The vegetation in this area consists of a mixture of Karoo bushes, e.g. Pentzia spp., Chrysocoma sp., Eriocephalus sp., and Mesembryanthemum spp., and annual grasses (Aristida spp.), together with other stunted shrubs and thorn trees along river beds (Acocks, 1953).

The rainfall is seasonal, but very erratic, and varies from an annual average of 190 mm (7.6 in) at Klerefontein in the west, to 365 mm (14.6 in) at Grootfontein. Most of the rain is recorded during the late summer-autumn period in the form of infrequent thunderstorms. Spring rains are often absent; if any rain falls in spring it is usually less than the early summer rainfall. Temperatures fluctuate considerably and in both summer and winter differences of 13° to $17^{\circ} \mathrm{C}$ between the mean monthly minimum and mean monthly maximum are frequently recorded.
Ryksen (1939) pointed out that conditions in the semi-arid Karoo are unfavourable for the survival of the free-living larvae of the common parasitic nematodes: the rainfall is low and poorly distributed; the low density of stocking does not facilitate a high intake of larvae by the host and, finally, the pasture provides very little shelter and few facilities for migration by the larval forms. Nevertheless, worm infestations of sheep do occur in the Karoo.

Ryksen (1939) found that Nematodirus is the main parasite in arid regions. Mönnig (1942) stated that other genera introduced into this area by the large scale migration of sheep during the 1933 drought, could also persist here as Nematodirus lowered the resistance of the host to other infestations.

Viljoen (1964) showed that at Grootfontein, moderate to high burdens of Nematodirus, Haemonchus and Trichostrongylus can be found.

Of the two experiments described here one is a study of the seasonal incidence of the common nematode parasites of sheep, while the other concerns the availability to the grazing sheep of live infective larvae on the veld.

I. Seasonal incidence in lambs and yearlings

This was an extension of the trials carried out at Grootfontein to include the arid central Karoo. In order to determine the variations in worm burdens critical slaughter trials were carried out at regular intervals (Tetley, 1949; Morgan, Parnell \& Rayski, 1951; Parnell, 1962; Barrow, 1964; Rossiter, 1964: Viljoen, 1964; Dunsmore, 1965).

Materials and Methods

Location: These trials were carried out at the Grootfontein Agricultural College ($31^{\circ} 29^{\prime} \mathrm{S}, 25^{\circ} 02^{\prime} \mathrm{E}$, altitude 1263 m), Middelburg district; at Nelspoort $\left(32^{\circ} 10^{\prime} \mathrm{S}, 23^{\circ} 03^{\prime} \mathrm{E}\right.$, altitude 1012 m$)$, Beaufort West district; and at Klerefontein ($30^{\circ} 58^{\circ} \mathrm{S}, 22^{\circ} 08^{\circ} \mathrm{E}$, altitude 1253 m), Carnarvon district (Fig. 1).

Climatic conditions: Throughout the experimental period, climatic conditions were recorded at each of the three stations (Appendix Tables 1, 2 and 3).
Grazing: The grazing at the three stations is natural Karoo veld and the sheep were kept under a continual grazing system without any rotation. At Grootfontein the camp was 84 hectares, at Nelspoort 414 and at Klerefontein 408 hectares.* Because of the prevailing drought conditions, lucerne hay was supplied during the second half of the survey at Grootfontein and Klerefontein; at Nelspoort it was frequently supplied throughout the experimental period. The experimental camps were all infested beforehand by sheep introduced from the immediate vicinity of each station.

[^0]

FIG. 1.-Stations where critical slaughter trials were performed

Sheep: Initially each experimental flock consisted of 150 Merino lambs, bought from farmers adjacent to Grootfontein, Nelspoort and Klerefontein respectively. At Nelspoort the lambs were born early in the winter while those at Grootfontein and Klerefontein were spring lambs. They were weaned and introduced into the experimental camps at an age of 3 to 4 months. All the animals were ear-tagged and inoculated against enterotoxaemia and bluetongue at an early age. Thereafter these inoculations were repeated annually.

All sheep were treated against cestodes. The flock at Nelspoort acquired a heavy infestation of Nematodirus while grazing on a green lucerne pasture for one week before introduction into the trial. Some of them died and the rest of the lambs were treated with thiabendazole to prevent further deaths. The other flocks were not treated against nematodes.
Slaughter and examination post mortem: Periodic slaughtering commenced when the lambs were 3 to 4 months old and continued for a period of 2 years, as follows:
(i) At Grootfontein from 4 February 1965 to 2 March 1967.
(ii) At Nelspoort from 8 October 1964 to 11 August 1956.
(iii) At Klerefontein from 10 February 1965 to 7 March 1967.
Whenever possible five randomly selected sheep from each flock were slaughtered every 28 days. On a few occasions, however, the intervals between slaughter varied from 24 to 32 days.

Sheep were slaughtered after a starvation period of 72 hours. The gastro-intestinal tract was removed and the worms were recovered according to the procedures described by Reinecke (1961). Identification of the larvae was done according to the descriptions of Veglia (1915, 1923), Mönnig (1927), Kates \& Turner (1955) and Douvres (1956, 1957a, b).

If large numbers of worms of the same genus were present, at least 80 adult males were identified and the number belonging to each species estimated from this identification. Only the genus of the females was determined.

Stocking rate: As sheep were slaughtered they were replaced by an equal number of animals of the same age to maintain the stocking rate. This was three sheep per 1.7 hectares at Grootfontein and one per 2.5 hectares at Nelspoort and Klerefontein.

Statistical methods: As there was a variance in individual worm burdens in the sheep slaughtered during any particular month, the $\log (x+1)$ trans-

Table 1.- Climatic Data at Grootfontein

Month	Rainfall		Temperatures					
			Mean maximum		Mean minimum		Mean monthly mean	
	mm	Average over last 20 years	${ }^{\circ} \mathrm{C}$	Average over last 20 years	${ }^{\circ} \mathrm{C}$	Average over last 20 years	${ }^{\circ} \mathrm{C}$	Average over last 20 years
February 1965	14.3	56.7	30.5	28.9	12.3	12.4	21.4	20.7
March	6.8	63.4	27.8	26.3	10.8	10.6	19.3	18.5
April	50.6	28.9	21.0	22.6	8.0	6.6	14.5	14.6
May.	0.4	18.3	19.2	18.8	2.6	3.1	10.9	11.0
June. .	36.2	7.5	13.7	16.2	-1.8	-0.5	6.0	7.9
July .	55.7	10.3	15.8	15.4	1.3	-0.9	8.6	7.3
August	4.9	8.1	20.2	18.7	4.0	0.7	12.1	9.7
September	6.1	18.3	22.8	21.3	6.7	3.6	14.8	12.5
October	58.8	23.3	21.1	24.3	6.5	6.5	13.8	15.4
November	93.2	37.4	24.9	26.3	8.8	8.9	16.9	17.6
December	0.6	37.5	29.8	29.3	9.4	10.8	19.6	20.1
January 1966	32.3	43.4	32.0	29.7	14.6	12.1	23.3	20.9
February....	38.7	56.7	27.7	28.9	12.0	12.4	19.9	20.7
March .	13.2	63.4	29.0	26.3	11.8	10.6	20.4	18.5
April	22.0	28.9	22.0	22.6	5.0	6.6	13.5	14.6
May.	0.4	16.3	19.8	18.8	3.3	3.1	11.6	11.0
June.	12.7	7.5	17.3	16.2	1.0	-0.8	9.2	7.9
July .	0.0	10.3	16.7	15.4	0.9	-0.9	8.8	7.3
August .	0.6	8.1	19.9	18.7	2.6	0.7	11.3	9.7
September	18.1	18.3	21.2	21.3	4.1	3.6	12.7	12.5
October . .	16.6	23.3	25.6	24.3	7.8	6.5	16.7	15.4
November	15.5	37.4	27.9	26.3	10.0	8.9	19.0	17.6
December	18.4	37.5	31.8	29.3	13.7	10.8	22.8	20.1
January 1967	95.0	43.4	29.9	29.7	13.5	12.1	21.7	20.9
February....	44.3	56.7	27.7	28.9	13.6	12.4	20.7	20.7

Table 2. - Climatic Data at Nelspoort

Month	Rainfall		Temperatures					
			Mean maximum		Mean minimum		Mean monthly mean	
	mm	Average over last 15 years	${ }^{\circ} \mathrm{C}$	Average over last 20 years	${ }^{\circ} \mathrm{C}$	Average over last 20 years	${ }^{\circ} \mathrm{C}$	Average over last 20 years
September 1964	37.0	18.0	20.4	22.7	6.0	7.8	13.2	15.3
October	28.6	20.0	23.8	25.8	9.9	10.4	26.9	18.1
November	30.0	38.0	26.7	28.2	11.1	12.6	18.9	20.4
December	23.2	28.0	29.8	30.4	13.5	14.4	21.7	22.4
January 1965	63.3	21.0	32.9	32.5	15.8	16.2	24.4	24.4
February.	2.5	36.0	31.6	31.8	15.4	16.3	23.5	24.1
March	34.1	61.0	28.3	29.0	17.4	14.7	22.9	21.9
April	22.7	20.0	23.3	24.8	11.2	10.8	12.3	17.8
May . .	10.0	15.0	19.7	21.5	7.4	7.8	13.6	14.7
June. .	6.3	13.0	16.8	19.0	-1.4	5.0	7.7	12.0
July .	18.9	9.0	18.3	18.1	5.9	4.9	12.1	11.5
August	2.6	10.0	22.0	20.2	7.1	5.5	14.6	12.9
September	2.3	18.0	24.9	22.7	9.6	7.8	17.3	15.3
October	32.2	20.0	23.6	25.8	10.1	10.4	16.9	18.1
November	24.9	38.0	27.2	28.2	12.2	12.6	19.7	20.4
December	5.0	28.0	30.0	30.4	13.0	14.6	21.5	22.5
January 1966	25.5	21.0	34.0	32.5	17.1	16.2	25.6	24.4
February...	9.5	36.0	29.0	31.8	12.4	16.3	20.7	24.1
March .	6.5	61.0	30.3	29.0	11.9	14.7	21.2	21.9
April	10.0	20.0	20.3	24.8	8.3	10.8	14.3	7.8
May..	1.1	15.0	22.0	21.5	4.5	7.8	13.3	14.7
June..	6.3	13.0	19.2	19.0	0.4	5.0	9.8	12.0
July	0.0	9.0	18.1	18.1	0.3	4.9	9.2	11.5
August	3.2	10.0	20.3	20.2	1.3	5.5	10.8	12.9

Table 3. - Climatic Data at Klerefontein

Month	Rainfall		Temperatures					
			Mean maximum		Mean minimum		Mean monthly mean	
	mm	Average over last 30 years	${ }^{\circ} \mathrm{C}$	Average over last 20 years	${ }^{\circ} \mathrm{C}$	Average over last 20 years	${ }^{\circ} \mathrm{C}$	Average over last 20 years
February 1965	0.0	28.5	33.2	34.0	16.6	17.1	24.9	23.6
March	95.8	39.4	29.3	30.7	14.1	14.9	21.7	22.8
April	43.4	34.4	23.4	26.1	10.8	10.2	17.1	18.2
May.	0.0	12.9	22.2	22.2	5.8	5.8	14.0	14.0
June.	4.0	5.6	16.3	18.6	-0.1	2.0	8.1	10.3
July .	3.3	6.0	18.2	18.3	1.8	1.2	10.0	9.8
August	1.5	5.3	22.4	21.4	4.5	3.0	13.5	12.2
September	0.0	11.2	26.4	23.9	9.5	6.0	18.0	15.0
October	11.8	9.7	25.1	26.1	9.7	9.8	17.4	18.0
November	19.7	17.3	30.5	30.6	13.0	13.1	21.8	21.9
December	0.0	12.5	31.0	33.3	17.0	15.3	24.0	24.3
January 1966	94.9	16.5	35.4	24.6	19.2	17.6	27.3	26.1
February....	3.8	28.5	29.0	34.0	12.5	17.1	20.8	25.6
March	4.9	39.4	28.4	30.7	12.7	14.9	20.6	22.8
April	0.0	24.4	20.4	26.1	7.2	10.2	13.8	18.2
May..	0.0	12.9	19.9	22.2	2.8	5.8	11.4	14.0
June.	12.1	5.6	17.5	18.8	1.7	2.0	9.6	10.4
July	0.0	6.0	15.4	18.3	0.3	1.2	7.9	9.8
August	0.0	5.3	18.9	21.4	2.4	3.0	10.7	12.2
September	0.8	11.2	21.5	23.9	4.2	6.0	12.9	15.0
October	9.6	9.7	26.6	28.1	9.1	9.8	17.9	19.0
November	9.5	17.3	28.5	30.6	10.9	13.1	19.7	21.9
December	6.4	12.5	32.1	33.3	11.5	15.3	21.8	24.3
January 1967	3.5	16.5	31.6	34.6	15.0	17.6	23.3	26.1
February....	9.2	28.5	31.4	34.0	13.2	17.1	22.3	25.6

formation described by Snedecor \& Cochran (1967) was used to normalize the data. This transformation converted individual burdens, as well as monthly averages, into homogenous and comparable figures. The transformed data were used to plot the graphs in Fig. 2.

Results

The variations in worm burdens recovered every 4 weeks are summarized in Appendix Tables 4, 5 and 6 and shown graphically in Fig. 2.

The following species of helminths were identified: Haemonchus contortus (Rudolphi, 1803)
Ostertagia circumcincta (Stadelmann, 1894)
Trichostrongylus colubriformis (Giles, 1892)
Trichostrongylus falculatus Ransom, 1911
Trichostrongylus rugatus Mönnig, 1925
Nematodirus spathiger (Railliet, 1896)
Oesophagostomum columbianum Curtice, 1890
A few Trichuris sp. were found in several sheep during the survey at Grootfontein; these were ignored.

Trichostrongylus spp.

Out of a total of 409 experimental sheep slaughtered at the three stations only 4 per cent (18 sheep) were negative for Trichostrongylus spp.
T. falculatus predominated but a few T. colubriformis and T. rugatus were present in 12 sheep. T. falculatus usually contributed 90 per cent or more of the total adult males examined. Fourth stage larvae were present in low numbers in some of the animals during the autumn of 1965 .

Grootfontein: Worm burdens rose steadily, with minor fluctuations, to a peak in December, then fell gradually to a low level in May of the following year. Thereafter, although the trends were similar to those of the previous year, fewer worms were recovered.

Nelspoort: After an initial rapid rise from October to January, worm burdens remained at a fairly constant level for the following year. Thereafter they fell until April, then rose again steadily until August.

Klerefontein: Worm burdens fluctuated, rose to a peak in August and then remained at a fairly constant level until September of the following year. Thereafter they varied markedly during the rest of the survey period.

Nematodirus spathiger

This species was usually present and only 30 per cent (42 sheep) at Grootfontein, 14 per cent (20) at Klerefontein and 9 per cent (12) at Nelspoort were negative.

On all the farms worm burdens fluctuated markedly, particularly in the relationship between the number of adults and of larvae recovered. More adults were recovered during the first 8 to 11 months of the experimental period in sheep less than 12 to 15 months of age. As the animals grew older the larval stages became more numerous and were usually recovered in greater numbers than the adults. The total burdens of both larval and adult worms varied as follows:-

Grootfontein: Worm burdens increased in August and September and then fell again from November to January throughout the survey period.

Fig. 2.-Seasonal incidence survey. Monthly variations in worm burdens

Nelspoort: Following good rains in January 1965 $(63.3 \mathrm{~mm})$, the worm burdens rose in February to a high level that was maintained until April, then fell slowly. Subsequently they showed a slight rise from February to the end of the survey in August 1966.

Klerefontein: The worm burdens differed from those at the other stations in that they were high initially in February, then fell rapidly until the end of April. Thereafter they rose again until June, fluctuated markedly for the following 12 to 14 months, rose to a peak in August 1966, and then fell again to low levels.

Haemonchus contortus

Apart from one animal, this species was consistently recovered at Grootfontein. At Nelspoort 40 per cent and at Klerefontein 28 per cent of the sheep were negative. Adult burdens were usually high at Grootfontein, but seldom exceeded 100 worms at Klerefontein or Nelspoort.

Grootfontein: From May to September fourth stage larvae were predominant, and increased to a very high level. Adult burdens showed a downward trend until the end of September, then rose again.

The decline of fourth stage larvae in October coincided with a high burden of adult worms. During

Nuvember fourth stage larvae rose to a new peak, then fell again to very low levels from December 1965 to February 1966. After a slight depression in December, adults rose to a peak in January and February. From late summer until July adult worm burdens showed a downward trend, but more fourth stage larvae were recovered. From July onwards there was a rapid increase in adults, with peak burdens during October 1966 and January 1967, after which they again decreased. From May 1966 to November 1966 decreasing numbers of fourth stage larvae were recovered and they completely disappeared from December 1966 to February 1967. They reappeared in March 1967, when the survey was ended.

Nelspoort and Klerefontein: As already mentioned the incidence of this parasit was low and immature stages were seldom seen.

Ostertagia circumcincta

Small numbers of adult O. circumcincta were found from February 1965 to August 1965 at Grootfontein, Klerefontein and Nelspoort. Immature stages were found during the late summer, autumn and winter of 1965 at Grootfontein.

Oesophagostomum columbianum

Despite the fact that 91 per cent of the sheep at Grootfontein were infested with O. columbianum

STUDIES ON THE EPIZOOTIOLOGY OF NEMATODE PARASITES OF SHEEP IN THE KAROO

Sheep No.	Date of birth	Date killed	H. contortus		O. circumcincta		T. falculatus		N. spathiger		O. columbianum	
			Fourth stage larvae	Adults								
$\begin{aligned} & 153 \\ & 155 \\ & 151 \\ & 152 \\ & 154 \end{aligned}$	$1964 \text { - November } \begin{array}{r} \text { November } \\ \text { November } \\ \text { November } \\ \text { November } \end{array}$	1965-4 February 4 February 4 February 4 February 4 February	$\begin{array}{r} 19 \\ 7 \\ 0 \\ 3 \\ 0 \end{array}$	94 72 353 493 47	0 0 0 2 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	$\begin{array}{r} 63 \\ 89 \\ 93 \\ 382 \\ 196 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 13 \\ 13 \end{array}$	$\begin{array}{r} 0 \\ 3 \\ 0 \\ 20 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 4 \\ & 0 \end{aligned}$	0 0 0 0 0
$\begin{aligned} & 160 \\ & 157 \\ & 156 \\ & 158 \\ & 159 \end{aligned}$	$\begin{aligned} & \text { 1964- November } \\ & \text { November } \end{aligned}$	$\begin{array}{r} \text { 1965-4 March } \\ 4 \text { March } \end{array}$	$\begin{array}{r} 0 \\ 210 \\ 72 \\ 73 \\ 0 \end{array}$	$\begin{array}{r} 2,353 \\ 343 \\ 1,150 \\ 2,309 \\ 1,462 \end{array}$	$\begin{array}{r} 13 \\ 0 \\ 0 \\ 0 \\ 30 \end{array}$	$\begin{array}{r} 0 \\ 13 \\ 0 \\ 6 \\ 13 \end{array}$	3 0 0 0 0	$\begin{aligned} & 211 \\ & 504 \\ & 469 \\ & 244 \\ & 513 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 6 \\ 3 \\ 13 \end{array}$	$\begin{aligned} & 28 \\ & 10 \\ & 73 \\ & 13 \\ & 20 \end{aligned}$	$\begin{array}{r} 2 \\ 42 \\ 0 \\ 8 \\ 0 \end{array}$	42 26 12 24 19
$\begin{aligned} & 164 \\ & 165 \\ & 163 \\ & 162 \\ & 161 \end{aligned}$	$\begin{array}{r} \text { 1964-November } \\ \text { November } \end{array}$	1965-2 April 2 April 2 April 2 April 2 April	$\begin{array}{r} 76 \\ 0 \\ 16 \\ 0 \\ 90 \end{array}$	$\begin{array}{r} 453 \\ 250 \\ 626 \\ 275 \\ 1,273 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 6 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 3	$\begin{aligned} & 453 \\ & 408 \\ & 506 \\ & 506 \\ & 258 \end{aligned}$	$\begin{array}{r} 0 \\ 36 \\ 13 \\ 0 \\ 16 \end{array}$	$\begin{array}{r} 23 \\ 0 \\ 56 \\ 53 \\ 10 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	3 19 6 5 13
281 224 230 246 178	$1964 \text { November } \begin{array}{r} \text { November } \\ \text { November } \\ \text { November } \\ \text { November } \end{array}$	$\begin{aligned} & \text { 1965-29 April } \\ & \text { 29 April } \end{aligned}$	$\begin{array}{r} 16 \\ 1,220 \\ 460 \\ 1,313 \\ 143 \end{array}$	$\begin{array}{r} 150 \\ 113 \\ 0 \\ 0 \\ 553 \end{array}$	0 0 0 0 0	$\begin{array}{r} 23 \\ 10 \\ 3 \\ 0 \\ 13 \end{array}$	0 0 0 0 0	$\begin{array}{r} 542 \\ 586 \\ 89 \\ 349 \\ 129 \end{array}$	$\begin{array}{r} 13 \\ 10 \\ 50 \\ 10 \\ 0 \end{array}$	20 0 0 3 123	0 0 0 0 0	20 40 10 1 10
$\begin{aligned} & 216 \\ & 182 \\ & 288 \\ & 217 \\ & 238 \end{aligned}$	$\begin{array}{r} 1964 \text { - November } \\ \text { November } \end{array}$	$\begin{array}{r} \text { 1965-26 May } \\ 26 \mathrm{May} \\ 26 \mathrm{May} \\ 26 \mathrm{May} \\ 26 \mathrm{May} \end{array}$	260 433 193 558 6	203 1,336 1,513 63 3	0 0 0 0 0	$\begin{aligned} & 6 \\ & 0 \\ & 6 \\ & 0 \\ & 0 \end{aligned}$	3 0 0 0 0	$\begin{aligned} & 684 \\ & 544 \\ & 583 \\ & 394 \\ & 543 \end{aligned}$	$\begin{array}{r} 6 \\ 23 \\ 16 \\ 0 \\ 5 \end{array}$	$\begin{array}{r} 0 \\ 63 \\ 126 \\ 163 \\ 130 \end{array}$	0 0 0 2 0	$\begin{array}{r} 13 \\ 358 \\ 16 \\ 300 \\ 9 \end{array}$
$\begin{aligned} & 202 \\ & 274 \\ & 186 \\ & 222 \\ & 231 \end{aligned}$	$\begin{aligned} & 1964 \text { November } \\ & \text { November } \end{aligned}$	$\begin{array}{r} \text { 1965-21 June } \\ \text { 21 June } \end{array}$	1,243 780 746 550 870	70 40 0 40 160	0 0 0 0 0	0 0 0 0 20	0 0 0 0 0	278 620 814 992 248	0 3 0 10 3	235 63 243 276 73	0 0 0 2 0	60 10 70 30 10

STUDIES ON THE EPIZOOTIOLOGY OF NEMATODE PARASITES OF SHEEP IN THE KAROO

Sheep No.	Date of birth	Date killed	H. contortus		O. circumcincta		T. falculatus		N. spathiger		O. columbianum	
			Fourth stage larvae	Adults								
169	1964-November	1966-6 January	0	2,343	0	0	0	7,810	3,486	1,123	0	49
205	November	6 January	0	2,790	0	0	0	5,141	2,476	150	0	93
285	November	6 January	0	313	0	0	0	3,393	153	636	0	44
295	November	6 January	0	76	0	3	0	2,193	0	0	0	31
194	November	6 January	0	360	0	0	0	863	0	0	0	30
229	1964-November	1966-3 February	0	4,210	0	0	0	17,936	7,300	0	0	68
278	November	3 February	0	376	0	0	0	13,616	2,896	0	0	57
192	November	3 February	0	987	0	0	0	383	0	0	0	34
209	November	3 February	40	753	0	0	0	7,036	46	0	0	8
264	November	3 February	13	730	0	0	0	2,160	23	0	0	116
212	1964-November	1966-3 March	908	0	0	0	0	7,023	146	0	0	6
250	November	3 March	319	601	0	0	0	2,112	180	0	0	0
277	November	3 March	360	0	0	0	0	8,712	1,883	290	0	0
299	November	3 March	1,636	1,370	0	0	0	3,126	0	0	0	2
235	November	3 March	83	16	0	0	0	20	0	0	0	0
208	1964-November	1966-31 March	0	140	0	0	0	19,213	2,356	5,676	0	94
266	November	31 March	16	20	0	0	0	272	96	0	0	72
242	November	31 March	173	120	0	0	0	18,154	953	0	0	24
259	November	31 March	66	163	0	0	0	126	30	0	0	0
168	November	31 March	6	643	0	0	0	15,149	663	316	0	34
204	1964 - November	1966-28 April				0				0	0	22
280	November	28 April	0	410	0	0	0	5,453	133	53	0	78
239	November	28 April	210	776	0	0	0	4,282	243	1,246	0	3
267	November	28 April	0	460	0	0	0	360	330	1,390	0	135
272	November	28 April	0	13	0	0	0	10	0	0	0	2
256	1964 -November	1966-26 May	390	0	0	0	0	183	830	562	4	56
203	November	26 May	20	66	0	0	0	0	0	0	0	4
276	November	26 May	740	390	0	0	0	76	6	0	0	30
181	November	26 May	40	23	0	0	0	36	0	6 5	0	30
201	November	26 May	670	1,926	0	0	0	43	123	53	0	47

Table 4．－Continued

$\begin{aligned} & \text { N } \\ & \\ & 0 \end{aligned}$	$\frac{y}{\frac{y}{3}}$	－¢ ¢ ¢－	ペヤナー	inmorin	$\cdots \infty$	Nomoric	$\underline{\text {－}}$
-i		$000 \mathrm{mO}^{\circ}$	moncold	0000 ¢	－00NO	00000	00000
	$\frac{\frac{n}{3}}{\frac{2}{4}}$	00000		00000		$0_{\mathrm{N}} \mathrm{NO}_{\mathrm{N}}^{\infty}$	moooo
		－2000	かo్nooo	－opor		－moric	8000 m
	$\frac{\tilde{n}}{\frac{\pi}{4}}$			OMOMN	$\begin{aligned} & \text { Bor or } \\ & \text { Bin } \\ & \text { nif os } \end{aligned}$	$\begin{gathered} \text { ming } \\ \text { in } \\ \text { in } \\ \text { in } \end{gathered}$	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$
		00000	00000	00000	00000	00000	00000
$\begin{aligned} & \text { g } \\ & \text { 華 } \\ & \text { un } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\stackrel{y}{z}}{\frac{3}{4}}$	00000	00000	00000	00000	00000	00000
		00000	00000	00000	00000	0000	00000
	$\frac{y}{z}$	+N్N	－ombẽ		Notoroico	かomos	
			nanco	N8080	minow	02000	ㄴoogo
			きごきごき ন্নিন্লন $\stackrel{\circ}{\circ}$			U． 2. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
on							

Table 4．－Continued

ミ	$\frac{y}{3}$		－0ッのㄴ	ーニミベ	n＋gano
$\begin{aligned} & \text { 妇 } \\ & 0 . \end{aligned}$		00000	00000	00000	Nin Nopo 0
$\begin{aligned} & \text { 亡̀ } \\ & \text { E. } \\ & \text { z. } \\ & \text { z. } \end{aligned}$	$\frac{\text { 券 }}{\frac{3}{4}}$	0 mogo	00000	00000	000000
		00000	00000	00000	00 mgoo
	$\frac{0}{3}$	$\begin{aligned} & \text { nommo } \\ & \operatorname{minn}_{6} \end{aligned}$	ON－（ֵ）	¢obe\％m	
		00000	00000	00000	000000
	$\frac{y}{3}$	00000	00000	00000	000000
		00000	00000	00000	000000
	$\frac{0}{3}$	¢i\％oncou	ぶすがすべ		
		00000	00000	00000	－0ヶq\％ow
		누Nニํㅜㅇ		NֹNo	¢ ¢ ¢－－－

Table 5．－Nelspoort：Worms recovered post mortem

	$\frac{2}{\frac{2}{z}}$	まotion				
z				הֹర్లిల్ల	ल⿵冂⿰入入－	®ơofin
	$\frac{n}{3}$	ngrno	Citone	우욱영		Niblig ig
$\stackrel{5}{5}$		00000	刃romo	00 moo	00000	00000
\％	$\frac{n}{\frac{2}{4}}$	00000	00000	00000	00000	00000
$\begin{aligned} & \text { E } \\ & 0 \end{aligned}$		00000	00000	00000	00000	00000
	$\frac{8}{3}$	00000	00000	00000	00000	00000
\pm	氝品品	00000	00000	00000	00000	00000
					希	
		n＋mer	ベめmべこ	「ば心或		

Table 5.- Continued

Table 5.- Continued

Table 5．－Continued

．	$\frac{3}{3}$		0000	$\stackrel{O N O O O}{7}$	$+000$	00才00	$\stackrel{\infty}{\circ} \underset{\sim}{\circ}$
z		$\begin{gathered} 00000 \\ 0000 \\ \text { Son } \\ \text { on } \end{gathered}$	00000	－${ }_{\text {－}}^{\text {in }}$	Goody	0000	○OPが
	$\frac{n}{3}$			m	Nop	অoncion	OQowo
		00000	00000	00000	00000	00000	00000
	$\frac{0}{3}$	00000	00000	00000	00000	00000	00000
		00000	00000	00000	00000	00000	00000
	$\frac{\square}{3}$	80000	mindom	ゅindoy		nomCuto	寸ioto
		00000	00000	00000	00000	00000	00000
E00000				 －			む
$\begin{aligned} & \dot{z} \\ & \dot{z} \\ & \stackrel{\ddot{0}}{\omega} \\ & \dot{\Pi} \end{aligned}$		がすごす	のサらべか	स్gnoni	さすがons		∞ ¢ํㅡ욱

Table 5.-Continued

Sheep No.	Date of birth	Date killed	H. contortus		O. circumcincta		T. falculatus		N. spathiger	
			Fourth stage larvae	Adults						
$\begin{array}{r} 95 \\ 84 \\ 111 \\ 53 \\ 463 \end{array}$	1964- JulyJuly July July July	1966-14 July 14 July 14 July 14 July 14 July	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 4 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 20 \\ 36 \\ 36 \\ 28 \\ 6 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 104 \\ 36 \\ 2,814 \\ 936 \\ 236 \end{array}$	$\begin{array}{r} 12 \\ 14 \\ 138 \\ 36 \\ 396 \end{array}$	$\begin{array}{r} 16 \\ 4 \\ 0 \\ 0 \\ 336 \end{array}$
$\begin{aligned} & 86 \\ & 46 \\ & 36 \\ & 71 \end{aligned}$	$\begin{aligned} \text { 1964- July } \\ \text { July } \\ \text { July } \\ \text { July } \end{aligned}$	$\begin{array}{r} \text { 1966- } 11 \text { August } \\ 11 \text { August } \\ 11 \text { August } \\ 11 \text { August } \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 54 \\ 6 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 52 \\ 128 \\ 0 \\ 20 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 260 \\ 1,552 \\ 4,412 \\ 219 \end{array}$	$\begin{array}{r} 14 \\ 632 \\ 506 \\ 304 \end{array}$	$\begin{array}{r} 4 \\ 22 \\ 272 \\ 6,502 \end{array}$

Table 6．－Klerefontein：Worms recovered post mortem

\＃	$\frac{3}{3}$	00000	00000	00000	00000	00000	00000
$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		00000	00000	00000	00000	00000	00000
	$\frac{0}{3}$	を～NAN			or్ల్లిণ్ల్ల	누ㅇㅜㅓㅇㅣ 엉ㅇ	
				－0응	－		\％momb
	$\frac{y}{3}$		－	드으웅	8゙ジがす		かonent
		00000	0 mogo	00000	70000	00000	00000
	$\frac{0}{\frac{2}{3}}$	Ommom	00000	－onmo	Ommon	00000	00000
		00000	00000	00000	00000	00000	00000
	$\frac{n}{3}$	mmo 00	00000	－00Nึ	6006 m	0 mbog	mm゚ํ．
	$\begin{aligned} & 55_{5}^{9} 9 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	00000	00000	00000	00000	00000	mooom
边菏							
命范							
		¢్లిర్లిర్ల్ల	－isumpo		¢かへisin	－	

Table 6.-Continued

Sheep No.	Date of birth	Date killed	H. contortus		o. circumcincta		T. falculatus		N. spathiger		O. columbianum	
			Fourth stage larvae	Adults								
$\begin{aligned} & 384 \\ & 488 \\ & 392 \\ & 438 \\ & 407 \end{aligned}$	1964-October October October October October	$\begin{array}{r} \text { 1965-29 July } \\ 29 \text { July } \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 16 \\ 25 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 1,313 \\ 2,950 \\ 953 \\ 4,096 \\ 2,159 \end{array}$	$\begin{array}{r} 160 \\ 226 \\ 56 \\ 153 \\ 153 \end{array}$	$\begin{array}{r} 2,073 \\ 46 \\ 1,330 \\ 2,843 \\ 1,752 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 70 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$
$\begin{aligned} & 415 \\ & 429 \\ & 396 \\ & 422 \\ & 345 \end{aligned}$	$\begin{aligned} \text { 1964-October } \\ \text { October } \end{aligned}$	$\begin{array}{r} \text { 1965-26 August } \\ 26 \text { August } \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 23 \\ 3 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 876 \\ 460 \\ 992 \\ 1,306 \\ 337 \end{array}$	$\begin{array}{r} 173 \\ 213 \\ 73 \\ 123 \\ 163 \end{array}$	$\begin{array}{r} 10 \\ 3 \\ 1,033 \\ 263 \\ 276 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 4 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 10 \\ 0 \\ 0 \end{array}$
$\begin{aligned} & 385 \\ & 390 \\ & 340 \\ & 401 \\ & 328 \end{aligned}$	1964- October October October October October	1965-23 September 23 September 23 September 23 September 23 September	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 3 \\ 0 \\ 3 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 823 \\ & 563 \\ & 758 \\ & 846 \\ & 536 \end{aligned}$	$\begin{array}{r} 110 \\ 166 \\ 63 \\ 50 \\ 30 \end{array}$	$\begin{array}{r} 846 \\ 770 \\ 70 \\ 116 \\ 890 \end{array}$	0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & 398 \\ & 360 \\ & 330 \\ & 382 \\ & 338 \end{aligned}$	$\begin{aligned} & 1964-\text { October } \\ & \text { October } \end{aligned}$	1965--21 October 21 October 21 October 21 October 21 October	$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 33 \\ 70 \\ 13 \\ 10 \\ 6 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 986 \\ & 666 \\ & 803 \\ & 203 \\ & 656 \end{aligned}$	$\begin{array}{r} 16 \\ 153 \\ 270 \\ 93 \\ 190 \end{array}$	$\begin{array}{r} 3 \\ 416 \\ 50 \\ 0 \\ 146 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 10 \\ 20 \\ 0 \\ 0 \end{array}$
$\begin{aligned} & 329 \\ & 421 \\ & 439 \\ & 342 \\ & 349 \end{aligned}$	$\begin{aligned} & 1964 \text { October } \\ & \text { October } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 20 \\ 0 \\ 20 \\ 3 \\ 10 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 477 \\ 1,304 \\ 728 \\ 583 \\ 16 \end{array}$	$\begin{aligned} & 306 \\ & 706 \\ & 923 \\ & 453 \\ & 110 \end{aligned}$	$\begin{array}{r} 569 \\ 197 \\ 190 \\ 316 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$
$\begin{aligned} & 320 \\ & 372 \\ & 412 \\ & 450 \\ & 378 \end{aligned}$	$\begin{array}{r} \text { 1964-October } \\ \text { October } \end{array}$	1965-15 December 15 December 15	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 86 \\ 46 \\ 66 \\ 83 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 1,543 \\ 1,243 \\ 1,046 \\ 1,546 \\ 156 \end{array}$	$\begin{array}{r} 2,846 \\ 776 \\ 616 \\ 6,803 \\ 0 \end{array}$	$\begin{array}{r} 1,046 \\ 0 \\ 0 \\ 1,386 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \\ & 1 \\ & 1 \\ & 7 \\ & 1 \end{aligned}$

Table 6.-Continued

Sheep No.	Date of birth	Date killed	H. contortus		O. circumeincta		T. falculatus		N. spathiger		O. columbianum	
			Fourth stage larvae	Adults								
$\begin{aligned} & 397 \\ & 395 \\ & 434 \\ & 311 \\ & 374 \end{aligned}$	$\begin{array}{r} 1964 \text { October } \\ \text { October } \end{array}$	$\begin{array}{r} \text { 1966-13 January } \\ \text { 13 January } \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 63 \\ 0 \\ 10 \\ 10 \\ 23 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 2,130 \\ 880 \\ 750 \\ 180 \\ 1,617 \end{array}$	$\begin{array}{r} 6,170 \\ 1,440 \\ 430 \\ 0 \\ 1,000 \end{array}$	$\begin{array}{r} 0 \\ 100 \\ 0 \\ 0 \\ 30 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
$\begin{aligned} & 429 \\ & 339 \\ & 322 \\ & 352 \\ & 373 \end{aligned}$	1964 October $\begin{array}{r}\text { October } \\ \text { October } \\ \text { October } \\ \text { October }\end{array}$	1966-10 February 10 February 10 February 10 February 10 February	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 33 \\ & 13 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 440 \\ 0 \\ 563 \\ 866 \\ 360 \end{array}$	$\begin{array}{r} 756 \\ 0 \\ 770 \\ 2,080 \\ 366 \end{array}$	$\begin{array}{r} 783 \\ 0 \\ 280 \\ 336 \\ 220 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & 427 \\ & 403 \\ & 368 \\ & 446 \\ & 435 \end{aligned}$	$\begin{array}{r} 1964 \text { - October } \\ \text { October } \end{array}$	1966-10 March 10 March 10 March 10 March 10 March	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 43 \\ 60 \\ 0 \\ 0 \\ 23 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 50 \\ 363 \\ 523 \\ 336 \\ 580 \end{array}$	$\begin{array}{r} 0 \\ 123 \\ 310 \\ 556 \\ 186 \end{array}$	$\begin{array}{r} 0 \\ 1,473 \\ 2,766 \\ 1,696 \\ 16 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & 381 \\ & 364 \\ & 351 \\ & 313 \\ & 371 \end{aligned}$	$\begin{array}{r} 1964 \text { October } \\ \text { October } \end{array}$	$\begin{array}{r} \text { 1966-7 April } \\ 7 \text { April } \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 16 \\ & 10 \\ & 46 \\ & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 130 \\ 743 \\ 1,063 \\ 1,000 \\ 360 \end{array}$	$\begin{array}{r} 280 \\ 663 \\ 0 \\ 700 \\ 1,593 \end{array}$	$\begin{array}{r} 173 \\ 326 \\ 0 \\ 1,463 \\ 2,726 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 4 \\ & 2 \\ & 0 \\ & 5 \end{aligned}$
$\begin{aligned} & 436 \\ & 334 \\ & 348 \\ & 339 \\ & 346 \end{aligned}$	$\begin{aligned} & 1964 \text { October } \\ & \text { October } \end{aligned}$	1966-5 May 5 May 5 May 5 May 5 May	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 13 \\ & 36 \\ & 10 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 493 \\ 1,043 \\ 573 \\ 686 \\ 333 \end{array}$	$\begin{array}{r} 6 \\ 0 \\ 543 \\ 160 \\ 16 \end{array}$	$\begin{array}{r} 16 \\ 0 \\ 260 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & 415 \\ & 355 \\ & 315 \\ & 369 \\ & 314 \end{aligned}$	$\begin{array}{r} 1964 \text { - October } \\ \text { October } \end{array}$	1966-2 June 2 June 2 June 2 June 2 June	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 20 \\ 33 \\ 30 \\ 33 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 126 \\ 76 \\ 0 \\ 850 \\ 470 \end{array}$	$\begin{array}{r} 23 \\ 33 \\ 0 \\ 170 \\ 416 \end{array}$	$\begin{array}{r} 313 \\ 700 \\ 423 \\ 50 \\ 10,323 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 7 \\ & 0 \\ & 0 \end{aligned}$

Table 6．－Continued

	咅	mo	00000	00000	mornm	07000	N0000
$\begin{aligned} & \text { ®ँ } \\ & 0 \end{aligned}$		00000	00000	00000	00000	00000	00000
	$\begin{aligned} & \text { 会 } \\ & \hline \end{aligned}$	员000等		子8으우ํ		$\begin{aligned} & \text { ginemo } \\ & \text { min } \\ & \text { mion } \end{aligned}$	ommor
		ํㅡํㅜํ	－ロロッセ゚	악무ㅇㅜㅔ주웅		mincoio	noํog
	$\frac{\stackrel{n}{\#}}{\frac{3}{c}}$						우누ํ율
		00000	00000	00000	00000	00000	00000
	$\frac{\stackrel{y}{z}}{\frac{z}{4}}$	00000	00000	00000	00000	00000	00000
		00000	00000	00000	00000	00000	00000
	$\frac{\text { 令 }}{\substack{4}}$	mbrion		끄ํํํN	O6ロローin	$\underline{0} 0000$	¢0ッ00
		00000	00000	00000	00000	00000	00000
跑荷			글를를츠를 ๙acoici －				
Rex							
	\％		べさ				

Table 6．－Continued

	$\frac{\frac{\pi}{3}}{\frac{\pi}{4}}$	00000	－	0－00－	ONOONO0000
$\begin{gathered} \text { O} \\ 0 \\ 0 \end{gathered}$		00000	00000	00000	0000000000
	$\frac{0}{3}$	0000 ¢	00000	00060	motumotur
		－8\％88\％	00000	0000%	Oonoomoogo
$\begin{aligned} & \text { 茲 } \\ & \text { 気 } \\ & \text { 号 } \end{aligned}$	$\frac{2}{3}$	욲ํํㅇํํㄱ ーシー		－mogn	
		00000	00000	00000	0000000000
$\begin{aligned} & \text { gut } \\ & \text { 部 } \\ & \text { 芯 } \\ & 0 \\ & 0 \end{aligned}$	$\frac{n}{3}$	00000	00000	00000	0000000000
		00000	00000	00000	0000000000
	㘼	－0\％ño	－0000	0 momo	＝moomummoo
		00000	00000	00000	0000000000
$\frac{y}{\tilde{u}} \stackrel{\rightharpoonup}{\tilde{\theta}}$					
O.:					
	运运	べ－mimmom	－īpmomem	守习习习习	

the individual burdens were low; 20 per cent only had burdens of 50 or more adults. Larvae were recovered only from February to August 1965. Small numbers of adults were recovered from some sheep at Nelspoort and Klerefontein.

Trematodes and Cestodes

Despite the initial treatment for tapeworms, sheep were infested with Moniezia spp. after weaning.

Comments

Bioclimatographs

Details of the variations in rainfall and temperature are summarized in Appendix Tables 1, 2 and 3.
These data were used to construct bioclimatographs comparing temperature and rainfall.

Levine (1963) records the temperature limits for the development of Trichostrongylus spp. as 6° to $20^{\circ} \mathrm{C}$ and those for H. contortus as 15° to $37^{\circ} \mathrm{C}$. According to Gordon (1948, 1953), Forsyth (1953) and Levine (1963), both these species require a minimum of 50 mm (2 in) rainfall; Roberts, O'Sullivan \& Riek (1952) and Riek, Roberts \& O' Sullivan (1953) consider 76.2 mm (3 in) to be the optimum.

In this survey the temperature requirements of Trichostrongylus spp., i.e. 6° to $20^{\circ} \mathrm{C}$, were fulfilled at all the stations from April to October (autumn to early spring). The minimum temperature require-
ments of H . contortus $\left(15^{\circ} \mathrm{C}\right)$ were exceeded from October to March (spring and summer). The minimum rainfall requirement (50 mm) was rarely fulfilled at any of the stations. There was sufficient at Grootfontein only in April, July, October and November 1965 and in January 1967; at Klerefontein in March 1965 and January 1966 and at Nelspoort only in January 1965.

It is clear, therefore, that although the temperature requirements of both Trichostrongylus and Haemonchus are satisfied in the Karoo, the rainfall is quite inadequate. Furthermore, as the rain usually falls in scattered thunderstorms, the moisture is available for a limited period only. It is probably more realistic to regard 25 mm (1 in) as the minimum requirement for H. contortus. This is usually recorded in February and March at Nelspoort and Klerefontein and from November to April at Grootfontein (Fig. 3).
H. contortus was consistently present in sheep at Grootfontein; worm burdens rarely fell below 100 and frequently exceeded 1,000 worms. At both Nelspoort and Klerefontein they were either absent or present in small numbers, rarely exceeding 100 . In summer a monthly rainfall of 25 mm seems to be adequate for this worm to maintain itself in reasonable numbers.

According to Mönnig (1930), Rogers (1940) and Kates (1950) O. columbianum is very sensitive to desiccation. This undoubtedly accounts for the fact

BIOCLIMATOGRAPHS

Fig. 3.-Seasonal incidence survey. Bioclimatographs, comparing normal year, with the years during which the survey was conducted
that it occurred in moderate numbers at Grootfontein only; it was rarely present at Klerefontein and all but absent at Nelspoort.

These surveys showed that T. falculatus and N. spathiger are well adapted to conditions prevailing in the Karoo. These trials were, however, unsatisfactory in that they did not indicate the availability to the grazing animal of live infective larvae at different times of the year.

II. Infestation on the pasture

Tetley (1959 a, b), Thomas \& Stevens (1960) and Muller (1968) used worm-free lambs which grazed the pasture for a limited period to determine the availability of infective larvae at different times.

These lambs were slaughtered and total and differential worm counts carried out post mortem.

Muller (1968) considered this method preferable to either regular faecal worm egg counts or to pasture analysis, which were advocated by Taylor (1939), Crofton (1948, 1949, 1952, 1954, 1963), Baxter (1958, 1959), Spedding, Brown \& Wilson (1958), Gibson (1959), Thomas (1959) and Brunsdon (1960, 1962 b; 1963 a).

It was therefore decided to introduce worm-free lambs onto the pasture for a specified period after which they were slaughtered. Their worm burdens were then compared with those of controls which had grazed the pasture from birth onwards. The disadvantage of this method is that it entails the collection and the identification of minute larval stages; these are difficult to detect even with a stereomicroscope as they are concealed by particles of the ingesta and of digested gut wall. This difficulty was overcome by concentrating the worms in a small volume with a modified Baermann apparatus placed in Shone's waterbath (Shone \& Philip, 1967; Reinecke, 1967).

Materials und Methods

Location: These trials were carried out at Nelspoort in the camp used for the first experiment.

Climatic conditions: These were recorded throughout the survey period (Appendix Table 7).

Grazing: This consisted of a camp of natural Karooveld, 414 hectares in extent, that was grazed continually. Lucerne hay ad lib. was supplied as a supplementary feed for the first three months of the experimental period.

Sheep: The 180 Dorper (Dorset Horn \times Black Head Persian) lambs used in this trial were born within a week of each other in the beginning of May, August and November 1967 and February 1968. At lambing the ewes and lambs were divided into two groups:

Group A-"Indicator" lambs: This group was kept worm-free from birth. They were housed indoors in pens with concrete floors, which were regularly cleaned. They were fed worm-free lucerne hay and feeding pellets. The ewes were treated for nematodes and cestodes to prevent contamination of the pens. These lambs and their dams were placed on the pasture as required.

Group B-"Control" lambs: These lambs, with their dams, were kept on the pasture until they were slaughtered; the ewes then remained on the pasture. The latter were treated against cestodes to prevent contamination of the pasture.
The animals were ear-tagged and inoculated against enterotoxaemia.
Stocking rate: A stocking rate of one sheep for every five hectares was maintained throughout the experimental period. The ewes remained on the pasture after their lambs had been slaughtered and other sheep were introduced to replace those slaughtered.
Exposure to infestation: Group A-"Indicator" lambs: Five lambs and their dams were placed on the pasture every 3 weeks. The lambs born in May and August 1967 presumably showed poor adaptation to grazing because they were suckling and consequently were very lightly infested at slaughter four weeks later.

Table 7. - Climatic Data at Nelspoort

Month	Weekly relative humidity per cent				Rainfall		Temperatures							
					Mean maximum	Mean minimum		Mean monthly mean						
	1	2	3	4			mm	Average over last 15 years	${ }^{\circ} \mathrm{C}$	Average over last 20 years	C	Average over last 20 years	${ }^{\circ} \mathrm{C}$	Average over last 20 years
May 1967		66	$\overline{49}$	$\overline{57}$	72	15.0	20.3	21.5	9.5	7.7	15	14.7		
June. July	67 58	66 59	49 60	57 41	9 9	13.0	16.8	19.0	6.1	5.0	12	12.0		
July . ${ }^{\text {August }}$	58 43	59 45	60	41 38	9	9.0 100	16.4	18.1	3.9	4.9	10	11.5		
September	43 46	45 49	48 36	38 49	1	100 180	20.8 20.6	20.2	6.5	5.5	14	12.9		
October . .	39	38	46	45	6	20.0	20.8 25.9	22.7 25.8	7.1 10.0	7.8 10.4	14	15.3 18.1		
November	39	40	45	40	4	38.0	29.4	28.2	10.0 9.7	10.4 12.6	20	18.1 20.4		
December .	35	35	44	49	19	28.0	33.2	30.4	12.3	14.6	23	22.5		
January 1968	32	38	39	36	0	21.0	32.2	32.5	15.9	16.2	24	24.4		
February.	34	37	39	38	0	36.0	31.0	31.8	13.9	16.3	23	24.1		
March	43	47	35	58	64	61.0	29.3	29.0	10.5	14.7	20	21.9		
April	62	53	49	47	8	20.0	22.6	24.8	9.8	10.8	16	17.8		
May..	47	59	63	56	17	15.0	19.7	21.5	7.6	7.7	14	14.7		
June..	56	66	67	53	9	13.0	15.6	19.0	3.6	5.0	9	12.0		

Table 8. - Group A: "Indicator" lambs: worms recovered post mortem

Sheep No	*Date of birth	Date on pasture	Date killed	T. falculatus		N. spathiger	
				**Fourth stage larvae	Adults	**Fourth stage larvae	Adults
522	$1967-1$ May1 May1 May1 May1 May	$\begin{array}{r} \text { 1967-24 May } \\ 24 \text { May } \end{array}$	1967-21 June21 June21 June21 June21 June	0	20	13	6
542				0	18	16	39
554				0	6	6	5
534				5	28	11	25
520				0	23	16	3
562		1967-14 June14 June14 June14 June14 June	1967- 12 July12 July12 July12 July12 July	8		19	
524				0	33	35	56
546				0	12	4	58
536				0	0	6	0
544				0	23	34	0
514	$\begin{aligned} 1967-1 \text { May } \\ \text { 1 May } \\ \text { 1 May } \\ \text { 1 May } \\ \text { I May } \end{aligned}$	1967- 5 July5 July5 July5 July5 July	$\begin{array}{r} 1967-2 \text { Aug. } \\ 2 \text { Aug. } \end{array}$	5	28	47	0
560				0	15	3	10
530				0	16	4	9
518				2	12	31	18
540				12	93	30	28
516	$\begin{aligned} & 1967-1 \text { May } \\ & \text { 1 May } \end{aligned}$	$\begin{array}{r} \text { 1967-26 July } \\ \text { 26 July } \end{array}$	$\begin{array}{r} \text { 1967-23 Aug. } \\ 23 \text { Aug. } \end{array}$				
532				40	118	34	141
568				3	4	0	6
526				0	70	20	87
564				16	96	21	32
538	$\begin{array}{r} 1967-1 \text { May } \\ \text { 1 May } \\ \text { 1 May } \\ \text { 1 May } \\ \text { I May } \end{array}$	$\begin{array}{r} \text { 1967-16 Aug. } \\ 16 \text { Aug. } \end{array}$	$1967-13$ Sept.13 Sept.13 Sept.13 Sept.13 Sept.				
558				0	50	13	3
548				0	0	0	0
512				0	13	0	0
552				0	14	5	10
578	$\begin{array}{r} 1967-8 \text { Aug. } \\ 8 \text { Aug } \\ 8 \text { Aug. } \\ 8 \text { Aug. } \\ 8 \text { Aug. } \end{array}$	$1967-6 \text { Sept. } 6 \text { Sept. }$	$\begin{array}{r} 1967-4 \text { Oct. } \\ 4 \text { Oct. } \\ 4 \mathrm{Oct} . \\ 4 \mathrm{Oct} \\ 4 \mathrm{Oct} . \end{array}$	0	0	0	0
596				0	0	0	0
584				0	0	0	0
576 590				0	0	0	0
590				0	0	2	0
628	$\begin{array}{r} 1967-8 \text { Aug. } \\ 8 \text { Aug. } \end{array}$	$1967-27$ Sept.27 Sept.27 Sept.27 Sept.27 Sept.	$\begin{array}{r} 1967-25 \mathrm{Oct} . \\ 25 \mathrm{Oct} . \\ 25 \mathrm{Oct} \\ 25 \mathrm{Oct} \\ 25 \mathrm{Oct} . \end{array}$				
612 608				0	0	3	12
608				7	3	79	35
594 610				0	0	3	9
610				0	0	0	3
588	$\begin{array}{r} 1967-8 \text { Aug. } \\ 8 \text { Aug. } \end{array}$	$1967-18 \mathrm{Oct}$.18 Oct18 Oct18 Oct18 Oct.	1967-15 Nov. 15 Nov. 15 Nov. 15 Nov. 15 Nov.	0	0	26	
580				0	0	15	3
586				0	0	0	0
624				0	0	38	3
622				0	0	23	0
592	$\begin{array}{r} 1967-8 \text { Aug. } \\ 8 \text { Aug. } \end{array}$	1967-8 Nov. 8 Nov. 8 Nov. 8 Nov. 8 Nov.	$\begin{array}{r} 1967-6 \mathrm{Dec} . \\ 6 \mathrm{Dec} . \\ 6 \mathrm{Dec.} \\ 6 \mathrm{Dec.} \\ 6 \mathrm{Dec.} \end{array}$	0	0	2	0
626				0	0	6	0
582				0	0	0	0
620				0	0	0	0
616				0	4	36	22
632	$\begin{array}{r} 1967-8 \text { Aug. } \\ 8 \text { Aug. } \end{array}$	$\begin{array}{r} \text { 1967-29 Nov. } 29 \text { Nov. } \\ 29 \text { Nov. } \\ 29 \text { Nov. } \\ 29 \text { Nov. } \end{array}$	1968-10 Jan.10 Jan.10 Jan.10 Jan.10 Jan.	0	0	0	0
646				0	0	3	0
502				0	0	0	0
642				0	0	0	0
644				0	0	5	0
165	$\begin{array}{r} 1967-8 \text { Aug. } \\ 8 \text { Aug. } \end{array}$	$\begin{array}{r} 1967-20 \mathrm{Dec} . \\ 20 \mathrm{Dec} . \\ 20 \mathrm{Dec} . \\ 20 \mathrm{Dec} . \\ 20 \mathrm{Dec} . \end{array}$	$1968-31 \mathrm{Jan}$.31 Jan.31 Jan.31 Jan.31 Jan.	0	0	2	2
636				0	0	0	0
653				0	0	0	0
629				0	0	0	0
163				0	6	10	0
506	$1967-8$ Nov,8 Nov,8 Nov,8 Nov.8 Nov.	$\begin{array}{r} 1968-10 \mathrm{Jan} . \\ 10 \mathrm{Jan} . \\ 10 \mathrm{Jan} . \\ 10 \mathrm{Jan} . \\ 10 \mathrm{Jan} . \end{array}$	1968-21 Feb.21 Feb.21 Feb.21 Feb.21 Feb.	0	0	0	0
648				0	0	6	3
634				0	0	0	0
540				0	0	0	0
640				0	0	3	0

STUDIES ON THE EPIZOOTIOLOGY OF NEMATODE PARASITES OF SHEEP IN THE KAROO
Table 8. - Continued

Sheep No.	*Date of birth	Date on pasture	Date killed	T. falculatus		N. spathiger	
				**Fourth stage larvae	Adults	**Fourth stage larvae	Adults
$\begin{aligned} & 655 \\ & 657 \\ & 659 \\ & 510 \\ & 651 \end{aligned}$	$\begin{array}{r} 1967-8 \text { Nov. } \\ 8 \text { Nov. } \end{array}$	$\begin{array}{r} 1968-31 \mathrm{Jan} . \\ 31 \mathrm{Jan} . \\ 31 \mathrm{Jan} . \\ 31 \mathrm{Jan} . \\ 31 \mathrm{Jan} . \end{array}$	$\begin{array}{r} 1968-13 \mathrm{Mar} . \\ 13 \mathrm{Mar} . \\ 13 \mathrm{Mar} . \\ 13 \mathrm{Mar} . \\ 13 \mathrm{Mar} . \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 13 \\ 13 \\ 0 \\ 0 \\ 9 \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & 671 \\ & 707 \\ & 697 \\ & 705 \\ & 719 \end{aligned}$	$\begin{aligned} 1968-1 & \text { Feb. } \\ & 1 \text { Feb. } \end{aligned}$	$1968-21$ Feb. 21 Feb. 21 Feb. 21 Feb. 21 Feb.	$\begin{array}{r} 1968 \text { - } 31 \text { Mar. } \\ 31 \mathrm{Mar} . \\ \text { 31 Mar. } \\ 31 \mathrm{Mar} . \\ 31 \mathrm{Mar} . \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 6 \end{aligned}$	$\begin{array}{r} 15 \\ 0 \\ 3 \\ 26 \\ 9 \end{array}$	$\begin{array}{r} 3 \\ 3 \\ 13 \\ 13 \\ 30 \end{array}$
$\begin{aligned} & 681 \\ & 661 \\ & 709 \\ & 683 \\ & 687 \end{aligned}$	$\begin{aligned} & 1968-1 \\ & 1 \mathrm{Feb} . \end{aligned}$	$\begin{array}{r} 1968 \text { - } 13 \mathrm{Mar} . \\ 13 \mathrm{Mar} . \\ 13 \mathrm{Mar} . \\ 13 \mathrm{Mar} . \\ 13 \mathrm{Mar} . \end{array}$	$\begin{array}{r} 1968-24 \mathrm{Apr} \\ 24 \mathrm{Apr} \\ 24 \mathrm{Apr} \\ 24 \mathrm{Apr} \\ 24 \mathrm{Apr} . \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 0 \end{aligned}$	$\begin{array}{r} 32 \\ 67 \\ 73 \\ 50 \\ 270 \end{array}$	$\begin{array}{r} 96 \\ 59 \\ 359 \\ 96 \\ 119 \end{array}$	$\begin{array}{r} 56 \\ 90 \\ 60 \\ 30 \\ 136 \end{array}$
$\begin{aligned} & 691 \\ & 699 \\ & 677 \\ & 703 \\ & 669 \end{aligned}$	$\begin{aligned} 1968-1 & \text { Feb. } \\ & 1 \text { Feb. } \end{aligned}$	$\begin{array}{r} 1968-3 \mathrm{Apr} . \\ 3 \mathrm{Apr} . \\ 3 \mathrm{Apr} \\ 3 \mathrm{Apr} \\ 3 \mathrm{Apr} . \end{array}$	1968-15 May 15 May 15 May 15 May 15 May	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 53 \\ 160 \\ 30 \\ 2 \\ 106 \end{array}$	$\begin{array}{r} 94 \\ 43 \\ 30 \\ 303 \\ 60 \end{array}$	$\begin{array}{r} 78 \\ 366 \\ 47 \\ 0 \\ 233 \end{array}$
$\begin{aligned} & 679 \\ & 667 \\ & 695 \\ & 713 \\ & 701 \end{aligned}$	$\begin{aligned} 1968-1 & \\ & 1 \text { Feb. } \end{aligned}$	$\begin{array}{r} 1968-24 \mathrm{Apr} . \\ 24 \mathrm{Apr} \\ 24 \mathrm{Apr} \\ 24 \mathrm{Apr} \\ 24 \mathrm{Apr} . \end{array}$	1968- 5 June 5 June 5 June 5 June 5 June	$\begin{array}{r} 18 \\ 26 \\ 2 \\ 6 \\ 9 \end{array}$	$\begin{aligned} & 52 \\ & 60 \\ & 18 \\ & 16 \\ & 56 \end{aligned}$	$\begin{array}{r} 132 \\ 146 \\ 95 \\ 76 \\ 43 \end{array}$	$\begin{aligned} & 15 \\ & 20 \\ & 44 \\ & 50 \\ & 32 \end{aligned}$
$\begin{aligned} & 665 \\ & 715 \\ & 717 \\ & 711 \\ & 693 \\ & \hline \end{aligned}$	$1968-1$ Feb. 1 Feb. 1 Feb. 1 Feb. 1 Feb.	$\begin{array}{r} \text { 1968-15 May } \\ 15 \mathrm{May} \\ 15 \mathrm{May} \\ 15 \mathrm{May} \\ 15 \mathrm{May} \\ \hline \end{array}$	1968-26 June 26 June 26 June 26 June 26 June	$\begin{array}{r} 53 \\ 0 \\ 50 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 66 \\ 98 \\ 152 \\ 94 \\ 80 \end{array}$	$\begin{array}{r} 96 \\ 56 \\ 133 \\ 100 \\ 142 \\ \hline \end{array}$	$\begin{array}{r} 50 \\ 152 \\ 142 \\ 86 \\ 32 \\ \hline \end{array}$

* Lambs were born within 7 days of the day indicated
** Third and fourth stage grouped together as fourth stage larvae

Table 9. - Group B "Control" lambs: worms recovered post mortem

Sheep	*Date of birth on pasture	Date killed	T. falculatus		N. spathiger	
			**Fourth stage larvae	Adults	**Fourth stage larvae	Adults
1	1967-1 May	1967-14 June	0	0	0	0
2	1 May	14 June	0	0	0	0
3	1 May	14 June	0	0	0	0
4	1 May	14 June	0	0	0	0
5	1 May	14 June	0	0	0	0
	1967-1 May	1967-5 July	8			
7	1 May	5 July	19	34	36	20
8	1 May	5 July	18	24	53	33
9	1 May	5 July	8	32	14	16
10	1 May	5 July	0	33	16	12
11	1967-1 May	1967-26 July	0	27		
12	1 May	26 July	0	25	2	6
13	1 May	26 July	0	89	9	34
14	1 May	26 July	0	6	3	3
15	1 May	26 July	0	47	17	13
16	1967-1 May	1967-16 Aug.				
17	1 May	16 Aug.	0	93	30	$\begin{array}{r}99 \\ \hline 150\end{array}$
18	1 May	16 Aug.	12	311	81	150
19	1 May	16 Aug.	0	44	39	28
20	1 May	16 Aug.	0	33	10	25
21	1967-1 May ${ }^{1}$ May	1967-6 Sept.	0 0	36 112	8 25	9 30
23	1 May	6 Sept.	10	112 93	10	36
24	1 May	6 Sept.	4	100	50	66
25	1 May	6 Sept.	0	50	14	13
26	1967-8 Aug.	1967-27 Sept.	3	0	0	0
27	8 Aug.	27 Sept.	0	0	0	4
28	8 Aug.	27 Sept.	0	4	2	0
29	8 Aug.	27 Sept.	2	3	0	0
30	8 Aug.	27 Sept.	0	0	0	0
31	1967-8 Aug.	1967-18 Oct.	0	0	0	0
32	8 Aug.	18 Oct.	0	3	0	6
33	8 Aug.	18 Oct.	0	0	3	0
34	8 Aug.	18 Oct.	0	0	0	0
35	8 Aug.	18 Oct .	0	3	5	3
36	1967-8 Aug.	1967-8 Nov.	0	6	0	0
37	8 Aug.	8 Nov.	0	0	3	3
38	8 Aug.	8 Nov.	0	0	0	3
39	8 Aug.	8 Nov.	0	23	3	20
40	8 Aug.	8 Nov.	0	0	3	0
41	1967-8 Aug.	1967-29 Nov.	0	0	19	16
42	8 Aug.	29 Nov.	0	10	26	16
43	8 Aug.	29 Nov.	0	0	13	16
44	8 Aug.	29 Nov.	0	3	28	40
45	8 Aug.	29 Nov.	0	0	66	3
46	1967-8 Nov.	1967-27 Dec.	0	0	0	0
47	8 Nov.	27 Dec .	2	0	0	0
48	8 Nov.	27 Dec .	0	0	0	0
49	8 Nov.	27 Dec .	0	0	0	0
50	8 Nov.	27 Dec .	0	0	3	0
51						
52	8 Nov.	17 Jan.	0	0	0	0
53	8 Nov.	17 Jan .	0	0	0	0
54	8 Nov.	17 Jan.	0	0	0	0
55	8 Nov.	17 Jan.	0	0	0	0

STUDIES ON THE EPIZOOTIOLOGY OF NEMATODE PARASITES OF SHEEP IN THE KAROO
Table 9.-Group B Continued

Sheep	*Date of birth on pasture	Date killed	T. falculatus		N. spathiger	
			**Fourth stage larvae	Adults	**Fourth stage larvae	Adults
$\begin{aligned} & 56 \\ & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	$\begin{array}{r} 1967-8 \text { Nov. } \\ 8 \text { Nov. } \end{array}$	$\begin{array}{r} 1968-7 \mathrm{Feb} . \\ 7 \mathrm{Feb} . \\ 7 \mathrm{Feb} . \\ 7 \mathrm{Feb} . \\ 7 \mathrm{Feb} . \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 3 \\ 4 \\ 2 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 6 \\ & 3 \\ & 0 \end{aligned}$
$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 64 \\ & 65 \end{aligned}$	$\begin{array}{r} 1967-8 \text { Nov. } \\ 8 \text { Nov. } \end{array}$	$1968-28$ Feb. 28 Feb. 28 Feb. 28 Feb. 28 28 Feb.	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 6 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & 66 \\ & 67 \\ & 68 \\ & 69 \\ & 70 \end{aligned}$	$1968-1$ Feb. 1 Feb, 1 Feb. 1 Feb. 1 Feb.	$1968-20 \mathrm{Mar}$. 20 Mar 20 Mar 20 Mar. 20 Mar.	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & 71 \\ & 72 \\ & 73 \\ & 74 \\ & 75 \end{aligned}$	$1968-1$ Feb. 1 Feb. 1 Feb. 1 Feb. 1 Feb.	$\begin{array}{r} 1968-10 \mathrm{Apr} . \\ 10 \mathrm{Apr} . \\ 10 \mathrm{Apr} . \\ 10 \mathrm{Apr} . \\ 10 \mathrm{Apr} . \end{array}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 6 \end{aligned}$	$\begin{array}{r} 0 \\ 16 \\ 26 \\ 10 \\ 90 \end{array}$	$\begin{array}{r} 10 \\ 45 \\ 46 \\ 33 \\ 100 \end{array}$	$\begin{aligned} & 12 \\ & 10 \\ & 10 \\ & 10 \\ & 22 \end{aligned}$
$\begin{aligned} & 76 \\ & 77 \\ & 78 \\ & 79 \\ & 80 \end{aligned}$	$1968-1$ Feb. 1 Feb. 1 Feb. 1 Feb. 1 Feb.	$\begin{array}{r} 1968-30 \mathrm{Apr} . \\ 30 \mathrm{Apr} . \\ 30 \mathrm{Apr} . \\ 30 \mathrm{Apr} . \\ 30 \mathrm{Apr} . \end{array}$	$\begin{array}{r} 2 \\ 0 \\ 0 \\ 10 \\ 0 \end{array}$	$\begin{array}{r} 53 \\ 72 \\ 53 \\ 120 \\ 26 \end{array}$	$\begin{array}{r} 39 \\ 127 \\ 73 \\ 56 \\ 39 \end{array}$	$\begin{array}{r} 72 \\ 175 \\ 3 \\ 173 \\ 30 \end{array}$
$\begin{aligned} & 81 \\ & 82 \\ & 83 \\ & 84 \\ & 85 \end{aligned}$	$1968-1$ Feb. 1 Feb. 1 Feb. 1 Feb. 1 Feb.	1968-22 May 22 May 22 May 22 May 22 May	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	$\begin{array}{r} 26 \\ 120 \\ 76 \\ 90 \\ 63 \end{array}$	$\begin{array}{r} 36 \\ 3 \\ 55 \\ 9 \\ 90 \end{array}$	$\begin{array}{r} 54 \\ 666 \\ 222 \\ 160 \\ 233 \end{array}$
$\begin{aligned} & 86 \\ & 87 \\ & 88 \\ & 89 \\ & 90 \end{aligned}$	$1968-1$ Feb. 1 Feb. 1 Feb. 1 Feb. 1 Feb.	1968-12 June 12 June 12 June 12 June 12 June	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 65 \\ 203 \\ 87 \\ 141 \\ 262 \end{array}$	$\begin{aligned} & 26 \\ & 16 \\ & 60 \\ & 46 \\ & 56 \end{aligned}$	$\begin{array}{r} 54 \\ 206 \\ 276 \\ 222 \\ 253 \end{array}$

[^1]** Third and fourth stage grouped together as fourth stage larvae

The lambs born in November 1967 and in February 1968 were therefore kept on the pasture for 42 days before being slaughtered. The lambs varied in age from about 2 to $4 \frac{1}{2}$ months at slaughter.

Group B-"Control" lambs: Five lambs were killed every 3 weeks. Their age at slaughter varied from about 6 weeks to 4 months.

Slaughter and Examination post mortem: Autopsies were carried out following the procedures described by Reinecke (1967) and a waterbath, as described by Shone \& Philip (1967), was used for recovery of the worms.

The inner dimensions of this waterbath are as follows: length 2 m , width 2 m and depth 20 cm . The sides and bottom are made of 2.5 cm press board insulated on the outside with 2.5 cm Foamalite strips [Eastern Province Engineers, (Pty) Ltd., South Africa], and waterproofed with a double sheet of polythene [Gunplas, G. S. Gundel (Pty) Ltd., South Africa].

From January, 1968 onwards another waterbath was also used; this is constructed of fibre-glass and painted with a water-resistant paint [Peerless Fibreglass and Plastics Co. (Pty) Ltd., South Africa]. Its inner dimensions are as follows: length 2 m , width 1.3 m and depth 30.5 cm .

The larval stages and the adults were identified as indicated earlier.

Graphs: The mean worm burdens were calculated by dividing the total number of worms recovered by the number of autopsies done during any particular month. These mean worm counts were used in the graphs to plot the monthly variations in worm burdens.

Results

The experimental period commenced on 1 May 1967, when the first lambs were born, and ended on 26 June 1968, when the last lambs were slaughtered.

The worm burdens are recorded in Appendix Tables 8 and 9 and illustrated graphically in Fig. 4.

The following species of helminths were identified:-
T. falculatus
N. spathiger
H. contortus
O. circumcincta

Group A-"Indicator" lambs

T. falculatus

The only Trichostrongylus sp . recovered was T. falculatus. Fourth stage larvae were found in most of the autopsies in August 1967 and in June 1968.

Adult worm burdens increased in August 1967 but they disappeared from October to March 1968. In April 1968 adult numbers again increased, then declined in May and June.

NELSPOORT

Fig. 4.-Availability of infective larvae. Monthly variations in worm burdens

N. spathiger

This was the only species of Nematodirus recovered. Fourth stage larvae showed minor peaks in August and November 1967 and a dramatic rise in April 1968. A downward trend was noticed in May and June 1968. Adult burdens rose to a minor peak in August, followed by a decline in September 1967; they remained low until March and rose again to a peak in May 1968. In June adult burdens showed a sharp decline.

H. contortus

H. contortus was found in insignificant numbers in three autopsies only during the beginning of the survey.

Ostertagia spp.

A few immature Ostertagia spp. were found in two autopsies in July and August 1967.

Group B-"Control" lambs

T. falculatus

Fourth stage larvae were found in small numbers in some of the autopsies in July, August and September 1967 and in April and May 1968. The adult worm burdens showed trends similar to those seen in the "Indicator" lambs. The increase in the number of adults in August, however, was more marked and the April rise was followed by a further increase in May and June 1968.

N. spathiger

Fourth stage and adult worm burdens showed the same trends as those seen in the "Indicator" lambs. The peak in adult burdens in May 1968 was more pronounced; this is probably due to the exceptionally high burden of 666 adults found in one of the lambs.

H. contortus

At the beginning of the experimental period, H. contortus was found in two sheep, but both had fewer than five worms.

Ostertagia spp

In September 1967, a few Ostertagia spp. were recovered in one autopsy.

Cestodes and Trematodes

No cestodes or trematodes were found.

Climatic data

Climatic data are summarized in Appendix Table 7 and presented graphically in Fig. 4.

It was a particularly dry period with little or no rain apart from the heavy rains (64 mm) recorded during the second half of March 1968.

The relative humidity was 60 per cent or higher during June and July 1967 and again from April to June 1968. The high humidity recorded at the beginning of the experimental period is attributed to high rainfall in May 1967 (72 mm) followed by cool, overcast conditions during June and July 1967.

Discussion

Ryksen (1939) showed that Nematodirus is a common parasite in the Karoo and Viljoen (1964) found that T. falculatus is also prevalent in this region.

The results described above confirm that N. spathiger and T. falculatus are the dominant parasites of sheep in the Karoo. The burdens of these two species of worms followed a similar pattern in the winter and early spring of 1967. When the first batch of lambs was born in May 1967, 72 mm of rain was recorded, but only 9 mm fell in June and July and 1 mm in August. No rain was recorded in September. In the first two weeks of June the relative humidity was 67 and 66 per cent respectively, but thereafter it never exceeded 60 per cent and even fell as low as 36 per cent in the third week of September (Appendix Table 7). Throughout this period the mean monthly mean temperatures varied from 10 to $14^{\circ} \mathrm{C}$. The increase in the burdens of both species of worms in such dry conditions is probably largely due to the low temperatures which prevailed. This confirms the findings of Gordon (1948, 1958), Crofton (1954), Parnell, Rayski, Dunn \& McIntosh (1954), Hobbs (1961), Barrow (1964), Reinecke (1964), Rossiter (1964) and Viljoen (1964) that the incidence of Trichostrongylus spp. increases during the cool months of the year.

During this period the mean monthly mean temperatures fell within the optimal limits recorded by Levine (1963), viz. 6 to $20^{\circ} \mathrm{C}$. The results do, however, show that T. falculatus can increase on the pasture when the monthly rainfall is much lower than the 50 mm which Levine considers optimal.

In 1968 the rainfall was higher: 64 mm fell in March and in the ensuing three months from 8 to 17 mm fell per month. During this period Trichostrongylus spp. increased even more markedly than in the preceding year (Appendix Table 7; Fig 4). A good fall of rain in autumn, followed by a cold winter, is favourable for the completion of the life-cycle of this parasite.

The hot dry conditions which prevail at Nelspoort from October to March are quite unsuitable for the survival of the free-living stages of T. falculatus on the pasture (Appendix Tables 8, 9; Fig. 4). The results of the previous experiment show that when the mean monthly mean temperature exceeds $20^{\circ} \mathrm{C}$ rainfall, even if it exceeds 50 mm a month, only results in a very slight increase in the worm burdens.

These results confirm the observation by Kates (1950) that the infective larvae of N. spathiger are much more resistant to heat and desiccation than those of Trichostrongylus spp. Senger (1965), Senger \& Forrester (1962) and Senger \& Ruff (1962) have shown experimentally that larvae of N. spathiger may survive for at least a year in dry pellets and that both eggs and larvae can survive temperatures ranging from below freezing point to above $50^{\circ} \mathrm{C}$.

In the period from October to December 1967 the monthly rainfall varied from 4 to 19 mm , and no rain fell in January or February 1968. The mean monthly mean temperatures varied from 18 to $24^{\circ} \mathrm{C}$ and the weekly relative humidity from 32 to 49 per cent. Despite this drought 39 of the 75 lambs slaughtered during this period were infested with N. spathiger, the individual worm burdens varying from 2 to 114. On the other hand T. falculatus, which is less resistant to desiccation, was only found in 10 of these lambs, in infestations ranging from 3 to 23 specimens per animal.

In this experiment it was noted that the larvae of N. spathiger were retarded in the fourth stage as the lambs grew older. When the lambs reached 12 to

15 months of age fewer worms became adult regardless of the season of the year. This is probably a manifestation of resistance similar to that found in this and other species of the genus by Kates \& Turner (1953), Baxter (1957), Crofton (1957), Thomas (1959), Gibson (1959) and Brunsdon (1962a, 1963b).
Analysis of the data in the first experiment (Appendix Tables 4, 5 and 6; Fig. 2), shows that the further west one goes and the more arid the region is, the more suitable the conditions are for N. spathiger. Conversely H. contortus, which requires a higher humidity, found conditions most suitable for its survival at Grootfontein; its numbers dropped markedly at Nelspoort and it almost disappeared at Klerefontein, where the humidity is lower than it is at Grootfontein.
It seems probable that the lower burdens of N. spathiger at Grootfontein are not only the result of ecological differences affecting the free-living stages of the parasite; the presence of H. contortus in the host may have a deleterious effect on any N. spathiger present. This hypothesis is supported by the results of this experiment, in which 409 sheep were slaughtered, as well as those of the previous trials conducted at Grootfontein (Viljoen, 1964) and at Bathurst, in the coastal areas of the eastern Cape (Rossiter, 1964), where H. contortus was dominant and N. spathiger recovered in small numbers only. Moreover on the Highveld where H. contortus is rife N. spathiger was not recorded by Thomas (1968).

However, the above hypothesis is not supported by the findings of some other workers. Turner, Kates, Sinclair \& Foster (1952) and Turner \& Colglazier (1954) concluded that H. contortus either causes a breakdown in the hosts' resistance to N. spathiger or reverses the normal selflimiting course of the latter species. In an anthelmintic test, Anderson (1968) infested 11 sheep simultaneously with Gaigeria pachyscelis Railliet \& Henry, 1901, H. contortus and N. spathiger. The resultant worm burdens in the five untreated controls were remarkably uniform. These conclusions, though, are based on experiments involving small numbers of animals, viz. Turner et al. (1952) used 12, Turner \& Colglazier (1954) 8 and Anderson (1968) 5 animals.

Alternatively O. columbianum may have a detrimental effect on N. spathiger. O. columbianum is a common parasite at Grootfontein but is rare at Klerefontein and all but absent at Nelspoort.

Reinecke (1966) attempted to establish concurrent infestations of G. pachyscelis, T. colubriformis, H. contortus, O. circumcincta, N. spathiger and O. columbianum in 18 sheep. He recovered from 1 to 40 N. spathiger from 11 sheep and none from the remaining 7 animals. The other species, although not established in uniform numbers, were consistently present.

Reinecke does not comment on the possible interaction of these species, but it seems reasonable to assume that one or more of the other worms had a suppressive effect on N. spathiger.

Worm burdens in lambs, yearlings and older sheep may be kept at a low level by strategic or preventive dosing, as advocated by Gordon (1948). In the Karoo this should be applied as follows:

1. March: Early autumn drenching to reduce overwintering fourth stage larvae of H. contortus (eastern
parts of the Karoo) as well as the increasing burdens of N. spathiger and T. falculatus.
2. July: Mid-winter drenching to prevent further increase of N. spathiger and T. falculatus burdens during late winter.

The drenching of pregnant ewes in lamb in March and July protects spring and autumn lambs against parasitic invasion.

Tactical drenching can be instituted in the summer after more than 25 mm rainfall and if sheep show visible clinical signs of parasitism. Drenching at this time of the year is especially important in the eastern parts of the Karoo to reduce high burdens of H. contortus; in the more arid regions it combats high burdens of N. spathiger.

Summary

1. The epizootiology of nematode parasites of sheep was investigated at three stations in the Karoo, viz. Grootfontein, Nelspoort and Klerefontein.
2. Slaughter trials were conducted on sheep on a continuous grazing system and on sheep grazing the pasture for limited periods of time.
3. The dominant parasites found in the Karoo were T. falculatus and N. spathiger. The importance of H. contortus and O. columbianum decreases as one passes from the moister regions of the east to the arid regions in the west. O. circumcincta was found in insignificant numbers in both experiments.
4. During spring and summer a monthly rainfall of 25 mm or more is adequate for H . contortus to maintain itself in reasonable numbers.
5. T. falculatus and N. spathiger increased during the cool months of the year with or without a monthly rainfall of 50 mm .
6. Dry warm conditions from October to March with mean monthly mean temperatures in excess of $20^{\circ} \mathrm{C}$ are totally unsuitable for T. falculatus and even a rainfall of more than 50 mm resulted in a very slight increase in worm burdens.
7. Infective larvae of N. spathiger showed a higher resistance to heat and desiccation than those of T. falculatus; it is present in higher numbers and in more lambs slaughtered during the spring and summer period.
8. Experimental data confirm the author's hypothesis that either H. contortus or O. columbianum has a deleterious effect on N. spathiger.
9. Strategic drenching is recommended for March and July while tactical drenching during the summer period depends on favourable climatic conditions and the development of clinical signs of parasitism.

Acknowledgements

The writer is indebted to the Chief, Veterinary Services, (Field) for permission to carry out these experiments. Thanks are also due to the Chief, Agricultural Technical Services (Karoo) and the Superintendent, Department of Health, Nelspoort for their permission to conduct these trials at Grootfontein Agricultural College, at Klerefontein, and at Nelspoort Sanatorium respectively.

I particulary want to thank Dr. R. K. Reinecke and Dr. Anna J. M. Verster, Section of Parasitology, Onderstepoort, for their advice and assistance in the preparation of this paper.
I am also deeply indebted to the following: Mrs. J. Gerber, Mrs. A. van Rensburg, Mrs. L. Viljoen and Mr. E. C. Bergh, for their able technical assistance, Mrs. R. Stoker and Miss L. Burger for the typing of this paper and Mrs. L. Viljoen for preparing numerous graphs.

References

ACOCKS, J. P. H., 1953. Veld types of South Africa. Bot. Surv. S. Afr., Memoir. No. 28. Gov. Print., Pretoria.
ANDERSON, P. J. S. 1968. The anthelmintic efficacy of Pyrantel tartrate, Il S. Afr. vet. med. Ass., 39, 47-55.
BARROW, D. B., 1964. The epizootiology of nematode parasites of sheep in the Border area. Onderstepoort J. vet. Res., 31, 151-162.
BAXTER, J. T., 1957. Some effects of Nematodirus disease in Northern Ireland. Vet. Rec., 69, 1007-1010.
BAXTER, J. T., 1958. On the pattern of Nematodirus infection on pasture and in lambs. Res. exp. Rec. Minist. Agric. Nth. Ire., 7, 147-155.
BAXTER, J. T., 1959, Nematodirus spp. infection and resistance in lambs. Vet. Rec., 71, 424.
BRUNSDON, R. V., 1960. Studies on the epizootiology of Nematodirus infection in sheep in New Zealand. N. Z. ./l agric. Res., 3, 772-778.
BRUNSDON, R. V., 1962a. Age resistance of sheep to infestation with the nematodes Nematodirus filicollis and N. spathiger. N. Z. vet. J., 10, 1-6.

BRUNSDON, R. V., 1962b. The effect of nutrition on age resistance of sheep to infestation with Nematodirus spp. N. Z. vet. J., 10, 123-127.

BRUNSDON, R. V., 1963a. The seasonal availability to grazing sheep of the infective trichostrongyle larvae on pasture. N. Z. vet. J., 11, 86-89.
BRUNSDON, R. V., 1963b. Nematodirus infestation in lambs. The importance of prepatent infestation in the stimulation of resistance. N. Z. vet. J., 11, 107-112.
CROFTON, H. D., 1948. The ecology of immature phases of trichostrongyle nematodes. II. The effect of climatic factors on the availability of infective larvae of T. retortaeformis to the host. Parasitology, 39, 26-38.
CROFTON, H. D., 1949. The ecology of immature phases of trichostrongyle nematodes. III. Larval populations on hill pastures. Parasitology, 39, 274-280.
CROFTON, H. D., 1952. The ecology of immature phases of trichostrongyle nematodes. IV. Larval populations on Lowland pastures. Parasitology, 42, 77-84.
CROFTON, H. D., 1954. The ecology of immature phases of trichostrongyle nematodes. V. The estimation of pasture infestation. Parasitology, 44, 313-324.
CROFTON, H. D., 1957. Nematode parasite population in sheep in Lowland farms. III. The seasonal incidence of species. Parasitology, 47, 304-318.
CROFTON, H. D., 1963. Nematode parasite population in sheep and on pasture. Tech. Commun. Commonw. Bur. Helminth., No. 35, pp. 104.
DOUVRES, F. W., 1956. Morphogenesis of the parasitic stages of Ostertagia ostertagi, a nematode parasite of cattle. J. Parasit., 42. 626-635.

DOUVRES, F. W., 1957a. The morphogenesis of the parasitic stages of Trichostrongylus axei and Trichostrongylus colubriformis, nematode parasites of cattle. Proc. helminth. Soc. Wash., 24, 4-14.
DOUVRES, F. W,, 1957b. Keys to the identification and differentiation of the immature stages of gastro-intestinal nematodes of cattle. Am. J. vet. Res., 18, 81-85.
DUNSMORE, J. D., 1965. Ostertagia spp. in lambs and pregnant ewes. J. Helminth., 39, 159-184.
FORSYTH, B. A., 1953. Epidemiology studies on helminthosis of sheep in southern New South Wales. Aust. vet. I., 29, 349-356.

GIBSON, T. E., 1959. The survival of the free-living stages of Nematodirus spp. on pasture herbage. Ver. Rec., 71 , 362-366.
GORDON, H. McL., 1948. The epidemiology of parasitic diseases, with special reference to studies with nematode parasites of sheep. Aust. vet. J., 24, 17-45.
GORDON, H. McL., 1953. The epidemiology of helminthosis in sheep in winter-rainfall regions of Australia. I. Preliminary observations. Aust. ver, J., 29, 337-348.
GORDON, H. McL., 1958. The epidemiology of helminthosis in sheep in winter-rainfall regions of Australia. II. Western Australia. Aust, vet. J., 34, 5-19.
HOBBS, W. B., 1961. Helminth research in South Africa. I. Seasonal incidence of nematode parasites in cattle in the Natal coastal area. Jl S. Afr. vet. med. Ass., 32, 151-155.
KATES, K. C., 1950. Survival on pasture of free-living stages of some gastro-intestinal nematodes of sheep. Proc. helminth. Soc. Wash., 17, 39-58.
KATES, K. C. \& TURNER, J. H., 1953. An experiment on the pathogenic interaction of Haemonchus contortus and Nematodirus spathiger in lambs. J. Parasit., 39 Sec. 2, 35.
KATES, K. C. \& TURNER, J. H., 1955. Observations on the life-cycle of Nematodirus spathiger, a nematode parasite in the intestine of sheep and other ruminants. Am. J. vet. Res., 16, 105-115.
LEVINE, N. D., 1963. Weather, climate and the bionomics of ruminant nematode larvae. Adv. vet. Sci, 8, 215-261.
MÖNNIG, H. O,, 1927. The life-histories of TrichostrongyIus instabilis and T. rugatus of sheep in South Africa. Rep. vet. Res. Un. S. Afr., 11/12, 229-251.
MÖNNIG, H. O., 1930. Studies on the bionomics of the free-living stages of Trichostrongylus spp. and other parasitic nematodes. Rep. vet. Res, Un. S. Afr., 16, 175-198.
MÖNNIG, H. O., 1942. Skaapwurms in die Karoo. Die rol van Nematodirus. Jl S. Afr. vet. med. Ass., 13, 111-112.
MORGAN, D. O., PARNELL, I. W. \& RAYSKI, C., 1951. The seasonal variations in the worm burden of Scottish hill sheep. J. Helminth., 25. 172-212.
MULLER, G. L., 1968. The epizootiology of helminth infestation in sheep in the South-Western Districts of the Cape. Onderstepoort J. vet. Res., 35, 159-194.
PARNELL, I. W., 1962. Observations on the seasonal variations in the worm burdens of young sheep in South Western Australia. J. Helminth., 36, 161-188.
PARNELL, I. W., RAYSKI, C., DUNN, A. M. \& MCINTOSCH, G. M., 1954. A survey of the helminths of Scottish hill sheep. J. Helminth., 28, 53-110.
REINECKE, R. K., 1961. Helminth Research in South Africa. III. The diagnosis of nematode parasites for worm survey purposes. Il S. Afr, vet. med. Ass., 32, 167-173.
REINECKE, R. K., 1964. Epizootiology and control of nematode parasites of sheep. Jl S. Afr. vet. med. Ass., 35, 603-608.
REINECKE, R. K., 1966. The value of uniform worm burdens in the larval anthelmintic test. Jl S. Afr. vet, med. Ass., 37, 133-142.
REINECKE, R. K., 1967. Improved methods for the recovery of parasitic nematodes at autopsy. Onderstepoort J. vet. Res., 34, 547-562.
RIEK, R. F., ROBERTS, F. H. S., \& O'SULLIVAN, P. J., 1953. Further observations on the epidemiology of parasitic gastıo-enteritis of cattle. Aust. vet. J., 29, 122-132.
ROBERTS, F. H. S., O'SULLIVAN, P. J. \& RIEK, R. F., 1952. The epidemiology of parasitic gastro-enteritis of cattle. Aust. J. agric. Res., 3, 187-226.
ROGERS, W. P., 1940. The effect of environmental conditions on the accessibility of third stage trichostrongyle larvae to grazing animals. Parasitology, 32, 208-225.
ROSSITER, L. W., 1964. The epizootiology of nematode parasites of sheep in the coastal area of the Eastern Province. Onderstepoort J. vet. Res., 31, 143-150.
RYKSEN, W. J., 1939. The occurrence and pathogenicity of Nematodirus spp. in arid areas. Jl S. Afr. vet. med. Ass., 10, 29-31.
SENGER, C. M., 1965. Development of nematodirid eggs in drying faecal material. Proc. helminth. Soc. Wash., 32 , 102. (Abstr. Helminth, Abstr., 376, 1965).

SENGER, C. M. \& FORRESTER, D. J., 1962. Survival of nematodirid larvae at high temperatures. (Abstr. J. Parasit., 48, 2, Sect. 2, 50). (Abstr. Helminth. Abstr., 33, 193, 1964.)
SENGER, C. M. \& RUFF, R. L., 1962. Survival and development of nematodirid ova in pellets under drying and freezing conditions. (Abstr. J. Parasit., 48, 2, Sect. 2, 50). (Abstr. Helminth. Abstr,, 34, 376, 1965).
SHONE, D. K. \& PHILIP, J. R., 1967. Anthelmintic and toxicity studies with tetramisole. 1. Anthelmintic efficacy. Jl S. Afr. vet. med. Ass., 38, 165-176.
SNEDECOR, G. W. \& COCHRAN, W. G., 1967. Statistical methods. Chapter XI. p. 329. Ames: Iowa State Univ. Press.
SPEDDING, C. R. W., BROWN, T. H. \& WILSON, I. A. N., 1958. Observations on Nematodirus spp. infestation in sheep. Vet. Rec., 70, 229-232.
TAYLOR, E. L., 1939. Technique for the estimation of pasture infestation by strongyloid larvae. Parasitology, 31, 473-478.
TETLEY, J. H., 1949. Rhythms in nematode parasitism of sheep. Bull. N. Z. Dep. scient. ind. Res., No. 96.
TETLEY, J. H., 1959a. The seasonal availability to sheep of infective nematode larvae on pasture. J. Helminth., 33, 281-288.
TETLEY, J. H., 1959b. The availability of the infective stages of nematode parasites to sheep in early spring. J. Helminth., 33, 289-292.

THOMAS, R. J., 1959. Field studies on the seasonal incidence of Nematodirus battus and N. filicollis in sheep. Parasitology, 49, 387-410.
THOMAS, R. J., 1968. The epizootiology of nematode parasites of sheep in the Highveld. I. Worm egg counts in lambs. Jl S. Afr. vet, med. Ass., 39, 27-31.
THOMAS, R. J. \& STEVENS, A. J., 1960. Ecological studies on the development of the pasture stages of Nematodirus battus and N. filicollis nematode parasites of sheep. Parasitology, 50, 31-49.
TURNER, J. H., KATES, K. C., SINCLAIR, L. R. \& FOSTER, A.O., 1952. Influence of Haemonchus on the course, of Nematodirus infections in lambs on pasture. J. Parasit., 38 (Suppl.) 13-14.
TURNER, J. H. \& COLGLAZIER, M. L., 1954. Control of pasture acquired infection of Nematodirus spathiger and Haemonchus contortus in lambs with Phenothiazine salt mixture. Am. J. vet. Res., 15, 564-573
VEGLIA, F., 1915. The anatomy and life-history of the Haemonchus contortus (Rud.) Rep. vet. Res. Un. S. Afr., 3/4, 347-500.
VEGLIA, F., 1923. Preliminary notes on the life history of Oesophagostomum columbianum. Rep. vet. Res. Un. S. Afr., 9/10, 811-821.
VILJOEN, J. H., 1964. The epizootiology of the nematode parasites of sheep in the Karoo. Onderstepoort J. vet. Res., 31, 133-142.

[^0]: Received for publication on 1 July 1969. - Editor

[^1]: * Lambs were born within 7 days of the day indicated and remained on pasture until killed

