
Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS64

THE IMPACT OF TRIGGERS ON FORENSIC ACQUISITION AND
ANALYSIS OF DATABASES

W. K. Hauger* and M. S. Olivier**

* ICSA Research Group, Department of Computer Science, Corner of University Road and Lynnwood
Road, University of Pretoria, Pretoria 0002, South Africa E-mail: whauger@gmail.com
** Department of Computer Science, Corner of University Road and Lynnwood Road, University of
Pretoria, Pretoria 0002, South Africa E-mail: molivier@cs.up.ac.za

Abstract: An aspect of database forensics that has not received much attention in the academic
research community yet is the presence of database triggers. Database triggers and their
implementations have not yet been thoroughly analysed to establish what possible impact they could
have on digital forensic analysis methods and processes. This paper firstly attempts to establish if
triggers could be used as an anti-forensic mechanism in databases to potentially disrupt or even thwart
forensic investigations. Secondly, it explores if triggers could be used to manipulate ordinary database
actions for nefarious purposes and at the same time implicate innocent parties. The database triggers
as defined in the SQL standard were studied together with a number of database trigger
implementations. This was done in order to establish what aspects of a trigger might have an impact
on digital forensic analysis. It is demonstrated in this paper that certain database forensic acquisition
and analysis methods are impacted by the possible presence of non-data triggers. This is specific to
databases that provide non-data trigger implementations. Furthermore, it finds that the forensic
interpretation and attribution processes should be extended to include the handling and analysis of all
database triggers. This is necessary to enable a more accurate attribution of actions in all databases
that provide any form of trigger implementations.

Keywords: database forensics, database triggers, digital forensic analysis, methods, processes.

1. INTRODUCTION

Forensic science, or simply forensics, is today widely
used by law enforcement to aid them in their
investigations of crimes committed. Forensic science
technicians, which are specifically trained law
enforcement officials, perform a number of forensically
sound steps in the execution of their duties. These steps
include the identification, collection, preservation and
analysis of physical artefacts and the reporting of results.
One critical part is the collection and preservation of
physical artefacts. The collection needs to be performed
in such a manner that the artefacts are not contaminated.
The artefacts then need to be preserved in such a way that
their integrity is maintained. The reason why this part is
so critical is so that any evidence gained from the
analysis of these artefacts can not be contested. The
evidence found would be used to either implicate or
exonerate any involved parties. Any doubt about the
integrity of the artefacts collected could lead to the
evidence being dismissed or excluded from legal
proceedings.

In digital forensics these steps are more commonly
referred to as processes. There have been a number of
process models developed to guide the digital forensic
investigator [1]. The digital forensic process that matches
the collection and preservation step in the physical world
is the acquisition process. Traditionally, this process
involves the making of exact digital copies of all relevant
data media identified [19]. However, database forensics
needs to be performed on information systems that are

becoming increasingly complex. Several factors influence
the way that data is forensically acquired and how
databases are analysed. They include data context,
business continuity, storage architecture, storage size and
database models. These factors and their influence on
database forensics are examined further in Section 2.

Database triggers are designed to perform automatic
actions based on events that occur in a database. There is
a wide variety of commission and omission actions that
can be performed by triggers. These actions can
potentially have an effect on data inside and outside of
the DBMS. Thus triggers and the actions they perform
are forensically important. This was already recognised
by Khanuja and Adane in a framework for database
forensic analysis they proposed [4].

The effect that triggers can have on data raises the
concern that they could compromise the integrity of the
data being investigated. Could triggers due to their nature
in combination with the way databases are forensically
analysed lead to the contamination of the data that is
being analysed? Another concern revolves around the
automatic nature of actions performed by triggers. Can
the current attribution process correctly identify which
party is responsible for which changes? This paper
attempts to establish if these concerns around triggers are
justified.

The database trigger is defined in the ISO/IEC 9075 SQL
standard [5]. Triggers were first introduced in the 1999
version of the standard and subsequently updated in the

Based on: “The Role of Triggers in Database Forensics”, by Werner Hauger and Martin Olivier which appeared in the Proceedings of Information Security South
African (ISSA) 2014, Johannesburg, 13 & 14 August 2014. © 2014 IEEE

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 65

2008 version. The specification could thus be examined
to determine on a theoretical basis if there is reason for
concern. However, the standard is merely used as a
guideline by DBMS manufacturers and there is no
requirement to conform to the standard. Certain
manufacturers also use feature engineering to gain a
competitive advantage in the marketplace [6]. They might
implement additional triggers based on actual feature
requests from high profile clients. Standard triggers might
be enhanced or other additional triggers implemented
based on perceived usefulness by the manufacturers.
These features could be used to overcome certain
limitations in their DBMS implementations. It is
therefore necessary to study actual trigger
implementations, rather than the standard itself.

There are thousands of database implementations
available and to investigate the trigger implementations
of all those databases that use triggers would be
prohibitive. Thus, the database trigger implementations of
a few proprietary and open-source DBMSs were chosen.
The DBMSs investigated were Oracle, Microsoft SQL
Server, Mysql, PostgreSQL, DB2, SyBase and SQLite.
These selected relational database management systems
(RDBMS) are widely adopted in the industry. SQLite is
particularly interesting since it is not a conventional
database. SQLite has no own server or running process,
but is rather a single file that is accessed via libraries in
the application using it. SQLite is being promoted as a
file replacement for local information storage. Some well
known applications such as Adobe Reader, Adobe
Integrated Runtime (AIR), Firefox and Thunderbird use
SQLite for information storage. SQLite is also very
compact and thus well suited for use in embedded and
mobile devices. Mobile operating systems iOS and
Android make use of SQLite [28,29].

The dominance of the selected RDBMSs in the market
means that they would be encountered fairly often by the
general digital forensic investigator. These RDBMSs are
also the most popular based on the number of web pages
on the Internet according to solid IT's ranking method [7].
The official documentation of these RDBMSs was used
to study their trigger implementations. The latest
published version of the documentation was retrieved
from the manufacturer's website [8-12,25,26]. At the time
of the investigation the latest versions available were as
follows: Oracle 11.2g, Microsoft SQL Server 2012,
Oracle Mysql5.7, PostgreSQL 9.3, IBM DB2 10, Sybase
ASE 15.7 and SQLite 3.8.6.

This article is a reworked and extended version of a paper
presented by the authors at the Information Security
South Africa (ISSA) 2014 conference [30]. The popular
databases Sybase and SQLite have been added to the
investigation. The INSTEAD OF trigger which was later
added to the standard is now also covered. This particular
trigger raises additional challenges that are discussed
under commission and omission.

Section 2 provides the database forensic background
against which database triggers will be investigated.
Section 3 describes the database trigger implementations
investigated and is divided into four sub-sections: Firstly
the triggers defined in the standard were explored. Then
the implementations of the standard triggers by the
selected DBMSs were examined. Thereafter, other non-
standard triggers that some DBMSs have implemented
were looked at. For each type of trigger the question was
asked as to how the usage of that particular trigger could
impact the forensic process or method. Lastly it was
established on which objects triggers could be applied.
Section 4 asks whether the current forensic processes
would correctly identify and attribute actions if triggers
were used by attackers to commit their crimes. Through
the use of a few hypothetical examples as to how triggers
could be used by attackers to commit their crimes, this
question was investigated. Section 5 concludes this paper
and contemplates further research.

2. BACKGROUND

Historically, digital forensics attempts to collect and
preserve data media in a static state, which is referred to
as dead acquisition [19]. Typically, this process starts
with isolating any device that is interacting with a data
medium by disconnecting it from all networks and power
sources. Then the data medium is disconnected or
removed from the device and connected via a write-
blocker to a forensic workstation. The write-blocker
ensures that the data medium cannot be contaminated
while being connected to the forensic workstation.
Software is then used to copy the contents to a similar
medium or to an alternative medium with enough
capacity. Hashing is also performed on the original
content with a hash algorithm such as MD5 or SHA-1
[19]. The hashes are used to prove that the copies made
are exact copies of the originals and have not been
altered. The hashes are also used throughout the analysis
process to confirm the integrity of the data being
examined. Once the copies have been made, there is no
more need for the preservation of the originals [2].
However, if the data being examined is to be used to
gather evidence in legal proceedings, some jurisdictions
may require that the originals are still available.

A different approach is to perform live acquisition. This
involves the collection and preservation of both volatile
data (e.g. CPU cache, RAM, network connections) and
non-volatile data (e.g. data files, control files, log files).
Since the acquisition is performed while the system is
running, there are some risks that affect the reliability of
the acquired data. These risks however can be mitigated
by employing certain countermeasures [20].

In today's modern information systems there are several
instances where it has become necessary to perform live
acquisition. Firstly, in a permanently switched-on and
connected world, the context around the imaged data may
be required to perform the forensic analysis. This

Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS66

includes volatile items such a running processes, process
memory, network connections and logged on users [19].
One area where the context gained from live acquisition
is particularly useful is when dealing with possibly
encrypted data. This is because the encrypted data might
already be open on a running system and the encryption
keys used cached in memory [21]. The increasing
prevalence of encryption usage to protect data by both
individuals and organisations increases the need for more
live acquisitions to be performed.

Another instance where live acquisition is performed is
when business continuity is required. For many
organisations information systems have become a critical
part of their operations. The seizure or downtime of such
information systems would lead to great financial losses
and damaged reputations. The shutdown of mission
critical systems might even endanger human life. During
forensic investigations, such important information
systems can thus no longer be shutdown to perform
imaging in the traditional way [19].

The complex storage architecture of today's information
systems also necessitates the use of live acquisition
techniques. To ensure availability, redundancy, capacity
and performance, single storage disks are no longer used
for important applications and databases. At least a
redundant array of independent disks (RAID) or a full
blown storage area network (SAN) is used. Both of these
technologies group a variable number of physical storage
disks together using different methodologies. They
present a logical storage disk to the operating system that
is accessible on the block-level.

In such a storage configuration a write-blocker can no
longer be efficiently used. There simply may be too many
disks in the RAID configuration to make it cost and time
effective to image them all [19]. In the case of a SAN, the
actual physical disks holding the particular logical disk
might not be known, or might be shared among multiple
logical disks. These other logical disks may form part of
other systems that are unrelated to the application or
database system and should preferably not be affected.
Attaching the disks in a RAID configuration to another
controller with the same configuration can make the data
appear corrupt and impossible to access. RAID controller
and server manufacturers only support RAID migration
between specific hardware families and firmware
versions. The same would hold true for the imaged disks
as well.

While it is still technically possible to image the logical
disk the same way as a physical disk, it may not be
feasible to do so either. Firstly the size of the logical disk
may be bigger than the disk capacity available to the
forensic investigator [24]. Secondly the logical disk may
hold a lot of other unrelated data, especially in a
virtualised environment. Lastly organisations may be
running a huge single application or database server
containing many different applications and databases.

Due to hardware, electricity and licensing costs, the
organisation may prefer this to having multiple smaller
application or database servers.

Lastly, database systems have their own complexities that
affect digital forensic investigations. The models used by
the database manufacturers are tightly integrated into
their database management systems (DBMS) and are
many times of a proprietary nature. Reverse engineering
is purposely being made difficult to prevent their
intellectual property being used by a competitor.
Sometimes reverse engineering is explicitly prohibited in
the licensing agreements of the usage of the DBMSs. To
forensically analyse the raw data directly is thus not very
easy, cost-effective or always possible. The data also
needs to be analysed in conjunction with the metadata
because the metadata not only describes how to interpret
the data, but can also influence the actual seen
information [3]. The usage of the DBMS itself, and by
extension the model it contains, has become the necessary
approach to forensically analyse databases.

The database analysis can be performed in two ways: an
analysis on site or an analysis in a clean laboratory
environment. On site the analysis is performed on the
actual system running the data base. In the laboratory a
clean copy of the DBMS with the exact same model as
used in the original system is used to analyse the data and
metadata acquired [3]. Both ways can be categorised as
live analysis due to being performed on a running system.
In the first instance the real system is used, while in the
second a resuscitated system in a more controlled
environment is used e.g. single user, no network
connection.

Due to all these complexities associated with applications
and particularly databases, live acquisition is the favoured
approach when dealing with an information system of a
particular size and importance. Fowler documents such a
live acquisition in a real world forensic investigation he
performed on a Microsoft SQL Server 2005 database
[23]. It should be noted that both the operating system
and the DBMS are used to access and acquire data after
being authenticated. To preserve the integrity of the
acquired data, he uses his own clean tools that are stored
on a read-only medium [20]. However, the mere
accessing of the system will already cause changes to the
data, thus effectively contaminating it before it can be
copied. Since all the operations performed during the
acquisition are documented, they can be accounted for
during a subsequent analysis. Hence, this kind of
contamination is acceptable as it can be negated during
analysis.

Against this background of how forensic acquisition and
analysis is performed on a database system, triggers are
examined.

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 67

3. TRIGGER IMPLEMENTATIONS

This section firstly examines what types of triggers are
defined in the standard and how they have been
implemented in the DBMSs surveyed. It then looks at
other types of triggers that some DBMSs have
implemented. Lastly, the database objects that triggers
can be applied to, are examined. Throughout the section,
the possible impact on database forensics is explored.

3.1 Definition

The ISO/IEC 9075 standard part 2: Foundation defines a
trigger as an action or multiple actions taking place as a
result of an operation being performed on a certain
object. The operations are defined as being changes made
to rows by inserting, updating or deleting them. Therefore
three trigger types are being defined: the insert trigger,
the delete trigger and the update trigger. The action can
take place immediately before the operation, instead of
the operation or immediately after the operation. A
trigger is thus defined as a BEFORE trigger, an
INSTEAD OF trigger or an AFTER trigger. The action
can take place only once, or it can occur for every row
that the operation manipulates. The trigger is thus further
defined as a statement-level trigger or as a row-level
trigger.

3.2 Standard triggers

The first aspect that was looked at was the conformance
to the ISO/IEC 9075 SQL standard regarding the type of
triggers. All DBMSs surveyed implement the three types
of data manipulation language (DML) triggers defined.
The only implementations that match the specification
exactly in terms of trigger types are those of Oracle and
PostgreSQL. They have implemented all combinations of
BEFORE/AFTER/INSTEAD OF/Statement-level/Row-
level triggers. The others either place restrictions on the
combinations or implement only a subset of the definition
from the specification. DB2 has no BEFORE statement-
level trigger, but all the other combinations are
implemented. SQL Server and Sybase do not implement
BEFORE triggers at all. Mysql and SQLite do not have
any statement-level triggers.

PostgreSQL goes one step further and differentiates
between the DELETE and TRUNCATE operation.
Because the standard only specifies the DELETE
operation, most databases will not execute the DELETE
triggers when a TRUNCATE operation is performed.
Depending on the viewpoint, this can be advantageous or
problematic. It allows for the quick clearing of data from
a table without having to perform possibly time
consuming trigger actions. However, if a DELETE
trigger was placed on a table to clean up data in other
tables first, a TRUNCATE operation on that table might
fail due to referential integrity constraints. The linked
tables will have to be truncated in the correct order to be
successfully cleared. PostgreSQL allows additional

TRUNCATE triggers to be placed on such linked tables,
facilitating easy truncation of related tables.

Since all three types of DML triggers defined by the
standard rely on changes of data taking place i.e. either
the insertion of new data or the changing or removal of
existing data, the standard methods employed by the
forensic analyst are not impacted. These methods are
specifically chosen because they do not cause any
changes and can be used to create proof that in fact no
changes have occurred.

Some members of the development community forums
have expressed the need for a select trigger [13]. A select
trigger would be a trigger that fires when a select
operation takes place on the object on which it is defined.
None of the DBMSs surveyed implement such a select
trigger. Microsoft however is working on such a trigger
and its researchers have presented their work already
[14]. Oracle on the other hand has created another
construct that can be used to perform one of the tasks that
the developers want to perform with select triggers:
manipulate SQL queries that are executed. The construct
Oracle has created is called a group policy. It
transparently applies the output from a user function to
the SQL executed on the defined object for a certain user
group. The function can be triggered by selecting,
inserting, updating or deleting data. The good news for
the forensic analyst is that these functions will not be
invoked for users with system privileges. So as long as
the forensic analyst uses a database user with the highest
privileges, the group policies will not interfere with his
investigations.

The existence of a select trigger would have greatly
impacted on the standard methods used by the database
forensic analyst. One of the methods used to gather data
and metadata for analysis is the execution of SQL select
statements on system and user database objects such as
tables and views. This would have meant that an attacker
could have used such a trigger to hide or even worse
destroy data. A hacker could use select triggers to booby-
tap his root kit. By placing select triggers on sensitive
tables used by him, he could initiate the cleanup of
incriminating data or even the complete removal of his
root kit should somebody become curious about those
tables and start investigating.

3.3 Non-standard triggers

The second aspect that was investigated was the
additional types of triggers that some DBMSs define. The
main reason for the existence of such extra trigger types
is to allow developers to build additional and more
specialised auditing and authentication functionality, than
what is supplied by the DBMS. However that is not the
only application area and triggers can be used for a
variety of other purposes. For example instead of having
an external application monitoring the state of certain
elements of the database and performing an action once

Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS68

certain conditions become true, the database itself can
initiate these actions.

The non-standard triggers can be categorised into two
groups: data definition language (DDL) triggers and other
non-data triggers. From the DBMSs investigated, only
Oracle and SQL Server provide non-standard triggers.

DDL triggers: The first group of non-standard triggers
are the DDL triggers. These are triggers that fire on
changes made to the data dictionary with DDL SQL
statements e.g. create, drop, alter etc. Different DBMSs
define different DDL SQL statements that can trigger
actions. SQL Server has a short list that contains just the
basic DDL SQL statements. Oracle has a more extensive
list and also a special DDL indicator that refers to all of
them combined. Since DDL SQL statements can be
applied to different types of objects in the data dictionary,
these triggers are no longer defined on specific objects.
They are rather defined on a global level firing on any
occurrence of the event irrespective of the object being
changed. Both SQL Server and Oracle allow the scope to
be set to a specific schema or the whole database.

These triggers once again rely on data changes being
made in the database to fire and thus pose no problem of
interference during the forensic investigation.

Non-data triggers: The second group of non-standard
triggers are non-data triggers. These are triggers that fire
on events that occur during the normal running and usage
of a database. Since these triggers do not need any data
changes to fire, they potentially have the biggest impact
on the methods employed by the forensic analyst.
Fortunately the impact is isolated because only a few
DBMSs have implemented such triggers.

SQL Server, Oracle and Sybase define a login trigger.
This trigger fires when a user logs into the database. SQL
Server's login trigger can be defined to perform an action
either before or after the login. Authentication however
will be performed first in both cases, meaning only
authenticated users can activate the trigger. That means
the login trigger can be used to perform conditional login
or even completely block all logins. An attacker could
use this trigger to easily perform a denial of service
(DoS) attack. Many applications today use some kind of
database connection pool that dynamically grows or
shrinks depending on the load of the application.
Installing a trigger that prevents further logins to the
database would cripple the application during high load.
It would be especially bad after an idle period where the
application would have reduced its connections to the
minimum pool size.

Oracle's login trigger only performs its action after
successful login. Unfortunately that distinction does not
make a significant difference and this trigger can also be
used to perform conditional login or completely prevent
any login. That is because the content of the trigger is

executed in the same transaction as the triggering action
[16]. Should any error occur in either the triggering
action or the trigger itself, then the whole transaction will
be rolled back. So simply raising an explicit error in the
login trigger will reverse the successful login.

Sybase distinguishes between two different kinds of login
triggers. The first is the login-specific login trigger. The
trigger action is directly linked to a specific user account.
This kind of trigger is analogous to the facility some
operating systems provide, which can execute tasks on
login. The second kind is the global login trigger. Here
the trigger action will be performed for all valid user
accounts. Sybase allows both kinds of login triggers to be
present simultaneously. In this case the global login
trigger is executed first and then the login-specific trigger
[27].

Both kinds of login triggers are not created with the
standard Sybase SQL trigger syntax. Instead a two-step
process is used. First a normal stored procedure is
created, that contains the intended action of the trigger.
Then this stored procedure is either linked to an
individual user account or made applicable to all user
accounts with built-in system procedures. Like with
Oracle, the action procedure is executed after successful
login, but within the same transaction. Thus it can be
similarly misused to perform a DoS attack.

Microsoft has considered the possibility of complete
account lockout and subsequently created a special
method to login to a database that bypasses all triggers.
Oracle on the other hand has made the complete
transaction rollback not applicable to user accounts with
system privileges or the owners of the schemas to prevent
a complete lockout. Additionally, both SQL Server and
Oracle have a special kind of single-user mode the
database can be put into, which will also disable all
triggers [15,16]. Sybase on the other hand has no easy
workaround and the database needs to be started with a
special flag to disable global login triggers [27].

A hacker could use this trigger to check if a user with
system privileges, that has the ability to look past the root
kits attempts to hide itself, has logged in. Should such a
user log in, he can remove the root kit almost completely,
making everything seem normal to the user even on
deeper inspection. He can then use Oracle's BEFORE
LOGOFF trigger to re-insert the root kit, or use a
scheduled task [17] that the root kit hides to re-insert
itself after the user with system privileges has logged off.

Another non-data trigger defined by Oracle is the server
error trigger. This trigger fires when non-critical server
errors occur and could be used to send notifications or
perform actions that attempt to solve the indicated error.

The final non-data triggers defined by Oracle only have a
database scope due to their nature: the database role
change trigger, the database startup trigger and the

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 69

database shutdown trigger. The role change trigger refers
to Oracle's proprietary Data Guard product that provides
high availability by using multiple database nodes. This
trigger could be used to send notifications or to perform
configuration changes relating to the node failure and
subsequent switch over.

The database startup trigger fires when the database is
opened after successfully starting up. This trigger could
be used to perform certain initialisation tasks that do not
persist and subsequently do not survive a database restart.
The database shutdown trigger fires before the database is
shut down and could be used to perform cleanup tasks
before shutting down. These last two triggers can be
similarly exploited as the login and logoff triggers by a
hacker to manage and protect his root kit.

3.4 Trigger objects

The third aspect that was investigated was which
database objects the DBMSs allowed to have database
triggers. The standard generically defines that triggers
should operate on objects, but implies that the objects
have rows. It was found that all DBMSs allow triggers to
be applied to database tables. Additionally, most DBMSs
allow triggers to be applied to database views with certain
varying restrictions. Only Mysql restricts triggers to be
applied to tables only.

None of the DBMSs allow triggers to be applied to
system tables and views. Triggers are strictly available
only on user tables and views. Additionally, there are
restrictions to the kind of user table and user views that
triggers can be applied to.

This is good news for forensic investigators, since they
are very interested in the internal objects that form part of
the data dictionary. However, there is a move by some
DBMSs to provide system procedures and views to
display the data from the internal tables [22]. To protect
these views and procedures from possible user changes
they have been made part of the data dictionary. The
ultimate goal seems to be to completely remove direct
access to internal tables of the data dictionary.

This might be unsettling news for forensic investigators
as they prefer to access any data as directly as possible to
ensure the integrity of the data. It will then become
important to not only use a clean DBMS, but also a clean
data dictionary (at least the system parts). Alternatively
the forensic investigator first needs to show that the data
dictionary is uncompromised by comparing it to a known
clean copy [3]. Only then can he use the functions and
procedures provided by the data dictionary.

4. IDENTITY AND ATTRIBUTION

The login trigger example brings up another interesting
problem. Once the forensic investigator has pieced
together all the actions that occurred at the time when the

user with system privileges was logged in, the attribution
of those actions can be performed. Since the forensic
investigator can now make the assumption that the
picture of the events that took place is complete, he
attributes all the actions to this specific user. This is
because all the individual actions can be traced to this
user by the audit information. Without looking at triggers,
the investigator will miss, that the particular user was
completely unaware of certain actions that happened,
even though they were triggered and executed with his
credentials.

These actions can be categorised into two groups:
commission actions and omission actions. The
BEFORE/AFTER trigger can be used to commission
additional actions before or after the original operation is
performed. Since the original operation is still performed
unchanged, no omission actions can be performed. The
outcome of the original operation can still be changed or
completely reversed by actions performed in an AFTER
trigger, but those actions are still commission actions.
The INSTEAD OF trigger on the other hand can be used
to perform actions in both groups. Normally this trigger is
intended to commission alternative actions to the original
operation requested. Like the BEFORE/AFTER trigger, it
can also be used to commission actions in addition to the
original operation. But importantly, it provides the ability
to modify the original operation and its values. This
ability also makes it possible to either remove some
values or remove the operation completely. Operations
that were requested simply never happen and values that
were meant to be used or stored disappear. These removal
actions therefore fall into the omission action group.

Consider a database in a medical system that contains
patient medical information. An additional information
table is used to store optional information such as organ
donor consent, allergies etc. in nullable columns. This
system is used among other things to capture the
information of new patients being admitted to a hospital.
The admissions clerk carefully enters all the information
from a form that is completed by the patient or his
admitting partner. The form of a specific patient clearly
indicates that he is allergic to penicillin. This information
is dutifully entered into the system by the admissions
clerk.

However an attacker has placed an INSTEAD OF trigger
on the additional information table that changes the
allergy value to null before executing the original insert.
After admission, the medical system is then used to print
the patient's chart. A medical doctor then orders the
administration of penicillin as part of a treatment plan
after consulting the chart, which indicates no allergies.
This action ultimately leads to the death of the patient due
to an allergic reaction. An investigation is performed to
determine the liability of the hospital after the cause of
death has been established. The investigation finds that
the allergy was disclosed on the admissions form, but not
entered into the medical system. The admissions clerk

Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS70

that entered the information of the patient that died is
determined and questioned. The admissions clerk
however insists that he did enter the allergy information
on the form and the system indicated that the entry was
successful. However, without any proof substantiating
this, the admissions clerk will be found negligent.

Depending on the logging performed by the particular
database, there might be no record in the database that
can prove that the admissions clerk was not negligent.
The application used to capture the information might
however contain a log that shows a disparity between the
data captured and the data stored. Without such a log
there will possibly be only evidence to the contrary,
implying gross negligence on the part of the admissions
clerk. This could ultimately lead to the admissions clerk
being charged with having performed an act of omission.
However, should triggers be examined as part of a
forensic investigation, they could provide a different
perspective. In this example the presence of the trigger
can as a minimum cast doubts on the evidence and
possibly provide actual evidence to confirm the version
of events as related by the admissions clerk.

The next example shows commission actions by using a
trigger to implement the salami attack technique. An
insurance company pays its brokers commission for each
active policy they have sold. The commission amount is
calculated according to some formula and the result
stored in a commission table with five decimal precision.
At the end of the month, a payment process adds all the
individual commission amounts together per broker and
stores the total amount rounded to two decimals in a
payment table. The data from the payment table is then
used to create payment instructions for the bank.

Now an attacker could add an INSTEAD OF trigger on
the insert/update/delete operations of the commission
table which would get executed instead of the
insert/update/delete operation that was requested. In the
trigger, the attacker could truncate the commission
amount to two digits, write the truncated portion into the
payment table against a dormant broker and the two
decimal truncated amount together with the other original
values into the commission table. The banking details of
the dormant broker would be changed to an account the
attacker controlled and the contact information removed
or changed to something invalid so that the real broker
would not receive any notification of the payment.

When the forensic investigator gets called in after the
fraudulent bank instruction gets discovered, he will find
either of two scenarios: The company has an application
that uses database user accounts for authentication or an
application that has its own built-in authentication
mechanism and uses a single database account for all
database connections. In the first case, he will discover
from the audit logs that possibly all users that have access
in the application to manage broker commissions, have at
some point updated the fraudulent bank instruction.

Surely not all employees are working together to defraud
the company. In the second case, the audit logs will
attribute all updates to the fraudulent bank instruction to
the single account the application uses.

In both cases it would now be worthwhile to query the
data dictionary for any triggers that have content that
directly or indirectly refers to the payment table. Both
Oracle and SQL Server have audit tables that log trigger
events. If the trigger events correlate with the updates of
the payment table as indicated in the log files, the
investigator will have proof that the trigger in fact
performed the fraudulent payment instruction updates. He
can now move on to determine when and by whom the
trigger was created. Should no trigger be found, the
investigator can move on to examining the application
and its interaction with the database.

Another more prevalent crime that gets a lot of media
attention is the stealing of banking details of customers of
large companies [18]. The most frequent approach is the
breach of the IT infrastructure of the company and the
large scale download of customer information including
banking details. This normally takes place as a single big
operation that gets discovered soon afterwards. A more
stealthy approach would be the continuous leaking of
small amounts of customer information over a long
period.

Triggers could be used quite easily to achieve that at the
insurance company in our previous example. The attacker
can add an AFTER trigger on the insert/update operations
of the banking details table. The trigger takes the new or
updated banking information and writes it to another
table. There might already be such a trigger on the
banking details table for auditing purposes and so the
attacker simply has to add his part. To prevent any object
count auditing picking up his activities, the attacker can
use an existing unused table. There is a good chance he
will find such a table, because there are always features
of the application that the database was designed to have,
that simply were not implemented and might never be.
This is due to the nature of the dynamic business
environment the companies operate in.

Suppose every evening a scheduled task runs that takes
all the information stored in the table, puts it in an email
and clears the table. There is a possibility that some form
of email notification method has already been setup for
the database administrator's own auditing process. The
attacker simply needs to piggy back on this process and
as long as he maintains the same conventions, it will not
stand out from the other audit process. Otherwise, he can
invoke operating system commands from the trigger to
transmit the information to the outside. He can connect
directly to a server on the Internet and upload the
information if the database server has Internet
connectivity. Otherwise, he can use the email
infrastructure of the company to email the information to
a mailbox he controls.

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 71

The forensic analyst that investigates this data theft will
find the same two scenarios as in the previous example.
The audit information will point to either of the
following: All the staff members are stealing the banking
information together or somebody is using the business
application to steal the banking details with a malicious
piece of functionality. Only by investigating triggers and
any interaction with the table that contains the banking
information, will he be able to identify the correct party
responsible for the data leak.

The actual breach of the IT infrastructure and the
subsequent manipulation of the database could have
happened weeks or months ago. This creates a problem
for the forensic investigator that tries to establish who
compromised the database. Some log files he would
normally use might no longer be available on the system
because they have been archived due to space constraints.
If the compromise was very far back, some archives
might also no longer be available because for example the
backup tapes have already been rotated through and
reused. The fact that a trigger was used in this example is
very useful to the forensic investigator. The creation date
and time of a trigger can give him a possible beginning
for the timeline and more importantly the time window in
which the IT infrastructure breach occurred. He can then
use the log information he can still get for that time
window to determine who is responsible for the data
theft.

5. CONCLUSION

Two concerns were raised around the presence of
database triggers during forensic investigations. Can
triggers cause the contamination of the data being
analysed and can the actions performed by triggers be
correctly identified and attributed without analysing
triggers?

A contribution of this paper is a thorough survey of all
trigger types found in the most widely used relational
databases. The research found that database triggers are
generally defined to perform actions based on changes in
the database, be it on the data level or the data definition
level. This will normally not affect the work of a forensic
analyst, since he is primarily viewing information (be it
data or metadata) without making any changes.

5.1 Results

In contrast, the research also showed that some DBMS's
allow triggers to be set on the accessing of information. If
the forensic analyst works with an Oracle or SQL Server
database, he needs to consider the non-data triggers. He
should take great care in how he connects to the database
to prevent unintended changes from happening and thus
potentially having to do time consuming reconstruction to
get back to the initial state of the database.

Furthermore, the research demonstrated that triggers can
be used to facilitate malicious actions on the back of
normal application or operational actions on the database.
These changes would be executed in the context of the
initial change and the standard audit material would
attribute all changes to the same user. It is therefore
necessary to examine database triggers as part of the
forensic interpretation and attribution processes. All types
of triggers should be examined for out of the ordinary and
suspicious actions that relate to the compromised data.
This is needed to separate the user actions from the
automatic trigger actions.

5.2 Future Work

The current research being conducted is focused on
determining how to best analyse the different kinds of
triggers. A database under investigation may contain
several triggers. Many of those triggers, if not all of them,
may bear no relevance to the investigation. So a possible
starting point would be the ability to identify if any of
those triggers played a part in the specific data being
analysed. This can be accomplished by searching the
content of all triggers for the occurrence of database
objects that are being analysed. A paper proposing an
algorithmic approach to achieve this is to be presented at
the 2015 IFIP Working Group (WG) 11.9 conference on
Digital Forensics [31].

Attention also needs to be given to the fact that some
DMBSs allow the obfuscation of the trigger content. This
would make it difficult to determine what actions a
specific trigger performs and what database operations
would initiate them. It also makes the searching of the
content for database objects impossible. However, some
Oracle and SQL Server database versions have
obfuscation weaknesses that make it possible to retrieve
the clear text content from an obfuscated trigger.

Also further research needs to be conducted to determine
how to best perform forensic acquisition and analysis
when the database being investigated supports login
triggers. Since the login trigger is non-standard, the
implementations will differ between different databases.
Hence it will not be easy or even possible to establish a
common process. Any process that can be followed to
neutralise or circumvent any potentially interfering logon
triggers would be very database specific.

An aspect that has not been addressed in this paper is
what impact triggers have when the forensic investigator
does make intentional changes on a copy of the data. The
investigator could be testing a hypothesis, performing
data reduction, reconstructing deleted data or simply be
storing his results in a temporary table.

Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS72

6. REFERENCES

[1] M.M. Pollitt: “An Ad Hoc Review of Digital

Forensic Models”, Proceedings of the Second
International Workshop on Systematic Approaches to
Digital Forensic Engineering, Seattle, pp. 43-54,
April 2007.

[2] F. Cohen: Digital Forensic Evidence Examination,

Fred Cohen & Associates, Livermore, CA., 4th
edition, Chapter 2, p. 45, 2009.

[3] M.S. Olivier: “On metadata context in Database

Forensics”, Digital Investigation, Vol. 5 No. 3-4, pp.
115–123, 2009.

[4] H.K. Khanuja and D.S. Adane: “A framework for

database forensic analysis”, Computer Science &
Engineering, Vol. 2 No. 3, June 2012.

[5] ISO/IEC 9075-2, “Information technology -

Database languages - SQL - Part 2:Foundation
(SQL/Foundation) ”, 2011.

[6] C.R. Turner, A. Fuggetta, L. Lavazza and A.L. Wolf:

“A conceptual basis for feature engineering”, The
Journal of Systems and Software, Vol. 49 No. 1, pp.
3-15, 1999.

[7] “DB-Engines Ranking of Relational DBMS”.

Internet: http://db-
engines.com/en/ranking/relational+dbms, [1 May
2014].

[8] “CREATE TRIGGER Statement”, Oracle® Database

PL/SQL Language Reference 11g Release 2 (11.2).
Internet:
http://docs.oracle.com/cd/E11882_01/appdev.112/e1
7126/create_trigger.htm, [2 May 2014].

[9] “CREATE TRIGGER”, Data Definition Language

(DDL) Statements. Internet:
http://msdn.microsoft.com/en-
us/library/ms189799.aspx, [2 May 2014].

[10] “CREATE TRIGGER Syntax”, MySQL 5.7

Reference Manual. Internet:
http://dev.mysql.com/doc/refman/5.7/en/create-
trigger.html, [2 May 2014].

[11] “CREATE TRIGGER”, PostgreSQL 9.3.4

Documentation. Internet:
http://www.postgresql.org/docs/9.3/static/sql-
createtrigger.html, [2 May 2014].

[12] “CREATE TRIGGER”, DB2 reference information.
Internet:
http://publib.boulder.ibm.com/infocenter/dzichelp/v2
r2/index.jsp?topic=/com.ibm.db2z10.doc.sqlref/src/t
pc/db2z_sql_createtrigger.htm, [2 May 2014].

[13] “Oracle Community”. Internet:

https://community.oracle.com/community/developer/
search.jspa?peopleEnabled=true&userID=&containe
rType=&container=&q=select+trigger, [2 May
2014].

[14] D. Fabbri, R. Ramamurthy and R. Kaushik:

“SELECT triggers for data auditing”, Proceedings of
the 29th International Conference on Data
Engineering, Brisbane, pp. 1141-1152, April 2013.

[15] “Logon Triggers”, Database Engine Instances (SQL

Server). Internet: http://technet.microsoft.com/en-
us/library/bb326598.aspx, [2 May 2014].

[16] “PL/SQL Triggers”, Oracle® Database PL/SQL

Language Reference 11g Release 2 (11.2). Internet:
http://docs.oracle.com/cd/E11882_01/appdev.112/e1
7126/triggers.htm, [2 May 2014].

[17] A. Kornbrust: “Database rootkits”, Black Hat

Europe, April 2005. Internet: http://www.red-
database-security.com/wp/db_rootkits_us.pdf, [1
May 2014].

[18] C. Osborne: “How hackers stole millions of credit

card records from Target”, ZDNet (13 February
2014). Internet: http://www.zdnet.com/how-hackers-
stole-millions-of-credit-card-records-from-target-
7000026299/, [5 May 2014].

[19] F. Adelstein: “Live forensics: diagnosing your

system without killing it first”, Communications of
the ACM, Vol. 49 No. 2, pp. 63-66, February 2006.

[20] B.D. Carrier: “Risks of live digital forensic analysis”,

Communications of the ACM, Vol. 49 No. 2, pp. 56-
61, February 2006.

[21] C. Hargreaves and H. Chivers: “Recovery of

Encryption Keys from Memory Using a Linear
Scan”, Proceedings of the Third International
Conference on Availability, Reliability and Security,
Barcelona, pp. 1369-1376, March 2008.

[22] M. Lee and G. Bieker: Mastering SQL Server 2008,

Wiley Publishing Inc., Indianapolis, Indiana, Chapter
2, pp. 48-51, 2009.

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 73

[23] K. Fowler: “A real world scenario of a SQL Server
2005 database forensics investigation”, Black Hat
USA, 2007. Internet:
https://www.blackhat.com/presentations/bh-usa-
07/Fowler/Whitepaper/bh-usa-07-fowler-WP.pdf, [3
July 2014].

[24] S.L. Garfinkel: “Digital forensics research: The next

10 years”, Digital Investigation, Vol. 7 Supplement,
pp. S64-S73, 2010.

[25] “Create Trigger”, Adaptive Server Enterprise 15.7:

Reference Manual - Commands. Internet:
http://infocenter.sybase.com/help/index.jsp?topic=/c
om.sybase.infocenter.dc36272.1570/html/commands/
X19955.htm, [1 September 2014].

[26] “CREATE TRIGGER”, SQL As Understood By

SQLite. Internet:
http://www.sqlite.org/lang_createtrigger.html, [1
September 2014].

[27] “Login triggers in ASE 12.5+”, Login triggers.
Internet: http://www.sypron.nl/logtrig.html, [1
September 2014].

[28] “Appropriate Uses For SQLite”, Categorical Index

Of SQLite Documents. Internet:
http://www.sqlite.org/whentouse.html [1 September
2014].

[29] “Well-Known Users of SQLite”, Categorical Index

Of SQLite Documents. Internet:
http://www.sqlite.org/famous.html [1 September
2014].

[30] W.K. Hauger and M.S. Olivier: “The role of triggers

in database forensics”, Proceedings of the 2014
Information Security for South Africa Conference,
Johannesburg, August 2014.

[31] W.K. Hauger and M.S. Olivier: “Determining trigger

involvement during forensic attribution in
databases”, 2015 IFIP Working Group 11.9
Conference on Digital Forensics. Accepted for
presentation.

